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We present our current progress on the design and
analysis of path planning algorithms based on Rapidly-
exploring Random Trees (RRTs). The basis for our
methods is the incremental construction of search trees
that attempt to rapidly and uniformly explore the state
space, offering benefits that are similar to those ob-
tained by other successful randomized planning meth-
ods; however, RRTs are particularly suited for problems
that involve differential constraints. Basic properties of
RRTs are established, including convergence to a uni-
form coverage of nonconvex spaces. Several planners
based on RRTs are discussed and compared. FExperi-
mental results are presented for planning problems that
involve holonomic constraints for rigid and articulated
bodies, manipulation, nonholonomic constraints, kin-
odynamic constraints, kinematic closure constraints,
and up to twelve degrees of freedom. Key open issues
and areas of future research are also discussed.

1 Introduction

Given the vast, growing collection of applications that
involve the design of motion strategies, the successes of
motion planning algorithms have just begun to scratch
its surface. The potential for automating motions is
now greater than ever as similar problems continue
to emerge in seemingly disparate areas. The tradi-
tional needs of roboticists continue to expand in efforts
to automate mobile robots, manipulators, humanoids,
spacecraft, etc. Researchers in computer graphics and
virtual reality have increasing interests in automating
the animations of life-like characters or other moving
bodies. In the growing field of computational biology,
many geometric problems have arisen, such as study-
ing the configuration spaces of flexible molecules for

protein-ligand docking and drug design. Virtual proto-
typing is a rapidly-expanding area that allows the eval-
uation of proposed mechanical designs in simulation, in
efforts to avoid the costs of constructing physical proto-
types. Motion planning techniques have already been
applied to assembly problems in this area [11]. As the
power and generality of planning techniques increase,
we expect that more complicated problems that in-
clude differential constraints can be solved, such as the
evaluation of vehicle performance and safety through
dynamical simulation conducted by a virtual “stunt
driver.”

As we approach applications of increasing difficulty,
it becomes clear that planning algorithms need to han-
dle problems that involve a wide variety of models, high
degrees of freedom, complicated geometric constraints,
and finally, differential constraints. Although existing
algorithms address some of these concerns, there is rel-
atively little work that addresses all of them simulta-
neously. This provides the basis for the work presented
in this paper, which presents randomized, algorithmic
techniques for path planning that are particular suited
for problems that involve differential constraints.

We present an overview of our recent progress and
plans for future research based on our development of
Rapidly-exploring Random Trees (RRTs) [32]. The
results and discussion presented here summarize and
extend the work presented in [33, 23]. RRTs build
on ideas from optimal control theory [7], nonholo-
nomic planning (see [29] for an overview), and ran-
domized path planning [2, 24, 39]. The basic idea is
to use control-theoretic representations, and incremen-
tally grow a search tree from an initial state by ap-
plying control inputs over short time intervals to reach
new states. Each vertex in the tree represents a state,



and each directed edge represents an input that was
applied to reach the new state from a previous state.
When a vertex reaches a desired goal region, an open-
loop trajectory from the initial state is represented by
the tree.

For problems that involve low degrees of freedom,
classical dynamic programming ideas can be employed
to yield numerical optimal control solutions for a broad
class of problems [7, 25, 31]. Since control theorists
have traditionally preferred feedback solutions, the rep-
resentation takes the form of a mesh over which cost-
to-go values are defined using interpolation, enabling
inputs to be selected over any portion of the state
space. If open-loop solutions are the only require-
ment, then each cell in the mesh could be replaced
by a vertex that represents a single state within the
cell. In this case, control-theoretic numerical dynamic
programming technique can oftne be reduced to the
construction of a tree grown from an initial state. This
idea has been proposed in path planning literature for
nonholonomic [6] planning and kinodynamic planning
in [15]. Because these methods are based on dynamic
programming and systematic exploration of a grid or
mesh, their application is limited to problems with low
degrees of freedom.

We would like to borrow some of the ideas from
numerical optimal control techniques, while weaken-
ing the requirements enough to obtain methods that
can apply to problems with high degrees of freedom.
As is common in most of path planning research, we
forego trying to obtain optimal solutions, and attempt
to find solutions that are “good enough,” as long as
they satisfy all of the constraints. This avoids the use
of dynamic programming and systematic exploration
of the space; however, a method is needed to guide the
search in place of dynamic programming.

Inspired by the success of randomized path planning
techniques and Monte-Carlo techniques in general for
addressing high-dimensional problems, it is natural to
consider adapting existing planning techniques to our
problems of interest. The primary difficulty with exist-
ing techniques is that, although powerful for standard
path planning, they do not naturally extend to general

problems that involve differential constraints. The ran-
domized potential field method [5], while efficient for
holonomic planning, depends heavily on the choice of a
good heuristic potential function, which could become
a daunting task when confronted with obstacles, and
differential constraints. In the probabilistic roadmap
approach [2, 24], a graph is constructed in the configu-
ration space by generating random configurations and
attempting to connect pairs of nearby configurations
with a local planner that will connect pairs of configu-
rations. For planning of holonomic systems or steerable
nonholonomic systems (see [29] and references therein),
the local planning step might be efficient; however, in
general the connection problem can be as difficult as
designing a nonlinear controller, particularly for com-
plicated nonholonomic and dynamical systems. The
probabilistic roadmap technique might require the con-
nections of thousands of configurations or states to find
a solution, and if each connection is akin to a nonlinear
control problem, it seems impractical many problems
with differential constraints. This has motivated our
development of RRTs.

2 Problem Formulation

The class of problems considered in this paper can be
formulated in terms of the following six components:

1. State Space: A topological space, X
2. Boundary Values: 2, € X and Xgoa C X

3. Collision Detector: A function, D : X —
{true, false}, that determines whether global con-
straints are satisfied from state z. This could be
a binary-valued or real-valued function.

4. Inputs: A set, U, which specifies the complete set
of controls or actions that can affect the state.

5. Incremental Simulator: Given the current
state, z(t), and inputs applied over a time interval,
{u(t)|t < t' <t+ At}, compute z(t + At).

