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ABSTRACT

We have seen many probabilistic approaches to image segmentation. Traditionally
the general paradigm has been to formulate statistical image models and design an algo-
rithm which iteratively approaches an optimal segmentation. The resulting segmentation
is often utilized by a more abstract process, such as a model-based recognition system. Al-
though this segmentation is optimal (or near-optimal) with respect to the chosen models,
the problem is generally considered underconstrained. Consequently, the segmentation
may not contain the best homogeneous regions needed by the abstract process (i.e., a
recognition system cannot exert complex model-based influences directly on the selection
of an optimal segmentation).

We depart from this paradigm and develop a framework for probabilistically maintain-
ing sets of alternative homogeneous regions, and segmentations. Depending on the image
size and complexity, and on the application, a probability distribution can be constructed
over segmentations of the entire image, or a distribution over partial segmentations can be
formed. We develop an efficient representation scheme, and a probabilistic mechanism for
applying Bayesian, model-based evidence to guide the construction of the representation.

Since probability distributions over the space of alternatives are of primary impor-
tance to us (rather than some decision criteria necessary to select a single segmentation),
we have developed a general Bayesian formalism for determining the posterior probability
that the union of regions is homogeneous, given that the individual regions are homoge-
neous. This method does not rely on estimation, and properly treats the issues involved
when sample sets are small and estimation performance degrades. We apply the gen-
eral formulation to the implicit polynomial surface model, on range images. This model
involves three high-dimensional manifold integrations over a density function on the pa-
rameter space; therefore, we present a novel Monte Carlo-based computation scheme
for efficient evaluation of the integrals. Several experimental results are presented using
planar and quadric models on real and synthetic range data, using a Gaussian noise

model.
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CHAPTER 1

INTRODUCTION

Image segmentation has been a topic of active research for over two decades. The
segmentation problem is typically defined as the low-level vision task of extracting a
set of homogeneous regions (called segments) from an image, often for the purpose of
higher-level processing. Although considerable research effort has yielded a number of ap-
proaches to the problem, segmentation remains a difficult problem in its general formula-
tion. As Horn has pointed out, one of the primary difficulties in evaluating a segmentation
method is the lack of a clear definition of the “correct” segmentation [1]. This definition
usually depends on the intended application of the segmentation result. Szeliski argues
that low-level image models often underconstrain the solution, and advocates the use of
uncertainty estimation [2]. This type of difficulty in segmentation provides much of the
impetus of our work: to represent multiple segments and segmentations, probabilistically,
in a Bayesian framework.

For a conceptual understanding of segmentation, it is useful to consider the formal
description given by Horowitz and Pavlidis [3]. Intuitively, one wants the segments in
a segmentation to be homogeneous or uniform in some sense. Abstractly, this can be
formalized with a homogeneity predicate (or uniformity predicate). Consider an image,
D, as a set of elements, with each element containing some information. It is assumed

that we are given some homogeneity predicate, H, which applies to subsets of D. If R



is some subset of D, then predicate, H, returns true if the set is homogeneous or false
otherwise.!

Examples of simple homogeneity predicates on intensity images, taken from [4], are
e H(R) = true if and only if all elements of R have the same intensity value,

e H(R) = true if and only if the intensity does not differ by more than some fixed

amount for any two elements of R.

These are merely provided as intuitive examples. In Chapter 4, we consider a large class
of models that induce uniformity predicates, and in Chapter 5 we consider H(R) = true
if the points in R were observed from the same object surface patch in the presence of
noise.

A segmentation is defined for some H and D as a collection of disjoint nonempty

subsets Xi,..., X, such that
.UX;=0
2. X, is connected (optional and must be consistently defined)
3. H(X;) =true VX,
4. H(X; U X;) = false VX, # X; .

We consider a segment to be a maximal region such that H(R) = true.? Pavlidis points
out that it is possible to define uniformity predicates that do not lead to a unique seg-
mentations [4]; however, we will not consider this class of predicates.

The set of all partitions of D into connected regions is typically large, and due to

noise and other uncertainty, evaluation of a uniformity predicate may not be directly

1This is primarily a conceptual formulation, and in practice a logical predicate is usually not specified
in this form.
2In Chapter 3, we will introduce alternative, but equivalent definitions of segments and segmentations.



possible. This has lead to numerous approaches to image segmentation. Section 1.1
provides a brief, general survey of segmentation work and related approaches. Section
1.2 introduces the motivation and goals for our Bayesian, segmentation sample space

framework. Section 1.3 concludes this chapter with an outline this thesis.

1.1 General Approaches to Segmentation

The type of image often determines the segmentation models that are appropriate.
Images are usually rectangular arrays, with elements consisting of intensity values or
3D coordinates of points. The intensity values could be obtained through a standard
camera-imaging system, which could yield a set of gray-scale values, or could encode
color information with, for instance, RGB values. Segmentations are obtained from other
types of intensity images, such as X-ray radiographs for manufacturing inspection [5],
or Electron-Microscopic Autoradiography (EMA) for identifying structures in biological
tissue [6]. Images consisting of 3D coordinates are referred to as range images, and the
information is often obtained through some form of active sensing, such as triangulation
with a camera and laser light source. The information could also be obtained through
binocular (or trinocular) stereo matching [7],[8],[9] or a motion sequence [10]. Ikeuchi
and Kanade give a detailed description of a variety of imaging sensors [11].

Most segmentation approaches can be considered edge-based or region-based (and in
many cases both). Edge-based approaches consider information at the boundaries of two
adjacent regions. When a region contains an edge the homogeneity predicate is false.
Edge-based methods are characterized by their computational efficiency [12], and a good
overview of edge-based methods is given by Horn [1].

Region-based approaches use information that is common to the points within re-
gions. Region-based methods usually begin with some set of small regions, and attempt

to construct larger regions by iteratively merging regions with similar features [13],[14].



One example of a region-based method is the split-and-merge procedure [4]. With this
approach, the image is recursively split into regions that are believed to be homoge-
neous with high confidence. Regions with similar features are merged until some ter-
mination criterion is met. Other region-based approaches are mentioned in Section 5.1.
There has been recent interest in the integration of edge-based and region-based meth-
ods [15],[16],[17],[18]. Such methods gain a significant increase in performance by the
combination of both types of evidence.

Aside from the general strategy (e.g., edge-based vs. region-based), segmentation
approaches differ by the types of models of homogeneity that are considered. Constancy
of intensity or color is one of the more straightforward models. Segmentation is often
performed by thresholding in the intensity/color space. A description of a variety of
thresholding techniques appears in [19].

The facet model defines another type of homogeneity [20]. In general, a set of points
under this model is homogeneous if the points can be well-approximated by some smooth
surface such as a plane, quadric, or spline surface. Polynomial models are particularly
popular for range image segmentation, and several approaches are discussed in Section
5.1. We use the implicit polynomial surface model to demonstrate our Bayesian frame-
work in Chapters 5 and 6.

Models of texture have also been used extensively for segmentation. A texture is often
considered as a local shape or pattern repeated throughout a region of the image. The seg-
mentation goal is to partition the image into components having the same texture. Many
approaches to texture involve the Markov random field (MRF) model, which is naturally
suited to model local dependencies that arise with texture models [21],[22],]23]. Other
models employ the use of probabilistic relaxation [24],[25], Gabor transforms [26],[27],

Voronoi tesselations [28], and autoregressive random fields [29]. The MRF and proba-



bilistic relaxation approaches will be discussed in further detail in Sections 2.2 and 2.3,
respectively.

Since there are numerous ways to partition an image, concerns about computational
efficiency have inspired a number of computational strategies for producing an opti-
mal or near-optimal segmentation. Three general strategies that appear are: iterative
optimization [30] (and other MRF approaches), pyramidal/multiresolution approaches
[31],[32],[33], [34],[35], and region-merging [4],[14].

Image restoration and pixel-labeling are problems closely related to image segmenta-
tion. With restoration, an observed image is considered to be the result of a transfor-
mation that is applied to an original image. The transformation contains components
such as noise and blurring, and the goal is to determine a best estimate of the original
image from the observed image. For an intensity image (the standard application) the
goal is to select an assignment for each pixel from a set of possible intensities. We can
view each of these assignments as a pizel-labeling, and can also build appropriate models
for labeling pixels with qualitative information such as “edge” or “concave region” [36].
Labelings induce a partition (with not necessarily connected regions) of the image, in
which each element of the partition is the set of all pixels receiving a certain labeling.
Using qualitative labels (or line-processes, discussed in Section 2.2) one can construct
a partition into connected segments, which is a segmentation in the sense previously
defined. Hence, advancement in the area of image restoration often applies to image
segmentation. For instance, Geman and Geman stimulated widespread use of Markov
random field models for segmentation [30]. A comprehensive survey of image restoration
methods can be found in [37].

Finally, due to inherent noise and uncertainty in images, probabilistic schemes have
played a significant role in the development of segmentation methods. Existing gen-

eral approaches are: statistical clustering, Markov random field /energy minization, and



probabilistic relaxation. These approaches are closely related to our work, and conse-

quently Chapter 2 is devoted to their discussion.

1.2 Our Motivation and Objectives

In this section, we present our set of objectives for this work. Immediately following
each objective is an explanation of our motivation for that objective. Some additional
motivation is provided in Section 2.4 after other probabilistic approaches have been de-
scribed in detail. We consider each of following objectives to be desirable characteristics
for a segmentation approach; consequently, each guided the development of our frame-
work. In Section 9.1 we return to these objectives, and discuss how they have been

achieved through the work presented in this thesis.

To develop a system capable of representing any number of alternative segments or seg-

mentations, and their corresponding probabilities.

Since the space of alternatives is often underconstrained using low-level models [2],
one approach is to introduce more constraints through the use of higher-level models, for
instance, at the recognition level. For this to occur, it is unreasonable to select a single,
apparently best, segmentation to send to the higher-level process. The single segmen-
tation has been formed by making all of the decisions using low-level models, and all
other information is lost. For the higher-level models to participate in the segmentation
process, it seems useful to at least give some set of alternative segmentations. Additional
evidence can then begin to be applied by the higher-level process to constrain the space
of segmentations, eventually resulting in a unique solution.

Rather than simply representing a set of alternatives, consider also obtaining proba-

bilities for each of the alternatives. The probabilities give much more information than



is present in the set of alternatives alone. For instance, if the leading segmentation
obtains ten times the probability of its leading competitor, then the confidence in the
segmentation should be high. If the top ten segmentations have approximately the same
probability, some other process may have to be performed to further constrain the solu-
tion. When a Bayesian formalism is used to generate the probabilities, there is a natural

way to combine evidence from multiple models, and this will be seen in Section 4.6.

To derive the framework completely from underlying statistical models, which can be ex-

perimentally determined.

A segmentation approach in which necessary parameters can be experimentally de-
termined is favorable to one with parameters that are set arbitrarily. This is particularly
true when performance is extremely sensitive to the parameter settings. If the user of the
segmentation algorithm is forced to guess at meaningless parameter settings for each im-
age application, the algorithm is difficult to use. If the parameters can be experimentally
determined from a set of representative scenes and/or a fixed imaging sensor using some
estimation procedure, the approach is advantageous. This trend in segmentation has
generated careful study of sensor models (as in [11]), and some abandonment of earlier,

primarily heuristic approaches (as in [38]).

To develop a framework capable of handling complex statistical image models (not neces-

sarily those restricted to local dependencies).

We state the handling of complex statistical image models as an objective since we
would like to directly model statistical dependencies between fairly distant elements
in an image. Such dependency occurs, for example, with a polynomial surface patch

model. All of the points on a surface patch are related in a way that is not easily



expressed with very local dependencies. The MRF models, for instance, directly specity
very local dependencies between image elements.®> These concepts are further discussed

in Chapter 2.

To build a system capable of estimating the amount of information present in the image

under a particular statistical image model.

For a typical application, it is useful to know the degree to which a particular image
model is providing information regarding the segmentation. With a probability distribu-
tion over segments and segmentations available, a formal measure of information content
can be directly quantified. One natural measure is the information entropy, which is
a function of a probability distribution. A clear discussion of the characteristics of an
entropy measure is provided in [39]. Several alternative, entropy-like functions can be
found in [40],[41].

An entropy measure can be used, for example, to select between different models,
or to decide to combine several models synergistically. Szeliski argues that a measure
of uncertainty can be used to guide search, indicate when more sensing is required, and
integrate new information [2]. We presently do not employ entropy measures to guide
our algorithms, but in general we can estimate the amount of information present by
applying an entropy measure directly to the probability distributions of segments and

segmentations.

To develop a framework that applies to the most general images and models possible.

3These models can, in general, encode very global dependencies, but the resulting computations
quickly become intractable.



It is desirable to have a segmentation approach that applies to the most general
images and models possible. Consequently, in our formulations, we attempt to add only
a minimal number of constraints to the framework, as the discussion progresses. For
instance, this is the motivation for working with general probability spaces in Chapter 4,
as opposed to some particular image model. The restrictions we make are based either
on necessity or to add clarity to the presentation.

There has been a substantial interest in recent years in unifying segmentation ap-
proaches into a common framework [42]. We believe our framework is not yet ready
to satisfy this broad goal; however, we do believe that appropriate extensions may be

possible to incorporate a wider variety of segmentation models and applications.

To develop a framework that readily supports extensions to incorporate higher-level mod-

els.

The Bayesian formalism provides a natural way to combine evidence from several
models. In general, a Bayesian approach begins with some prior distribution and some
evidence, and yields a posterior distribution. A multiple model approach treats the
posterior distribution from one model as the prior distribution for the next model. The
second posterior distribution reflects the application of both models. This concept can
be applied directly to segment and segmentation distributions, and also to region pairs,

as discussed in Section 4.6.

