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Abstract—Rodents and Felidae whiskers are highly sen-
sitive, detecting extrinsic inputs such as airflow or contact
and intrinsic inputs such as base vibrations or self-induced
motion. Building effective artificial whisker sensors faces
a challenge due to the intricate coupling of responses at
the whisker base. There is a research gap in understanding
whisker sensors’ responses to intrinsic and extrinsic inputs.
To address this, we propose two methods, using base accel-
eration as a reference input: 1) employing frequency-domain
adaptive filtering (FDAF) and 2) introducing the base vibration
response model (BVRM) that mathematically represents the
whisker sensor’s behavior to base vibrations or self-induced
motion. Validation of FDAF and BVRM is conducted through
simulation and experimentation. The BVRM excels in both
simulation and experiment, demonstrating a signal-to-noise
ratio (SNR) of 35.20, slightly outperforming the laboriously
tuned partitioned constrained FDAF with an SNR of 34.96,
despite FDAFs slower convergence and poorer performance
in experiments. In addition, BVRM can be useful in filtering sensor responses for independent use cases, such as terrain
identification, flow sensing, and surface profile identification. By separating responses to extrinsic and intrinsic inputs
without discarding either, whisker sensors become more versatile and multipurpose.

Index Terms— Fluid flow sensing, system identification, tactile sensing, vibration isolation, whisker sensor.

I. INTRODUCTION

WHISKER sensors offer highly sensitive tactile and
fluid flow sensing for mobile robots at low cost.

However, their sensitivity to motion means that they also
capture vibrations from their mounting platforms. Differen-
tiating between external inputs and internal vibrations from
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the robot or self-induced motion is challenging due to the
robot’s mechanical dynamics. Whiskers, which act like can-
tilever beams, are affected by both types of inputs, leading
to structural changes based on their shape, size, and material
composition [1], [2].

Rodents and Felidae use whiskers for environmental explo-
ration, prey detection, and surface interaction [3]. Inspired
by these sensory capabilities, researchers have replicated and
studied whiskers’ characteristics and mechanisms [4]. Mobile
robots adopt whiskers to understand their surroundings with
minimal electronic interference [5], measuring several param-
eters at the base, including bending moment [6]. Acting
like cantilever beams, these sensors measure moments upon
contact along the longitudinal axis. Whisker sensor technology
dates back to 1984 when Russell created a binary whisker
sensor array to detect objects in unstructured environments [5].
Later, the WhiskerBOT [7] advanced the understanding of
rat whisker mechanics and neuroscience. Russell’s subse-
quent work focused on object shape recognition for robotic
manipulation [8]. Recent developments in fluid flow sens-
ing include Hall effect-based designs for identifying wind
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Fig. 1. Whisker sensor sensing scheme: a⃗b represents the intrinsic
input (base vibration due to terrains or the robot itself) and u⃗s denotes
the extrinsic input (fluid flow) to the whisker sensor. M⃗r is the combined
sensor response to both intrinsic and extrinsic inputs.

gusts [9], [10], [11] and capacitive sensors for the same
purpose [12], [13], [14], [15]. Optical sensing mechanisms
using image processing have also been studied to capture
whisker sensor responses [16], [17]. In all these designs, the
complex interplay of extrinsic and intrinsic inputs affecting
the sensor response is evident.

Whisker sensors on mobile platforms are affected by the
platform’s motion. Adaptive filtering can reduce the impact
of a robot’s self-motion on these sensors [18]. They respond
to both external stimuli and the robot’s dynamics and terrain.
Vision-based sensing for detecting contact, airflow, and inertia
using multiple whiskers was proposed [17], but distinguishing
inertia and stimuli for a single whisker remains unclear.
Bayesian methods with a microaerial vehicle model were
used to estimate airflow, drag, and stimuli [19]. Platform-
independent whisker sensors complicate separating intrinsic
and extrinsic responses. Integrating whiskers into robots for
terrain identification [20], [21], noncontact sensing [22], and
surface profile determination [23], [24] underscores the need
to separate these responses, which is the focus of this
work. Moreover, whiskers are used in autonomous underwater
vehicles (AUVs) inspired by aquatic animals, such as seals
and pinnipeds [25], [26]. These animals possess undulated,
wavy-structured whiskers that help reduce vibrations caused
by vortices generated downstream during upward movement.
These vortex-induced vibrations are external inputs, similar to
the scenario of a static whisker in a moving fluid.

This article is organized as follows. Section II describes
the problem statement. Section III details the proposed meth-
ods for separating sensor responses to vibration and stimuli,
including adaptive filters and a model-based method, along
with the mathematical model for base vibration in Section IV.
Section V presents the simulation setup, the whisker sensor
conceptual design, and the finite element analysis (FEA). The
experimental study is discussed in Section VI. Sensor response
and model identification are covered in Section VII, followed
by results and discussion in Section VIII, and conclusion in
Section IX.

