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Localization with Limited Sensing

Jason M. O’Kane and Steven M. LaValle

Abstract— Localization is a fundamental problem for many

kinds of mobile robots. Sensor systems of varying ability have R1 angular odometer
been proposed and successfully used to solve the problem. | linear odometer
This paper probes the lower limits of this range by describing

three extremely simple robot models and addressing the active angular odometer |

localization problem for each. The robot, whose configuration | R3 |

is composed of its position and orientation, moves in a fully contact sensor \ Ry | compass

known simply connected polygonal environment. We pose the ! “ | contact sensor

|

localization task as a planning problem in the robot'’s information |

) L ; . |
space, which en_capsulates the_uncerta_lnty in the robot’s cc_)nflgu Localization not possible | Localization possible
ration. We consider robots equipped with (1) angular and linear |
odometers, (2) a compass and contact sensor, and (3) an angula :
odometer and contact sensor. We present localization algorithms
for mo_dels 1 and 2 and _sh0\_/v that_no algorithm exists for model Fig. 1. Although R1 and R2 have only slightly stronger segdiman R3,
3. An implementation with simulation examples is presented. they are capable of localization whereas R3 is not.

Index Terms— information spaces, mobile robot localization,

robots, robot sensing systems .
with respect to a global reference frame, then move

forward until its contact sensor detects the environment
I. INTRODUCTION boundary.

Localization, the task of systematically eliminating unce ¢ R3 — A robot equipped with an angular odometer and
tainty in the pose of a robot, is widely regarded as a central contact sensor. This robot can rotate with respect to a
problem in mobile robotics. A wide spectrum of sensor sys- local frame and then move forward until reaching the
tems have been proposed for the localization problem, ngngi ~ €nvironment boundary.
from visibility sensors [1, 2, 3] to landmark detectors [46h The main contribution of this paper is to classify these tsbo
How complex a sensor system does localization truly demangiecording to their ability to localize themselves. We shbat t
In this paper, we take minimalistapproach, describing two R1 and R2 can localize themselves in polygonal environments
simple robots with which localization is still possible aad but R3 cannot.
third for which localization is provably impossible. The intention of this line of inquiry is to identify basic

Suppose a robot is given an accurate map of its environmesnsing requirements for robotic tasks. For a given taskeso
but has no knowledge of its configuration. The robot's go&bbot systems are capable of completing the task whereas
is to move within the environment, gathering informatio®thers are not. Our goal is to search the space of robot sgstem
about its configuration until the uncertainty is eliminatéde for the boundary between the “can localize” and “cannot
may consider this task as a planning problem with discreiecalize” regions. This boundary gives an indication of the
stages, but this approach is complicated by the fact that thecessanconditions on robot models for localization. In this
robot’s configuration is unknown. This leads us to define tH@per we describe a very simple robot (R3) in the “cannot”
robot’s information spaceand give methods for computingset and show that small improvements to its angular sensing
its information statewithin that space. Informally, the robot’s (R2) or linear sensing (R1) lead to models in the “can” set.
information state is a set of candidate configurations inctvhi See Figure 1.
the true configuration is known to lie. When the robot is finally The balance of this paper is organized as follows. We
localized, the information state contains only the robatg present related work in Section Il. Section 1l formally ahefs
configuration. our robot models and gives a problem definition. Sections IV

We consider the localization task for three distinct rob@nd V describe localization algorithms for robot models R1
models: and R2, respectively. In Section VI we show that no local-
r'g_ation algorithm exists for R3. Concluding remarks appear
pection VILI.

Portions of this work appeared in preliminary form in [7]

« R1-—Arobot equipped with angular and linear odomete
This robot can accurately rotate and translate through
environment, measuring each of these motions.

o R2 — A robot equipped with with a compass and contaepd [8].
sensor. This robot can, using its compass, orient itself

[l. RELATED WORK

J. M. O'Kane (corresponding author) and S. M. Lavalle arehvite  There are two primary lines of antecedent research. First,
Department of Computer Science, University of lllinois at &lme-Champaign, ks h died the | lizati bl itself
201 North Goodwin Avenue, Urbana, IL 61801, USA. Emafjpkane, Many WOrks have studied the localization problem itself on

lavalle} @cs.uiuc.edu. Fax: +1-217-265-6591 theoretical and practical levels. Second, a recurring them
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in robotics research has been the notionmihimalism the with a range sensor by traversing the generalized Voronoi
idea that simple but carefully designed robotic systems cgraph of the environment boundaries [28, 29].
offer advantages in cost, efficiency and robustness ovee mor

complex systems that are richer in sensors and actuators. IIl. PROBLEM STATEMENT

In this section, we formally define an active, global local-
ization problem for robot models R1, R2, and R3. We also

We can generally separate localization research into twefine the robots’ information space, which is the machinery
flavors. Passive localizatior}2, 9, 10, 11] does not prescribewe use to solve the problem.

motions for the robot, but only provides methods for using

sensor readings and externally-selected commands toagstim ) i )

the robot's state. In this paper, we considetive localization A+ ACtions, transitions, and observations

problems, in which the goal is to prescribe motions for the Allow a point robot with orientation to move in a compact

robot in order to fully determine its position. Algorithmsthis simply connected polygonal environmeit C R2?. Assume

context are often expressed as online methods and evaludted the rotational symmetry group &7 contains only the

in terms of theircompetitive ratio[12], which compares the identity symmetry. Let 91 denote the boundary &%, which

lengths of paths generated by the algorithm to the length igfitself a subset of’. The robot has access to an accurate map

the shortest possible path that could have been selectkd if of 1V, including its orientation in the plane. Since the robot’s

robot started with full information. In [13], the environmie orientation is relevant, the configuration spac€is W x S1,

is constrained to an embedding of a bounded degree acydtiavhich S* is the set of directions in the plane, represented

graph into R” with sensing limited to the orientations ofas unit vectors ifR2.

incident edges. This algorithm has competitive complexity The space of available actions depends on the robot model.