To explain the implications of computationally based simplifications and, when possible,

to allow monotonic improvement of accuracy by increasing computation.

When simplifications are made for the purpose of computational efficiency, the result-

ing performance degradation should be characterized. We should also be able to improve



performance, recovering from some of the degradation caused by simplifications, by ac-
cepting more computational cost. Model simplifications are described in this thesis, and
with the methods discussed in Chapters 6 and 7, performance can be increased with an

increase in computational cost.

To avoid prior specification or estimation of the number of segments in order to perform

segmentation.

Often, it is undesirable to specify the number of segments that will be present in some
unknown image before performing segmentation. In many approaches to segmentation,
the segments are treated as classes, and pattern recognition techniques (such as clus-
tering) are used to define these classes, yielding a favorable segmentation. With these
methods, knowledge of the number of classes (i.e., segments) in the image is usually
necessary to guide the generation of the segmentation, although a statistically based

termination criterion is used in [43].

To design efficient algorithms that are capable of handling large images with realistic

probability models.

As a natural goal, we seek algorithms that can cope with images of practical complex-
ity. Enumerating all possible segmentation alternatives for a real image is an infeasible
task. Therefore it is important to represent only the segmentations having sufficiently
large probabilities. Also, we will need an efficient representation of the space of alterna-
tive segmentations. Our representation allows us to represent large portions of the space
succinctly, and to develop efficient algorithms to construct this representation for a given

image.
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To design algorithms and representations that allow for straightforward parallelization.

With the current widespread interest in parallel architectures, the issue of paral-
lelizability should be taken seriously when designing segmentation algorithms. When
possible, we have developed procedures that are amenable to parallel processing. Specif-
ically, the computational methods introduced in Chapters 6 and 7 are parallelizable in a

straightforward manner.

1.3 Organization of the Thesis

Figure 1.1 gives a sketch of the dependencies among chapters in this thesis. Entire
chapters are not needed to continue in some cases, and often only minor references are
made to previous chapters without a direct dependency indicated. In this section we will
provide a brief outline of the material that follows, and indicate the crucial portions of
the chapters.

In Chapter 2 the major probabilistic approaches to segmentation, which are more
closely related to this work than the general approaches mentioned in Section 1.1, are
introduced and discussed. The purpose is to provide a context for our work and a
point of comparison. Section 2.1 gives an overview of clustering methods, and presents
an example of a segmentation application from Silverman and Cooper [43]. Section
2.2 discusses Markov Random Field (MRF) models (particularly, much of the work by
Geman and Geman [30]), and their application to segmentation. Relaxation labeling and
related methods are briefly discussed in Section 2.3. Finally, Section 2.4 discusses some
of the similarities of the methods, and views them in light of our objectives introduced
in Section 1.2.

Chapters 3 and 4 provide the theoretical foundation of our general approach. Chapter 3

deals primarily with the representations and operations needed to construct and maintain
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Introduction
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Polynomial Parameter Manifold Chapter 8
Experimental Results

Chapter 9
Discussion

Figure 1.1 Dependencies between chapters in this thesis.

a probability distribution on spaces of segments or segmentations. Chapter 4 gives a gen-
eral Bayesian model for determining the probability assignments, which applies to a key
component of the theory in Chapter 3.

Section 3.1 gives the technical definitions of regions, segments and segmentations.
These definitions are important to understand and are slightly different than the usual
intuitive notions of these concepts. Sections 3.2 and 3.3 formally define the probability
spaces needed for the discussion of distributions of segments and segmentations. An

operation called refinement is introduced which allows the incremental construction of a
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segment distribution representation. A simple example is presented in Section 3.3 illus-
trating the concepts. Model-based probability assignments are needed for the refinement
operation, and the general issues are addressed in Section 3.4. Section 3.5 describes the
relationship between segment space distributions and segmentation space distributions,
and how a segmentation space representation is constructed. Finally, Section 3.6 dis-
cusses the relationships between different types of prior distributions on the spaces of
segments and segmentations.

Chapter 4 introduces the membership probability model, which is used at the refine-
ment step. The general statistical model that we begin with has appeared in a similar
form in work by Geman [44], and also Szeliski [2], in the context of MRF models. The
first three sections of the chapter are the most important. Section 4.1 discusses the gen-
eral perspective and motivation for Chapter 4. Section 4.2 provides the basic, general
definitions of the probability spaces and random variables that will be used in the chap-
ter. Section 4.3 derives the Bayesian membership probability for a useful class of models.
Sections 4.4-4.7 describe other models, extensions, and simplifications of the material
presented in Section 4.3. Section 4.8 provides an example illustrating the key concepts
in the chapter, and Section 4.9 briefly presents a more complex instance of the Bayesian
membership probability model, in an application to an MRF texture model.

Chapter 5 demonstrates the utility of the Bayesian membership model by applying
it to an important class of models used in range image segmentation: the implicit poly-
nomial surfaces. These are generally difficult to utilize since parameter estimation is
often difficult, and closed-form, point-to-surface distance expressions do not exist. An
introduction to implicit surfaces, including general background and motivation, is given
in Section 5.1. Section 5.2 presents an example motivating the use of our membership
model in this context and compares it to an estimation-based approach to segmenta-

tion. The application of the membership model from Chapter 4 is described in detail in
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Sections 5.3 and 5.4. Specific expressions for planar and quadric surface cases are given
in Section 5.5.

Chapter 6 discusses the computational implications of determining the membership
probability under the implicit surface model. In general, the computation requires an
integration to be performed over a half-hypersphere manifold. The parameterization
equations for this manifold are presented in Section 6.1. Closed-form expressions for
hypersphere area, required in the computation, are presented in Section 6.2. Section 6.3
describes the Monte-Carlo technique used to obtain numerical estimates of the integrals.
The convergence rate of this integration method is slow for many cases, and we present
a technique which greatly reduces the number of iterations required to compute the
integrals in Section 6.4. A simplified method for computing the membership probability,
applicable in some cases, is presented in Section 6.5. The chapter concludes with some
additional implementation issues in Section 6.6.

Chapter 7 specifies the algorithms used to construct representations of distributions
of segments and segmentations, and may be considered as a continuation of the dis-
cussion presented in Chapter 3. In Chapter 3, the representations and operations are
specified, and in Chapter 7, the algorithms and decisions used in our experiments are
presented. These algorithms are primarily concerned with the efficiency issues involved
in building the distribution representation. Section 7.1 presents algorithms for generating
a representation and probability distribution over a set of segments. Section 7.2 presents
algorithms for generating a single segmentation, or a probability distribution over a set
of segmentations.

Experimental results using planar and quadric surface models with range images are

given in Chapter 8. The experimentation can be divided into three major categories:
1. Membership probability results for varying region types

2. Obtaining a probability distribution on a space of segments

14



3. Obtaining a probability distribution on a space of segmentations

The experimental objectives and conclusions are introduced in Section 8.1. The first
category, presented in Section 8.2, demonstrates the concepts introduced in Chapters 4-6.
Specifically, the effects of increased noise, location of points in space, and small sample
sizes on membership probability are discussed. Sections 8.3 and 8.4, representing the
second and third categories, demonstrate the algorithms of Chapter 7, and also the theory
presented in Chapter 3. Probability distributions over segments and segmentations are
obtained by repeatedly using membership probability computations. Since it is important
to control the experiments in a way that allows us to declare the underlying model, vary
the noise, and make other deviations for the purpose of observation, some of the images
presented are synthetic. We present many results for real range images, in which the
data set is obtained through active triangulation.

Section 9.1 of Chapter 9 recalls the objectives introduced in Section 1.2, and summa-
rizes how they have been addressed in the thesis. Section 9.2 presents several directions

for future research. A few concluding remarks are given in Section 9.3.
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CHAPTER 2

RELATED APPROACHES

The purpose of this chapter is to present other probabilistically based methods of
image segmentation to provide a context and point of comparison to our work. These
approaches can be organized into several categories, depending on the general method
and models used. Section 2.1 describes the statistical clustering approach. The cluster-
ing methods are taken from general pattern recognition, in which features are extracted
from the image and classification is made in the feature space, yielding an image seg-
mentation. Section 2.2 discusses the MRF-based approach to segmentation, in which a
spatially dependent, stochastic model is used, and the segmentation goal is formulated
as an energy minimization problem. Relaxation labeling, discussed in Section 2.3, also
models spatial dependency and often uses a deterministic, iterative algorithm to yield a
locally optimal segmentation. This categorization is not completely rigid since several
researchers combine approaches. Finally, in Section 2.4, our segmentation goals are dis-
cussed in comparison to the previous probabilistic segmentation work. Specifically, we
point out that all of these methods involve model parameter estimation and iterative

convergence toward a single, goal segmentation.
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2.1 Clustering Methods

2.1.1 General description

Many of the clustering methods are derived from general pattern recognition research.
The problem in pattern recognition occurs when one wants to design a classifier, and the
class labels of the training set are unknown. This is known as the unsupervised learning
problem. It may also be the case that the number of classes is not known, although most
clustering algorithms require this number. It is, however, assumed that some functional
form of the class-conditional densities is known (e.g., that the densities are multivariate
Gaussian).

By considering segments as classes, clustering can be applied to the segmentation
problem. For texture models it may be the case that a labeled training set is available
from which texture parameter values can be obtained; however, for most applications,
this is not the case. The clustering approach is naturally suited to the polynomial surface
model, in which each class represents a single polynomial patch in the image. In this
case it is difficult to estimate in advance the number of surface patches one expects to
appear in the image.

Since the class densities are unknown and the training set is not labeled, the clustering
approach is not inherently probabilistic; however, we consider it in this categorization
since clustering often incorporates parameter estimation and statistical decisions. It is
also common for clustering to be used as a single stage in a probabilistic segmentation
approach, which could also, for instance, incorporate MRF methods (see [33],[45]).

A general introduction to clustering can be found in [46],[47], and only a brief intro-
duction is provided here. Four basic components involved in most clustering algorithms

are:

1. Define a feature metric space.

17



2. Determine feature values that correspond to pixels or regions.
3. Iteratively group pixels or regions with close features in the metric space.
4. Terminate based on some stopping criterion (if the number of classes is unknown).

The first step corresponds to choosing some image features to use for clustering. Features
could correspond to single pixels, or could be extracted from regions in the image. For
instance, these features could be texture parameters, coefficients of a polynomial surface
that approximates some region of the image, or intensity values. It is expected that
pixels or regions with close feature values (in which a distance metric on the feature
space is used to measure closeness) are similar and should belong to the same segment.
Consequently, locally clustered feature values can be compared and grouped. One of the
useful aspects of the clustering approach is its natural ability to combine evidence from
multiple sources by concatenating feature vectors [48].

The second step may involve some straightforward transformation of the data into
feature space, as in the color space used in [49], or may use some region-based parameter
estimation. For example, Silverman and Cooper use maximum likelihood estimation to
obtain surface parameter vector estimates for clustering [43].

The decisions involved in the third step depend on the particular clustering algo-
rithm chosen. Among these are K-means clustering [50],[51] and agglomerative clustering
[46],[43], which is discussed in the next section. Some algorithms also allow partitioning
of the clusters [47].

The fourth step is necessary when the number of classes is not known. Without
this knowledge, it could conceivably be correct to leave each data point in a class by
itself, or to group them all together. Some decision criterion is therefore necessary to

determine the number of resulting classes. This decision criterion is often based on some
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assumptions about the general form of the class-conditional densities (e.g., multivariate
Gaussian).

Clustering has been applied to a variety of image types and models. Silverman and
Cooper [43] segment intensity images into regions in which the intensities can be well-
approximated by planar or quadric surfaces. Bell combines clustering with a Monte-Carlo
approach to segment radiograph images, to determine manufacturing defects [52].

As stated previously, most clustering algorithms require specification of the number
of classes. Some recent work has been done specifically addressing the problem of de-
termining the number of classes, known as cluster validation, in the context of image
segmentation applications. Zhang and Modestino give a discussion of cluster validation
that applies Akaike’s information criterion to deciding the number of classes a priori [51].
Jolion et al. propose a robust clustering algorithm which provides reliable performance
without specifying the number of clusters [48].

Histogram thresholding is related to clustering, and a general survey of thresholding
techniques can be found in [53]. An intensity image can be transformed into a histogram
space, and the goal is to use thresholding on groups of pixels or regions, represented in
the histogram, which are closely concentrated. This is equivalent to deciding on class
boundaries, in the pattern recognition context. Since necessary statistical models are

difficult to obtain, the thresholding methods are often heuristic [13].

2.1.2 A clustering example

As an example of the clustering approach, applied to segmentation of intensity images
with explicit planar and quadric polynomial models, we will discuss some details of the
work of Silverman and Cooper [43]. Later, in Chapter 5, we will apply our model to the
implicit polynomial facet model for range images; therefore, this clustering application is

useful for comparison.
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Silverman and Cooper applied the agglomerative hierarchical clustering algorithm [46]
to the problem of intensity image segmentation. The assumption is made that the image
intensities can be represented by piecewise quadric (or planar) surfaces with additive
white noise. Certain texture models can be used instead, but these will not be treated
here.

Initially, the image is partitioned into a rectangular array of square regions, called
blocks. By iteratively grouping blocks to create larger regions, called clusters, an image
segmentation is obtained in which the intensities in each agglomerate region are well-
approximated by a single quadric (or planar) equation.