II. PROBLEM FORMULATION

Whisker sensors respond to various inputs, resulting in
forces and moments at the base. Fig. 1 illustrates the typical
sensor response as the resultant bending moment vector (M⃗r ),
considering it as a multiple-input multiple-output (MIMO)
system [27]. M⃗r is the sum of bending moments caused by
both the extrinsic input vector (u⃗s) and the intrinsic input
vector (a⃗b) in a deterministic sense. Here, vector a⃗b represents
the 3-D intrinsic input, such as base vibration or self-induced
motions, while vector u⃗s denotes the extrinsic input, such as
contact or noncontact stimuli.

Fig. 2. Adaptive filters. (a) Separation scheme employing delay and
(b) utilization of a correlated reference signal (ab), where Mb is corre-
lated with ab. Predicted responses M̂s and M̂b are obtained.

The objective is to decompose the recorded data from a
whisker sensor, denoted by M⃗r , into two distinct components:
M⃗s and M⃗b. M⃗s represents the sensor’s response to u⃗s , while
M⃗b represents the response to a⃗b. This distinction is necessary
for downstream tasks, where the scenario may require a
response related to base vibration, stimulus response, or a
combination of both. The problem is formally defined by the
following equation:

M⃗r = M⃗s ⊕ M⃗b

M⃗s = f (u⃗s)

M⃗b = g(a⃗b) (1)

where f and g are functions that map u⃗s and a⃗b to M⃗s

and M⃗b, respectively. These mappings may exhibit linearity
within limited input ranges for both u⃗s and a⃗b. These equations
underscore the challenge of distinguishing between stimulus
and base vibration in the whisker sensor system under varying
operating conditions, including sensing method (contact or
noncontact), sensor structure (resonance modes and damping),
and output data rate (ODR).

To the best of the authors’ knowledge, there is a gap in
the literature addressing the challenge of segregating whisker
responses into extrinsic (M⃗s) and intrinsic responses (M⃗b),
despite its significant importance in various applications [20],
[22]. This study proposes two unique filtering techniques:
1) an adaptive filter-based technique and 2) a base-vibration
response model (BVRM)-based technique, both using an
accelerometer as a reference to estimate M⃗b and M⃗s . The
study highlights the diminishing efficacy of adaptive filters
across a broad frequency spectrum, under noisy accelerometer
reference and nonuniform coherency in signals of inter-
est. In response to this limitation, a model-based method
BVRM, which can be linear or nonlinear, emerges as a
better option than the adaptive filter. Physics-based simulations
and the development of a basic mathematical model for
the whisker BVRM support these findings. The linear time-
invariant (LTI) BVRM demonstrates good estimation of Mb

and Ms in FEA-based simulations and performs fairly well in
experimental setups.

III. PROPOSED APPROACH

After discussing the problem, we devise strategies to sep-
arate the sensor response Mr in 1-D. While some whisker
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sensor designs are curved, as in [28], most whisker-inspired
sensor designs are symmetric and cylindrical. Therefore,
we consider the symmetric nature of the whisker design and
proceed with 1-D analysis.

Popular adaptive filters are considered for separating the
sensor response Mr , which is examined first. Notably, both
extrinsic and intrinsic inputs are nonstationary. The adapt-
ability and time-varying nature of adaptive filters make them
appealing. They demonstrate suitability not only for impulse
inputs but also for Gaussian inputs. However, challenges arise
in terms of convergence and complexity [29]. The intricacies
stem from selecting a specific adaptive filter algorithm and
the time required for convergence. Time complexity becomes
pivotal, particularly when dealing with highly dynamic inputs
in addition to the dynamic and nonadditive nature of intrinsic
inputs [30]. In light of these considerations, an adaptive
filtering technique based on the Wiener filter [31] emerges as
a promising strategy tailored to address this specific problem.

Model-based estimation of Mb and Ms is another commonly
used strategy in vibration suppression techniques, such as
in atomic force microscopes (AFM) [32] or with piezoac-
tuators [33]. This approach is also applied for isolating or
compensating vibrations in AFMs. In the subsequent sub-
sections, we delve into discussion on both adaptive and
model-based methods suitable for estimating Ms and Mb

without requiring a model of the vehicle on which the whisker
is mounted.

