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Abstract

The goal of traditional probabilistic approaches to image segmentation has been to
derive a single, optimal segmentation, given statistical models for the image formation
process. In this paper, we describe a new probabilistic approach to segmentation, in
which the goal is to derive a set of plausible segmentation hypotheses and their corre-
sponding probabilities. Because the space of possible image segmentations is too large
to represent explicitly, we present a representation scheme that allows the implicit rep-
resentation of large sets of segmentation hypotheses that have low probability. We then
derive a probabilistic mechanism for applying Bayesian, model-based evidence to guide
the construction of this representation. One key to our approach is a general Bayesian
method for determining the posterior probability that the union of regions is homoge-
neous, given that the individual regions are homogeneous. This method does not rely
on estimation, and properly treats the issues involved when sample sets are small and
estimation performance degrades. We present experimental results for both real and
synthetic range data, obtained from objects composed of piecewise planar and implicit
quadric patches.



1 Introduction

Image segmentation, the low-level vision task of extracting a set of homogeneous regions
from an image, has been a topic of active research since the earliest days of computer vision
research. Although considerable effort has yielded many approaches, segmentation is still
widely considered to be an unsolved problem. The difficulty of the segmentation problem is
due, at least in part, to its underconstrained nature. For example, Horn asserts that one of
the primary difficulties in evaluating a segmentation method is the lack of a clear definition
of the “correct” segmentation [32]; and Szeliski argues that low-level image models often
underconstrain the solution, and advocates the use of uncertainty estimation [63]. Jain and
Binford assert that a key problem in vision research is that the segmentation problem is
often ignored or is assumed to have been solved [38].

In spite of these criticisms, most, if not all, previous approaches to segmentation have been
aimed at deriving a single, optimal segmentation result for a given scene. This segmentation
is often used by some higher-level system (e.g., for object recognition). In this paper, we
present an alternative approach. For a given input scene, rather than attempting to derive a
single, optimal segmentation, we derive a set of plausible segmentation hypotheses and their
corresponding probabilities. This is achieved by using statistical image models to determine
a Bayesian posterior distribution over a set of alternative image segmentations. In terms of
image understanding, this approach can be considered as a step toward breaking down the
segregation that usually exists between segmentation and a higher-level system, by allowing a
higher-level system to have access to more information at the segmentation level and possibly
to influence segmentation-level Bayesian computations.

Our approach provides the following three key advantages, which will be discussed below.

e Multiple alternative segments or segmentations, and their corresponding probabilities,

can be utilized by a higher-level system.

e The framework readily supports extensions to incorporate higher-level or other addi-

tional models.

e Our system is capable of estimating the amount of information present in the image



under a particular statistical image model.

Consider the first point. One straightforward use of multiple segmentations (or segments)
would be to provide ranked alternatives for a system that can repeatedly request a different
segmentation (or segment), given that previous solutions led to a failure. Rather than
simply representing a set of alternatives, consider also obtaining probabilities for each of
the alternatives. The probabilities give much more information than is present in the set
of alternatives alone. For instance, if the leading segmentation obtains a probability of
0.99, then the confidence in the segmentation should be high. If the top ten segmentations
have approximately the same probability, some other model may have to be used to further
constrain the solution.

Since the space of alternatives is often underconstrained using low-level models [63], a
more interesting approach is to introduce additional constraints through the use of higher-
level models, for instance, at the recognition level. For this to occur, it is unreasonable to
select a single, apparently best, segmentation to send to the higher-level system, since the
single segmentation is formed by making all of the decisions using low-level models, losing all
other information. For the higher-level models to participate in the segmentation process, it
seems useful to at least give some set of alternative segmentations. Additional evidence can
then begin to be applied by the higher-level system to constrain the space of segmentations,
eventually resulting in a unique solution.

This provides the motivation for our second point. The Bayesian formalism provides
a natural way to combine evidence from several models. In general, a Bayesian approach
begins with some prior distribution and some evidence, and yields a posterior distribution.
A multiple model approach treats the posterior distribution from one model as the prior
distribution for the next model. The second posterior distribution reflects the application of
both models. This concept can be applied directly to segment and segmentation distribu-
tions. For example, segmentation choices based on surface information could be constrained
by introducing a regularity model for segment boundaries. Furthermore, additional evidence
can be incorporated directly into posterior distribution on the space of segmentations during

the execution of our algorithm. This offers the computational advantage of allowing this ev-



idence to preclude the consideration of numerous alternatives that could later be eliminated.
For example, in Section 4.3.2 we provide expressions for combining evidence from multiple
independent models when assessing region homogeneity. This additional evidence would
also be introduced when computing probabilities for combinations of segments, described in
Section 3.3.2. Extensions of this type are currently being investigated in the continuation of
this work.

For a typical application, it is useful to know the degree to which a particular image
model is providing information regarding the segmentation. When some models are sig-
nificantly more costly than others, which is typically the case in computer vision, this is
particularly true. This is the motivation for our third point. With a probability distribution
over segments and segmentations available, a formal measure of information content can be
directly quantified. One natural measure is the information entropy, which is a function of
a probability distribution. A clear discussion of the characteristics of an entropy measure is
provided in [3]. Several alternative, entropy-based functions can be found in [17],[60].

An entropy measure can be used, for example, to select between different models, or to
decide to combine several models synergistically. Szeliski argues that a measure of uncer-
tainty can be used to guide search, indicate when more sensing is required, and integrate
new information [63]. We presently do not employ entropy measures to guide our algorithms,
but we could estimate the amount of information present by applying an entropy measure
directly to the probability distributions of segments and segmentations.

In practice, it may not be necessary to construct full segmentations. For instance, for
model-based recognition of objects composed of polynomial surface patches, three segments
may be sufficient to determine the position of an object. Faugeras and Hebert provide
conditions for which this holds [23]. Each three-segment group corresponds to a set of
segmentations. One advantage of our work is that it allows the consideration of such partial

segmentations, and their corresponding probabilities.

We now briefly describe the organization of this paper. Since our work has been influenced
by previous statistical approaches, Section 2 presents a brief survey of previous statistical or

probabilistic approaches to segmentation.



In Section 3 we will define a probability space on the set of all possible image partitions,
which we refer to as the Segmentation Sample Space. 1t is not feasible, from a computational
standpoint, to explicitly represent every segmentation in the Segmentation Sample Space.
Therefore, in Section 3, we introduce an efficient, approximate representation scheme that
allows ezplicit representation of those segmentations with high probability, while implicitly
representing subsets of segmentations with low probability. The representation is defined
in terms of Segment Sample Spaces. Each Segment Sample Space represents a set of region
groupings in the image. For each such grouping, a probability is computed that reflects
the homogeneity of the region grouping. For example, when dealing with range data from
objects that are composed of piecewise quadric surfaces, a region grouping will have a high
degree of homogeneity if it can be closely approximated by a quadric surface.

To effectively utilize our approximate representations of the Segment and Segmenta-
tion Sample Spaces, we have developed probabilistically sound and computationally feasible
methods. Section 3.2 describes concepts that relate to the Segment Sample Space. Sec-
tion 3.3 describes concepts that relate to the Segmentation Sample Space. In Section 4 we
present the probability relationships and expressions that are used during the incremental
construction of a Segment or Segmentation Sample Space representation, which incorporate
evidence from a statistical image model.

In Sections 5 and 6 we describe some algorithm details, and present experimental results.
The experimental results are for range data obtained from objects composed of piecewise
planar and quadric surfaces. We present probability distributions over alternative segments
and segmentations, for both synthetic data and real range data. Conclusions are presented
in Section 7. Proofs of the propositions are presented in Appendix A. In this paper we
have used the implicit polynomial surface model for defining region-grouping homogeneity,
and these details are presented in Appendix B. We have shown in related work that the
probabilities that reflect region-grouping homogeneity can also be computed for parametric

polynomials for intensity images, and a Markov Random Field model for texture analysis

[46].



2 Statistical Segmentation Approaches

Statistical approaches to segmentation can be loosely divided into three categories: statistical
clustering, MRF energy optimization, and probabilistic relaxation. In this section, we briefly
review work in these areas.

Clustering has been applied to a variety of image types and models. Silverman and
Cooper [58] segment intensity images into regions that can be approximated by planar or
quadric surfaces. Bell combines clustering with a Monte-Carlo approach to segment radio-
graph images, to determine manufacturing defects [4]. Four basic components involved in
most clustering algorithms are (e.g., [20],[36]): (1) Define a feature metric space. (2) Deter-
mine feature values corresponding to pixels or regions. (3) Iteratively group pixels or regions
with close features in the metric space (4) Terminate based on some stopping criterion (if the
number of classes is unknown). The feature space could, for example, correspond directly to
pixel intensities, or could represent a space of polynomial surfaces, as in [58]. The decisions
involved in the third step depend on the particular clustering algorithm chosen, such as ag-
glomerative clustering [20],[58] and K-means clustering [24],[67]. Most clustering algorithms
require specification of the number of classes, and recent work has been done specifically
addressing the problem of determining the number of classes, known as cluster validation,
in the context of image segmentation applications [40],[67].

The Markov random field (MRF) approach models the image as a lattice of random
variables, with each variable having explicit dependency on some local neighborhood con-
sisting of other random variables. The general model that is most often used in computer
vision was introduced in a seminal paper by Geman and Geman [27], in the context of image
restoration. The appeal of the approach is the fact that any MRF formulation (which ap-
plies to a variety of image models) can be expressed as an energy minimization problem, in
which parallelism can be exploited. The primary difficulties with the approach are the com-
putational complexity of the optimization, and the problem of MRF parameter estimation
[25]. The approach has been applied to modeling noise processes and texture [14],[16],[48],
color-constancy [15], blurring [27],[39], boundary modeling [28],[39], and locally-dependent

nonlinear image transformations [27]. This model has also been considered for range image



segmentation by modeling edges with MRF line processes [18],[37],[49].