6. Metric: A real-valued function, p : X x X —
[0,00), which specifies the distance between pairs
of points in X.



Path planning will generally be viewed as a search in
a state space, X, for a continuous path from an initial
state, Zinit to a goal region Xg00 C X or goal state
Zgoal- It is assumed that a complicated set of global
constraints is imposed on X, and any solution path
must keep the state within this set. A collision detec-
tor reports whether a given state, x, satisfies the global
constraints. We generally use the notation X ¢, to re-
fer to the set of all states that satisfy the constraints.
Local, differential constraints are effected through the
definition of a set of inputs (or controls) and an in-
cremental simulator. Taken together, these two com-
ponents specify possible changes in state. The incre-
mental simulator can be considered as the response of a
discrete-time system (or a continuous-time system that
is approximated in discrete time). Finally, a metric is
defined to indicate the closeness of pairs of points in
the state space. This metric will be used in Section 3,
when the RRT is introduced.

Basic (Holonomic) Path Planning Path planning
can generally be viewed as a search in a configura-
tion space, C, in which each ¢ € C specifies the po-
sition and orientation of one or more geometrically-
complicated bodies in a 2D or 3D world [26, 36]. The
path planning task is to compute a continuous path
from an initial configuration, g;ni;, to a goal configura-
tion, dgoal - Thus, X = C, Linit = Qinits Lgoal = Ygoal;
and X¢ree = Cpree, which denotes the set of config-
urations for which these bodies do not collide with
any static obstacles in the world. The obstacles are
modeled completely in the world, but an explicit rep-
resentation of Xy, is not available. However, using
a collision detection algorithm, a given configuration
can be tested. (To be more precise, we usually em-
ploy a distance-computation algorithm that indicates
how close the geometric bodies are to violating the con-
straints in the world. This can be used to ensure that
intermediate configurations are collision free when dis-
crete jumps are made by the incremental simulator.)
The set, U, of inputs is the set of all velocities 4 such
that ||Z|| < ¢ for some positive constant ¢. The incre-
mental simulator produces a new state by integration
to obtain, Ty, = T + uAt, for any given input u € U.

Path Planning Nonholonomic
planning [27] addresses problems that involve nonin-
tegrable constraints on the state velocities, in addition
to the components that appear in the basic path plan-
ning problems. These constraints often arise in many
contexts such as wheeled-robot systems [9, 28, 50], and
manipulation by pushing [1, 37]. A recent survey ap-
pears in [29]. The constraints often appear in the im-
plicit form h;(g,q) = 0 for some i from 1 to k < N (N
is the dimension of C). By the implicit function theo-
rem, the constraints can also be expressed in control-
theoretic form, ¢ = f(q,u), in which v is an input
chosen from a set of inputs U. Using our general no-
tion, z replaces ¢ to obtain & = f(z,u). This form
is often referred to as the state transition equation or
equation of motion. Using the state transition equa-
tion, an incremental simulator can be constructed by
numerical integration (using, for example Runge-Kutta
techniques).

Nonholonomic

Kinodynamic! Path Planning For kinoydynamic
planning, constraints on both velocity and acceler-
ation exist, yielding implicit equations of the form
hi(d,4,q) = 0 [10, 12, 15, 14, 13, 16, 17, 19, 42, 45].
A state, z € X, is defined as z = (g,q), for ¢ € C.
Using the state space representation, this can be sim-
ply written as a set of m implicit equations of the form
Gi(z,z) = 0, for i = 1,...,m and m < 2N. Once
again, the implicit function theorem is applied to ob-
tain a state transition equation, and an incremental
simulator. The collision detection component may also
include global constraints on the velocity, since ¢ is part
of the state vector. For example, the collision detec-
tor might test whether a mobile robot is satisfying a
maximum speed constraint.

Other Problems A variety of other problems fit
within our problem formulation, and can be ap-
proached using the techniques in this paper. In gen-
eral, any open-loop trajectory design problem can for-
mulated because the models are mostly borrowed from
control theory. For example, the planner might be used

In nonlinear control literature, kinodynamic planning is
encompassed by the definition of nonholonomic planning.



to compute a strategy that controls an electrical circuit,
or an economic system. In some applications, a state
transition equation might not be known, but this does
not present a problem. For example, a physical simu-
lator might be developed by engineers for simulating a
proposed racing car design. The software might sim-
ply accept control inputs at some sampling rate, and
produce new states. This could serve directly as the
incremental simulator for our approach. Other minor
variations of the formulation can be considered. Time-
varying problems can be formulated by augmenting the
state space with a time. State-dependent inputs sets
can also be considered. For example, a robot engaged
in a grasping task might have different inputs avail-
able than while navigating. Depending on the state,
different decisions would have to be made. Problems
that involve kinematic closure constraints can also be
addressed; an example is shown in Figure 17.

3 Rapidly-Exploring Random Trees

The Rapidly-exploring Random Tree (RRT) was intro-
duced in [32] as an efficient data structure and sampling
scheme to quickly search high-dimensional spaces that
have both algebraic constraints (arising from obstacles)
and differential constraints (arising from nonholonomy
and dynamics). The key idea is to bias the exploration
toward unexplored portions of the space by sampling
points in the state space, and incrementally “pulling”
the search tree toward them. Recently, at least two
other randomized path planning techniques have been
proposed that generate a search tree: the Ariadne’s
clew algorithm [39] and the planners in [20, 53]. Intu-
itively, these planners attempt to “push” the search
tree away from previously-constructed vertices, con-
trasting the RRT, which uses the surrounding space
to “pull” the search tree, ultimately leading to uni-
form coverage of the state space. Furthermore, to the
best of our knowledge, a randomized search tree ap-
proach has not been proposed previously for nonholo-
nomic or kinodynamic planning. Perhaps the most re-
lated approaches are [50, 48], in which the probabilistic
roadmap method is combined with nonholonomic steer-
ing techniques to plan paths for wheeled mobile robot
systems.

