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Abstract— Differential drive robots, such as robotic vacuums,
often have at least two motion primitives: the ability to travel
forward in straight lines, and rotate in place upon encountering
a boundary. They are often equipped with simple sensors
such as contact sensors or range finders, which allow them
to measure and control their heading angle with respect to
environment boundaries. We aim to find minimal control
schemes for creating stable, periodic “patrolling” dynamics for
robots that drive in straight lines and “bounce” off boundaries
at controllable angles. As a first step toward analyzing high-
level mobile robot dynamics in more general environments, we
analyze the location and stability of periodic orbits in regular
polygons. The contributions of this paper are: 1) proving the
existence of periodic trajectories in n-sided regular polygons
and showing the range of bounce angles that will produce such
trajectories; 2) an analysis of their stability and robustness to
modeling errors; and 3) a closed form solution for the points
where the robot collides with the environment boundary while
patrolling. We present simulations confirming our theoretical
results.

I. INTRODUCTION

Consider the path that a differential-drive mobile robot
takes as it navigates a room. This robot has two motion
primitives that it can execute reliably: moving in a straight
line and turning in place. We can equip the robot with sensors
that allow it to determine whether it is in contact with an
environmental boundary and measure its heading relative to
that boundary.

The main question addressed by this work is: can we
guarantee that the robot patrols a space on a repeatable,
periodic path? If so, what are the sensing and actuation
requirements of this task? A better understanding of this
common robotic task could lead to robots that are robust
in the face of noise and complicated environments. Robots
with robust patrolling behavior have applications such as
monitoring environmental conditions in labs, warehouses,
or greenhouses, where a few fixed sensors may not give
adequate information.

Existing techniques for producing repeatable motion pat-
terns for mobile robots involve equipping the robots with
high-resolution sensors such as cameras, and using al-
gorithms such as simultaneous localization and mapping
(SLAM) to compute a map of the space and estimate the
robot’s state [1], [2], [3]. However, these robots can be expen-
sive, require a large amount of computational and electrical
power, and their accuracy can be impacted by changing
environmental conditions (such as low light). In situations
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(a) θ = 1.07 rad, 20 bounces. (b) θ = 0.57 rad, 50 bounces.

(c) θ = −0.08 rad, 75 bounces. (d) θ = −1.4 rad, 20 bounces.

Fig. 1: Different behaviors of bounce trajectories in a regular
pentagon. Older bounces become 2% more transparent with each
new bounce. The circle on the boundary indicates the starting point
of the trajectory. Figure (c) shows that periodic orbits are not
guaranteed for all bounce angles.

which require high-resolution mapping and localization in
dynamic environments these tradeoffs are clearly worthwile.
However, tasks such as monitoring humidity or temperature
in a warehouse require only repeatable orbits in a relatively
simple space, and some guarantees about what parts of
the space will be covered. Robots with minimal sensing,
actuation and control requirements will be more reliable
and efficient at such tasks. Our approach requires precise
knowledge about the structure of the environment, but does
not require observation or calculation of the exact position of
the robot. Such tradeoffs are common in robots, and allow us
to optimize robotic designs for specific tasks and constraints.

The key approach of this work is treating the robot as a
dynamical system defined by its motion primitives, indepen-
dent of the hardware implementation. The contributions of
this paper are 1) proving the existence of periodic orbits in
n-sided regular polygons, and showing the range of bounce
angles that will produce periodic orbits; 2) an analysis of
these orbits, showing their stability and robustness; and 3)
an analytic solution of the locations where the robot collides
with the environment while in these orbits.

This paper is organized as follows: Section II describes
related work. Section III presents the model definition and



some useful concepts from dynamical systems. Section IV
analyzes the case where the robot is constrained to bounce
between sequential edges of the polygon, and we prove
the existence and location of a periodic path using a fixed
point technique. Section V generalizes this approach to find
periodic paths of period k in regular n-gons, when k divides
n. Section VII discusses possible extensions of this work,
including to more generalized polygonal environments, and
remaining open questions. By providing strong guarantees in
the case of regular polygonal environments, we hope to lay
the groundwork for analysis of more complex environments.