A. Adaptive Filters
The interference cancellation method based on the Wiener

filter aims to minimize the mean-squared error (MSE) between
the measured sensor response [Mr (k) = Ms(k) + Mb(k)] and
the estimated signal M̂b(k) in discrete-time form [29]. The
underlying assumption is that the Wiener filter’s estimated
signal M̂b(k), also termed as estimated interference, is a
linear combination of ab(k) and is correlated with Mb(k). The
reference input ab(k) depends on whether the base motion is
periodic or unpredictable. In field robotics, where movement
and terrain are unpredictable, periodic motion is less relevant.
If the motion is repetitive, ab(k) will also be repetitive.
However, when the motion is unpredictable, characterizing
ab(k) is challenging, and this is where an accelerometer
proves helpful. The fundamental Wiener filter is expressed
in (2). The output of this adaptive filter converges to Ms(k)

(given Mb(k) = g(ab(k))) as the filter converges over time.
Subsequent equations are tailored from the Wiener filter to
suit the specific problem addressed in this study

MSE = E
[(

Mr (k) − M̂b(k)
)2

]
= E

[(
Mr (k) − wT ab(k)

)2
]

w∗
= argmin

w

(
E

[(
Mr (k) − wT ab(k)

)2
])

w∗
= R−1

bb rbs (2)

here Rbb = E[ab(k)aT
b (k)] represents the autocorrelation

matrix, rbs = E[Mr (k)ab(k)] is the cross-correlation vector,
and w denotes the time-domain filter weights. The subsequent

section outlines the appropriate methods and our approach for
estimating Ms and Mb using the adaptive filter.

Depending on the characteristics of the downstream task,
an adaptive filter can effectively filter signals under different
scenarios. For instance, if the extrinsic input response is
narrowband and the intrinsic input response is wideband,
employing an adaptive filter is beneficial. Conversely, if the
extrinsic input is wideband and the intrinsic input is narrow-
band, the adaptive filter remains a suitable choice. In addition,
the periodic interference from intrinsic inputs can be mitigated
by using a delayed response as a reference, as illustrated
in Fig. 2(a). Although estimating the delay from the sensor
output’s frequency response seems practical [29], in real-world
applications, information about stimulus and interference peri-
ods is often unavailable. This situation necessitates the use of
a reference or model-based interference cancellation approach.

When dealing with nonstationary sensor responses that
cannot be adequately handled using the previously described
delayed adaptive filter method, an alternative approach is
necessary. It becomes crucial to introduce a reference sig-
nal that correlates well with either the intrinsic or extrinsic
input. Fig. 2(b) illustrates an adaptive scheme utilizing such a
reference signal. The key assumption here is that Mb(k) and
a known reference ab(k) exhibit a strong correlation. In this
scenario, the sensor response Mr (k) = Ms(k)+ Mb(k) is com-
posed, where Mb(k) correlates with a measurable reference
signal ab(k). The effective estimation of Ms and Mb hinges
significantly on the assumption of high correlation between
Mb(k) and the known reference signal ab(k).

To implement adaptive filters in both the frequency and
time domains, discrete-time sensor responses and references
collected using a microcontroller unit (MCU) can be utilized
for signal separation. The adaptive filter serves as a readily
available and valuable tool, particularly when there is a
comprehensive understanding of the base vibration. However,
the sluggish convergence rate in the least-mean-square (LMS)
method and the influence of high-frequency base vibrations
may lead to a decline in the performance of adaptive filters.
While the normalized-LMS (NLMS) method offers faster
convergence, it is accompanied by the drawback of noise
amplification.

B. Response Separation With BVRM
Despite the advantages and drawbacks associated with adap-

tive filters, acquiring a mathematical understanding of the
whisker system proves beneficial. This mathematical model
also serves as the foundation for implementing model-based
signal separation. A system formulated in LTI form shows
phase shift near the resonance modes in higher order systems
(specifically, second order and above). These phase shifts can
cause delays in the system output depending on the system
input frequency, necessitating highly precise adaptive filtering,
which can be effectively managed by BVRM. The consider-
ation of a system model for signal separation is discussed
below.

The model-based vibration control or suppression method,
as tested in AFM and piezoactuators using techniques such as
model inversion [33] or inverse feed-forward approaches [32],
can be adapted for estimating M̂ s and M̂b using ab (accelerom-
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Fig. 3. LTI representation of whisker sensor is depicted alongside
BVRM gbb. gbt is the whisker sensor impulse response function (IRF)
for input at base and output at base. gtb is the whisker sensor IRF for
input at tip and output at tip. gbb is the whisker sensor IRF for input at the
base and output at the base. Mr(k) and Mb(k) are approximately equal
for an LTI model, where gbb = gbt.gtb, given us(t) = 0. ab(t) is the base
vibration.

eter readings). Moreover, this method holds promise for
sensorless estimation of Mb, which has potential use in terrain
identification or classification if we use BVRM and ab as
input. In addition, it is worth noting that the response from
base vibration may be mitigated through the proper mechanical
design, a topic beyond the scope of this work but remains a
subject of study in the realm of whisker sensors.

In Fig. 3, the model-based approach for estimating M̂ s and
M̂b in an LTI system is illustrated. Referring back to (1), where
M̂ s is the predicted sensor response to the stimulus, gbb is the
whisker sensor impulse response to the vibration input at the
base (where the sensors are located) to measure the output
again at the base. A basic comparison between the sensor
response (Mr ) and the model-predicted sensor response to base
vibration M̂b helps estimate M̂ s . In the subsequent section,
we introduce a simple mathematical model that emulates the
moving platform of a whisker sensor and the resultant moment
at the base.

