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Chapter 1

Introduction

1.1 Planning to Plan

Planning is a term that means di�erent things to di�erent groups of people.
Roboticsaddresses the automation of mechanical systems that have sensing, actu-
ation, and computation capabilities (similar terms, such as autonomous systems
are also used). A fundamental need in robotics is to have algorithms that convert
high-level speci�cations of tasks from humans into low-level descriptions of how
to move. The termsmotion planning and trajectory planning are often used for
these kinds of problems. A classical version of motion planning is sometimes re-
ferred to as thePiano Mover's Problem. Imagine giving a precise computer-aided
design (CAD) model of a house and a piano as input to an algorithm. The algo-
rithm must determine how to move the piano from one room to another in the
house without hitting anything. Most of us have encounteredsimilar problems
when moving a sofa or mattress up a set of stairs. Robot motionplanning usually
ignores dynamics and other di�erential constraints and focuses primarily on the
translations and rotations required to move the piano. Recent work, however,
does consider other aspects, such as uncertainties, di�erential constraints, model-
ing errors, and optimality. Trajectory planning usually refers to the problem of
taking the solution from a robot motion planning algorithm and determining how
to move along the solution in a way that respects the mechanical limitations of
the robot.

Control theory has historically been concerned with designing inputs to phys-
ical systems described by di�erential equations. These could include mechanical
systems such as cars or aircraft, electrical systems such asnoise �lters, or even sys-
tems arising in areas as diverse as chemistry, economics, and sociology. Classically,
control theory has developedfeedback policies, which enable an adaptive response
during execution, and has focused onstability, which ensures that the dynamics
do not cause the system to become wildly out of control. A large emphasis is also
placed on optimizing criteria to minimize resource consumption, such as energy
or time. In recent control theory literature, motion planning sometimes refers to
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the construction of inputs to a nonlinear dynamical system that drives it from an
initial state to a speci�ed goal state. For example, imaginetrying to operate a
remote-controlled hovercraft that glides over the surfaceof a frozen pond. Sup-
pose we would like the hovercraft to leave its current resting location and come to
rest at another speci�ed location. Can an algorithm be designed that computes
the desired inputs, even in an ideal simulator that neglectsuncertainties that arise
from model inaccuracies? It is possible to add other considerations, such as un-
certainties, feedback, and optimality; however, the problem is already challenging
enough without these.

In arti�cial intelligence , the terms planning and AI planning take on a more
discrete avor. Instead of moving a piano through a continuous space, as in the
robot motion planning problem, the task might be to solve a puzzle, such as
the Rubik's cube or a sliding-tile puzzle, or to achieve a task that is modeled
discretely, such as building a stack of blocks. Although suchproblems could be
modeled with continuous spaces, it seems natural to de�ne a �nite set of actions
that can be applied to a discrete set of states and to construct a solution by giving
the appropriate sequence of actions. Historically, planning has been considered
di�erent from problem solving; however, the distinction seems to have faded away
in recent years. In this book, we do not attempt to make a distinction between the
two. Also, substantial e�ort has been devoted to representation language issues
in planning. Although some of this will be covered, it is mainly outside of our
focus. Many decision-theoretic ideas have recently been incorporated into the AI
planning problem, to model uncertainties, adversarial scenarios, and optimization.
These issues are important and are considered in detail in Part III.

Given the broad range of problems to which the term planning has been ap-
plied in the arti�cial intelligence, control theory, and robotics communities, you
might wonder whether it has a speci�c meaning. Otherwise, just about anything
could be considered as an instance of planning. Some common elements for plan-
ning problems will be discussed shortly, but �rst we consider planning as a branch
of algorithms. Hence, this book is entitledPlanning Algorithms. The primary
focus is on algorithmic and computational issues of planning problems that have
arisen in several disciplines. On the other hand, this does not mean that plan-
ning algorithms refers to an existing community of researchers within the general
algorithms community. This book it not limited to combinatorics and asymp-
totic complexity analysis, which is the main focus in pure algorithms. The focus
here includes numerous concepts that are not necessarily algorithmic but aid in
modeling, solving, and analyzing planning problems.

Natural questions at this point are, What is a plan? How is a planrepresented?
How is it computed? What is it supposed to achieve? How is its quality evaluated?
Who or what is going to use it? This chapter provides general answers to these
questions. Regarding the user of the plan, it clearly depends on the application.
In most applications, an algorithm executes the plan; however, the user could even
be a human. Imagine, for example, that the planning algorithm provides you with
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Figure 1.1: The Rubik's cube (a), sliding-tile puzzle (b), and other related puzzles
are examples of discrete planning problems.

an investment strategy.
In this book, the user of the plan will frequently be referredto as a robot

or a decision maker. In arti�cial intelligence and related areas, it has become
popular in recent years to use the termagent, possibly with adjectives to yield an
intelligent agentor software agent. Control theory usually refers to the decision
maker as acontroller. The plan in this context is sometimes referred to as a
policy or control law. In a game-theoretic context, it might make sense to refer
to decision makers asplayers. Regardless of the terminology used in a particular
discipline, this book is concerned with planning algorithms that �nd a strategy
for one or more decision makers. Therefore, remember that terms such asrobot,
agent, and controller are interchangeable.

1.2 Motivational Examples and Applications

Planning problems abound. This section surveys several examples and applica-
tions to inspire you to read further.

Why study planning algorithms? There are at least two good reasons. First, it
is fun to try to get machines to solve problems for which even humans have great
di�culty. This involves exciting challenges in modeling planning problems, design-
ing e�cient algorithms, and developing robust implementations. Second, planning
algorithms have achieved widespread successes in several industries and academic
disciplines, including robotics, manufacturing, drug design, and aerospace appli-
cations. The rapid growth in recent years indicates that many more fascinating
applications may be on the horizon. These are exciting timesto study planning
algorithms and contribute to their development and use.

Discrete puzzles, operations, and scheduling Chapter 2 covers discrete
planning, which can be applied to solve familiar puzzles, such as those shown in
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Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an
algorithm. The goal is to pull the two bars apart. This example is called the Alpha
1.0 Puzzle. It was created by Boris Yamrom and posted as a research benchmark
by Nancy Amato at Texas A&M University. This solution and animation were
made by James Ku�ner (see [38] for the full movie).

Figure 1.1. They are also good at games such as chess or bridge[58]. Discrete
planning techniques have been used in space applications, including a rover that
traveled on Mars and the Earth Observing One satellite [11, 23, 57]. When com-
bined with methods for planning in continuous spaces, they can solve complicated
tasks such as determining how to bend sheet metal into complicated objects [25];
see Section 7.5 for the related problem of folding cartons.

A motion planning puzzle The puzzles in Figure 1.1 can be easily discretized
because of the regularity and symmetries involved in movingthe parts. Figure 1.2
shows a problem that lacks these properties and requires planning in a continuous
space. Such problems are solved by using the motion planningtechniques of
Part II. This puzzle was designed to frustrate both humans and motion planning
algorithms. It can be solved in a few minutes on a standard personal computer
(PC) using the techniques in Section 5.5. Many other puzzleshave been developed
as benchmarks for evaluating planning algorithms.

An automotive assembly puzzle Although the problem in Figure 1.2 may
appear to be pure fun and games, similar problems arise in important applications.
For example, Figure 1.3 shows an automotive assembly problem for which software
is needed to determine whether a wiper motor can be inserted (and removed)
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Figure 1.3: An automotive assembly task that involves inserting or removing a
windshield wiper motor from a car body cavity. This problem was solved for clients
using the motion planning software of Kineo CAM (courtesy of Kineo CAM).

from the car body cavity. Traditionally, such a problem is solved by constructing
physical models. This costly and time-consuming part of thedesign process can
be virtually eliminated in software by directly manipulating the CAD models.

The wiper example is just one of many. The most widespread impact on
industry comes from motion planning software developed at Kineo CAM. It has
been integrated into Robcad (eM-Workplace) from Tecnomatix, which is a leading
tool for designing robotic workcells in numerous factoriesaround the world. Their
software has also been applied to assembly problems by Renault, Ford, Airbus,
Optivus, and many other major corporations. Other companies and institutions
are also heavily involved in developing and delivering motion planning tools for
industry (many are secret projects, which unfortunately cannot be described here).
One of the �rst instances of motion planning applied to real assembly problems
is documented in [9].

Sealing cracks in automotive assembly Figure 1.4 shows a simulation of
robots performing sealing at the Volvo Cars assembly plant in Torslanda, Sweden.
Sealing is the process of using robots to spray a sticky substance along the seams
of a car body to prevent dirt and water from entering and causing corrosion. The
entire robot workcell is designed using CAD tools, which automatically provide
the necessary geometric models for motion planning software. The solution shown
in Figure 1.4 is one of many problems solved for Volvo Cars andothers using
motion planning software developed by the Fraunhofer Chalmers Centre (FCC).
Using motion planning software, engineers need only specifythe high-level task of
performing the sealing, and the robot motions are computed automatically. This
saves enormous time and expense in the manufacturing process.
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Figure 1.4: An application of motion planning to the sealing process in automotive
manufacturing. Planning software developed by the Fraunhofer Chalmers Centre
(FCC) is used at the Volvo Cars plant in Sweden (courtesy of Volvo Cars and
FCC).
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Figure 1.5: Using mobile robots to move a piano [13].

Moving furniture Returning to pure entertainment, the problem shown in
Figure 1.5 involves moving a grand piano across a room using three mobile robots
with manipulation arms mounted on them. The problem is humorously inspired
by the phrasePiano Mover's Problem. Collisions between robots and with other
pieces of furniture must be avoided. The problem is further complicated because
the robots, piano, and oor form closed kinematic chains, which are covered in
Sections 4.4 and 7.4.

Navigating mobile robots A more common task for mobile robots is to re-
quest them to navigate in an indoor environment, as shown in Figure 1.6a. A
robot might be asked to perform tasks such as building a map ofthe environ-
ment, determining its precise location within a map, or arriving at a particular
place. Acquiring and manipulating information from sensorsis quite challenging
and is covered in Chapters 11 and 12. Most robots operate in spite of large un-
certainties. At one extreme, it may appear that having many sensors is bene�cial
because it could allow precise estimation of the environment and the robot po-
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Figure 1.6: (a) Several mobile robots attempt to successfully navigate in an indoor
environment while avoiding collisions with the walls and each other. (b) Imagine
using a lantern to search a cave for missing people.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: A mobile robot can reliably construct a good map of its environ-
ment (here, the Intel Research Lab) while simultaneously localizing itself. This
is accomplished using laser scanning sensors and performing e�cient Bayesian
computations on the information space [20].
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sition and orientation. This is the premise of many existingsystems, as shown
for the robot system in Figure 1.7, which constructs a map of its environment.
It may alternatively be preferable to develop low-cost and reliable robots that
achieve speci�c tasks with little or no sensing. These trade-o�s are carefully con-
sidered in Chapters 11 and 12. Planning under uncertainty isthe focus of Part
III.

If there are multiple robots, then many additional issues arise. How can the
robots communicate? How can their information be integrated? Should their
coordination be centralized or distributed? How can collisions between them
be avoided? Do they each achieve independent tasks, or are they required to
collaborate in some way? If they are competing in some way, then concepts from
game theory may apply. Therefore, some game theory appears in Sections 9.3,
9.4, 10.5, 11.7, and 13.5.

Playing hide and seek One important task for a mobile robot is playing the
game of hide and seek. Imagine entering a cave in complete darkness. You are
given a lantern and asked to search for any people who might bemoving about,
as shown in Figure 1.6b. Several questions might come to mind. Does a strategy
even exist that guarantees I will �nd everyone? If not, then how many other
searchers are needed before this task can be completed? Where should I move
next? Can I keep from exploring the same places multiple times? This scenario
arises in many robotics applications. The robots can be embedded in surveillance
systems that use mobile robots with various types of sensors(motion, thermal,
cameras, etc.). In scenarios that involve multiple robots with little or no com-
munication, the strategy could help one robot locate others. One robot could
even try to locate another that is malfunctioning. Outside of robotics, software
tools can be developed that assist people in systematicallysearching or covering
complicated environments, for applications such as law enforcement, search and
rescue, toxic cleanup, and in the architectural design of secure buildings. The
problem is extremely di�cult because the status of the pursuit must be carefully
computed to avoid unnecessarily allowing the evader to sneak back to places al-
ready searched. The information-space concepts of Chapter11 become critical in
solving the problem. For an algorithmic solution to the hide-and-seek game, see
Section 12.4.

Making smart video game characters The problem in Figure 1.6b might
remind you of a video game. In the arcade classicPacman, the ghosts are pro-
grammed to seek the player. Modern video games involve human-like characters
that exhibit much more sophisticated behavior. Planning algorithms can enable
game developers to program character behaviors at a higher level, with the expec-
tation that the character can determine on its own how to movein an intelligent
way.

At present there is a large separation between the planning-algorithm and
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Figure 1.8: Across the top, a motion computed by a planning algorithm, for a
digital actor to reach into a refrigerator [32]. In the lowerleft, a digital actor plays
chess with a virtual robot [35]. In the lower right, a planning algorithm computes
the motions of 100 digital actors moving across terrain withobstacles [41].

video-game communities. Some developers of planning algorithms are recently
considering more of the particular concerns that are important in video games.
Video-game developers have to invest too much energy at present to adapt ex-
isting techniques to their problems. For recent books that are geared for game
developers, see [6, 21].

Virtual humans and humanoid robots Beyond video games, there is broader
interest in developing virtual humans. See Figure 1.8. In the �eld of computer
graphics, computer-generated animations are a primary focus. Animators would
like to develop digital actors that maintain many elusive style characteristics of
human actors while at the same time being able to design motions for them from
high-level descriptions. It is extremely tedious and time consuming to specify all
motions frame-by-frame. The development of planning algorithms in this context
is rapidly expanding.

Why stop at virtual humans? The Japanese robotics community has inspired
the world with its development of advanced humanoid robots.In 1997, Honda
shocked the world by unveiling an impressive humanoid that could walk up stairs
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Figure 1.9: (a) This is a picture of the H7 humanoid robot and one of its de-
velopers, S. Kagami. It was developed in the JSK Laboratory at the University
of Tokyo. (b) Bringing virtual reality and physical reality together. A planning
algorithm computes stable motions for a humanoid to grab an obstructed object
on the oor [39].

and recover from lost balance. Since that time, numerous corporations and in-
stitutions have improved humanoid designs. Although most ofthe mechanical
issues have been worked out, two principle di�culties that remain are sensing and
planning. What good is a humanoid robot if it cannot be programmed to accept
high-level commands and execute them autonomously? Figure1.9 shows work
from the University of Tokyo for which a plan computed in simulation for a hu-
manoid robot is actually applied on a real humanoid. Figure 1.10 shows humanoid
projects from the Japanese automotive industry.

Parking cars and trailers The planning problems discussed so far have not
involved di�erential constraints, which are the main focusin Part IV. Consider the
problem of parking slow-moving vehicles, as shown in Figure1.11. Most people
have a little di�culty with parallel parking a car and much gr eater di�culty
parking a truck with a trailer. Imagine the di�culty of paral lel parking an airport
baggage train! See Chapter 13 for many related examples. What makes these
problems so challenging? A car is constrained to move in the direction that the
rear wheels are pointing. Maneuvering the car around obstacles therefore becomes
challenging. If all four wheels could turn to any orientation, this problem would
vanish. The term nonholonomic planningencompasses parking problems and
many others. Figure 1.12a shows a humorous driving problem.Figure 1.12b shows
an extremely complicated vehicle for which nonholonomic planning algorithms
were developed and applied in industry.
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(a) (b)

Figure 1.10: Humanoid robots from the Japanese automotive industry: (a) The
latest Asimo robot from Honda can run at 3 km/hr (courtesy of Honda); (b)
planning is incorporated with vision in the Toyota humanoidso that it plans to
grasp objects [27].

\Wreckless" driving Now consider driving the car at high speeds. As the
speed increases, the car must be treated as a dynamical system due to momen-
tum. The car is no longer able to instantaneously start and stop, which was
reasonable for parking problems. Although there exist planning algorithms that
address such issues, there are still many unsolved researchproblems. The impact
on industry has not yet reached the level achieved by ordinary motion planning, as
shown in Figures 1.3 and 1.4. By considering dynamics in the design process, per-
formance and safety evaluations can be performed before constructing the vehicle.
Figure 1.13 shows a solution computed by a planning algorithm that determines
how to steer a car at high speeds through a town while avoidingcollisions with
buildings. A planning algorithm could even be used to assesswhether a sports
utility vehicle tumbles sideways when stopping too quickly. Tremendous time and
costs can be spared by determining design aws early in the development process
via simulations and planning. One related problem isveri�cation , in which a me-
chanical system design must be thoroughly tested to make sure that it performs
as expected in spite of all possible problems that could go wrong during its use.
Planning algorithms can also help in this process. For example, the algorithm
can try to violently crash a vehicle, thereby establishing that a better design is
needed.

Aside from aiding in the design process, planning algorithmsthat consider
dynamics can be directly embedded into robotic systems. Figure 1.13b shows an
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Figure 1.11: Some parking illustrations from government manuals for driver test-
ing: (a) parking a car (from the 2005Missouri Driver Guide); (b) parking a
tractor trailer (published by the Pennsylvania Division ofMotor Vehicles). Both
humans and planning algorithms can solve these problems.

application that involves a di�cult combination of most of t he issues mentioned
so far. Driving across rugged, unknown terrain at high speeds involves dynam-
ics, uncertainties, and obstacle avoidance. Numerous unsolved research problems
remain in this context.