II. RELATED WORK

This dynamical system is closely related to mathematical
billiards [4]. In billiards, an agent travels in a straight line
until contacting a boundary of its environment, then bounces
so that the incident angle is related to the outgoing angle by
θo = −θi (specular bouncing, such as how a laser beam
reflects off mirrors). Our system generalizes this model by
allowing the robot to control the angle of reflection.

There has been significant progress in generalizations of
the billiards model: for example, pinball billiards is a model
where the agent is deflected toward the normal with each
bounce, θo = −γθi for 0 ≤ γ ≤ 1. If the agent always
bounces at the normal vector (γ = 0), this is called slap bil-
liards. Work in this area focuses on analyzing the existence
and structure of attractors [5] [6]. Additionally, [7] looks at
the knots formed by periodic billiards in rectangular prisms.
They generalize the idea of a constant-angle bounce to three
dimensions, motivated by the behavior of Paramecium. They
show that knots formed by constant bounces of π/4 in a
rectangular prism are equivalent to billiard knots in a cube.
Our study is in two dimensions and focuses on the necessary
conditions for periodic orbits.

We are also inspired by work on map dynamics in
polygons such as [8] and [9]. Also related is work on the
combinatorial complexity of the region visited by specular
bouncing (“visibility with reflection”) in simple polygons
[10]. There, the authors show the combinatorial complexity
of the region touched after k bounces and provide a near-
optimal algorithm for computing the region. Our work differs
by analyzing non-specular bouncing and the effects of en-
vironment geometry. Specifically, we focus on determining
regions of minimal complexity.

In [11], the authors describe a controller which gener-
ates chaotic dynamics in the heading of a mobile robot,
guaranteeing that it will scan an entire connected workpace.
Similarly to this work, their implementation requires a mea-
surement of the local normal of boundaries upon contact.
While the underlying dynamics are different, this work also
treats the robot as a dynamical system over the workspace
and leverages the results for useful patrolling behavior.

The motion primitives described in this paper are feasibly
implemented on actual robots - in [12], the authors describe a
differential-drive robot with bump and infrared range sensors
which executes the same type of “bounces” described in this
paper with error less than ±10◦. In that work, the authors

developed an algorithm for navigation with such a robot;
similarly, we show that patrolling is possible, and provide
bounds on how much noise can be tolerated. Similarly, wall
following robots [13], [14] are often capable of the motion
primitives we describe - this work could help extend the
capabilities of such robots with new motion strategies for
patrolling the interior of a space.

A. Prior Work

In [15], the authors characterized some of the long-term
dynamics of this dynamical system. They showed that the
robot will have an orbit of period two between parallel
edges, and the robot will move monotonically “outward”
from acute vertices or edges that would meet in an acute
vertex if extended to their intersection.

The authors in [15] defined distance- and link-unbounded
segments as regions of the boundary where the robot may
travel an unbounded distance or bounce an unbounded num-
ber of times. That work describes an algorithm for classifying
the boundary of an arbitrary polygon into distance- and
link-unbounded segments. However, the algorithm will not
terminate when the robot’s trajectory converges to a periodic
orbit, since in this case the distance- and link-unbounded
regions shrink to points on the polygon boundary, such as in
Figures 1a and 1b.

One purpose of this paper is to begin to identify cases
where the dynamical system’s attractor is a set of separate
points, not intervals, on the environment boundary. The
algorithm in [15] can be used only for environments with
attractors that are segments on the boundary, for which the
algorithm is guaranteed to terminate.

III. MODEL DEFINITION

A point robot moves in a bounded subset of the plane
P , defined by a continuous boundary δP . For most of this
discussion, the environment will be a simple regular polygon,
so δP is an n-gon with n straight edges intersecting at
n vertices (v0, v1, . . . , vn−1). An edge of the polygon is
represented as vivi+1.

The robot drives in a straight line until encountering δP . It
then rotates until its heading is at an angle θ clockwise of the
inward-facing boundary normal, where −π/2 < θ < π/2.
Then the robot repeats this procedure indefinitely. Figure 2
shows two sample bounces, at angles θ+ and θ−.

Fig. 2: A sample bounce, showing θ measured clockwise from the
normal. The other labels show the geometric meaning of the bounce
map defined in Lemma 1.



The function that these actions define between points on
δP is Bθ : δP → δP , defining our dynamical system. We
will refer to this function as the bounce map, in the same
spirit as the logistic map in discrete dynamical systems, not
to be confused with a map of the environment. When the
bounce map is iterated k times, we write Bkθ . Bθ is not well
defined on vertices of δP , so we will not consider trajectories
which reach a vertex.