We will describe some of the mathematics next, with some of the notation altered
from [43] to conform to the notation that we will introduce in subsequent chapters. Let
DIi, ] denote the intensity value at the i** row and j** column of a rectangular image,

and let D denote the entire image. A quadric intensity function is represented as
h(u;1,7) = uo + uii + ugg + uzij + ugt® + usj’. (2.1)

Let the k' block be denoted by R}, which is simply a set of intensity values at the indexed
locations. For any block (or later any set of blocks), a parameter Gy can be chosen to
yield a best approximation to the set of intensity values in Ry in the least-squares sense,
as described in [46].

The noise model consists of Gaussian iid noise with known variance o for block Ry.
The joint probability of all of the intensity values, given the polynomial coefficients uy
for every block Ry, is used as a global criterion to choose clusters for merging. This joint
probability density function (pdf) for the data set is a product of all of the Gaussian

densities,?

s o v =T T —2 exp{—ﬂm""”‘h(““’”]}. (22)

[ 2
k=1 D[i,j]leRx |/ Zﬂ-ak Tk

In the condition, we are given all region data, region parameters, and noise variances.
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1. Initialize blocks Rj and determine parameter estimates Gy.

2. Out of all adjacent cluster pairs select two clusters, e.g., R,,, and R,,,, which have
the closest parameter values.

3. Replace R,,, and R,,, with R,,, U R,,,, and compute ﬁml*mZ'
4. If termination criterion met, then terminate.

5. Go to 2.

Figure 2.1 The agglomerative clustering algorithm.

The inside product can be multiplied out to obtain

p(D|Ry,ux,op Yk) = ﬁ ;lwexp {—l Z lD[i’j] — h(Uk;iJ)] } . (2.3)

k=1 (2mo}) 2 D[i,j]€R Tk

in which |Ry| represents the number of points in Ry. For any cluster Ry, we can obtain
an estimate of ug, denoted by Gx. Also, for any pair of clusters R, and R,, we can form
a new cluster R,; = R, U R, and obtain a corresponding parameter estimate Gys. The
agglomerative clustering algorithm is described in Figure 2.1.

The expression (2.3) is used to decide the most likely pair to merge. A likelihood ratio
is formed for each pair, using parameter estimates. This ratio compares the likelihood
(2.2) with the pair of regions merged to the likelihood without the pair merged. The pair

of regions that maximizes this ratio is selected for merging. Explicitly, the ratio is

(R, |0 p( Ryt )
p( | rS) kgsp( k| k) p(R’/’s|uI'S)

[T p(Reliy) ~ p(R,ar)p(R,[s)”

(2.4)

The densities of the form p(Ry|Gk) represent the joint pdf of Ry, given the parameter
estimate and observed intensities, taken directly from (2.3).
We omit some details here, but the maximum likelihood criterion above can be ex-

pressed as a minimization of a quadratic distance measure,

(ﬁr - ﬁrs)tMr(ﬁr - ﬁrs) + (ﬁs - ﬁrs)tMs(ﬁs - 1Al]['s)- (2-5)
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The matrices M, and M; are computed directly from the region data in R, and R;,.
Each term in the sum is similar to a Mahalanobis distance metric in the coefficient space
[46]. The distance function is minimized as the difference between ¢ and G, and the
difference between Gy and Gig become small. In other words, if the polynomial coefficients
are approximately equal, the clusters should be merged.

The clustering iterations continue until a stopping criterion is met that asserts that
even the best possible merge is likely to be incorrect. The condition is formulated as a

Bayesian, two-hypothesis test, based on the parameter likelihoods.

2.2 MRF/Gibbs Methods

2.2.1 General introduction

The Markov random field (MRF) approach models the image as a lattice of random
variables, with each variable having explicit dependency on some local neighborhood
consisting of other random variables. One of the earliest instances of this type of system
is the Ising model [54], used in statistical physics to explain ferromagnetism. The general
model that is most often used in computer vision was introduced in a seminal paper by
Geman and Geman [30], in the context of image restoration. A primary appeal of the
approach is the fact that any MRF formulation (which applies to a variety of image mod-
els) can be expressed as an energy minimization problem, in which parallelism can be
exploited. The primary difficulties with the approach are the computational complexity
of the optimization, and the problem of MRF parameter estimation [55]. An extension
of the MRF approach, which encompasses many continuous field and deterministic seg-
mentation and boundary detection methods, can be found in [42],[56]. For a discussion

of uncertainty estimation with MRF models, see [2].
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The MRF approach is applied primarily to intensity images, and the statistical models
capture local dependency relationships between pixels. The approach has been applied to
modeling noise processes and texture [21],[22],[23], color-constancy [57], blurring [30],[58],
boundary modeling [59],[58], and locally dependent nonlinear image transformations [30].
The approach is less appropriate for modeling more globally dependent models such as

piecewise polynomial surfaces [2].

2.2.2 Model definitions and the Hammersley-Clifford Theorem

Some details of the approach will now be presented. For more complete introductions,
we refer the reader to [60],[30],[61]. A set of sites is denoted by S = {s1, $2,...,sn}. Each
site has a discrete-valued random variable associated with it, denoted by X, for site s.
The dependencies between the sites are modeled by a neighborhood system G. Each site,

s, contains a set of sites G5 in G with the restrictions that
1. s ¢ Gy,
2. s € GG, if and only if r € Gj.

Each G represents a set of local neighbors for the site s. The restrictions define the
neighborhoods in an intuitive way, and the the pair {S,G} together define an undirected
graph; the sites are the nodes, and each neighborhood gives a set of arcs which are drawn
between s and the neighboring sites in G5. A subset C' C S is called a clique if each site
in C' is a neighbor of every other site in C'.

Typically, two coupled random fields are used to model an intensity image: the inten-
sity process, I, and the line process, L. Together, these constitute the sites: S = F U L.
The intensity process represents the “true” intensity values of the image pixels. The line
process represents boundaries between the individual pixels. For any two adjacent pixels

in the image (using standard four-neighbors), there is a site representing a line segment
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Figure 2.2 Depiction of the coupled MRF processes. Circles represent the intensity
process, and shaded bars represent the line process.

between them. Figure 2.2 depicts the two interleaved processes with circles for the inten-
sity process and shaded bars for the line process. Geiger and Girosi discuss the difficulties
with bias induced from vertical and horizontal lines [55]. Other types of information have
been represented with MRF variables. For example, Chou and Brown represented region
and edge type labelings [36], and Modestino and Zhang consider high-level, qualitative
labelings [62].

Let each random variable, X, take on values from A = {0,1,...,L — 1} for some
integer L. For the coupled process, the line and intensity sites will take on values from
different sets; however, this distinction is merely notational and does not hinder the
following discussion. This gives rise to a sample space on the sites with each outcome

represented by assigning values from A to each of the sites. The set of all outcomes is
Q={r=(as,...,25y) x5, € \;1 <2 < N} (2.6)

The event corresponding to a single outcome is denoted by {X = z}.

Two conditions are necessary for the system of random variables X to be an MRF

P(X=2)>0 VYze® (2.7)
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and

P(Xs =a4|X, =2, Vr#s) = P(X, = 5| X, = 2, Vr € Gjy). (2.8)

The first condition simply asserts that every outcome must have nonzero probability.
The second condition states that the probability of values at a site s depends only on
the site variables that are neighbors of s. The other sites in the image have no direct
influence on the probability distribution of X;. There is an implicit global dependency
throughout the sites since the probabilities of the neighboring sites depend on their
neighbors. When considering the outcomes z, two sites that are connected in {S, G} have
dependent probabilities through transitivity of the neighborhood dependencies. This is a
natural extension of the concept of a Markov chain, which has a linear dependency, to a
general, graph-structured dependency. It is often assumed that the system is noncausal,
and the entire image is presented at once. Goutsias and Mendel have considered the use
of causal random field models for segmentation [63].

Consider a probability mapping 7 on ). It conveniently turns out that the two MRF
conditions above impose a strong restriction on the form of valid probability distributions

on . The following theorem is obtained, which is clearly explained and proved in [60]:

Theorem 1 (Hammersley-Clifford Theorem) A set of random variables X with the neigh-

borhood graph {S,G} is an MRF if and only if there exists a function V such that

m(x) = Vo €, (2.9)
in which T and Z are constants, and

Uz) =Y Vi(z). (2.10)

CceC
In (2.9), C represents the set of all cliques in {S,G}, and T denotes “temperature,”
representing the degree of peaking in the distribution. As 7' approaches infinity, the

distribution w(x) approaches uniformity. The normalizing constant, Z, is often called
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the partition function. The exponential function given by (2.9) and (2.10) is called a
Gibbs distribution. The function U represents the energy function. Note that smaller
values for the energy function correspond to larger probabilities w(z). Each function V.
is called a potential.

The potential functions are specified as part of the particular model. There is one
function for each clique, meaning that some potential function exists for each fully con-
nected grouping of sites. Hence, there are potentials for singletons, pairs, triplets, and so
forth. A larger potential value penalizes outcomes of certain combinations of variables,
while smaller potential encourages certain combinations. Determining these potential
functions (the estimation problem) can often be difficult, depending on the application.

The goal is to find the labeling, z, that minimizes the posterior energy function, given
a prior energy function, and an observation of the degraded image. The general approach

can be summarized as follows:
1. Define a prior MRF and potentials.

2. Determine the form of the posterior probability map from models and the image

observation.

3. Find the best image estimate through optimization of an energy function.

2.2.3 An MRF example

We present an example which illustrates the combination of priors and the degradation
model into a posterior MRF, discussed in [44]. Consider a set of sites representing the
intensity pixels in a rectangular array image (i.e., L = () and S = F'). The sites represent

binary intensity values, being zero or one. Define the neighborhood set of a pixel to be
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the four-neighbor set (above, below, left, right neighboring pixels).? Let y denote the
observed intensity site values that comprise the given image.

Using this neighborhood model, the only cliques in {S,G} are singletons and pairs.
Let singletons have zero potential and let all pairs have identical potential. Using a
constant 4 > 0, a consistent potential function can be defined as

Ulz) =—-p Z Ty (2.11)
[s,t]€C
Larger values of # will encourage larger regions of constant intensity since the energy for
cliques with 1-1 intensity values will be lower than for mixed, 0-1 and 1-0 values. Using
this prior energy function, the prior probability is
m(x) = %ewp {/3 > l‘sl’t} . (2.12)
[s,t]€C

Assume that the only contributing factor to the degradation of the image is iid Gaus-

sian, additive noise with zero mean and variance o?. The conditional probability of the

observed image, given the true image is

sES
This form is obtained from expanding a product of Gaussians representing the joint site
density.
Bayes’ rule is used to obtain the posterior probability

rlyle)n(e) .-

m(zly) = — 5

The denominator, 7 (y), is very difficult to compute, but is usually not directly needed,

and therefore treated as a normalization factor. The posterior becomes

1 1
w(xly) = Z—pewp {ﬁZ%% T 92 S(;‘/s - 335)2} : (2.15)
s€

[s:1]

2This is known as the Ising model.
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Above, Z, represents the combined constant from Z and #(y). The argument of the
exp function is again an energy function, and by Theorem 1 the posterior distribution is
also an MRF. This is an example of a posterior energy which is minimized to obtain a

good labeling.

2.2.4 Energy optimization and parameter estimation

In recent years here has been considerable interest in improving MRF energy optimiza-
tion algorithms. Geman and Geman used a simulated annealing approach (also called
stochastic relaxation) to determine the maximum a posteriori estimate (MAP) of the
image [30]. The temperature, 7', is controlled in a manner that guarantees convergence
to the optimal energy state, but the rate of convergence can be slow in practice. Other
techniques have been developed which yield performance tradeoffs. Besag [64] proposed
the iterative conditional modes (ICM) method as a feasible alternative to stochastic re-
laxation. Marroquin et al. gave an approach, called maximizer of posterior marginals
(MPM), which defines a segmentation error metric, minimized to yield the best label-
ing. Empirical comparison of these three approaches was done in [65], concluding that
for many cases, ICM was the most efficient, robust and produced the most reasonable
segmentations.

Derin and Elliot derive a recursive formulation of the posterior energy function and
propose the dynamic programming formalism to determine the MAP estimate [22]. Due
to high computational complexity, an iterative, suboptimal approximation is used, which
sequentially processes strips in the image. Cohen and Cooper give a parallel, hierarchical
algorithm for optimizing the energy function in a Gaussian MRF [21].

An interesting approach to the minimization is taken by Chou and Brown [36]. The
site values are arranged in a hierarchy, in which various nodes represent subsets of the

set of labelings that can be assigned. Using this representation, a highest confidence first
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(HCF) method is developed for efficient energy minimization with least commitment
under inaccurate models.

The issues involved in MRF parameter estimation have also been carefully considered.
In all of the MRF algorithms, some model parameter estimation must be performed to
obtain the energy function. Often, methods perform parameter estimation “off-line” as
a preprocessing stage to segmentation [22]. Cohen and Cooper discuss the problem of
adaptively estimating parameters during segmentation in the context of texture models
[21]. Subrahmonia et al. propose an iterative scheme which performs global optimization
of the energy function and parameter estimation for 3-D surfaces through a single per-
formance functional [66]. An alternative adaptive estimation/optimization scheme has
been proposed by Lakshmanan and Derin [45]. Manjunath and Chellappa [23] argue that
for texture models, estimation on small windows and simple, nearest-neighbor clustering
can be used as a starting point for the energy optimization to yield results comparable

to the adaptive scheme [45].

2.3 Relaxation Labeling

The relaxation labeling approach (also called probabilistic relaxation) has many sim-
ilarities to the MRF approach, but has been less popular in recent times. One of the
early appearances of relaxation labeling is in work by Rosenfeld, Hummel, and Zucker
[67]. We leave a complete introduction to the subject to Peleg [68], and Rosenfeld and
Kak [69], and instead mention some of its features and issues.