IV. MATHEMATICAL BVRM
We adopt a mathematical model that describes the linearized

response of a cantilever beam under uniformly varying load
(UVL) and sinusoidal base excitation, as outlined in [34]. For
sinusoidal base excitation, the sensor response at the base,
denoted by Mb, is a function of the base vibration (ab), where
ab(t) = a sin(ωbt). Here, a represents the amplitude in terms
of g = 9.81, m/s2, ωb signifies the input frequency to the base
of the cantilever in radians, and Mb denotes the moment at
the base, as depicted in Fig. 4.

In Fig. 4(a), the input to the whisker system is base vibration
in “g,” and the output is the moment at the base, which
depends on whisker deflection. The governing equation for
this deflection due to sinusoidal base vibration [2] along the
y-axis is given as follows:

EI
∂4 y
∂x4 + ρ

∂2 y
∂t2 = −ρab(t) (3)

where density (ρ), modulus of elasticity (E), and moment of
inertia (I ) are the known material properties.

The solution to the governing equation in (3) is of the form

y(x, t) =

N∑
n=1

Ybn (x)Tn(t) (4)

Fig. 4. In the general scenario for whiskers, sensors s1...4 at the
cantilever base measure the overall bending moment (Mr). Scenarios
include (a) sinusoidal base vibration (ab) induces a moment (Mb). Pay
attention to the sensor reference frame (red dot) and (b) fully developed
wind load, an extrinsic input, results in a moment (Ms) represented as a
parabolic distribution. (c) Combined intrinsic and extrinsic inputs result
in the overall moment (Mr). Here, E, I, ρ, and H represent the whisker
properties: modulus of elasticity, area moment of inertia, density, and
length, respectively.

where N is the number of frequency modes, Ybn is the whisker
deflection in y for a given x , and Tn is the temporal change
of deflection due to base acceleration in time t . Substituting
y(x, t) in (3) and applying the orthogonality of eigenvectors
Ybn , the differential equation simplifies to

d2

dt2 Tn(t) +
EIβ4

n

ρ
Tn(t) = −ab

∫ H

0
ρYbn (x)dx (5)

where βn = −c2
n(ρ/EI)(1/4), cn is the eigenvalues related to

each mode shapes, and H is the height of the beam. The value
of βn is unique for each mode shape of the cantilever beam [2].

The eigenvectors Ybn (x) are given by

Ybn (x) =
1

√
ρH

cosh(βn x) − cos(βn x)

−
cosh(βn H) + cos(βn H)

sinh(βn H) + sin(βn H)
.[sinh(βn x) − sin(βn x)].

(6)

The whisker’s structural and environmental damping can be
represented by the damping ratio (ζ ) in the following equation:

T̈ n(t) + 2ζωn Ṫ n(t) + ω2
nTn(t) = −0nab(t) (7)

where ω2
n = (E I/ρ)β2

n , and 0n =
∫ H

0 ρYbn (x)dx).
Applying the Laplace transform to (7) with zero initial

conditions yields the following expression:

s2Tn(s) + 2ζωnsTn(s) + ω2
nTn(s) = −0nab(s). (8)

The following presents the transfer function G(s) describing
the cantilever’s response to the input base vibration

G(s) =
Tn(s)
ab(s)

=
−0n

s2 + 2ζωns + ω2
n
. (9)

The moment at the whisker base Mb sensed by the whisker
sensor due to base vibration ab from (4) results in

Mb(x, t) = −E I
d2 y(x, t)

dx2 = −E I
N∑

n=1

d2Ybn (x)

dx2 Tn(t). (10)

The sensor response to fluid flow and the calculation of the
flow sensor’s area moment of inertia can be found from basic
principles. The mathematical model, presented in LTI form for
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estimating Ms and Mr , is further analyzed through FEA-based
simulation and experiment in subsequent sections.

V. SIMULATION SETUP

The simulation encompasses COMSOL-assisted FEA, the
design of a whisker sensor inspired by existing models, and
the implementation of base vibration functionality resembling
a shaker table. In studies concerning whiskers, the fundamental
physics frequently revolves around fluid–structure interaction
(FSI), merging principles of structural mechanics with fluid
dynamics, encompassing mediums such as air, water, or vis-
cous fluids. This section establishes the foundational elements
pivotal to the simulation process.

A. Whisker Sensor
The design of the whisker sensor draws inspiration from

the sensor models outlined in [28] and [35], conceptualized
as fluid-flow sensor featuring a fin structure, as illustrated
in Fig. 5(a). The physical sensor is shown in Fig. 5(b). The
material selection for the whisker sensor model is informed
by prior literature. Key components of the model comprise
the following.