BUILD_RRT (zipn)
1 Tl.init(@ing);
2 fork=1to K do
3 Zrand ¢ RANDOM_STATE();
4 EXTEND(T, Zrand);
5 Return 7

EXTEND(T,x)
1  Zpear ¢ NEAREST NEIGHBOR(z,T);
2 if NEW_STATE(Z, Znear, Tnew, Unew) then
3 T .add_vertex(Zpeqy);
T-add—edge (xneara Tnew, unew)§
if 0 = x then
Return Reached;

Return Advanced;

4
5
6
7 else
8
9 Return Trapped;

Figure 1: The basic RRT construction algorithm.
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Figure 2: The EXTEND operation.

The basic RRT construction algorithm is given in
Figure 1. A simple iteration in performed in which
each step attempts to extend the RRT by adding a new
vertex that is biased by a randomly-selected state. The
EXTEND function, illustrated in Figure 2, selects the
nearest vertex already in the RRT to the given sample
state. The “nearest” vertex is chosen according to the
metric, p. The function NEW_STATE makes a motion
toward z by applying an input v € U for some time
increment At¢. This input can be chosen at random, or
selected by trying all possible inputs and choosing the



Figure 3: An RRT is biased by large Voronoi regions to

rapidly explore, before uniformly covering the space.

one that yields a new state as close as possible to the
sample, z (if U is infinite, then an approximation or
analytical technique can be used). In the case of holo-
nomic planning, the optimal value for u can be chosen
easily by a simple vector calculation. NEW_STATE
also implicitly uses the collision detection function to
determine whether the new state (and all intermediate
states) satisfy the global constraints. For many prob-
lems, this can be performed quickly (“almost constant
time”) using incremental distance computation algo-
rithms [18, 34, 40] by storing the relevant invariants
with each of the RRT vertices. If NEW_STATE is suc-
cessful, the new state and input are represented in Z,eq
and wpeq, respectively. Three situations can occur:
Reached, in which the new vertex reaches the sample x
(for the nonholonomic planning case, we might instead
have a threshold, ||Znew — z|| < € for a small € > 0);
Advanced, in which a new vertex %, 7  is added to
the RRT; Trapped, in which NEW_STATE fails to pro-
duce a state that lies in Xs,... The top row of Figure
3 shows an RRT for a holonomic planning problem,
constructed in a 2D square space. The lower figure
shows the Voronoi diagram of the RRT vertices; note
that the probability that a vertex is selected for exten-
sion is proportional to the area of its Voronoi region.
This biases the RRT to rapidly explore. In Section 4 it
is shown that RRTs also arrive at a uniform coverage
of the space, which is also a desirable property of the
probabilistic roadmap planner.

4 Analysis of RRTs

This section provides some analysis of RRTs, and in-
dicates several open problems for future investigation.
A key result shown so far is that the distribution of
the RRT vertices converges to the sampling distribu-
tion, which is usually uniform. This currently has been
shown for holonomic planning in a nonconvex state
space. We have also verified the results through sim-
ulations and chi-square tests. We have generally had
many experimental successes, indicated in Section 6,
that far exceed our current analysis capabilities. Con-
siderable effort remains to close the gap between our
experimental success, and the analysis that supports
the success.

The limiting distribution of vertices Let Dy(x)
denote a random variable whose value is the distance
of z to the closest vertex in G, in which k is the number
of vertices in an RRT. Let d; denote the value of Dy.
Let € denote the incremental distance traveled in the
EXTEND procedure (the RRT step size).

Consider the case of a holonomic planning problem,
in which £ = u (the incremental simulator permits mo-
tion in any direction). The first lemma establishes that
the RRT will (converging in probability) come arbitrar-
ily close to any point in a convex space.

Lemma 1 Suppose Xy, is a convex, bounded, open,

n-dimensional subset of an n-dimensional state space.
For any * € Xjree and positive constant € > 0,
lim Pldy(z) < €] = 1.

k—o0

The next lemma extends the result from convex
spaces to nonconvex spaces.

Lemma 2 Suppose Xjfe. is a nonconvez, bounded,
open, n-dimensional connected component of an n-
dimensional state space. For any x € X¢ree and posi-
tive real number € > 0, then nll)rréo Pld,(z) <€ =1.

For holonomic path planning, this immediately im-
plies the following:

Theorem 3 Suppose Zinit and Ty le in the
same connected component of a nonconvex, bounded,



open, n-dimensional connected component of an n-
dimensional state space. The probability that an RRT
constructed from Tin; will find a path to xgoq ap-
proaches one as the number of RRT vertices approaches
infinity.

This establishes probabilistic completeness, as defined
in [26], of the basic RRT.

The next step is to characterize the limiting distribu-
tion of the RRT vertices. Let X denote a vector-valued
random variable that represents the sampling process
used to construct an RRT. This reflects the distribution
of samples that are returned by the RANDOM_STATE
function in the EXTEND algorithm. Usually, X is
characterized by a uniform probability density func-
tion over X f,c.; however, we will allow X to be char-
acterized by any smooth probability density function.
Let X} denote a vector-valued random variable that
represents the distribution of the RRT vertices.

Theorem 4 Xy, converges to X in probability.

We now consider the more general case. Suppose
that motions obtained from the incremental simulator
are locally constrained. For example, they might arise
by integrating & = f(x,u) over some time At. Suppose
that the number of inputs to the incremental simula-
tor is finite, At is constant, no two RRT vertices lie
within a specified € > 0 of each other according to p,
and that EXTEND chooses the input at random. It
may be possible eventually to remove some of these re-
strictions; however, we have not yet pursued this route.
Suppose Tinit and 404 lie in the same connected com-
ponent of a nonconvex, bounded, open, n-dimensional
connected component of an n-dimensional state space.
In addition, there exists a sequence of inputs, u1, us,
..., U, that when applied to z;,;; yield a sequence of
states, Tinit = L0, L1, T2, -+ Tk+1 = Tgoal- All of
these states lie in the same open connected component
of Xfree-

The following establishes the probabilistic complete-

ness of the nonholonomic planner.

Theorem 5 The probability that the RRT initialized
at Tinie will contain 4001 as a vertexr approaches one
as the number of vertices approaches infinity.

Other Properties Several other properties of RRTs
are briefly discussed as part of our ongoing research.
The analysis obtained thus far is helpful in establishing
several useful properties of RRTs; however, consider-
able open questions remain. One of the key difficulties
at present is characterizing the rate of convergence of
RRT-based planners. In numerous simulation experi-
ments we have observed fast convergence toward solu-
tions, but it has been challenging to obtain theoretical
bounds on performance that match our observations.