Like the MRF approach, a probability distribution for each site over a set of labels
is considered. A compatibility measure is used to model the interaction between pairs of
sites, when determining probability assignments. One begins with a prior distribution of
labelings. Through an assignment rule based on compatibility, one iteratively improves

estimates of the “true” probabilities. After several iterations, the probability assignments
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stabilize. For most versions of relaxation labeling, the probabilities are merely syntactic
(in the sense that they obey the axioms of probability) and are not derived from a
statistically valid image model [30],[69].

Peleg provides a rigorous probability updating rule, which explicitly defines quantities
(as individual labeling probabilities and pairwise, joint probabilities) needed for building
the models. Some heuristic estimation is often required to determine these probabilities.
For this estimation in the context of shape analysis, see [70].

It has been difficult to characterize the quality of the obtained labeling. Faugeras and
Berthod, however, defined measures of consistency and ambiguity in the distribution of
labelings, and gave an iterative optimization approach to obtaining a good labeling [71].
Some extensions of the relaxation labeling paradigm are presented in [72]. A more recent
discussion of relaxation labeling, applied to the problem of supervised and unsupervised
texture classification can be found in [24],[25].

Don and Fu propose a segmentation method, similar to relaxation labeling, using a
stochastic grammar [73]. Compatibility measures for pairs of image features are derived
from stochastic rules in the grammar. An iterative optimization procedure is derived,
with proven convergence, that yields a favorable segmentation. Some experimental results

were obtained with intensity images, and hueristically assigned probability rules.

2.4 Comparative Discussion

Using the methods discussed, we can further address some of the objectives that were

stated in Section 1.2. Most probabilistic approaches involve three steps:
1. Parameter estimation
2. Iterative decision making

3. Classification
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These are similar to the steps indicated by Jeong and Lapsa: parameter determination,
decision, and classification [74].

For clustering, parameter estimation is performed on regions or pixels to obtain val-
ues in the feature space. The clustering algorithm involves iterations of decision-based
criteria and often a final termination decision. The classification is given by the resulting
groupings of features in the feature/parameter space.

With the MRF model, parameter estimation is needed to determine the energy func-
tion. Some form of iterative optimization is generally used to determine the posterior
distribution on the space of image labelings. A classification is induced by considering
each possible label as defining a class, and the resulting site values as defining the class
assignments.

With relaxation labeling, estimation (if it is performed) determines the compatibility
measures. An iterative optimization is performed to yield a stable label assignment.
Again, if the labels are considered as classes, a classification has been performed.

Our framework does not fit into these three steps. With our approach, parameter
estimation can be completely avoided (however, the density in the parameter space is
still utilized). We will introduce iterative methods, but they will not be working toward
a single goal segmentation or labeling, but rather toward maintaining a distribution of
segments or segmentations. Uncertain decisions can be left to some higher-level process.

In the remainder of the section, we evaluate the methods presented in this chapter in
the context defined by our objectives in Section 1.2.

None of the methods that we have seen have attempted to represent a distribution
over a space of segments or segmentations. The MRF approach does, however, explicitly
define the space of all labelings, on which the optimization is performed. Dubes et al.
have noticed through experimental observation that the optimal energy in an MRF for-

mulation does not necessarily correspond to the “correct” segmentation [65]. Szeliski has
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emphasized the importance of being able to estimate the amount of uncertainty present
in a segmentation [2]. Due to the underconstrained nature of segmentation, we consider
it appropriate to represent distributions of alternative segments and segmentations.

Methods that allow for statistical parameter estimation, such as MLE, have been pre-
ferred recently over those having many arbitrary parameters. This is one of the difficulties
with many relaxation labeling applications, causing research to focus toward MRF-based
methods and clustering. If there is no sound method to determine segmentation parame-
ters reliably, the method becomes difficult to use. As problems of greater complexity are
considered, the number of parameters tends to increase, making this issue increasingly
important. Hence, we consider deriving all parameters from statistical models as one of
our objectives.

Recall that the MRF approach is most naturally suited for locally dependent models
(although a wide variety of them). We are interested in the application of a Bayesian
model to polynomial surfaces, and hence the MRF formalism is not suitable. However,
clustering is often used for polynomial surface models. Also, Jeong and Lapsa com-
bine a polynomial model with the MRF model in a general decision criterion, used for
segmentation [74].

Since the MRF approach is Bayesian, there is a natural extension to the case of
multiple models, since it corresponds to repeated application of Bayes’s rule [44]. Multiple
models can also be incorporated into the clustering approach since feature spaces from
different models can be concatenated. Hence, we also consider this as an objective, and
in Chapter 4, we demonstrate how our Bayesian model can accomplish this.

Increased performance at the expense of increased computation can be beneficial if
the tradeoff can be sufficiently characterized. This is the case for some MRF optimization
algorithms. For instance, by adjusting the temperature, 7', in the simulated annealing

procedure, the convergence rate is increased at the expense of failing to guarantee an
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optimal solution. Hence, one is allowed to trade off computation for accuracy, depend-
ing on the application. We also consider this as a useful attribute for a segmentation
approach, and develop algorithms that behave in this manner.

The number of classes in the MRF approach is supplied as the number of labelings for
a site. This does not directly relate, however, to the number of segments in a segmentation
determined by the line sites. For this case it is a matter of interpretation as to whether
or not the number of classes is given. For clustering, we have discussed the difficulty
involved in determining the number of classes a priori, or formulating a termination
criterion for ending the merging. This is the reason that clustering algorithms tend to
oversegment large patches [75]. For texture models, it may be reasonable to expect some
number of classes; however, for polynomial patch models, it does not seem reasonable to
expect to know the number of patches in the image a priori. Hence we present a method
which does not require the number of classes to be given.

Parallelizability has been a feature making many segmentation approaches popu-
lar. For instance, the local-dependency structure of the MRF allows for straightforward
parallelization of many of the optimization algorithms [30],[2]. Don and Fu have also em-

phasized parallelism in their stochastic grammar optimization approach to segmentation

73].
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CHAPTER 3

SEGMENTATION SAMPLE SPACE
FORMULATIONS

As mentioned in Chapter 1, one of the keys to our approach is the ability to efficiently
generate and represent the interesting portions of the sample space of segmentations. This
chapter defines the general segmentation concepts needed for our approach, and gives the
explicit mechanisms for constructing the sample space representation. Generating the
representation will require probability assignments to be made at various stages, and in
the next chapter we will present a Bayesian model which is used to exert evidence-based
probabilities on the space of segmentations. This chapter will define precisely where this
Bayesian model is applied, while leaving its details to Chapter 4. Although the method
of constructing the sample space representation will be given in this chapter, the issue of
making computationally based decisions will be deferred until Chapter 7, when algorithm
details are discussed. Many of the concepts presented in this chapter also appear in [76].

While much of the past segmentation research has focused on obtaining a single,
best segmentation with respect to image models, our approach will require carefully
chosen representations of subsets of the space of segmentations. We will consider a
segmentation here as a partition of the image into connected segments, and not as a set
of possible labelings for image pixels as in many MRF methods. With a probabilistic

model of segmentation, the favorability of a partition is influenced by the underlying
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statistical model of the homogeneity. With the approaches discussed in Chapter 2, the
goal is to iteratively converge to a single partition, optimizing (or attempting to optimize)
some statistical criterion. The following sections organize the segmentation problem
into a sound, probabilistic framework in which entire sets of partitions are implicitly
represented. Evidence induced by the models of homogeneity is explicitly applied to
these sets of partitions to determine posterior Bayesian probabilities on the space of
all partitions. In this way, interesting portions of the space of all partitions can be
represented, along with the corresponding probabilities.

Two different sample spaces, which describe these sets of segmentations, will be in-
troduced. The segmentation sample space (SSS) describes the probability distribution
over all possible segmentations. The segment sample space (TSS) is used to maintain a
probability distribution over a space of single segments in the image. During the process
of constructing a representation of the SSS, different TSSs are generated, with each one
contributing to the representation of the S5S. The two spaces are fundamentally related
through a set mapping.

In the next section, some of the basic definitions needed to discuss segmentations
will be provided. In Section 3.2 the notion of a sample space of segmentations is intro-
duced. Section 3.3 describes the segment sample space, which is used to apply evidence
locally and construct representations of the space of segmentations. Following this, Sec-
tion 3.4 introduces the general issues involved in applying model-based evidence to the
construction of the segmentation space representation. This topic will be discussed in
much further detail in Chapter 4. Section 3.5 gives the fundamental relationship between
the segment sample space and the space of all segmentations. The final section presents
the issue of obtaining prior distributions on the space of segmentations, which is usually

of interest in a Bayesian approach. The definitions from this chapter are presented in

Table 3.5.
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3.1 Regions, Segments and Segmentations

The definitions and assumptions that follow treat the segmentation problem as that
of finding a partition of an image which consists of a set of points, between which some
adjacency relation is defined. Only those partitions that lead to connected groups of
points are considered. The structure of these groupings will be precisely defined, leading
to a sample space of segmentations in the probabilistic sense.

Before considering probabilistic formulations, it is necessary to consistently define
familiar segmentation ideas. The input to the segmentation system is a set D of points.
Associated with each element D]z, j] is the representation of the point, which may be an
intensity value and/or a set of coordinates in R*, or may be other image information. In
Chapter 5, when polynomial models are introduced, D[7, j] will represent a point in R,
with coordinates x = [x1 x5 x3]. The theory in Chapter 4 will not, however, require this
restriction.

Since the elements of D are arranged in a matrix, adjacencies can be considered in
the usual way. A given point D[i, j] will have a set of points called neighbors to which it
is adjacent. Using standard four-neighbors, this set is: D[¢ — 1, 7], D[ + 1, ], D[¢,7 — 1],
D[i,7 + 1] (see Figure 3.1). One could also consider eight-neighbors by considering
diagonally related points as adjacent. In general, for the theory to come, any adjacency
relation may be used for a given set of data points.

We will introduce three terms that are used extensively in this thesis: regions, seg-
ments, and segmentations. Usually, a segmentation is considered as a partition of the
image D; however, in our work, we will need to introduce some additional structure when
defining a segmentation. The definitions are first introduced, along with some interpreta-
tions. In Section 3.3 an example is presented which illustrates the definitions introduced

here, and subsequent concepts.
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D[i,j+1]

DIi-1,j] D[i,j] D[i+1,j]

DIfij-1]

Figure 3.1 Simple, 4-neighbor adjacency for point D[z, j] in the image D.

A region, R, is some connected subset of D.! By connected we mean that for any
Dli1,71], D[i2,72] € R, there exists some sequence of elements of R, (D[km, ln])m=1,..n,
in which each D[k,,_1,l,,_1] is adjacent to D[k,,,l,,], and D[ky,l;] = D[i1, j1], D[kn, 1] =
Dliy, j2]. This is the standard definition of a connected region for image segmentation.
Two regions, R; and Ry, will be called adjacent if there exist some Dliy, ;] € R; and
Dlisy, j2] € R, that are adjacent.

For a given problem, we work with a pairwise-disjoint set of regions, R, in which
every element of D is contained in some region. We will soon describe how these regions
are obtained, but first we continue with the related definitions.

A segment, T, is a connected set of regions (e.g., S = {Ri, Ry, R} is a segment
consisting of three regions). A set of regions is connected if their union is connected, in
the sense as defined above.

A segmentation, S, denotes a set of segments that forms a partition of R. Note that

a segmentation implicitly defines a partition of D.

!Note the table of definitions appearing at the end of this chapter.
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Note that given a segmentation, S, and two adjacent segments® T},T, € S, a new
segmentation, S’, can be formed by replacing 17 and T3 with 77 U T, and keeping all
other segments fixed. These are the tamiliar notions of region merging and segmentation,
expressed in our set-theoretic terms. With these definitions, however, region merging does
not really occur. Rather, segments are merged by taking the union of two segments to
yield a larger collection of regions (as opposed to taking the set union of the regions to
create a larger region).

It is often profitable to begin with some initial partition of the image into small
regions, and construct new segmentations by combining regions. This the standard ap-
proach taken in the region merging paradigm [69]. One justification for this is the savings
in complexity achieved by considering this smaller set of possible segmentations. An-
other reason, which will become more evident when polynomial models are introduced in
Chapter 5, is that often some minimal number of points is required in a region before the
statistical models can be effectively employed. The initial segmentation represents the
starting point in a region-merging algorithm. For instance, Silverman and Cooper begin
with an initial image of blocks, which corresponds to an initial partition of the image into
a grid of square regions [43]. Blocks are merged to yield clusters, which correspond to
segments.

Let IT denote the set of all segmentations that could be constructed from the regions,
R. At one extreme, II includes the partition induced by the original regions. At another
extreme, I contains the partition corresponding to combining all regions into one seg-
ment. The implication of starting with R is that there are many image partitions that
are not considered.

Segmentations could, of course, be constructed by partitioning regions in R. However,

when the models are formulated in later chapters, it will be assumed that each region

2We mean that the union of the segments is connected.
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is homogeneous.? If some region is not known to be homogeneous, we might want to
consider splitting it into possibly homogeneous components. In a sense, R defines the
granularity of the segmentation. The granularity can be made arbitrarily fine, up to the
limiting case in which all elements of R are singleton subsets of D. Hence, using R as a
basis does not impose any limitations on the space of segmentations that we can consider.