1) Compliant Element: A silicone gel with a Shore hard-
ness of 20 A, configurable to achieve desired damping
and compliance properties.

2) Whisker Element: Nitinol flexible wire (8 = 0.58 mm).
3) Fin Element: Polylactic acid (PLA) is utilized for 3-D

printing of the fin element, featuring a density of ρ =

1230 kg m−3, an elasticity modulus of E = 4.1 GPa,
and a Poisson’s ratio of ν = 0.35.

4) Hall Sensor: A Hall element is employed to sense the
response at the base.

5) Accelerometer: Utilized to measure base vibration or
motion across three axes.

The characterization of the silicone gel employs the Yeoh
model [36]. Model parameters are determined through opti-
mization against experimental stress–strain data, acquired
using a microtensile testing machine. The sample specimen
used adheres to ASTM D395 standard size specifications [37].
The Yeoh model parameters are c1 = 3.4 × 105 Pa, c2 =

1.7152 × 105 Pa, and c3 = 1.32 × 108 Pa. The bulk modulus
is set to K = 1.5 × 109 Pa.

B. Vibration Bench
The vibration bench and sensor mounting scheme are shown

in Fig. 6(a) similar to the abstract figure where wind and
base vibration input is given to the sensor and response
at base recorded. A wideband characteristic is essential for
the vibration shaker table. Simulation results indicate the
first mode of natural frequency is below 50 Hz for whisker
and flow sensor. Given a sampling rate of 1 kHz, the input
vibration frequency can go up to 500 Hz according to the
Nyquist criterion. However, by limiting the input vibra-
tion frequency to 200 Hz, we are effectively oversampling,
which helps to reduce quantization noise density. Draw-
ing from [38], multisine input signals are designed with

Fig. 5. Whisker-inspired sensor design features both a fin structure
for the flow sensor and a cylindrical straight whisker element for the
whisker sensor. (a) CAD design and dimensions: The sensor’s CAD
design shows a fin structure for the flow sensor that tapers from top to
bottom, made from PLA. Silicone gel is used as a compliant element,
allowing the detection of moments resulting from both contact and
noncontact interactions. (b) Physical sensor: The assembled sensor
comprises such as whisker sensor and flow sensor having silicone
rubber compliant element, and an accelerometer, all mounted on a PLA
support structure.

amplitude ab(t) and phase φ

ab(t) = A
l∑

n=1

sin(2π fi t + φi )

φi = −
i(i − 1)π

l
; 2 ≤ i ≤ l (11)

where l is the total number of frequencies ( fi ) and amplitude
scaling (A) is chosen according to the experimental input
conditions. In this work, the base acceleration input varies in
the range of ±0.01 g to 1.2 g as found in the literature [39].

In COMSOL, multisine signals are utilized to apply vol-
umetric loads to the structure, creating the desired base
vibration. These multisine signals are used without reducing
the crest factor. For precise measurement of base vibration,
a well-calibrated accelerometer is preferred. In addition, trans-
forming sensor measurements to the accelerometer reference
frame can be expressed as Mr A = T · Mr S , where Mr A and
Mr S represent the sensor measurements in the accelerometer
reference frame and sensor reference frame, respectively.

C. Boundary Conditions
The COMSOL-based FEA simulation setup aims to mimic

the experimental arrangement, incorporating base vibration
and external stimuli. Base vibration is induced via a volumetric
load, resulting in base acceleration, while the external stimulus
involves periodic airflow to the whisker sensor. Fig. 6(b)
depicts the simulation setup in COMSOL.

In this study, fluid flow pertains to the airflow around
the whisker sensor. The fluid inlet boundary condition is
prescribed with a velocity of 1 m s−1 at 5 Hz, while the outlet
remains at static zero pressure. The amplitude of whisker base
vibration corresponds to vehicle vibration amplitudes ranging
from 0.01 g to 1.3 g. Thus, the boundary condition at the
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Fig. 6. Experimental setup. (a) Schematic of the experimental setup that comprises a whisker-inspired sensor, vibration bench, and stimulus input.
(b) FSI study in COMSOL that involves base vibration and airflow for both the whisker sensor (top) and the flow sensor (bottom). The parameters
LE, LN, and LO denote the entry, exit, and neck length, respectively, of the fluid domain, with a volume of (LE +LN +LO)×2(a+b). (c) The voice-coil
(VC) actuator serves as an intrinsic input generator for base vibration, while a controlled CPU fan acts as an extrinsic input generator.

whisker base remains ab(t) = A ·
∑10

i=1 sin(ωbi t) g, where ωbi

denotes the base frequencies for time “t” of 1 s. The frequency
spectrum for the test signal spans from 1 to 200 Hz.