In recent years there has been considerable interest in improving MRF energy opti-
mization algorithms. Geman and Geman used a simulated annealing approach (also called
stochastic relaxation) to determine the maximum a posteriori estimate (MAP) of the image
[27]. The temperature, T, is controlled in a manner that guarantees convergence to the
optimal energy state, but the rate of convergence can be slow in practice. Other techniques
have been developed which yield performance tradeoffs. Besag [7] proposed the iterative
conditional modes (ICM) method as a feasible alternative to stochastic relaxation. Marro-
quin et al. gave an approach, called maximizer of posterior marginals (MPM), which defines
a segmentation error metric, minimized to yield the best labeling. Empirical comparison of
these three approaches was done in [18], concluding that for many cases, ICM was the most
efficient, robust and produced the most reasonable segmentations.

Derin and Elliot derive a recursive formulation of the posterior energy function and
propose the dynamic programming formalism to determine the MAP estimate [16]. Due
to high computational complexity, an iterative, suboptimal approximation is used, which
sequentially processes strips in the image. Cohen and Cooper give a parallel, hierarchical
algorithm for optimizing the energy function in a Gaussian MRF [14].

An alternative approach to the minimization is taken by Chou and Brown [13]. The
site values are arranged in a hierarchy, in which various nodes represent subsets of the
set of labelings that can be assigned. Using this representation, a highest confidence first
(HCF) method is developed for efficient energy minimization with least commitment under
inaccurate models.

The issues involved in MRF parameter estimation have also been carefully considered. In
all of the MRF algorithms, some model parameter estimation must be performed to obtain
the energy function. Often, methods perform parameter estimation “off-line” as a prepro-
cessing stage to segmentation [16]. Cohen and Cooper discuss the problem of adaptively
estimating parameters during segmentation in the context of texture models [14]. Subrah-
monia et al. propose an iterative scheme which performs global optimization of the energy

function and parameter estimation for 3-D surfaces through a single performance functional



[62]. An alternative adaptive estimation/optimization scheme has been proposed by Lak-
shmanan and Derin [44]. Manjunath and Chellappa [48] argue that for texture models,
estimation on small windows and simple, nearest-neighbor clustering can be used as a start-
ing point for the energy optimization to yield results comparable to the adaptive scheme
[44].

The probabilistic relaxation (or relaxation labeling) approach has many similarities to the
MRF approach and has been less popular in recent times. One of the early appearances of
relaxation labeling is in work by Rosenfeld, Hummel, and Zucker [53]. A compatibility mea-
sure is used to model the interaction between pairs of pixels, when determining probability
assignments. One begins with a prior distribution of labelings, and through an assignment
rule based on compatibility, iteratively improves estimates of the “true” probabilities. Peleg
provides a probability updating rule, which explicitly defines quantities (as individual la-
beling probabilities and pairwise, joint probabilities) needed for building the models. Some
heuristic estimation is often required determine these probabilities, as in [54]. A more recent
discussion of relaxation labeling, applied to the problem of supervised and unsupervised

texture classification can be found in [33],[34].

3 Representing Segment and Segmentation Probabil-
ity Spaces

In this section we describe an approximate representation scheme that allows for explicit
representation of segmentation hypotheses with high probability, while implicitly specifying
large sets of segmentation hypotheses with low probability. We begin in Section 3.1, by
defining several terms that will be used throughout the paper. For convenience, notation
that will be used in this paper is summarized in Table 1. In Section 3.2, we describe the
mechanism for building approximate representations for a single Segment Sample Space,
which is used to maintain a probability distribution over a space of single segments in an
image. In Section 3.3, we describe how, given a set of approximate Segment Sample Space
representations, we can construct an approximate representation of the Segmentation Sample

Space, which describes the probability distribution over all possible segmentations. Finally,



Symbol | Definition | Section |

R A connected subset of the image 3.1
R The set of all regions 3.1
T A segment (connected set of regions) from the image 3.1
S A segmentation (or partition of R) 3.1
II The set of all segmentations that can be generated from R | 3.1
0; The set of all segments that include R; 3.2
T; A Segment Sample Space (0;, B;, P) 3.2
B; The set of all subsets of ©; (i.e., the events on a 7) 3.2
I An inclusion set, containing regions 3.2
E An exclusion set, containing regions 3.2
(1, E) {TeO;:ICT,ENT =0} 3.2
C A T-cover (a partition of ©;) 3.2
B, An event chosen for T -refinement 3.2
R, A region chosen for 7T-refinement 3.2
p(C, By, Ry) | The T-refinement mapping 3.2
S The Segmentation Sample Space (II, A, P) 3.3
A The set of all subsets of II (i.e., the events on the S) 3.3
fi The segment-to-segmentation mapping 3.3.1
o(F,1,E) {Sen:FCS}filr(I,E)) 3.3.2
C An S-cover (a partition of II) 3.3.2
Ap An event chosen for S-refinement 3.3.2
Pr The probability of including R, 4.1
Tip T({RiaRP}a@) 4.1
Uy The parameter space for Ry 4.2
Y The observation space for Ry 4.2
Ao A ratio based on prior membership probability 4.2
A1 A ratio based on models and observations 4.2

Table 1: Notation used in this paper, with elements sorted by the order of their introduction.

in Section 3.4 we address issues related to defining prior probability distributions for Segment

Sample Space and Segmentation Sample Space representations.

3.1 Regions, Segments and Segmentations

The input to our segmentation algorithm is an array of image elements. Associated with
each element is its representation. This might may be an intensity value, a set of coordinates
in %3, other image information, or a combination of these. In Appendix B (in which implicit
polynomial models are briefly presented), this represents a point in R*, with coordinates
X = [z; 2 x3]. Since the elements of the image are arranged in a matrix, adjacencies and
connectivity can be considered in the usual way.

A region, R, is some connected subset of the image. In practice, most region-based

segmentation algorithms begin by partitioning the image into an initial set of regions, R



(e.g.,[31],[50],[55],[58]). This provides a computational advantage (since there are not as
many potential groupings of data points to consider), and also allows statistical models
to be effectively exploited [58]. The only concern in the construction of R is that each
R € R should be homogeneous. In practice, however, we do tolerate the existence of several
regions that are not homogeneous. In our experiments, we have constructed R by recursively
splitting regions that (a) cannot be closely approximated by a single plane, or (b) contain
an edge.

For a given segmentation problem, we work with a pairwise-disjoint set of regions, R, in
which every element of the image is contained in exactly one region R € R. A segment, T, is
a connected set of regions (e.g., T'= {R;, R, R3} is a segment consisting of three regions).
A set of regions is connected if their union is connected. A segmentation, S, denotes a set of
segments that forms a partition of R. Note that a segmentation in turn defines a partition
of the image.

Given a segmentation, S, and two adjacent segments T}, 7T, € S, a new segmentation, S’,
can be formed by replacing 77 and Ty with 77 U T3, and keeping all other segments fixed.
This corresponds to region merging, expressed in our set-theoretic terms. We note, however,
that in our formalism regions are not actually merged in the traditional sense. Rather, we
form groups of regions, without ever explicitly constructing the union of these regions.

Let IT denote the set of all segmentations that can be constructed given R (i.e., II is
the set of all partitions of R). At one extreme, II includes the partition induced by the
original regions in R. At the other extreme, Il contains the partition that corresponds to
the combination of all regions into one segment. The implication of starting with R is that
there are many image partitions that are not considered. In the limiting case, the elements
of R are singleton subsets of the image. Hence, using R as a basis does not impose any

inherent limitations on the space of segmentations that can be generated.

3.2 A Segment Sample Space (7;)

In this section, we define a Segment Sample Space, and describe how approximate Seg-

ment Sample Space representations are constructed. A detailed example is described in



Section 3.2.1, which illustrates the definitions and concepts. In Section 3.3, we show how
approximate Segmentation Sample Space representations can be constructed, using these
approximate Segment Sample Space representations as a starting point.
For some region R; € R, let ©; be the set of all possible segments that contain R;.
Specifically,
0, ={T CR|T is connected, R; € T}. (1)

Note that ©; always contains at least two elements: the singleton {R;} and the entire set
R (provided the image is connected). For any such ©;, there is a corresponding Segment
Sample Space that describes both ©; and the probabilities associated with each subset of
©;. Specifically, a Segment Sample Space is defined as

T, = (0, B, F)) (2)

in which ©; is defined in (1), B; is the set of all subsets of ©;, and P is a probability
mapping on B;. (Throughout the remainder of the paper, to simplify notation, we omit the
subscript on the probability mapping P;). Since the singleton events are mutually exclusive,
the probability for an arbitrary event B € B; can be obtained by summing the probabilities
P({T}) for each T € B;.

For real image applications, the set of segments, ©;, will be extremely large; the set B; is
exponentially larger. Therefore, it is infeasible to explicitly enumerate the elements in either
O, or B;. To deal with these combinatoric issues, we now introduce an implicit representation
for elements of B;, a representation for approximations to 7;, and a mechanism by which any
given approximation of 7; can be refined to yield a more accurate approximation.

Each element B € B; corresponds to a set of segments. We can identify this set by
specifying (a) the set of all regions common to every segment in B, and (b) a set of regions
not included in any segment in B. Specifically, the inclusion set, I, is the set of regions
common to every segment in B (note that I always includes R;). The ezclusion set, E,
is a set of regions that are not included in any segment in B. To eliminate redundant

representations, we require each element of E to be adjacent to some region in I. Note,
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I N E = . Using this notation, we define 7(I, E'), which maps to some B € B;, as
(I,E)={T€©,:1CT, ENT = 0}. (3)

Thus, 7(1, E) specifies the set of all segments that include all regions in I, and exclude all
regions in . This representation is efficient when compared to the enumeration of segments
in B. For instance, 7({R1, Ra}, ) could represent the set of all segments in an image that
contain regions R; and Ry, through the simple specification of I = {Ry, Ry} and E = 0.
The following proposition implies that every event B € B; has a well-defined representa-

tion in terms of I and E sets.
Proposition 1 The mapping defined by 7 is well-defined and onto B;.