O(n?/3), in which n is the number of leaves in the graph. For each, we define an action sEtand a state transition
The problem of computing a localization strategy thdtnction f:C x U — C.

minimizes the worst case distance traveled by a robot eqdipp , Robot R1 can, at each time step, issue either of two
with a V|S|b|||ty sensor was prOVed NP-hard in [14] The 9pt| types of commands. First, the robot may rotate by a
mal strategy can, however, be approximated (in the coni®tit  commanded amount. Since the robot has an angular
ratio sense) and [14] gives an algorithm based on the Vigibil  odometer, we assume that rotation commands are exe-
Ce” decompOSition that does th|5 An important Weakness Of cuted precise|y. Second’ a translation command may be

A. Localization

this algorithm is that it relies on motion commands that dire
the robot into visibility cells that may be arbitrarily srhal
In [15], this difficulty is addressed by introducing randaeati

issued, instructing the robot to advance forward by a
given distance. The actual distance traveled may be less
than the commanded distance, if the robot reaches the

tion. Other work considers the problem in the framework of  poundary of the environment first. Formally, 16t =
approximation algorithms [16]. S1 11 [0,00) denote the robot's action space, in which
Others have used probabilistic methods for active local- glements ofS! denote relative rotation commands and
ization. In [17], the robot localizes itself with respect & elements of(0, o) denote translation commands.ufe
metric map by representing its knowledge as a probability g1, then f(z, u) is the appropriate change of orientation
distribution over its state space and selecting actions tha of ;. If 4 [0, ), thenf(x, u) computes the appropriate
reduce the entropy of this distribution. Jensfelt and knsen forward translation of: within .
[18] address similar problems, but use a topological map. , The action space for R2 is the unit circlé = S1. A
singleu € U represents a rotation to orient the robot
B. Minimalism in a given direction, followed by a motion forward to

Both sensors and actuators are subject to significant errors the environment boundary. The state transition function
in precision and accuracy. Effective robots must be robmst t ~/ Maps a configuration action pdir, u) to the opposite
these errors. Starting, perhaps, with Whitney’s critiquenaf- endpoint of the maximal segment i starting atr and
1980’s robotics research [19], an approach has arisen iohwhi  having directionu in the global frame. Note that because
these difficulties are dealt with by designing extremelysin the robot has a compass, we assume it can orient itself
robots that exploit the compliant properties of the system @S it W|she_s; ther_efore _the (_:urrent orientation (specified
in question to execute their assigned tasks. This approach @S part of its configuration) is not relevant to R2.
has been calledninimalist robotics It has been applied to * The model for R3 is similar to that of R2, but with the
problems in manipulation for part orientation [20, 21, Z2iig mptlon Q|rect|ons spemﬁgd relative to the robatisrrent
algorithms [23, 24, 25, 26] are used for navigation by robots orientation, ra'ther than with respect to a globa}l'reference
capable of moving toward obstacles and following walls. In ~ frame. We still havel = 51., but f is modified to
[27], the robot has an extremely crude range sensor that can interpretu as a motion direction relative to the robot's
only detect discontinuities in depth information. As thé&ab current heading.
explores its environment, this information is used to camdt | o .

a data structure that allows for optimal navigation betwe%lpozgfstr?: S;gqopr?tﬂr;] 'i’,f'”;22;‘2;“,\?ei§a§§§§fvga§n§ Egn:gv'g,lr:,;r:?hei;w
previously visited locations. More explicit maps can beltbuitechnicality is addressed in greater detail in Section IV-F
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An iterated version of that applies several actions in succeswith these actions and observations. Th®rmation spacel

sion will also be useful: is the set of all information states, in this case the power se
of .2
flun,u) = (- f(f(un),u2) ) u). (1) qransitions in information space are determined by the cur-

Consider a sequence of commangs ..., ux. This, com- rentinformation state, the selected action, and the obierv

bined with an initial stater;, defines a sequence of configufrom the sensors. Thiaformation transition functiorhas the

rationsxy, ..., rx 1 governed byry. 1 = f(zk, ug). foorm F: Z x U x Y — Z, and can be defined in terms ¢f
After each action, the robot receives amservatiorfrom its ~ and h:

sensors. One may regard this observation as a “hint” reggrdi

the true configuration of the robot. L&t denote a space F (s uryr) = |J {f (@, ur)}

of possible observations antd : C x U — Y denote an e

observation functiorthat gives the sensor reading that would N{f(z,ux) | © €C,yx = h(z,w)} (2)

result from choosing a particular action from a particulaf . .

. X hus, we have a sequence of information stajes..,nx
configuration. Botht” and » depend on the robot model. ' ’

9 P governed byni1 = F(nk, uk, Yk )-

« For R1, we must consider the feedback provided by the\ye approach the task of localization as a planning problem
linear odometer. Choose = [0, +-00) as the observation j, 7 njtially the robot has no knowledge of its configuration,
space, in which an observatigne V" indicates that in g4 the initial information state), = C contains the entire
executing the previous action, the robot’s translation h%nfiguration space. The goal region is
magnitudey. Rotations always succeed without providing
useful feedback, sé(z,u) = 0 whenu € S'. Ic={ncC | nl=1} ®3)

« Neither R2 nor R3 have sensors that provide usefxl

feedback about the environment. For each, the capabiliti Splan is a feedback strategy of W? .Wf"‘.nt a fu_nct|or_1
of the sensors are instead modeled in the action sefsﬂ U such that, regardless of the robot’s initial configuration,
Eeelpeatedly executing the actions chosen by this functiadde

We assume that the compass (for R2) and the angum finite time to an information state ifigz. For R1, we must

odometer (for R3) are used as part of a F:Iosed Iqo ecify a policyr : 7 — U. For R2 and R3, there is no
control system the correctly executes the desired rotatio ; . -
- : eaningful feedback, so it is sufficient to choose a sequence
Similarly, the contact sensor is used to stop the robo . o .
. - uy, - .., ux Of actions that eliminates the state uncertainty. We
when it reaches the environment boundary, but does -
. . all such a sequencelacalizing sequence
not provide sensor observations as such. Therefore, for

both R2 and R3, we select a dummy observation space

Y = {0} and defineh(x,u) = 0 for all configurationsz IV. L OCALIZATION WITH ODOMETRY

and all actionsu. In this section we present an algorithm to solve the local-
Lastly, we can define a sequence of observatigns. .,y ization problem described in Section IlI, for robot model. R1
so thaty, = h(zg, ug). Recall that R1 is equipped with linear and angular odometers