In practice, R can be constructed using a segmentation algorithm that allows one to
select some level of confidence required for points to be grouped. This confidence level
can be set in such a way that homogeneity can be assumed to hold with a very high
degree of confidence over the regions that are constructed. In Chapter 8, we present
experimental results on range data, with R obtained by recursively splitting regions that
cannot be approximated by a single plane or that contain a Canny edge. The idea is
to make extremely conservative choices about which points to keep together as regions,
since combinations of regions that are uncertain will be considered at the higher level,
probabilistically. This is essentially the approach taken in split-and-merge algorithms
[77],[4]. A region-splitting algorithm that provides regions in a split-and-merge approach
should also be sufficient for providing R in our context. In general, the initial regions
used for other region-merging approaches are also sufficient. The set R represents the
building blocks from which segmentation events are constructed in this setting (as it is

also the building blocks for region-merging approaches).

3.2 The Segmentation Sample Space

In this section we consider II in a probability space, by considering subsets of II
and their associated probabilities. Hence a probability, P({S}), is associated with each

possible S € II. In real applications, the size of Il is quite large. Therefore, as will

3In practice, one cannot usually guarantee this, and we expect a natural performance degradation
when nonhomogeneous regions are presented.
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be seen shortly, we have developed a technique in which much of the sample space II is
represented implicitly by accessing only selected subsets of 1I. This will allow tremendous
savings over representing every element S € Il and its corresponding probability.

The Segmentation Sample Space (SSS) is represented by the probability triple (I, A, P).
Recall that II is the set of all segmentations that can be formed using R. In the triple, A
represents the set of all subsets of II (i.e., the power set of 1), and P denotes a probability

mapping, defined on A. The SSS adheres to the standard probability axioms:

0< P(A)< 1, VA€ A, (3.1)
P(Il) = 1, (3.2)

and
Al N A2 = @ — P(Al U AQ) = P(Al) —|— P(AQ), \V/Al,AQ € ./4 (33)

3.3 The Segment Sample Space

A segment sample space (TSS) essentially describes all ways to construct segments
that contain some specified region. Its general purpose is to specify locally how to apply
evidence, ultimately determining a probability mapping on II. This concept will now
be defined in detail. The structure and operations on this space will be introduced
independently of the previous discussion about the SSS. When the SSS and the TSS are
related in Section 3.5, both will be considered simultaneously.

For a particular region R; € R, O; is the set of all possible segments that contain
R;. One such element of ©; is the singleton {R;}. Another might contain R; and several
adjacent regions. If D is connected, then the entire set R also belongs to ©,;. By this

definition, for any region R; € R, there is a corresponding set of segments ©,.
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A TSS is defined by the triple (0;,B;, P). As defined before, ©; is the set of all
segments that include R;, B; is the set of all subsets of ©;, and P is the probability
mapping on B;.4

The next step is to define a method for implicitly representing elements of B;. For
real image applications, the number of segments in ©; will typically be extremely large;
the set B; is exponentially larger. Any scheme that requires enumeration of either of
these sets would be severely hindered by combinatorial explosion. It will be necessary
to select certain elements of B3; in an organized manner, when evidence induced by the
models is applied, and a representation of a TSS is built. This provides motivation for
the definitions and representations that follow, which will be used to apply Bayesian

evidence efficiently, affecting the probability distribution on ©;.

3.3.1 Compact representation of TSS events

To represent elements of B;, we introduce two set definitions and a function. Specif-
ically, we can define an element B € B; by describing a set of regions which must be
included in every element of B, and a set of regions which must be not be included in
any element of B. These two sets essentially contain all of the information that is com-
mon to the segments in B. The inclusion set, I, is a set of regions which always includes
R;. The exclusion set, E, is also a set of regions, each of which is required to be adjacent
to some region in I. Finally, I N E = (.

We define a function 7(/, F), which maps to some B € B;, as
T([LEY={T€0,: ICT,ENT =0}. (3.4)

This definition precisely represents what was previously described in words: 7(7, E) gives

the set of all segments that include all of the regions in I, and exclude all regions in F.

4We have a different probability map for each possible TSS, and should technically use P;. We refrain
from this to make some of the later notation simpler.
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Figure 3.2 A simple image composed of only four regions is provided as an example.

Proposition 1 The mapping defined by 7 is well-defined and onto B;.

Proof Well-defined: Note that 7(/, F) is a maximal subset with respect to C. Suppose
7 could map to two different events, By and B;. Then it must also map to By J By by
(3.4). If By # By, neither can satisfy the maximality condition since By C By B, and
By C By U B;. This leads to a contradiction; hence 7 is well-defined.

Onto: Suppose there exists some B € B; which is not the image of 7 for any [ or £
sets. Let I = Ngep S. Let E be the set of all regions that are not in UgepS, and are
adjacent to some region in . The set 7(1, F) is precisely the original event B, assumed
not to be the image of 7(I, F), which is a contradiction. O

The proposition implies that every event B € B; has a well-defined representation in
terms of I and £ sets.

Before continuing further, an example will be presented to illustrate the concepts.
Figure 3.2 shows a hypothetical image D consisting of four regions: Ry, Ry, R3 and Ry.
Region R; is selected as the fixed region; O, is then the set of all segments that include
Ry,

O, = {{Ri},{R, Ro}, { Ry, Ra}, { Ry, Ry, B3},

{R17R27R4}7{R17R37R4}7{RDR27R37R4}}- (35)
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Table 3.1 Segment space events are represented for the four-region example. The
columns under [ and £ denote the include and exclude sets, respectively. The column
under 7(/, E) gives the corresponding event in B;.

[h |1 [ E [ (1, E)
0 | {Ri} 8 0
L | {R} {Ra} HR ) { Ry, Rs}, { Ry, Rs, Ra}}
2 | {R:1, Ry} {} {{R1, R2},{R1, Ry, Ry}, {R1, R2, R3},{R1, R2, R3, R4 }}
3 | {R} {Ry, Rs} | {{R1}})
4 | {R, Ra} {Ra} R, Ra}, { Ry, Ra, Ra}}
5 | {Ri, Ry} {Rs} R, Ro}, { Ry, Ry, Ra}}
6 {Rl,RQ,Rg} {} {{Rl,RQ,Rg},{Rl,RQ,R37R4}}
7 | {R, Rs} {Ro, Ra} | {{F1, Ra}}
8 | {Ri, Rs, Ry} {Ra} R, Rs, Ra}}
9 | {R, Ry} {Rs, Ra} | {{F1, Ra}}
10 | {Ry, R2, R4} {R3} {{R1, R, Rs}}
11 | {Ry, R2, R3} {R4} {{R1, R, R3}}
12 {31732733734} {} {{RlvR2vR3vR4}}

Note that {R;, R4} € O since R; is not adjacent to Ry. For larger images, the number of
segments is typically a small fraction of the total number of possible (connected or not)
region groupings. This is because the excluded regions tend to disconnect the included
regions from the rest of the image. This happens in the example when R4 is cut off from
R; by excluding Ry and Rs.

Table 3.1 shows the results of applying 7 for some events in B;. FEach entry in
the rightmost column is a set of segments, with each segment specified by a list of its
constituent regions. In rows 3 and 7 to 12 of the table, 7(/, E) represents singleton
elements of B;. These cases are termed ground events. As will be seen shortly, ground
events play an important role in our approach. It is important to note that 7(/, E)
provides a compact representation for potentially large subsets of ©;. For example, in
row 2, four elements of ©; are implicitly represented by I = {R;, Ry} and E = (). The

savings in representation become greater as the number of regions in R increases.
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E={r2,r4} E={r2} E={r3,r4} E={r3} E={r4} E={}

Figure 3.3 This figure shows a tree of events on ©; corresponding to four regions. The
I and FE sets are indicated for each hypothesis. Each node is also assigned a consistent
probability.

The rows in Table 3.1 can be organized into a binary tree structure, as illustrated in
Figure 3.3. Such a tree represents a hierarchy of events in ©;. Each node, with its [/
and FE sets given, represents one of the rows in Table 3.1. Node hg in the tree represents
the event O (taken as an element of By). The two child nodes of hg, namely, h; and
ha, represent disjoint events whose union is represented by hg. For any two nodes in
the tree that share the same parent, the two nodes together represent disjoint events
whose union is the event represented by the parent. The ground events in B; appear
as leaves of the tree, since these events represent single segments. This tree structure
conceptually represents the events that will be used to build a representation of the TSS.

For illustration, a consistent probability has been assigned to each node in Figure 3.3.
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We note that there is a close correspondence between this tree and classification and
regression trees [78],[79],[80]. Classification and regression trees are used to represent
a sample space efficiently, often for the purpose of pattern recognition. They differ,
however, since these methods are concerned with the efficiency of the entire tree structure,
since the size and depth of the classification tree affects the classification cost. In our

framework, the tree is used only for conceptual purposes.

3.3.2 Constructing an approximate TSS representation

In this section, we are concerned with constructing a hierarchy of events, such as
the one in Figure 3.3. To accomplish this it will be necessary to consider a sequence of
partitions of ©;. Each partition in the sequence will represent one step in the construction
of the tree. We will describe a cover, which is an approximate TSS representation, and
a refinement, which is an operation that creates closer approximations.

We define a cover, C, of the TSS to be a set of pairwise-disjoint events in B;, which
forms a partition of ©;.° For a tree such as the one shown in Figure 3.3, a cover can also
be considered as a set of nodes whose corresponding events form a partition of ©;. For
example (see Figure 3.4), a cover can be constructed from the tree using nodes hy, hg, hg
and hig, or from all of the ground nodes (the leaves of the tree). Also, hg alone creates
a cover containing only one event, @4, in the partition.

A cover can be considered as an approximate representation of ©; and P on the TSS.
A cover (] is considered to be a better approximation than C5, if C; can be obtained
by partitioning some of the elements of C3.° Consider a cover C = {By, By,..., By}
with specified probabilities on each of the events, {P(Bi), P(Bs),...,P(B)}. If C is

the set of all ground events in B;, then an exact representation of the TSS is obtained;

5Note that this does not completely coincide with the definition of a cover in analysis, which does
not require pairwise disjointness.

By this concept of approximation, a partial ordering (not a linear ordering) is imposed on the set of
all covers.
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Figure 3.4 Several covers of ©; obtained by taking nodes from the example tree.

all of the elements of ©; are explicitly represented in C', and the probability is given
for each of them. Since the ground events are mutually exclusive, the probability for
an arbitrary event B € B, is obtained by summing the probabilities P({T'}) for each
T € B;. Hence if C is the set of all ground events in B;, then the entire probability map
is fully determined. Suppose that C' = {0©;}. We know that P(©;) = 1; however, the
probabilities of the other events in B; cannot be directly determined. This corresponds

to the poorest approximation possible, since no information is actually present about the

TSS.
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In the example appearing in Table 3.1 and Figure 3.3, we have enumerated all ground
events of B;, and seven other events. In practice, it is intractable to construct an entire
tree. It is reasonable, however, to expand and represent only the portion of the tree
that corresponds to events with significant probability value P(B). The precise details
of constructing this tree efficiently in practice are discussed in Chapter 7. For now,
we will present the operations for constructing the tree, as necessary preparation and
motivation for the forthcoming chapters. The goal is to obtain a cover that explicitly
represents ground events with high probability, and represents events with low probability
as larger subsets of ©;. A cover with few events forms a compact representation of the
TSS since each event is represented by [ and E sets. This representation is useful since
it can explicitly represent the most favorable segments (as ground events) and their
corresponding probabilities. The represented ground events will be used later to build
an SSS representation, and this extension will be discussed in Section 3.5.

Our approach to constructing a representation of the TSS is to start with an initial
cover, and iteratively construct new covers, each of which gives a closer TSS approxi-
mation. In terms of classification and regression trees, this corresponds to the notion
of impurity reduction through partitioning [79]. The goal in the classification and re-
gression tree setting is to select finer partitions of the sample space to optimally reduce
the expected loss due to approximate representation. In our framework, we will also be
reducing the expected loss, but with an interest in obtaining a representation of ground
events that have highest probability.

The refinement mapping, p, is used to perform a single iteration in building the
representation of the T'SS. It takes a cover, C', an event, B, € C, and a region, R,, and
yields a cover that represents a better approximation, C' = p(C, B,, R,). The region R,,
termed the refinement region, is adjacent to some region in /, and R, ¢ I,U F,, in which

B, = 7(1,,E,). The B, is termed the refinement event. The cover, C’, is termed the
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Table 3.2 Enumeration of segments for the example image

Name ‘ Segment ‘

T; {FR1}

13 {R1, Ry}

13 {R1, R}

Ty {R1, Ry, R}

15 {R1, Ro,y R}

Ts { Ry, Rs, Ra}

17 {R1, Ry, Rs, Ry}

Table 3.3 Sequence of refinements to generate example tree

‘ Cover ‘ R, ‘ B, ‘ Partition of ©,
Co - |- Uy, Ty, Ts,T5, Ty, Ts, Ts, T} }
Cl RZ 62 {{TQ,T4,T5,T7},{Tl,Tg,TG}}
Cy Ry | {11,135, Ts} I, Ty, 15,17}, {11}, {15, T} }
Cs R {T27T47T57T7} {{T27T5}7{T47T7}7{T1}7{T37T6}}
Cy Ry | {135,156} U, T5} AT, Tr} {10}, {15}, {16}
Cs Ry | {1, 15} UL b A0, {1, Tr ), {1} {153, {T6} )
Ce Ry | {14, 17} UL b AT} AT} {1 {0 { T { T )

refined cover with respect to C'. The refinement mapping is formally defined as

The only difference between C' and C’ is the replacement of B, by 7({, U {R,}, F,) and
7(1,, E, U{R,}). These two new events will be termed refined events. The refinement

event B, has been partitioned by using the refinement region R,. All segments in B,

that include R, are in 7(I, U {R,}, E,).

exclude R,) are in 7([,, E, U{R,}).

p(C. By, Ry) = (C — B,)U{r(L,U{R,}, ,),7(L,, £, U{R,})}.
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By repeated applications of the refinement mapping, a tree can be constructed similar
to the one in Figure 3.3. Table 3.3 depicts one way of constructing this tree from a
sequence of refinement mappings. For convenience, Table 3.2 names all of the segments
of ©;. Initially, we begin with Cy. This corresponds to the starting node, hg, in the
tree. Cover (4 is constructed by using the mapping Cy = p(Co, ©1, Ry). In the tree, this
corresponds to the creation of nodes h; and hy. The cover (5 is constructed using Hj
and event {7}, T3, T}, corresponding to the addition of nodes ks and hy. The iterations
are continued until cover Cs. No further refinements can be performed after Cg since
every element in the cover is a ground event.