The proof of this and all subsequent propositions are provided in Appendix A.

Given this representation for subsets of ©;, we now turn to the construction of approx-
imations of 7;. Ultimately, we would like to construct approximations of 7; that explicitly
represent those segments that have high probability values, while only implicitly specifying
large subsets of segments that have low probability values. However, for any approximation
to 7;, every segment should be represented, either explicitly or implicitly. To this end, we
define a 7 -cover, C, of 7; to be a set of pairwise-disjoint elements in B; that form a partition
of ©;. If the probabilities for the elements in C' are known, we can consider C' to represent
an approximation of 7;. It is approximate because probabilities are not associated with the
singletons in B;, but only with those elements that are explicitly contained in C. Since the
elements of C' form a partition of ©;, every element of ©; is represented in C, either explicitly
(in the case of singleton subsets of B; in C') or implicitly (in the case of non-singleton subsets
of B; in C).

The notion of goodness of approximations can be formalized by imposing a partial or-
dering on 7-covers. Given two 7-covers, C; and C5, we say that C; is better than Cs if
and only if for all By € C; there exists some By € (5 such that B; C By. In other words,
(1 is better than Cs if C; can be obtained by partitioning some of the elements of C5. We
denote by C?* the set of all singletons in B;. Thus, C7® is an exact representation of 7;; all

of the elements of ©; are explicitly represented, and the probability for each is given. Hence,
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in this case the entire probability map is fully determined (since the probability for any
B € B; can be obtained by summing the probabilities P({T'}) for each T' € B;). Thus, C{® is
better than C for all other 7-covers C. The poorest approximation of 7; is C? = {©;}. We
know that P(©;) = 1; however, the probabilities of the other events in B; cannot be directly
determined. Thus, C is better than C? for all other 7-covers, C.

Procedurally, in order to construct approximations to 7;, we begin with C?, and de-
rive a sequence of T-covers, C¥, such that C*™ is better than C*™'. Each step in this
sequence corresponds to a single 7 -refinement operation. Specifically, given a T-cover CF,
E,) € CF, and a region R, € I, U E,, we define a new 7 -cover,

an event, B, = 7(I,,

CZ!H_I = p(C, BP7 RP)’ by

P(Cz!ca Bp’ Rp) = (Czk - Bp) U {T(Ip U {Rp}a Ep)a T(Ipa Ep U {Rp})}- (4)

The region R, is termed the 7 -refinement region. In order to ensure that only connected
sets of regions are represented in the new 7-cover, we require the 7-refinement region, R,
to be adjacent to some region in I,. The 7-cover, C’f“, is termed the refined 7 -cover
with respect to C¥. The only difference between C* and CF*! is the replacement of B, by
7(I, U{R,}, E,) and 7(I,, E, U {R,}). Thus, the 7T-refinement operation has the effect of
partitioning the event B, into two new subsets of B,: the segments in B, that include R,
are in 7(I, U {R,}, E,) and the remaining elements of B, (all those that exclude R,) are in
7(1,, E, U {R,}). Each singleton in B; represents a single segment. We will refer to these
events as ground segment events, since such events can not be refined.

There is a correspondence between generating a sequence of 7-covers, and generating
classification and regression trees [10],[12],[26]. Classification and regression trees are used
to represent a sample space efficiently, often for the purpose of pattern recognition. In terms
of classification and regression trees, 7-refinement corresponds to the notion of impurity
reduction through partitioning [12]. The goal in the classification and regression tree setting
is to select finer partitions of the sample space to optimally reduce the expected loss due
to approximate representation. In our framework, we will also be reducing the expected

loss, but with an interest in obtaining a representation of ground segment events that have
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Figure 1: A simple image composed of only four regions is provided as an example.

highest probability.

3.2.1 An Illustrative Example

To help clarify these definitions, we now present an example. Figure 1 shows a hypothet-
ical image consisting of four regions: R;, Ry, R3 and R,. Consider Oy, which is the set of

all segments that include R;:

61 = {{Rl}a{R17R2}7{RlaR?:}a{RlaRQ;R?x}a
{R1, Ry, R4}, {R1, R3, R4}, {R1, R, Rs, R4} }. (5)

Note that {R;, Ry} ¢ ©; since R; is not adjacent to R,. For larger images, the number of
segments in ©; is typically a small fraction of the total number of possible (connected or
not) region groupings. This is because the excluded regions tend to disconnect the included
regions from the rest of the image. This happens in the example when R, is cut off from R;
by excluding R, and Rj.

In Table 2 we show the representation for a few events in B; in terms of 7(I, E). In rows
4 and 8 to 13 of the table, 7(I, F') corresponds to a ground segment event. We note that
7(I, E') provides a compact representation for potentially large subsets of ©;. For example,
in row 3 of the table, four elements of ©; are implicitly represented by I = {R;, Rs} and
E = (. The savings in representation increases as the number of regions in R increases.

Table 4 depicts one possible sequence of 7 -refinement operations that could be derived.
For convenience, Table 3 names all of the segments of ©;. We begin with C?, which corre-
sponds to the set ©1. T-cover C7 is constructed by using the mapping C} = p(CY, ©1, Ry).

The T -cover C? is constructed using Rz and event {17, T3, Tg}. The iterations are continued

13



LT E [, B) |

1 | {R} { O

2 | {R} {Ra} HR L ARy, Ra}, { Ry, Ry, Rut}
3 | {R1, Ry} {} {{R1, R2},{R1, Rs, Ry}, {R1, R2, R3},{R1, R2, R3, R4 }}
4 | {R:} {Ro, R} | {{R:1}}

5 | {R, R3} {Ra} R, Rs}, {11, B3, Ry} }

6 | {R1, Ro} {R3} R, Ro}, {1, Ry, Ry} }

7 | {R1, Ry, R3} {} {{R1, R2, R3},{R1, R2, R3, R4 }}
8 | {R1, Rs} {Ro, Ra} | {{R1, R3}}

9 | {Ry, R3, Ry} {Ry} {{R1, R3, R4}}

10 | {R1, Rs} {R3, Ry} | {{R1, Ra2}}

11 | {Ry, R, Ry} {R3} {{R1, R2, R4}}

12 | {R1, Rs, R3} {R4} {{R1, R2, R3}}

13 | {R1,R2, R3, Ry} | {} {{R1, R, R3, R, }}

Table 2: Segment space events are represented for the four-region example. The columns
under I and FE denote the include and exclude sets, respectively. The column under 7(I, E)
gives the corresponding event in B;.

until 7-cover C%. No further 7-refinements can be performed after C? since every element

in C? is a ground segment event.

3.3 The Segmentation Sample Space (S)
The Segmentation Sample Space is represented by the probability triple
S= (HaAaP)a (6)

in which II is the set of all segmentations that can be formed using R, A represents the set

‘ Name ‘ Segment ‘
T {R:}

Ty {Ry, Ry}

T3 {Ry, Rs}

T, {R, Ry, R3}

Ts {Ry, Ry, Ry}

Ts {Ry, Rs, R, }

T; {R1, Ry, Rs, R4}

Table 3: Enumeration of segments for the example image

14



‘ T -cover ‘ R, ‘ B, ‘ Partition of ©,

CY - |- {1\, 15, T3, Ty, Ts, Tg, Tr }

C1 Ry, | 6, (T, Ty, T5, T}, 4T, T5, Ts )}

C? Rs | {T\,Ts,Ts} (T, Ty, Ts, T: Y, {11}, {15, T} }

c3? Ry | {15, Ty, T5, T} | {{T2, T5 }, {Tu, Ty}, {11}, {T, T} }

% Ry | {15, Ts} UL, Ts} ATy, Tr} {11}, {13}, {T6 )}
Cir) R, {T27T5} {{T2}7{T5}7{T47T7}7{T1}7{T3}7{T6}}
cp Ry | {1y, T7} UL AT AT AT AT} AT {T6 )

Table 4: A sequence of 7 -refinements that generates a 7-cover, C?, which explicitly repre-
sents all segments.

of all subsets of II (i.e., the power set of IT), and P denotes a probability mapping defined on
A. Since the size of II grows at least exponentially with the size of R, we will only construct
approximations to §, in a way similar to that used to construct approximate representations
of 7;. Furthermore, we will use approximations of the various 7; as the basic building blocks
in the construction of these approximations to S.

In the remainder of this section, we will develop the relationship of the probability dis-
tribution on a particular 7; to the probability distribution on S, show how approximations
to 7; can be used to construct representations of S, and finally, introduce a method for

approximating S.

3.3.1 The segment-to-segmentation mapping

The relationship between a particular 7; and S is specified by the function f; : B; — A.
For a ground segment event, denoted by {T'}, ! we define f; by

LT ={Sem:Tes). (7)

The event f;({T}) € A is the set of all segmentations that include the segment 7. Since

every T' € ©; contains R; and segments in a segmentation are disjoint, we have

TN Hi({T}) =0 VI, T, € ©; T #To. (8)

'We use {T'} instead of T since the ground segment event is a singleton subset of ©;.
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In other words, no single segmentation can contain two distinct segments that belong to the
same O;, since by the definition of ©;, such segments would overlap. Using (7) and (8), we

define the mapping for a general event, B € B; as

£B)=U f{Ty) = J{Sen:Tes}, (9)

TEB TEB
in which both unions occur over disjoint sets. By applying f; to each ground segment event

of 7; we obtain a set of events that form a partition of II, with each set in the partition
corresponding to some segment from 7;.

