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Abstract

We consider the problem of determining robot motion plans under sensing and control uncer-
tainties. Traditional approaches are often based on a methodology known as preimage planning,
which involves worst-case analysis. We have developed a general framework for determining
feedback strategies by blending ideas from stochastic optimal control and dynamic game theory
with traditional preimage planning concepts. This generalizes classical preimages to performance
preimages and preimage planning to motion strategies with information feedback. For a given
problem, one can define a performance criterion that evaluates any executed trajectory of the
robot. We present methods for selecting a motion strategy that optimizes this criterion under ei-
ther nondeterministic uncertainty (resulting in worst-case analysis) or probabilistic uncertainty
(resulting in expected-case analysis). We present dynamic programming-based algorithms that
numerically compute performance preimages and optimal strategies; several computed examples
of forward projections, performance preimages, and optimal strategies are presented.
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1 Introduction

As we continue to demand that robots perform more complicated tasks, the need for general and
flexible approaches to motion planning increases. It has been widely acknowledged in the literature
that modeling and overcoming uncertainty is crucial to successful motion planning in practical
environments. Sources of such uncertainty include geometric model inaccuracies, limited or noisy
sensing, and only partially predictable execution of motion commands.

We present an objective-based framework that addresses sensing and control uncertainties.
An earlier version of this approach appeared in [49]. By objective-based we mean that motion
strategies are chosen by minimizing a criterion that evaluates a trajectory, by taking into account
quantities such as the path length or the probability of success. Many of the concepts introduced
here are based on ideas used in stochastic optimal control theory and dynamic game theory (see
[4, 44] for background). Our approach generalizes classical preimages to performance preimages
and preimage planning to motion strategies with information feedback. Constructing a traditional
termination criterion becomes equivalent to formulating an optimal stopping problem [8] within our
framework.

Several variations of the motion planning problem have been considered in past research. One
basic form of motion planning, which we refer to as collision-free planning, consists of computing
a continuous path in the robot’s configuration space that will bring the robot from some initial
configuration to a goal configuration while avoiding collisions with obstacles. This is often referred
to as the gross-motion planning problem [39]. Alternatively, interactions between the robot and
objects can be allowed for operations such as compliant motions, pushing, and grasping. These
interactions are incorporated into the motion plan of a robot, enabling it to accomplish some
specified task. Many researchers have considered the problem of achieving a goal configuration
under uncertainty while permitting compliant motions; this has been referred to as the fine-motion
planning problem in, e.g., [17, 30, 53], and the manipulation planning problem in, e.g., [13]. In
other research, manipulation planning has been used to refer to problems that involve the transfer
of objects in the workspace (e.g., [1, 47]).

We use the term manipulation planning in this paper to refer to the problem of achieving a
goal configuration under uncertainty while permitting compliant motions. For the examples in this
paper, we use the manipulation planning model, since it is often considered more difficult than
collision-free planning; this is due to the characterization motions when the robot is in contact
with obstacles. The methods presented in this paper can also be adapted to collision-free planning
(we have computed results for many cases); however, in this paper we focus only on manipulation
planning since the basic collision-free planning issues under sensing and control uncertainties are

included in the manipulation planning model. Section 2 provides an overview of manipulation
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Figure 1: Four types of uncertainty that are considered in this paper.

planning research and discusses the significance of our approach.

Section 3 provides the general definitions and concepts that form the basis of our approach.
Some of the notation, although not previously used to characterize manipulation planning problems,
is borrowed from control theory (as used in [4, 44]). After the general concepts and definitions have
been presented, they are utilized in Sections 4, 5, and 6 to present forward projections, performance
preimages, and the determination of optimal motion strategies, respectively. Computed examples
are presented at the conclusion of each of these three sections.

The concepts in each of Sections 4-6 can be logically divided into four components that repre-
sent different types of uncertainty (see Figure 1). The precise meaning of these types of uncertainty
should become clearer after reading Sections 2 and 3. These types are based on two choices: 1)
using probabilistic representations vs. nondeterministic (or bounded-set) representations; 2) mod-
eling control errors and assuming perfect sensing vs. modeling both control and sensing errors.
Both probabilistic and nondeterministic representations offer distinct advantages; hence, both are
included in our framework. Probabilistic representations lead to expected-case analysis, and non-
deterministic representations lead to worst-case analysis; relevant issues are discussed in Section 2.
By assuming perfect sensing, many effects of control uncertainty on manipulation planning can be
observed. These results are applicable when reasonable state estimation (i.e., configuration estima-
tion) can be performed. The addition of sensing uncertainty can be considered as an extension in
which the configuration space is replaced by an information space that is derived from the sensing
and action history. The motion planning analysis for this case is performed on this information
space, as opposed to the original configuration space.

Section 7 discusses several issues regarding our current approach, and how it can be extended.

Section 8 summarizes our contributions.



Preimage

A classic "peg-in-hol
insertion task

Figure 2: a) A classic 2D “peg-in-hole” insertion task without rotation; b) Such a task can be
represented in configuration space with bounded uncertainty in commanded velocity and sensed
configuration; c) The classical preimage.

2 Background and Motivation

Section 2.1 provides an overview of previous manipulation planning research. Section 2.2 discusses

the key contributions of our research in terms of previous research.

2.1 Prior Research

Preimage planning constitutes a large body of research that assumes that sensing and control
errors lie within bounded sets. The approach was first conceptualized by Lozano-Perez, et al. [53].
Using geometric reasoning techniques, a robot plan is constructed that guarantees that the robot
will terminate in a specified subset of configuration space, regardless of where the errors might lie
within the bounded sets. This plan is generally constructed using recursive subgoals, as a form of
backchaining. For each subgoal, a preimage is formed that allows the robot to achieve the subgoal
for a fixed command, starting from the subset of the configuration space attained from the previous
subgoal. Figure 2 shows an example of a preimage. In general, a preimage is defined as the set of
all configurations from which a robot is guaranteed to halt in the goal region.

We will next discuss several important aspects of manipulation planning that have been elu-
cidated in preimage planning research, and conclude Section 2.1 by summarizing some additional

related motion planning research.

Motion models One of the most important manipulation planning concerns is the motion of

the robot when it is in contact with obstacles. Force compliant control is usually permitted, which



enables the robot to move along obstacle boundaries [56]. A variety of motion models have been
considered for compliant control (e.g., [64, 65, 67, 79]), and the generalized damping model has
been most often considered in this context [47, 78]. More complex interactions have also been
analyzed, such as the motion of objects as they are pushed by a manipulator [12, 29, 54, 58, 77].
Figure 3 depicts the type of motion that occurs when the generalized damping model is combined
with friction. If the commanded velocity is outside of the friction cone, but is pointing into the
obstacle boundary, then the robot moves along the boundary. If the commanded velocity is inside
the friction cone, then the robot remains motionless. When the robot is not in contact the set of
available motions could be constrained, as for nonholonomic robots as discussed in [7], or the robot
might be free to move along any continuous path. For manipulation planning problems it is thus

important to allow different motions to be defined on different subsets of the configuration space.
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Figure 3: Motions under the generalized damping model with friction.

Modeling uncertainty Two basic representations of sensing and control uncertainty have been
proposed in the manipulation planning literature. We refer to these as nondeterministic uncertainty
and probabilistic uncertainty, as done in [27]. Under nondeterministic uncertainty, it is assumed that
parameter uncertainties lie in a bounded set. Worst-case analysis is performed to yield a motion
plan that is guaranteed to be successful, regardless of the true value of uncertain parameters within
the bounded set. This uncertainty representation is the most common in previous manipulation
planning research (e.g., [30, 47, 48, 53]). Under probabilistic uncertainty, probability densities are
used to represent uncertainty associated with parameters. This approach has been advocated for
manipulation planning by Brost and Christiansen [12, 13, 14]. Each uncertainty representation
offers advantages. Nondeterministic models do not require a statistical representation of the errors,

and hence are often easier to specify. If the uncertainty model is correct, the guarantee that the



goal is achieved is useful, particularly when the penalty is severe for not achieving it. As noted in
[13, 27], for many tasks a guaranteed motion plan does not exist; however, a plan can alternatively
be computed that achieves the goal with some probability. Since either uncertainty model might

be appropriate in a given context, both are considered in this paper.

History Operation under sensing uncertainty can be improved by incorporating sensing and/or
control history into the robot’s decision making. This is similar to the use of information feedback
in control theory and dynamic game theory. There is naturally a close correspondence between
a feedback controller and a motion plan that incorporates sensing information (in our framework
these concepts are equivalent).

Several approaches to manipulation planning have incorporated sensor information. Erdmann
presented an approach that yields motion strategies that are conditioned on knowledge states [28].
These knowledge states are inferred from the sensing history, and at a high level correspond closely
to using information feedback. In [48] Latombe et al. used sensing and control history to infer a
subset of configuration space defined as a goal kernel, in which the robot can successfully switch
between commands in a multiple step plan, or terminate in the goal region. Goldberg [35] assumed
that no sensor information was available, and conditioned squeezing operations on the history of
previous operations (which is equivalent to the control history). Donald and Jennings have defined
perceptual equivalence classes which determine distinguishable scenarios for a mobile robot based

on its sensing history and the projection from the configuration space onto the sensor space [24].

Termination condition The decision to halt the robot has been given careful attention in
manipulation planning research, particularly when there is uncertainty in the sensed current con-
figuration. A motion plan might bring the robot into a goal region (reachability), but the robot may
not halt if does not realize that it is in the goal region (recognizability) [30]. Under nondeterministic
uncertainty it is said that a plan achieves a goal if the robot is guaranteed to halt in the goal region.

A logical predicate called the termination condition is typically defined; this is a function of the

sensing history that is available to the robot. A general form for the termination condition is [48]:
TCO(t, 4" [0, 4], £[0,1]) — {true, false}, 1)

in which q*[0,¢] and £*[0, ¢] represent the full history of position and force sensing up to time ¢. A

specialized version of (1) is usually implemented for practical considerations.

Computing manipulation plans Mason has shown that preimage backchaining is bounded
complete (i.e., if a solution with a bounded number of motions exists, the preimage backchaining

method will find it), and that it suffices to consider directional preimages (i.e, preimages computed



with respect to a single, fixed motion direction) as subgoals in the recursive backchaining process
[67]. These results, however, do not imply that preimages are computable. In fact, Erdmann has
proven by a reduction from the halting problem, that, in arbitrary environments, preimages and
backprojections are uncomputable [30]. That the recursively defined constraints in the proof do
not generally occur in practice led Erdmann to conjecture without proof that in an environment
with a known finite number of constraints, preimages should be computable. Canny has shown
that this is indeed the case when the set of possible robot trajectories has a finite parameterization,
and the set of feasible trajectories is a semi-algebraic subset of the parameter space [17]. Canny’s
approach is to cast the manipulation planning problem as a decision problem in the theory of the
real numbers, and to then use quantifier elimination algorithms (see, e.g., [18]) to derive parametric
semi-algebraic sets that are preimages.

Erdmann realized that conditions for recognizability and reachability could be decoupled [30].
This led to the development of the backprojection, which can be can be considered as an approxima-
tion to the preimage that does not directly incorporate the termination condition. Backprojections
from recognizable goal regions constitute valid preimages (although not necessarily maximal), and
are considered in [30, 48]. A directional backprojection is a backprojection computed for a single,
fixed motion direction. The nondirectional backprojection [10, 22] is a subset of C x S in which
there is one directional backprojection for each orientation in S (we use C to denote the configura-
tion space). Donald has shown that the topology of the directional backprojection changes only at
a finite set of critical velocity orientations in S [21]. Therefore, the nondirectional backprojection
can be represented by a finite set of directional backprojections; one for each critical orientation,
and one for each non-critical interval.