Flying Through the Air or in Space Driving naturally leads to ying. Plan-
ning algorithms can help to navigate autonomous helicopters through obstacles.
They can also compute thrusts for a spacecraft so that collisions are avoided
around a complicated structure, such as a space station. In Section 14.1.3, the
problem of designing entry trajectories for a reusable spacecraft is described. Mis-
sion planning for interplanetary spacecraft, including solar sails, can even be per-
formed using planning algorithms [26].

Designing better drugs Planning algorithms are even impacting �elds as far
away from robotics as computational biology. Two major problems are protein
folding and drug design. In both cases, scientists attempt to explain behaviors
in organisms by the way large organic molecules interact. Such molecules are
generally exible. Drug molecules are small (see Figure 1.14), and proteins usually
have thousands of atoms. Thedocking probleminvolves determining whether a
exible molecule can insert itself into a protein cavity, asshown in Figure 1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric
models are applied to molecules, the problem looks very similar to the assembly
problem in Figure 1.3 and can be solved by motion planning algorithms. See
Section 7.5 and the literature at the end of Chapter 7.

Perspective Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progressedfrom modeling,
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(a) (b)

Figure 1.12: (a) Having a little fun with di�erential constraints. An obstacle-
avoiding path is shown for a car that must move forward and canonly turn left.
Could you have found such a solution on your own? This is an easy problem for
several planning algorithms. (b) This gigantic truck was designed to transport
portions of the Airbus A380 across France. Kineo CAM developed nonholonomic
planning software that plans routes through villages that avoid obstacles and
satisfy di�erential constraints imposed by 20 steering axles. Jean-Paul Laumond,
a pioneer of nonholonomic planning, is also pictured.

(a) (b)

Figure 1.13: Reckless driving: (a) Using a planning algorithm to drive a car quickly
through an obstacle course [10]. (b) A contender developed by the Red Team
from Carnegie Mellon University in the DARPA Grand Challenge for autonomous
vehicles driving at high speeds over rugged terrain (courtesy of the Red Team).
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Ca�eine Ibuprofen AutoDock

Nicotine THC AutoDock

Figure 1.14: On the left, several familiar drugs are pictured as ball-and-stick
models (courtesy of the New York University MathMol Library [44]). On the
right, 3D models of protein-ligand docking are shown from the AutoDock software
package (courtesy of the Scripps Research Institute).

to theoretical algorithms, to practical software that is used in industry. In other
cases, substantial research remains to bring planning methods to their full poten-
tial. The future holds tremendous excitement for those who participate in the
development and application of planning algorithms.

1.3 Basic Ingredients of Planning

Although the subject of this book spans a broad class of modelsand problems,
there are several basic ingredients that arise throughout virtually all of the topics
covered as part of planning.

State Planning problems involve astate spacethat captures all possible situa-
tions that could arise. Thestate could, for example, represent the position and
orientation of a robot, the locations of tiles in a puzzle, orthe position and ve-
locity of a helicopter. Both discrete (�nite, or countably in�nite) and continuous
(uncountably in�nite) state spaces will be allowed. One recurring theme is that
the state space is usually representedimplicitly by a planning algorithm. In most
applications, the size of the state space (in terms of numberof states or combi-
natorial complexity) is much too large to be explicitly represented. Nevertheless,
the de�nition of the state space is an important component inthe formulation of
a planning problem and in the design and analysis of algorithms that solve it.
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Time All planning problems involve a sequence of decisions that must be applied
over time. Time might be explicitly modeled, as in a problem such as driving a
car as quickly as possible through an obstacle course. Alternatively, time may be
implicit, by simply reecting the fact that actions must fol low in succession, as
in the case of solving the Rubik's cube. The particular time is unimportant, but
the proper sequence must be maintained. Another example of implicit time is a
solution to the Piano Mover's Problem; the solution to moving the piano may be
converted into an animation over time, but the particular speed is not speci�ed in
the plan. As in the case of state spaces, time may be either discrete or continuous.
In the latter case, imagine that a continuum of decisions is being made by a plan.

Actions A plan generatesactions that manipulate the state. The termsactions
and operatorsare common in arti�cial intelligence; in control theory androbotics,
the related terms areinputs and controls. Somewhere in the planning formulation,
it must be speci�ed how the state changes when actions are applied. This may be
expressed as a state-valued function for the case of discrete time or as an ordinary
di�erential equation for continuous time. For most motion planning problems,
explicit reference to time is avoided by directly specifying a path through a con-
tinuous state space. Such paths could be obtained as the integral of di�erential
equations, but this is not necessary. For some problems, actions could be chosen
by nature, which interfere with the outcome and are not under the control of the
decision maker. This enables uncertainty in predictability to be introduced into
the planning problem; see Chapter 10.

Initial and goal states A planning problem usually involves starting in some
initial state and trying to arrive at a speci�ed goal state orany state in a set of
goal states. The actions are selected in a way that tries to make this happen.

A criterion This encodes the desired outcome of a plan in terms of the state
and actions that are executed. There are generally two di�erent kinds of planning
concerns based on the type of criterion:

1. Feasibility: Find a plan that causes arrival at a goal state, regardless ofits
e�ciency.

2. Optimality: Find a feasible plan that optimizes performance in some care-
fully speci�ed manner, in addition to arriving in a goal state.

For most of the problems considered in this book, feasibility is already challenging
enough; achieving optimality is considerably harder for most problems. There-
fore, much of the focus is on �nding feasible solutions to problems, as opposed
to optimal solutions. The majority of literature in robotics, control theory, and
related �elds focuses on optimality, but this is not necessarily important for many
problems of interest. In many applications, it is di�cult to even formulate the
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right criterion to optimize. Even if a desirable criterion can be formulated, it may
be impossible to obtain a practical algorithm that computesoptimal plans. In
such cases, feasible solutions are certainly preferable tohaving no solutions at all.
Fortunately, for many algorithms the solutions produced are not too far from opti-
mal in practice. This reduces some of the motivation for �nding optimal solutions.
For problems that involve probabilistic uncertainty, however, optimization arises
more frequently. The probabilities are often utilized to obtain the best perfor-
mance in terms of expected costs. Feasibility is often associated with performing
a worst-case analysis of uncertainties.

A plan In general, a plan imposes a speci�c strategy or behavior on adecision
maker. A plan may simply specify a sequence of actions to be taken; however,
it could be more complicated. If it is impossible to predict future states, then
the plan can specify actions as a function of state. In this case, regardless of
the future states, the appropriate action is determined. Using terminology from
other �elds, this enablesfeedbackor reactive plans. It might even be the case
that the state cannot be measured. In this case, the appropriate action must be
determined from whatever information is available up to thecurrent time. This
will generally be referred to as aninformation state, on which the actions of a
plan are conditioned.

1.4 Algorithms, Planners, and Plans

Machine
State

1 10 1 0 1 10

In�nite Tape

Figure 1.15: According to the Church-Turing thesis, the notion of an algorithm is
equivalent to the notion of a Turing machine.

1.4.1 Algorithms

What is a planning algorithm? This is a di�cult question, and a precise math-
ematical de�nition will not be given in this book. Instead, the general idea will
be explained, along with many examples of planning algorithms. A more basic
question is, What is an algorithm? One answer is the classical Turing machine
model, which is used to de�ne an algorithm in theoretical computer science. A
Turing machine is a �nite state machine with a special head that can read and
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Environment

Machine
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Actuation
M E

(a) (b)

Figure 1.16: (a) The boundary between machine and environment is considered as
an arbitrary line that may be drawn in many ways depending on the context. (b)
Once the boundary has been drawn, it is assumed that the machine, M , interacts
with the environment, E, through sensing and actuation.

write along an in�nite piece of tape, as depicted in Figure 1.15. The Church-
Turing thesis states that an algorithmis a Turing machine (see [29, 55] for more
details). The input to the algorithm is encoded as a string of symbols (usually
a binary string) and then is written to the tape. The Turing machine reads the
string, performs computations, and then decides whether toacceptor reject the
string. This version of the Turing machine only solvesdecision problems; however,
there are straightforward extensions that can yield other desired outputs, such as
a plan.

The Turing model is reasonable for many of the algorithms in this book; how-
ever, others may not exactly �t. The trouble with using the Turing machine in
some situations is that plans often interact with the physical world. As indicated
in Figure 1.16, the boundary between the machine and the environment is an
arbitrary line that varies from problem to problem. Once drawn, sensorsprovide
information about the environment; this provides input to the machine during
execution. The machine then executes actions, which provides actuation to the
environment. The actuation may alter the environment in some way that is later
measured by sensors. Therefore, the machine and its environment are closely cou-
pled during execution. This is fundamental to robotics and many other �elds in
which planning is used.

Using the Turing machine as a foundation for algorithms usually implies that
the physical world must be �rst carefully modeled and written on the tape before
the algorithm can make decisions. If changes occur in the world during execution
of the algorithm, then it is not clear what should happen. Forexample, a mobile
robot could be moving in a cluttered environment in which people are walking
around. As another example, a robot might throw an object ontoa table without
being able to precisely predict how the object will come to rest. It can take
measurements of the results with sensors, but it again becomes a di�cult task to
determine how much information should be explicitly modeled and written on the
tape. Theon-line algorithmmodel is more appropriate for these kinds of problems
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In�nite Row of Switches

Turing
Robot

Figure 1.17: A robot and an in�nite sequence of switches could be used to simulate
a Turing machine. Through manipulation, however, many other kinds of behavior
could be obtained that fall outside of the Turing model.

[33, 48, 56]; however, it still does not capture a notion of algorithms that is broad
enough for all of the topics of this book.

Processes that occur in a physical world are more complicated than the inter-
action between a state machine and a piece of tape �lled with symbols. It is even
possible to simulate the tape by imagining a robot that interacts with a long row
of switches as depicted in Figure 1.17. The switches serve the same purpose as the
tape, and the robot carries a computer that can simulate the �nite state machine.1

The complicated interaction allowed between a robot and itsenvironment could
give rise to many other models of computation.2 Thus, the term algorithm will be
used somewhat less formally than in the theory of computation. Both planners
and plansare considered as algorithms in this book.

1.4.2 Planners

A planner simply constructs a plan and may be a machine or a human. If the
planner is a machine, it will generally be considered as a planning algorithm. In
many circumstances it is an algorithm in the strict Turing sense; however, this is
not necessary. In some cases, humans become planners by developing a plan that
works in all situations. For example, it is perfectly acceptable for a human to
design a state machine that is connected to the environment (see Section 12.3.1).
There are no additional inputs in this case because the humanful�lls the role
of the algorithm. The planning model is given as input to the human, and the
human \computes" a plan.

1.4.3 Plans

Once a plan is determined, there are three ways to use it:

1Of course, having in�nitely long tape seems impossible in the physical world. Other versions
of Turing machines exist in which the tape is �nite but as long as necessary to process the given
input. This may be more appropriate for the discussion.

2Performing computations with mechanical systems is discussed in [52]. Computation models
over the reals are covered in [5].
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Figure 1.18: (a) A planner produces a plan that may be executed by the machine.
The planner may either be a machine itself or even a human. (b)Alternatively,
the planner may design the entire machine.

1. Execution: Execute it either in simulation or in a mechanical device (robot)
connected to the physical world.

2. Re�nement: Re�ne it into a better plan.

3. Hierarchical Inclusion: Package it as an action in a higher level plan.

Each of these will be explained in succession.

Execution A plan is usually executed by a machine. A human could alterna-
tively execute it; however, the case of machine execution isthe primary focus of
this book. There are two general types of machine execution.The �rst is depicted
in Figure 1.18a, in which the planner produces aplan, which is encoded in some
way and given as input to the machine. In this case, the machine is considered
programmableand can accept possible plans from a planner before execution. It
will generally be assumed that once the plan is given, the machine becomes au-
tonomous and can no longer interact with the planner. Of course, this model
could be extended to allow machines to be improved over time by receiving better
plans; however, we want a strict notion of autonomy for the discussion of planning
in this book. This approach does not prohibit the updating ofplans in practice;
however, this is not preferred because plans should alreadybe designed to take
into account new information during execution.

The second type of machine execution of a plan is depicted in Figure 1.18b.
In this case, the plan produced by the planner encodes an entire machine. The
plan is a special-purpose machine that is designed to solve the speci�c tasks given
originally to the planner. Under this interpretation, one may be aminimalist and
design the simplest machine possible that su�ciently solves the desired tasks. If
the plan is encoded as a �nite state machine, then it can sometimes be considered
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Design a feedback
control law that tracks
the trajectory

Design a trajectory
(velocity function)
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Compute a collision-
free path

some di�erential
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Geometric model
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Execute the
feedback plan
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Figure 1.19: A re�nement approach that has been used for decades in robotics.

M1 M2 E2

E1

Figure 1.20: In a hierarchical model, the environment of onemachine may itself
contain a machine.

as an algorithm in the Turing sense (depending on whether connecting the machine
to a tape preserves its operation).

Re�nement If a plan is used for re�nement, then a planner accepts it as input
and determines a new plan that is hopefully an improvement. The new plan
may take more problem aspects into account, or it may simply be more e�cient.
Re�nement may be applied repeatedly, to produce a sequence of improved plans,
until the �nal one is executed. Figure 1.19 shows a re�nementapproach used
in robotics. Consider, for example, moving an indoor mobilerobot. The �rst
plan yields a collision-free path through the building. Thesecond plan transforms
the route into one that satis�es di�erential constraints based on wheel motions
(recall Figure 1.11). The third plan considers how to move the robot along the
path at various speeds while satisfying momentum considerations. The fourth
plan incorporates feedback to ensure that the robot stays asclose as possible to
the planned path in spite of unpredictable behavior. Further elaboration on this
approach and its trade-o�s appears in Section 14.6.1.

Hierarchical inclusion Under hierarchical inclusion, a plan is incorporated as
an action in a larger plan. The original plan can be imagined as a subroutine
in the larger plan. For this to succeed, it is important for the original plan to
guaranteetermination, so that the larger plan can execute more actions as needed.
Hierarchical inclusion can be performed any number of times,resulting in a rooted
tree of plans. This leads to a general model ofhierarchical planning. Each vertex
in the tree is a plan. The root vertex represents themaster plan. The children
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of any vertex are plans that are incorporated as actions in the plan of the vertex.
There is no limit to the tree depth or number of children per vertex. In hierarchical
planning, the line between machine and environment is drawnin multiple places.
For example, the environment,E1, with respect to a machine,M 1, might actually
include another machine,M 2, that interacts with its environment, E2, as depicted
in Figure 1.20. Examples of hierarchical planning appear inSections 7.3.2 and
12.5.1.

1.5 Organization of the Book

Here is a brief overview of the book. See also the overviews at the beginning of
Parts II{IV.
PART I: Introductory Material
This provides very basic background for the rest of the book.

� Chapter 1: Introductory Material
This chapter o�ers some general perspective and includes some motivational
examples and applications of planning algorithms.

� Chapter 2: Discrete Planning
This chapter covers the simplest form of planning and can be considered as
a springboard for entering into the rest of the book. From here, you can
continue to Part II, or even head straight to Part III. Sections 2.1 and 2.2
are most important for heading into Part II. For Part III, Section 2.3 is
additionally useful.

PART II: Motion Planning
The main source of inspiration for the problems and algorithms covered in this
part is robotics. The methods, however, are general enough for use in other
applications in other areas, such as computational biology, computer-aided design,
and computer graphics. An alternative title that more accurately reects the kind
of planning that occurs is \Planning in Continuous State Spaces."

� Chapter 3: Geometric Representations and Transformations
The chapter gives important background for expressing a motion planning
problem. Section 3.1 describes how to construct geometric models, and the
remaining sections indicate how to transform them. Sections 3.1 and 3.2 are
important for later chapters.

� Chapter 4: The Con�guration Space
This chapter introduces concepts from topology and uses them to formu-
late the con�guration space, which is the state space that arises in motion
planning. Sections 4.1, 4.2, and 4.3.1 are important for understanding most
of the material in later chapters. In addition to the previously mentioned
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sections, all of Section 4.3 provides useful background forthe combinatorial
methods of Chapter 6.

� Chapter 5: Sampling-Based Motion Planning
This chapter introduces motion planning algorithms that have dominated
the literature in recent years and have been applied in �eldsboth in and
out of robotics. If you understand the basic idea that the con�guration
space represents a continuous state space, most of the concepts should be
understandable. They even apply to other problems in which continuous
state spaces emerge, in addition to motion planning and robotics. Chapter
14 revisits sampling-based planning, but under di�erential constraints.

� Chapter 6: Combinatorial Motion Planning
The algorithms covered in this section are sometimes calledexact algorithms
because they build discrete representations without losing any information.
They arecomplete, which means that they must �nd a solution if one exists;
otherwise, they report failure. The sampling-based algorithms have been
more useful in practice, but they only achieve weaker notions of complete-
ness.

� Chapter 7: Extensions of Basic Motion Planning
This chapter introduces many problems and algorithms that are extensions
of the methods from Chapters 5 and 6. Most can be followed withbasic un-
derstanding of the material from these chapters. Section 7.4 covers planning
for closed kinematic chains; this requires an understanding of the additional
material, from Section 4.4

� Chapter 8: Feedback Motion Planning
This is a transitional chapter that introduces feedback into the motion plan-
ning problem but still does not introduce di�erential constraints, which
are deferred until Part IV. The previous chapters of Part II focused on
computing open-loopplans, which means that any errors that might occur
during execution of the plan are ignored, yet the plan will beexecuted as
planned. Using feedback yields aclosed-loopplan that responds to unpre-
dictable events during execution.