Consider the holonomic planning case. We have al-
ready established that the RRT vertices converge to the
sampling distribution, but what about the “rapidly-
exploring” property? It was argued using Voronoi di-
agrams in Section 3, that RRT growth is strongly bi-
ased toward unexplored portions of the state space. It
would be valuable to have precise bounds on this rapid
exploration. Suppose that X is a disc with infinite ra-
dius (this can be defined more precisely using limits)
in the plane, and that x;,;; is at the center. We ex-
pect the RRT in this case to rapidly advance in a small
number of directions, as opposed to trying to fill the
space near Z;n;;- Lhe “branches” of the RRT can be
roughly characterized by counting the number of ver-
tices in the convex hull of the RRT. We have observed
experimentally that after the first few iterations, there
are only a few vertices in the hull, regardless of the
number of RRT vertices. Figure 4.a shows a typical
result, in which the RRT has three major branches,
each roughly 120 degrees apart. We speculate that the
number of major branches is linear in the dimension of
the space, and that the expected number of vertices in
the convex hull is bounded by no more than 7 for the
planar case.

Another observation that we have made through sim-
ulation experiments is that the paths in an RRT, while
jagged, are not too far from the shortest path (recall
Figure 3). This is not true for paths generated by a
simpler technique, such as Brownian motion. For paths
in the plane, we have performed repeated experiments
that compare the distance of randomly-chosen RRT
vertices to the root by following the RRT path to the
Euclidean distance to the root. Experiments were per-
formed in a square region in the plane. The expected



Figure 4: a) The convez hull of an RRT in an “infinitely”
large disc; b) a 2D RRT that was constructed using biased
sampling.

ratio of RRT-path distance to Euclidean distance is
consistently between 1.3 and 1.7. It would be useful to
establish a theoretical ratio bound on the path length
in comparison to the optimal length.

5 Designing Path Planners

Sections 3 and 4 introduced the basic RRT and ana-
lyzed its exploration properties. Now the focus is on
developing path planners using RRTs. We generally
consider the RRT as a building block that can be used
to construct an efficient planner, as opposed to a path
planning algorithm by itself. For example, one might
use an RRT to escape local minima in a randomized po-
tential field path planner. In [51], an RRT was used as
the local planner for the probabilistic roadmap planner.
We present several alternative RRT-based planners in
this section. The recommended choice depends on sev-
eral factors, such as whether differential constraints ex-
ist, the type of collision detection algorithm, or the
efficiency of nearest neighbor computations.

Single-RRT Planners In principle, the basic RRT
can be used in isolation as a path planner because
its vertices will eventually cover a connected compo-
nent of Xy, coming arbitrarily close to any speci-
fied g0qi- The problem is that without any bias to-
ward the goal, convergence might be slow. An im-
proved planner, called RRT-GoalBias, can be obtained
by replacing RANDOM_STATE in Figure 2 with a

function that tosses a biased coin to determine what
should be returned. If the coin toss yields “heads”,
then z404; is returned; otherwise, a random state is
returned. Even with a small probability of returning
heads (such as 0.05), RRT-GoalBias usually converges
to the goal much faster than the basic RRT. If too much
bias is introduced; however, the planner begins to be-
have like a randomized potential field planner that is
trapped in a local minimum. An improvement called
RRT-GoalZoom replaces RANDOM_STATE with a de-
cision, based on a biased coin toss, that chooses a ran-
dom sample from either a region around the goal or
the whole state space. The size of the region around
the goal is controlled by the closest RRT vertex to
the goal at any iteration. The effect is that the fo-
cus of samples gradually increases around the goal as
the RRT draws nearer. This planner has performed
quite well in practice; however, it is still possible that
performance is degraded due to local minima. In gen-
eral, it seems best to replace RANDOM_STATE with
a sampling scheme that draws states from a nonuni-
form probability density function that has a “gradual”
bias toward the goal. Figure 4.b shows an example of
an RRT that was constructed by sampling states from
a probability density that assigns equal probability to
concentric circular rings. There are still many interest-
ing research issues regarding the problem of sampling.
It might be possible to use some of the sampling meth-
ods that were proposed to improve the performance of
probabilistic roadmaps [2, 8].

One more issue to consider is the size of the step that
is used for RRT construction. This could be chosen dy-
namically during execution on the basis of a distance
computation function that is used for collision detec-
tion. If the bodies are far from colliding, then larger
steps can be taken. Aside from following this idea to
obtain an incremental step, how far should the new
state, Tpew appear from Zpeq-? Should we try to con-
nect Tpear t0 Trang? Instead of attempting to extend
an RRT by an incremental step, EXTEND can be iter-
ated until the random state or an obstacle is reached,
as shown in the CONNECT algorithm description in
Figure 5. CONNECT can replace EXTEND, yield-
ing an RRT that grows very quickly, if permitted by



CONNECT(T,z)

1 repeat

2 S « EXTEND(T, z);
3 until not (S = Advanced)
4 Return S;

Figure 5: The CONNECT function.

collision detection constraints and the differential con-
straints. One of the key advantages of the CONNECT
function is that a long path can be constructed with
only a single call to the NEAREST NEIGHBOR algo-
rithm. This advantage motivates the choice of a greed-
ier algorithm; however, if an efficient nearest-neighbor
algorithm [3, 21] is used, as opposed to the obvious
linear-time method, then it might make sense to be
less greedy. After performing dozens of experiments
on a variety of problems, we have found CONNECT
to yield the best performance for holonomic planning
problems, and EXTEND seems to be the best for non-
holonomic problems. One reason for this difference is
that CONNECT places more faith in the metric, and
for nonholonomic problems it becomes more challeng-
ing to design good metrics.

Bidirectional Planners Inspired by classical bidi-
rectional search techniques [43], it seems reasonable to
expect that improved performance can be obtained by
growing two RRTs, one from z;,;; and the other from
Zgoal; & solution is found if the two RRTs meet. For a
simple grid search, it is straightforward to implement a
bidirectional search; however, RRT construction must
be biased to ensure that the trees meet well before cov-
ering the entire space, and to allow efficient detection
of meeting.