A sequence of points [p0, . . . , pk] is a flow of Bθ if pi =
Bθ(pi−1) for 1 ≤ i ≤ k. A flow is an orbit with period k if
Bθ(pk−1) = p0. A limit cycle is an orbit where nearby flows
tend asymptotically toward or away from the orbit [16].

IV. BOUNCING TO ADJACENT EDGE

Take a regular n-gon with boundary δP , each side of
length l, and each interior angle of φ = (n− 2)π/n radians
[17]. In simulation, for some values of θ we observe stable
orbits that bounce off each adjacent edge (Figure 1a). To
analyze these orbits, we imagine that Bθ is constrained
to send the robot from edge vivi+1 to edge vi+1vi+2 for
all bounces, and then solve for the conditions necessary to
guarantee this behaviour.

We begin our analysis by presenting a trigonometric
function (Lemma 1) that is used to determine the existence
and location of a periodic path. Lemma 2 establishes the con-
ditions under which that function is a contraction mapping
with a unique fixed point. A fixed point of this mapping
function corresponds to a stable orbit that has the shape
of a regular n-gon, inscribed in δP . Finally, Proposition 1
presents a closed form solution for the fixed point that allows
us to locate where the robot collides with the polygon in
these stable orbits.

Lemma 1: Assume that the robot bounces at angle θ
to the next adjacent edge in a counterclockwise (positive)
direction. Under this condition, define the constrained bounce
map b+θ : (0, l) → (0, l) which takes x, the robot’s distance
from vertex vi, and maps it to b+θ (x), the resulting distance
from vertex vi+1. This mapping function is given by

b+θ (x) = c(θ)(l − x), (1)

in which c(θ) = cos(θ)/cos(θ − φ).
Proof: Using the triangle formed by two adjacent edges

and the robot’s trajectory between them (see Fig 2), we can
solve for b+θ . The law of sines establishes that

b+θ (x)

sin(π/2− θ)
=

l − x
sin(π − (π/2− θ)− φ)

which we can rewrite as

b+θ (x) =
cos(θ)

cos(θ − φ)
(l − x) = c(θ)(l − x).

Lemma 2: If |c(θ)| < 1, then b+θ (x) is a contraction
mapping and has a unique fixed point.

Proof: We take (0, l) to be a metric space with metric
d(x, y) = |y − x|. To be a contraction mapping, b+θ must
satisfy

d(b+θ (x), b+θ (y)) ≤ kd(x, y)

for all x, y ∈ (0, l) and some nonnegative real number
0 ≤ k < 1.

When we check this property, we see that

d(b+θ (x), b+θ (y)) = |c(θ)(l − y)− c(θ)(l − x)|
= |c(θ)(x− y)|
= |c(θ)|d(x, y).

Thus if |c(θ)| < 1, then b+θ is a contraction mapping, and
by the Banach fixed-point theorem, it has a unique fixed
point [18].

Corollary 1: At the fixed point, b+θ represents the robot
bouncing from a point that is distance xFP from vertex vi,
to a point that is distance xFP from vertex v(i+1)mod n, for
all i ∈ [0, . . . , n − 1]. Thus, a fixed point of b+θ implies an
orbit of Bθ.

Remark 1: Note that the proof of Lemma 2 holds for all
x, y ∈ (0, l), so it does not matter where the robot starts
bouncing, implying that this orbit is a stable limit cycle of
the dynamical system, with the largest possible region of
stability.

Proposition 1: In every regular n-sided polygon with side
length l and interior angle φ, there exists a range for θ such
that iterating Bθ(x) on any x ∈ δP results in a stable limit
cycle of period n, which strikes the boundary at points that
are distance xFP from the nearest clockwise vertex. xFP is
given by

xFP =

{
lc(θ)

1+c(θ) φ/2 < θ < π/2
l

1+c(θ) −π/2 < θ < −φ/2
(2)

in which c(θ) = cos(θ)/cos(θ − φ).
Proof: In a regular n-sided polygon with side length

l, let the robot begin its trajectory at a point p ∈ P which
is at a distance x from the nearest vertex in the clockwise
direction. We will begin by constraining the robot to bounce
counterclockwise, at an angle 0 < θ < π/2 such that it
strikes the nearest adjacent edge, such as in Figure 1a. The
function b+θ given in Lemma 1 describes such bouncing
behaviour.