In general, the manipulation planning problem under sensing and control uncertainty has been
shown to have high complexity. Consider the problem of finding a sequence of motions that is
guaranteed to move every point in a polyhedral initial region to a polyhedral goal region, amidst
polyhedral obstacles, while permitting compliance. This problem, considered in traditional preim-
age planning, has been shown by Natarajan to be PSPACE-hard in %2 [60]. Canny showed that

this problem is nondeterministic exponential-time hard in 3 [16].

Other related approaches Several other planning problems and approaches are related to the
context developed in this paper. In a series of papers by Donald [21, 22, 23], it shown how a planner
that is capable of recognizing failure (in addition to success) can be used to implement error detec-
tion and recovery strategies. Under this model the robot is allowed to try a new plan after realizing
that a failure has occurred, as opposed to continuing the failed plan. This represents an important
use of sensor information, and expands the previous notion of reachability to include failure. Gold-

berg applied preimage planning ideas to construct manipulation plans that orient an object using



a parallel gripper without sensors [35, 36]. Fox and Hutchinson developed methods for computing
backprojections that result from using visual constraint rays that result from the correspondence
between edges in the workspace and the image plane [33]. Algorithms for computing strategies
in the presence of probabilistic uncertainty for mobile robots have been developed in [19, 38, 42].
In [75] a Sensory Uncertainty Field was introduced that indicates positional sensing accuracy for
a mobile robot as a function of configuration. The field is then used to determine a continuous
path from the initial configuration to the goal configuration that minimizes the amount of expected
sensing error or some combination of sensing error and path length. In general, other forms of
uncertainty have been introduced into the motion planning paradigm, such as uncertainty in the
environment model [22, 26, 37, 61, 72, 73], or uncertainty in predicting a changing environment
[52, 68]. Object grasping has also been carefully studied in the context of manipulation planning

under uncertainty (e.g., [11]).

2.2 Motivation

Consider two basic questions that we can ask about the performance of a particular robot strategy:
1) How likely is the goal to be achieved; 2) If the goal is achieved, how efficient is the solution?
In manipulation planning work, usually only the first question is precisely addressed, although
there is often some weak preference for more efficient plans (e.g., fewer backchaining steps). In
traditional preimage backchaining work, people have been interested in generating strategies that
answer the first question by guaranteeing that the goal will be achieved. One notable exception is
the consideration of sensorless backchaining in terms of geometric optimality on a Markov chain
that describes grasped part orientations [35]. Recently, Brost and Christiansen have considered
the probability that a goal will be achieved using a particular robot command, leading to the
development of a probabilistic backprojection [13, 14].

When a probabilistic or stochastic formulation is considered, both of the previous questions
should be carefully considered. Many stochastic models will lead to guaranteed goal achievement
for any possible set of bounded-velocity motion commands, even though the probability that the
goal will be achieved in some reasonable finite time interval is very small. For example, continuous
Brownian motion will eventually lead the robot to any nonzero-measure goal region, which under
perfect sensing indicates that Brownian motion achieves probabilistic completeness (a term used in
[6]). This fact forms the basis for incorporating specific diffusion processes into robotic plans in
[27]. For our context, however, the expected time to actually achieve the goal can be arbitrarily
high. This indicates that for at least some problems, the probability that the goal will eventually
be achieved is of little value for selecting a planning strategy.

In general, the same type of difficulty can be imagined under nondeterministic uncertainty.

There might exist a large set robot strategies that are guaranteed to achieve the goal, but many



solutions could be impractical if the execution time is too high. Therefore the efficiency of the
solution (e.g., the amount of time the robot is expected to take to achieve the goal) is of great
importance in evaluating a robot strategy under general models of uncertainty. This form of
efficiency has also been useful in related robot control contexts (e.g., [9, 41, 70]). In this paper we
show how objectives can be precisely defined that answer both of the questions above and guide
the selection of a robot strategy.

The classical preimage has been a useful conceptual tool for developing manipulation planning
algorithms. In its most common use, however, the preimage is defined in a limited manner. Usually
a preimage requires that: 1) the robot executes a fixed motion command, and 2) elements in the
preimage indicate from where the robot is guaranteed to achieve the goal. In our work, we replace
fixed motion commands with a state-feedback or information-feedback controller for which trajecto-
ries can be evaluated with a precise objective. We also consider models that do not limit preimages
to guaranteeing that the goal is achieved. A notable departure from this model was in the defini-
tion of probabilistic backprojections in [13]. One motivation behind probabilistic backprojections,
as well as our framework, is that worst-case analysis tends to eliminate the consideration of many
reasonable robot strategies. The absolute requirement that the goal is recognizably achieved can be
too strong, particularly as the amount of uncertainty in control and sensing is increased. Further-
more, if bounded uncertainty models are replaced by smooth probability density functions, then it
becomes impossible to guarantee! that the goal will be achieved in a fixed amount of time, except
in restricted cases. For this reason, we consider the formulations under probabilistic uncertainty to
represent important tools for analyzing manipulation planning problems.

The relationship between sensor and action history and decision making has long been con-
sidered important in planning under uncertainty (e.g. [30, 47, 53]). For our context we want to
optimize the performance of the robot, while directly taking into account the complications due
to limited sensing. By using the concept of information state, as considered in stochastic control
and dynamic game theory, we provide a useful characterization of this relationship. When there is
perfect sensing information, the robot conditions its actions on its current state (or configuration);
however, with imperfect sensing information the robot actions are defined in terms of information
states. We will define a robot strategy to be a mapping (or sequence of mappings) on an information
space, which a priori takes into account the various contingencies presented during execution. For
this reason, no form of dynamic replanning is required. The information state concept is similar to
the definition of knowledge states, considered in [28].

The general structure of our framework allows error models to be changed without altering
the general computational approach. This feature can facilitate the improvement of error models

that are appropriate for a particular robotic system. For instance, if a better sensing model (in

! “Guarantee” in a stochastic setting should technically be replaced by “achieve with probability one.”



which the error is described in terms of a probability density function) is determined for a given
application, the appropriate density can be replaced, and much of the general approach remains
the same. The formulation of objectives can also easily be changed. By easily changing these
components, better models can be iteratively developed. This framework can also be adapted to a
more general multi-player, dynamic game theory, in which the interaction of potentially conflicting
objectives can be analyzed [4, 49], or to include model and environment uncertainties [52].

We next discuss the nature of the solutions that we obtain. Recall from Section 2.1 that the
computational complexity of a basic manipulation planning problem is PSPACE-complete for $2
[60] and nondeterministic exponential-time hard for ®2 [16, 17]. Solutions for various stochastic,
Markov systems are also known to have difficult complexity [62, 63]. In optimal control theory,
which shares many commonalities with our approach, closed form solutions can sometimes be found,
which allows efficient computation of the solution for a particular system. For instance, one of the
most celebrated solutions in stochastic optimal control theory is for the Linear Quadratic Gaussian
(LQG) regulator problem. For this case the system (or motion model in our terms) is linear,
the performance criterion is quadratic, and the uncertainties characterized by Gaussian random
variables.

For manipulation planning problems that we define there are several complications: 1) The
motion models are complex in comparison to a linear model, particularly when contact with obsta-
cles occurs; 2) The performance depends directly on halting the robot (or system state) in some
subset of the configuration space (or state space); 3) We would like to use different densities (for
probabilistic uncertainty) or bounded sets (for nondeterministic uncertainty) to model uncertainty
without the burden of performing a distinct, detailed analysis for each case.

These complications offer limited hope for computation of closed form, exact solutions, which
motivates us to consider numerical solutions as a practical alternative. Brost and Christiansen have
argued that numerical solutions may be the only practical approach to probabilistic backprojection
computation [13]. Given the variety of problems that we wish to consider, a numerical computation
method provides the greatest flexibility. We present algorithms that are based on the dynamic pro-
gramming principle, and apply to a general set of manipulation planning problems. The numerical
solutions that we obtain can be improved at the expense of greater computation. The complexity
of our method, however, is exponential in the dimension of the state space or information space,

which we consider to be practical for a few dimensions.

3 General Definitions and Concepts

In this section we define the general concepts and terminology that form the basis for our framework.

Section 3.1 presents the basic concepts that characterize the motions and control of the robot.



Section 3.2 introduces information space concepts, which are used for planning under imperfect
sensing. Section 3.3 describes alternative representations of the information states. Section 3.4
defines a robot strategy, the incorporation of a termination condition into a strategy, and the
evaluation of a strategy with a loss functional. Section 3.5 presents a specific model that is based
on previous manipulation planning research, and will be used for the examples in this paper.

We conceptualize the manipulation planning problem as a dynamic game that is played between
two players: the robot, A, and nature. Both “players” will be considered as decision-making agents
that influence the general state of the system. The robot has a general plan to achieve some goal,
while nature makes some decisions that potentially interfere with A. At an abstract level, this

general view of robotic manipulation tasks has been advocated in [76].

3.1 States, Stages, and Actions

State space The position of A in a workspace is represented by a point in an n-dimensional
configuration space, C, for which n is the number of degrees of freedom of A. For manipulation
planning a subset of C, denoted as Cyqii4, is usually defined (see [47] for configuration-space details).
This corresponds to points in C at which either: 1) A does not touch an obstacle, or 2) the boundary
of A is in contact with the boundary of some obstacle, but the interiors do not overlap. The second
condition enables the possibility of guarded motion and compliance [78], which for instance allows
the robot to execute a motion along the tangent of an obstacle boundary.

We associate a state space, X, with a given problem. For the examples in this paper, we take
X = Cyqiiq (for collision-free planning, we would use X = C{y¢., which is the interior of Cyqiq). In
general, however, we could include dynamics in the state-space representation. In this case robot

commands could, for instance, be based on both configuration and velocity.

Stages We consider a discretized representation of time as stages, with an index k € {1,2,...,K}.
Stage k refers to time (k — 1)At. The state of A at stage k is denoted by zx. We generally take
At sufficiently small to approximate continuous paths. The final stage, K is only defined to ease
technical considerations as the system evolves toward infinite time. Since we expect the robot to
achieve the goal in some finite time (if it is achievable), consideration of infinite-length trajectories
is not needed. The specification of K is not required by our algorithms due to stationarity, which
will be discussed shortly. The framework could also be defined in sufficient generality without dis-
cretizing time, and consequently defining controlled diffusions [43]; the definitions that would follow
require the use of continuous stochastic processes and measure-theoretic concepts. For our context
a discretized representation of time facilitates the development of the numerical computation ap-
proach. Furthermore, actual robot systems will be limited to discrete-time sampling for acquiring

sensor information and executing motion commands. Hence, the discrete-time representation is

10



most appropriate in our context.

Actions An action (or command), which is denoted by ug, can be issued to A at each stage k.
We let U denote the action space for A, requiring that ur € U. We also allow nature to choose
actions. Let 6 denote an action for nature, which is chosen from a set ®. We consider 0 to be a
vector quantity that is divided into two subvectors, 6¢ and 6} (i.e., 8y = [0 6}]). As will be seen

shortly, 67 affects the outcome of A’s actions, and 6} affects the sensor observations of A.

State transition equation To describe the effect of a robot action with respect to state, we

define a state transition equation as

Tg+1 = f(zka Uk, 0]%) (2)

Hence, given a robot action, nature’s action, and the current state, the next state is deterministically
specified. During execution, however, A will not know the action of nature. A specific example of
a state transition equation is given in Section 3.5.

Suppose that we are considering nondeterministic uncertainty. We can use the state transition

equation to obtain the following subset of X:
Fii1(zk, up) = {f(zk, uk, 0f) € X[0 € ©°}. (3)

This set represents the possible next states that can result from a single application of the state
transition equation.