VI. EXPERIMENTAL SETUP

The practical setup, depicted in Fig. 6(c), replicates a
mobile robotic platform equipped with a whisker, mirror-
ing the simulated environment described earlier. The system
comprises a flow sensor inspired by a whisker, a custom-
built VC actuator (96 W), and a high-performance audio
amplifier (600 W: class-D amplifier TAS5630 from Texas
Instruments). The NI USB-6221 data acquisition device serves
dual purposes: monitoring the VC actuator via analog input
(linear hall sensor) and VC actuation through analog output.
The flow sensor interface utilizes a 32-bit microcontroller
(STM32F401CCU6). An extrinsic input is introduced via a
CPU exhaust fan (4715KL-04W-B40-E00), providing variable
airflow with a maximum of 3.34 m3 min−1 (6.87 m s−1 for a
rectangular duct area of m3

· min−1; m·
−1).

The sensor’s compliant element is designed to prevent
deformation due to the weight of the fin structure, ensuring
minimal impact from gravity during system identification
and validation experiments. The ADXL-345 accelerometer
exhibited a steady-state standard deviation within ±0.008 g,
while the Hall effect sensor MLX90393, used in this study,
demonstrated low noise output with a steady-state standard
deviation of ±5.43 µT.

The VC actuator (open-loop control) is operated by a PC
running LABVIEW,1 with its response qualitatively evaluated
using a linear hall sensor. The open-loop operation of VC
actuator does not ensure amplitude controlled vibration mim-
icking a real scenario. The linear hall sensor response is not

1Registered trademark.

taken into account during BVRM system identification and
has limited relevance, instead the accelerometer provides the
input for BVRM identification and application. The extrinsic
input is generated using a CPU exhaust fan, while the VC
actuator applies base vibration to the flow sensor. The VC
actuator is driven by a multisine signal [see (11)] generated
in LABVIEW1 and transmitted via a National Instruments
data acquisition device before reaching the custom-built audio
amplifier. The microcontroller, operating in real-time operating
system (RTOS) mode, captures sensor response (Mr ) and
accelerometer response (ab) at 500 Hz, constrained by the
sensor signal conditioning circuit. This data are crucial for
BVRM identification and estimating Mb and Ms .

VII. SENSOR CHARACTERIZATION

The characteristics of whisker-inspired sensors are acquired
through three stages: 1) utilizing the mathematical model;
2) conducting simulations; and 3) performing experimental
tests. In line with the defined problem, simulations investigate
the sensor response to both stimuli and base vibration.

A. Response From Mathematical Model
The sensor response closely resembles a second-order LTI

system for base vibration as input. We investigate different
base vibration magnitudes: 0.1–1.5 g. Fig. 7 shows the sensor
response to base vibration input which is obtained analytically.
Due to the characteristics of a second-order LTI system,
the increase in the base vibration magnitude results in a
proportional increase in the moment at the base.

B. Response From Simulation
To evaluate how intrinsic and extrinsic inputs affect the

response of the whisker-inspired sensor, three simulations were
performed as follows.
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Fig. 7. Step response of the whisker sensor is presented in terms of
the moment (Mb) at the base, measured in mN·mm.

Fig. 8. Parametric response obtained from sensors in FEA study.
Parametric study outputs show the steady-state response (logarithmic
scale) for airflow (left) and base vibration (right).

1) The first simulation involved applying a wind load input
while setting the base vibration to 0.

2) The second simulation applied a base vibration input
while setting the wind load to 0.

3) The third simulation combined both base vibration and
wind load inputs.

During the characterization phase, the first two simulations
were examined, focusing on understanding their effects.
The third simulation was specifically conducted to evaluate
response separation techniques.

Fig. 8 illustrates the sensor response to a constant wind
load with the base vibration set to 0 (left) and constant base
vibration when the wind load is set to 0 (right). The steady-
state response, with varying wind loads exhibits a nonlinear
response, while the response due to varying base vibration
shows a linear response. The responses are plotted in loga-
rithmic scale to accommodate both flow and whisker sensors
in one frame. Consequently, we consider the input–output
relation for the transfer function gbb shown in Fig. 3 as an
LTI system, identified through system identification described
in the next section.

C. System Identification
A multisine signal with a low crest factor is utilized for

system identification in simulation, minimizing the required
time while offering comprehensive insights into the frequency
domain, as recommended in the literature [40]. The whisker
sensor, resembling a cantilever beam, is approximated with a
black box model (Ĝ(s) in (12)) of the second order or higher,
as proposed in [41]. We adopt a collocated system structure
where sensing and actuation occur in close proximity. Model
identification employs the output error (OE) and Simplified
refined instrumental variable method for continuous-time sys-
tems (SRIVC) [42]. Both methods achieve an accuracy of 91%
and 87.5% for the fin sensor and whisker sensor, respectively.