By Lemma 2, b+θ (x) has a unique fixed point, which is
an orbit of Bθ since the robot is contacting each edge at the
same distance from the vertex at each bounce. By iterating
the map b+θ , we can explicitly find the value of the fixed
point, and thus the points on δP touched by the robot in its
orbit. Iterating b+θ k times yields

b+θ
k
(x) = c(θ)(l − c(θ)(l − . . . c(θ)(l − x) . . .))

=

k∑
i=1

(−l)(−c(θ))i + (−c(θ))kx

and taking the limit as k →∞ and shifting the index gives

b+θ
∞

(x) = l +

∞∑
i=0

(−l)(−c(θ))i



.
Note that the starting position, x, drops out when the limit

is taken - the orbit converges regardless of starting position.
The sum is geometric, and since |c(θ)| < 1 (the condition
stated in Lemma 2), the fixed point (for counterclockwise
orbits) becomes

(b+θ )∞(x) =
lc(θ)

1 + c(θ)
.

So the trajectory of a robot with bounce angle θ satisfying
|c(θ)| < 1 converges to a limit cycle in the shape of
an inscribed n-gon, with collision points xFP at distance
(lc(θ))/(1 + c(θ)) from the nearest vertex in the clockwise
direction. When this calculation is redone for bounces in the
counterclockwise direction (−π/2 < θ < 0), the resulting
fixed point xFP is l/(1+c(θ)). Moreover, since c(θ) ∈ (0, 1)
for stable orbits, and considering the past two expressions
for xFP , we find that the fixed point xFP for bounces can
take all values in (0, l) except for l/2, which would require
c(θ) = 1.

Next, we examine the stability condition, | cos(θ)
cos(θ−φ) | < 1.

Since 0 < θ < π/2 for b+θ , cos(θ) is always positive, then
we must have | cos(θ − φ)| > cos(θ), from where we can
obtain the range φ/2 < θ < π/2. Likewise, in the clockwise
direction, −π/2 < θ < 0 yields −π/2 < θ < −φ/2. Thus,
we have a guarantee on the range of bounce angles that
will result in periodic orbits, starting from any point on the
polygon’s boundary.

Remark 2: Note that calculating the Lyapunov exponent
[16] for the map bθ(x) gives the same result: |dbθ(x)/dx| =
|c(θ)|, which implies that |c(θ)| < 1 gives a stable fixed
point.

Fig. 3: Simulated orbits for adjacent edge bouncing in regular
polygons. Predicted collision points are indicated by circles. Both
simulations are of the trajectory after 300 bounces from an arbitrary
start point.

V. GENERALIZATION

Instead of bouncing between adjacent edges, we may ask
what happens when the robot bounces between edge v0v1
and edge vmvm+1, “skipping” m−1 edges, such as in Figure
1b where the robot bounces off every other edge.

Proposition 2 states the existence of a stable limit cycle
with period k in every regular n-sided polygon, in the partic-
ular case where k|n. Then, following a similar approach as
in Section IV, we prove in Lemma 4 that the trigonometric
function of Lemma 3 is a contraction mapping with a unique

fixed point, and conclude with Theorem 3 presenting a closed
form solution for the fixed point (hence the location of the
stable orbit) when the robot bounces skipping m− 1 edges.

Proposition 2: In every regular n-sided polygon, there
exists a stable limit cycle with period k for all k such that
k > 2 and k|n.

Proof: For all prime n ≥ 3, the statement is true by
Proposition 1, since k = n for k|n, and Proposition 1 guar-
antees a stable limit cycle that strikes each edge sequentially.

Now consider any non-prime n > 3, and assume k >
2 to avoid trajectories between parallel edges (addressed in
[15]). Proposition 1 guarantees a stable limit cycle that strikes
each edge of an n-sided polygon sequentially. For all k such
that k|n, we can choose k edges of the n-gon such that the
edges are equally spaced. We can then imagine extending
these edges to their intersection points, forming a regular k-
gon. By Proposition 1, the bounce map in this regular k-gon
is guaranteed to induce a stable limit cycle, with collision
points at parameter xFP on the edge for all xFP except the
very center point of the edge. Thus θ can be chosen such
that the bounce map sends the robot to every (n/k)- th edge
such that the trajectory will converge to a stable cycle with
period k. The result follows.