Figure 5 shows the RRT_BIDIRECTIONAL algo-
rithm, which may be compared to the BUILD_RRT al-
gorithm of Figure 1. RRT_BIDIRECTIONAL divides
the computation time between two processes: 1) ex-
ploring the state space; 2) trying to grow the trees into
each other. Two trees, 7T, and 7T, are maintained at
all times until they become connected and a solution
is found. In each iteration, one tree is extended, and
an attempt is made to connect the nearest vertex of

RRT_BIDIRECTIONAL (%init, Zgoal)

1 Toinit(@init); Tp-init(zg0a1);

2 fork=1to K do

3 rand < RANDOM_STATE();
4 if not (EXTEND(7,, Zrand) = Trapped) then
5 if (EXTEND(74, Znew) =Reached) then
6 Return PATH(7,, Tp);
7 SWAP (7o, T);
8

Return Failure

Figure 6: A bidirectional RRT-based planner.

the other tree to the new vertex. Then, the roles are
reversed by swapping the two trees. Growth of two
RRTs was also proposed in [33] for kinodynamic plan-
ning; however, in each iteration both trees were incre-
mentally extended toward a random state. The current
algorithm attempts to grow the trees into each other
half of the time, which has been found to yield much
better performance.

Several variations of the above planner can also be
considered. Either occurrence of EXTEND may be
replaced by CONNECT in RRT_BIDIRECTIONAL.
Each replacement makes the operation more aggres-
sive. If the EXTEND in Line 4 is replaced with CON-
NECT, then the planner aggressively explores the state
space, with the same tradeoffs that existed for the
single-RRT planner. If the EXTEND in Line 5 is re-
placed with CONNECT, the planner aggressively at-
tempts to connect the two trees in each iteration. This
particular variant was very successful at solving holo-
nomic planning problems. For convenience, we refer to
this variant as RRT-ExtCon, and the original bidirec-
tional algorithm as RRT-ExtExt. Among the variants
discussed thus far, we have found RRT-ExtCon to be
most successful for holonomic planning [23], and RRT-
ExtExt to be best for nonholonomic problems. The
most aggressive planner can be constructed by replac-
ing EXTEND with CONNECT in both Lines 4 and 5,
to yield RRT-ConCon. We are currently evaluating the
performance of this variant.

Through extensive experimentation over a wide va-
riety of examples, we have concluded that, when appli-



cable, the bidirectional approach is much more efficient
than a single RRT approach. One shortcoming of us-
ing the bidirectional approach for nonholonomic and
kinodynamic planning problems is the need to make a
connection between a pair of vertices, one from each
RRT. For a planning problem that involves reaching
a goal region from an initial state, no connections are
necessary using a single-RRT approach. The gaps be-
tween the two trajectories can be closed in practice by
applying steering methods [29], if possible, or classical
shooting methods, which are often used for numerical
boundary value problems.

Other Approaches If a dual-tree approach offers
advantages over a single tree, then it is natural to ask
whether growing three or more RRTs might be even
better. These additional RRTs could be started at ran-
dom states. Of course, the connection problem will be-
come more difficult for nonholonomic problems. Also,
as more trees are considered, a complicated decision
problem arises. The computation time must be di-
vided between attempting to explore the space and at-
tempting to connect RRT's to each other. It is also not
clear which connections should be attempted. Many
research issues remain in the development of this and
other RRT-based planners.

It is interesting to consider the limiting case in which
a new RRT is started for every random sample, yqnq-
Once the single-vertex RRT is generated, the CON-
NECT function from Figure 5 can be applied to every
other RRT. To improve performance, one might only
consider connections to vertices that are within a fixed
distance of 45,4, according to the metric. If a con-
nection succeeds, then the two RRTs are merged into
a single graph. The resulting algorithm simulates the
behavior of the probabilistic roadmap approach to path
planning [24]. Thus, the probabilistic roadmap can be
considered as an extreme version of an RRT-based al-
gorithm in which a maximum number of separate RRTs
are constructed and merged.

6 Implementations and Experiments

In this section, results for four different types of prob-
lems are summarized: 1) holonomic planning, 2) non-

holonomic planning, 3) kinodynamic planning, and
4) planning for systems with closed kinematic chains.
Presently, we have constructed two planning systems
based on RRTs. One is written in Gnu C++ and
LEDA, and experiments were conducted on a 500Mhz
Pentium III PC running Linux. This implementa-
tion is very general, allowing many planning variants
and models to be considered; however, it is limited to
planar obstacles and robots, and performs naive col-
lision detection. The software can be obtained from
http://janowiec.cs.iastate.edu/~lavalle/rrt/. The sec-
ond implementation is written in SGI C++ and SGI’s
Openlnventor library, and experiments were conducted
on a 200MHz SGI Indigo2 with 128 MB. This imple-
mentation considers 3D models, and was particularly
designed inclusion in a software platform for automat-
ing the motions of digital actors [22]. Currently, we
are constructing a third implementation, which is ex-
pected to be general-purpose, support 3D models, and
be based on freely-available collision detection and ef-
ficient nearest neighbor libraries.

Holonomic planning experiments Through nu-
merous experiments, we have found RRT-based plan-
ners to be very efficient for holonomic planning. Note
that our planners attempt to find a solution with-
out performing precomputations over the entire state
space, and are therefore suited for single-query path
planning problems. The probabilistic roadmap ap-
proach performs significant precomputation, which is
motivated by its design for multiple-query path plan-
ning (i.e., the same environment is used to solve nu-
merous problems). Thus, straightforward performance
comparisons between the probabilistic roadmap ap-
proach and RRT-based approaches is not possible, as
they are designed with different intentions. It is easy
to construct single-query examples on which an RRT-
based planner will be superior by finding a solution well
before covering the entire state space, and it is easy to
construct mutiple-query problems in which the proba-
bilistic roadmap approach will be superior by relying
repeatedly on its precomputed roadmap.