The relationship between ©; and II resembles the refinement relationship defined by
Shafer [57]. In fact, the mapping f; is very similar to what Shafer terms a refining mapping;
however, this should not be confused with our use of refinement in the context of creating
new approximations for 7;.

The relationship between the probability map on 7; and the probability map on S is such
that the two probability maps coincide on events that are equivalent through f;. To avoid
confusion, in this section and in Section 3.3.2, we will use P to denote the probability map
on S, and Pg to denote the probability map on 7;. Explicitly, the probability assigned to a

ground segment event in 7; is assigned directly to the corresponding event on S

Pu(fi({T})) = Pe({T7}). (10)
For an arbitrary event B € B; we use (9) to obtain
Pu(fi(B)) = Y_ Po({T}) = Pe(B) (11)

which holds because ground segment events are disjoint.
Given a probability map defined on 7;, we have constraints only for the corresponding
map on A, i.e., we can only determine probabilities for those elements of A that are in the

image of B; under f;. This implies that 7Z; can be considered as an approximate representation
of S.
3.3.2 Building approximate representations of S

In this section, we show how to construct approximate representations for S using approx-

imate representations of various 7;’s as building blocks. The idea is to piece together ground
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segment events from a number of 7;’s, until the entire image is covered. The probability
mapping from ground segment events in 7; to events in S, given by (11), is used to deter-
mine the corresponding probabilities for the events on §. Construction of an approximation

to S can proceed as follows:
1. Let =1, and let R; = R.
2. Select some region, R;; € R;, and construct an approximate representation for 7;,.

3. Refine the representation of 7;,, until a 7-cover, C, is obtained such that it includes

at least some set, X C (', of ground segment events.

4. Select some segment 7" € X and construct R;;1 =R; —T.

Ot

. Repeat 2-4 until until R; = 0, i.e., until the entire image has been covered by segments.

Although the algorithm above seems to imply that the S representation is built from explicit
7T; representations, we show in Sections 3.3.3 and 5.2 that the S representation can be con-
structed by a sequence of S refinements, much in the same manner as for a 7 representation.

Given an approximate representation of S, it is possible to compute the probabilities,
Pp, for events on S that are represented. Consider, for example, the case of two iterations of
the above construction process. Let T be a ground segment event from ©;,, 7> be a ground
segment event from ©;, and let R3 = R —T; —T>. We can compute the probability assigned

to the event corresponding to all segmentations that contain both 77 and 75 as

Pa(fi({Th}) 0 fa({T2})) = Pu(fo({T2}) [ A({Ti}) Pu(fr({T2}))- (12)

Assuming that the probability maps on different 7;’s are independent (i.e., there is no

statistical dependency between different segments in the same segmentation), we have

Pa(fi({Th}) 0 fa({T2})) = Pu(f2({T2}) Pu(fL({T1}))- (13)

Using one segment from each of n 7;’s, and assuming that the probability maps on

different 7;’s are independent, we obtain

Pu(fi{Ti})n({T2})N. . .0 fu({Th})) = Pu(f({Tn})) - - - Pu(f2({T2})) Pu(fr({T2}))- (14)

17



‘ Segmentation ‘

{{Ry1, R3, Ry}, {Ro}}
H R, Ro, Ru}, {R3}}
{{R1, Ry, R}, {R4}}
{{R1, R2, R3, R, }}
R, B3}, {Ra, Ra}}
R, R}, { R}, {Ra}}
HRy, R}, { R}, {Ra}}
{{Rla R2}a {R?n R4}}
HR} {Ro, Ra}, {R3}}
R}, {Ro, B3}, {Ra}}
{{R1},{R», Rs, R4} }
R}, { R} { R}, {Ra}}
R} {Ro}, {Rs, Ra}}

Table 5: The possible segmentations for four-region example

Cases in which the probability maps on individual 7;’s are not independent are discussed
in [45]. This corresponds to a situtation in which additional model-based evidence could
be used, causing a statistical dependency between segments (as opposed to strictly within
segments).

For the example presented in Section 3.2.1, Table 5 indicates the set of segmentations
that can be derived using this process. For this example, 5 7;’s were constructed, and all of

the 13 possible segmentations are represented in the table.

3.3.3 Compact Representation of Events on S, S-Refinements, and S-covers

In this section, we introduce a representation for events on S that is analogous to the 7
representation introduced in Section 3.2 for events on 7;. Following this, we define an S-cover
(which is analogous to a 7-cover), and the S-refinement operation (which is analogous to
T -refinement).

Any event on S constructed in the manner presented in Section 3.3.2 can be implicitly
represented by a set of segments, F', an include set, I, and an exclude set, E. The elements

of F' are the segments obtained in the sequence of 7; constructions. The sets I and E are
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the include and exclude sets of 7(I, E), an event in the current 7; construction. We will use
(©;, B;, P) to denote the current 7;. Formally, we represent an event on S by a function o,
in which

o(F.I,E)={Sell: FC S} fi(r(I, E)). (15)

As defined in Section 3.3.2, f; is the function that maps events in B; to their corresponding
events on §. In this context, the corresponding event on S is
fi(r(I,E) = |J {Sell:TeS} (16)
Ter(1,E)

Thus, (15) represents the set of segmentations that include every segment in F' and
exactly one segment from 7(/, E).

An S-cover, C, is a set of pairwise-disjoint events in 4 that form a partition of II. As
with 7 -covers, there is a partial ordering on S-covers; and, as with 7 -covers, it is possible to
construct a finer S-cover from an existing S-cover by performing an S-refinement operation.

An S-refinement is performed by partitioning the S-refinement event, A, = o(F}, I,, E,),
into two finer events, A; and Ag. This is achieved by applying the 7 -refinement operation
to 7(1,, E,), for a T-refinement region R,. We impose the constraint that R, be adjacent
to some region in [,, and that it not used in F, or I,. For the case in which 7(I,, E,) is a

nonground segment event, the two S-refined events are
Ap = U(Fpa Ip U {Rp}a Ep) (17)

and

Ap = U(Fp’ I, E,U {Rp})- (18)

This proposition implies that the replacement of A, by A; and Ag corresponds to a valid

S-refinment:

Proposition 2 If A, = o(F,,1,, E,), and 7(I,, E,) represents a nonground segment event

on T;, then Ar and Ag, given above, form a disjoint partition of A,.

It is possible, however, that 7(I,, E,) may be a ground segment event. In this case, the

construction of a new 7 must be initiated. We select some region, R;, that is not in any
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of F,, I,, or E, as the initial region for the new 7. It is convenient to use an equivalent

representation for o(F), I,, E,), as given in the following proposition:

Proposition 3 For an event on S, o(F,,1,, E,), in which 7(1,,E,) is a ground segment

event on T;, and for some region R; not in F, or I,,
0(Ep, Iy By) = o(E, U{L,}, {R;},0). (19)

Although the proof is in the appendix, this equivalence can be seen by noting that
7(1,, E,) contains only one segment, {,}, and the expressions on both sides describe the set
of all segmentations that contain the segment {I,} and the segments in F,.

Using Proposition 3, when 7(I,, E,) is a ground segment event on 7;, the S-refined events

are

A= U(Fp U {Ip}a {Rjﬂ Rp}a (Z)) (20)

and
Ap = o(F, U{L}, {R;}, {R,}). (21)

Again, these represent a disjoint partition of A,, and hence can be used in an S-refinement.

3.4 Considering Priors

Bayesian approaches require the specification of prior distributions. Our goal when speci-
fying prior distributions is to reflect uniformity, to avoid introducing prior bias. Alternatively,
one might want to introduce a prior bias, for instance toward some number of segments per
segmentation. In this section, we describe three possible specifications of prior distributions
on 7 and S probability spaces. Each of these specifications corresponds to a particular
definition of uniformity over 7 or S§. In Section 4, we discuss how the image models are
applied to yield a posterior probability distribution.

The first kind of prior uniformity, termed segmentation uniformity, is the condition that

all segments have equal prior probability, i.e.,

P{S}) = ﬁ VS €Tl (22)
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in which |TI| is the number of possible segmentations. This appears to be the most natural
definition of uniformity. The difficulty with segmentation uniformity is that it requires
enumerating Il before being able to determine the prior. The methods that have been
discussed are aimed at avoiding this enumeration. Hence, segmentation uniformity is difficult
to explicitly use; however, it serves as a reference for comparing other types of uniformity.
The second kind of prior uniformity, which will be called segment uniformity, specifies

that each segment in 7 has equal prior probability. Specifically, for a space ©;

PUTH = éi| VT € ©;. (23)

Segment uniformity appears to be a natural choice; however, segment uniformity does not
imply segmentation uniformity, except for the special case in which f({T'}) contains the same
number of elements, for all T € ©,. This is implied by the probability constraint (11). Thus,
in general, with respect to segmentation uniformity, segment uniformity can be considered
as a kind of bias.

The third and final type of uniformity that we consider is membership uniformity. Mem-
bership uniformity reflects the assumption that for any 7 -refinement, the prior probabilities
associated with the two 7 -refined events are equal. This corresponds to the assumption that
the prior probability of including a region in a segment is equal to the prior probability of
excluding that region from the segment. Membership uniformity does not imply segment
uniformity, except in the special case when |I U E| has the same number of regions for all
ground segment events, 7(I, E) € 7. Note that this is not the case for the example of Section
3.2.1, as can be seen from Table 2.