Fig. 4: A bounce from edge v0v1 to edge vmvm+1. The other edges
of the polygon are not drawn, and the distance between the edges
is not to scale.

Lemma 3: Assume that Bθ is constrained so the robot
“skips” m−1 edges with each bounce in a counterclockwise
direction. This constrained bounce map b+θ,m : (0, l)→ (0, l),
which takes x (the robot’s distance from vertex vi) and maps
it to b+θ,m(x) (the resulting distance from vertex vi+m) is
given by

b+θ,m(x) = c(θ)(A− x) + l −A, (3)

in which c(θ) is generalized to

c(θ) = cos(θ)/ cos

(
θ − π(n− 2m)

n

)
(4)

and

A =
l sin(π(m+1)

n ) sin(mπn )

sin(πn ) sin(π(n−2m)
n )

. (5)

Proof: Let m ≤ bn/2c - the robot bounces counter-
clockwise. Without loss of generality assume that we start



on edge v0v1. Extend the line segments v0v1 and vmvm+1 to
their point of intersection q, forming the triangle v0vm+1q.
Let a = ∠qvm+1v0 = ∠qv0vm+1, by symmetry. Let b =
∠vm+1qv0. Let A = |qvm+1| = |qv0| and B = |vm+1v0|
(see Figure 4). Each of the sides of the polygon has length l,
and the robot begins its trajectory at a point which is distance
x from v0. We wish to find b+θ,m(x), the distance from the
endpoint of the bounce to point vm.

By the law of sines, we have

A =
B sin(a)

sin(b)

We can then form the triangle from the points v0, vm+1, and
the center of the regular n-gon. The distance from the center
of a regular n-gon to any of its vertices is l

2 sin(π/n) [17].
The angle subtended by the edges v0v1 through vmvm+1 is
2π(m+ 1)/n. Thus, B becomes

B =
l sin(π(m+ 1)/n)

sin(π/n)

.
The angle a can be found by considering the polygon

formed by edges v0v1 through vmvm+1, closed by edge
vm+1v0. This polygon has m+2 vertices, so its angle sum is
mπ. m of these vertices have the vertex angle of the regular
n-gon, (n − 2)π/n. The remaining two vertices have angle
a. Therefore, 2a+m(n− 2)π/n = mπ, so a = mπ/n, and
thus

A =
l sin(π(m+1)

n ) sin(mπn )

sin(πn ) sin(π(n−2m)
n )

.
Using the triangle formed by the the bounce of the robot

and vertex q, the law of sines states

A− x
sin(θ − π/2 + (2πm)/n)

=
A− l + b+θ,m(x)

sin(π/2− θ)
,

which we rewrite as

b+θ,m(x) =
(A− x) cos(θ)

cos(θ − π(n−2m)
n )

+ l −A

= c(θ)(A− x) + l −A.

Lemma 4: If |c(θ)| < 1, then b+θ,m(x) is a contraction
mapping, and therefore has a unique fixed point.

Proof: We take (0, l) to be a metric space with metric
d(x, y) = |y − x|. To be a contraction mapping, b+θ,m must
satisfy

d(b+θ,m(x), b+θ,m(y)) ≤ kd(x, y)

for all x, y ∈ (0, l) and some nonnegative real number 0 ≤
k < 1.

When we check this property, we see that

d(b+θ,m(x), b+θ,m(y)) = |b+θ,m(x)− b+θ,m(y)|
= |c(θ)(A− x) + l −A−

c(θ)(A− y)− l +A|
= |c(θ)(y − x)|
= |c(θ)|d(x, y).

Thus if |c(θ)| < 1, then b+θ,m is a contraction mapping,
and by the Banach fixed-point theorem has a unique fixed
point [18].