An overview appears in Algorithm 1. The algorithm is “on-
line” in the sense that the commands it issues depend on the
) o ) o ] observations obtained as the robot is executing. Indeede th
Since the robot’s initial configuration is unknown, it caNs no external “plan” computed ahead of time; instead we may

use only the actions it has selected and the observatioms it fgarg Algorithm 1 itself as a plan in the sense that it defines
received to draw conclusions about its configuration. Talle&n 5 faedback strategy on the information space.

this complexity in a concrete way, we consider the problem
as a search through a space we call the rokafsrmation ] ]
space To begin, consider what information is available fronf: Algorithm overview
the robot’s action and observation sequences. The algorithm tracks the robot's information statg
Definition 1: A configuration x;, € C is consistent throughout the execution. The first stepyITIAL ACTIONS,
with an action sequences,...,u;_; and an observation issues several commands to move from the initial condition
sequenceys, ...,yx—1 Iif there exists some configuration(n; = C) to an information state of finite cardinality. This
z1 € C such thatz, = f(xi,u1,...,ux—1) and y; = process is described in Section IV-B. For some degenerate
h(f(x1,u1,...,uj—1),u;) for eachj =1,... k. but potentially interesting environmentsNITIAL ACTIONS
The intuition is that the consistent configurationg are fails to generate a finite information state, instead pdgsib
those for which there is some starting configuration fromeaving one or more continua expressed as intervals on the
which executing the given action sequence would produbeundary ofiW. The function EIMINATE SEGMENTS issues
the given observation sequence and leave the robat,at commands guaranteed to reach an information state devoid
The set of consistent configurations provides a concise wafysuch segments. This issue is dealt with in Section IV-C.
of describing the information available to the robot.

Definition 2: Suppose the robot has chosen actionsz'” this context we consider only theondeterministic information space
which is based on set membership. Other formulations use pilisiab

uy,...,uy, and received sensor readings, ..., yx. TheiN-  reasoning or some other technique to manage the history dets. fér
formation staten, is the set of all configurations consistentxample, Chapters 11 and 12 of [30].

B. The information space
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Algorithm 1 LoCALIZERL(W) I N

(MK, k) < INITIAL ACTIONS(W) {
(N, k) < ELIMINATE SEGMENTS(W, n;,)

while |n,| > 1 do

Se'ectxh.’lﬁg from N

W, — TRANSFORMTOLOCALFRAME(W, x1)

W, < TRANSFORMIOLOCALFRAME(W, x5)

p < FINDPOINTINONLY ONE(W,,, W,,)

(ug, ..., up) — PATHINPOLYGON(W,,, (0,0), p)

while 1,29 € n do Fig. 2. [leff Two boundary-to-boundary motions in a squateped
Yk — EXECUTECOMMAND(uk) environment, separated by a turn@#°. [right] The 8 possibilities for these

motions in this environment.

N+1 < F (01, wr, yx)

xy — f(x1,ug)

x9 — f(x2,ug) m ps
k—k+1
end while Pa De
end while dy do
De
retum 7e—1 " P3  py P4

: i . . . i Fig. 3. Three fixed segmen{s pz, p3pa, and psps and translations of
The final section of the algorithm, detailed in Section IViengthd; andds between them.

D, systematically reduceg, until only a single configuration
remains.

] o ) first translation and instead consider only the two boundary
B. Generating a finite set of candidates to-boundary translation with lengthg andd,. A geometric
This section describes a technique for reaching an infornmiaterpretation of the problem is perhaps helpful here:
tion_state of finite cardinality. The central idea is to makzet Given W and the two odometer readings and ds,
motions between points on the boundary of thg environment, | o \vont to find all ways to pack intt/ a 2 link
separated by 80° turn. We show that if the environment has polygonal chain with edges having lengthsand ds
no pair of parallel edges, only finitely many configurations joined at a right angle, such that the initial and final
are consistent with such a sequence of motions. Section IV-C endpoints rest on different boundary edges from the
addresses the more troublesome case when the environment
violates this condition.
The robot, starting with no knowledge of its position, mak
several motions:
1) Move forward until reaching the boundary. ) ) _
2) Rotate 180°, then move forward until reaching the _1_) Gen_eratlng_ gandldates f(_)r three fixed edgé&he robot's
boundary. Letl, denote distance traveled on this motioninitial motions visit three environment edges. _Supppsesehe
3) Rotated0°, then move forward until reaching the boundthreée edgegips, psps, andpsps, and the order in which the

ary. If the robot reaches the boundary immediately, rotaf@P0t Visits them are fixed. Let, < pip2, py € psps, and
180° and try again. Letl, denote distance traveled onP € PsPs denote the three boundary points visited by the
this motion. robot. See Figure 3.

The commands to “move until reaching the boundary” can First, parameterize these three points as follows:
be realized by selecting a translation amount larger than th
diameter of V. In order to cont_lnueoln final ftep, the rpbot Pa = (1—a)p1 + aps
must make a net rotation of eith@0° or —90°, depending
on its angle of incidence with the boundary. Except when pp = (1= b)ps+bps
the robot reaches an environment vertex, at least one of thes pe = (1—¢)ps+cps.
rotations allows the robot to continue. If the robot knows it
has reached an environment vertex, then there are alredgly
finitely many candidates. The use%f° rotations is motivated
by the simplifications it affords in Equation 5. In principle
rotations of other amounts would work equally well.

The problem remains to find the set of configurations con-
sistent with these initial motions. For simplicity, we igedhe Aa® + Bab+ CV? + Da+ Eb+F =0 4)

middle vertex.

e‘ghe set of final endpoints of these chains can be used directly
to compute a set of candidate configurations of the robot.
Figure 2 shows an example.