Our experiments indicate that the bias due to priors is readily overcome when evidence is
strong. We have also observed that membership uniformity is usually closer to segmentation
uniformity than it is to segment uniformity. This is due to the fact that segments with fewer
regions (given higher prior probability) tend to cause more 7’s to be constructed than larger
segments. The probabilities on S are obtained from these individual 7’s using (14). As the
number of segments grows, the prior probability tends to decrease, compensating for the

small-segment bias with respect to segment uniformity.
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4 Bayesian Probability Assignments for Refinements

Although constructing 7-covers by 7 -refinement has been specified structurally, no at-
tention has yet been given to determining the probability assignments to the events that
are created by 7-refinement. One primary issue must be considered: we are not given a
complete representation of P on 7. This would require one probability assignment for every
ground segment event.

Recall that each 7-refinement removes one event in a 7-cover of ©; and replaces it
with two disjoint events whose union is the original event. The basic strategy in building a
representation for some 7 is to determine probability assignments for the new events when
this step is performed. This requires deciding how to divide the probability of the original
event between the two new events. There are two basic mechanisms that exert influence
on this probability assignment. As discussed in Section 3.4, there is some prior distribution
on the sample space. Also, after the application of evidence, some posterior distribution is
obtained. Model-based evidence will be used, along with the prior distribution, to determine
probability assignments at the 7 -refinement step. These issues will be discussed in the

remainder of this section.

4.1 Refined-Event Probability Assignments

Using the 7 -refinement mapping, p, successive partitions are constructed for ©;, as pre-
scribed by (4). In order to perform a 7 -refinement operation, we select an event B, =
7(I,, E,) and a 7T -refinement region R,, and then partition 7(/,, E,) into 7(I, U {R,}, E,)

and 7(I,, E, U{R,}). For probabilistic consistency, it is necessary to have

P(T(Ipa Ep)) = P(T(Ip U {Rp}a Ep)) + P(T(Ipa E,U {Rp}))- (24)

Prior to the first 7-refinement we have 7(1,, E,) = 7({R;},0) = ©,. Therefore, it is assumed
inductively that P(7(I,, E,)) is known, and that the two probabilities on the right side of
(24) must be determined using priors and model-based evidence.

We assume here that P(7(I,, E,)) is not altered by the 7-refinement operation. If this is

not the case, it is possible to develop more general models for which P(7(1,, E,)) is affected
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by considering evidence associated with R,. For example, taxonomic hierarchies, analyzed
by Pearl [51], allow this to occur. Pearl gives an efficient method for propagating evidence-
based, posterior probabilities throughout a hierarchy of events, but the construction of the
hierarchy is not considered. Pearl’s more general Bayesian networks have also been applied to
computer vision problems. Agosta, and Binford et al. have considered them for model-based
object recognition applications [1],[8]. Sarkar and Boyer have proposed Bayesian networks
for a hierarchical organization of perceptual features [56].

Since P(7({,, E,)) is known inductively, only one of the terms on the right side of (24)
is required, say P(7(I, U{R,}, E,)). To assist in the application of model-based evidence,

we provide the following decomposition:

Proposition 4 For some refined event, 7(I,U{R,}, E,), its probability can be expressed as
P(r(l, U{R,}, Ey)) = P(T({Ri, Ry}, 0) | 7(1,, Ep)) P(1(Ip, E,)). (25)

We let, P; = P(t({R;i, R,},0) | 7(1,, E,)), and refer to P; as the membership probability.
This is essentially the probability that R, is a member of the maximal homogeneous segment
that contains I?;, given that regions in I, are members and regions in F, are not. Because
we will use the event 7({R;, R,},0) extensively throughout this section, we simplify its
notation by letting 7;, = 7({R;, R,},0). Note that the left hand side of (25) is expressed in
a form that explicitly indicates the importance of adding R, to I,. This is the fundamental
distinction between the event 7(I,, E,) and the 7-refined event. It is natural to expect that
the probability due to evidence will depend directly on the new region that has been brought
into consideration, which has been precisely represented by the right hand side of (25). Our
membership probability can alternatively be considered as a definition of fuzzy membership,

with respect to the segment that contains R; [19],[43].

4.1.1 [FE-independent and [ E-dependent models

The probability P(r({R;,R,},0)|7(I,, E,)) in (25) depends on R,, I, and E,. If a
model uses information from all of these regions, it is termed [FE-dependent. If a model

uses information only from R, and R; € I,, then it is termed IFE-independent, since the
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membership probability is independent of the regions in I and E (except R;). Explicitly,

I E-independence can be expressed for P; as
Pr = P(r({Ri, R,},0) [ 7(Ip, E,)) = P(r({Ri, R}, 0)). (26)

The choice between these models depends on the application. The I E-dependent model
is, of course, the more general model since it does not require an additional assumption;
however, the computations that it will tend to produce are more costly. Since the IFE-
independent model uses only R, and R;, only one membership probability computation is
performed for each potential 7-refinement region. If I, and E, are also considered, then
a membership probability computation must be performed for each 7-refinement. It is
not always be appropriate to use the I E-independence assumption. Since the membership
probabilities with this assumption depend on the relationship between R, and R;, there
must be a significant amount of information available in R;. Typically, this will imply that
better utilization of model evidence will be possible when R; contains more data points. We
note that in general, 7({R;, R,}) could be statistically dependent on any other region in R;

however, for computational reasons, at most the regions in I and F are considered.

4.2 Posterior Evidence-Based Membership Probability

In this section we present the expressions that determine the posterior membership prob-
ability for the I F-independent model. The more general, I E-dependent model derivations
and expression can be found in Section 4.3.1 and in [45].

For each R, € R we associate the following: a parameter space, an observation space, a
degradation model, and a prior model (see Table 6). The parameter space directly captures
the notion of homogeneity: every region has a parameter value (a point in the parameter
space) associated with it, which is unknown to the observer. The observation space defines
statistics that are functions of the image elements, and that contain information about the
region’s parameter value. We could use the image data directly for the observation, or
could choose some function (possibly a sufficient statistic, depending on the application)

that increases the efficiency of the Bayesian computations.
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Although the parameter values are not known in general, a statistical model is introduced
which uses two probability density functions (pdf’s), forming the prior model and the degra-
dation model. The prior model is represented by a density on the parameter space (usually
uniform), before any observations have been made. The degradation model is represented
by a conditional density on the observation space, for each given parameter value, and can
be considered as a model of image noise. Each of these concepts have been used in similar
contexts for image segmentation. In fact we have borrowed the term degradation model from
Geman [29]. In that context, similar models are used for a Bayesian formalization of the
MRF approach. Szeliski also defines a Bayesian model for MRF's, and terms what we call
the degradation model, the sensor model [63].

The transformation of the image elements in R, and R; yield observations of the random
variables Y, and Y;. These serve as the evidence used to determine the posterior membership

probability, which is represented as P(r({R;, R,}, 0)|yi, ¥,)-

Proposition 5 Given the observations y; andy,, the posterior I E-independent membership

probability is
1

P(r({Ri, Ry}, 0)[y,,y1) = : 27
B B D90 = 133 ey ) (1)
in which
1-PF,
= 2
Ao 7 (28)
and
[ piudp(udu] | [ p(,lu)p(,)du,
M (Yi ¥p) = : (29)
| p(yilus,)p(y, i, )p(us, ) du,
Parameter space A random vector, Uy, which could, for instance, represent a

space of polynomial surfaces.

Observation space A random vector, Yy, which represents the data or functions of
the data x € Rjy.

Degradation model A conditional density, p(yx|uk), which models noise and
uncertainty.

Prior Model An initial parameter space density, p(uy).

Table 6: The key components in our general statistical framework.
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We denote the prior membership probability as P,. The Ag and X (y;, y,) ratios represent
a decomposition of the factors contributing to the membership probability: a prior factor
and a posterior factor. The range of values of these ratios is restricted to 0 < A\g < oo and
0 < A1(yi,¥,) < 0o. When one of these ratios takes on the value of 1, it essentially does not
bias the posterior membership probability.

The expression (29) has appeared recently in work from the statistics literature, and
is termed a Bayes factor. Smith and Speigelhalter used a similar ratio for model selection
between nested linear parametric models [59]. Aitken has developed a Bayes factor for model
comparison that conditions the prior model on the data [2]. Kass and Vaidyanathan present
and discuss some asymptotic approximations and sensitivity to varying priors of the Bayes
factor [42]. Petit also discusses priors, but with concern for robustness with respect to outliers
[52]. The Bayes factor has also been carefully studied for evidence evaluation in a forensic

science context [6],[11],[21],[22]. Other references to Bayes factors include [5],[30],[41].

4.3 Other cases and extensions

In this section we briefly present some extensions to the result presented in the previous sec-
tion. The expressions in Section 4.3.1 represent the more general I E-dependent model. Sec-
tion 4.3.2 presents the expression obtained when multiple independent parameter spaces and
observation spaces are considered. Finally, Section 4.3.3 indicates how the expressions apply
to discrete random variable parameter and/or observation spaces. The resulting expressions
from these three extensions are similar in appearance to the expressions in Proposition 5,

and consequently for detailed derivations the reader is referred to [45].

4.3.1 ITE-Dependent Membership Probability

With the I E-dependent model, the probability of homogeneity is expressed as

PI = P(Tip|YP7 Y1i,---,¥Ym, T(I/h Ep)) (30)

This expression is similar to that for the I F-independent model. We would therefore

expect some similarities between the derivation of this membership probability and that for
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the I E-independent model, and, indeed, this is the case. With the [/ E-independent model,
only R; and R, were used to influence the parameter space density. With the /E-dependent
model, all of the regions that belong to I, will be used. It may be possible that the models
are formulated in such a way that is possible to create an observation variable obtained from
the region given by

U R (31)

RkEIﬂ

In other words there are Yy and Uy for Ry, with a given conditional pdf p(yy|ug). The
membership probability is then computed using (29) by replacing R; with R;.