PART III: Decision-Theoretic Planning
An alternative title to Part III is \Planning Under Uncertainty ." Most of Part III
addresses discrete state spaces, which can be studied immediately following Part
I. However, some sections cover extensions to continuous spaces; to understand
these parts, it will be helpful to have read some of Part II.

� Chapter 9: Basic Decision Theory
The main idea in this chapter is to design the best decision for a decision
maker that is confronted with interference from other decision makers. The
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others may be true opponents in a game or may be �ctitious in order to
model uncertainties. The chapter focuses on making a decision in a sin-
gle step and provides a building block for Part III because planning under
uncertainty can be considered as multi-step decision making.

� Chapter 10: Sequential Decision Theory
This chapter takes the concepts from Chapter 9 and extends them by chain-
ing together a sequence of basic decision-making problems.Dynamic pro-
gramming concepts from Section 2.3 become important here. For all of
the problems in this chapter, it is assumed that the current state is always
known. All uncertainties that exist are with respect to prediction of future
states, as opposed to measuring the current state.

� Chapter 11: Sensors and Information Spaces
The chapter extends the formulations of Chapter 10 into a framework for
planning when the current state is unknown during execution. Information
regarding the state is obtained from sensor observations and the memory of
actions that were previously applied. The information space serves a similar
purpose for problems with sensing uncertainty as the con�guration space
has for motion planning.

� Chapter 12: Planning Under Sensing Uncertainty
This chapter covers several planning problems and algorithms that involve
sensing uncertainty. This includes problems such as localization, map build-
ing, pursuit-evasion, and manipulation. All of these problems are uni�ed
under the idea of planning in information spaces, which follows from Chap-
ter 11.

PART IV: Planning Under Di�erential Constraints
This can be considered as a continuation of Part II. Here therecan be both global
(obstacles) and local (di�erential) constraints on the continuous state spaces that
arise in motion planning. Dynamical systems are also considered, which yields
state spaces that include both position and velocity information (this coincides
with the notion of a state spacein control theory or a phase spacein physics and
di�erential equations).

� Chapter 13: Di�erential Models
This chapter serves as an introduction to Part IV by introducing numerous
models that involve di�erential constraints. This includes constraints that
arise from wheels rolling as well as some that arise from the dynamics of
mechanical systems.

� Chapter 14: Sampling-Based Planning Under Di�erential Con-
straints
Algorithms for solving planning problems under the models ofChapter 13
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are presented. Many algorithms are extensions of methods from Chapter
5. All methods are sampling-based because very little can be accomplished
with combinatorial techniques in the context of di�erential constraints.

� Chapter 15: System Theory and Analytical Techniques
This chapter provides an overview of the concepts and tools developed
mainly in control theory literature. They are complementary to the al-
gorithms of Chapter 14 and often provide important insightsor components
in the development of planning algorithms under di�erential constraints.
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Chapter 2

Discrete Planning

This chapter provides introductory concepts that serve as an entry point into
other parts of the book. The planning problems considered here are the simplest
to describe because the state space will be �nite in most cases. When it is not
�nite, it will at least be countably in�nite (i.e., a unique i nteger may be assigned
to every state). Therefore, no geometric models or di�erential equations will be
needed to characterize the discrete planning problems. Furthermore, no forms
of uncertainty will be considered, which avoids complications such as probability
theory. All models are completely known and predictable.

There are three main parts to this chapter. Sections 2.1 and 2.2 de�ne and
present search methods for feasible planning, in which the only concern is to reach
a goal state. The search methods will be used throughout the book in numerous
other contexts, including motion planning in continuous state spaces. Following
feasible planning, Section 2.3 addresses the problem of optimal planning. The
principle of optimality, or the dynamic programming principle, [1] provides a key
insight that greatly reduces the computation e�ort in many planning algorithms.
The value-iteration method of dynamic programming is the main focus of Section
2.3. The relationship between Dijkstra's algorithm and value iteration is also
discussed. Finally, Sections 2.4 and 2.5 describe logic-based representations of
planning and methods that exploit these representations tomake the problem
easier to solve; material from these sections is not needed in later chapters.

Although this chapter addresses a form of planning, it encompasses what is
sometimes referred to asproblem solving. Throughout the history of arti�cial in-
telligence research, the distinction betweenproblem solving[45] andplanning has
been rather elusive. The widely used textbook by Russell andNorvig [53] pro-
vides a representative, modern survey of the �eld of arti�cial intelligence. Two of
its six main parts are termed \problem-solving" and \planning"; however, their
de�nitions are quite similar. The problem-solving part begins by stating, \Prob-
lem solving agents decide what to do by �nding sequences of actions that lead
to desirable states" ([53], p. 59). The planning part beginswith, \The task of
coming up with a sequence of actions that will achieve a goal is called planning"
([53], p. 375). Also, the STRIPS system [19] is widely considered as a seminal
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planning algorithm, and the \PS" part of its name stands for \Problem Solver."
Thus, problem solving and planning appear to be synonymous.Perhaps the term
\planning" carries connotations of future time, whereas \problem solving" sounds
somewhat more general. A problem-solving task might be to take evidence from
a crime scene and piece together the actions taken by suspects. It might seem
odd to call this a \plan" because it occurred in the past.

Since it is di�cult to make clear distinctions between problem solving and
planning, we will simply refer to both as planning. This alsohelps to keep with
the theme of this book. Note, however, that some of the concepts apply to a
broader set of problems than what is often meant by planning.

2.1 Introduction to Discrete Feasible Planning

2.1.1 Problem Formulation

The discrete feasible planning model will be de�ned using state-space models,
which will appear repeatedly throughout this book. Most of these will be natural
extensions of the model presented in this section. The basicidea is that each
distinct situation for the world is called a state, denoted byx, and the set of all
possible states is called astate space, X . For discrete planning, it will be important
that this set is countable; in most cases it will be �nite. In agiven application,
the state space should be de�ned carefully so that irrelevant information is not
encoded into a state (e.g., a planning problem that involvesmoving a robot in
France should not encode information about whether certainlight bulbs are on in
China). The inclusion of irrelevant information can easilyconvert a problem that
is amenable to e�cient algorithmic solutions into one that is intractable. On the
other hand, it is important that X is large enough to include all information that
is relevant to solve the task.

The world may be transformed through the application ofactions that are
chosen by the planner. Each action,u, when applied from the current state,
x, produces a new state,x0, as speci�ed by astate transition function, f . It is
convenient to usef to express astate transition equation,

x0 = f (x; u): (2.1)

Let U(x) denote theaction spacefor each statex, which represents the set of
all actions that could be applied fromx. For distinct x; x0 2 X , U(x) and U(x0)
are not necessarily disjoint; the same action may be applicable in multiple states.
Therefore, it is convenient to de�ne the setU of all possible actions over all states:

U =
[

x2 X

U(x): (2.2)

As part of the planning problem, a setX G � X of goal statesis de�ned. The
task of a planning algorithm is to �nd a �nite sequence of actions that when
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applied, transforms the initial statex I to some state inX G. The model is sum-
marized as:

Formulation 2.1 (Discrete Feasible Planning)

1. A nonempty state spaceX , which is a �nite or countably in�nite set of
states.

2. For each statex 2 X , a �nite action spaceU(x).

3. A state transition function f that produces a statef (x; u) 2 X for every
x 2 X and u 2 U(x). The state transition equationis derived from f as
x0 = f (x; u).

4. An initial state x I 2 X .

5. A goal setX G � X .

It is often convenient to express Formulation 2.1 as a directed state transition
graph. The set of vertices is the state spaceX . A directed edge fromx 2 X to
x0 2 X exists in the graph if and only if there exists an actionu 2 U(x) such that
x0 = f (x; u). The initial state and goal set are designated as special vertices in
the graph, which completes the representation of Formulation 2.1 in graph form.

2.1.2 Examples of Discrete Planning

Example 2.1 (Moving on a 2D Grid) Suppose that a robot moves on a grid
in which each grid point has integer coordinates of the form (i; j ). The robot
takes discrete steps in one of four directions (up, down, left, right), each of which
increments or decrements one coordinate. The motions and corresponding state
transition graph are shown in Figure 2.1, which can be imagined as stepping from
tile to tile on an in�nite tile oor.

This will be expressed using Formulation 2.1. LetX be the set of all integer
pairs of the form (i; j ), in which i; j 2 Z (Z denotes the set of all integers). Let
U = f (0; 1); (0; � 1); (1; 0); (� 1; 0)g. Let U(x) = U for all x 2 X . The state
transition equation is f (x; u) = x + u, in which x 2 X and u 2 U are treated as
two-dimensional vectors for the purpose of addition. For example, if x = (3 ; 4)
and u = (0 ; 1), then f (x; u) = (3 ; 5). Suppose for convenience that the initial state
is x I = (0 ; 0). Many interesting goal sets are possible. Suppose, for example, that
X G = f (100; 100)g. It is easy to �nd a sequence of actions that transforms the
state from (0; 0) to (100; 100).

The problem can be made more interesting by shading in some ofthe square
tiles to represent obstacles that the robot must avoid, as shown in Figure 2.2. In
this case, any tile that is shaded has its corresponding vertex and associated edges
deleted from the state transition graph. An outer boundary can be made to fence
in a bounded region so thatX becomes �nite. Very complicated labyrinths can
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Figure 2.1: The state transition graph for an example problem that involves
walking around on an in�nite tile oor.

be constructed. �

Example 2.2 (Rubik's Cube Puzzle) Many puzzles can be expressed as dis-
crete planning problems. For example, the Rubik's cube is a puzzle that looks
like an array of 3� 3 � 3 little cubes, which together form a larger cube as shown
in Figure 1.1a (Section 1.2). Each face of the larger cube is painted one of six
colors. An action may be applied to the cube by rotating a 3� 3 sheet of cubes
by 90 degrees. After applying many actions to the Rubik's cube, each face will
generally be a jumble of colors. The state space is the set of con�gurations for

Figure 2.2: Interesting planning problems that involve exploring a labyrinth can
be made by shading in tiles.
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the cube (the orientation of the entire cube is irrelevant).For each state there
are 12 possible actions. For some arbitrarily chosen con�guration of the Rubik's
cube, the planning task is to �nd a sequence of actions that returns it to the
con�guration in which each one of its six faces is a single color. �

It is important to note that a planning problem is usually speci�ed without
explicitly representing the entire state transition graph. Instead, it is revealed
incrementally in the planning process. In Example 2.1, verylittle information
actually needs to be given to specify a graph that is in�nite in size. If a planning
problem is given as input to an algorithm, close attention must be paid to the
encoding when performing a complexity analysis. For a problem in which X
is in�nite, the input length must still be �nite. For some int eresting classes of
problems it may be possible to compactly specify a model thatis equivalent to
Formulation 2.1. Such representation issues have been the basis of much research
in arti�cial intelligence over the past decades as di�erentrepresentation logics
have been proposed; see Section 2.4 and [23]. In a sense, these representations
can be viewed as input compression schemes.

Readers experienced in computer engineering might recognize that whenX is
�nite, Formulation 2.1 appears almost identical to the de�nition of a �nite state
machine or Mealy/Moore machines. Relating the two models, the actions can
be interpreted asinputs to the state machine, and the output of the machine
simply reports its state. Therefore, the feasible planningproblem (if X is �nite)
may be interpreted as determining whether there exists a sequence of inputs that
makes a �nite state machine eventually report a desired output. From a planning
perspective, it is assumed that the planning algorithm has acomplete speci�cation
of the machine transitions and is able to read its current state at any time.

Readers experienced with theoretical computer science mayobserve similar
connections to adeterministic �nite automaton (DFA), which is a special kind of
�nite state machine that reads aninput string and makes a decision about whether
to acceptor reject the string. The input string is just a �nite sequence of inputs,
in the same sense as for a �nite state machine. A DFA de�nitionincludes a set
of accept states, which in the planning context can be renamed to thegoal set.
This makes the feasible planning problem (ifX is �nite) equivalent to determining
whether there exists an input string that is accepted by a given DFA. Usually, a
languageis associated with a DFA, which is the set of all strings it accepts. DFAs
are important in the theory of computation because their languages correspond
precisely to regular expressions. The planning problem amounts to determining
whether the empty language is associated with the DFA.

Thus, there are several ways to represent and interpret the discrete feasible
planning problem that sometimes lead to a very compact, implicit encoding of the
problem. This issue will be revisited in Section 2.4. Until then, basic planning
algorithms are introduced in Section 2.2, and discrete optimal planning is covered
in Section 2.3.
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(a) (b)

Figure 2.3: (a) Many search algorithms focus too much on one direction, which
may prevent them from being systematic on in�nite graphs. (b) If, for example,
the search carefully expands in wavefronts, then it becomessystematic. The
requirement to be systematic is that, in the limit, as the number of iterations
tends to in�nity, all reachable vertices are reached.

2.2 Searching for Feasible Plans

The methods presented in this section are just graph search algorithms, but
with the understanding that the state transition graph is revealed incrementally
through the application of actions, instead of being fully speci�ed in advance. The
presentation in this section can therefore be considered asvisiting graph search
algorithms from a planning perspective. An important requirement for these or
any search algorithms is to besystematic. If the graph is �nite, this means that
the algorithm will visit every reachable state, which enables it to correctly declare
in �nite time whether or not a solution exists. To be systematic, the algorithm
should keep track of states already visited; otherwise, thesearch may run for-
ever by cycling through the same states. Ensuring that no redundant exploration
occurs is su�cient to make the search systematic.

If the graph is in�nite, then we are willing to tolerate a weaker de�nition
for being systematic. If a solution exists, then the search algorithm still must
report it in �nite time; however, if a solution does not exist, it is acceptable
for the algorithm to search forever. This systematic requirement is achieved by
ensuring that, in the limit, as the number of search iterations tends to in�nity,
every reachable vertex in the graph is explored. Since the number of vertices is
assumed to be countable, this must always be possible.

As an example of this requirement, consider Example 2.1 on an in�nite tile
oor with no obstacles. If the search algorithm explores in only one direction, as
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FORWARD SEARCH
1 Q:Insert (x I ) and mark x I as visited
2 while Q not empty do
3 x  Q:GetF irst ()
4 if x 2 X G

5 return SUCCESS
6 forall u 2 U(x)
7 x0  f (x; u)
8 if x0 not visited
9 Mark x0 as visited
10 Q:Insert (x0)
11 else
12 Resolve duplicatex0

13 return FAILURE

Figure 2.4: A general template for forward search.

depicted in Figure 2.3a, then in the limit most of the space will be left uncovered,
even though no states are revisited. If instead the search proceeds outward from
the origin in wavefronts, as depicted in Figure 2.3b, then itmay be systematic.
In practice, each search algorithm has to be carefully analyzed. A search algo-
rithm could expand in multiple directions, or even in wavefronts, but still not be
systematic. If the graph is �nite, then it is much simpler: Virtually any search
algorithm is systematic, provided that it marks visited states to avoid revisiting
the same states inde�nitely.

2.2.1 General Forward Search

Figure 2.4 gives a general template of search algorithms, expressed using the state-
space representation. At any point during the search, therewill be three kinds of
states:

1. Unvisited: States that have not been visited yet. Initially, this is every
state exceptx I .

2. Dead: States that have been visited, and for which every possible next
state has also been visited. Anext stateof x is a state x0 for which there
exists au 2 U(x) such that x0 = f (x; u). In a sense, these states aredead
because there is nothing more that they can contribute to thesearch; there
are no new leads that could help in �nding a feasible plan. Section 2.3.3
discusses a variant in which dead states can become alive again in an e�ort
to obtain optimal plans.

3. Alive: States that have been encountered, but possibly have unvisited next
states. These are consideredalive. Initially, the only alive state is x I .
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The set of alive states is stored in a priority queue,Q, for which a priority
function must be speci�ed. The only signi�cant di�erence between various search
algorithms is the particular function used to sortQ. Many variations will be
described later, but for the time being, it might be helpful to pick one. Therefore,
assume for now thatQ is a common FIFO (First-In First-Out) queue; whichever
state has been waiting the longest will be chosen whenQ:GetF irst () is called. The
rest of the general search algorithm is quite simple. Initially, Q contains the initial
state x I . A while loop is then executed, which terminates only whenQ is empty.
This will only occur when the entire graph has been explored without �nding
any goal states, which results in a FAILURE (unless the reachable portion of X
is in�nite, in which case the algorithm should never terminate). In each while
iteration, the highest ranked element,x, of Q is removed. Ifx lies in X G, then it
reports SUCCESS and terminates; otherwise, the algorithm tries applying every
possible action,u 2 U(x). For each next state,x0 = f (x; u), it must determine
whether x0 is being encountered for the �rst time. If it is unvisited, then it is
inserted into Q; otherwise, there is no need to consider it because it must be
either dead or already inQ.

The algorithm description in Figure 2.4 omits several details that often become
important in practice. For example, how e�cient is the test to determine whether
x 2 X G in line 4? This depends, of course, on the size of the state space and
on the particular representations chosen forx and X G. At this level, we do not
specify a particular method because the representations are not given.

One important detail is that the existing algorithm only indicates whether
a solution exists, but does not seem to produce a plan, which is a sequence of
actions that achieves the goal. This can be �xed by insertinga line after line
7 that associates withx0 its parent, x. If this is performed each time, one can
simply trace the pointers from the �nal state to the initial state to recover the
plan. For convenience, one might also store which action wastaken, in addition
to the pointer from x0 to x.