Fig. 9. Bode diagram of the simulated sensor in FEA. The 1st mode of
resonance is observed at 37.32 and 27.20 Hz for simulated flow and
whisker sensors, respectively, as obtained from FEA simulation. It is
31.47 Hz for the practical flow sensor shown in Fig. 6(c).

Fig. 10. Turbulent airflow and high amplitude base vibration (up
to 1.5 g), where the BVRM provides the best estimation of stimulus
response. FDAF converges after 0.25 s compared with the BVRM that
converges quickly.

The collocated structure, typical in whiskers, generally exhibits
an equal number of poles and zeros in the transfer function.
The corresponding bode plot is shown in Fig. 9

Ĝ(s) =

∞∑
i=1

ki (b0i s2
+ b1i s + b2i )

s2 + a1i s + a2i
(12)

where ki is the gain for i th mode.
The identification of the BVRM for the practical flow sensor

utilizes the experimental setup depicted in Fig. 6(c). The
identification process leverages MATLAB® and the ’TFEST’
toolbox for model estimation based on the frequency-domain
data [43]. The accuracy of the identified model is 94.2 %,
with the 1st mode presented at 31.47 Hz, and a higher quality
factor compared to the simulated model. Fig. 9 shows the
corresponding bode plot and the damping ratio (ζ ) for the
designed sensor is found to be 0.027.

VIII. RESULTS

A. Simulation Results
The results obtained using frequency-domain adaptive fil-

tering (FDAF) and BVRM on sensor responses in simulation
are presented in Fig. 10. With a time-varying wind load
and simultaneous base vibration, the sensor response (Mr )
recorded and subsequently M̂s and M̂b are estimated. The
results illustrate the estimated M̂s using FDAF and BVRM for
turbulent airflow conditions and a base vibration up to 1.5 g.

The analysis of the estimated Ms shown in Fig. 10 high-
lights a notable difference in convergence rates between FDAF
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Fig. 11. Time-domain response of sensor response (Mr) given
us ̸= 0,ab ̸= 0 during the experiment (top). Estimated time domain
response M̂b from FDAF and BVRM method (middle). Estimated time
domain response M̂s from FDAF and BVRM method (bottom). The
results shown are for base vibration up to ±0.4 g.

and BVRM. Specifically, the FDAF demonstrates slower
convergence, whereas BVRM displays superior performance.
In particular, FDAF exhibits early divergence, whereas BVRM
quickly follows the sensor response to base vibration, enabling
good estimations. It is important to note that FDAF was
configured with a block length of L =20 and an adaptation
step size of µ =0.1. Operating in partitioned constrained mode
aimed at reducing latency, FDAF demonstrated satisfactory
performance, characterized by stable steady-state behavior
after convergence.

B. Experimental Results
In the experimental analysis, a multisine input is employed

as the base vibration. This multisine comprises frequencies
that are below the first mode of the designed flow sensor,
as depicted in the bode diagram in Fig. 9. Specifically, the
multisine consists of frequencies in 12 Hz to 29 Hz, each with
a phase shift of 30◦ in ascending order of frequency up to
±0.4 g. Fig. 11 illustrates the response of the flow sensor,
denoted as (Mr ), along with the estimated values of Mb and
Ms . As shown in Fig. 8, the fin sensor is affected by both
intrinsic and noncontact extrinsic inputs to a greater extent
compared to the whisker sensor. Further experimentation
was conducted using the designed flow sensor for additional
analysis.

Fig. 11 clearly reveals the subpar performance of the FDAF
even for a block length of L = 200 and an adaptation step
size of µ = 0.001. Furthermore, the estimated values for Mb

and Ms exhibit a deviation over time. It is crucial to note that
FDAF demonstrates more reliable performance in simulations.
This observation also suggests that the intrinsic and extrinsic
responses in whisker-like sensors may not be purely additive
in nature. Adaptive filters typically excel in scenarios with
additive, coherent signals, and less dynamic interference.

To assess the effectiveness of our proposed methods in
estimating Mb and Ms , we conducted a power spectrum
analysis. Fig. 12 displays the power spectrum for the sensor
response (Mr ), followed by the sequentially estimated values
of Mb and Ms . With BVRM, the estimated values for Mb

and Ms accurately capture the true frequencies of the base

Fig. 12. Frequency response from the experiment. Frequency spectrum
for Mr given us ̸= 0,ab ̸= 0 (top). Frequency spectrum for the estimated
base vibration response M̂b from FDAF and BVRM method (middle).
Frequency spectrum for M̂s (bottom). The true frequencies for ab are 12,
15, 19, 23, 26, and 29 Hz. The stimulus frequency can be qualitatively
seen from Fig. 11 as ≈1.6 Hz (top).

vibration multisine. Conversely, FDAF’s performance is less
satisfactory, resulting in difficulties in accurately identifying
these frequencies.