Alternatively, we may treat each region in I, individually, with each region having its
own set of observation variables. The observations from each region in I,, together with y,
can be used to determine the posterior membership probability.

Let I, = {Ry,...,R,} be the set of included regions. The observation variables are
Yi1,..., Y Itisassumed again that all information to be considered is represented by these
variables. All of these observations together are the evidence that is used to determine the
membership probability. As shown in [45], the membership probability can be represented

as

1
1+)\0 /\1(Y1a--->}’m>}’p).

[ 35lu)p(u,)du] {/ [ﬁ yk|u] )du}.

/ {ﬁ p(Ykh’—)} p(y,|u)p(u)du

k=1

P(Tip|YIa---aymaYp,T(IpaEp)) = (32)

in which

)‘1(Y1a -y Ym, yp) = (33)

This form is intuitively pleasing since it is nearly the same as (29) for I E-independent
membership probability. The distinction is that the product of pdf’s over different regions
which appear here in the integrals replaces the pdf corresponding only to region R; for the
independent model.

These two alternatives (creating one large region or considering individual observation

spaces), in general, produce different results. The two alternatives coincide when both Yy
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and the observation variables from each of the regions in I, are sufficient statistics. When
this occurs, the same information regarding the parameter density will be obtained whether
observations are made from each region individually, or one observation is made from the
union of the regions. Since each individual region observation is equivalent to using all of
the points in I, directly, the resulting parameter densities will be the same for both, yielding

identical results for either approach.

4.3.2 Multiple Independent Models

Since a Bayesian model is used to determine membership probability, there is a natural
extension to the case of multiple, independent models of evidence. We begin the discussion
with the prior membership probability. When the evidence-based probability is determined
from the first model, the resulting probability can be treated as a membership prior for the
next evidence model. This is a natural benefit of using this Bayesian approach, as opposed
to formulating some decision criterion for each model. Hence, one can combine evidence
from multiple sources.

For simplicity, the multiple model case will be shown only for the I F-independent case.
The results carry over to the I F-dependent model in a straightforward manner. Consider
some set of models, each specified as in Section 4.2. Take some region Rj. There are m
models, each with its own parameter space random variables: Ui, ..., Uy, The superscripts
denote different parameter spaces. Also, consider observation variables Yi, .o, Y, with
each yf( corresponding to relevant observations about the parameter space U{(.

For each of the m models we receive an observation, yielding the values y;, ...,y and
yil, ..., yi". This will be all of the evidence used to determine the membership probability,

and the posterior membership probability is represented as

P(sz|y;,,yzn,ylla,}’fn) (34)

By using these definitions, the membership probability expression becomes

1

1+ X [TNGL ¥h

=1

P(Tip|yp>y;a"'ay;nayil""ay;n): (35)
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For the case in which m = 1 this specializes to be (27) for the single I F-independent model.
Again, this framework has provided a decomposition of the evidence. The prior compo-
nent \g behaves as before. Each of the /\k(y’;,yf) independently contributes to the region

membership probability in the same manner as for the single, I F-independent model.

4.3.3 Discrete Random Variable Cases

In the discussion so far, both Yy and Uy were introduced as mappings on a continu-
ous probability space. The discrete cases are merely notational variants of the previously
derived expressions. For instance, with a single I/ F-independent model with discrete-valued

parameter and observation spaces, we have

> P Plu) l%:P(yAu)P(u)]

ZU:P(Yi\u)P(Yp\U)P(u)

My, ¥,) = (36)

5 Algorithms to Construct 7, and S Representations

The algorithms used to construct approximate representations for 7;’s, and ultimately
for S, are primarily implementations of the concepts presented in the preceding sections. In
this section, we describe a number of the implementation details related to these algorithms.
More detailed descriptions of the algorithms can be found in [45].

As described in Section 3.3.2, an approximate representation of S is built from ground
segment events of approximate representations of 7;. Therefore, in Section 5.1, we describe
an algorithm for generating an approximate representation of 7; in which the n ground
segment events that have the highest probability are explicitly represented. Then, in Section
5.2, we describe two methods for generating approximate representations for S. In the first,
beam-search is used to generate segmentations. In the second, an explicit representation of
the n segmentations that have the highest probability is generated (the latter algorithm is

analogous to the algorithm described in Section 5.1).
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5.1 Constructing Representations of 7;

As described in Section 3.2, successive approximations to 7; are constructed by repeated
application of the 7-refinement operation. At each iteration, 7 -refinement requires the
selection of a 7 -refinement region, R,, and an event, B,. For a 7-cover C, our algorithm
selects for 7-refinement the element B € C that has highest probability, since it is most
likely to contain ground segment events with larger probabilities. The 7 -refinement region,
R,, which depends on the choice for B,, must also be selected. In general, we prefer to
use regions that contain the most information early in the computation. The corresponding
membership probability will be close to either zero or one. A membership probability close
to zero will assign low probability to the event 7(I,U{R,}, E,). When the probability is low,
this new event is unlikely to be considered for subsequent 7 -refinement. The complementary
event, 7(I,, £, U{R,}), will have high probability, and is likely to be selected for further
T -refinement. An analogous situation occurs when the membership probability is close to
one. We have observed through experimentation that the choice of smaller, less-informed
regions early in the computation quickly leads to numerous alternatives, hence regions are
sorted by size as candidates for B,,.

Recall that a 7-cover, C, represents a set of events on 7; that partition ©;. Typically,
a 7 -cover will contain both ground and nonground segment events. At any stage of the

algorithm, the current 7 -cover, C, can be partitioned as
C= Cg Uy, and Cg NCy, = (Z), (37)

in which Cy contains the ground segment events of C, and () contains the remaining,
nonground segment events of C. For any ground segment event {7’} such that 7' € B and
B € C}, the posterior probability associated with {7’} can be no greater than the posterior
probability associated with B. This observation is the basis for the termination criterion for

our approximation algorithm. This is expressed as

P(nth(C,)) > max P(B), (38)

~  BeCy

in which nth(C,) represents the event in C, that has n'* highest probability. When this
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condition is met, the representation explicitly contains the n segments that have highest

probability in ©;.

5.2 Constructing Approximate Representations of S

We have developed two algorithms for deriving approximate representations for S. The
first uses a beam-search algorithm [66], and the second generates the n segmentations with
the highest posterior probability.

For both S algorithms, it is necessary, at various stages, to choose a new initial region,
R;, to begin the construction of a new 7;. In our implementation, both algorithms select
the largest available region as the new R;. The motivation for this is that regions containing
more “information” tend to cause more extreme values for A;(yi, y,) (tending toward zero or
infinity), yielding more compact representations of 7;. Although region size is not a formal
measure of information content, in our experiments (reported in Section 6 and in [45]) we
have observed that when 7;’s are constructed with small initial regions, the resulting event
probabilities tend to remain close to their prior values, and many competing ground segment
events on 7; are obtained.

The beam-search algorithm for constructing an approximate representation of S begins by
generating a set of approximate representations of 7;, each of which explicitly represents the
b ground segment events with the highest probabilities. Thus, b is similar to the beam width
in a traditional beam-search algorithm. The algorithm then finds the n best segmentations
that can be constructed using only those ground segment events that have been derived.
When b = 1, this algorithm produces a single segmentation in a “greedy” manner.

The second algorithm generates the n best segmentations by performing successive S-
refinement operations. Analogous to the partition of 7-covers described in Section 5.1, we

can partition an S-cover, C, as

C=C,UC, and C,NC,=0. (39)

in which C, contains events that correspond to individual full segmentations, and Cy, contains

the events of C that correspond to sets of segmentations. For any S such that S € A and
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A € Cj, the posterior probability associated with S can be no greater than the posterior
probability associated with A. This observation is the basis for the termination criterion for
our approximate S algorithm. This is expressed by

P(th(C,) > max P(4), (40)

in which nth(C,) represents the event in C, that has n'" highest probability. When this
condition is met, the representation explicitly contains the n segmentations that have highest
probability in II.

Since the second algorithm is able to guarantee that the best n segmentations have been
represented, one might question the value of the beam-search algorithm. The beam-search
algorithm offers the advantage of significantly improving space and time requirements, at the
expense of guaranteeing that the best segmentations have been represented. For example,
if b = 3, and a segmentation that has high probability contains a segment that is ranked
fourth in its 7;, then the beam-search algorithm will fail to return it. In practice we have
found that the beam-search algorithm can yield reasonable results, particularly when there
is a large number of regions, R, and little information per region. Both algorithms have

been useful in our experiments.

6 Experiments

In this section we present experimental results on both real and synthetic range data.
Experiments on synthetic data were performed so that the effect of noise variance can be
explicitly investigated. In this paper we present a few representative examples of the exper-
iments that were performed; additional experimental results and comparisons can be found
in [45]. In Section 6.1 we present results obtained using the approximation algorithm for 7;,
and in Section 6.2 we present results obtained using the & approximation algorithm. The
evaluations of (29) that were needed for membership probability computations were obtained
using numerical techniques presented in [47].

The algorithms were implemented in Common LISP on a SPARC IPC workstation. The

execution times varied dramatically, from a few seconds in some cases, to a few hours in
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others. Most of the execution time is devoted to computations of the membership proba-
bility. We have determined experimentally that the computational cost (in terms of time
and space) increases both as the number of regions increases, and as the amount of informa-
tion per region decreases. For the synthetic data, we have observed that computation time
increases as the noise variance is increased (less information per region), because the num-
ber of reasonable alternatives rapidly increases. This corresponds to the intuition that the
space of segmentations becomes increasingly underconstrained as the amount of uncertainty

is increased.