Under probabilistic uncertainty, we assume that the probability density function (pdf), p(63),
is known. For this probability density and the remaining probability densities in the paper, we
implicitly assume there is some underlying probability space, and random variables with densities
are constructed using appropriate measurability conditions (see [80] for a treatment of these tech-
nical concerns). By using the state transition equation, we can obtain a pdf for zy,q, which is
represented by p(zg41|Tk, uk)-

In general, we will use the notation, F', to refer to minimal subsets of X that can be inferred from
the arguments. The role of F' in our expressions for nondeterministic uncertainty can be considered
analogous to the role of p in probabilistic expressions. Thus, F' is a generic representation for a

subset of X, while p is a generic representation for a density on X.

3.2 Imperfect Sensing and Information Spaces

In this section we consider uncertainty in sensing, which implies that the current state is not known
by the robot, and actions must be chosen on the basis of imperfect information. Therefore, actions

taken by the robot will be conditioned on an information space, as opposed to the state space. This

11



information space concept has been adapted from stochastic control [44] and dynamic game theory

[4] to fit our particular context.

Sensor observations We begin by defining a general model of robot sensing. A sensor can be
viewed as a mapping from states onto sensor values with potential interference that is caused by

nature. At every stage k, the robot makes an observation that is governed by the equation,
Yk = hk(zkagz)a (4)

which we term the observation equation. A specific example of an observation equation is given in
Section 3.5.

The values, yi, belong to a sensor space, denoted by Y. This model indicates that the robot
receives information at every possible stage; however, this assumption can be relaxed. For example,
in visual servo control applications, the servo rate for the robot joint controllers is typically much
faster than the sampling rate of the vision system (see, e.g., [55]). It might also be the case that
a sensor only provides information at randomly chosen stages (as is the case for the visual servo
system reported in [32], in which the vision system’s sampling rate varies according to the amount
of processing required to track moving objects in the scene). Such variations are straightforward
to consider.

Suppose that we are considering nondeterministic uncertainty. The set of possible values for z

after only observing y; can be determined from the observation equation as:
Fi(yr) = {zx € Xlyx = h(zk, 0;),0; € ©°}. (5)

Under probabilistic uncertainty, we assume that the pdf, p(6}), is known. By using the observa-
tion equation, we can obtain a pdf for z, which is represented by p(zk|yx). As a simple example,
h could represent a position sensor that measures z; with Gaussian noise. If h(zy,8;) = =y, + 6,
and p(6;) is a Gaussian density, then p(zy|yx) is Gaussian.

If Y = X and hy is reduced to the identity map from X to Y, then the sensing model reduces
to perfect state information. Equation (4) represents the output equation used in control theory,
and is also similar to the projection of world states onto sensor values, used in previous robotics
contexts (e.g., [24]). Also, such transformations have been studied extensively in statistical image

modeling [71, 34, 50] and in sensor error modeling [40].

History and information As discussed in Section 2.2 the relationship between sensing and
action has long been considered important in motion planning under uncertainty. The following

definitions precisely describe the sensing and action history that A has available. For a given stage
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k, let n, denote some subset:

Tk g{ulau2a"'auk—laylayQa"-ayk}' (6)

The value 7y is a set of past actions and observations that are known to A at stage k, and is
termed the information state of A. For instance, we could consider a memoryless robot, in which
Nk = Yk. As another example, we could have a sensorless robot as considered in [35], in which
Mk = {u1,...,ux_1}. We could also consider the stage index k as part of the information space
for the purpose of developing robot strategies that involve timing; however, we will not explicitly
consider k as part of 7 in this paper.

The set of values that 7, can assume is denoted by Ni, and is termed the information space.
We define an information structure as the set of N for all 1 < k < K. As it is presently defined,
the dimension of the information space grows linearly with the number of stages, which appears im-
practical. It turns out that alternative representations of the information space can be determined;
this is the subject of Section 3.3.

3.3 Representations of the Information State

In this section we present alternative ways to interpret the information space. Under nondetermin-
istic uncertainty, this will be a subset of the state space. Under probabilistic uncertainty, this will
be a pdf on the state space.

Consider the case in which the robot has perfect memory. Each 7 then corresponds to complete
history of previous robot actions and observations. If U is ni-dimensional and Y is ng-dimensional,
then in general the dimension of Ny will be [k(n; + ng) + ng]-dimensional. A space that grows
significantly with each stage (and becomes infinite-dimensional when K = 0o) is very unappealing
for designing strategies. The information space representations that are presented in this section
do not grow with the number of stages, and provide more intuitively satisfying characterizations of

the information state.

The case of nondeterministic uncertainty An alternative to maintaining a growing history
is to consider subsets of X that represent the possible current states, zj, for a given information
space value, 7. We will represent the minimal subset of X that can be inferred from 7y as Fi(n)-
In other words, Fj(n) represents the set of all states, zj, that could possibly be the true system
state, given the history 7. By using this approach, we will show that the information state subset
Fy11(ng+1) can be determined from Fi(ny), when uy and yi1 are given.

For practical purposes Fi(n;) can be considered as an alternative representation of the informa-

tion state. This representation is intuitively satisfying since we can think of A4’s uncertainty model
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as a set representing possible locations in the state space X. In traditional preimage planning
research, uncertainty due to imperfect sensing has often been viewed in this way.

We briefly indicate how an information state subset is obtained at a given stage. Initially, we
have F(n1). We can derive an expression for Fi1(ng+1) in terms of Fj (1), ug, and yx41. Suppose
inductively that we have Fi(ng). First consider the effect on the state space of using the action,
ug. Recall from (3) that Fji1(xg,uy) represents the possible values z41 that could be obtained

through a single application of the state transition equation. We can define

Frpi(mr,ur) = | Frega (o, up). (7

T €Fy(nk)
Note that 751 can be specified with 7, ug, and yx1. Recall from (5) that Fj(y;) denotes the set
of possible values for x; after only observing y;. By maintaining consistency with the observation

of yi1, the following can be obtained:

Frop1(e1) = Fryr(Wes1) () Frr (e, ug), (8)

which depends on (3) and (5).
If A does not have perfect memory, then the condition {7, u} is replaced in (8) by the appro-

priate subset of history.

The case of probabilistic uncertainty Under probabilistic uncertainty, the information state
can be considered as a conditional density on the state space, denoted as p(zg|nx). By using this
approach, the information state density p(zx1|mk+1) can be determined from p(x|nx), when uy and
Yk+1 are given. This observation allows the development of several well-known stochastic control
results, such as the Kalman filter, when all densities in the information space take some parametric
form of fixed, low dimension [44]. This representation is intuitively satisfying since we can think of
A’s uncertainty model as a density representing possible locations in the state space X.

We briefly indicate how the information state density is obtained. These equations can be
considered as probabilistic versions of the nondeterministic results. Initially, we have p(z1|n1). We
can derive an expression for p(zg41|nk+1) in terms of p(zk|nk), uk, and yg41. Suppose inductively
that we have p(zg|ng). First consider the effect on the state space of using the action, ug. Using
the density from the state transition equation we obtain, through marginalization with respect to
Xks

P(Tp-t1]mk, uk) = /P($k+1\$k,Uk)p(mkmk)dwk- 9)

Recall from Section 3.1 that p(zk11|zk, uk) is inferred from the state transition equation. Note that

Nk+1 can be specified with g, ug, and yg+1. By using Bayes’ rule on X1 and Y, the following
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can be obtained:

P\Yk+1|Tk+1)P\Tl+1|Tk, Uk
p(erslmest) = i Weriloer )P(@erale ) (10)

P(Yk11|T11)P(@k 11 |7k, k) dTp 41

which is a function of p(ygi+1|zk+1) as defined in Section 3.2. A more detailed discussion of (10)
can be found in [44]. If A does not have perfect memory, then the condition {7, ux} is replaced in

(10) by the appropriate subset of history.

3.4 Strategy Concepts

Motion strategies At first it might seem appropriate to define some action uy for each stage. In
general, due to the control uncertainty, it is not possible to predict the trajectory of the robot for
given motion commands. It is therefore advantageous to allow the robot to respond to information
that becomes available during execution.

We consider robot strategies for two cases: perfect information and imperfect information.
Figure 3.4 shows block-diagram representations of the concepts that will be described in this section.
Suppose that the robot has perfect state information. We can implement a state-feedback strategy
at stage k as a function g : X — U. For each state, xj, a strategy yields an action uy = gg(zk)-
The set of mappings {g1,92,---,9k} is denoted by g and termed a (robot) strategy of A.

If the robot does not have direct access to state information, its actions are instead conditioned
on the information state. In this case we define a strategy at stage k of A as a function g : N, — U.
For each information state, 7, a strategy yields an action ug = gx(nx). In a sense, the “planning”
actually occurs in this information space. These strategy concepts are equivalent to a feedback
control law [8, 44], and are similar to a conditional multi-step plan in manipulation planning [48].

We also define a strategy, v, for nature. Since nature is considered as a decision maker that can
interfere with the robot, we allow nature’s actions to depend in general on the state, x, and the
action of the robot, ug. We can define a pure or deterministic strategy for nature as a deterministic
mapping at each stage as fyg : X x U — ©% Under nondeterministic uncertainty we will assume
that nature implements a deterministic strategy that is unknown to the robot. We will use the
notation I'® to refer to the space of strategies that are available to nature under nondeterministic
uncertainty.

Under probabilistic uncertainty, we consider a randomized or mized strategy for nature, in which
the action of nature is represented by a pdf, p(6y) (or we can more generally consider p(0x |z, ug))-
The specific action of nature at stage k is denoted by 6, sampled from the random variable .
Therefore the robot is given a pdf, p(), that characterizes the action taken by nature at stage
k. Although the randomized strategy is known by the robot, the actions that will be chosen are

sampled from a random variable at each stage.
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Figure 4: A dynamic game against nature with: a) perfect information and b) imperfect informa-
tion.
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Termination conditions The notion of a termination condition has been quite useful for for-
mulating robot plans that tell the robot when to halt, based on its current, partial information
[30, 48, 53]. The same concept is needed in our context; hence we define a termination condition

TC} at each stage by a binary-valued mapping,
TCy : N, — {true, false}. (11)

The termination condition can be considered as a special type of action that is available to the
robot, which can cause it to halt. With perfect state information Ny is simply replaced by X in
(11). We require that if TCy = true, then TCjy1 = true. This implies that once the termination
condition has been applied, it cannot be retracted.

Let T'C' denote the complete specification of T'C, for all k. The termination condition is im-
plemented so that the robot terminates at some stage kK < K + 1, making the specific choice of K
not important, except that it is sufficiently large. We will use the notation v to denote the pair
(9,TC), which can be considered as a strategy with termination condition. This pairing is similar
to the concept of a motion command as defined in [48]. We will use the notation I' to denote the
set of all v that are available to the robot. It can also been seen that the use of this termination
condition in the determination of an optimal strategy is equivalent to defining an optimal stopping
rule, as done in optimal control theory [44].

When perfect information is available, the most appropriate choice for TCy is TCy = true
if and only if zx lies in the goal region. The termination condition becomes more interesting
under imperfect information. Since the state zj cannot necessarily be predicted for a given initial
state, z1 and strategy, -y, the particular stage at which the termination condition will be applied
is uncertain. Since the robot remains motionless after the termination condition is true, we can,
however, consider the resulting states at stage K+ 1. Figure 5 indicates the effect of the termination

condition.

Loss functionals We encode the objectives that are to be achieved by a nonnegative real-valued
functional L(z1, ..., Tk +1, U1, -, uk, T C), called the loss functional. Note that the loss functional is
not written as a function of 7, but in terms of the actual executed trajectory and action histories.
The ultimate goal of the planner is to determine a strategy g and termination condition 7°C' that
causes L to be optimized in an appropriate sense. As will be discussed in Section 6, an equilib-
rium solution will be determined for nondeterministic uncertainty, and the minimal solution in the
expected sense will be determined for probabilistic uncertainty.