%he first motion has lengtld,, therefore||p, — ps|| = di.
Expanding from the parameterization above gives a quadrati
constraint ina andb:
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with constant coefficients SRR
A = ($2—~T1)2+(y2—y1)2 ///////// \\\\\\
B = —2(z2—x1)(za —23) — 2(y2 — y1)(ya — y3) PP AN
C = (va—3)"+ (ya—y3)°
D = 2(w3—x1)(x2—21) —2(y3s —y1) (Y2 — 1)
E = 2(z3 —x1)(w4 —23) +2(y3 — v1) (Y2 — ¥3)
F = (z3—21)+ (y3 —y)° —d3, -

in which we use the convention that = (z;,y;). We also Fig. 4. [top] Parallel edges of the environment admit continfiaandidate
know thatp., must be distancd, from p;, and thatp, — p. configurations. [bottom] A motion parallel to one of these segisideaves

must be perpendicular 9, —p,. These constraints are satisfie@"y @ single candidate point.
when
_ dy L 5 . . .

Pe—Pb = 51672(171) — Pa) (®) performance of this process may possibly be improved by a
preprocessing step which, for each pair of environment £dge
computes the minimum and maximum distances between

utually visible points on these edges. This information ca
"hmutually visibl ts on these edges. This informat
be used to filter some edge triples as infeasible withouti@kpl
consideration.

in which s; is either—1 or +1, depending on whether its net
rotation was90° or —90° in step 3 above. This vector equatio
can be separated into a pair of scalar linear equations in
and c. Eliminating c yields a single linear equation im and

b: As a final step, the candidate list must be pruned, retaining
Ga+Hb+I1=0 ®) only those candidates that represent motions that lieedptir
with constant coefficients within W. In a simple polygon, data structures are known to
sy do sido [ answer such queries i (logn) time, with O(n) preprocess-
G— 0 vz —y) n 4y (w2 — @) ing time andO(n) space [31]. This final candidate set becomes
Ts5 — T Ys — Ye the robot’s information statey,.
e (4 —w3) — 42 (ya —ys) (ya —y3) + 42 (24 — 3)
o Ts — Xg Ys — Ys C. If some boundary edges are parallel
(r3 —ws) — 42 (y3 — 1) (ys —ys) + L2 (23 — 1) Although the preceding exposition made the assumption
I= Ts — Tg Us — Yo * that the environment contains no pair of parallel edges, en-

vironments of practical interest often contain parallejesl

In particular, note the case where the environment contains
a narrow strip bounded by two parallel edges. This situation
.Owould arise, for example, in a indoor corridor or narrow room
When parallel edges exist, continua of final configurationg ma
be consistent with the robot’s initial motions. See Figure 4
Each of these continua can be eliminated with a motion
p[%rallel to itself.

Note that if either denominator is O (correspondingpps
being horizontal or vertical), the system can be solvedkéiix
Equations 4 and 6 form a linear-quadratic systena iand b.

which can be found analytically by standard methods.

The method described above gives candidate values,for
b, andc. Candidates for which any af, b, or ¢ are outside the
interval [0, 1] should be discarded, because they correspond
endpoints outside gf1ps, Pspa, Of P5pg respectively. The final
configuration (that is, position-orientation pair) of thebot D- Localization from a finite set
resulting from such a candidate (ig., atan(y. — yp, T — xp)). The previous sections showed how to select actions to

Lastly, note that ifd; = 0 or dy = 0, then the robot knows guarantee that, contains only finitely many configurations.
that its position is at some convex vertexidf. This does not, How can we select additional actions to determine the rebot’
however, eliminate the uncertainty in the robot's oridotat true position from among these candidates? The approach
In order to determine its orientation, the robot must move to select two candidates and choose motions that are
away from the vertex. To do so, the robot must rotate amgiaranteed to disambiguate them. More precisely, we want
attempt translations, at mo360/6 times, in whichd denotes choose two configurations; and x> from 7, and choose
the measure of the smallest interior anglelify measured in actionsuy, . .., ux4; SO thatn, ;.1 contains either:; or z,
degrees. (or neither) but not both.

2) Generating candidates over all diV: The previous In Sections IV-B and IV-C, we described a method for
section showed how to find candidate solutions, gidgnd, reaching an information state representable by a finiterunio
and three fixed environment edges to be visited in sequencg.single configurations. Given an information statg an
Candidate positions over the complete environment can &etion u;, and an observatiop;, how can we compute the
computed by iterating over each ordered triple of envirommeresulting information statey., = F(n, ux, yx)? Recall the
edges. Since we must admit the case wipgfg = psps, there definition of F', given in Equation 2. The definition suggests
aren(n — 1)(n — 1) such triples. The at most 2 candidatethe algorithm should proceed in two stages: First, we find the
for each can be computed in constant time. In practice, tf@ward projection ofr, under actionuy, by ray shooting
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E. Complexity

Let n denote the number of edges Wi. In INITIAL AC-

& TIONS, we execute fewer tha®(n3) ray shooting queries,
® each taking timeO(logn), so this step take®)(n®logn)
time to generate)(n3) initial candidates. Let denote the
number of such candidates. W has parallel edges, each
segment returned byNITIAL ACTIONS takes timeO(nlogn)
to compute.

The outer while loop in Algorithm 1 eliminates at least one
candidate in each iteration, so there are at mest iterations.
There are fewer than — 1 iterations if some candidates are
Fig. 5. [leff] Two configurations in an L-shaped environmefiight) pruned as a side-effect of distinguishimg and z5. The run
Two overlaid copies of the environment shown in the local frash¢hose  tjme of each iteration is dominated by the time to complite
configurations. Attempting to execute the path shown (whimfsists of one . . . .
rotation and one translation) shown will result in differedometry readings Which is O(rlogn). This computation must be done at each
for these two configurations. of theO(n) steps of the of the path generated at each iteration.

Therefore, the total computation time for the algorithm is
O((n® + r?n)logn) = O(n" logn).

It is possible that these bounds can be improved. The ques-
in W. Then we prune from the result any configurations fdion remains unanswered whether= ©(n?). Our informal
which the distance traveled differs from, using a simple experiments suggest that in practical situations, badind the
constant time procedure. number of disambiguation iterations often fall far shortod
upper bounds we present here.