Lines 8 and 9 are conceptually simple, but how can one tell whether x0 has
been visited? For some problems the state transition graph might actually be a
tree, which means that there are no repeated states. Althoughthis does not occur
frequently, it is wonderful when it does because there is no need to check whether
states have been visited. If the states inX all lie on a grid, one can simply make
a lookup table that can be accessed in constant time to determine whether a state
has been visited. In general, however, it might be quite di�cult because the state
x0 must be compared with every other state inQ and with all of the dead states.
If the representation of each state is long, as is sometimes the case, this will be
very costly. A good hashing scheme or another clever data structure can greatly
alleviate this cost, but in many applications the computation time will remain
high. One alternative is to simply allow repeated states, but this could lead to an
increase in computational cost that far outweighs the bene�ts. Even if the graph
is very small, search algorithms could run in time exponential in the size of the
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state transition graph, or the search may not terminate at all, even if the graph
is �nite.

One �nal detail is that some search algorithms will require acost to be com-
puted and associated with every state. If the same state is reached multiple times,
the cost may have to be updated, which is performed in line 12,if the particular
search algorithm requires it. Such costs may be used in some way to sort the
priority queue, or they may enable the recovery of the plan oncompletion of the
algorithm. Instead of storing pointers, as mentioned previously, the optimal cost
to return to the initial state could be stored with each state. This cost alone is
su�cient to determine the action sequence that leads to any visited state. Start-
ing at a visited state, the path back tox I can be obtained by traversing the state
transition graph backward in a way that decreases the cost asquickly as possible
in each step. For this to succeed, the costs must have a certain monotonicity
property, which is obtained by Dijkstra's algorithm and A � search, and will be
introduced in Section 2.2.2. More generally, the costs mustform a navigation
function, which is considered in Section 8.2.2 as feedback is incorporated into
discrete planning.

2.2.2 Particular Forward Search Methods

This section presents several search algorithms, each of which constructs a search
tree. Each search algorithm is a special case of the algorithm in Figure 2.4,
obtained by de�ning a di�erent sorting function for Q. Most of these are just
classical graph search algorithms [12].

Breadth �rst The method given in Section 2.2.1 speci�esQ as a First-In First-
Out (FIFO) queue, which selects states using the �rst-come,�rst-serve principle.
This causes the search frontier to grow uniformly and is therefore referred to as
breadth-�rst search. All plans that have k steps are exhausted before plans with
k + 1 steps are investigated. Therefore, breadth �rst guarantees that the �rst
solution found will use the smallest number of steps. On detection that a state
has been revisited, there is no work to do in line 12. Since thesearch progresses in
a series of wavefronts, breadth-�rst search is systematic.In fact, it even remains
systematic if it does not keep track of repeated states (however, it will waste time
considering irrelevant cycles).

The asymptotic running time of breadth-�rst search isO(jV j + jE j), in which
jV j and jE j are the numbers of vertices and edges, respectively, in the state tran-
sition graph (recall, however, that the graph is usually notthe input; for example,
the input may be the rules of the Rubik's cube). This assumes that all basic
operations, such as determining whether a state has been visited, are performed
in constant time. In practice, these operations will typically require more time
and must be counted as part of the algorithm's complexity. The running time
can be expressed in terms of the other representations. Recall that jV j = jX j is
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the number of states. If the same actionsU are available from every state, then
jE j = jUjjX j. If the action sets U(x1) and U(x2) are pairwise disjoint for any
x1; x2 2 X , then jE j = jUj.

Depth �rst By making Q a stack (Last-In, First-Out; or LIFO), aggressive
exploration of the state transition graph occurs, as opposed to the uniform ex-
pansion of breadth-�rst search. The resulting variant is called depth-�rst search
because the search dives quickly into the graph. The preference is toward inves-
tigating longer plans very early. Although this aggressive behavior might seem
desirable, note that the particular choice of longer plans is arbitrary. Actions are
applied in the forall loop in whatever order they happen to be de�ned. Once
again, if a state is revisited, there is no work to do in line 12. Depth-�rst search is
systematic for any �nite X but not for an in�nite X because it could behave like
Figure 2.3a. The search could easily focus on one \direction" and completely miss
large portions of the search space as the number of iterations tends to in�nity.
The running time of depth �rst search is alsoO(jV j + jE j).

Dijkstra's algorithm Up to this point, there has been no reason to prefer one
action over any other in the search. Section 2.3 will formalize optimal discrete
planning and will present several algorithms that �nd optimal plans. Before go-
ing into that, we present a systematic search algorithm that�nds optimal plans
because it is also useful for �nding feasible plans. The result is the well-known
Dijkstra's algorithm for �nding single-source shortest paths in a graph [18], which
is a special form of dynamic programming. More general dynamic programming
computations appear in Section 2.3 and throughout the book.

Suppose that every edge,e 2 E, in the graph representation of a discrete plan-
ning problem has an associated nonnegative costl(e), which is the cost to apply
the action. The costl(e) could be written using the state-space representation as
l(x; u), indicating that it costs l(x; u) to apply action u from state x. The total
cost of a plan is just the sum of the edge costs over the path from the initial state
to a goal state.

The priority queue, Q, will be sorted according to a functionC : X ! [0; 1 ],
called the cost-to-come. For each statex, the value C � (x) is called the optimal1

cost-to-comefrom the initial state x I . This optimal cost is obtained by summing
edge costs,l(e), over all possible paths fromx I to x and using the path that
produces the least cumulative cost. If the cost is not known to be optimal, then
it is written as C(x).

The cost-to-come is computed incrementally during the execution of the search
algorithm in Figure 2.4. Initially, C � (x I ) = 0. Each time the state x0 is generated,
a cost is computed asC(x0) = C � (x) + l(e), in which e is the edge fromx to x0

(equivalently, we may write C(x0) = C � (x) + l(x; u)). Here, C(x0) represents the
best cost-to-come that is known so far, but we do not writeC � because it is not

1As in optimization literature, we will use � to mean optimal.



2.2. SEARCHING FOR FEASIBLE PLANS 39

yet known whetherx0 was reached optimally. Due to this, some work is required
in line 12. If x0 already exists inQ, then it is possible that the newly discovered
path to x0 is more e�cient. If so, then the cost-to-come valueC(x0) must be
lowered forx0, and Q must be reordered accordingly.

When doesC(x) �nally become C � (x) for some statex? Oncex is removed
from Q usingQ:GetF irst (), the state becomes dead, and it is known thatx cannot
be reached with a lower cost. This can be argued by induction.For the initial
state, C � (x I ) is known, and this serves as the base case. Now assume that every
dead state has its optimal cost-to-come correctly determined. This means that
their cost-to-come values can no longer change. For the �rstelement,x, of Q, the
value must be optimal because any path that has a lower total cost would have to
travel through another state inQ, but these states already have higher costs. All
paths that pass only through dead states were already considered in producing
C(x). Once all edges leavingx are explored, thenx can be declared as dead,
and the induction continues. This is not enough detail to constitute a proof of
optimality; more arguments appear in Section 2.3.3 and in [12]. The running time
is O(jV j lg jV j + jE j), in which jV j and jE j are the numbers of edges and vertices,
respectively, in the graph representation of the discrete planning problem. This
assumes that the priority queue is implemented with a Fibonacci heap, and that
all other operations, such as determining whether a state has been visited, are
performed in constant time. If other data structures are used to implement the
priority queue, then higher running times may be obtained.

A-star The A � (pronounced \ay star") search algorithm is an extension of Di-
jkstra's algorithm that tries to reduce the total number of states explored by
incorporating a heuristic estimate of the cost to get to the goal from a given state.
Let C(x) denote the cost-to-come fromx I to x, and let G(x) denote the cost-
to-go from x to some state inX G. It is convenient that C � (x) can be computed
incrementally by dynamic programming; however, there is noway to know the
true optimal cost-to-go, G� , in advance. Fortunately, in many applications it is
possible to construct a reasonable underestimate of this cost. As an example of a
typical underestimate, consider planning in the labyrinthdepicted in Figure 2.2.
Suppose that the cost is the total number of steps in the plan.If one state has
coordinates (i; j ) and another has (i 0; j 0), then ji 0 � i j + jj 0 � j j is an underesti-
mate because this is the length of a straightforward plan that ignores obstacles.
Once obstacles are included, the cost can only increase as the robot tries to get
around them (which may not even be possible). Of course, zerocould also serve
as an underestimate, but that would not provide any helpful information to the
algorithm. The aim is to compute an estimate that is as close as possible to the
optimal cost-to-go and is also guaranteed to be no greater. Let Ĝ� (x) denote such
an estimate.

The A � search algorithm works in exactly the same way as Dijkstra'salgorithm.
The only di�erence is the function used to sortQ. In the A � algorithm, the sum

40 S. M. LaValle: Planning Algorithms

xI

xG

Figure 2.5: Here is a troublesome example for best-�rst search. Imagine trying
to reach a state that is directly below the spiral tube. If theinitial state starts
inside of the opening at the top of the tube, the search will progress around the
spiral instead of leaving the tube and heading straight for the goal.

C � (x0) + Ĝ� (x0) is used, implying that the priority queue is sorted by estimates
of the optimal cost from x I to X G. If Ĝ� (x) is an underestimate of the true
optimal cost-to-go for all x 2 X , the A � algorithm is guaranteed to �nd optimal
plans [19, 49]. AsĜ� becomes closer toG� , fewer vertices tend to be explored in
comparison with Dijkstra's algorithm. This would always seem advantageous, but
in some problems it is di�cult or impossible to �nd a heuristic that is both e�cient
to evaluate and provides good search guidance. Note that when̂G� (x) = 0 for all
x 2 X , then A � degenerates to Dijkstra's algorithm. In any case, the search will
always be systematic.

Best �rst For best-�rst search, the priority queue is sorted according to an
estimate of the optimal cost-to-go. The solutions obtainedin this way are not
necessarily optimal; therefore, it does not matter whetherthe estimate exceeds
the true optimal cost-to-go, which was important to maintain optimality for A �

search. Although optimal solutions are not found, in many cases, far fewer vertices
are explored, which results in much faster running times. There is no guarantee,
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however, that this will happen. The worst-case performanceof best-�rst search is
worse than that of A � search and dynamic programming. The algorithm is often
too greedy because it prefers states that \look good" very early in the search.
Sometimes the price must be paid for being greedy! Figure 2.5shows a contrived
example in which the planning problem involves taking smallsteps in a 3D world.
For any speci�ed number,k, of steps, it is easy to construct a spiral example that
wastes at leastk steps in comparison to Dijkstra's algorithm. Note that best-�rst
search is not systematic.

Iterative deepening The iterative deepeningapproach is usually preferable if
the search tree has a large branching factor (i.e., there aremany more vertices in
the next level than in the current level). This could occur ifthere are many actions
per state and only a few states are revisited. The idea is to use depth-�rst search
and �nd all states that are distance i or less fromx I . If the goal is not found,
then the previous work is discarded, and depth �rst is applied to �nd all states
of distancei + 1 or less fromx I . This generally iterates fromi = 1 and proceeds
inde�nitely until the goal is found. Iterative deepening can be viewed as a way
of converting depth-�rst search into a systematic search method. The motivation
for discarding the work of previous iterations is that the number of states reached
for i + 1 is expected to far exceed (e.g., by a factor of 10) the number reached for
i . Therefore, once the commitment has been made to reach leveli + 1, the cost
of all previous iterations is negligible.

The iterative deepening method has better worst-case performance than breadth-
�rst search for many problems. Furthermore, the space requirements are reduced
because the queue in breadth-�rst search is usually much larger than for depth-
�rst search. If the nearest goal state isi steps fromx I , breadth-�rst search in
the worst case might reach nearly all states of distancei + 1 before terminating
successfully. This occurs each time a statex 62X G of distancei from x I is reached
because all new states that can be reached in one step are placed onto Q. The
A � idea can be combined with iterative deepening to yieldIDA � , in which i is
replaced byC � (x0) + Ĝ� (x0). In each iteration of IDA � , the allowed total cost
gradually increases [49].

2.2.3 Other General Search Schemes

This section covers two other general templates for search algorithms. The �rst
one is simply a \backward" version of the tree search algorithm in Figure 2.4. The
second one is a bidirectional approach that grows two searchtrees, one from the
initial state and one from a goal state.

Backward search Backward versions of any of the forward search algorithms
of Section 2.2.2 can be made. For example, a backward versionof Dijkstra's
algorithm can be made by starting fromxG. To create backward search algorithms,
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suppose that there is a single goal state,xG. For many planning problems, it might
be the case that the branching factor is large when starting from x I . In this case,
it might be more e�cient to start the search at a goal state andwork backward
until the initial state is encountered. A general template for this approach is
given in Figure 2.6. For forward search, recall that an action u 2 U(x) is applied
from x 2 X to obtain a new state,x0 = f (x; u). For backward search, a frequent
computation will be to determine for somex0, the preceding statex 2 X , and
action u 2 U(x) such that x0 = f (x; u). The template in Figure 2.6 can be
extended to handle a goal region,X G, by inserting all xG 2 X G into Q in line 1
and marking them as visited.

For most problems, it may be preferable to precompute a representation of the
state transition function, f , that is \backward" to be consistent with the search
algorithm. Some convenient notation will now be constructed for the backward
version of f . Let U� 1 = f (x; u) 2 X � U j x 2 X; u 2 U(x)g, which represents
the set of all state-action pairs and can also be considered as the domain off .
Imagine from a given statex0 2 X , the set of all (x; u) 2 U� 1 that map to x0

using f . This can be considered as abackward action space, de�ned formally for
any x0 2 X as

U� 1(x0) = f (x; u) 2 U� 1 j x0 = f (x; u)g: (2.3)

For convenience, letu� 1 denote a state-action pair (x; u) that belongs to some
U� 1(x0). From any u� 1 2 U� 1(x0), there is a uniquex 2 X . Thus, let f � 1 denote
a backward state transition functionthat yields x from x0 and u� 1 2 U� 1(x0). This
de�nes a backward state transition equation, x = f � 1(x0; u� 1), which looks very
similar to the forward version,x0 = f (x; u).

The interpretation of f � 1 is easy to capture in terms of the state transition
graph: reverse the direction of every edge. This makes �nding a plan in the
reversed graph using backward search equivalent to �nding one in the original
graph using forward search. The backward state transition function is the variant
of f that is obtained after reversing all of the edges. Eachu� 1 is a reversed edge.
Since there is a perfect symmetry with respect to the forwardsearch of Section
2.2.1, any of the search algorithm variants from Section 2.2.2 can be adapted to
the template in Figure 2.6, provided thatf � 1 has been de�ned.

Bidirectional search Now that forward and backward search have been cov-
ered, the next reasonable idea is to conduct a bidirectionalsearch. The general
search template given in Figure 2.7 can be considered as a combination of the two
in Figures 2.4 and 2.6. One tree is grown from the initial state, and the other
is grown from the goal state (assume again thatX G is a singleton,f xGg). The
search terminates with success when the two trees meet. Failure occurs if either
priority queue has been exhausted. For many problems, bidirectional search can
dramatically reduce the amount of required exploration. There are Dijkstra and
A � variants of bidirectional search, which lead to optimal solutions. For best-
�rst and other variants, it may be challenging to ensure thatthe two trees meet
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BACKWARD SEARCH
1 Q:Insert (xG) and mark xG as visited
2 while Q not empty do
3 x0  Q:GetF irst ()
4 if x = x I

5 return SUCCESS
6 forall u� 1 2 U� 1(x)
7 x  f � 1(x0; u� 1)
8 if x not visited
9 Mark x as visited
10 Q:Insert (x)
11 else
12 Resolve duplicatex
13 return FAILURE

Figure 2.6: A general template for backward search.

quickly. They might come very close to each other and then fail to connect. Addi-
tional heuristics may help in some settings to guide the trees into each other. One
can even extend this framework to allow any number of search trees. This may
be desirable in some applications, but connecting the treesbecomes even more
complicated and expensive.

2.2.4 A Uni�ed View of the Search Methods

It is convenient to summarize the behavior of all search methods in terms of sev-
eral basic steps. Variations of these steps will appear later for more complicated
planning problems. For example, in Section 5.4, a large family of sampling-based
motion planning algorithms can be viewed as an extension of the steps presented
here. The extension in this case is made from a discrete statespace to a con-
tinuous state space (called the con�guration space). Each method incrementally
constructs asearch graph, G(V; E), which is the subgraph of the state transition
graph that has been explored so far.

All of the planning methods from this section followed the same basic template:

1. Initialization: Let the search graph,G(V; E), be initialized with E empty
and V containing some starting states. For forward search,V = f x I g; for
backward search,V = f xGg. If bidirectional search is used, thenV =
f x I ; xGg. It is possible to grow more than two trees and merge them during
the search process. In this case, more states can be initialized in V. The
search graph will incrementally grow to reveal more and moreof the state
transition graph.

2. Select Vertex: Choose a vertexncur 2 V for expansion; this is usually

44 S. M. LaValle: Planning Algorithms

BIDIRECTIONAL SEARCH
1 QI :Insert (x I ) and mark x I as visited
2 QG:Insert (xG) and mark xG as visited
3 while QI not empty and QG not empty do
4 if QI not empty
5 x  QI :GetF irst ()
6 if x already visited fromxG

7 return SUCCESS
8 forall u 2 U(x)
9 x0  f (x; u)
10 if x0 not visited
11 Mark x0 as visited
12 QI :Insert (x0)
13 else
14 Resolve duplicatex0

15 if QG not empty
16 x0  QG:GetF irst ()
17 if x0 already visited fromx I

18 return SUCCESS
19 forall u� 1 2 U� 1(x0)
20 x  f � 1(x0; u� 1)
21 if x not visited
22 Mark x as visited
23 QG:Insert (x)
24 else
25 Resolve duplicatex
26 return FAILURE

Figure 2.7: A general template for bidirectional search.
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accomplished by maintaining a priority queue. Letxcur denote the state
associated withncur .