Theorem 3: In every regular n-sided polygon with side
length l and interior angle (n− 2)π/n, there exists a range
for θ such that iterating Bθ(x) on any x ∈ δP , results in a
stable limit cycle that strikes the boundary skipping m − 1
edges, and strikes at points that are distance xFP from the
nearest clockwise vertex, with xFP given by

xFP =

{
l−A(1−c(θ))

1+c(θ) , φm

2 < θ < φm−1

2
lc(−θ)+A(1−c(−θ))

1+c(−θ) , −φm−1

2 < θ < −φm

2

(6)

in which c(θ) and A are given by Equations (4) and (5)
respectively, and φm = π(n−2m)

n .
Proof: Consider an n-sided polygon with side length

l and let the robot begin its trajectory at a point p ∈ δP
which is at a distance x from the nearest vertex in the
clockwise direction. We begin by assuming the robot bounces
in the conterclockwise direction, at an angle θ such that
instead of bouncing between adjacent edges the robot “skips”
m− 1 edges. The function b+θ,m(x) in Lemma 3 obeys such
bouncing behaviour.

By Lemma 4, the map b+θ,m(x) has a unique fixed point,
which implies an orbit of Bθ. By iterating the map b+θ,m(x),
we explicitly find the value of the fixed point xFP , and thus
the points on δP touched by the robot in its orbit. After k
iterations, this mapping function becomes

b+θ,m
k
(x) =

k−1∑
i=0

(−c(θ))i(l −A(1− c(θ))) + (−c(θ))kx

and after taking the limit as k → ∞, and considering
|c(θ)| < 1 (the condition stated in Lemma 4), we find the
fixed point to be

b+θ,m
∞

(x) =
l −A(1− c(θ))

1 + c(θ)
(7)

So we expect every converging counterclockwise periodic
orbit which skips m − 1 edges, m ≥ 1, to collide with
the environment at distance l−A(1−c(θ))

1+c(θ) from the nearest
clockwise vertex.

The clockwise case can be found by reflecting the polygon
and the bounce over the y-axis, so the clockwise fixed
point is given by lc(−θ)+A(1−c(−θ))

1+c(−θ) , which is the second
expression in Equation 6.

Next, examining the stability condition, |c(θ)| < 1, with
c(θ) given by Equation (4), and considering that 0 < θ <



π/2 for b+θ , we can obtain the range π(n− 2m)/2n < θ <
π(n − 2(m − 1))/2n. Likewise, in the clockwise direction,
−π/2 < θ < 0 yields −π(n−2(m−1))/2n < θ < −π(n−
2m)/2n. Thus, we have a guarantee on the range of bounce
angles that will result in periodic orbits, starting from any
point on the polygon’s boundary.

Remark 3: When m = 1 (agent skips no edges while
bouncing around polygon), A reduces to l, and the expression
for b+θ,1(x) reduces to b+θ (x) as in Equation 3, so Equation 3
is a special case of Equation 7. Furthermore, the bounds on
θ also reduce to the bounds φ/2 < θ < π/2 and −φ/2 <
θ < −π/2, where φ = π(n− 2)/n.

Fig. 5: Simulated orbits for generalized edge bouncing in regular
polygons, with n = 9,m = 4, θ = −0.8 rad and n = 11,m =
2, θ = 0.4 rad. Predicted collision points are indicated by circles.
Both simulations are of the trajectory after 300 bounces from an
arbitrary start point.

A. Implications for Uncertainty in Implementations

All physical implementations of the required motion prim-
itives will be imperfect - for example, differential drive
robots can have asymmetries in the motors powering each
wheel, which can result in a curved path through the interior
of the environment, or an inaccurate rotation while aligning
to θ. These differences between the model and the implemen-
tation produce a constant offset in the bounce angle, θ + ε.
Theorem 3 gives a bound on the maximum allowable error
in this situation, and suggests that random errors within this
bound will still result in near-periodic orbits.

For each stable orbit in a given environment, we can use
the bounds on c(θ) to determine the range of angles that
will result in that orbit. Thus, when designing a “patrolling”
robot in an environment with regular polygonal geometry,
a robot designed to bounce at an angle θ in the center of
one of these ranges (φm/2 < θ < φm−1/2 or −φm−1/2 <
θ < −φm/2) will be maximally robust to actuator or sensor
errors. The resulting maximum allowable error, εmax, will
be ±|(φm−φm−1)/2|. Bounces with error within this range
will still result in stable orbits of the workspace, because
the bounce still acts as a contraction mapping on the edge
intervals.

However, these orbits will impact the boundary at different
locations than expected. If there is a constant error in the
bounce angle, so that the effective bounce angle is θ + ε,
with ε < εmax, the resulting difference in the location of the
collision point on each edge will be ∆x = b∞m,θ+ε − b∞m,θ.