We assume that a loss functional is of the following additive form, which, except for the termi-

17



0 Stage K+1

Without use of termination condition

0 Stage K+1

With use of termination condition

Figure 5: The termination condition forces the robot to halt at a given state. The particular stage
is a priori uncertain for a given initial state and strategy.

nation condition, is often used in optimal control theory [44]:

K

L(:L‘l, ey K41, ULy ey UK,TC) = Z lk(Ik,uk,TCk) + lK+1(IK_|_1). (12)
k=1

The first K terms correspond to costs that are received at each step during execution of the strategy.
The final term, /541 is a final cost that can be used to indicate the importance of terminating in
the goal. This form is quite general, and facilitates the application of the dynamic programming
principle, as discussed in Section 6.

We next present two useful loss functionals that we have considered. Let G C X represent a
goal region in the state space. The following loss functional only distinguishes between success and

failure to achieve the goal:

0 if.’L‘K_H eG

1 otherwise (13)

L(zy,..xx41,u1, .yug, TC) = {

Under probabilistic uncertainty, the evaluation of this criterion under a given strategy yields the
probability of success (in the same manner that a 0-1 loss results in the probability of an incorrect

decision in Bayesian decision theory [20]).
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Often we will want to consider the cumulative cost of executing motions. Under the bounded

velocity assumption, the following loss functional can measure the length of the executed trajectory:

K+1

> U(ug, TCk) ifzx41 €G
L(zy,..Tx41,U1, .y ug, TC) = k=1 . (14)

Cy otherwise

Above, I(ug, TCy) denotes the cost associated with taking action uy, and we require that [(ug, TCy) =
0 if TCy, = true. Hence, loss does not accumulate after the robot has terminated. We use Cy to
express how important it is to achieve the goal. As C'y becomes less than a typical aggregate action
cost that achieves the goal, then strategies will be preferred that do not even expect to achieve the

goal.

Stationarity It turns out that the optimal action uj, and termination condition, T'Cy, do not
depend on the stage index, k, for the problems that we consider. This is because the optimal
strategies for the problems in this context are stationary, which is a concept that is defined and
discussed in [4, 44]. If the state transition equation, free configuration space, or loss functional
were stage dependent, then stationarity would be lost. For instance, it might be the case that the
workspace contains a known, moving obstacle. Many quantities would depend on the stage index,
resulting in a robot strategy that was time-dependent. This is analogous to the configuration-time
space, CT, as considered in [47] for planning amidst moving obstacles. In general, our framework
supports the analysis of time-dependent problems; however, we preclude them from consideration

in this paper.

3.5 Specific Model Details

In this section we present specific definitions of a state transition equation and a observation
equation. These models are inspired by those used in previous manipulation planning research,
and are used for our examples throughout this paper. In general, a variety of other types of models
could be defined.

The control model Suppose the robot A is a polygon translating in the plane amidst polygonal
obstacles. The action set of A is a set of commanded velocity directions, which can be specified
by an orientation, yielding U = [0,27). The robot will attempt to move a fixed distance ||v| At
(expressed in terms of a constant velocity modulus, ||v||) in the direction specified by ug. The
action space of nature is a set of angular displacements, 6%, such that —ep < 07 < €y, for some

maximum angle €y. Under nondeterministic uncertainty, any action ¢ € [—ep, g] can be chosen
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by nature. When using probabilistic uncertainty, p(6¢) could be a continuous pdf, which is zero
outside of [—eg, €g].

There are several cases to consider in defining the state transition equation, f. First consider the
state transition equation when z; € Cy.., at a distance of at least ||v[|At away from the obstacles.

If A chooses action uy from state z, and nature chooses 67, then z; is given by

cos(uy, + 67)

sin(ug, + 603) (15)

f(mkaukael%) =z + ||U||At [

Let Ccontact represent the boundary of Cfpee (hence Ceontact = Cuatid — Cfree)- If Tk € Ceontact, With a
distance of at least ||v||A¢ from the edge endpoints, then a compliant motion is generated by using
the generalized damper model (see e.g., [78]) for certain choices of ug. If uj points into the obstacle
edge with a sufficient angle to overcome friction, then the robot moves a fixed distance parallel to
the edge. Otherwise, the robot either remains fixed, or moves away into Cfc.. The remaining cases
describe when the robot moves from Cyree t0 Ceontact, from Ceontact 10 Cfree, or from one edge in
Cyalig to another. These cases are straightforward to define with the generalized damper model, as
discussed in Section 2.1.

This model of uncertainty does not correspond completely to the model used in [13, 48, 53]. In
our model nature repeatedly acts at each time At. To correspond more closely with the traditional
model, no additional uncertainty would be introduced if ug = ug+1. Under the control model that
we have defined this would mean 61 = 0 if uy = wugy1. This model can be implemented by

including the previous uy as a component of the state space.

The sensing model We now present a sensing model that is similar to that used in [13, 30, 48].
This sensing model will be used in Section 6.6. The robot A is equipped with a position sensor and
a force sensor. Assume that the position sensor is calibrated in the configuration space, yielding
values in R2. The force sensor provides values in [0,27) U {0}, indicating either the direction of
force, or no force (represented by ().

We consider independent portions of the observation equation: AP for the position sensor, and
h for the force sensor (which together form a 3-dimensional vector-valued function). We partition
the sensing action of nature, 63 into subvectors 6;" and HZ’f , which act on the position sensor and
force sensor, respectively. The observation for the position sensor is y§ = hP(zy, 0;") = x5 + 0,7
Under nondeterministic uncertainty, 6, could be any value in ©;"”. If probabilistic uncertainty is

used, we could provide a density for nature as

2

P(O") = { ¢

0 otherwise ’

for some prespecified radius €,, and 6;” is 2-dimensional.
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For the force sensor we obtain either: 1) A value in [0,27), governed by y,{ = hf (mk,HZ’f ) =
a(zy) + GZ’f, in which zx € Ceontact; and the true normal is given by a(zg), or 2) An empty
value, (), when the robot is in Cfc.. When the robot configuration lies in Cconteer and probabilistic

uncertainty is in use, then we might choose

o for |07
popy = 3 < "
0  otherwise

for some positive prespecified constant €; < 3. We consider the random variables of ;¥ and 0,‘2’f

to be independent and identically distributed over all stages.

4 Forward Projections

In this section we present forward projections for each of the four uncertainty cases that are consid-
ered in this paper. A forward projection is used to characterize the possible future states, under the
implementation of a strategy from an initial state. The forward projection concepts presented here
are based on forward projection concepts that have appeared in manipulation planning research
(e.g., [13, 30]). In our work, the forward projections result from the implementation of a strategy,

~. We conclude this section by presenting some computed examples of forward projections.

4.1 Nondeterministic Forward Projections

Recall from Section 3.4 that under nondeterministic uncertainty, the strategy of nature v? is deter-
ministic, but unknown to the robot. Under perfect sensing, v defines a specific action 65 € © that
will be taken by nature at every stage, k. The resulting nondeterministic forward projection will
include all of the system states that could result from the various actions of nature. In this way, it

yields a set of possible futures under the implementation of a strategy.

4.1.1 The perfect information case

We use the notation Fj(z;, g) to denote the minimal subset of X that is guaranteed to contain z;,
if the system begins in state z; at stage ¢+ and strategy g is implemented up to stage j.
Assume that some g is given, and that at stage k, the state, zj, is known. The action taken by

the robot at stage k is known to be uy = gi(zx). Therefore we can write

Fyi1(zk,9) = Frq1(zk, gk (2r)) = Fry1(zr, ug), (18)

in which Fy 1 (zk, u) is given by (3). Although the action is known, the resulting next state x4

is nondeterministic because of nature, 8} € ©¢.

21



Suppose that we wish to determine the outcome at stage zpy o, if we know zx. From (3), we
already know that zxy1 € Fii1(zk, ux). The nondeterministic action of nature at stage k + 1 must

next be taken into account to yield

Fyio(zk,9) = {f(®ht1, uk+1,0511) € X|2Zht1 € Fr1(z,9), 05,1 € O} (19)

This forward projection can also be expressed with a set union as

Fiio(zk,9) = U Fi12(Tk+1,9)- (20)
Tp41€F,1(Tk,9)

One interpretation for this representation is that from each possible state in the single-stage forward
projection from stage k to stage k + 1, the single-stage forward projection from stage k£ + 1 to stage
k + 2 is possible. The resulting =42 € X represents the union of all of these single-stage forward

projections (see Figure 6).

Stage 1 Stage 2 Stage 3

Figure 6: A depiction of a two-stage forward projection under nondeterministic control uncertainty.

The forward projection for a finite number of stages from stage 1 can be considered as an

iterated union,

Fe(z,9)= (U U U Fy(zr-1,9), (21)

z9€F>(z1,9) z3€F3(z2,9) Tr_1€F,_1(Tk—_2,9)
which is an extension of (20). The projection from any stage k to stage k + N can be similarly
defined.

The next step is to include the termination condition to determine a forward projection for -,
as opposed to g. Recall that the robot remains motionless after T'C' becomes true. Hence, the
effect of the termination condition is equivalent to considering the resulting location of the robot
at stage K + 1 (assuming that under all possible trajectories, the termination condition was met
before K + 1). This results in Fx1(z1,7), which can be constructed by replacing g with 7 in
Equations (18) to (21).
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The classical reachability and recognizability concepts [28] can be defined using our framework.
We say that the goal is reachable at stage k under vy if Fi(z1,9) C G. In other words, if the strategy
is guaranteed to bring the robot into the goal region for some &, then reachability at stage k& holds.
We can also define a reachability that does not depend k. We can say that the goal is reachable
if for every possible state trajectory, {z1,..,2x+1} (under the implementation of a given g), there
exists a k such that z; € G.

A stronger condition is that the goal is recognizably achieved under -y, which means Fx 1 (z1,7) C

G. This condition implies that the robot is guaranteeed to terminate in the goal region.

4.1.2 The imperfect information case

We consider, as in the perfect information case, a deterministic strategy for nature, %, which is
unknown to the robot. We will define the forward projection in a manner similar to the perfect
information case.

The previous forward projection (21) provided a subset of X in which the system state will lie
after the execution of a strategy. With imperfect sensing we can consider the motions to occur in
the information space. In fact, we can consider the information space as a new “state space” in
which there is perfect “state” information. For this reason, a forward projection can also be defined
directly on the information space.

It is assumed for the forward projection that the history has not yet been given. Suppose that
an information state, ny € Ny, is given. Under the implementation of g, the action ux = gg(nx) is
known.

We now define the information forward projection for a single stage. This will be an intermediate
concept that is used to define the forward projection as a subset of the state space. We have
previously used F to represent a subset of X, and we will use F to refer to a subset of the

information space. After appling an action ug and receiving sensor observation y1, we obtain

Fyi1 (M, 9()) = Frr (e, uk) =
{Mk+1 € Nigt1|me U {ur, Y1} C Mkt15 Tht1 € Frp1(zr, ur) N Fog1(rt1), =k € Fr(nr)},  (22)

which depends on (3) and (5), and Fj(nx) € X is the subset representation of the information state
from Section 3.2.

To obtain the information forward projection from stage 1 to some stage k, we can iteratively
apply (22).

The information forward projection can be mapped to subsets of the state space. For a given

Fy(m,g), the subset of X in which the system state will lie is

U Felm)- (23)

M EF (m.,g)
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The goal is reachable at stage k if set defined in (23) is a subset of G. As in Section 4.1.1,
we can replace g with « in the above expressions to yield the forward projection with termination

condition, Fi11(n1,7). Hence, recognizability can also be defined.

4.2 Probabilistic Forward Projections

Under nondeterministic uncertainty, the forward projections yielded subsets of the state space;
however, for probabilistic uncertainty, the forward projections will be specified by pdf’s on the
state space. We use the notation p(z;|z;, g) in this section to represent the density that is obtained
if the system begins at state z; at stage ¢ and strategy ¢ is implemented. This density follows

directly from the state transition equation, and the densities for nature of the form, p(6¢).