3. Apply an Action: In either a forward or backward direction, a new state,
xnew , is obtained. This may arise fromxnew = f (x; u) for someu 2 U(x)
(forward) or x = f (xnew ; u) for someu 2 U(xnew ) (backward).

4. Insert a Directed Edge into the Graph: If certain algorithm-speci�c
tests are passed, then generate an edge fromx to xnew for the forward case,
or an edge fromxnew to x for the backward case. Ifxnew is not yet in V, it
will be inserted into V.2

5. Check for Solution: Determine whetherG encodes a path fromx I to xG.
If there is a single search tree, then this is trivial. If there are two or more
search trees, then this step could be expensive.

6. Return to Step 2: Iterate unless a solution has been found or an early
termination condition is satis�ed, in which case the algorithm reports failure.

Note that in this summary, several iterations may have to be made to gener-
ate one iteration in the previous formulations. The forwardsearch algorithm in
Figure 2.4 tries all actions for the �rst element ofQ. If there are k actions, this
corresponds tok iterations in the template above.

2.3 Discrete Optimal Planning

This section extends Formulation 2.1 to allow optimal planning problems to be
de�ned. Rather than being satis�ed with any sequence of actions that leads to the
goal set, suppose we would like a solution that optimizes some criterion, such as
time, distance, or energy consumed. Three important extensions will be made: 1)
A stage index will be used to conveniently indicate the current plan step; 2) a cost
functional will be introduced, which behaves like a taxi meter by indicating how
much cost accumulates during the plan execution; and 3) a termination action
will be introduced, which intuitively indicates when it is time to stop the plan
and �x the total cost.

The presentation involves three phases. First, the problemof �nding optimal
paths of a �xed length is covered in Section 2.3.1. The approach, calledvalue it-
eration, involves iteratively computing optimal cost-to-go functions over the state
space. Although this case is not very useful by itself, it is much easier to un-
derstand than the general case of variable-length plans. Once the concepts from
this section are understood, their extension to variable-length plans will be much
clearer and is covered in Section 2.3.2. Finally, Section 2.3.3 explains the close

2In some variations, the vertex could be added without a corresponding edge. This would
start another tree in a multiple-tree approach
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relationship between value iteration and Dijkstra's algorithm, which was covered
in Section 2.2.1.

With nearly all optimization problems, there is the arbitrary, symmetric choice
of whether to de�ne a criterion to minimize or maximize. If the cost is a kind
of energy or expense, then minimization seems sensible, as is typical in robotics
and control theory. If the cost is a kind of reward, as in investment planning or
in most AI books, then maximization is preferred. Although this issue remains
throughout the book, we will choose to minimize everything.If maximization is
instead preferred, then multiplying the costs by� 1 and swapping minimizations
with maximizations should su�ce.

The �xed-length optimal planning formulation will be given shortly, but �rst
we introduce some new notation. Let� K denote aK -step plan, which is a sequence
(u1, u2, : : :, uK ) of K actions. If � K and x I are given, then a sequence of states,
(x1, x2, : : :, xK +1 ), can be derived using the state transition function,f . Initially,
x1 = x I , and each subsequent state is obtained byxk+1 = f (xk ; uk).

The model is now given; the most important addition with respect to Formu-
lation 2.1 is L, the cost functional.

Formulation 2.2 (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X , U(x),
f , x I , and X G, except here it is assumed thatX is �nite (some algorithms
may easily extend to the case in whichX is countably in�nite, but this will
not be considered here).

2. A number,K , of stages, which is the exact length of a plan (measured as the
number of actions,u1, u2, : : :, uK ). States may also obtain a stage index.
For example,xk+1 denotes the state obtained afteruk is applied.

3. Let L denote a stage-additive cost (or loss) functional, which isapplied to a
K -step plan, � K . This means that the sequence (u1; : : : ; uK ) of actions and
the sequence (x1; : : : ; xK +1 ) of states may appear in an expression ofL. For
convenience, letF denote the�nal stage, F = K + 1 (the application of uK

advances the stage toK + 1). The cost functional is

L(� K ) =
KX

k=1

l (xk ; uk) + lF (xF ): (2.4)

The cost term l(xk ; uk) yields a real value for everyxk 2 X and uk 2 U(xk).
The �nal term lF (xF ) is outside of the sum and is de�ned aslF (xF ) = 0 if
xF 2 X G, and lF (xF ) = 1 otherwise.

An important comment must be made regardinglF . Including lF in (2.4)
is actually unnecessary if it is agreed in advance thatL will only be applied to
evaluate plans that reachX G. It would then be unde�ned for all other plans. The
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algorithms to be presented shortly will also function nicely under this assumption;
however, the notation and explanation can become more cumbersome because
the action space must always be restricted to ensure that successful plans are
produced. Instead of this, the domain ofL is extended to include all plans,
and those that do not reachX G are penalized with in�nite cost so that they are
eliminated automatically in any optimization steps. At some point, the role of
lF may become confusing, and it is helpful to remember that it isjust a trick to
convert feasibility constraints into a straightforward optimization ( L(� K ) = 1
meansnot feasibleand L(� K ) < 1 meansfeasible with costL(� K )).

Now the task is to �nd a plan that minimizes L. To obtain a feasible planning
problem like Formulation 2.1 but restricted to K -step plans, letl(x; u) � 0. To
obtain a planning problem that requires minimizing the number of stages, let
l(x; u) � 1. The possibility also exists of having goals that are less \crisp" by
letting lF (x) vary for di�erent x 2 X G, as opposed tolF (x) = 0. This is much
more general than what was allowed with feasible planning because now states
may take on any value, as opposed to being classi�ed as insideor outside ofX G.

2.3.1 Optimal Fixed-Length Plans

Consider computing an optimal plan under Formulation 2.2. One could naively
generate all length-K sequences of actions and select the sequence that produces
the best cost, but this would requireO(jUjK ) running time (imagine K nested
loops, one for each stage), which is clearly prohibitive. Luckily, the dynamic
programming principle helps. We �rst say in words what will appear later in
equations. The main observation is that portions of optimalplans are themselves
optimal. It would be absurd to be able to replace a portion of an optimal plan
with a portion that produces lower total cost; this contradicts the optimality of
the original plan.

The principle of optimality leads directly to an iterative algorithm, called value
iteration,3 that can solve a vast collection of optimal planning problems, including
those that involve variable-length plans, stochastic uncertainties, imperfect state
measurements, and many other complications. The idea is to iteratively compute
optimal cost-to-go (or cost-to-come) functions over the state space. In some cases,
the approach can be reduced to Dijkstra's algorithm; however, this only occurs
under some special conditions. Thevalue-iteration algorithm will be presented
next, and Section 2.3.3 discusses its connection to Dijkstra's algorithm.

Backward value iteration

As for the search methods, there are both forward and backwardversions of
the approach. The backward case will be covered �rst. Even though it may

3The \value" here refers to the optimal cost-to-go or cost-to-come. Therefore, an alternative
name could becost-to-go iteration.
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appear super�cially to be easier to progress fromx I , it turns out that progressing
backward fromX G is notationally simpler. The forward case will then be covered
once some additional notation is introduced.

The key to deriving long optimal plans from shorter ones liesin the construc-
tion of optimal cost-to-go functions overX . For k from 1 to F , let G�

k denote the
cost that accumulates from stagek to F under the execution of the optimal plan:

G�
k(xk) = min

uk ;:::;u K

(
KX

i = k

l (x i ; ui ) + lF (xF )

)

: (2.5)

Inside of the min of (2.5) are the lastF � k terms of the cost functional, (2.4).
The optimal cost-to-go for the boundary condition ofk = F reduces to

G�
F (xF ) = lF (xF ): (2.6)

This makes intuitive sense: Since there are no stages in which an action can be
applied, the �nal stage cost is immediately received.

Now consider an algorithm that makesK passes overX , each time computing
G�

k from G�
k+1 , as k ranges fromF down to 1. In the �rst iteration, G�

F is copied
from lF without signi�cant e�ort. In the second iteration, G�

K is computed for
eachxK 2 X as

G�
K (xK ) = min

uK

n
l(xK ; uK ) + lF (xF )

o
: (2.7)

SincelF = G�
F and xF = f (xK ; uK ), substitutions can be made into (2.7) to obtain

G�
K (xK ) = min

uK

n
l(xK ; uK ) + G�

F (f (xK ; uK ))
o

; (2.8)

which is straightforward to compute for eachxK 2 X . This computes the costs
of all optimal one-step plans from stageK to stageF = K + 1.

It will be shown next that G�
k can be computed similarly onceG�

k+1 is given.
Carefully study (2.5) and note that it can be written as

G�
k(xk) = min

uk

(

min
uk +1 ;:::;u K

(

l(xk ; uk) +
KX

i = k+1

l (x i ; ui ) + lF (xF )

))

(2.9)

by pulling the �rst term out of the sum and by separating the minimization over
uk from the rest, which range fromuk+1 to uK . The second min does not a�ect
the l(xk ; uk) term; thus, l(xk ; uk) can be pulled outside to obtain

G�
k(xk) = min

uk

(

l(xk ; uk) + min
uk +1 ;:::;u K

(
KX

i = k+1

l (x i ; ui ) + lF (xF )

))

: (2.10)

The inner min is exactly the de�nition of the optimal cost-to-go function G�
k+1 .

Upon substitution, this yields the recurrence

G�
k(xk) = min

uk

n
l(xk ; uk) + G�

k+1 (xk+1 )
o

; (2.11)
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Figure 2.8: A �ve-state example. Each vertex represents a state, and each edge
represents an input that can be applied to the state transition equation to change
the state. The weights on the edges representl(xk ; uk) (xk is the originating vertex
of the edge).

in which xk+1 = f (xk ; uk). Now that the right side of (2.11) depends only onxk ,
uk , and G�

k+1 , the computation of G�
k easily proceeds inO(jX jjUj) time. This

computation is called avalue iteration. Note that in each value iteration, some
states receive an in�nite value only because they are not reachable; a (K � k)-
step plan from xk to X G does not exist. This means that there are no actions,
uk 2 U(xk), that bring xk to a state xk+1 2 X from which a (K � k � 1)-step plan
exists that terminates in X G.

Summarizing, the value iterations proceed as follows:

G�
F ! G�

K ! G�
K � 1 � � � G�

k ! G�
k� 1 � � � G�

2 ! G�
1 (2.12)

until �nally G�
1 is determined after O(K jX jjUj) time. The resulting G�

1 may
be applied to yield G�

1(x I ), the optimal cost to go to the goal fromx I . It also
conveniently gives the optimal cost-to-go from any other initial state. This cost
is in�nity for states from which X G cannot be reached inK stages.

It seems convenient that the cost of the optimal plan can be computed so easily,
but how is the actual plan extracted? One possibility is to store the action that
satis�ed the min in (2.11) from every state, and at every stage. Unfortunately,
this requiresO(K jX j) storage, but it can be reduced toO(jX j) using the tricks
to come in Section 2.3.2 for the more general case of variable-length plans.

Example 2.3 (A Five-State Optimal Planning Problem) Figure 2.8 shows
a graph representation of a planning problem in whichX = f a; c; b; d; eg. Suppose
that K = 4, x I = a, and X G = f dg. There will hence be four value iterations,
which construct G�

4, G�
3, G�

2, and G�
1, once the �nal-stage cost-to-go,G�

5, is given.
The cost-to-go functions are shown in Figure 2.9. Figures 2.10 and 2.11 il-

lustrate the computations. For computingG�
4, only b and c receive �nite values

because only they can reachd in one stage. For computingG�
3, only the values

G�
4(b) = 4 and G�

4(c) = 1 are important. Only paths that reach bor c can possibly
lead to d in stagek = 5. Note that the minimization in (2 :11) always chooses the
action that produces the lowest total cost when arriving at avertex in the next
stage. �
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a b c d e
G�

5 1 1 1 0 1
G�

4 1 4 1 1 1
G�

3 6 2 1 2 1
G�

2 4 6 3 1 1
G�

1 6 4 5 4 1

Figure 2.9: The optimal cost-to-go functions computed by backward value itera-
tion.

ba c d e

ba c d e

2 2 1
1

1 1

14

Figure 2.10: The possibilities for advancing forward one stage. This is obtained
by making two copies of the states from Figure 2.8, one copy for the current state
and one for the potential next state.

Forward value iteration

The ideas from Section 2.3.1.1 may be recycled to yield a symmetrically equiva-
lent method that computes optimalcost-to-comefunctions from the initial stage.
Whereas backward value iterations were able to �nd optimal plans from all initial
states simultaneously, forward value iterations can be used to �nd optimal plans
to all states in X . In the backward case,X G must be �xed, and in the forward
case,x I must be �xed.

The issue of maintaining feasible solutions appears again.In the forward
direction, the role of lF is not important. It may be applied in the last iteration,
or it can be dropped altogether for problems that do not have apredetermined
X G. However, one must force all plans considered by forward value iteration
to originate from x I . We again have the choice of either making notation that
imposes constraints on the action spaces or simply adding a term that forces
infeasible plans to have in�nite cost. Once again, the latter will be chosen here.

Let C �
k denote theoptimal cost-to-comefrom stage 1 to stagek, optimized over

all (k � 1)-step plans. To preclude plans that do not start atx I , the de�nition of
C �

1 is given by
C �

1(x1) = l I (x1); (2.13)

in which l I is a new function that yieldsl I (x I ) = 0, and l I (x) = 1 for all x 6= x I .
Thus, any plans that try to start from a state other than x I will immediately
receive in�nite cost.
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Figure 2.11: By turning Figure 2.10 sideways and copying itK times, a graph
can be drawn that easily shows all of the ways to arrive at a �nal state from an
initial state by owing from left to right. The computations automatically select
the optimal route.

For an intermediate stage,k 2 f 2; : : : ; K g, the following represents the optimal
cost-to-come:

C �
k (xk) = min

u1 ;:::;u k � 1

(

l I (x1) +
k� 1X

i =1

l (x i ; ui )

)

: (2.14)

Note that the sum refers to a sequence of states,x1; : : : ; xk� 1, which is the result
of applying the action sequence (u1; : : : ; uk� 2). The last state, xk , is not included
because its cost term,l(xk ; uk), requires the application of an action,uk , which
has not been chosen. If it is possible to write the cost additively, as l(xk ; uk) =
l1(xk)+ l2(uk), then the l1(xk) part could be included in the cost-to-come de�nition,
if desired. This detail will not be considered further.

As in (2.5), it is assumed in (2.14) thatui 2 U(x i ) for every i 2 f 1; : : : ; k � 1g.
The resultingxk , obtained after applyinguk� 1, must be the samexk that is named
in the argument on the left side of (2.14). It might appear oddthat x1 appears
inside of the min above; however, this is not a problem. The state x1 can be
completely determined onceu1; : : : ; uk� 1 and xk are given.

The �nal forward value iteration is the arrival at the �nal st age, F . The
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a b c d e
C �

1 0 1 1 1 1
C �

2 2 2 1 1 1
C �

3 4 4 3 6 1
C �

4 4 6 5 4 7
C �

5 6 6 5 6 5

Figure 2.12: The optimal cost-to-come functions computed by forward value iter-
ation.

cost-to-come in this case is

C �
F (xF ) = min

u1 ;:::;u K

(

l I (x1) +
KX

i =1

l (x i ; ui )

)

: (2.15)

This equation looks the same as (2.5) after substitutingk = 1; however, l I is used
here instead oflF . This has the e�ect of �ltering the plans that are considered
to include only those that start at x I . The forward value iterations �nd optimal
plans to any reachable �nal state fromx I . This behavior is complementary to
that of backward value iteration. In that case,X G was �xed, and optimal plans
from any initial state were found. For forward value iteration, this is reversed.

To express the dynamic-programming recurrence, one further issue remains.
Suppose thatC �

k� 1 is known by induction, and we want to computeC �
k (xk) for

a particular xk . This means that we must start at some statexk� 1 and arrive
in state xk by applying some action. Once again, the backward state transition
equation from Section 2.2.3 is useful. Using the stage indices, it is written here as
xk� 1 = f � 1(xk ; u� 1

k ).
The recurrence is

C �
k (xk) = min

u � 1
k 2 U � 1 (xk )

n
C �

k� 1(xk� 1) + l(xk� 1; uk� 1)
o

; (2.16)

in which xk� 1 = f � 1(xk ; u� 1
k ) and uk� 1 2 U(xk� 1) is the input to which u� 1

k 2
U� 1(xk) corresponds. Using (2.16), the �nal cost-to-come is iteratively computed
in O(K jX jjUj) time, as in the case of computing the �rst-stage cost-to-goin the
backward value-iteration method.

Example 2.4 (Forward Value Iteration) Example 2.3 is revisited for the case
of forward value iterations with a �xed plan length of K = 4. The cost-to-come
functions shown in Figure 2.12 are obtained by direct application of (2.16). It will
be helpful to refer to Figures 2.10 and 2.11 once again. The �rst row corresponds
to the immediate application of l I . In the second row, �nite values are obtained
for a and b, which are reachable in one stage fromx I = a. The iterations continue
until k = 5, at which point that optimal cost-to-come is determined for every
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state. �

2.3.2 Optimal Plans of Unspeci�ed Lengths

The value-iteration method for �xed-length plans can be generalized nicely to the
case in which plans of di�erent lengths are allowed. There will be no bound on
the maximal length of a plan; therefore, the current case is truly a generalization
of Formulation 2.1 because arbitrarily long plans may be attempted in e�orts to
reachX G. The model for the general case does not require the speci�cation of K
but instead introduces a special action,uT .