Recall that, in practice, a tree is not constructed to the point at which all ground
events are represented. The refinement mapping will not be applied to events that have
very low probability. We will be interested in the ground events that have been repre-
sented, but the vast majority of all ground events will be represented only implicitly as
members of some event in the cover. Each of these events is a subset of ©;, which can
represent many segments that have very low probability and are therefore uninterest-
ing. The details involved in making these representation choices, as well as choosing the

refinement event and the refinement region, will be discussed in Chapter 7.
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3.4 Models for Refined-Event Probability
Assignments

Although constructing covers by refinement has been specified structurally, no atten-
tion has yet been given to determining the probability assignments to the events that
are created by refinement. One primary issue must be considered: we are not given a
complete representation of P on the TSS. This would require one probability assignment
for every ground event. If this was given, then the probability of some other event B is
simply the summation over all of the ground events that are subsets of B.

Recall that each refinement removes one event in a cover of 0; and replaces it with
two disjoint events whose union is the original event. The basic strategy in building a
TSS representation is to determine probability assignments of the new events when this
step is performed. This requires deciding how to divide the probability of the original
event between the two new events.

There are two basic mechanisms that exert influence on this probability assignment.
As with any Bayesian framework, there is some prior distribution on the sample space.
Also, after the application of evidence, some posterior distribution is obtained. Before
constructing the tree, a prior distribution will be defined implicitly on the TSS. Model-
based evidence will be used, along with the prior distribution, to determine probability
assignments at the refinement step. These issues will be discussed in the remainder of
this chapter.

Using the refinement mapping just described, successive partitions are constructed
from ©; as prescribed by (3.6). Recall that in this operation, after selecting B, and R,,
we partition B, = 7([,, F,) into 7(I[,U{R,}, E,) and 7(,, E,U{R,}). For probabilistic

consistency, it is necessary to have

P(r(1,,E,)) = P(r(I,U{R,}, E,)) + P(7(l,, E, U{R,})). (3.7)
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It is assumed inductively that P(B,) is known, and that the two probabilities on
the right side of (3.7) must be determined. Before the first refinement is performed,
B, =0, and P(0,) = 1, reflecting the starting condition. At each iteration we will have
P(7r(1,,E,)) and need to determine probability assignments on the right side of (3.7)
while making use of priors and model-based evidence. This will determine the probability
assignments at each refinment, and hence the probabilities for all of the events in a cover.

If it were reasonable to enumerate all of ©;, then it would be possible to apply
evidence directly to the ground events. This would yield a complete representation of
the probability map on the TSS. To avoid this enumeration the probability assignments
are made in this incremental form. When considering the efficiency of resulting covers, the
assigned proability will dramatically affect the choice of B, and R, for a new refinement.
This issue is of an algorithmic nature and is discussed in Chapter 7.

It has been assumed in (3.7) that the probability of B, is never altered by the re-
finement operation. In general, it could be the case that evidence about R, could cause
P(B,) to increase or decrease. Although we have not yet introduced specific models of
homogeneity, it is important to note that in the most general setting a model could be
considered that causes P(B,) to change after R, is considered. This is precisely the issue
that arises with taxonomic hierarchies, analyzed by Pearl [81]. An efficient method of
propagating evidence-based, posterior probabilities throughout a hierarchy of events is
presented in Pearl’s work, but the construction of the hierarchy by the refinement map-
ping is not considered. Models that cause P(B,) to change are much more difficult to
analyze in our context.

An empirical investigation of this more difficult probability model, applied to our
TSS representation framework, can be found in [82]. Pearl’s more general, Bayesian
networks have also been applied to computer vision problems. Agosta, and Binford et al.

have considered them for model-based object recognition applications [83],[84]. Sarkar
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and Boyer have proposed Bayesian networks for a hierarchical organization of perceptual

features [85].

3.4.1 Simplifications and membership probability

The purpose of this section is to reduce the probability assignment of (3.7) into
a form that we can directly utilize. The resulting expressions concisely represent the
dependencies on R; and R,. The membership probability is defined, and computation
using general image models is presented in Chapter 4.

An alternative way to represent the probability terms on the right side in (3.7) is by
P(r(I,U{R,}, E,)) = P(r(I,U{R,},E,) | B,) P(B,) (3.8)

and

P(r(I,,E,U{R,})) = P(r(I,,E,U{R,})| B,) P(B,). (3.9)
This can be seen by observing that since 7(I, U {R,}, E,) C B,, we have
P(r(I,U{R,},E,),B,) = P(r(I,U{R,},E,)). (3.10)
Similarly, for 7(1,, E, U{R,}) C B,, we have
P(r(1,,E,U{R,}),B,) = P(r(1,, E, U{R,})). (3.11)

Since it is assumed that P(B,) is known, the conditionals of (3.8) and (3.9) are all

that need to be determined. Recall that B, = 7([,, ,). The conditionals become
b= P(r(l, U{R,}, E,) | 7(1,, E,)) (3.12)

and

Py = P(r(1y, £, U{R,}) | 7(L,, Ep)). (3.13)

The probabilities, P; and Pg, are called membership probabilities and are very im-

portant for the remainder of this thesis. We consider P; as the probability that R, is a

52



member of the maximal homogeneous segment that contains R;, and Py as the proba-
bility that R, is a not a member of the maximal homogeneous segment that contains R;.
Note that P; + Pg = 1 since the two events together represent a partition of 7(/,, F,),
which is given. This implies that only one of these probability assignments is necessary
to determine the probabilities to assign to the new events created by a refinement. The

expressions above can be simplified further by making use of the following proposition:

Proposition 2 If I, I, I; are include sets with [ = 1, U Iy, and E, Fy, Fy are exclude

sets with E = Ey U Ey then 7(1, E) = 7(1, E1) N 7(12, E3) .
Proof We have 7(I, E) = 7([; U I, E1 U E,). By definition
T(LUILL,E L UEy)={T€0,:(LUL)CT,(FEUE)NT =10} (3.14)
This can equivalently be expressed as
{T e, LT, LCT,ExNT =0,E,NnT =0}. (3.15)
This is the same as
{T e, LCTIN{T €O, LCTIN{TeO,: E,NT=0}N{T€0,;: E,NT =0}.
(3.16)
But this is equivalent to
{TeO, : L CTEENT=0Nn{TeO,: L CT,E;NT =0}, (3.17)

which is simply 7([1, E1) N 7([3, E3). O
By using Proposition 2 with Iy = 1,, I = {R;,R,}, F1 = E,, E; = 0, (3.12) can be
rewritten as
Pr=P(t({Ri,R,},0),7(1,, E,) | T(,, E,)). (3.18)
Also, (3.13) can be rewritten, by using the proposition with Iy = 1, I, = {R;}, E1 = E,,
Ey ={R,}, as
Py = P(r({R:},{R,}),7(I,, E,) | 7(1,, E,)). (3.19)
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These can both be simplified by making use of the fact that for any two events B; and
By, P(By, By|By) = P(B1|Bz). By using this directly, the two can be reduced to

Pr=P(r({R;, R,},0) | 7(1,, E,)) (3.20)

and
Py = P(r({R:}, {R,}) | 7({,, E,)). (3.21)
The expressions (3.20) and (3.21) are expressed in a form explicitly indicating the
importance of adding R, to I, or E,. This is the fundamental distinction between the
event B, and the two refined events. It is natural to expect that the probability due to
evidence will depend directly on the new region that has been brought into consideration,

and this has been precisely represented by these expressions.

3.4.2 I[FE-independent and [E-dependent models

In general, for determining P; (or Pg), a significant issue must be considered: the
notion of I E-independence. In the next chapter, we will derive expressions for comput-
ing the membership probability that use information obtained from each region. The
probability, Py, from (3.20) depends on R,, I, and E,. If a model uses information from
all of these regions, it is termed I F-dependent. Recall that R; is contained in every TSS
segment. If a model uses information only from R, and R; € I,, then it is termed [E-
independent, since the membership probability is independent of the regions in [ and £

(except R;). Explicitly, I E-independence can be expressed for P; as
P(r({Ri, R,},0)|7(1,, E,)) = P(r({R:, R, },0)), (3.22)

and for Py as
P(r({R:i}, {R,}) [ 7(1,, E,)) = P(T({Ri}, {R,})). (3.23)
The choice between these models depends on the application. In Chapter 8, the dif-

ferences when using polynomial surface models are examined. The [ E-dependent model
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is, of course, the more general model since it does not require an additional assumption;
however, the computations that it will tend to produce are more costly. Since the [ £-
independent model uses only R, and R;, only one membership probability computation
is performed for each potential refinement region. If 7, and E, are also considered, then
a membership probability computation must be performed for each refinement.
Depending on the model, however, it may not always be possible to introduce the
I E-independence assumption. Since the membership probabilities with this assumption
depend on the relationship between R, and R;, there must be a significant amount
of information available R;. Typically, this will imply that better utilization of model
evidence will be possible when R; contains more data points. If this implication is

not intuitively clear, it should become apparent when surface models are introduced in

Chapter 5.

3.4.3 Posterior evidence-based probabilities

In the next chapter, a general statistical formalism will be developed which will be
used to determine P; and Pg for both I E-independent models and I F-dependent models.
By using this formalism, the probability assignments can be made at each step of the
refinement, allowing O; to be partitioned to yield better approximations to the TSS. The
models assume some prior value of P; and Py and yield an evidence-based, posterior
probability.

For the IFE-independent model, and a generic piece of evidence, e, the posterior

probability of Py is obtained through Bayes’ rule as

Ple|r({R:, £,},0)) P(r({Ri, B, },0))

P(T({RhRP}vw) |€) = P(e) , (3.24)
and the posterior for Py is
P(T({Ri,RP},@)C |e) _ P(e |T({Ri7RP}7®) ) P(T({Riva}vq)) ) (3‘25)

Ple)
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We have 7({R;,R,},0)° = ©; — 7({R;, R,},0), which is the event complementary to
7({R;, R,},0). Note that 7({R;, R,},0) and 7({R;},{R,}) form a partition of ©;, hence
T({Ri7 Rp}v @)C = T({Rz}v {RP})

Similar expressions can be written for the I £-dependent case:

P(T({Ri7 RP}7 Q)) |T(]p7 Ep)v e)

(3.26)
_ P(e |T({Ri7RP}7w)vT(ImEp))P(T({Ri?RP}vQ))vT(]/MEP))
Ple,7(1,, E,))
and
P(T({RiaRP}aq))C |T(IP7EP)7€)
(3.27)

P(e |T({Ri7RP}7®)CvT(1/}7EP)) P(T({RivRP}vQj)ch(]vap)).
P(e,7(1,, E,))

By making use of Proposition 2, the I F-dependent probabilities can be reduced to

Ple|r(l,U{R,},E,))P(r([, U{R,}, E,))

P(T({Ri,R,}},@) |T(]/”EP)’€) - P(G,T(]/MEP))

(3.28)

and

Pr({Re, B,},0)C [r(1, ), ) = LT B L}Ef’;}()])fg)g?’& D) (599

The particular interpretation of e will be discussed in the next chapter.

3.5 Segment Sample Space to Segmentation
Sample Space Relationships

Now that the TSS has been defined, its relationship to the SSS will be discussed.
This relationship is interesting since the SSS is a space of segmentations, representing
all alternatives we wish to consider, and a TSS describes a distribution over segments

that represent a portion of each of the segmentations. It will turn out that the TSS
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can be used as a building block with which representations of events on the SSS can be
constructed. It is necessary to relate the distribution over ©; to the distribution on the
SSS since traditionally one is interested in full image segmentations. Also, it is interesting
to investigate the distribution arising from the composition of a few neighboring segments,
since often only a few segments form a useful constraint for recognition [86].

It is assumed here that we have methods to compute the probabilities described in

the previous section. Chapters 4-6 present a detailed discussion of this computation.

3.5.1 The segment-to-segmentation mapping

The mapping from a TSS to the SSS is determined by specifying a function from the
set of events on a TSS to the events on the SSS. Formally, this mapping is expressed as
fi : Bi = A. From this function, the relationship between the probability maps can also
be determined. To define f;, first consider a ground event on a TSS, denoted by {7T'}.”

We define f; on this ground event as
{TH ={Sell: T e S5}. (3.30)

The event f;({T'}) € A is the set of all segmentations that include the segment 7'. Since

every T' € O; contains R; and segments in a segmentation are disjoint, we have
FUT) N (TR = 0T Ty € 0, £ T, (331)

In other words, no single segmentation can contain two distinct segments that belong
to the same ©;. By using this fact and (3.30), we can define the mapping for a general
event, B € 3;

FB)= | fUTH = P{Sel: T e s} (3.32)

TeB TeB

Above, & represents the orthogonal sum, or union of disjoint sets.

"We use {T'} instead of T since the ground event is a singleton subset of ©;.
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By applying f; to each ground event in ©;, we obtain a set of events which forms
a partition of II, with each set in the partition corresponding to a segment from the
TSS. Hence, there is a correspondence between segments in a T'SS and the events in the
SSS obtained from f;. The relationship between ©; and II is similar to the notion of
refinement used by Shafer [87]. In fact, the mapping f; is very similar to what Shafer
terms a refining mapping.