VI. SIMULATIONS

The figures and experimental simulations for this paper
were computed using a Haskell program which heavily used
the Diagrams library [19]. The simulator can also be used
for specular bouncing simulations, and could be of use to
those studying classical billiards, or variants such as pinball
billiards. It is also capable of simulating random bounces,
or random noise on top of deterministic bouncing. Code is
open source and on GitHub 1.

The purpose of the simulations is to confirm experimen-
tally the theoretical results obtained in previous sections.
Figure 3 depicts simulated orbits for adjacent edge bounc-
ing after 300 bounces. Predicted collision points xFP are
indicated by circles. Figure 4 shows simulated orbits for two
pairs of n and m values in the case where the robot bounces
skipping m−1 edges. The trajectories after 300 bounces are
displayed.

Note that the simulated orbits were computed by iter-
atively bouncing the robot in the environment from an
arbitrary start point rather than just plotting the resulting orbit
from the predicted collision points. In all simulations, the
simulated collision points (tips of arrows) and the theorized
collision points xFP (circles) coincide.

Figure 6a shows three orbits simulated from different
start points but with the same bouncing angle θ. Regardless
of starting position, the same bouncing angle θ produces
trajectories which converge to the same limit cycle, as stated
in Remark 1.

As stated in Theorem 3 there exist ranges of θ that produce
stable orbits when the robot skips m− 1 edges with m ≥ 1.
For regular hexagons, π/3 is the lower bound on θ such that
the robot strikes every edge sequentially, and the upper bound
on θ such that the robot strikes every other edge. The orbits
shown in Figure 6b were generated setting θ = π/3± 0.05.
As predicted, one orbit bounces off every other edge, while
the other strikes every sequential edge.

(a) Three orbits simulated with
different start points - the three
circles - but same bouncing an-
gle θ. The limit cycle is the
same.

(b) Two simulated orbits with
the same start point but θ set to
π/3 + 0.05 (blue) and π/3 −
0.05 (red). One skips no edges
and the other skips one edge.

Fig. 6: Evidence from simulation that (a) limit cycles are indepen-
dent of start position, and that (b) our predicted “transition angle”
between striking every edge and every other edge is correct.

1https://github.com/alexandroid000/bounce

https://github.com/alexandroid000/bounce


(a) A stable orbit in a sheared
pentagon.

(b) A stable orbit in a noncon-
vex environment.

Fig. 7: Stable orbits also exist in non-regular polygons.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we considered robots that drive in straight
lines and bounce off boundaries at controllable angles. We
analysed the location and stability of periodic orbits in
regular polygons, which might be used to patrol the space
on a repeatable, periodic path.

We first presented the case of stable orbits that bounce
off each adjacent edge. We proved the existence of periodic
orbits in n-sided regular polygons, and showed the range
of bounce angles that will produce such orbits along with
an analysis of their stability and robustness to modeling
errors. We generalized our results to the case where the robot
skips m− 1 edges. In both cases we present a closed form
solution for the locations where the robot collides with the
environment boundary while patrolling.

The existence of periodic orbits along with the presented
closed form solutions for xFP show that it is possible to
design a robust patrolling path for a given environment, using
limited motion and sensing capabilities. These orbits have
the useful properties of being robust to modelling errors and
being independent of the start position.

One interesting line of research could be to explore how
the convergence of these orbits could be used to narrow down
the set of possible positions of the robot, in navigation and
localization tasks.

The most pressing open question is how to extend the
current analysis to non-regular polygons. In non-regular
polygons, it is not clear how to solve for orbits as the fixed
point of one mapping function. Yet, limit cycles still exist
in other polygons, such as regular polygons under linear
transformations, as seen in Figure 7a. It is worth mentioning
that our current analysis can be used to design stable orbits
in polygons with enough local similarity to regular polygons,
such as in Figure 7b.

Another direction for future research is to consider a time-
varying error ε(t) over θ. This would allow us to model
external disturbances to the motion and sensing of the robot.
In simulations we have noticed that if ε(t) does not cause θ±
ε(t) to exceed the bounds on θ that cause periodic orbits, the
robot’s trajectory stays within a certain range of the predicted
collision points. A theoretical analysis of these observations
would be useful.
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