For a given configuration, let W, denote a transformation
of the environmen®¥ into the robot’s local frame, such that
the robot rests at the origin and faces the positivaxis. Note F. Dealing with Symmetries in the Environment

that (0,0) € W, if and only if the position portion ofc i \we have thus far assumed that has no nontrivial rota-
contained within” in the global frame. tional symmetries. This is important in Algorithm 1 to ersur

Selectz; and z, arbitrarily from 7. ComputeW,, and that there exists at least one poinin W, but not in\W.,. If
W,, and overlay them. See Figure 5. In this overlay, rotatidhis assumption does not hold, then we can still consider the
and translation commands affect bath and z» in the same Problem of localizationup to symmetryThis section makes
way; we can choose a destination position in this frame affte notion of localization up to symmetry more precise.

command actions that to navigate bathandz, to this point ~ Definition 3: A symmetryis function composed of rigid
in their respective local frames. translations and rotations mappird@ onto itself. Without

ambiguity we can extend such a function doby applying

Since W has no nontrivial rotational symmetries, we haVf’ne appropriate change of orientation. Two configurations

Way # sz-. Therefore, there must exist some pos"f?’““ x1,xo € C are symmetricif there exists a symmetry under
W, but not inW,,. Plan a path if¥,,, from (0,0) to p. Since which 21 — 25

(0,0) € W, butp & Wy, this path must cross the boundary e mper of symmetries @f can be computed i®(n)

of W, at least once. The translation action corresponding {0 135] The following lemma will be useful for showing
this crossing of the boundary &F,., necessarily dlstlngwshes,[he relevance of these symmetries to localization.

betweena, and z,. If the robot began ak, its odometry ) orma 4: The relation of symmetry between configura-
reading at this step will be greater th_an if it had _begunz;@_n_ tions is an equivalence relation, which we denete Each
Qne of the two can be pruned after this step. Ath|r_d pOS?Eyb'“equivalence class of contains one configuration for each
is that both candidates are pruned before or during this St%emmetry of the environment

This could happen if the robot’s true configuration is naithe Proof Observe that the.symmetries of a polygon form

txhl nor , .bUt sotr_’ne thlrihconrlguratmr;) "ng.' In tg'z casg, avgroup under function composition. In particular the idgnt
€ remaining actions in the plan can be discarded, and nf always a symmetry, and the set of symmetries is closed
choices forz; andz, can be made from the reduceg, ;.

under composition and inverse. The reflexivity, trandigivand
Which path should the robot follow withifi’,, to reachp symmetry of the= relation all follow immediately. O
from (0,0)? To disambiguate;; andz, requires only a path  Now we show that R1 cannot distinguish between symmet-
that stays withinlV,, but leavesiV,,. Our implementation ric configurations.
uses theshortest pathbetween(0,0) and p, which can be  Lemma 5: Consider an action sequenag, ..., u;_1, an
computed in timeO(n) [32, 33]. Also of potential interest observation sequenag,...,y;—1 and the resulting informa-
is the minimum link path [34], which minimizes the numbetion stater,. For anyz € n, andz’ € C with x = 2/, 2’ € .
of robot commands. The minimum link path can also be Proof: Sincex € 7y, there exists some initial state
computed in timeO(n). In any case, a piecewise linear pattior which executingus, ..., u;_; leads tox and generates
in W,,, can be trivially converted to a sequence of alternating, ..., yx_1. Sincex = 2/, there exists a symmetry under
translation and rotation commands. which 2/ = 7(z). But f acts only locally, so we know that a
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/

Kidkad

Fig. 7. A robot localizing itself in an environment with 5 symmes$. From
top to bottom: (a) The robot’s initial configuration. (b) Ex¢iag INITIAL Ac-
TIONS results in an information statg containing 15 configurations. (c) One
disambiguation iteration fully localizes the robot, leayib configurations

. ) ) ) in m10. Our implementation took approximately 0.1 seconds to sol@ th
Fig. 6. A sample execution of Algorithm 1 generated by our imp@e-  proplem.

tation in approximately 0.03 seconds. Top row: (a) The roboits initial
configuration. (b) The motions generated byTiAL ACTIONS. (c) There are

7 configuration consistent with these initial motions|sg| = 7. Bottom row: , . . .
(d) One disambiguation results {n:2| = 2. () The robot is full localized fObOt'S translations are all between points on the envimm

after 13 commands, with final information stdig4| = 1. boundary. For these reasons, we can simplify the robotte sta
space tooW, ignoring orientation and the interior d¥. In
this context, the information states are subset3ldf. We use

robot starting fronv (1) and executingu,, . . ., ux—1 has state s simplification throughout Sections V and VI.

f(r(z1),ur,...,u5) = 7(f(z1,u1,...,u5)) = 7(x) = 2/

Moreover, the observation sequences are identical, be¢hes 5 Computing the information transition function

boundary edges ofi” are affected byr in the same way as

x1 1s. Consequentlyr(z) is an initial state that leads to/,

thereby demonstrating that is consistent withuq, ..., u,_1

andyi,...,yx_1. Hencexz’ € .

The practical importance of this lemma is that for R1, . :
the localization task can only be accomplished modulo t gnon of a f'mt? collectiors, ..., s, of open segments and a
symmetries in the environment. No sequence of actions aHEJte _set of pointsps, ..., pm ON 6W'.T0 pe precise, each
observations can distinguish between a pair of symmetne cd> @ linear subset odT¥" not containing its .endp.O'.ntS.' Each
figurations. Note, however, that Algorithm 1 can be adapted {: need not be a complete edge " and since it is linear,

handle symmetries gracefully. The only modifications neledganmt c?rr]]t?l?haqy vertex d. I [. : W(;t.hpqt tloﬁ'i of ger:elrahty,
are to change the termination condition to stop when assume that the;s are pairwise disjoint. The next femma

is equal to the number of symmetries, and to ensure tl%][ows that every reachable information state can be exqatess

the configurations selected as and zo are not themselves in this form.

symmetric. The rest of the algorithm remains unchanged. Lemmq 6. Every information state) reachable fromﬁW .
by an action sequenaeg, ..., u; can be expressed as a finite

union of open segments and points @W .