Most of the experiments in this section were con-
ducted on the 200MHz SGI Indigo2. The CONNECT



function is most effective when one can expect rela-
tively open spaces for the majority of the planning
queries. We first performed hundreds of experiments
on over a dozen examples for planning the motions of
rigid objects in 2D, resulting in 2D and 3D configu-
ration spaces. Path smoothing was performed on the
final paths to reduce jaggedness. Figure 7 depicts a
computed solution for a 3D model of a grand piano
moving from one room to another amidst walls and
low obstacles. Several tricky rotations are required of
the piano in order to solve this query. Manipulation
planning experiments have been conducted for a model
of a 6-DOF Puma industrial manipulator arm. Com-
bined with an inverse kinematics algorithm, the RRT-
ExtCon planner facilitates a task-level control mecha-
nism for planning manipulation motions by computing
three motions for a high-level request to move an ob-
ject: 1) move the arm to grasp an object; 2) move the
object to a target location; 3) release the object and
return the arm to its rest position. Several snapshots
of a path to move a book from the middle shelf to the
bottom shelf of a desk is shown in Figure 8.

Figure 7: Moving a Piano

Figure 8: A 6-DOF Puma robot moving a book

Figure 9 shows a human character playing chess.
Each of the motions necessary to reach, grasp, and
reposition a game piece on the virtual chess board were
generated using the RRT-ExtCon planner in an aver-
age of 2 seconds on the 200 MHz SGI Inidigo2. The
human arm is modeled as a 7-DOF kinematic chain,
and the entire scene contains over 8,000 triangle primi-
tives. The 3D collision checking software used for these
experiments was the RAPID library based on OBB-
Trees developed by the University of North Carolina
[35]. The speed of the planner allows for the user to
interact with the character in real-time, and even en-
gage in an interactive game of “virtual chess”. The
planner can also handle more complicated queries with
narrow passages in X ¢, such as the assembly main-
tenance scene depicted in Figure 10. Here, the task
is to grasp the tool from within the box and place it
inside the tractor wheel housing. Solving this particu-
lar set of queries takes an average of 80 seconds on the
SGI Indigo2, and about 15 seconds on a high-end SGI
(R10000 processor). The scene contains over 13,000
triangles.

The final holonomic planning example, shown in Fig-
ure 11, was solved using the RRT-ExtExt planner.



Figure 10: A path planning problem that involves finding

and using a hammer in a virtual world.

This problem was presented in [8] as a test challenge
for randomized path planners due to the narrow pas-
sageways that exist in the configuration space when
the “U”-shaped object passes through the center of the
world. In the example shown, the RRT does not ex-

Figure 11: A narrow-corridor example, designed for eval-

uating randomized path planners.

plore to much of the surrounding space (some of this
might be due to the lucky placement of the corridor
in the center of the world). One average, about 1500
nodes are generated, and the problem is solved in two
seconds on a PC using naive collision checking.

Nonholonomic planning experiments Several
nonholonomic planning examples are shown in Fig-
ures 12 and 13. These examples were computed using
the RRTExtExt planner, and the average computation
times were less than five seconds on the PC using naive
collision detection. The four examples in Figure 12 in-
volve car-like robots that moves at constant speed un-
der different nonholonomic models. A 2D projection of
the RRTs is shown for each case, along with the com-
puted path from an initial state to a goal state. The top
two pictures show paths computed for a 3-DOF model,
using the standard kinematics for a car-like robot [26].

In the first example, the car is allowed to move in
both forward and reverse. In the second example, the
car can move forward only. In the first example in
the second row in Figure 12, the car is only allowed to
turn left in varying degrees! The planner is still able to
overcome this difficult constraint and bring the robot
to its goal. The final example uses a 4-DOF model,
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Figure 12: Several car-like robots.

which results in continuous curvature paths [47]. The
variable x4 represents the orientation of the wheels,
and us represents a change in the steering angle.

The final nonholonomic planning problem involves
the 4-DOF car pulling three trailers, resulting in a 7-
DOF system. The kinematics are given in [41]. The
goal is to pull the car with trailers out of one stall,
and back it into another. The RRTs shown correspond
to one of the best executions; in other iterations the
exploration was much slower due to metric problems.

Kinodynamic planning experiments Several kin-
odynamic planning experiments have been performed
for both non-rotating and rotating rigid objects in 2D
and 3D worlds with velocity and acceleration bounds
obeying Ly norms. For the 2D case, controllability is-
sues were studied recently in [38]. The dynamic mod-
els were derived from Newtonian mechanics of rigid
bodies in non-gravity environments, except for the last
example, which involves a “lunar lander” in an en-
vironment with gravity. All experiments utilized a
simple metric on X based on a weighted Euclidean
distance for position coordinates and their deriva-
tives, along with a weighted metric on unit quater-
nions for rotational coordinates and their derivatives.

b
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Figure 13: A nonholonomic planning problem that in-
volves a car pulling three trailers. There are seven degrees

of freedom.

All experiments were performed using variants of the
RRT _BIDIRECTIONAL planner. Other kinodynamic
planning experiments are presented in [33].

First, we consider the case of a rigid object with two
unilateral thrusters each producing a torque of opposite
sign, such as the one described in [38]. Each thruster
provides a line of force fixed in the body frame that
restricts its motion to a plane. This model is similar to
that of a hovercraft, navigating with drift. The state
space of this system has 6 degrees of freedom, but only
3 controls: translate forward, rotate clockwise, and ro-
tate counter-clockwise are provided. Figure 14 shows
the result obtained after 13,600 nodes. The total com-
putation time for this example was 4.2 minutes.

We next consider the case of a fully-orientable satel-
lite model with limited translation. The satellite is
assumed to have momentum wheels that enable it to
orient itself along any axis, and a single pair of oppos-
ing thruster controls that allow it to translate along
the primary axis of the cylinder. This model has a
12-dimensional state space. The task of the satellite,
modeled as a rigid cylindrical object, is to perform a
collision-free docking maneuver into the cargo bay of
the space shuttle model amidst a cloud of obstacles.
Figure 15 shows the candidate solution found after



Figure 14: A computed trajectory for the planar body with
unilateral thrusters that allow it to rotate freely but translate

only in the forward direction.