6.1 7 Representations

In this section we present experimental results that show 7; representations on some real
range images and one synthetic image. Each approximate representation was obtained using
the algorithm described in Section 5.1 to derive the 20 best ground segment events. For
some results, we show only the first 8 of the 20 best ground segments events. We used a
prior membership probability of 0.5 for the planar model, and 0.99 for the quadric model. A
higher prior membership probability is required for the quadric case, otherwise the posterior
membership probabilities are relatively low. This is due to the fact that even when the union
of two regions is homogeneous, there are many quadric surfaces that well-approximate one
region and not the other, causing A;(y;,y,) to be low.

The synthetic image consists of 10000 data points (100 x 100). Figure 2.(a) shows the
data set before noise is applied. When the points are projected into the z;-z5 plane, there is
integer spacing between adjacent points. There is one four-sided pyramid in the image, with
a plane in the background. Note that the height of the pyramid is distorted in the figure:
the z; and xy coordinates range from 0 to 100, while the height of the pyramid, given by
maximum value of 3, is only 12. Figure 2.(b) shows the range image after applying noise
with 6% = 0.1. Figure 2.(c) shows the range image after applying noise with 02 = 1.0. Figure
3 shows the set of regions, R, that was presented to the algorithms.

If we select Ry, as the initial region and o? = 1.0, we obtain the top twenty segments

shown in Figure 4. Due to the high level of noise, the “correct” segment does not obtain
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Figure 2: (a) The range data without noise; (b) the data with o? = 0.1; (c) the data with
0?=1.0
highest rank; however, due to the representation of alternatives it appears in the 8" position.
Figure 5 shows the result when Ry3 is selected as an initial region and o? = 0.1. For
this experiment, the noise level is significantly reduced, and for this problem the “correct”
segment appears first and has very high probability. Hence we infer (as one would expect)
that the image model is significantly more powerful when the noise level is low.

Figure 6 describes a set of range data of a polyhedral object with two initial regions that
were used for experiments. For this range image we present an artificial rendering of the
data so the reader can clearly see the object. The regions, R, are obtained by combining

the edge maps from edge detection and a recursive splitting algorithm which splits a region

34



~
~ w
ol

50

53

Figure 3: The set of regions, R. This image shows the region boundaries projected into the
x1-To plane, and the regions are labeled with integers for reference.

if the sum-of-squares error is too large using the optimal planar parameter estimate. The
data sets are noisy, and the region maps that are presented contain many small regions that
correspond to invalid data. This causes many specks to appear inside the segments. Figure
7 shows the resulting distribution using Rys4 as the initial region. Note that regions that
are close to the planar boundaries tend to be excluded. This is due to the fact that these
regions are not truly homogeneous. Most of the alternative segments are very similar because
there are many small competing regions. Figure 8 shows a result in which small regions are
excluded from consideration to emphasize the segment differences.

An image of a piecewise quadric object is presented in Figure 9. An intermediate step was
performed when generating the initial regions, which merges regions whose union is planar
with very high probability. The resulting set of segments using Rrg3 as the initial region is

shown in Figure 10.

6.2 S Representations

In this section we present three experimental results which show representations of S,
and individual segmentations on images that were used in Section 6.1. The algorithms
presented in Section 5.2 are demonstrated here. The first two approximate representations of

S correspond to generating the 20 best segmentations. The final approximate representation
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Figure 4: Twenty segments that have highest probability in ©4,. There were 216 events in
the final 7-cover, with 36 ground segment events. In this experiment, 2 = 1.0, and the
I E-independent model is in use. 36
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1: 0.991802 2: 0.001309 3: 0.001079 4: 0.000949
5: 0.000770 6: 0.000620 7: 0.000326 8: 0.000303

Figure 5: The first eight of the twenty ground segment events that were determined to have
highest probability in ©73. There were 550 events in the final 7-cover, with 29 ground
segment events. In this experiment, 02 = 0.1, and the I E-independent model is in use.

of § was obtained using the beam-search algorithm, with b = 5. The result in Figure 11
corresponds to little noise, and the “correct” segmentation is at the top of the ranking with
many similar alternatives also appearing. The result in Figure 12 does not even represent
the “correct” segmentation in the top twenty due to the high level of noise. The alternatives
are, however, similar to the “correct” segmentation. Figure 13 shows twenty segmentations
obtained on one of the real range images.

Figure 14 shows some compiled results after performing numerous experiments on the
synthetic image. Figure 14.a shows how the probability distribution over the top twenty
segmentations changes as the noise variance is increased from 0.01 to 1.0. For each value of
the variance, ten trials were performed in which the synthetic image was regenerated each
time according to the given noise model; the results presented in the figure were obtained
by averaging over the trials. When the variance is small, the first segmentation (being the

correct one in this instance) receives a probability near one. As the variance increases,
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Figure 6: (a) A rendering of the data set, (b) the set of regions, R, (c) initial region Ragq,
(d) initial region Raoy.

the first segmentation receives much less probability, and the probability distribution is
closer to being uniform. We have also observed that the entropy increases as the variance
increases, quantifying the increase of uncertainty. In Figure 14.b we observe that the number
of refinements performed (and hence computation time and space) increases as the variance

increases, due to the consideration of more reasonable alternatives.

7 Conclusion

We have developed a general approach to constructing representations of probability distri-
butions of image segments and segmentations, which are conditioned on statistical image
models. From the experiments we conclude that segmentation need not be treated as an iso-
lated process with an optimal solution, but can be considered practically as a set of low-level

models that can yield a probability distribution over the space of alternatives. A higher-level
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1: 0.013670 2: 0.011170

5: 0.007205 6: 0.005888 7: 0.005641 8: 0.005467

Figure 7: The first eight of the twenty ground segment events that were determined to have
highest probability in ©54 There were 2294 events in the final 7-cover, with 20 ground
segment events. In this experiment, the I E-independent model is in use.

system can request alternative segmentations, or extensions could be made to incorporate
higher-level or other additional models. A higher-level system can also measure the amount
of information present in the image under the application of a statistical image model.

We hope that this contribution will change some of the focus in segmentation research to-
ward the consideration of distributions of segments and segmentations and stronger Bayesian
models, and away from the determination of single, optimal (or near-optimal) segmentations
from underconstraining models. Progress toward this goal will require the ability to suc-
cessfully integrate other types of image models into the Bayesian computations, which is

presently being investigated.
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Figure 8: The first eight of the twenty ground segment events that were determined to
have highest probability in ©994 There were 255 events in the final 7-cover, with 28 ground
segment events. In this experiment, the I F-independent model is in use. Regions, Ry, such
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A Proofs of the Propositions

Proposition 1 The mapping defined by 7 is well-defined and onto B;.
Proof Well-defined: Note that 7(I, F) is a maximal subset with respect to C. Suppose 7
could map to two different events, B; and Bs. Then it must also map to B; U Bz by (3). If
By # By, neither can satisfy the maximality condition since B; C B; U By and By C B;UBs.
This leads to a contradiction; hence 7 is well-defined.

Onto: Suppose there exists some B € B; which is not the image of 7 for any I or E sets.

Let I =NsecpS. Let E be the set of all regions that are not in UgepS, and are adjacent to
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Figure 9: (a) The rendering of the data set; (b) the set of regions used in a preprocessing
step; (c) the set of regions, R; (d) The initial region.

some region in I. The set 7(I, E) is precisely the original event B, assumed not to be the

image of 7(I, E), which is a contradiction. O

Proposition 2 If A, = 0(F,, I,, E,), and 7(I,, E,) represents a nonground event on 7;, then
A; and Ag, given by (17) and (18), form a disjoint partition of A4,.
Proof Using the definition of o, (15), the intersection of A; and Ag is

{Sell:TeSVT € F,} nfi(T(Ip U{R,}, E,)) ﬂfi(T(Ip’ E,U{R,})). (41)

This set is empty since 7(1,U{R,}, E,) and 7(I,, E,U{ R,}) represent events for 7 -refinement
(which are known to be disjoint), and the application of f; to each of them yields disjoint

sets of segmentations (recall (9)).
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Figure 10: Twenty segments that have highest probability in ©7g3. There were 150 events
in the final 7-cover, with 37 ground segment events. In this experiment, the I E-dependent
model is in use. 42
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Figure 11: Twenty segmentations that have highest probability in II. In this experiment,
02 = 0.1, and the IE-independent model is in use.
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1: 0.028864 2: 0.027437 3: 0.022058 4: 0.020968

5: 0.016604 6: 0.015783 7: 0.012689 8: 0.012061

Figure 12: The first eight of the twenty segmentations that were determined to have highest
probability in II. In this experiment, 02 = 1.0, and the I E-independent model is in use.

Taking the union of A; and Ag we obtain
{SeT:TesVTeF}N[fir(I, U{R,}, E)U filr(T,, B, U{R})] . (42)

This is equivalent to
{Sell:TeSVT e F,}(\fi(r(I,,E,)) = A, (43)

fi(T(Ip’ Ep)) = fi(T(Ip U {Rp}a Ep)) U fi(T(Ip’ Ep U {RP}))' (44)

O

Proposition 3 For an event o(F),I,, E,), on S, in which 7(I,, E,) is a ground segment

event on 7;, and for some region R; not in F}, or I,,

o(Fp; Ip, E,) = o(F, U{L,}, {R;},0). (45)
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5: 0.012795 6: 0.011435 7: 0.009189 8: 0.006416

Figure 13: Eight segmentations that were obtained from a beam-search with b = 5. In this
experiment, the I E-independent model is in use.