G. Computed examples Proof: Use induction ork. Whenk = 0, = W, which

To illustrate its effectiveness, we have implemented Algds the union of the vertices and edges boundifig Assume
rithm 1 in simulation, using simplified methods for many ofnductively thatn,_; can be expressed as a finite union of
the geometric computations. The implementation is in C+gpen segments and points. Becasenaps each segment to
on a 2.5GHz GNU/Linux system. Figure 6 shows a simpke finite set of polygonal chains ofilW and each point to
example in which the robot makes 13 motions to localizenother single pointy, also has a representation as a finite
itself. In Figure 7, the environment is a regular pentagan, set of points and segments. g
the final information state contains one configuration fathea The intuition is that, given an actiom and an information
of the 5 symmetries. The environment depicted in Figure 8 s¢aten described as a finite union of points and segments, the

This section presents an algorithm for computiRg,), «)
given W, n and u. We restrict our attention to information
states that can be reached from the initial siate= OW.
Consider an information statgethat can be expressed as the

serpentine and self similar, but has no symmetries. resulting information staté'(n, «) is simply the projection of
those points and segments odid” in directionu. For a point,
V. LOCALIZATION WITH A COMPASS AND CONTACT this projection is a simple ray-shooting query. For a segmen
SENSOR ab, compute the projection by sweeping line parallelitsom

Having addressed the localization task for R1, we nof{© 0, generating a new segment each time the poingin
consider R2, a robot equipped with only a compass and contitirsecting closest toub is a vertex ofi¥. See Fig. 10. The

sensor. Once again we show constructively that the lodaiza ime to perform this computation i9((m + nl) logn) for an

task can be completed. A simple example of our algorithm/@formation state described by points and segments in an
execution appears in Fig. 9. environment withn, vertices.

Recall that each actiom € S!' represents a rotation to ) )
the given orientation, followed by a forward motion to thd3- Algorithm overview
environment boundary. After its first action, the robot ksow We now present the localization algorithm itself. The al-
its true orientation. Also note that after the first motione t gorithm proceeds in two parts. First, actions are selected
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i g Nit1 i ou Nit1
©
I 0 2| /
1| — 3| —
Fig. 9. A localizing sequence generated by Alg. 2 for R2 in acomvex

polygon. The information state at each step is shaded. Contpdig. 6.

FalEfal
i

Fig. 8. A robot localizing itself in a serpentine environmeftom top to
bottom: (a) The robot’s initial configuration. (b) ExecutihgiTIAL ACTIONS
results in an information states containing 48 configurations. (c) After
2 iterations of the disambiguation algorithm, oryconfigurations remain
in n19. (d) There are only two configurations imo. (e) The robot is
fully localized after 25 motions. Our implementation took appmately 3.8
seconds to solve this problem.

Fig. 10. ComputingF(ab, u) by a line sweep algorithm. The diagram shows
a snapshot of the algorithm as it runs. The sweep lingoves from left to
right.

Proof: For the forward part, note that sinceéh is
contained inW and is therefore itself collision free, the
maximal collision free segment starting from eaehe ab
is the same. Hence each € ab maps to the same point
underf. For the backward part, supposés not parallel taub
and F'(ab, v) is a single point. Them, b, and F'(ab, u) form
a nondegenerate triangle. This is a contradiction becayse b
definition of f, we must haveiz parallel tobz. a

Starting withn; = 0W, the algorithm maintains a “current”
information staten, and a sequence of actions, ..., u;_1
mapping n; to 7. Computation proceeds by sweeping a
vertical line! from left to right acrossi¥, maintaining the
which reduce the uncertainty in the robot's position to adini invariant thatrn, has no segments on the left side/ofEach
set of possibilities. Second, additional actions are chase time [ reaches the endpoint of a segmerit in 7, the
reduce the uncertainty from this finite set to a single poirtweep line stops and the algorithm selectsupswhichever
The complete localizing sequenag, ..., ux is divided into Of (a — b)/|la — b|| and (b — a)/[|b — a|| has nonnegative
two partsus, ..., ux, andug, +1,...,ux, generated by the = coordinate. The resulting,+1 = F(n, ;) maintains the

respective parts of the algorithm. The complete algoritsm $weep invariant because thecomponent of the motion of
shown in Algorithm 2. each segment imy; is nonnegative; hence, no segment can

crossl. When! passes the rightmost vertex Bf, it is certain
that no segments remain if,. It remains to show that this
method generates a plan of finite length.

This section presents a sweep line algorithm for computingLemma 8: The above algorithm generatés,
a sequence of actions to reduce the robot's informatiore staictions for an environment with edges.
to a finite set of points. The following lemma, whose intentis  Proof: Let es,...,e, denote the edges @fi¥ and let

C. From the entire boundary to a finite subset

O(n?)

illustrated in Figure 11, provides the_basis for the aldponit
Lemma 7: For any segmens = ab C W, F(s,u) is a
single point if and only ifu = (a — b)/|la — || or v =

(b—a)/|lb—all.

v(e;) denote a unit vector parallel tq and oriented so that its
x component is nonnegative. For a fixedndj, F(e;, v(e;))

is a set of polygonal chains o8IV with total complexity
O(n). Let R;; denote the set of endpoints of segments in
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Algorithm 2 LOCALIZER2(W)

m < 8W
k—1
while 7 contains at least one segmetu 9

ab — LEFTMOSTSEGMENT(7))
if (a—b).z > 0 then
ug, < (a = b)/||a = 0|

else b b Fig. 12. [left] A visibility polygon. Spurious edges are tiasl. [right] The
Uk < (b —a)/[|b— all shortest path to any point not in the visibility polygon begiwith a motion
end if in the direction of a spurious edge.
M1 — F(nk, uk)
k—k+1
end while .
for two points.
while 7, contains at least two pointo Let n = {p,q}. The ordering of the points is arbitrary but
Selectp, ¢ from ;.. must be fixed. Our goal is to design a sequence of actions
Pk = DGk = 4
while g ¢ Vis(px, W) do UK, +1,- - -, UK, SUCh that

t, < first vertex of shortest path fromy. to gx
w, — (tx — pr)/[tk — prll
Met1 < F(ne, uk) That is, we want an action sequence mappinand q to the