The next step is to define the relationship between the probability maps on the two
spaces. To be very precise in this section and in Section 3.5.2, we will use P to denote
the probability map on the SSS, and Pg to denote the probability map on a TSS. The
goal is to make the probability maps coincide on events that are equivalent through f;.
Explicitly, the probability assigned to a ground event in the TSS is assigned directly to

the corresponding event on the SSS. This is

Pa(fi({1})) = Po({T}). (3.33)

For an arbitrary event B € B; we use (3.32) to obtain
Pu(fi(B)) = Y Po({T}) = Po(B). (3.34)
TeB
This is true since the ground events are disjoint.

If we are given some probability map defined on B, we have constraints only for the
corresponding map on A. This is due to the fact that a single segment in ©; maps to a
subset of II. This implies that a T'SS can be considered as an approximate representation
of the SSS. It will therefore be required only that probabilities of ground events on the
SSS sum up to the probability of the corresponding ground event on the TSS. Also, it is
assumed as in Section 3.4 that the probability assignment at the TSS is not altered by

evidence from some later refinement.
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3.5.2 Considering SSS representations using TSS
representations

It will now be shown that the probability relationship, (3.34), along with the method
of constructing TSS approximations, can be used to build SSS approximations that are
better than the closest approximation that could be obtained by some ©;. The technique
involves using TSSs repeatedly for different initial regions and organizing the results into
a hierarchy of partitions on 1l (very similar in appearance to the hierarchy constructed
on 0,).

The process begins by choosing some initial region R; , and building a representation

of the ground events on ©;, (or at least a representation of some of them). Denote this
set of ground events by X. Take some event {T'} € X, and denote the subset of Il given
by fi({T}) by Ai,. Consider defining a new image, D', from D by taking

D'=D-J R (3.35)

ReT

The image, D', corresponds to the removal of T' from the original image, D. An initial

region, R;,, is selected as a subset of D', and the corresponding TSS, ©;,, can be con-
structed. Ground events in this TSS give single segments in D'. With ©;, the event A;
is given from D; therefore, ©;, gives a distribution over some segment pairs in the image
D. Each pair represents 7" and some segment from O,,.

An example of this concept is described in terms of the example in Figures 3.2 and
3.3. Figure 3.5 shows the extended tree arising from constructing several TSSs in the
manner just described. To keep the diagram from being cluttered, the I and E sets have
not been indicated. Instead, the region, R,, introduced at each refinement, is indicated.
A left child indicates adding R, to E. The right indicates adding R, to /. Note that the
upper portion of this tree coincides with Figure 3.3. In this figure, however, each square

node represents the root node of the tree for a new TSS. At the root of the tree, Ry was

chosen, as before, to construct ©,. The nodes hs, h7, hg, and hyg mark the initiation of
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Figure 3.5 Full segmentation tree represented for example.
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Table 3.4 The SSS ground events represented for four-region example

‘ h ‘ Segmentation ‘ P(S) ‘
8 | {{Ry, R3, Ry}, {Ra}} 0.12
10 | {{R1, Ry, Ry}, {R3}} 0.2
11 | {{Ry, Ry, Rs}, {R4}} 0.05
12 | {{Ry, Ry, Rs, Ry} } 0.25
15 | {{Ry, Rs}, { Ry, R4}} 0.08

16 | {{R1, Rs},{R2}, {R4}} 0.08
17 | {{R1, Rz}, {Rs}, {R4a}} 0.05
18 | {{R1, R2},{Rs, R4}} 0.05
20 | {{R.},{Rq, Ra}, {Rs}} ]0.0008
21 | {{R.}, {Ry, B3}, {R4}}  10.0001
22 | {{R1},{Ra, B3, Ra}} 0.0001
23 | {{R.}, {R.}, {Rs}, {R4}} | 0.0003
24 | {{R:}, {R2},{Rs, Rs}} ]0.0007

TSSs started by choosing some new initial region. The new starting region is indicated
in the box. The new images with regions removed are shown in Figure 3.6. From left
to right, they are: the initial image, the new image at hs (corresponding to the removal
Ry), the new image at hg and hig, and the new image at h;. For this example, 5 TSSs
were constructed, with all 13 possible segmentations represented. Table 3.4 indicates
the segmentation represented at each of the terminating nodes, with its corresponding
probability.

Figure 3.7 gives a schematic representation of the TSSs that are constructed. The
SSS ground events generated by each TSS construction are indicated. By looking at this
figure it becomes evident that the problem of finding SSS ground events is a kind of
search problem. In practice T" and R;, must be chosen at each TSS step, in an attempt
to represent portions of the SSS that correspond to higher probabilities.

This again is an example representing the entire space; here the SSS is represented

in its entirety since this is possible for such a simple image. In practice, this space will
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Figure 3.6 Partial images corresponding to various TSS constructions.

not be fully represented (indeed, not one of the TSSs needs to be fully constructed).
This raises issues of efficiently constructing interesting portions of the SSS. This will be
discussed at length in Chapter 7.

In Figure 3.5, probabilities have been assigned in a manner consistent with (3.34).

Consider, as before, ©;, and ©

i, With 71 € 0;,. Segment T} is removed when considering

some new region R;, used to construct ©;,. Consider some segment T3 € 0,,. The joint

probability P of T} and T5 is given by

Pu(fi({Th}) 0 fo({12}) = Pu(f({T2D)[ARTD)) Pa(f1({T1})). (3.36)

We need to relate the probabilities on the right side of (3.36) to the TSS probabili-
ties, Po, ({71}) and Pe, ({T3}). We assume that the probability maps on different TSSs
are independent. This implies that there is no statistical dependency between different
segments in the same segmentation. One approach to considering segment interdepen-

dence is discussed in Section 9.2.3. With the independence assumption and (3.34), and
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atR3

_

SSS ground events h17, h18

SSS ground events h15, h16

SSS ground events h20, h21, h22

SSS ground events h23, h24

Figure 3.7 Schematic representation of the various TSSs that are constructed in the

example image.

if 7Y UTy =0, we have

Pa(HL({T2))|A({Th)) = Po({T2}),

using the probability map on ©;,. Also we have

Pa(fi({Th})) = Pe({Th}),

using the probability map on O;,.
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Together (3.37) and (3.38) give the probability of the event on II corresponding to
the set of all segmentations that contain both 7; and 7%. In general (without the inde-
pendence assumption), an expression analogous to (3.36) is applied to n segments and

TSS spaces by

Pu(fi({T1}), fLo({12}), .., fu({T0}))

= Pu(fu{Tu DI facr({Taa}), - A{T) - Pu( ({12 D) AH{TL) Pu(fi({T411))-
(3.39)

By using this assignment, the probabilities corresponding to ground events on the SSS
can ultimately be obtained using individual T'SS probabilities.

Note that, in practice, one may not even care about constructing ground events on
the SSS. One contribution of this thesis is that it allows the consideration of events
that represent partial segmentations, rather than representing explicit segmentations.
Depending on the application, it may be necessary only to construct trees as in Figure 3.7
to some size. For instance, for model-based object recognition using objects composed of
polynomial surface patches, three segments may be sufficient to determine the position
of an object. Faugeras and Hebert provide conditions for which this holds [86]. By
constructing the tree to represent only three-segment groups, an appropriate distribution
is generated. Each three-segment group corresponds to a set of segmentations; however,
the rest of the image (i.e., the regions that do not appear in any I or E sets) may not

be interesting for the application.

3.6 Obtaining Noninformative Priors

Any Bayesian approach must include some consideration of a prior distribution. In
this section we consider different distributions on T'SS and SSS probability spaces, prior

to the application of model-based evidence. The general goal is to reflect some kind
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of uniformity, due to the lack of information that affects the probability distribution.
It might be the case that one wants to introduce some bias through the priors, but
this discussion will primarily be concerned with trying to eliminate unwanted bias to
yield uniformity. The problem here is that, in the beginning, a representation of the
sample space does not even exist. Even after refinements have been performed, the full
representation does not exist. The goal is to try to be as “uniform” as possible, while
not completely representing the space. If a prior with large deviations from some desired
uniformity is selected and very little relevant information is available, the posterior could
be heavily biased. If the priors do not reflect the desired uniformity, misleading results
could be obtained.

This same problem occurs with Bayesian parameter estimation [88]. When the sam-
ples are few, the dependency on priors is strong. As the number of points increases,
the dependency on priors decreases. In the limiting case with full information, the prior
distribution essentially does not influence the resulting posterior density at all. Similarly,
the resulting prior issues in our setting will become critical only if, in the particular ap-
plication, the model-based evidence is weak. This can occur, for example, with a noisy
image in which the regions contain very few points. The issues of how noisy and how few
depend on the model. For polynomial surface models these issues will be discussed in
Chapter 5.

There will, in general, be three alternative notions of uniformity that pertain to our

formalism. The first kind, termed segmentation uniformity, is simply the condition that

or
1
1T

in which |II] is the number of possible segmentations. This appears to be the most natural

P({S}) VS e 11, (3.41)

definition of uniformity. The problem with guaranteeing such an initial condition is that it
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requires enumerating Il before being able to determine the prior. The methods that have
been discussed are aimed at avoiding this enumeration. Hence, segmentation uniformity
is difficult to explicitly use; however, it serves as a reference for comparing other types
of uniformity.

An alternative uniformity, which will be called segment uniformity, is that for any
space O;, generated with the procedure described in Section 3.5.2, we have

P{T}) = |(;Z_| VT € O (3.42)

This states that each of the possible segments in a TSS has equal prior probability.
This also seems natural; however, we must consider that for this to be equivalent to the
segmentation uniformity, f({7'}), for various T' € ©;, must contain the same number
of elements. This is implied by the probability constraint (3.34). It will certainly not
be true in general that the sizes of different f({7'}) are equal. For example, if T' = R
(contains all regions), there is only one element in f({7'}), because there is only one
segmentation possible: all points grouped into a single region. But if 7' = {R;}, for some
R; € R, there will be numerous segmentations that contain the segment {R;}. Thus,
with respect to the segmentation uniformity, the segment uniformity can be considered
as a kind of bias.

The third and final type of uniformity that we consider is membership uniformaty,
which is based on the prior probability needed at each step of the refinement. Consider
a binary sample space with two outcomes: {r({R;, R,},0),7({R;, R,},0)°}. Recall that
membership refers to the specific distinction between whether or not R, is a member of
the maximal homogeneous segment that includes R;. When the [ E-independent model
is used, this is precisely the sample space representing the refinement. If we assume that
each of these two outcomes has probability of 1/2 as a prior, then we have membership
uniformity. Under the [ F-independent model, membership uniformity is achieved using

the prior probability assignment of 1/2 for each refinement. Under the I E-dependent
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Figure 3.8 Probability distribution induced by membership probability of 0.5

model, a uniform prior can also be used with the interpretation that although the evidence
is [ E-dependent, the prior probability does not depend on knowledge about the other
regions in [, or £,.

A natural question to ask is, “What does membership uniformity imply about the
segment uniformity?” To see the relationship of membership uniformity to segment
uniformity consider Figure 3.8. As long as the tree is height balanced, the two prior
definitions are equivalent; however, this is not true in general. With this example, we
see that hs obtains twice as much prior probability as the other ground events. With
segment uniformity this would not be the case. In general, the membership-uniformity
prior induces probabilities on the segment space which are off by a factor of two for every

level in the tree that one ground event differs from the others.

67



Note that the depth in the tree directly corresponds to the total number of elements
in the 7 and E sets of the node. Hence, ground events that are not deep in the tree tend
to have fewer regions. Thus, membership uniformity is actually a bias toward segments
with fewer regions. By changing membership probability, to P(7({R;, R,},0)) = 3/4
and P(r({R;, R,},0)°) = 1/4 for instance, we can obtain a counterbias toward including
more regions. Hence, at each refinement, the prior probability that R, should be added
to I, is significantly higher than the probability that R, should be added to £,.

Experiments indicate that when evidence is strong, the bias due to priors is read-
ily overcome. We have also observed that membership uniformity is usually closer to
segmentation uniformity than it is to segment uniformity. This is due to the fact that
segments with fewer regions (given higher prior probability) tend to cause more TSSs
to be constructed than larger segments. The SSS probabilities are obtained from these
individual TSSs using (3.39). If the number of segments n is larger, the prior SSS prob-
ability will tend to be smaller, compensating for the small-segment bias with respect to

segment uniformity.
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Table 3.5 Notation used in Chapter 3, with elements sorted by the order of their intro-
duction.

‘ Symbol ‘ Definition ‘ Section ‘
D The set of image elements 3.1
R A connected subset of D 3.1
R The set of all regions 3.1
T A segment (connected set of regions) from D 3.1
S A segmentation of D (or partition of R) 3.1
I1 Set of all segmentations that can be generated from R | 3.1
SSS Segmentation Sample Space (11, A, P) 3.2
A Set of all subsets of II (i.e., the events on the SSS) 3.2
A An event on the S55 3.2
TSS Segment Sample Space (0;,B;, P) 3.3
R; An initial region for starting a T'SS 3.3
OF The set of all segments that include R; 3.3
B; Set of all subsets of ©; (i.e., the events on a TSS) 3.3
B An event on a TSS 3.3
1 Inclusion set, containing regions 3.3.1
E Exclusion set, containing regions 3.3.1
([, E) {TeO,:ICT,ENT =0} 3.3.1
h A node in the TSS tree, corresponding to a TSS event | 3.3.1
C A cover (a partition of ©;) 3.3.2
p(C, B,, R,) | The refinement mapping 3.3.2
R, A region chosen for the refinement 3.3.2
B, An event chosen for the refinement 3.3.2
Pr Probability of including R, 3.4.1
Pg Probability of excluding R, 3.4.1
€ A general variable denoting evidence 3.4.3
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CHAPTER 4

BAYESIAN MEMBERSHIP PROBABILITY

4.1 General Introduction

This chapter presents a general statistical formalism, used to make probability as-
signments at a refinement step when constructing the TSS representation discussed in
Chapter 3. Aside from the context developed in the previous chapter, this model can
also be used as a Bayesian region-merging decision function. The membership probability
refers to the posterior probability that the segment formed by adding the refinement re-
gion to [ is homogeneous, when the original segment is given to be homogeneous. In other
words, this is the probability that the refinement region is a member of the maximally
homogeneous segment.