Proof On the right side, F}, represents a set of segments, and I, and E, represent an
additional segment (a ground segment event on 7;). This additional segment can be identified
by its set of regions, which is I,. To obtain the second expression, we add the additional
segment, I,, to F,, and represent a new 7; with the include set, {R;}, and exclude set, 0.
This equivalence becomes clearer when the definition of ¢ is applied to left and right

sides of (45) to obtain
{Sell:TeSVT e E,}()fi(r(,,E,)) (46)
and
{Sell:TeSVT e (F,u{l,H})fi(r({R;},0)), (47)

respectively. The first expression describes the set of all segmentations that contain the
segments in F), and contain the segment I, (given by the ground segment event 7(I,, E,)).
The second expression describes the set of all segmentations that include F), and I,, and also

contain some segment that contains I2;. The second condition is not restrictive since every
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Figure 14: (a) The probability distribution over the top twenty segmentations, plotted
against variance; (b) The number of refinments performed vs. increasing variance
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segmentation must contain a segment that contains R; (i.e., f;(7({R;},0)) = II). Therefore,

the two representations denote the same event on S. O

Proposition 4 For some refined event, 7(/, U{R,}, E,), its probability can be expressed as
P(r(I, U{R,}, E,)) = P(r({Ri, R,},0) | 7(1,, E,)) P(7(I,, E,)). (48)
Proof Since 7(I, U{R,}, E,) C 7(I,, E,), we have
P(r(I, U{R,}, Ep)) = P(r(I, U{R,}, Ep) [ 7(Ip, E,)) P(7(1,, E,))- (49)
By using the following lemma with I, = I,, I, = {R;, R,}, Ey = E,, E; = (), we have
P(r(I,U{R,},E,)|7(I,,E,)) = P(t({Ri, R,},0) | 7(I,, E,)). (50)

Lemma If I, I;, I, are include sets with I = I; U I, and F, E;, F, are exclude sets with
E= E1 U EQ then T(I, E) = T(Il, El) N T(IQ, Eg) .a
Proof of Lemma We have 7(I, E) = 7(I; U I, E1 U E5). By definition

T(LUILL,EiUE)={T€0©,;,: ([ UL)CT,(E;UE)NT =0} (51)
This can equivalently be expressed as
{Te©,: LCT,LCT,E\NT=0,E,NT =0}. (52)
This is the same as
{Te,  LCTIN{T€O,: LCTIN{T € ©;: E\NT =0}n{T € ©; : E;NT = 0}. (53)
But this is equivalent to
{Te®, - LCT,EENT=0}n{T€®;: L, CT,E,NT =0}, (54)

which is simply 7(I1, E1) N 7(15, Es). O

Proposition 5 Given the observations y, and yj, the posterior membership probability is

1
14N )\I(Yi,Yp)’

P(Tip|¥5,¥1) (55)
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in which
1- PR
An =
0 7, (56)

and

[ pGilup(udus) | [ p(y,u)p(u,)du,

(57)
/ P(¥iluip)p(y,luip)p(ui,)du,

)\1 (yia yp) =

Proof In order to determine the probability of merging two regions, it will be necessary to
consider a statement of the form H(R;UR,) = true, which corresponds to the condition that
R; U R, is homogeneous, and H(R; U R,) = false, which corresponds to the condition that
R; U R, is not homogeneous. We will use 7;, to represent the condition H(R; U R,) = true,
and 7 to represent H(R; U R,) = false. Note that if H is true then R; and R, share the
same parameter value.

Next, we state that if two regions, R; and R,, share the same parameter value, u;,, which
is given, then

p(¥i, ¥oluip) = p(yilus,)p(y,|us,).- (58)

The region’s parameter value (and not observations from neighboring regions) is all that is
needed to predict the observation. This is equivalent to asserting that nothing is learned
about the degradation model when observations are made from other regions having the
same given parameter value.

We next make the assumption that the observations Y; and Y, are conditionally inde-

pendent, given that R; U R, is not homogeneous. Formally, this is stated as

Py, ¥,l75) = Pyi)p(y,)- (59)

We note that this assumption is not necessary, which is further discussed in [45].
The observations serve as the evidence used to determine the Bayesian probability of

homogeneity, which is represented as P(7;,|yi,y,). We can apply Bayes’ rule to obtain

p(yi, YP‘Tip)P(Tip)
p(¥1,¥,)
p(yi, YP|Tip)P(Tip)

— . 61
P35 Yo P(r) + P33 Yo 7E () (6)

P(Tip|Yia YP) (60)
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The denominator of (61) is the standard normalizing factor from Bayes’ rule, over the binary
sample space, {7, Ti(;;}. The expression P(7;,) represents the prior probability of homogene-
ity, i.e., the probability that two adjacent regions should be merged, when y; and y, have
not been observed, and in practice we usually take P(r;,) = P(7) = 1/2. This represents
a uniform distribution over the binary sample space.

We can write (61) as
1

P T; i - 62
( P|y1 YP) 1 + )\O Al(yi’yp) ( )
in which
1— P(H) p(yi,¥,/7)
M=—+——- and \(y;y,) = — 2. 63
" P(H) 060 = e li) (63)
Substituting (59) into the expression for A(yi,y,) in (28), we obtain
p\yi)P\y
Mlysy,) = ZOUPY,) (64)

P(Yir ¥olTip)
The condition 7;, is equivalent to asserting that u; = u,. Using a common prior density
p(uj,), which is equal to both p(u;) and p(u,), we can write the denominator of (64) as a

marginal with respect to U;,:

p(¥i, ¥olTip) = / p(¥i, ¥plui,)p(us,)dus,. (65)

Using (58) in the denominator, and using the marginal over Uy for each term of the

numerator, we obtain:

[ pvilup(u)du] | [ p(,up(u,)du,

| Pl o, us,)p (s, du,

M (yiy,) =

B Implicit-Polynomial Surface Model Expressions

In this section we briefly present the polynomial formulation of the membership probability
that we used for our experiments. A more complete discussion can be found in [45].
For this model, an image element is represented by a point in R3, specified by x =

[x1, 9, x3]. We will describe points that belong to some region Ry by x € Ri. This model
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declares that all points in a region Ry came from the same polynomial surface patch, with
some noise occurring in the observation process. The segmentation goal in this context is to
determine maximal connected sets of regions that belonged to the same polynomial surface

(before noise was applied).

B.1 The parameter manifold

We will now introduce a general, implicit polynomial model, applying to 3D surfaces. A
more general formulation of implicit polynomial models, pertaining to curves and surfaces
of arbitrary degree and dimension, has been developed by Taubin [64]. A polynomial can be
considered as a linear combination of monomial basis functions.

An implicit polynomial equation is represented as

N
P(-,u) =) ujxtfj:vgjxgj =0 (67)
j=1
with
aszNchzo. (68)

The constants a;, b;, and c; are integers, representing the exponents of each variable. The
- used here indicates that we have an implicit function with x as the variables. In later
expressions we will refer to ¢(x,u), which yields a nonzero value unless x is on the surface.
The degree of the polynomial model is the maximum over j of a; +b; 4 ¢;. The planar model
is of degree one, and the quadric model is of degree two.

With the present formulation, there are redundant representations of the solution sets
(i.e., there are many parameter vectors that describe the same surface in R?). It is profitable
to choose some restriction of the parameter space that facilitates the integrations in (29), but
maintains full expressive power. We use the constraints, ||u|| = 1 and u; > 0, to constrain

the parameter space to a half-hypersphere, XV, termed the parameter manifold.

B.2 The observation space

The observation considered here is a function of the signed distances of the points x € Ry

from the surface determined by uy, termed as displacements. Define §(x, ¢(-, uy)) to be the

50



displacement of the point x to the surface described by the zero set, {x : ¢(x,ux) = 0}. The
function 0(x, ¢(-, uy)) takes on negative values on one side of the surface and positive on the
other.
We consider the following observation space definition, and others are discussed in [45]:?
Yk (R, ug) = Z [5(Xa¢("uk))]2‘ (69)
XERy
This function of the displacements is often used for polynomial parameter estimation.
Although we have defined the observation space in terms of the displacements, a closed-
form expression for the displacement of a point to a polynomial surface does not exist in
general. We use a displacement estimate presented by Taubin and Cooper [65]:

8(X’ ¢(a uk)) = ¢(X, uk)

= Ve uol (70)

B.3 The degradation model

To define the degradation model, we first need to express the density corresponding to the
displacement of an observed point from a given surface. We use a probability model for
range-scanning error, used and justified by Bolle and Cooper [9], and also used by Taubin
[64]. The model asserts that density, p(6|u), of the displacement of an observed point from
the surface, ¢(x, u), is a Gaussian random variable with zero mean and some known variance,
o?. This degradation model is merely chosen as a representative of possible models that can
be used. For different imaging systems, other models may be more appropriate. Ikeuchi and
Kanade provide a detailed discussion of the modeling of a variety of range-imaging sensors
(35].

Since taking the sum of squares of Gaussian densities yields the chi-square density, the

degradation density, for unit variance, using (69) is

1
2 _ my/2—1 g, /2
p(ykluk) = X, (k) = W?M w2, (71)

Here y;, is the sum-of-squares for a given region, Ry, and parameter value uy, given by (69).

Also, I'(+) is the standard gamma function and my = |Rj| (the number of elements in Ry).

2Note that we use yy, instead of ¥k when the observation space is scalar.
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B.4 The prior model

Since the parameter space has been restricted to a bounded set, we can define the prior
pdf to have equal value everywhere on the parameter manifold. This captures the notion
of uniformity due to the lack of information; however, it is important to note that our
choice of parameter manifold affects the prior density on the space of implicit surfaces. If
other constraints were used on the parameter space, and we assumed a constant-valued
pdf, the density would be somewhat different from the one we have selected here. Once
some information is present (i.e., some observed data points) this distinction becomes less
important.

Since the density over the parameter manifold must integrate to one, the uniform density
is just the inverse of the surface area of the half hypersphere that defines the parameter
manifold, which is straightforward to compute. The prior model is p(uyx) = Ay', in which
Apn represents the area of the N parameter manifold. This quantity can be determined

through a straightforward integral transformation [61].
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