Figure 15: The docking maneuver computed for the fully-
orientable satellite model. The satellite’s initial state is in
the lower left corner, and the goal state is in the interior of

the cargo bay of the shuttle.

23,800 states were explored. The total computation
time was 8.4 minutes.

The another kinodynamic planning example is
shown in Figure 16 for a “lunar lander” that navigates
in a 2D environment with gravity. There is one cen-

Figure 16: A spacecraft is required to navigate through

hazardous terrain and dock safely in spite of gravity.

£

Figure 17: Two manipulators transport a cross-shaped 0b-
ject while maintaining kinematic closure.

tral thruster on the bottom of the craft, and a smaller
thruster on each side to provide lateral movements.

Planning for closed kinematic chains Figure 17
shows a problem that involves a kinematic closure con-
straint that must be maintained in addition to per-
forming holonomic path planning. Many more exam-
ples and experiments are discussed in [52]. In the ini-
tial state, the closure constraint is satisfied. The incre-
mental simulator performs local motions that maintain

with closure constraint within a specified tolerance.

7 Discussion

We have presented a general framework for develop-
ing randomized path planning algorithms based on the
concept of Rapidly-exploring Random Trees (RRTS).
After extensive experimentation, we are satisfied with
the results obtained to date. There is, however, sig-



nificant room for improvement given the complexity of
problems that arise in many applications. To date, we
believe we have presented the first randomized path
planning techniques that are particularly designed for
handling differential constraints (without necessarily
requiring steering ability). RRTs have also led to very
efficient planners for single-query holonomic path plan-
ning.

Several issues and topics are mentioned below, which
are under current investigation.

Designing Metrics The primary drawback with the
RRT-based methods is the sensitivity of the perfor-
mance on the choice of the metric, p. All of the results
presented in Section 6 were obtained by assigning a
simple, weighted Euclidean metric for each model (the
same metric was used for different collections of obsta-
cles). Nevertheless, we observed that the computation
time varies dramatically for some problems as the met-
ric is varied. This behavior warrants careful investiga-
tion into the effects of metrics. This problem might
seem similar to the choice of a potential function for
the randomized potential field planer; however, since
RRTs eventually perform uniform exploration, the per-
formance degradation is generally not as severe as a
local minimum problem. Metrics that would fail mis-
erably as a potential function could still yield good
performance in an RRT-based planner.

In general, we can characterize the ideal choice of
a metric (technically this should be called a pseudo-
metric due to the violation of some metric properties).
Consider a cost or loss functional, L, defined as

T
L:/ L(z(t), u(t))dt + 1;(z(T)).
0

As examples, this could correspond to the distance
traveled, the energy consumed, or the time elapsed dur-
ing the execution of a trajectory. The optimal cost to
go from z to 2’ can be expressed as

] T
(") = min { / U(a(t), u(t))dt + lf(wm)} .

Ideally, p* would make an ideal metric because it indi-
cates “closeness” as the ability to bring the state from

z to ' while incurring little cost. For holonomic plan-
ning, nearby states in terms of a weighted Euclidean
metric are easy to reach, but for nonholonomic prob-
lems, it can be difficult to design a good metric. The
ideal metric has appeared in similar contexts as the
nonholonomic metric (see [29]), the value function [49],
and the cost-to-go function [4, 30]. Of course, comput-
ing p* is as difficult as solving the original planning
problem! It is generally useful, however, to consider p*
because the performance of RRT-based planners seems
to generally degrade as p and p* diverge. An effort to
make a crude approximation to p*, even if obstacles are
neglected, will probably lead to great improvements in
performance.

Efficient Nearest-Neighbors One of the key bot-
tlenecks in construction of RRTs so far has been near-
est neighbor computations. To date, we have only
implemented the naive approach in which every ver-
tex is compared to the sample state. Fortunately,
the development of efficient nearest-neighbor for high-
dimensional problems has been a topic of active interest
in recent years (e.g., [3, 21]). Techniques exist that can
compute nearest neighbors (or approximate nearest-
neighbors) in near-logarithmic time in the number of
vertices, as opposed to the naive method which takes
linear time. Implementation and experimentation with
nearest neighbor techniques is expected to dramatically
improve performance. Three additional concerns must
be addressed: 1) any data structure that is used for
efficient nearest neighbors must allow incremental in-
sertions to be made efficiently due to the incremen-
tal construction of an RRT, and 2) the method must
support whatever metric, p, is chosen, and 3) simple
adaptations must be made to account for the topology
of the state space (especially in the case of S* and P3,
which arise from rotations).

Variational Optimization Due to randomization,
it is obvious that the generated trajectories are not op-
timal, even within their homotopy class. For random-
ized approaches to holonomic planning, it is customary
to perform simple path smoothing to partially optimize
the solution paths. Simple and efficient techniques can
be employed in this case; however, in the presence of



differential constraints, the problem becomes slightly
more complicated. In general, variational techniques
from classical optimal control theory can be used to op-
timize trajectories produced by our methods. For many
problems, a trajectory that is optimal over the homo-
topy class that contains the original trajectory can be
obtained. These techniques work by iteratively mak-
ing small perturbations to the trajectory by slightly
varying the inputs and verifying that the global con-
straints are not violated. Since variational techniques
require a good initial starting trajectory, they can be
considered as complementary to the RRT-based plan-
ners. In other words, the RRT-based planners can pro-
duce good guesses for variational optimization tech-
niques. The bidirectional planner could be adapted to
general trajectories in multiple homotopy classes. In
combination with variational techniques, it might be
possible to develop an RRT-based planner that pro-
duces trajectories that improve over time, ultimately
converging probabilistically to a globally-optimal tra-
jectory.

Collision Detection For collision detection in our
previous implementations, we have not yet exploited
the fact that RRTs are based on incremental motions.
Given that small changes usually occur between con-
figurations, a data structure can be used that dramat-
ically improves the performance of collision detection
and distance computation [18, 34, 40, 44]. For pairs
of convex polyhedral bodies, the methods proposed in
[34, 40] can compute the distance between closest pairs
of points in the world in “almost constant time.” It is
expected that these methods could dramatically im-
prove performance. For holonomic planning, it seems
best to take the largest step possible given the dis-
tance measurement (a given distance value can pro-
vide a guarantee that the configuration can change by
a prescribed amount without causing collision). This
might, however, counteract the performance benefits of
the incremental distance computation methods. Fur-
ther research is required to evaluate the tradeoffs.