Formulation 2.3 (Discrete Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X , U(x),
f , x I , and X G. Also, the notion of stages from Formulation 2.2 is used.

2. Let L denote a stage-additive cost functional, which may be applied to any
K -step plan, � K , to yield

L(� K ) =
KX

k=1

l (xk ; uk) + lF (xF ): (2.17)

In comparison withL from Formulation 2.2, the present expression does not
considerK as a predetermined constant. It will now vary, depending on the
length of the plan. Thus, the domain ofL is much larger.

3. EachU(x) contains the specialtermination action, uT . If uT is applied atxk ,
then the action is repeatedly applied forever, the state remains unchanged,
and no more cost accumulates. Thus, for alli � k, ui = uT , x i = xk , and
l(x i ; uT ) = 0.

The termination action is the key to allowing plans of di�erent lengths. It will
appear throughout this book. Suppose that value iterationsare performed up to
K = 5, and for the problem there exists a two-step solution plan, (u1; u2), that ar-
rives in X G from x I . This plan is equivalent to the �ve-step plan (u1; u2; uT ; uT ; uT )
because the termination action does not change the state, nor does it accumulate
cost. The resulting �ve-step plan reachesX G and costs the same as (u1; u2). With
this simple extension, the forward and backward value iteration methods of Sec-
tion 2.3.1 may be applied for any �xedK to optimize over all plans of lengthK
or less (instead of �xingK ).

The next step is to remove the dependency onK . Consider running backward
value iterations inde�nitely. At some point, G�

1 will be computed, but there is
no reason why the process cannot be continued onward toG�

0, G�
� 1, and so on.

Recall that x I is not utilized in the backward value-iteration method; therefore,
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there is no concern regarding the starting initial state of the plans. Suppose that
backward value iteration was applied forK = 16 and was executed down toG�

� 8.
This considers all plans of length 25 or less. Note that it is harmless to add 9 to
all stage indices to shift all of the cost-to-go functions. Instead of running from
G�

� 8 to G�
16, they can run fromG�

1 to G�
25 without a�ecting their values. The index

shifting is allowed because none of the costs depend on the particular index that
is given to the stage. The only important aspect of the value iterations is that
they proceed backward and consecutively from stage to stage.

Eventually, enough iterations will have been executed so that an optimal plan
is known from every state that can reachX G. From that stage, sayk, onward, the
cost-to-go values from one value iteration to the next will be stationary, meaning
that for all i � k, G�

i � 1(x) = G�
i (x) for all x 2 X . Once the stationary condition

is reached, the cost-to-go function no longer depends on a particular stage k. In
this case, the stage index may be dropped, and the recurrencebecomes

G� (x) = min
u

n
l(x; u) + G� (f (x; u))

o
: (2.18)

Are there any conditions under which backward value iterations could be exe-
cuted forever, with each iteration producing a cost-to-go function for which some
values are di�erent from the previous iteration? Ifl(x; u) is nonnegative for all
x 2 X and u 2 U(x), then this could never happen. It could certainly be true that,
for any �xed K , longer plans will exist, but this cannot be said ofoptimal plans.
From every x 2 X , there either exists a plan that reachesX G with �nite cost or
there is no solution. For each state from which there exists aplan that reaches
X G, consider the number of stages in the optimal plan. Considerthe maximum
number of stages taken from all states that can reachX G. This serves as an upper
bound on the number of value iterations before the cost-to-go becomes stationary.
Any further iterations will just consider solutions that are worse than the ones
already considered (some may be equivalent due to the termination action and
shifting of stages). Some trouble might occur ifl (x; u) contains negative values.
If the state transition graph contains a cycle for which total cost is negative, then
it is preferable to execute a plan that travels around the cycle forever, thereby
reducing the total cost to�1 . Therefore, we will assume that the cost functional
is de�ned in a sensible way so that negative cycles do not exist. Otherwise, the
optimization model itself appears awed. Some negative values for l(x; u), how-
ever, are allowed as long as there are no negative cycles. (Itis straightforward to
detect and report negative cycles before running the value iterations.)

Since the particular stage index is unimportant, letk = 0 be the index of
the �nal stage, which is the stage at which the backward valueiterations begin.
Hence,G�

0 is the �nal stage cost, which is obtained directly fromlF . Let � K
denote the stage index at which the cost-to-go values all become stationary. At
this stage, the optimal cost-to-go function,G� : X ! R [ f1g , is expressed by
assigningG� = G�

� K . In other words, the particular stage index no longer matters.
The valueG� (x) gives the optimal cost to go from statex 2 X to the speci�c goal
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state xG.
If the optimal actions are not stored during the value iterations, the optimal

cost-to-go, G� , can be used to e�ciently recover them. Consider starting from
somex 2 X . What is the optimal next action? This is given by

u� = argmin
u2 U(x)

n
l(x; u) + G� (f (x; u))

o
; (2.19)

in which argmin denotes the argument that achieves the minimum value of the
expression. The action minimizes an expression that is verysimilar to (2.11). The
only di�erences between (2.19) and (2.11) are that the stageindices are dropped
in (2.19) because the cost-to-go values no longer depend on them, and argmin is
used so thatu� is selected. After applyingu� , the state transition equation is
used to obtainx0 = f (x; u � ), and (2.19) may be applied again onx0. This process
continues until a state inX G is reached. This procedure is based directly on the
dynamic programming recurrence; therefore, it recovers the optimal plan. The
function G� serves as a kind of guide that leads the system from any initial state
into the goal set optimally. This can be considered as a special case of anavigation
function, which will be covered in Section 8.2.2.

As in the case of �xed-length plans, the direction of the valueiterations can
be reversed to obtain a forward value-iteration method for the variable-length
planning problem. In this case, the backward state transition equation, f � 1, is
used once again. Also, the initial cost terml I is used instead oflF , as in (2.14). The
forward value-iteration method starts atk = 1, and then iterates until the cost-
to-come becomes stationary. Once again, the termination action, uT , preserves
the cost of plans that arrived at a state in earlier iterations. Note that it is not
required to specifyX G. A counterpart to G� may be obtained, from which optimal
actions can be recovered. When the cost-to-come values become stationary, an
optimal cost-to-come function,C � : X ! R[f1g , may be expressed by assigning
C � = C �

F , in which F is the �nal stage reached when the algorithm terminates.
The valueC � (x) gives the cost of an optimal plan that starts fromx I and reaches
x. The optimal action sequence for any speci�ed goalxG 2 X can be obtained
using

argmin
u � 12 U � 1

n
C � (f � 1(x; u � 1)) + l(f � 1(x; u � 1); u0)

o
; (2.20)

which is the forward counterpart of (2.19). Theu0 is the action in U(f � 1(x; u � 1))
that yields x when the state transition function, f , is applied. The iterations
proceed backward fromxG and terminate whenx I is reached.

Example 2.5 (Value Iteration for Variable-Length Plans) Once again, Ex-
ample 2.3 is revisited; however, this time the plan length isnot �xed due to the
termination action. Its e�ect is depicted in Figure 2.13 by the superposition of
new edges that have zero cost. It might appear at �rst that there is no incen-
tive to choose nontermination actions, but remember that any plan that does not
terminate in state xG = d will receive in�nite cost.
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Figure 2.13: Compare this �gure to Figure 2.11, for whichK was �xed at 4. The
e�ect of the termination action is depicted as dashed-line edges that yield 0 cost
when traversed. This enables plans of all �nite lengths to beconsidered. Also, the
stages extend inde�nitely to the left (for the case of backward value iteration).

a b c d e
G�

0 1 1 1 0 1
G�

� 1 1 4 1 0 1
G�

� 2 6 2 1 0 1
G�

� 3 4 2 1 0 1
G�

� 4 4 2 1 0 1
G� 4 2 1 0 1

Figure 2.14: The optimal cost-to-go functions computed by backward value iter-
ation applied in the case of variable-length plans.
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a b c d e
C �

1 1 0 1 1 1
C �

2 1 0 1 4 1
C �

3 2 0 1 2 5
C �

4 2 0 1 2 3
C � 2 0 1 2 3

Figure 2.15: The optimal cost-to-come functions computed by forward value iter-
ation applied in the case of variable-length plans.

See Figure 2.14. After a few backward value iterations, the cost-to-go values
become stationary. After this point, the termination actionis being applied from
all reachable states and no further cost accumulates. The �nal cost-to-go function
is de�ned to be G� . Sinced is not reachable frome, G� (e) = 1 .

As an example of using (2.19) to recover optimal actions, consider starting
from state a. The action that leads to b is chosen next because the total cost
2 + G� (b) = 4 is better than 2 + G� (a) = 6 (the 2 comes from the action cost).
From stateb, the optimal action leads toc, which produces total cost 1+G� (c) = 1.
Similarly, the next action leads tod 2 X G, which terminates the plan.

Using forward value iteration, suppose thatx I = b. The following cost-to-come
functions shown in Figure 2.15 are obtained. For any �nite value that remains
constant from one iteration to the next, the termination action was applied. Note
that the last value iteration is useless in this example. Once C �

3 is computed, the
optimal cost-to-come to every possible state fromx I is determined, and future
cost-to-come functions are identical. Therefore, the �nalcost-to-come is renamed
C � . �

2.3.3 Dijkstra Revisited

So far two di�erent kinds of dynamic programming have been covered. The value-
iteration method of Section 2.3.2 involves repeated computations over the entire
state space. Dijkstra's algorithm from Section 2.2.2 ows only once through the
state space, but with the additional overhead of maintaining which states are
alive.

Dijkstra's algorithm can be derived by focusing on the forward value iterations,
as in Example 2.5, and identifying exactly where the \interesting" changes occur.
Recall that for Dijkstra's algorithm, it was assumed that all costs are nonnega-
tive. For any states that are not reachable, their values remain at in�nity. They
are precisely theunvisited states. States for which the optimal cost-to-come has
already become stationary aredead. For the remaining states, an initial cost is
obtained, but this cost may be lowered one or more times untilthe optimal cost
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FORWARD LABEL CORRECTING( xG)
1 SetC(x) = 1 for all x 6= x I , and setC(x I ) = 0
2 Q:Insert (x I )
3 while Q not empty do
4 x  Q:GetF irst ()
5 forall u 2 U(x)
6 x0  f (x; u)
7 if C(x) + l(x; u) < minf C(x0); C(xG)g then
8 C(x0)  C(x) + l(x; u)
9 if x0 6= xG then
10 Q:Insert (x0)

Figure 2.16: A generalization of Dijkstra's algorithm, which upon termination
produces an optimal plan (if one exists) for any prioritization of Q, as long asX
is �nite. Compare this to Figure 2.4.

is obtained. All states for which the cost is �nite, but possibly not optimal, are
in the queue,Q.

After understanding value iteration, it is easier to understand why Dijkstra's
form of dynamic programming correctly computes optimal solutions. It is clear
that the unvisited states will remain at in�nity in both algo rithms because no
plan has reached them. It is helpful to consider the forward value iterations in
Example 2.5 for comparison. In a sense, Dijkstra's algorithm is very much like the
value iteration, except that it e�ciently maintains the set of states within which
cost-to-go values can change. It correctly inserts any states that are reached for
the �rst time, changing their cost-to-come from in�nity to a �nite value. The
values are changed in the same manner as in the value iterations. At the end
of both algorithms, the resulting values correspond to the stationary, optimal
cost-to-come,C � .

If Dijkstra's algorithm seems so clever, then why have we spent time covering
the value-iteration method? For some problems it may becometoo expensive to
maintain the sorted queue, and value iteration could provide a more e�cient alter-
native. A more important reason is that value iteration extends easily to a much
broader class of problems. Examples include optimal planning over continuous
state spaces (Sections 8.5.2 and 14.5), stochastic optimalplanning (Section 10.2),
and computing dynamic game equilibria (Section 10.5). In some cases, it is still
possible to obtain a Dijkstra-like algorithm by focusing the computation on the
\interesting" region; however, as the model becomes more complicated, it may
be ine�cient or impossible in practice to maintain this region. Therefore, it is
important to have a good understanding of both algorithms todetermine which
is most appropriate for a given problem.

Dijkstra's algorithm belongs to a broader family oflabel-correcting algorithms,
which all produce optimal plans by making small modi�cations to the general
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forward-search algorithm in Figure 2.4. Figure 2.16 shows the resulting algorithm.
The main di�erence is to allow states to become alive again ifa better cost-to-come
is found. This enables other cost-to-come values to be improved accordingly. This
is not important for Dijkstra's algorithm and A � search because they only need to
visit each state once. Thus, the algorithms in Figures 2.4 and 2.16 are essentially
the same in this case. However, the label-correcting algorithm produces optimal
solutions for any sorting ofQ, including FIFO (breadth �rst) and LIFO (depth
�rst), as long as X is �nite. If X is not �nite, then the issue of systematic search
dominates because one must guarantee that states are revisited su�ciently many
times to guarantee that optimal solutions will eventually be found.

Another important di�erence between label-correcting algorithms and the stan-
dard forward-search model is that the label-correcting approach uses the cost at
the goal state to prune away many candidate paths; this is shown in line 7. Thus,
it is only formulated to work for a single goal state; it can beadapted to work
for multiple goal states, but performance degrades. The motivation for including
C(xG) in line 7 is that there is no need to worry about improving costs at some
state, x0, if its new cost-to-come would be higher thanC(xG); there is no way it
could be along a path that improves the cost to go toxG. Similarly, xG is not
inserted in line 10 because there is no need to consider plansthat have xG as an
intermediate state. To recover the plan, either pointers can be stored fromx to
x0 each time an update is made in line 7, or the �nal, optimal cost-to-come,C � ,
can be used to recover the actions using (2.20).

2.4 Using Logic to Formulate Discrete Planning

For many discrete planning problems that we would like a computer to solve, the
state space is enormous (e.g., 10100 states). Therefore, substantial e�ort has been
invested in constructingimplicit encodings of problems in hopes that the entire
state space does not have to be explored by the algorithm to solve the problem.
This will be a recurring theme throughout this book; therefore, it is important
to pay close attention to representations. Many planning problems can appear
trivial once everything has been explicitly given.

Logic-based representations have been popular for constructing such implicit
representations of discrete planning. One historical reason is that such represen-
tations were the basis of the majority of arti�cial intelligence research during the
1950s{1980s. Another reason is that they have been useful forrepresenting cer-
tain kinds of planning problems very compactly. It may be helpful to think of
these representations as compression schemes. A string such as 010101010101...
may compress very nicely, but it is impossible to substantially compress a random
string of bits. Similar principles are true for discrete planning. Some problems
contain a kind of regularity that enables them to be expressed compactly, whereas
for others it may be impossible to �nd such representations.This is why there
has been a variety of representation logics proposed through decades of planning
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research.
Another reason for using logic-based representations is that many discrete

planning algorithms are implemented in large software systems. At some point,
when these systems solve a problem, they must provide the complete plan to a
user, who may not care about the internals of planning. Logic-based represen-
tations have seemed convenient for producing output that logically explains the
steps involved to arrive at some goal. Other possibilities may exist, but logic has
been a �rst choice due to its historical popularity.

In spite of these advantages, one shortcoming with logic-based representations
is that they are di�cult to generalize. It is important in man y applications to
enable concepts such as continuous spaces, unpredictability, sensing uncertainty,
and multiple decision makers to be incorporated into planning. This is the main
reason why the state-space representation has been used so far: It will be easy to
extend and adapt to the problems covered throughout this book. Nevertheless,
it is important to study logic-based representations to understand the relation-
ship between the vast majority of discrete planning research and other problems
considered in this book, such as motion planning and planning under di�erential
constraints. There are many recurring themes throughout these di�erent kinds
of problems, even though historically they have been investigated by separate
research communities. Understanding these connections well provides powerful
insights into planning issues across all of these areas.

2.4.1 A STRIPS-Like Representation

STRIPS-like representations have been the most common logic-based representa-
tions for discrete planning problems. This refers to the STRIPS system, which is
considered one of the �rst planning algorithms and representations [19]; its name
is derived from the STanford Research Institute Problem Solver. The original
representation used �rst-order logic, which had great expressive power but many
technical di�culties. Therefore, the representation was later restricted to only
propositional logic [46], which is similar to the form introduced in this section.
There are many variations of STRIPS-like representations.Here is one formula-
tion:

Formulation 2.4 (STRIPS-Like Planning)

1. A �nite, nonempty set I of instances.

2. A �nite, nonempty set P of predicates, which are binary-valued (partial)
functions of one of more instances. Each application of a predicate to a
speci�c set of instances is called apositive literal. A logically negated positive
literal is called anegative literal.

3. A �nite, nonempty set O of operators, each of which has: 1)preconditions,
which are positive or negative literals that must hold for the operator to
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apply, and 2) e�ects, which are positive or negative literals that are the
result of applying the operator.

4. An initial set S which is expressed as a set ofpositive literals. Negative
literals are implied. For any positive literal that does notappear in S, its
corresponding negative literal is assumed to hold initially.