4.2.1 The perfect information case

The following development parallels the development of the forward projection in Section 4.1.1.
Assume that some g is given, and that at stage k, the state, xj, is known. The action taken by the
robot at stage k is known to be uy = gx(x). Therefore we can write
p(zry1lzr, 9) = p(Tra1l|Th, g (zh)) = P(Tht1|Tr, ur). (24)
Recall from Section 3.1 that p(zg41|2k, ur) can be determined from the state transition equation.
Next consider predicting the outcome at stage k + 2, if we begin at stage k& and apply g:

P(Tpt2|Tr, 9) = /p($k+2|$k+17gk+1($k+1))p($k+1|$kagk(xk))d$k+1- (25)

The result after applying two actions is a posterior density on X. Figure 7 depicts the forward
projection; this can be contrasted to Figure 6, which showed the forward projection under nonde-

terministic uncertainty.

P(X) p(X) p(X)

X X X
Stage 1 Stage 2 Stage 3
Figure 7: A depiction of a two-stage forward projection under probabilistic control uncertainty.
The forward projection for a finite number of stages from stage 1 results in the posterior:

p(zk|z1,9) = /p($k|-73kflaglcfl(xlcfl))]’(xkflmkf%gk72(-73k72)) e p(zalzr, g1 (z1))dzodes - - - drg_q.
(26)
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The projection from any stage k to stage k + N can be similarly defined.

The next step is to include the termination condition to determine a forward projection for -,
as opposed to g. We can replace g with y in the conditions above, and define p(zx11|z1,7) by
using the assumption that the robot remains motionless after the termination condition becomes
true.

We can now define probabilistic notions of reachability and recognizability. The probability

that the goal is reached at stage k is given by

/ p(Tk|T1, g)dzy, (27)
a

in which the region of integration is the goal region, G C X.

The probability that the goal is recognizably achieved is
/Gp($K+1|$1,7)dIK+1- (28)

4.2.2 The imperfect information case

In this section we develop the forward projections for the case in which there is probabilistic
uncertainty in both sensing and control. The forward projection for this case will be considered as
a density on X, which is conditioned on a particular strategy and initial state (either z; or ).
This density indicates where the robot will be likely to end up when a fixed « is implemented,
either after T'C is satisfied, or at some specified stage. Note that we could also derive p(nk|n1,7),
resulting in a pdf on the information space.

At stage k, the density on X after starting at 7); is given by

p(zklm, g) = /p(wklnk—l,gk_l(nk_l))p(nk_llnk_Q,gk_z(nk_Q)) - p(n2lm, g1(m))dng—1 - - - dna.
(29)
The first term in the integrand can be determined using (9). Each of the remaining terms can be

reduced to

P(Uk+1|77kagk(77k)) = p(yla <o Yk+1, UL, - - - auk“yla cees Yk, ULy - - auk) = p(yk+1|l’7k7 uk‘) (30)

This reduction occurs because most of the sensing and action history appears on both sides of the

density expression. The right side of (30) can be further reduced to

P(Ykt1 |k, uk) =

/ D[Sk 0)P(@hsr [Ty wh) A1 = / / Dk |k 10)P(@hsr |0, u )P (k) dekdzprr,  (31)

in which all three terms in the final integrand are known. The density p(ygi1|zx+1) is inferred
from the sensing model; p(zk41|2k, ux) is inferred from the control model; p(zk|nx) is the density

representation of the current information state.
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To include the termination condition we replace g by 7y above to obtain p(zx41|n1,7). Reach-

ability and recognizability can be defined in a manner similar to that in Section 4.2.1.

4.3 Computed Examples

In this section we present computed examples that illustrate the forward projection concepts.
These forward projections are provided under the assumption that constant motion commands are
given to the robot. In other words, some u € U is chosen, and a strategy is defined as vy, = u
for all £ € {1,...,K}. This will make the comparison of our forward projections to previous
research more clear. In Section 6.6 we will present forward projections that are obtained under
the implementation of the optimal strategies, as computed by our algorithms. These will also be
compared to the forward projections shown in this section.

We have computed forward projection examples in a straightforward way, by using a discretized,
array representation for the state space. Under nondeterministic uncertainty, this be considered
as a bit-map representation of the forward projection. Under probabilistic uncertainty, the repre-
sentation approximates a pdf on X by using a fine grid. In the first step of the computation, the
array is initialized to reflect the uncertainty associated with the initial state. At each additional
step, the forward projection for the next stage is represented in a new array, which is determined
by applying the given strategy to the elements in the previous array (in the implementation, only
two copies of the array are needed at any given time). We have found this computational technique
to produce reasonable representations of forward projections.

For the examples that are considered in this paper, we assume a two dimensional, bounded state
space (i.e., Cpazig € R?), in which each coordinate is constrained to lie in the interval [0,100]. This
could, for example, represent the configuration space of a planar robot that is capable of translating
in the plane. The obstacles in the workspace will be indicated in figures by gray regions, and a
black region will represent the goal.

The first example is depicted in Figure 8.a, and can be considered as a configuration-space
representation of the classical peg-in-hole problem (see for example [30, 13, 48, 53]). The second
example is depicted in Figure 8.b, and is designed to spread the possible locations of the robot over
a large portion of the state space. The initial configuration, z, for these two examples is (50, 96).
We use the control model that is discussed in Section 3.5 and assume that ||v||At = 3, which implies
that the robot is capable of moving 3 units at each stage. We assume that the maximum angular
displacement that can be caused by nature is ¢g = 48.8°. The given strategy is v, = %7( for all
ked{l,...,K} (i.e., move down).

Figures 9 and 10 show the forward projections at several different stages, under nondeterministic
uncertainty. Figures 11 and 12 show forward projections under probabilistic uncertainty. For these

examples, we assume that p(0®) is uniform on the interval [—ep, €p]. Initially, the pdf is sharply
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peaked; however, as control uncertainty accumulates, the density becomes more diffuse. Whenever
compliance is possible, the density becomes narrower in the direction perpendicular to the edge.
The compliant motions have the effect of “funneling” the probability mass into smaller regions.
The pdf values become larger since the density must integrate to one. This effect can be seen in
Figure 12 as a triangular obstacle causes the probability mass to divide. In the final stages, there
is also a peaking effect; this corresponds to the robot sticking at some final state. Maximizing the
probability that the goal will be achieved can be thought of as causing as much of the probability
mass to stay in the goal as possible.

A significant distinction between probabilistic and nondeterministic forward projections be-
comes clear after examining these results. Consider the problem from Figure 8.a. The nondeter-
ministic forward projections indicate that very little prediction is possible since the set of possible
states grows very quickly. By observing the probabilistic forward projection, however, most of the
probability mass appears to terminate in the goal region. This corresponds closely to the arguments
about worst-case analysis eliminating many reasonable motion plans; these arguments were given
in Section 2.2, and also in [13, 14].

It is interesting to note that the densities in Figure 11 appear to be Gaussian, even though the
uncertainty model is specified as a uniform density. Since the effects of the control uncertainty
combine additively, the Central Limit Theorem [80] implies that the densities will tend toward
Gaussian. Even in Figure 12 at k = 11, the probability mass appears to be two disjoint Gaussians.
We have observed that as the probability mass divides because of obstacles, the individual compo-
nents also tend toward being Gaussian. These results indicate that there may be little sensitivity
to the particular choice of error model, as long as the mean and variance remain constant.

Figure 13 shows some additional results that are closely related to the forward projections,
and apply to the case of probabilistic uncertainty. By specifying a strategy, a random process is
automatically defined. The transition probabilities are known, and are derived in part from the
densities that represent nature’s actions. The random process can be considered as a probability
space in which the elements are sample paths. Each sample path corresponds to one possible
trajectory that could occur under the implementation of the strategy. We can iteratively sample
actions for nature and generate a path that represents the state trajectory under the implementation

of a strategy. The figures show several sample paths that were superimposed.
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Figure 8: Two examples that are considered in this section. The obstacles in the workspace are
indicated by gray regions, and the black region represents the goal.

Figure 10: The nondeterministic forward projection is represented by the lightly-shaded regions.
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Figure 11: The forward projection at several stages, under probabilistic uncertainty.
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Figure 12: The forward projection at several stages, under probabilistic uncertainty.
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Figure 13: Each figure shows sample paths of the random process that results from the given
strategy (assuming probabilistic uncertainty). This can be considered as an alternative way to
view the forward projection.

5 Performance Preimages

In this section we present performance preimages for each of the four uncertainty cases that are con-
sidered in this paper. A performance preimage describes a region in the information space or state
space from which the loss in achieving the goal lies within a set of values. This concept generalizes
the notion of classical preimages to arbitrary performance measures, although the preimages are
defined in discretized time in our framework. In the same way that classical preimages are useful
for evaluating a motion command, the performance preimage is useful for evaluating a strategy.
We conclude this section by presenting some computed examples of performance preimages and

relating them to previous literature.

5.1 Nondeterministic Performance Preimages

In this section, we assume that nature implements a deterministic, unknown strategy +?, as defined

in Section 3.4.

5.1.1 The perfect information case

We combine the classical preimage concept with the loss functional to evaluate a given strategy.
Suppose for a moment that the strategy for nature 4% was given to the robot; then the loss for

choosing robot strategy 7 could be expressed as L(z1,7,7%), since the state trajectory can be
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deterministically predicted once z1, -y, and 4’ are given. This in turn implies that the action
sequence uj,us,-..,Uux can also be predicted. Since the strategy of nature is not known by the

robot, we define

L(z1,7) = sup L(z1,7,7"), (32)
,),GeI‘S

which represents the maximum loss that the robot could receive under the implementation of 7
from z;. This corresponds to modeling nature as an opponent, as is done in minimax design [3].

Recall that the classical preimage is a subset of X from which the robot is guaranteed to
achieve the goal for a fixed motion command. Suppose that we are evaluating the trajectory of the
robot with the loss functional (13) for a strategy that consists of a fixed action, repeated at every
stage (which is equivalent to a fixed motion command). Elements z; € X such that L(z,v) = 0
correspond to locations in the state space from which the robot is guaranteed to achieve the goal,
and hence lie in the classical preimage.

We will next generalize this classical preimage. Note that L(z1,7) can be considered as a real-
valued function of z; for a fixed . Consider some subset of the reals, R C . We define the

performance preimage on X as a subset of X that is given by
#tz(7, R) = {1 € X|L(z1,7) € R}. (33)

The set 7,(y, R) C X indicates places in the state space from which if A begins, the loss will lie in
R.

We can consider partitioning X into isoperformance classes by defining an equivalence class
7z (v, {r}) for each r € [0,00). To shorten notation, we denote an isoperformance class, 75(7y, {r}),
by 7z (7,7)-

For the loss functional (13), #;(7y,0) yields the classical preimage. Under (14) and R = [0,m)
we obtain a performance preimage that indicates all ; € X from which the goal will be achieved
with a loss that is guaranteed to be less than m.

If we replace v with g, and replace the condition “if zx 1 € G” in (13) by “if zx € G for some

k” then 7t(g,0) yields a backprojection that is similar to that appearing in [30].

5.1.2 The imperfect information case

We next consider the case in which the robot has imperfect state information. Let L(n1,7,7)
represent the loss that is obtained if the robot implements v and nature implements v’. By
replacing z1 by 71 in (32) we define
L(m,v) = sup L(m,,7"), (34)
A0 €D?
which represents maximum amount of loss that the robot could receive under the implementation

of v, while starting from 7;. Note that here 7Y represents both control and sensing actions.
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Note that L(n;,7) can be considered as a real-valued function of n; for a fixed . Consider some
subset of the reals, R C R. We define the performance preimage on Np as a subset of N7, denoted
by # (v, R), that is given by

(v, R) = {m € Ni|L(m,7) € R} (35)

The set 7(y, R) C N; indicates places in the information space from which if A begins, the loss
will lie in R. Concepts such as isoperformance classes can also be defined on the information space.