Pr+1 < SHOOTRAY (W, pi, uk) o
Ghi1 — SHOOTRAY (W, i, ur) same destination. Fak; < k£ < K, let

k—k+1
end while
Uk (qﬁ; px)/1lgr — prl| and likewise
Dot o Flh i) Qe = F(@, uryr1s ).

end while

f(p,UK1+1,--~7UK2):f(q,UK1+1a---7uK2)- (7)

Pk = f(p7uK1+17' '~auk:)

Our algorithm selects;, using onlyp, andg,. We begin with
return (us, ..., ux_1) the simple base case: _
Lemma 9: If prgrx C W, then the actioru = (gp —
pr)/|lar — pxl| is a localizing sequence fdipy, gi}-
Proof: Follows from Lemma 7 withu = p;, andb = gy.
O
The intuition is that ifp, can “see”q, in the sense that
there is an unobstructed path between them, then a motion in
the direction of this path maps both), and ¢; to the same

F(ab, —u)

b place.
Now suppos&qr ¢ W. The following definition is useful
in this case.

Definition 10: For anyz € W, let Vis(x, W) denote the
visibility polygonof « in W, defined as

Vis(z, W) = {2/ e W | za’ C W}. (8)
We follow [2] in characterizing the boundaries visibility
polygons in terms of non-spurious edges which are parts of
F(e;,v(e;)) and letR =, ; R;;. Observe thatR| = O(n 3).  OW and spurious edges which are not. Observe that ditice

Clearly every segmenstreached by is in the initial condition is simply connected, the spurious edges subdiViden such
., or is a subset of SOME(e;, v(e;)). There aren segments & way that every point’ ¢ Vis(xz, W) can be associated with
in 7, and R is a set of carliest possible points at whicigxactly one spurious edge such that the shortest path from
an information state segment projected from another ed§ez’ crosses this spurious edge. Further, the first segment of
may begin. These events are sufficient to maintain the sweBg shortest path from to 2’ is parallel to this spurious edge.
invariant, soK; = O(n) + O(n3) = O(n?). ] See Figure 12. Lef, v, denote the spurious edge crossed by
the shortest path from;, to gx.

Assume momentarily that,v,, is not a bitangent ofiV/.
Chooseuy, = (tx — pr)/||tx — pk||- That is, select a motion
The previous section showed how to select actioms the direction of the spurious edge that hidgsfrom p.

Fig. 11. [left] A motion alongab collapsesab to a single point. [right] No
motion not parallel tazb can collapseub.

D. From a finite subset to a single point

ui,...,ug, that mapn, = OW to a finite setnx, = Figure 13 illustrates this selection (and the intuition ibeh
{p1,p2,...,Pm} Of pomts ondW. It remains to generate the proof of Lemma 11). This completes the definition of our
additional actionsik, 11, ..., ux, mapping{pi,pz,...,pm} action sequencer, .1, ..., Urk,:

(¢ —pi)/llgi — il if q; € Vis(ps;, W)
(t; — pi)/||t: — ps|| otherwise

reduction to the special case when= 2. The more general
problem form points can be solved by iterating the algorithm

to a single point. We derlve this part of the algorithm by {
)
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Pk Pk

Tk
qk k+2 < S
Vk k2 - k+1 - 23
Pk+1

Fig. 14. The special case wheépvy, is a bitangent.

Pk

dk+1

Fig. 13. [left] The spurious edgl. v, hidesp, from gg. [right] The point
gr+1 cannot cross, v, because its motion is parallel tpvy.

in which K is the minimali for which the first case applies. \_‘ \_‘ \_‘

Clearly if K5 exists, then this action sequence is a localizing

sequence. It remains only for us to show tl&f exists.

Let Qx = W — U,_k, ... Vis(pi, W) and observe that \_‘ \_‘ \_‘
Qi1 C Q. Informally, Q;. is the portion of W that p has
never seen.

Lemma 11: For all k > K1, qi € Q.
Proof: Use induction onk. The statement is true by

construction wherk = K. For the inductive step, note that
qr moves parallel tai,vg, so thatgy., is still behind this
spurious edge. Ifx ¢ Qx, theng, must be in a region visible
to somep;, or in some region not seen by apybut separated
from g;, by t,vi. In either case, we can form a nontrivial loop
in W, contradicting the simply connected propertyléf. [

One informal way to understand Lemma 11 is to imagirfég. 15. [top] An environment with many regularities. Algtwrih 2 generates

a 5-step localizing sequence for this environment, runninggproximately
that p is “chasing” ¢. With each motion,p takes a step in 0.4 seconds. [bottom] A modified version of this environment imch the

pursuit ofg and eliminates a portion of the environmedl,  regularities have been broken. Our algorithm generates st localizing
in which q could be “hiding". If Ky exists, therp eventua”y sequence for this environment, running in approximately #dbsds.

“catches”q
Now we can prove the algorithm’s correctness.

Theorem 12: The sequencex, 11, . .., uk, is alocalizing  only ;—n actions. Then select an arbitrary pair of poiptand
sequence fofp, ¢}. g from the current information staig.. We have shown how to
Proof: If Kj exists, it follows from Lemma 9 that mergep andq in O(n?) steps. Repeatlng this process at most
UK, +1,- -, UK, IS @ localizing sequence fdip, ¢}. To show , times results in a plan of lengtA(n3) to map{pl, ey Pm}
that Ko eX|sts note that eachy, is in a different cell of the g 3 single point. Combining this with th@(n?) steps from
visibility cell decomposition [2] ofi¥”. There are onlyO(n”)  the first part of the algorithm (Section V-C) yields a totampl

such cells on the boundary, 96, = O(n?). U length of K = Ky + Ko = O(n?).
Finally, we must consider the special case wign, is a

bitangent. This case is problematic because choosing-

(tx — pr)/|Itx — pr|| is no longer sufficient to ensure that

Qr+1 C Q. The algorithm as stated would alternate betwedh Computed examples

the actiong;, — v, andwvy, — t;. This problem can be avoided

by rotatinguy, by a sufficiently smalk ensuring thaggr+1 We have implemented this algorithm in simulation. The

does not intersecf,vx. Then selecty,+1 = (vik—pr+1)/||lvk— top portion of Figure 15 shows an environment with many

pr+1||. Figure 14 illustrates this situation. This modificatiommegularities for which Algorithm 2 generates a 5-step local

adds an additional action each timpg falls at the endpoint izing sequence. In contrast, our algorithm needs 28 staps fo

of a bitangent complement, but does not substantially ahartfpe similar but irregular environment in the bottom portion

the analysis. of Figure 15. This is in sharp contrast to visibility based
Now we can finally return to the general case wittpoints. localization, in which such regularities are precisely wha