5. A goal setG which is expressed as a set of bothpositiveand negative literals.

Formulation 2.4.1 provides a de�nition of discrete feasible planning expressed
in a STRIPS-like representation. The three most important components are the
sets ofinstancesI , predicatesP, and operatorsO. Informally, the instances char-
acterize the complete set of distinct things that exist in the world. They could,
for example, be books, cars, trees, and so on. The predicatescorrespond to basic
properties or statements that can be formed regarding the instances. For example,
a predicate calledUnder might be used to indicate things likeUnder(Book; Table)
(the book is under the table) orUnder(Dirt; Rug ). A predicate can be interpreted
as a kind of function that yieldstrue or false values; however, it is important
to note that it is only a partial function because it might not be desirable to allow
any instance to be inserted as an argument to the predicate.

If a predicate is evaluated on an instance, for example,Under(Dirt; Rug ), the
expression is called apositive literal. The set of all possible positive literals can be
formed by applying all possible instances to the domains over which the predicates
are de�ned. Every positive literal has a correspondingnegative literal, which is
formed by negating the positive literal. For example,: Under(Dirt; Rug ) is the
negative literal that corresponds to the positive literalUnder(Dirt; Rug ), and :
denotes negation. Let acomplementary pairrefer to a positive literal together
with its counterpart negative literal. The various components of the planning
problem are expressed in terms of positive and negative literals.

The role of an operator is to change the world. To be applicable, a set ofpre-
conditions must all be satis�ed. Each element of this set is a positive ornegative
literal that must hold true for the operator to be applicable. Any complemen-
tary pairs that can be formed from the predicates, but are notmentioned in the
preconditions, may assume any value without a�ecting the applicability of the op-
erator. If the operator is applied, then the world is updatedin a manner precisely
speci�ed by the set ofe�ects, which indicates positive and negative literals that
result from the application of the operator. It is assumed that the truth values of
all unmentioned complementary pairs are not a�ected.

Multiple operators are often de�ned in a single statement byusing variables.
For example, Insert (i ) may allow any instancei 2 I to be inserted. In some
cases, this dramatically reduces the space required to express the problem.

The planning problem is expressed in terms of an initial setS of positive
literals and a goal setG of positive and negative literals. A state can be de�ned
by selecting either the positive or negative literal for every possible complementary
pair. The initial set S speci�es such a state by giving the positive literals only.
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Figure 2.17: An example that involves putting batteries intoa ashlight.

For all possible positive literals that do not appear inS, it is assumed that their
negative counterparts hold in the initial state. The goal set G actually refers to
a set of states because, for any unmentioned complementary pair, the positive
or negative literal may be chosen, and the goal is still achieved. The task is to
�nd a sequence of operators that when applied in succession will transform the
world from the initial state into one in which all literals of G are true . For each
operator, the preconditions must also be satis�ed before itcan be applied. The
following example illustrates Formulation 2.4.

Example 2.6 (Putting Batteries into a Flashlight) Imagine a planning prob-
lem that involves putting two batteries into a ashlight, as shown in Figure 2.17.
The set of instances are

I = f Battery 1; Battery 2; Cap; F lashlightg: (2.21)

Two di�erent predicates will be de�ned, On and In , each of which is a partial
function on I . The predicate On may only be applied to evaluate whether the
Cap is On the F lashlight and is written as On(Cap; F lashlight). The pred-
icate In may be applied in the following two ways: In (Battery 1; F lashlight ),
In (Battery 2; F lashlight ), to indicate whether either battery is in the ashlight.
Recall that predicates are only partial functions in general. For the predicate
In , it is not desirable to apply any instance to any argument. For example,
it is meaningless to de�neIn (Battery 1; Battery 1) and In (F lashlight; Battery 2)
(they could be included in the model, always retaining a negative value, but it is
ine�cient).

The initial set is

S = f On(Cap; F lashlight)g: (2.22)
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Name Preconditions E�ects
P laceCap f: On(Cap; F lashlight )g f On(Cap; F lashlight )g
RemoveCap f On(Cap; F lashlight )g f: On(Cap; F lashlight )g
Insert (i ) f: On(Cap; F lashlight ); : In (i; F lashlight )g f In (i; F lashlight )g

Figure 2.18: Three operators for the ashlight problem. Notethat an operator
can be expressed with variable argument(s) for which di�erent instances could be
substituted.

Based onS, both : In (Battery 1; F lashlight ) and : In (Battery 2; F lashlight ) are
assumed to hold. Thus,S indicates that the cap is on the ashlight, but the
batteries are outside.

The goal state is

G = f On(Cap; F lashlight); In (Battery 1; F lashlight );

In (Battery 2; F lashlight )g;
(2.23)

which means that both batteries must be in the ashlight, andthe cap must be
on.

The setO consists of the four operators, which are shown in Figure 2.18. Here
is a plan that reaches the goal state in the smallest number ofsteps:

(RemoveCap; Insert(Battery 1); Insert (Battery 2); P laceCap): (2.24)

In words, the plan simply says to take the cap o�, put the batteries in, and place
the cap back on.

This example appears quite simple, and one would expect a planning algorithm
to easily �nd such a solution. It can be made more challengingby adding many
more instances toI , such as more batteries, more ashlights, and a bunch of
objects that are irrelevant to achieving the goal. Also, manyother predicates and
operators can be added so that the di�erent combinations of operators become
overwhelming. �

A large number of complexity results exist for planning expressed using logic.
The graph search problem is solved e�ciently in polynomial time; however, a
state transition graph is not given as the input. An input that is expressed
using Formulation 2.4 may describe an enormous state transition graph using
very few instances, predicates, and operators. In a sense, the model is highly
compressed when using some logic-based formulations. Thisbrings it closer to
the Kolmogorov complexity[14, 42] of the state transition graph, which is the
shortest bit size to which it can possibly be compressed and then fully recovered
by a Turing machine. This has the e�ect of making the planningproblem appear
more di�cult. Concise inputs may encode very challenging planning problems.
Most of the known hardness results are surveyed in Chapter 3 of [23]. Under most
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formulations, logic-based planning is NP-hard. The particular level of hardness
(NP, PSPACE, EXPTIME, etc.) depends on the precise problem conditions. For
example, the complexity depends on whether the operators are �xed in advance or
included in the input. The latter case is much harder. Separate complexities are
also obtained based on whether negative literals are allowed in the operator e�ects
and also whether they are allowed in preconditions. The problem is generally
harder if both positive and negative literals are allowed inthese cases.

2.4.2 Converting to the State-Space Representation

It is useful to characterize the relationship between Formulation 2.4 and the origi-
nal formulation of discrete feasible planning, Formulation 2.1. One bene�t is that
it immediately shows how to adapt the search methods of Section 2.2 to work
for logic-based representations. It is also helpful to understand the relationships
between the algorithmic complexities of the two representations.

Up to now, the notion of \state" has been only vaguely mentioned in the con-
text of the STRIPS-like representation. Now consider makingthis more concrete.
Suppose that every predicate hask arguments, and any instance could appear in
each argument. This means that there arejPj j I jk complementary pairs, which
corresponds to all of the ways to substitute instances into all arguments of all
predicates. To express the state, a positive or negative literal must be selected
from every complementary pair. For convenience, this selection can be encoded
as a binary string by imposing a linear ordering on the instances and predicates.
Using Example 2.6, the state might be speci�ed in order as

(On(Cap; F lashlight); : In (Battery 1; F lashlight 1); In (Battery 2; F lashlight )) :
(2.25)

Using a binary string, each element can be \0" to denote a negative literal or \1"
to denote positive literal. The encoded state isx = 101 for (2.25). If any instance
can appear in the argument of any predicate, then the length of the string is
jPj j I jk . The total number of possible states of the world that could possibly be
distinguished corresponds to the set of all possible bit strings. This set has size

2jP j j I jk : (2.26)

The implication is that with a very small number of instancesand predicates,
an enormous state space can be generated. Even though the search algorithms
of Section 2.2 may appear e�cient with respect to the size of the search graph
(or the number of states), the algorithms appear horribly ine�cient with respect
to the sizes ofP and I . This has motivated substantial e�orts on the develop-
ment of techniques to help guide the search by exploiting thestructure of speci�c
representations. This is the subject of Section 2.5.

The next step in converting to a state-space representationis to encode the
initial state x I as a string. The goal set,X G, is the set of all strings that are
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consistent with the positive and negative goal literals. This can be compressed by
extending the string alphabet to include a \don't care" symbol, � . A single string
that has a \0" for each negative literal, a \1" for each positive literal, and a \� "
for all others would su�ce in representing anyX G that is expressed with positive
and negative literals.

Now convert the operators. For each state,x 2 X , the set U(x) represents
the set of operators with preconditions that are satis�ed byx. To apply the
search techniques of Section 2.2, note that it is not necessary to determine U(x)
explicitly in advance for all x 2 X . Instead, U(x) can be computed whenever
eachx is encountered for the �rst time in the search. The e�ects of the operator
are encoded by the state transition equation. From a givenx 2 X , the next state,
f (x; u), is obtained by ipping the bits as prescribed by the e�ectspart of the
operator.

All of the components of Formulation 2.1 have been derived from the com-
ponents of Formulation 2.4. Adapting the search techniques of Section 2.2 is
straightforward. It is also straightforward to extend Formulation 2.4 to represent
optimal planning. A cost can be associated with each operator and set of literals
that capture the current state. This would expressl(x; u) of the cost functional,
L , from Section 2.3. Thus, it is even possible to adapt the value-iteration method
to work under the logic-based representation, yielding optimal plans.

2.5 Logic-Based Planning Methods

A huge body of research has been developed over the last few decades for plan-
ning using logic-based representations [23, 53]. These methods usually exploit
some structure that is particular to the representation. Furthermore, numerous
heuristics for accelerating performance have been developed from implementa-
tion studies. The main ideas behind some of the most inuential approaches are
described in this section, but without presenting particular heuristics.

Rather than survey all logic-based planning methods, this section focuses on
some of the main approaches that exploit logic-based representations. Keep in
mind that the searching methods of Section 2.2 also apply. Once a problem is
given using Formulation 2.4, the state transition graph is incrementally revealed
during the search. In practice, the search graph may be huge relative to the size
of the problem description. One early attempt to reduce the size of this graph was
the STRIPS planning algorithm [19, 46]; it dramatically reduced the branching
factor but unfortunately was not complete. The methods presented in this section
represent other attempts to reduce search complexity in practice while maintaining
completeness. For each method, there are some applicationsin which the method
may be more e�cient, and others for which performance may be worse. Thus,
there is no clear choice of method that is independent of its particular use.
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2.5.1 Searching in a Space of Partial Plans

One alternative to searching directly inX is to construct partial plans without
reference to particular states. By using the operator representation, partial plans
can be incrementally constructed. The idea is to iteratively achieve required
subgoals in a partial plan while ensuring that no conicts arise that could destroy
the solution developed so far.

A partial plan � is de�ned as

1. A set O� of operators that need to be applied. If the operators contain
variables, these may be �lled in by speci�c values or left as variables. The
same operator may appear multiple times inO� , possibly with di�erent
values for the variables.

2. A partial ordering relation � � on O� , which indicates for some pairso1; o2 2
O� that one must appear before other:o1 � � o2.

3. A set B � of binding constraints, in which each indicates that some variables
across operators must take on the same value.

4. A set C� of causal links, in which each is of the form (o1; l; o2) and indicates
that o1 achieves the literall for the purpose of satisfying a precondition of
o2.

Example 2.7 (A Partial Plan) Each partial plan encodes aset of possible
plans. Recall the model from Example 2.6. Suppose

O� = f RemoveCap; Insert(Battery 1)g: (2.27)

A sensible ordering constraint is that

RemoveCap� � Insert (Battery 1): (2.28)

A causal link,

(RemoveCap;: On(Cap; F lashlight); Insert (Battery 1)); (2.29)

indicates that theRemoveCapoperator achieves the literal: On(Cap; F lashlight),
which is a precondition ofInsert (Battery 1). There are no binding constraints
for this example. The partial plan implicitly represents the set of all plans for
which RemoveCapappears beforeInsert (Battery 1), under the constraint that
the causal link is not violated. �

Several algorithms have been developed to search in the space of partial plans.
To obtain some intuition about the partial-plan approach, aplanning algorithm
is described in Figure 2.19. A vertex in the partial-plan search graph is a partial
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PLAN-SPACE PLANNING

1. Start with any initial partial plan, � .

2. Find a aw in � , which may be 1) an operator precondition that has not
achieved, or 2) an operator inO� that threatens a causal constraint inC� .

3. If there is no aw, then report that � is a complete solution and compute a
linear ordering ofO� that satis�es all constraints.

4. If the aw is an unachieved precondition,l , for some operatoro2, then �nd an
operator, o1, that achieves it and record a new causal constraint, (o1; l; o2).

5. If the aw is a threat on a causal link, then the threat must be removed by
updating � � to induce an appropriate operator ordering, or by updatingB �

to bind the operators in a way that resolves the threat.

6. Return to Step 2.

Figure 2.19: Planning in the plan space is achieved by iteratively �nding a aw
in the plan and �xing it.

plan, and an edge is constructed by extending one partial plan to obtain another
partial plan that is closer to completion. Although the general template is simple,
the algorithm performance depends critically on the choiceof initial plan and the
particular aw that is resolved in each iteration. One straightforward generaliza-
tion is to develop multiple partial plans and decide which one to re�ne in each
iteration.

In early works, methods based on partial plans seemed to o�ersubstantial
bene�ts; however, they are currently considered to be not \competitive enough"
in comparison to methods that search the state space [23]. One problem is that it
becomes more di�cult to develop application-speci�c heuristics without explicit
references to states. Also, the vertices in the partial-plansearch graph are costly
to maintain and manipulate in comparison to ordinary states.

2.5.2 Building a Planning Graph

Blum and Furst introduced the notion of aplanning graph, which is a powerful
data structure that encodes information about which statesmay be reachable [4].
For the logic-based problem expressed in Formulation 2.4, consider performing
reachability analysis. Breadth-�rst search can be used from the initial state to
expand the state transition graph. In terms of the input representation, the
resulting graph may be of exponential size in the number of stages. This gives
precise reachability information and is guaranteed to �nd the goal state.

The idea of Blum and Furst is to construct a graph that is much smaller than
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the state transition graph and instead contains only partial information about
reachability. The resulting planning graphis polynomial in size and can be e�-
ciently constructed for some challenging problems. The trade-o� is that the plan-
ning graph indicates states that canpossiblybe reached. The true reachable set
is overapproximated, by eliminating many impossible states from consideration.
This enables quick elimination of impossible alternativesin the search process.
Planning algorithms have been developed that extract a planfrom the planning
graph. In the worst case, this may take exponential time, which is not surpris-
ing because the problem in Formulation 2.4 is NP-hard in general. Nevertheless,
dramatic performance improvements were obtained on some well-known planning
benchmarks. Another way to use the planning graph is as a source of information
for developing search heuristics for a particular problem.

Planning graph de�nition A layered graphis a graph that has its vertices
partitioned into a sequence oflayers, and its edges are only permitted to connect
vertices between successive layers. Theplanning graphis a layered graph in which
the layers of vertices form an alternating sequence of literals and operators:

(L1; O1; L2; O2; L3; O3; : : : ; Lk ; Ok ; L k+1 ): (2.30)

The edges are de�ned as follows. To each operatoroi 2 Oi , a directed edge is
made from eachl i 2 L i that is a precondition of oi . To each literal l i 2 L i , an
edge is made from each operatoroi � 1 2 Oi � 1 that has l i as an e�ect.

One important requirement is that no variables are allowed in the operators.
Any operator from Formulation 2.4 that contains variables must be converted into
a set that contains a distinct copy of the operator for every possible substitution
of values for the variables.

Layer-by-layer construction The planning graph is constructed layer by layer,
starting from L1. In the �rst stage, L1 represents the initial state. Every positive
literal in S is placed into L1, along with the negation of every positive literal
not in S. Now consider stagei . The set Oi is the set of all operators for which
their preconditions are a subset ofL i . The set L i +1 is the union of the e�ects of
all operators in Oi . The iterations continue until the planning graph stabilizes,
which means thatOi +1 = Oi and L i +1 = L i . This situation is very similar to the
stabilization of value iterations in Section 2.3.2. A tricksimilar to the termina-
tion action, uT , is needed even here so that plans of various lengths are properly
handled. In Section 2.3.2, one job of the termination actionwas to prevent state
transitions from occurring. The same idea is needed here. For each possible lit-
eral, l , a trivial operator is constructed for whichl is the only precondition and
e�ect. The introduction of trivial operators ensures that once a literal is reached,
it is maintained in the planning graph for every subsequent layer of literals. Thus,
each Oi may contain some trivial operators, in addition to operators from the
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initially given set O. These are required to ensure that the planning graph expan-
sion reaches a steady state, in which the planning graph is identical for all future
expansions.

Mutex conditions During the construction of the planning graph, information
about the conict between operators and literals within a layer is maintained. A
conict is called a mutex condition, which means that a pair of literals4 or pair of
operators is mutually exclusive. Both cannot be chosen simultaneously without
leading to some kind of conict. A pair in conict is called mutex. For each layer,
a mutex relation is de�ned that indicates which pairs satisfy the mutex condition.
A pair, o; o0 2 Oi , of operators is de�ned to bemutex if any of these conditions is
met:

1. Inconsistent e�ects: An e�ect of o is the negated literal of an e�ect ofo0.

2. Interference: An e�ect of o is the negated literal of a precondition ofo0.

3. Competing needs: A pair of preconditions, one from each ofo and o0, are
mutex in L i .

The last condition relies on the de�nition of mutex for literals, which is presented
next. Any pair, l; l 0 2 L i , of literals is de�ned to be mutex if at least one of the
two conditions is met:

1. Negated literals: l and l0 form a complementary pair.

2. Inconsistent support: Every pair of operators,o; o0 2 Oi � 1, that achieve
l and l0 is mutex. In this case, one operator must achievel, and the other
must achievel0. If there exists an operator that achieves both, then this
condition is false, regardless of the other pairs of operators.