We could also consider performance preimages on any Nj.

5.2 Probabilistic Performance Preimages

In this section, we assume that nature chooses actions by sampling from a known pdf, p(6), which

corresponds to a mixed strategy.

5.2.1 The perfect information case

Suppose that we wish to evaluate some v = (g,TC) with a given initial state, z;. If 8 is given
along with 1 and a strategy -y, the entire state trajectory z1,z2,...,z k41 can be deterministically
specified. We can therefore specify the loss for this trajectory as a function L(z1,y,6). This is true
because (2), (4), and z; can be determined for every state when the value of nature’s action, 6, is
given.

The ezxpected loss that we incur if 7y is implemented can be expressed as

L(o1,7) = [ La1,7.0)p(6)do. (36)

in which @ represents the actions taken by nature over all stages. The integral considers each
possible action sequence for nature, 8, weighted by the probability density value p(#). For any given
0 (along with v and z1), the action sequence, {u1,...,ux}, and state trajectory, {z1,...,Zx+1}
can be completely determined, allowing the evaluation of the loss functional.

We observe for a fixed y that L(z1,7) can be considered as a real-valued function of z1. Consider

some subset of the reals, R C R. We define the performance preimage on X as a subset of X,
(7, R) = {21 € X|L(z1,7) € R} (37)

The set 74(y, R) C X indicates places in the state space from which if A begins, the expected loss
lies within R.

We now describe some particular choices for R. Suppose that R = [0, ] for some r > 0 (recall
that L is nonnegative). The performance preimage yields places in X from which the expected
performance will be better than or equal to r. If R = {r}, for some point r > 0, then we obtain
places in X in which equal expected performance will be obtained. We can consider partitioning

X into isoperformance classes by defining an equivalence class 7,(7y, {r}) for each r € [0, c0).
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The loss functional (13) implies that we are only interested in achieving the goal, without any
notion of efficiency in the actual robot trajectory. The loss L(z1,7) in this case represents the
probability that the goal will not be achieved using y. We consider some (7, [0,7]) for r € [0, 1]
as a probabilistic preimage on X. The probabilistic preimage thus indicates places in X from which
the goal will be achieved with probability of at least 1 — r. Furthermore, if we replace v with g,
and replace the condition “if zx 1 € G” in (13) by “if 2 € G for some k” then 7,(g, [0,7]) yields
a probabilistic backprojection, quite similar to that appearing in [13]. We can also consider 7z(7, r)
as an isoprobability class. The isoprobability class 7,(-y,0) corresponds to the classical preimage
notion, in which the goal is guaranteed to be achieved. Although in our case, it is more appropriate

to claim that the goal will be achieved with probability one.

5.2.2 The imperfect information case

In general, the robot A will begin in some uncertain initial state. Therefore, we also consider
performance preimages on the robot’s initial information space, Ni. The preimages represent
places in the initial information space where if A begins, the expected performance will lie within
some R C R. This result specializes to (37) in the case of a given initial state, y1 = y1 = z1. As a
minor extension, one could also consider performance preimages on any information space Ny.

The ezpected loss that we incur if v is implemented can be expressed as

Lms7) = [ Lim,v,0)p(0)db. (38)

For a subset R C R, we define the performance preimage on Ni as a subset of Ni, denoted by
(7, R), that is given by
7(v, R) = {m € M|L(m,7) € R}. (39)

5.3 Computed Examples

In this section we present several computed preimages. As done in Section 4.3 these results are
provided under the assumption that constant motion commands are given to the robot. This will
make the comparison of our preimages to previous research clearer, and in Section 6.6 we will show
preimages that are obtained under the implementation of the optimal strategies, as computed by
our algorithms.

These examples were computed using the techniques that will be presented in Section 6. It
will be seen that representation of the performance preimages is a by-product of determining the
optimal strategy. The evaluation of a given strategy, which is done in this section, can be considered
as the trivial case of computing the optimal strategy for which there is only choice in the space of

possible strategies.
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We begin the examples by returning to the peg-in-hole problem, which was discussed in Section
3

4.3. Suppose that the fixed action is 57, and that the maximum angular displacement, €, is 14.3°.
We will use (13) for all of the examples in this section since we have observed that (14) produces
very similar curves under fixed motion commands; when considering optimal strategies, however,
the differences between the two loss functionals becomes much more important.

Figure 14.a shows a performance preimage under nondeterministic uncertainty. The subset of
the state space that is below the curve corresponds to places in the state space from which the goal
is guaranteed to be achieved. Note that this result does not depend on ||v||At; this is because with
nondeterministic uncertainty, the robot configuration can lie anywhere within the cone generated
from the initial state and +ey. The curve shown in Figure 14.a corresponds closely to the classical
preimage that has been determined for this problem in previous manipulation planning research
(e.g., [30, 47]).

In Figure 14.b we show probabilistic backprojections that are quite similar that those that
appear in [12, 13, 14]. Figure 15 shows a three-dimensional plot of L(z1,7). We assume that p(6¢)
is uniform on the interval [—ep, €g], and ey = 48.8°. We assume that ||v||At = 200, and let K = 1.
There is only one decision-making stage, and the robot can move enough distance to accomplish
the goal in a single stage. The figures shows isoprobability curves from 7,(0.2) to 7;(0.9), at evenly
spaced probability values. The innermost curve represents the 7(0.2).

The remaining examples show performance preimages for cases in which there are not similar
results in the literature. Suppose that instead of using a uniform density for control error, a zero-
mean, truncated Gaussian density is used. The resulting performance contours are shown in Figure
14.c. Again, we show the preimages from 7,(0.2) to 7;(0.9), at evenly spaced probability values.
In general, we can substitute any density into the model and observe the resulting preimages.

For the remaining examples in this section, we use probabilistic uncertainty, and assume that
p(6*) is uniform on the interval [—eg, €g], and ey = 48.8°. We also assume that ||v||A¢ = 3, which
implies that the robot moves only a small amount before additional control uncertainty is added.
Figure 14.d shows the resulting contours (with the same preimage values as used previously).

We conclude this section with two additional examples, which are depicted in Figures 16.a
and 16.b. Probabilistic performance preimages are shown for these problems in Figures 16.c and
16.d, respectively. These examples differ from the previous example since the configuration-space
obstacles are more complex. We assume that the initial state and fixed motion command are the
same as used in the previous example. In these examples the curves appear to be separated around
obstacle boundaries due to the effects of compliant motion. For instance, in Figure 16.c, the curves
are separated because of compliant motions on the top part of the triangular obstacle. Although
there is significant uncertainty in control, the edge of the triangle guides the robot into the goal

region, significantly reducing the expected loss.
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Figure 14: Several computed performance preimages

Figure 15: A plot of L under probabilistic uncertainty.
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Figure 16: Two computed performance preimages. In these examples, the obstacles displace the
curves.
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6 Designing Optimal Strategies

Sections 4 and 5 have presented methods that evaluate a given strategy. In this section define con-
cepts of optimality, and present a computational approach that selects a strategy. Section 6.1 defines
optimality conditions for each of the four uncertainty types that have been considered throughout
the paper. Section 6.2 presents the principle of optimality, which represents a recursive constraint
that significantly reduces the amount of computation necessary to determine a solution. Section
6.3 discusses computational issues that are involved in computing solutions due to uncertainty in
control. Section 6.4 discusses additional issues that are involved when planning in the information
space as a result of imperfect information. Section 6.5 discusses the computational performance.
Finally, Section 6.6 presents computed optimal strategies, which includes forward projections and

preimages.

6.1 Defining Optimality

A strategy, 7, has been used in this work to precisely describe the behavior of the robot with respect
to state or information. The design problem is to select the most desirable strategy, v*, from the
space of allowable strategies I'. We have already defined a loss functional that evaluates the state
trajectory. Without the effects of nature’s actions, the design problem would simply be formulated
as selecting the strategy that produces a trajectory that minimizes the loss. Under nondeterministic
uncertainty nature is considered as an opponent with diametrically opposed interests; therefore,
a strategy is selected that minimizes the maximum amount of loss that could result from the
strategy of nature. Under probabilistic uncertainty the actions of nature can be characterized with

probability densities; hence, a strategy is selected that minimizes the expected amount of loss.

6.1.1 Optimality under nondeterministic uncertainty

Perfect information Recall that TY denotes the space of deterministic strategies for nature
when nondeterministic uncertainty is considered. Under perfect information and nondeterministic
control uncertainty, the ideal choice for a strategy, v* € I, satisfies

E("L‘la’y*) = inf E($157) = inf sup L(‘Tla’yalye) (40)

for all z; € X. This indicates that from any initial state, the strategy will guarantee the least
possible loss given the worst-case actions of nature. This concept has been used previously to
design controllers based on worst-case analysis [3].

If we use the loss functional, (13), the space of strategies I' can be partitioned into two equiva-
lence classes: those that achieve the goal (resulting in a worst-case loss of one), and those that may

fail to achieve the goal (resulting in a worst-case loss of zero). Any strategy in the first equivalence
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class satisfies (40), and directly corresponds to the common approach in previous manipulation
planning research of selecting a strategy that is guaranteed to achieve the goal. By using another
loss functional, such as (14), (40) can be considered as partitioning I" into many more classes; this

induces preferences on the set of strategies that achieve the goal.

Imperfect information To obtain the concept of optimality for the imperfect information case,
the objective is to select v* € I' such that
L(m,7*) = inf L(n1,7) = inf sup L(m,7,7") (41)
yel 7€P796F9

for all 71 € N;. Equation (41) is almost identical to (40), except that the state space is replaced

by the information space.

6.1.2 Optimality under probabilistic uncertainty

Perfect information Recall that the actions of nature can be partially predicted through the
specification of a pdf, p(#), in which 0 represents the action, 6, of nature at every stage.
Under perfect information and probabilistic control uncertainty, the design task is to select a

strategy v* € I' such that

L(@1,7) = inf Dfa1,7) = inf [ L(a1,7,0)p(6)dd (42)

for all z; € X. This corresponds to selecting a strategy that minimizes the loss in the expected

sense, as considered in stochastic optimal control theory [44].

Imperfect information Under imperfect uncertainty, the state space in (42) is replaced by the

information space to obtain

L(ni,7*) = inf L(n,7) = inf / L(m,~,0)p(6)do (43)
yel yel’

for all m; € N;.

6.2 The Principle of Optimality

One powerful tool that underlies many of the solution techniques for dynamic decision-making
problems is dynamic programming. The key is the principle of optimality, which states that an
optimal solution can be recursively decomposed into optimal parts. In general, this optimization
concept has been useful in a variety of contexts, both for producing analytical solutions and for
numerical computation procedures.

The class of problems that can be analytically solved by using the principle of optimality is

fairly restrictive. Bertsekas considers solvable problems to typically be an exception in applications
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[8]. In both control theory and game theory, the classic set of problems that can be solved are those
with a linear state transition equation and quadratic loss functional [2, 4, 15]. As an example, the
principle of optimality forms the basis of the analytic solution to the linear-quadratic Gaussian
(LQG) optimal control problem [44].

Since few problems can be solved analytically, there has been a large focus on numerical dynamic
programming procedures [8, 45, 46]. In several motion planning approaches, numerical dynamic
programming techniques have found successful application [5, 38, 59, 74]. In this section we formu-
late the principle of optimality for each of the four types of uncertainty that are considered in this
paper. For each type, this principle can be viewed as a useful constraint that significantly simplifies

the amount of computation that required to determine an optimal solution.