If m > n (recall n is the complexity ofoW), then by the make localization problems difficult. Figure 16 shows a very

pigeonhole principle, at least two points must lie on the esanrregular environment for which our algorithm generates0a 3

edge of0W. This pair of points can see each other, and orstep localizing sequence. This sequence is executed from si

motion collapses them to a single point. In this way, we catifferent initial positions. The robot’s final position ia the

reduce the information state to a set of at megtoints using lower right.
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Proof: Suppose there exists some localizing sequence
u1, ..., uxg With no collapsing transitions. Arbitrarily pick a
segments; C i, = OW. Because of Lemma 7, at every step
1 <k < K, F(sg,ur) contains at least one segment, ;.
We have constructed a segment C nx. Therefore|nk| is
infinite, a contradiction. O

Theorem 15: For a robot with only angular odometry and a
contact sensor in any polygonal environm&it no localizing
sequence exists.

Proof. Suppose such a sequence ..., ux exists. Let
e1,...e, denote the set of edges 6V, and letRot(v, ¢)
denote the rotation of C R? by angle¢. If there exists no
— action-edge paifu;, ;) with u; andRot(e;, §) parallel, then
@&7 uy, ..., ux contains no collapsing transitions. The sequence

is required to work for all) € S but the subset of5! in
@ which someu, coincides with someRot(e;,#) has measure
J\:_l 0. Thereforeuy, ..., uk fails for almost eveny. ]
The intuition is that reaching a finite cardinality inforrat
state requires at least one motion parallel to some envieohm
wall. No finite length localizing sequence can achieve this f
all possible initial orientations.

J\ J\ VIl. DISCUSSION AND CONCLUSIONS

— This paper presented a localization techniques for several
robots with severely limited sensing capabilities. In thirl
section, we discuss these results and mention severalepnsbl
we have left open.

J\Y

Fig. 16. [top] An irregular environment for which the localig sequence ~ 1here are also some subtle but perhaps illustrative differ-
cogﬁputed dby Oﬁgttilr%?rglgcﬂzgl;ir{erzc?ég itfe,t)r?ié Tlgceaﬁg?putﬁg?]lze&?gruz ences with the re;ults we have presented for R1 and R2. The
(jj-iffefsr?fgtasriigg positions. For each starting positithe, finm)qosition is the algorlthm for R1 is effective only up to .sym'metry, whereas
lower right corner of the environment. symmetries are not relevant to R2. This difference can be
directly attributed to the fact that, for R1, angular infatmon

is only local, rather than global. Likewise, the algorithor f
R2 can only guarantee a knowimal configuration. For R1,
each motion is precisely measured. This provides sufficient
information to determine the initial configuration and iede

pe robot’s entire path.

A. Comparison of results

VI. LOCALIZATION WITH AN ANGULAR ODOMETER AND
CONTACT SENSOR

In Section V, we showed that robot model R2, a rob&
with only a compass and a contact sensor, is capable of
localizing itself within its environment. In this sectionew B. Comparison between sensing models

consider R3, a weaker version of R2 in which the compassperhaps the most closely related localization model is that
has been replaced by an angular odometer. This modelyiS[14), in which the robot uses an omnidirectional range
identical to that of Section V, except that we now consid&fensor, The two phase approach described in that work — that
actions specified relative to an unknown initial orientafio ¢ finding a finite set of candidatesyjpothesis generatign
rather than a global reference direction. Equivalently,088 fo|lowed by determination of the true configuration from
consider the environment to have been rotated through &Mong these candidatelsypothesis elimination— is similar
unknown angled, representing the difference between thg, the approach of both Algorithm 1 and Algorithm 2.

global reference direction and the robot's initial oridi.  \Model R1 is strictly weaker than the visibility based model
A localizing sequence must map everye W to the same \geq in [14]. The visibility polygon available to the robot i

zy, regardless of). We show that, under this model, everythat work can be viewed as an omnidirectional measure of the

sequence of actions. fails. _ _ _ _ distance to the environment boundary. By ignoring all okthe
Def|r!|t|on 13:_An_|nfo_rmatlon state-action paifm, u)_IS a distances except the distance to the boundary directlyaiatw
collapsing transitionif  is parallel to some segmentin their robot can accurately simulate R1. Moreover, the wdrk o

Lemma 14: Every localizing sequence contains at least orjé4] is mainly concerned witlminimum distancéocalization,
collapsing transition. a problem we have not addressed.
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Observe also that R1 and R2 are not directly comparabj&4] to show, by reduction from the Abstract Decision Tree
Comparing R1 to R2, we exchange the compass for an angyaoblem, that computing an optimal localization strategy i
odometer and the contact sensor for a linear odometer. NiP-hard. For R2, it is less clear how to proceed, because R2

doing so we have strengthened the linear (distance) sensilugs not admit branching in the localizing sequence.

while reducing the robot's angular sensing. More broadly, w
can imagine a partial ordering on robot systems, in which
a comparison relation is defined by the ability of one robot
to simulate another. In this context, the minimalist apploa
can be described as a search for minima in this partial ordgr.
We address comparisons of this type more formally and morg
generally in [36].

C. Relationship to probabilistic methods (1

There is a large body of research on Bayesian methods for
mobile robot localization (for example, [9, 17, 18, 37, 38]) [
One way to interpret the our results is as a special case of
techniques based on POMDPs (for example, [38]) in which
sensing is perfect. However, our use of set-based uncllyrtair{3]
allows us to treat the continuous state space exactly, but
existing POMDP methods generally require discretizatma t
finite state space. This sort of Bayesian approach is a vef§!
natural way of extending our robot models to account fofs)
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