The power spectrums reveal FDAF’s poor performance,
even with an empirically set block length of 200 and an adap-
tation step size of 0.001 which is very slow. Both lower block
lengths and higher adaptation step size resulted unstable and
divergent estimations of extrinsic (airflow) and intrinsic (base
vibration) responses, with noticeable drift over time (Fig. 11).
Conversely, the BVRM shows robust performance, even with
base vibration inputs near the first mode of vibration for the
flow sensor and despite noisy accelerometer measurements.
We compute the SNR considering the Ms as signal and Mb

as noise. The obtained SNR with BVRM is 35.20, compared
to 34.96 for the FDAF. The step size was set to 0.001 to
ensure FDAF convergence which resulted in better SNR but
at the cost of poor performance. The poor performance of an
adaptive filter in real experiments is the nonuniform coherence
between measured and reference signal [44].

C. Discussion
Decomposing Mr into Ms and Mb depends on the down-

stream task’s requirements. Designing a universally applicable
whisker-like sensor is challenging due to the influence of
intrinsic input on the response to extrinsic input. Careful sensor
design and simulation studies are crucial to addressing these
challenges. Key observations from the study are as follows.

1) Frequency Range: BVRM handles a broader frequency
range than adaptive filters for estimating Ms and Mb.

2) Design Optimization: Optimizing stiffness and damping
can significantly improve sensor performance by reduc-
ing interference.

3) Collocated Systems: Nullifying intrinsic responses in
collocated systems requires additional base actuation,
increasing complexity.

4) Reference Frame Accuracy: Precise alignment of
accelerometer reference and sensor output frames is
crucial for effective separation of Mr and consideration

Authorized licensed use limited to: Oulu University. Downloaded on September 17,2025 at 07:27:55 UTC from IEEE Xplore.  Restrictions apply. 



ROUTRAY et al.: SEPARATING INTRINSIC AND EXTRINSIC RESPONSES OF WHISKER SENSORS 34643

of the SISO technique in whisker-like sensors that are
MIMO systems inherently.

5) Data Requirements: BVRM needs fewer reference input
samples than adaptive filters, reducing computational
demands.

6) Versatility: BVRM can be used for terrain identification
without a whisker-like sensor if previously identified.

7) Coherency in Signals: The good coherence between
sensor response and reference input is crucial for achiev-
ing effective performance with an FDAF, despite the
labor-intensive nature of the filter tuning process.

8) Sensor Design: The design proposed in this study is
simple and suitable for different types of applications,
such as texture capturing fluid flow sensing, and environ-
ment exploration. Moreover, the underwater applications
warrant a leak-proof design and an undulated whisker.

A comprehensive study of the proposed methods’ performance
across varied vibration frequencies has been conducted, with
the results derived from simulations. The comparison of FDAF
and BVRM performance in simulation outputs involves the
consideration of metrics such as MSE, dynamic-time-warping
(DTW), the difference in band power, and SNR. The response
from the simulated sensor to fluid flow serves as the baseline
for this evaluation. While MSE provides the cumulative error
in actual and estimated, DTW provides the spatiotemporal sim-
ilarity of actual and estimated sensor responses. It is observed
that the BVRM outperforms FDAF, despite the simplicity of
the assumed LTI model for the separation of Mr to M̂s and M̂b.

IX. CONCLUSION

The FEA simulation and experimental study confirm the
collocated system behavior of the whisker-like sensor. Exper-
imental findings emphasize the effectiveness of the proposed
BVRM, with a higher SNR value and robust performance,
compared with the FDAF in decomposing the sensor response.
Accurate estimation of Ms and Mb enhances performance
in tasks, such as surface profile determination and terrain
identification. The proposed BVRM enables simulation of
whisker-like sensor behavior using accelerometer readings
alone, eliminating the need for a physical sensor. Consistency
among the mathematical model, simulation, and experimental
results bolsters the validity of the approach. While tested for
uniaxial readings, the methods are scalable to multiaxial imple-
mentations. The study advocates for the use of physics-based
computational methods, showcasing their ability to simulate
and validate whisker sensor principles with FSI. Importantly,
generating multidimensional vibrations for studying sensor
responses through simulation is highlighted as a more con-
venient task compared with the complexities of a physical
experimental setup.

Some of the limitations of this study are the following.
It considers low base vibration amplitudes (up to 1.5 g) and
moderate wind speeds (up to 4 m s−1), while the whisker
sensor is sensitive to higher amplitudes. The deterministic
model for decomposing sensor response may not universally
apply due to varying sensor structures and material proper-
ties. Although the linear model fits well in simulation and
experiments, a nonlinear BVRM could enhance performance.

The sensor design lacks optimization for controlled damping
and stiffness, which could improve response separation. While
some tasks may require an active whisker sensor, this study
employs a passive arrangement. Finally, the proposed BVRM
method is adaptable and reconfigurable based on downstream
task requirements and MIMO system analysis methods.
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