Applications in Robotics Most of the problems
considered thus far in our experiments are motivated
by robotics applications. We are currently working to-

wards developing a kinodynamic planner for determin-
ing open-loop trajectories for basic manipulation and
motor tasks for humanoid robots, such as the Honda
humanoid. For example, a task might be to apply a
specified force to a nail using a hammer. An RRT-
based kinodynamic planner could be used to compute
automatically a trajectory for the robot arm and hand
that would arrive at a state that produces the desired
force. A system of this complexity involves more de-
grees of freedom than we have considered at this point,
and several of the issues mentioned above will have to
be investigated further to achieve this goal. We are
also generally interested in evaluating the RRT-based
planners on as many models and problems as possi-
ble. It is hoped that some day it might be possible to
change the incremental simulator (and corresponding
state transition equation) for nonholonomic and kino-
dynamic problems as easily as one presently changes
the obstacles in a holonomic path planning method.

Applications in Virtual Prototyping Since RRTs
produce open-loop trajectories, their potential for ap-
plication seems greatest when feedback is not neces-
sary at any stage. In virtual prototyping, mechanical
designs are evaluated through simulation in a virtual
environment, without requiring the design of a feed-
back motion strategy. We are presently experimenting
with vehicle dynamics models to answer questions such
as, “Can this car perform a rapid lane change without
losing control?” or “Is it possible that this minivan
could flip over sideways through some combination of
inputs?”. An RRT-based planner can be used as a
kind of virtual “stunt driver” that tries to determine
potential flaws early in the design process. In addition
to cars, we can imagine applications to aircraft, space-
craft, hovercrafts, submarines, and a wide variety of
mechanical machinery.

Applications in Computer Graphics There are
two avenues to pursue in computer graphics. RRT-
based planning methods have been used so far for the
automation of digital actors in a virtual environment
[22]. In industries such as entertainment and educa-
tion, we expect to observe an increasing need to au-

tomate the motions of a variety of geometric bodies.



In addition to using RRTs for planning, they might
also be useful directly as a modeling tool. The images
in Figure 3 are similar to those produced by Diffusion
Limited Aggregation (DLA) [46], which has been ap-
plied to construct a wide variety of images for prob-
lems such as crystal growth, erosion patterns, natural
plants, etc. DLAs are grown by incrementally accu-
mulating points that become “stuck” in the existing
structure after performing a random walk that starts
at infinity. Both DLAs and RRTs can be considered
as stochastic fractals. Given the efficiency of the RRT
construction method, particularly in light of efficient
nearest-neighbor algorithms, it could become a useful
modeling tool for generating fractal-based scenes.
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Appendix

Proofs of the propositions from Secton 4 are included
here.

Lemma 1 Let z be any point in X,.., and let 2o de-
note any initial RRT vertex. Let B(z) denote a ball
of radius €, centered on z. Let B'(x) = B(x) N Xfree.
Note that p(B'(x)) > 0, in which u denotes the volume
(or measure) of a set. Initially, di(z) = p(z,x0). At
each RRT iteration, the probability that the randomly-
chosen point will lie in B'(z) is strictly positive. There-
fore, if all RRT vertices lie outside of B(z), then
E[Dy] — E[Dg41] > b for some positive real number
b > 0. This implies that kli>n()10 Pldi(z) <€e =1. A

Lemma 2 Let xg denote any initial RRT vertex. If
2o and z are in the same connected component of a
bounded open set, then there exists a sequence, 1,
T2, ..., T, of states such that a sequence of balls,
B = Bi(z1), ..., Br(xk), can be constructed with
B; N By # () for each i € {1,...,” - 1}, zo € By,
and ¢ € Bg. Let C; = B; N B;y;. Note that B can
be constructed so that each C; is open, which implies
that u(C;) > 0. Lemma 1 can be applied inductively
to each C; to conclude that 1i_>m Pld,(x;) < €] =1 for
a point in z; € C;. In each Ti:aé’é’, € can be selected to
guarantee that an RRT vertex lies in C;. Eventually,
the probability approaches one that an RRT vertex will
fall into By. One final application of Lemma 1 implies
that Pld,(z) <e¢=1. A

Theorem 4 Consider the set ¥V, = {z €
Xiree | p(z,v) > € Vv € Vi }, in which Vj, is the set of
RRT vertices after iteration k. Intuitively, this repre-
sents the “uncovered” portion of X c.. From Lemma
2, it follows that Y341 C Yy and u(Y}) approaches zero
as k approaches infinity. Recall that the RRT con-
struction algorithm adds a vertex to V if the sample
lies within € of another vertex in V (e is the RRT step
size). Each time this occurs, the new RRT vertex fol-
lows the same probability density as X. Because u(Y%)
approaches zero, the probability density functions of X
and X, differ only on some set Z; C Y}. Since u(Y%)
approaches zero as k approaches infinity, p(Z;) also
approaches zero. Since pu(Zy) approaches zero and the



probability density function of X is smooth, X con-
verges to X in probability. A

Theorem 5 The argument proceeds by induction
on i. Assume that the RRT contains z; as a ver-
tex after some finite number of iterations. Consider
the Voronoi diagram associated with the RRT ver-
tices. There exists a positive real number, ¢y, such that
u(Vor(z;)) > ¢ in which Vor(z;) denotes the Voronoi
region associated with z;. If a random sample falls
within Vor(z;), the vertex will be selected for exten-
sion, and a random input is applied; thus, x; has prob-
ability pu(Vor(z;))/m(Xsree) of being selected. There
exists a second positive real number, ¢y (which depends
on ¢ ), such that the probabilty that the correct input,
u;, is selected is at least ¢o. If both x; and u; have prob-
ability of at least ¢ of being selected in each iteration,
then the probability tends to one that the next step
in the solution trajectory will be constructed. This ar-
gument is applied inductively from z; to zj, until the
final state 4041 = Tk+1 is reached. A