6.2.1 The nondeterministic case

Perfect information Suppose that for some k, the optimal strategy is known for each stage

i € {k,..., K}. The optimal worst-case loss obtained by starting from stage k¥, and implementing

the portion of the optimal strategy, {vf,...,vx}, can be represented as
5 K
Li(zx) = sup {Zli(ﬂfia'ﬁ(xi)) + 1K+1(~’6K+1)} : (44)
79€T‘9 i=k

in which Ty, refers to the set of possible choices for ;. We use 7/ (z;) to represent the simultaneous
choice of ] and T'C;. Recall that under the implementation of a strategy, the state trajectory
depends on the actions chosen by nature; therefore, the expression in the sup depends on nature.
The function L}(xy) is sometimes referred to as the cost-to-go function in dynamic optimization
literature [8].

The principle of optimality [4] states that L (z;) can be obtained from L} +1(%k41) by the fol-

lowing recurrence:

Li(wk) = inf  sup {Ix(we, me(2r) + Lior (F (2w, 08) } - (45)
’YkEFszGQz

Recall that f(zg,ug,0;) represents zjy1, and hence this defines a recursion. We assume that
termination is implicitly included as a possible choice.

The goal is to determine the optimal action, ug, and termination condition, T'Cy, for every
value of zy, and every stage k € {1,...,K}. One can begin with stage K + 1, and repeatedly
apply (45) to obtain the optimal actions. At stage K + 1, we can use the last term of (13) to
obtain L% 11(x41) = lky1(zx41). The cost-to-go, L%, can be determined from L% 41 through
(45). Using the ug € U and T'Cy that minimize (45) at zx, we define vy (zx) = {uk,TCk}. We
then apply (45) again, using f)}} to obtain Iv/}(,fl and 7% _;. These iterations continue until k¥ = 1.

Finally, we take v* = {7{,..., 7k}
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The loss function, L}, shares similarities with the concept of a global navigation function in
motion planning [47, 66], as both represent functions on the configuration space that can be used to
control the robot. Also, various forms of dynamic programming have been successfully applied in
several other motion planning contexts [5, 38, 59, 74]; for instance, the wavefront ezpansion method
that is described in [47] can be viewed as a specific form of dynamic programming.

Recall that because of stationarity, the strategy, vk, does not depend on the stage index, k, for

the problems that we consider.

Imperfect information We now describe how the dynamic programming equation is applied
under nondeterministic sensing and control uncertainties. From a given information state, we wish
to evaluate a partial strategy from stage k to stage K. Previously, we used the notation, I:Z(gvk), to
evaluate a part of an optimal strategy from a given state. Using the information state representation
Fy(ng), which was defined in Section 3.3, we have

Li(mk) = sup  Li(zp). (46)
xR €Fy (k)

We want to consider the effect of selecting -yx(nx) in the information space, ng. This results in
Fy1(Nk+1), as defined in (18). We additionally assume that the per-stage loss does not depend on
state, l[(zg, ug, TCk) = l(ug, TCy), which encompasses the loss functionals that we have considered
thus far (this assumption is not required in general).

The dynamic programming principle states that Lj(nx) can be obtained from L}, (mk+1) by

the following recurrence:

Li(m) = inf sup  {Im(m)) + L (mesn) } (47)
Ve€lk M1 € Fr41 (ks yur)

in which f),‘;(nk) represents the optimal worst-case loss, obtained by implementing the optimal
strategy v* from stage k to stage K + 1.
At stage K + 1, we can use the last term of (12) to obtain

L1 (ng41) = sup Ik +1(Tr41)- (48)
Tr+1€Fk+1(NK+1)

6.2.2 The probabilistic case

Perfect information We next present the principle of optimality under probabilistic control
uncertainty. The resulting equation can be applied in the same iterative manner to obtain an

optimal solution.

41



The expected loss obtained by starting from stage k, and implementing the portion of the

optimal strategy, {vf,...,Yk}, can be represented as

K
Li(zy) = E {Z Li(ziy ) (7)) + lK+1($K+1)} ; (49)

i=k
in which E{} denotes expectation taken over the actions of nature.

The principle of optimality [44] states that Lj(zx) can be obtained from Lj_,(zk4+1) by the

following recurrence:

Lior) = min {1orue) + [ Lisa(ons)p(onslon, udses | (50)

Note that the integral is taken over states that can be reached using (2).

Imperfect information We now describe how the dynamic programming equation is applied
under probabilistic sensing and control uncertainties. From a given information state, we wish to
evaluate a partial strategy from stage k to stage K. Previously, we used the notation, f,,’;(xk), to
represent the expected loss of executing a partial, optimal strategy from a given state. Using the

information state density p(zg|nr) on X we have

Lime) = [ Lilw)p(orlme)da. 1)

We also consider the one-stage expected loss associated with taking an action, from a given

information state, n:

s () = [ Uk, e me))p( ) o (52

This is the expected loss that will be incurred if an action uy and T'Cy are taken from state 7y,
resulting in some 7, 1. The integral of (52) is determined from (12) and (10). Using the previous
notation, the dynamic programming principle states that L (nx) can be obtained from L} +1(Mkg1)

by the following recurrence:

Ly () = inf) {l_(nka’)’k("lk)) +/I_’Z+1(77k+1)p(77k+1|77ka’Yk(nk))dnlc+1}- (53)

Ve (M

Above, p(ng+1|M%, 76 (nK)) is determined by replacing g with -y in (30).
At stage K + 1, we can use the last term of (12) to obtain

Ly (k1) = /lK+1($K+1)P($K+1|77K+1)d77K+1- (54)
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6.3 Approximating the State Space

We determine optimal strategies numerically by successively building approximate representations
of ﬂz. This offers flexibility, since analytical solutions are very difficult to obtain. Each dynamic
programming iteration can be considered as the construction of an approximate representation of
E,’;. We decompose the state space into cells of uniform size; however, it is important to note the
differences between the use of this decomposition in our context and hierarchical decompositions
that are often used in geometric motion planning (see, for example, [47]). Our primary interest in
using the decomposition is to construct a good approximation of the continuous function EZ over
the entire state space (or information space under sensing uncertainty). This makes the application
of a hierarchical decomposition more difficult.

We obtain the value for L} () by computing the right side of (45) (or the appropriate dynamic
programming equation) for various values of uy and T'Cy, and using linear interpolation. Other
schemes, such as quadratic interpolation, can be used to improve numerical accuracy [46].

Note that the L% represents the cost of the optimal one-stage strategy from each state zx.
More generally, E*K_Z- represents the cost of the optimal 7 + 1-stage strategy from each state zx ;.
For a motion planning problem, we are only concerned with strategies that require a finite number
of stages before terminating in the goal region, and assume that stationarity holds, as discussed in
Secion 3.4. We select a positive § = 0 and terminate the dynamic programming iterations when
|Li(zk) — L,y (w541)| < & for all values in the state space. The resulting strategy is formed from
the optimal actions and termination conditions in the final iteration. Note that no choice of K
is necessary. Also, at each iteration of the dynamic programming algorithm, we only retain the
representation of I_J,’; 41 while constructing I_/,’;; earlier representations can be discarded.

To execute a strategy, the robot uses the final cost-to-go representation, which we call L}. The
robot is not confined to move along the quantization grid that is used for determining the cost-to-go
functions. The optimal action can be obtained from any real-valued location z € X though the use
of (45) (or the appropriate dynamic programming equation), interpolation, and the approximate
representation of L}. A real-valued initial state is given. The application of the optimal action
will yield a new real-valued configuration for the robot. This form of iteration continues until

TC) = true.

6.4 Approximating the Information Space

With sensing uncertainty, planning occurs in the information space. This space, however, is con-
siderably more difficult to utilize than the state space. In one representation, the dimension of the
information space is proportional to the number of stages. In another representation, the state

space is considered as a function space of pdf’s or a space of subsets. In this section, we discuss
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methods that can be used to simplify the information space. These methods involve tradeoffs be-
tween the computational expense and the quality of the information space representation. We are
presently experimenting with these alternatives, and many issues exist that may cause one method
to be preferable over another. In the current implemented examples, which are presented in Section
6.6, we limit the history to the past sensor observation. This results in sensor feedback, which is
similar to the approach used in [28].

These techniques can be used in combination with interpolation, which was discussed in Sec-
tion 6.3. Strategies are determined, however, by successively building cost-to-go functions in the

information space, as opposed to the state space.

Limiting history As defined in Section 3.2, 7 is defined as a subset of the sensing and action
history. One straightforward way to keep the information space dimension fixed is to limit the

amount of history that is remembered. For instance, we can maintain 7 stages of history, to obtain:

M = {Uk—ict 15 Uk—it2y - - - s Uk—15 Yk—is Yk—it1s - - - » Yk }- (55)

If ¢ = 0, then only the last sensor observation can be retained for decision making, which results in
a sensor-feedback strategy. If position sensing is used along with a directional force sensing, then

the information space is reduced to having one more dimension than the state space.

Introducing statistics A more general way to reduce the information space complexity is to
transform the history into a lower-dimensional space. This technique encompasses the history
limiting approach. An ideal situation exists when an information space can be transformed using
a low-dimensional sufficient statistic [25, 44]. A sufficient statistic implies that the transformation
does not cause any loss of “information.” In other words, any decision that is based on the complete
history can equivalently be made by only considering the statistic. The identity function is trivially
a sufficient statistic. A statistic can be selected that is not sufficient; however, the effects that the
projection has on the information space and decisions must be carefully considered.

In general a transformation of the form

Nk :Zk(ula"'auk—layl"'ayk)’ (56)

is applied to the history. The information space N as defined in previous sections can be replaced by
the statistic space Zj, for which z; € Zi. Strategies are then defined Zj, and dynamic programming

can again be applied to yield solutions.

Functional approximation with moments One special type of statistic that can be used

to approximate the information spaces is the set of moments. Recall that the information space
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can be considered as a function space. For example, with probabilistic uncertainty in sensing, the
information space can be represented by the space of possible density functions. We will discuss the
moment-based approach with respect to probabilistic uncertainty; however, a similar principle can
be applied when using nondeterministic uncertainty. Recall that moments summarize information
in random variables. In general, we can use moment computations to approximate this function
space. Recall that continuous functions can be approximated by coefficients of a Taylor series
expansion. As the dimension of the expansion is increased, the approximations are more accurate.
We can obtain a similar situation when considering the information space. The implication of
using fixed-order moments is that all decisions must be made without being able to distinguish
information states that differ in higher-order moments.

Consider, as an example, a second-order approximation. Recall from Section 4.2.2 that from
any sensing and action history (i.e., {ui,uo,...,ux_1,%1,Y2,---,Yx}) the pdf on the state space can
be inferred, p(zg|nx). Let pg and Xy represent the mean vector and covariance matrix, respectively,
of p(zk|nk). From any history, we can now obtain the moments pj and .

If ng are yg(nr) given, recall that a density for the next information state, p(mk+1|mk, Y& (Mk)),
will be obtained. This was used in (53) as part of the principle of optimality, that can be used
to compute an optimal strategy. When using moments, we can replace p(ng+1|m%,76(n%)) by
P(Pkt15 Dkt 1|1k 2k> Vi (B, 2k)) in (53). This can be used to determine optimal strategies from
moments (optimal on the approximated information space).

An information-feedback strategy, 7x(nx), is then replaced by a moment-feedback strategy,
Yk (14, Xk)- The hope in using moment approximation is that v (ng) = v (uk, ) for all n, € Ny.

Another way the evaluate the moment-based approach is to determine whether
L(m, ") = L(p1, 21,7"). (57)

6.5 Computational Performance

We briefly discuss the computational performance of the dynamic programming computations.
Let @ denote the number of cells per dimension in the representation of C... Let n denote the
dimension of the information space (which becomes the dimension of the state space in the case
of perfect information). Let |U| denote the number of actions that are considered. Let |©| denote
the number of actions that are considered by nature. The space complexity of the algorithm is
O(Q™), which is proportional to the size of the state space. For each iteration of the dynamic
programming, the time complexity is O(Q"|U| |©]), and the number of iterations is proportional to
the robot velocity and the complexity of the solution strategy. The number of iterations required is
directly proportional to the number of stages required for the longest (in terms of stages) optimal

strategy that reaches the goal. The computation at each cell (in the application of (45)), has time

45



complexity O(|U| |©]), with n fixed.