The mutex de�nition depends on the layers; therefore, it is computed layer by
layer during the planning graph construction.

Example 2.8 (The Planning Graph for the Flashlight) Figure 2.20 shows
the planning graph for Example 2.6. In the �rst layer, L1 expresses the initial
state. The only applicable operator isRemoveCap. The operator layerO1 con-
tains RemoveCapand three trivial operators, which are needed to maintain the
literals from L1. The appearance of: On(Cap; F lashlight) enables the battery-
insertion operator to apply. Since variables are not allowed in operator de�nitions
in a planning graph, two di�erent operators (labeled asI 1 andI 2) appear, one for
each battery. Notice the edges drawn toI 1 and I 2 from their preconditions. The
cap may also be replaced; hence,P laceCapis included inO2. At the L3 layer, all
possible literals have been obtained. AtO3, all possible operators, including the

4The pair of literals need not be a complementary pair, as de�ned in Section 2.4.1.
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Figure 2.20: The planning graph for the ashlight example. The unlabeled oper-
ator vertices correspond to trivial operators. For clarity, the operator and literal
names are abbreviated.

trivial ones, are included. Finally,L4 = L3, and O4 will be the same asO3. This
implies that the planning graph has stabilized. �

Plan extraction Suppose that the planning graph has been constructed up
to L i . At this point, the planning graph can be searched for a solution. If no
solution is found and the planning graph has stabilized, then no solution exists to
the problem in general (this was shown in [4]; see also [23]).If the planning graph
has not stabilized, then it can be extended further by addingOi and L i +1 . The
extended graph can then be searched for a solution plan. A planning algorithm
derived from the planning graph interleaves the graph extensions and the searches
for solutions. Either a solution is reported at some point orthe algorithm correctly
reports that no solution exists after the planning graph stabilizes. The resulting
algorithm is complete. One of the key observations in establishing completeness
is that the literal and operator layers each increase monotonically as i increases.
Furthermore, the sets of pairs that are mutex decrease monotonically, until all
possible conicts are resolved.

Rather than obtaining a fully speci�ed plan, the planning graph yields alayered
plan, which is a special form of partial plan. All of the necessary operators are
included, and the layered plan is speci�ed as

(A1; A2; : : : ; Ak); (2.31)
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in which eachA i is a set of operators. Within anyA i , the operators are nonmutex
and may be applied in any order without altering the state obtained by the layered
plan. The only constraint is that for eachi from 1 to k, every operator inA i must
be applied before any operators inA i +1 can be applied. For the ashlight example,
a layered plan that would be constructed from the planning graph in Figure 2.20
is

(f RemoveCapg; f Insert (Battery 1); Insert (Battery 2)g; f P laceCapg): (2.32)

To obtain a fully speci�ed plan, the layered plan needs to be linearized by specify-
ing a linear ordering for the operators that is consistent with the layer constraints.
For (2.32), this results in (2.24). The actual plan execution usually involves more
stages than the number in the planning graph. For complicated planning prob-
lems, this di�erence is expected to be huge. With a small number of stages, the
planning graph can consider very long plans because it can apply several nonmutex
operators in a single layer.

At each level, the search for a plan could be quite costly. Theidea is to start
from L i and perform a backwardand/or search. To even begin the search, the
goal literals G must be a subset ofL i , and no pairs are allowed to be mutex;
otherwise, immediate failure is declared. From each literal l 2 G, an \or" part
of the search tries possible operators that producel as an e�ect. The \and"
part of the search must achieve all literals in the precondition of an operator
chosen at the previous \or" level. Each of these preconditions must be achieved,
which leads to another \or" level in the search. The idea is applied recursively
until the initial set L1 of literals is obtained. During the and/or search, the
computed mutex relations provide information that immediately eliminates some
branches. Frequently, triples and higher order tuples are checked for being mutex
together, even though they are not pairwise mutex. A hash table is constructed to
e�ciently retrieve this information as it is considered multiple times in the search.
Although the plan extraction is quite costly, superior performance was shown in
[4] on several important benchmarks. In the worst case, the search could require
exponential time (otherwise, a polynomial-time algorithmwould have been found
to an NP-hard problem).

2.5.3 Planning as Satis�ability

Another interesting approach is to convert the planning problem into an enormous
Boolean satis�ability problem. This means that the planning problem of Formu-
lation 2.4 can be solved by determining whether some assignment of variables is
possible for a Boolean expression that leads to atrue value. Generic methods for
determining satis�ability can be directly applied to the Boolean expression that
encodes the planning problem. TheDavis-Putnam procedureis one of the most
widely known algorithms for satis�ability. It performs a depth-�rst search by
iteratively trying assignments for variables and backtracking when assignments
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fail. During the search, large parts of the expression can beeliminated due to
the current assignments. The algorithm is complete and reasonably e�cient. Its
use in solving planning problems is surveyed in [23]. In practice, stochastic local
search methods provide a reasonable alternative to the Davis-Putnam procedure
[28].

Suppose a planning problem has been given in terms of Formulation 2.4. All
literals and operators will be tagged with a stage index. Forexample, a literal that
appears in two di�erent stages will be considered distinct.This kind of tagging is
similar to situation calculus[22]; however, in that case, variables are allowed for
the tags. To obtain a �nite, Boolean expression the total number of stages must be
declared. LetK denote the number of stages at which operators can be applied.
As usual, the �st stage isk = 1 and the �nal stage is k = F = K + 1. Setting
a stage limit is a signi�cant drawback of the approach because this is usually
not known before the problem is solved. A planning algorithmcan assume a
small value forF and then gradually increase it each time the resulting Boolean
expression is not satis�ed. If the problem is not solvable, however, this approach
iterates forever.

Let _ denote logical OR, and let̂ denote logical AND. The Boolean expression
is written as a conjunction5 of many terms, which arise from �ve di�erent sources:

1. Initial state: A conjunction of all literals in S is formed, along with the
negation of all positive literals not inS. These are all tagged with 1, the
initial stage index.

2. Goal state: A conjunction of all literals in G, tagged with the �nal stage
index, F = K + 1.

3. Operator encodings: Each operator must be copied over the stages. For
eacho 2 O, let ok denote the operator applied at stagek. A conjunction is
formed over all operators at all stages. For eachok , the expression is

: ok _ (p1 ^ p2 ^ � � � ^ pm ^ e1 ^ e2 ^ � � � ^ en ) ; (2.33)

in which p1, : : :, pm are the preconditions ofok , and e1, : : :, en are the e�ects
of ok .

4. Frame axioms: The next part is to encode the implicit assumption that
every literal that is not an e�ect of the applied operator remains unchanged
in the next stage. This can alternatively be stated as follows: If a literal l
becomes negated to: l , then an operator that includes: l as an e�ect must
have been executed. (Ifl was already a negative literal, then: l is a positive
literal.) For each stage and literal, an expression is needed. Suppose that
lk and lk+1 are the same literal but are tagged for di�erent stages. The
expression is

(lk _ : lk+1 ) _ (ok;1 _ ok;2 _ � � � _ ok;j ); (2.34)

5Conjunction means logical AND.
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in which ok;1, : : :, ok;j are the operators, tagged for stagek, that contain lk+1

as an e�ect. This ensures that if: lk appears, followed bylk+1 , then some
operator must have caused the change.

5. Complete exclusion axiom: This indicates that only one operator applies
at every stage. For every stagek, and any pair of stage-tagged operatorsok

and o0
k , the expression is

: ok _ : o0
k ; (2.35)

which is logically equivalent to: (ok ^ o0
k) (meaning, \not both at the same

stage").

It is shown in [34] that a solution plan exists if and only if the resulting Boolean
expression is satis�able.

The following example illustrates the construction.

Example 2.9 (The Flashlight Problem as a Boolean Expression ) A Boolean
expression will be constructed for Example 2.6. Each of the expressions given be-
low is joined into one large expression by connecting them with ^ 's.

The expression for the initial state is

O(C; F; 1) ^ : I (B1; F; 1) ^ : I (B2; F; 1); (2.36)

which uses the abbreviated names, and the stage tag has been added as an argu-
ment to the predicates. The expression for the goal state is

O(C; F; 5) ^ I (B1; F; 5) ^ I (B2; F; 5); (2.37)

which indicates that the goal must be achieved at stagek = 5. This value was
determined because we already know the solution plan from (2.24). The method
will also work correctly for a larger value ofk. The expressions for the operators
are

: PCk _ (: O(C; F; k) ^ O(C; F; k + 1))

: RCk _ (O(C; F; k) ^ : O(C; F; k + 1))

: I 1k _ (: O(C; F; k) ^ : I (B1; F; k) ^ I (B1; F; k + 1))

: I 2k _ (: O(C; F; k) ^ : I (B2; F; k) ^ I (B2; F; k + 1))

(2.38)

for eachk from 1 to 4.
The frame axioms yield the expressions

(O(C; F; k) _ : O(C; F; k + 1)) _ (PCk)

(: O(C; F; k) _ O(C; F; k + 1)) _ (RCk)

(I (B1; F; k) _ : I (B1; F; k + 1)) _ (I 1k)

(: I (B1; F; k) _ I (B1; F; k + 1))

(I (B2; F; k) _ : I (B2; F; k + 1)) _ (I 2k)

(: I (B2; F; k) _ I (B2; F; k + 1)) ;

(2.39)
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for eachk from 1 to 4. No operators remove batteries from the ashlight.Hence,
two of the expressions list no operators.

Finally, the complete exclusion axiom yields the expressions

: RCk _ : PCk : RCk _ : O1k : RCk _ : O2k (2.40)

: PCk _ : O1k : PCk _ : O2k : O1k _ : O2k ;

for eachk from 1 to 4. The full problem is encoded by combining all of thegiven
expressions into an enormous conjunction. The expression is satis�ed by assign-
ing true values toRC1, IB 12, IB 23, and PC4. An alternative solution is RC1,
IB 22, IB 13, and PC4. The stage index tags indicate the order that the actions
are applied in the recovered plan. �

Further Reading

Most of the ideas and methods in this chapter have been known for decades. Most of
the search algorithms of Section 2.2 are covered in algorithms literatureas graph search
[12, 24, 43, 54] and in AI literature as planning or search methods [37, 46, 47, 49, 53, 61].
Many historical references to search in AI appear in [53]. Bidirectional search was
introduced in [50, 51] and is closely related tomeans-end analysis[45]; more discussion
of bidirectional search appears in [8, 7, 31, 40, 53]. The development of good search
heuristics is critical to many applications of discrete planning. Forsubstantial material
on this topic, see [23, 36, 49]. For the relationship between planning and scheduling,
see [15, 23, 57].

The dynamic programming principle forms the basis of optimal control theory and
many algorithms in computer science. The main ideas follow from Bellman's principle
of optimality [1, 2]. These classic works led directly to the value-iteration methods
of Section 2.3. For more recent material on this topic, see [3], which includes Dijk-
stra's algorithm and its generalization to label-correcting algorithms. An important
special version of Dijkstra's algorithm is Dial's algorithm [17] (see [59] andSection
8.2.3). Throughout this book, there are close connections between planning methods
and control theory. One step in this direction was taken earlier in [16].

The foundations of logic-based planning emerged from early work of Nilsson [19, 46],
which contains most of the concepts introduced in Section 2.4. Over the last few decades,
an enormous body of literature has been developed. Section 2.5 briey surveyed some of
the highlights; however, several more chapters would be needed to do this subject justice.
For a comprehensive, recent treatment of logic-based planning, see [23]; topics beyond
those covered here include constraint-satisfaction planning, scheduling, and temporal
logic. Other sources for logic-based planning include [22, 53, 60, 62]. A critique of
benchmarks used for comparisons of logic-based planning algorithms appearsin [30].

Too add uncertainty or multiple decision makers to the problems covered in this
chapter, jump ahead to Chapter 10 (this may require some background fromChapter
9). To move from searching in discrete to continuous spaces, try Chapters 5 and 6 (some
background from Chapters 3 and 4 is required).
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Figure 2.21: Another �ve-state discrete planning problem.

Exercises

1. Consider the planning problem shown in Figure 2.21. Leta be the initial state,
and let e be the goal state.

(a) Use backward value iteration to determine the stationary cost-to-go.

(b) Do the same but instead use forward value iteration.

2. Try to construct a worst-case example for best-�rst search that has properties
similar to that shown in Figure 2.5, but instead involves moving in a 2D world
with obstacles, as introduced in Example 2.1.

3. It turns out that value iteration can be generalized to a cost functional of the
form

L(� K ) =
KX

k=1

l (xk ; uk ; xk+1 ) + lF (xF ); (2.41)

in which l(xk ; uk ) in (2.4) has been replaced byl(xk ; uk ; xk+1 ).

(a) Show that the dynamic programming principle can be applied in this more
general setting to obtain forward and backward value iteration methods that
solve the �xed-length optimal planning problem.

(b) Do the same but for the more general problem of variable-length plans,
which uses termination conditions.

4. The cost functional can be generalized to beingstage-dependent, which means
that the cost might depend on the particular stage k in addition to the state, xk

and the action uk . Extend the forward and backward value iteration methods of
Section 2.3.1 to work for this case, and show that they give optimal solutions.
Each term of the more general cost functional should be denoted asl(xk ; uk ; k).

5. Recall from Section 2.3.2 the method of de�ning a termination actionuT to make
the value iterations work correctly for variable-length planning. Instead of re-
quiring that one remains at the same state, it is also possible to formulate the
problem by creating a special state, called theterminal state, xT . Whenever uT

is applied, the state becomesxT . Describe in detail how to modify the cost func-
tional, state transition equation, and any other necessary components so that the
value iterations correctly compute shortest plans.

6. Dijkstra's algorithm was presented as a kind of forward search in Section 2.2.1.
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(a) Develop a backward version of Dijkstra's algorithm that starts from the goal.
Show that it always yields optimal plans.

(b) Describe the relationship between the algorithm from part (a) and the back-
ward value iterations from Section 2.3.2.

(c) Derive a backward version of theA � algorithm and show that it yields op-
timal plans.

7. Reformulate the general forward search algorithm of Section 2.2.1 so that itis
expressed in terms of the STRIPS-like representation. Carefully consider what
needs to be explicitly constructed by a planning algorithm and what is considered
only implicitly.

8. Rather than using bit strings, develop a set-based formulation of thelogic-based
planning problem. A state in this case can be expressed as a set of positive literals.

9. Extend Formulation 2.4 to allow disjunctive goal sets (there are alternative sets
of literals that must be satis�ed). How does this a�ect the binary st ring repre-
sentation?

10. Make a Remove operator for Example 2.17 that takes a battery away from the
ashlight. For this operator to apply, the battery must be in the ashli ght and
must not be blocked by another battery. Extend the model to allow enough
information for the Remove operator to function properly.

11. Model the operation of the sliding-tile puzzle in Figure 1.1b using the STRIPS-like
representation. You may use variables in the operator de�nitions.

12. Find the complete set of plans that are implicitly encoded by Example 2.7.

13. Explain why, in Formulation 2.4, G needs to include both positive and negative
literals, whereasS only needs positive literals. As an alternative de�nition, could
S have contained only negative literals? Explain.

14. Using Formulation 2.4, model a problem in which a robot checks to determine
whether a room is dark, moves to a light switch, and ips on the light. Predicates
should indicate whether the robot is at the light switch and whether the light is
on. Operators that move the robot and ip the switch are needed.

15. Construct a planning graph for the model developed in Exercise 14.

16. Express the model in Exercise 14 as a Boolean satis�ability problem.

17. In the worst case, how many terms are needed for the Boolean expression for
planning as satis�ability? Express your answer in terms of jI j, jP j, jOj, jSj, and
jGj.

Implementations
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18. Using A � search, the performance degrades substantially when there are many
alternative solutions that are all optimal, or at least close to optimal. Impl ement
A � search and evaluate it on various grid-based problems, based on Example 2.1.
Compare the performance for two di�erent cases:

(a) Using ji 0� i j + jj 0� j j as the heuristic, as suggested in Section 2.2.2.

(b) Using
p

(i 0� i )2 + ( j 0� j )2 as the heuristic.

Which heuristic seems superior? Explain your answer.

19. Implement A � , breadth-�rst, and best-�rst search for grid-based problems. For
each search algorithm, design and demonstrate examples for which one is clearly
better than the other two.

20. Experiment with bidirectional search for grid-based planning. Try to understand
and explain the trade-o� between exploring the state space and the costof con-
necting the trees.

21. Try to improve the method used to solve Exercise 18 by detecting when the
search might be caught in a local minimum and performing random walks to try
to escape. Try using best-�rst search instead ofA � . There is great exibility
in possible approaches. Can you obtain better performance on average for any
particular examples?

22. Implement backward value iteration and verify its correctness by reconstructing
the costs obtained in Example 2.5. Test the implementation on some complicated
examples.

23. For a planning problem under Formulation 2.3, implement both Dijkstra's algo-
rithm and forward value iteration. Verify that these �nd the same plans . Com-
ment on their di�erences in performance.

24. Consider grid-based problems for which there are mostly large, open rooms. At-
tempt to develop a multi-resolution search algorithm that �rst attemp ts to take
larger steps, and only takes smaller steps as larger steps fail. Implement your
ideas, conduct experiments on examples, and re�ne your approach accordingly.

ii S. M. LaValle: Planning Algorithms
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