The computational cost of dynamic programming increases exponentially in the dimension of the
state space for perfect information, and the information space for imperfect sensing; however, most
algorithms that solve the basic motion planning problem without sensing and control uncertainty
have exponential complexity in the dimension of the configuration space (see [39, 47| for surveys
and comparisons). We consider the current approach to be reasonable for a few dimensions, which
includes many interesting motion planning problems. For more difficult problems some additional
computational techniques may need to be developed.

In our simulation experiments, we have considered problems in which X C R2. We typically
divide the state space into 50 x 50 cells, 64 quantized actions to approximate translational motion.
We have considered similar quantizations of the information space under sensor feedback.

The computation times vary dramatically, depending on the resolutions of the representation.
For the examples that we present in this paper, the computation times vary from about a few
minutes to a few hours on a SPARC 10 workstation. It is important to note that the dynamic
programming equations are highly parallelizable. For example, under probabilistic uncertainty
with perfect state information, the computation of the optimal action at each location zj, depends
only on a very local portion of the representation of Lj +1(Tk+1), and on no portion of L¥(zg). A

parallelized implementation of the algorithm would significantly improve performance.

6.6 Computed Examples

In this section we present computed examples of optimal strategies that were determined by the
computational methods discussed in this section. For these strategies, we show forward projections
and preimages, which can be compared to the results in Sections 4.3 and 5.3.

For the results in this section, we used the loss functional (14) with [(ug, TCk) = ||v||At and
Cy = 10000. We have found the loss functional (13) to not be as useful for determining optimal
strategies. For most problems the cost-to-go is zero at every state from which it is possible to
achieve the goal. Therefore, there are many strategies that are considered equivalent, while in
reality the expected time (or worst-case time) for some of the strategies to achieve the goal may be
arbitrarily longer. For fixed motion commands, however, (13) provided useful information because
a strategy was chosen that in many possible trajectories did not achieve the goal.

For the first example, we refer back to the peg-in-hole problem that was introduced in Section 4.3.
We assume, as considered previously, that ||v||At = 3 and ¢p = 48.8°. Figures 17.a-b show computed
results that were obtained under probabilistic uncertainty with perfect state information. Figure
17.a depicts the optimal strategy by showing the direction of the motion command, uy = v} (),
at different locations in the state space. Figure 17.b shows isoperformance classes for every 6

units (i.e., there is a contour for every two expected stages of motion). Figure 18 shows a three-
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dimensional rendering of the cost-to-go function, along with the preimages. This can be compared
to the preimage results from Section 5.3; under the implementation of the optimal strategy, the
curves emanate radially from the goal region. In Figure 19 we show the probabilistic forward
projection. Under the optimal strategy, all of the probability mass ends up in the goal region. This
can be compared to the forward projection for the fixed motion command that was shown in Figure
11, for which some of the probability mass did not reach the goal.

Figures 17.c-d show computed results that were obtained under nondeterministic uncertainty
with perfect state information. The isoperformance curves are closer together because worst-case
analysis causes the computed loss to be greater.

Figure 20 shows several more computed optimal strategies for probabilistic uncertainty with
perfect state information. We assume for each of these examples that ||v]|At = 3 and €y = 48.8°.
Figure 21 shows a three-dimensional rendering of the cost-to-go function, along with the preimages
for the example in Figures 20.d-f. Figure 22 shows the forward projection for the example in Figures

20.g-i.
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Figure 18: A plot of L* under probabilistic uncertainty and perfect information.

Figure 23 shows computed optimal strategies for probabilistic uncertainty with imperfect state
information. We assume for each of these examples that ||v||At = 3 and €y = 48.8°. We used the
sensing model from Section 3.5, and let €, = 5, and €; = 0. Without perfect sensing, the expected
time to reach the goal increases, which causes the isoperformance curves to be closer together.
In addition, the sample paths under the implementation of the optimal strategies involve more
variations.

The strategy representation and the isoperformance curves in Figure 23 do not align completely
with the obstacles in the workspace because the optimal actions and isoperformance curves are
defined in the information space. For these examples, the information space is represented by the
set of possible sensor values. Sensed force values are not shown in the figures.

Figure 24 shows computed optimal strategies for nondeterministic uncertainty with imperfect
state information. A solution strategy could not be found using the same uncertainty models as for
the probabilistic case. This occurs since worst-case analysis eliminates the consideration of many
reasonable strategies, as mentioned in Section 2. We therefore use |[v||At = 10, ¢y = 0.8, €, = 2.5,
and €; = 0. The isoperformance curves are shown for every 30 units of loss. Figure 25 shows L*

for the example in Figures 24.a-b.
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Figure 19: The forward projection for the optimal strategy under perfect information.
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Figure 21: A plot of L* under probabilistic uncertainty.
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Figure 25: A plot of L* under nondeterministic uncertainty and imperfect information.
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7 Discussion

In this section we briefly discuss some aspects of the current framework, and future directions that

could be taken with this research.

Incorporation of model or environment uncertainty In this work we have only considered
sensing and control uncertainty; however, in general other forms of uncertainty may exist. For
instance, Donald has considered the development of strategies that are robust to errors in the
model of an obstacle [22]. By parameterizing the uncertainty in the model, and performing worst-
case analysis, a motion plan can be determined that overcomes this form of uncertainty. In [68,
69], uncertainty in the form of a changing environment was analyzed for several specific motion
planning problems. These forms of uncertainty can be modeled by augmenting the state space to
include information about the environment. Suppose that a set E characterizes different possible
environments. For instance, if the true width of a slot is not known for an insertion task, then
elements in F could correspond to different possible widths. The state space can be defined subset
of E x C, in which different free configuration spaces are obtained for different values of E. In
the same manner that the configuration of a robot is sensed, we can imagine that the environment
itself is sensed by the robot. Hence the information space additionally encodes the uncertainty in
the current environment. In addition, it is possible that the environment changes over time in a
manner that is not predictable by the robot; this is analogous to control uncertainty, but in this
case the environment must be controlled. Our methodology can be expanded to include these forms
of uncertainty by designing motion strategies on the augmented state space or information space.
There would, however, be increased computational cost due to a larger state space representation.
Issues that pertain to determining optimal motion strategies in an uncertain environment are

presented in [52, 51].

Randomized actions In work by Erdmann [27, 28, 31|, useful manipulation planning methods
were developed around randomizing the actions of the robot. It is important to note that in
our work the robot strategy is deterministic, even though the execution of the strategy can be
considered as a random process. Erdmann has argued that two important benefits result from
using randomized strategies: 1) robustness with respect incorrect models can be obtained, and 2)
multiple attempts can be made to solve a task, instead of requiring a guaranteed solution.

By conditioning our strategies on state feedback or information feedback, the robot is capable
of making multiple attempts to solve a task. In a motion planning context, one can imagine a
robot that attempts to execute a motion plan, reports failure, and then replans to make another

attempt; this behavior is exhibited in the error detection and recovery strategies in [21, 22, 23]. An
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“attempt” is not as distinct in our approach, however, because the robot responds dynamically to
its information. Rather than recomputing a new strategy, the response corresponds to the optimal
behavior that was determined through global analysis of the motion planning problem and its
uncertainties.

Robustness with respect to incorrect modeling represents a useful feature, which has not been
considered by our framework thus far. In the approach that we present, the assumption is made
that the models are correct. Under nondeterministic uncertainty, the correctness of the model can
become critical since it then becomes impossible to “guarantee” a particular loss (unless the model
truly represents an upper bound on the uncertainty). Under probabilistic uncertainty the effect
of modeling errors appears to be less drastic. One difficulty with introducing randomization is
that it can arbitrarily increase the loss require to complete the goal, even though robustness is
strengthened. In the limiting case, pure Brownian motion can be executed. This essentially makes
no modeling assumptions, will achieve the goal, but the loss can be extremely high. It remains to be
seen whether randomized actions can be incorporated into our framework to provide a reasonable
tradeoff between the distance of a strategy from optimality and the potential incorrectness of the

models.

Hierarchical strategies In the methods developed in this paper, the robot executes a fixed
command at each At. In traditional preimage planning, however, a fixed action is executed until
the termination condition is met. If the goal is not yet reached, another action is executed. In
general a sequence of fixed actions with termination conditions is executed until the goal is reached.

Recall that the performance preimage can be used to evaluate a particular strategy. One
interesting approach would be to implement preimage backchaining and subgoals by performance
preimages. We can define G; as a subgoal for a larger problem, and define a g and 7'C that
achieves (71 in a satisfactory way. The resulting posterior density p(z k1) would be used as the
initial information state for the achievement of a second goal, G3. We can consider abstract actions
of the form {G;,~v} that attempt to achieve some original goal. Backchaining from G under explicit
performance measures and a given set of choices for abstract actions is another form of dynamic
programming. The relationship between standard preimage planning and dynamic programming
is discussed in [28]. The reason for considering abstract actions and subgoals is the hope that a
simple set of abstract actions exists that can be composed to provide quick and efficient solutions

for a wide class of problems (as was the case with backprojection planning [30]).

Determining accurate uncertainty models The flexibility of our approach permits the use
of a variety models for sensing and control uncertainty. In many previous approaches, the results

were strongly dependent on the particular model chosen. For instance, worst-case analysis in
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the backchaining approach has often used bounded disk uncertainty for position and bounded
angular error for control uncertainty. With our approach, one important area of future research
is to develop models that accurately reflect the uncertainty involved in a particular manipulation
task. This is particularly true for the case of probabilistic uncertainty. The densities hold a large
amount of expressive power; however, simple models are often chosen to obtain reasonable results.
Within our framework, different uncertainty models can be substituted, and through simulations
or repeated execution trials, better uncertainty models could be developed for a particular context.
This direction of research was also advocated in [14], to determine valid error distributions for the

computations of appropriate probabilistic backprojections.

Sampling Issues One important issue that has received little attention in manipulation planning
literature is the sampling rates that are available for sensing and control. In the typical preimage
planning formulation, the robot is allowed to issue a new command at any point in time, implying
continuous-time controllability of the robot. The robot command is only changed, however, during
the few occurrences of meeting the termination condition. In this paper we have assumed a sampling
rates that essentially approximates continuous-time control and sensing. By allowing the motion
command to change at any discrete stage, we obtain a significant amount of control over the robot
in the face of uncertainty. One useful approach might be to consider a much lower sampling rate.
This models the situation in which fine motions are performed before additional sensing, or a new
control input can be applied. This seems to appropriately reflect a situation in which the planning

workspace is very small, such as in a part mating operation.

8 Conclusion

We presented a flexible framework for manipulation planning under uncertainty in which motion
strategies are selected to optimize a loss functional. We have indicated through the discussion and
simulation experiments that the efficiency of a robot motion strategy is crucial in planning under
uncertainty. We have developed a performance preimage as a useful concept for evaluating motion
strategies, which generalizes the classical preimage. This work identifies termination criteria with
optimal stopping problems from optimal control theory, and allows the incorporation of a termi-
nation condition into the optimal strategy. We apply information space concepts from stochastic
control and dynamic game theory to incorporating history into a motion strategy with uncertainty
in sensing. We additionally provide a computational approach that numerically determines optimal
motion strategies under a wide class of performance functionals by applying the dynamic program-
ming principle to approximate stationary cost-to-go functions, and illustrate the concepts through

computed examples. One of the most important directions for future research will be to investigate
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different methods of approximately representing the information space.
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