There are two interdependent! sets of random variables which are used in our sta-
tistical context. These represent the parameter space and the observation space. These
spaces encompass a wide class of image models, and we will first describe some of their
basic interpretations.

The parameter space directly captures the notion of homogeneity: every region has a

parameter value (a point in the parameter space) associated with it, which is unknown to

1By two interdependent sets of random variables, we mean that a pair of random variables, formed
by taking one from each set, are generally dependent.
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the observer.? Two regions are defined to be homogeneous if they share the same param-
eter value. By using the homogeneity predicate, H, from Chapter 1, we can conceptually

express the type of homogeneity considered in this chapter:

e H(R) = true if and only if every subset of R has the same underlying parameter

value associated with it.

The precise meaning of this underlying parameter value will be developed in this and
subsequent sections.

As an example the parameter space could represent the coefficients of a polynomial
surface describing image intensities, as in the model used by Silverman and Cooper [43].
It the parameter value is known for each region, an ideal segment is a maximal set of
connected regions sharing the same parameter value. It is assumed that the observer
(receiving information only from the image) does not know the associated parameter
value for any of the regions. If it is possible to determine the parameter values for each
of the regions, then the ideal segmentation can be trivially determined.

The observation space defines statistics that are functions of the image elements, and
contain information about a region’s parameter value. Although the parameter values
are not known in general, a statistical model can be introduced which directly uses two
probability density functions (pdf’s) to determine the membership probability. These
pdf’s represent the prior model and the degradation model. The prior model is repre-
sented by a density on the parameter space (usually uniform), before any observations
have been made. The degradation model is represented by a conditional density on the
observation space, for each given parameter value. Intuitively, this density characterizes
the observations we would expect to make, if the parameter value is given. In Chapter 5,

the degradation model will represent the effects of Gaussian noise.

2The observer refers to the machine, which receives only the image data.
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Each of these concepts has been used in similar contexts for image segmentation. In
fact we have borrowed the terms prior model and degradation model from Geman [44]. In
that context similar models are used for a Bayesian formalization of the MRF approach.
Szeliski also defines a Bayesian model for MRF's, and terms what we call the degradation
model, the sensor model [2].

Traditionally, a segmentation is determined by performing parameter estimation, and
then grouping regions (or pixels) with similar parameter values into segments. It is impor-
tant to note, however, that parameter estimation is not directly part of the segmentation
goal. As discussed in Chapter 1, segmentation requires only a connected partition of the
image. In contrast to traditional segmentation work, we directly use the densities on
the observation and parameter spaces, rather than deriving the results from parameter
estimates based on observation.

It may appear that we would want to perform parameter estimation for different
regions and compare the resulting parameters to determine the probability of homogene-
ity. We have chosen not to perform estimation and are most concerned with the cases
in which estimation is unreliable. These cases tend to yield the greatest amount of un-
certainty when attempting to assess homogeneity, and are therefore the most interesting
when building a probability distribution over varying segments. In Chapter 5, a fairly
complex model (implicit polynomial surfaces with Gaussian noise) is introduced which
uses the results discussed in this chapter, and a comparison is made in Section 5.2 with
the estimation model for planar surfaces with noise.

Recall from Section 3.3.1 that an event on the TSS is represented by 7(/,, F,), in
which [, and E, are the include and exclude sets. At each level of refinement some
region, R,, is selected and used to partition 7(/,, £,) into two refined events, 7(I, U
{R,},E,) and 7({,, £, U{R,}). Recall from Section 3.4 that the goal is to determine

the membership probability P; (or Pg). Two models were introduced which yielded
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different membership probability expressions: the general [ E-dependent model, and the
more specialized [ E-independent model. The section concluded with some Bayesian
expressions for the membership probability, given some evidence e. For Pj, the [FE-

independent model gave

Pr= P(r({Ri, R,},0)|e). (4.1)

Under the [ E-dependent model, and some evidence e, the membership probability was
Pr=P(r({Ri, Ro},0) |7(1,, Ep), €). (4.2)

The event 7({R;, R,},0) will be used extensively throughout this chapter, and hence
we will simplify its notation by letting 7;, = 7({R:, R,},0). By using this notational
convenience, the evidence-based membership probability (3.24) for the [ F-independent

model becomes

P(e |Tip)P(Tip).

Pr = P(7; = 4.;
1= Pl o) = S (1.3
For the [ E-dependent model (3.28) the equivalent expression is
P ios T(Lpy E)))P(Tip, T(L,, E
Py = P(r, |7(1,, E,),¢) = (e |7ip, T(Lp, £,))P(7ip, 7(Lp, E,)) (4.4)

Ple,7(1,,E,))
Since Pg = 1 — Py, it is sufficient to consider only F;.

In the remaining sections we explicitly describe the model of evidence e, and how
it applies to the membership probability. In the next section, the formal definitions of
the random variables and densities are introduced. The [ FE-independent membership
probability is derived in a general setting in Section 4.3. The most important expressions
are (4.23) and (4.43). In Section 4.4, the I E-dependent model expressions are derived.
The concepts are similar to those for the independent model, but the notation is more
difficult. The reader may wish to browse through the derivations for the / E-dependent
case, and make note of the resulting expressions (4.51) and (4.81). In some cases, it

may be that estimation is reliable for one of the regions (e.g., R;), and unreliable for
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the other (R,). In this case, some simplifications can be made, and the corresponding
expressions are derived in Section 4.5. A natural extension of the membership proba-
bility to multiple-independent parameter/observation spaces is provided in Section 4.6.
Again, the derivations are similar to those of the single / E-independent model, with the
main result appearing in (4.102). In Section, 4.7 some expressions are briefly described,
which correspond to discrete parameter and/or observation space versions of some of the
earlier expressions. An illustrative example of the [ E-independent model, along with
some interpretations of the resulting membership probabilities, is presented in Section
4.8. Section 4.9 briefly presents a more complex instance of the Bayesian membership

probability model, in an application to an MRF texture model.

4.2 Bayesian-Model Definitions

This section defines the observation space, parameter space, degradation model, and
prior model. To be as general as possible, we begin with general probability space and
random variable concepts, as found in [89]. The definitions presented here are critical for
understanding the remaining portion of this chapter, although an understanding of the
measure-theoretic notions is not necessary.

Recall that for each element, D]z, j], of the image there is a vector of data that may
contain 3D position, intensity, color, or other information, and let the dimension of this
vector be [. For the n'* component of the vector at D[z, j] we have a probability triple,
(Q, Fry Polt,7]). In the probability triple, ,, represents the set of all possible outcomes
of the n'* component. In practice we could, for instance, take Q, to be ® or some finite
set of labels. We use F,, to denote a g-algebra of measurable subsets of (1,,, representing
the events. If Q,, = R, then F, could be the set of Borel-measurable sets on . If 2, is

finite, then F,, could be the power set of €,,.3

3This is the situation that occurred for the TSS and SSS definitions in Chapter 3.
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The third element of the triple, P,[z, 7], is the probability mapping, represented ab-
stractly as P,[¢,7] : F, — R[0,1]. This function assigns real-valued probabilities to each
of the events in F,,. We use the index [z, 7] to denote the fact that each image element
can have a different probability map, but we assume that the n'® component has the
same events for all of the image elements, and consequently we do not write F,[z, j] or
Q,[t,7]. As will be observed shortly, we will not be required to directly know or estimate
these probability mappings in order to determine the membership probability.

To simplify the discussion, we will reduce each of these probability triples to random
variables, denoted by X,[7,7]. In general, to define a random variable, we need a o-
measurable function, h : 2, — R. This corresponds to assigning real values to each
of the outcomes, as done in elementary probability theory. If 1, = R, then A can be
taken as an identity map. We let X[z, j] take on values denoted by w,[7, 7], which are

the images of elements of {1,, under h. A given image D yields for each 2 and j:

We next define the parameter space at some region, Ry, with a probability triple,
(U, Fu, Pu,). As before, U is a set of outcomes, Fy; is the set of events, and Py, is a
probability mapping, unique to Rj. For simplicity, we will represent the parameter space
as a finite vector of random variables, although, in general, this is not required. Denote
the parameter random variables for some region Ry by Uy = [U} U? ... U[]. A vector
value that can be taken on by Uy is denoted with uy.

The observation space is more difficult to define than the parameter space. We could
consider representing the observation space as the set of all X, [¢, 5] in D. This implies
that the observed image is used to directly determine the membership probabilities. We
will develop a more general observation space in which transformations can be performed
on the image variables to yield the observations, as opposed to directly using the image

variables. This will be useful in applications in which it is impractical to consider large
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numbers of random variables, and the information can be condensed into one or a few
variables.
For each region Ry in the image, let W}, denote the set of all random variables at all

of the points in Ry:

Wy = U {Xl[%.]]v;Xl[th]} (46)

We will in general allow the observations to be obtained through functions of the variables
in Wy and Uyg. This dependency on the parameter space will be explained shortly. In
practice the observations may depend only on W;.

We consider a set, Uy, of measurable functions on the product space formed by taking
the Cartesian products of the sample spaces for the elements of Wy, and U;. We could,
for example, use only one function, representing the mean of the data variables. In
Chapter 5, we will use a function to represent the sum-of-squares displacements of the
points in a region to a surface determined by the parameter value. We will also introduce
a model which applies the identity map to each of the variables in Wj. The general set

of functions can be represented as

\I}k = W)i(wkv Uk)v ¢£(Wk7 Uk)v s f@bg(wh Uk)] (47)

Each element of W}, is a measurable function of random variables, and hence is a random
variable. Therefore, we can use random variable notation to represent the observation
space: Yx = [V} Y,2...Y, in which superscripts are used for indexing. Hence we have
V" = ¢p (Wi, Ug). Let yy denote a vector of values that Yy may take on. The vector
Y will represent the observation space of region Rj.

In the discussion that follows, the random variables previously defined will be treated
as continuous random variables, having corresponding probability density functions (pdf’s).
The results presented in the next four sections apply to general probability spaces

equipped with Lebesgue integration; however, for simplicity, expressions will appear as
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in standard probability texts. Some equivalent expressions for discrete random variables
are given in Section 4.7.

The pdf’s associated with the random variables Yy and Uy will be utilized exten-
sively. Let p(yx) be the joint pdf of Yy, and let p(uyx) be the joint pdf of Uy. Let
p(yk, uk) denote the combined joint pdf. It is assumed that in general p(yy) and p(uy)
are interdependent sets of random variables.* The combined joint pdf can be represented

P(Yx, uk) = p(yx |uk)p(ux). (4.8)

The marginal pdf for yx is then given by

pvi) = [ p(yiclu)p(u)dug (1.9)

The pdf’s appearing in the integrand above represent the basic premises from which the
membership probability will be constructed.

The joint pdf in (4.8) consists of two components which correspond to the two densities
previously indicated: p(yy|uy) is the degradation model, and p(uy) is the prior model.
Each of these components is specified as part of the Bayesian model needed to determine
the membership probability. The prior model has been represented by a density on the
parameter space, before any observations are made (this is typically taken to be a uniform
density). The degradation model has been represented by a conditional density on the
observation yy, given some parameter value ugx. Given a model of degradation that
pertains to the X, [z, ], the degradation model can be obtained though transformation
of random variables.

Since the degradation model is given, if the parameter value of some region, e.g.., Ry,

is also given, the density on the observation space represented by Y; is independent of

4By interdependent it is meant that the observation space variables depend on the parameter space
variables.

5Tt will often be assumed that the prior parameter space pdf does not depend on a particular region,
and will be denoted by p(u).
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any observation variables at other regions. Explicitly this means that for any two regions,

such as R; and Rj,
p(y1lu,yz2) = p(y1luz). (4.10)

Above, y1 and ys represent the observations from R; and R, respectively. Hence the
degradation model densities are sufficient to determine the marginal density of Yy, given
by (4.9), regardless of observations from other regions.

There is an important connection with the models introduced here and Bayesian pa-
rameter estimation. The random variables from some region Ry, namely, X[z, j] ... X[z, 7],
can be interpreted as a training set. The variables Yy can be interpreted as a set of statis-
tics (i.e., functions of the training set). With Bayesian estimation, a sufficient statistic is
a random variable that essentially represents all of the information present in the training
set that pertains to the parameter [46],[88]. Explicitly using the notation presented, yy

is a sufficient statistic if
p(uk|yx, wi) = p(uk|yx). (4.11)

Here, wy represents an observed value for the set of random variables in Wj. This means
that the observation of yy contains as much information pertaining to the parameter
density as all of X,,[7, ] in region Ry.

The issues that apply in estimation theory also apply here. Recall that we do not
perform parameter estimation, and only densities on this parameter space are considered.
A sufficient statistic in our context means that all information available to determine the
posterior density on the parameter space is present in the observation space.

The sufficient statistic issue will become important when the [ FE-dependent model
is developed in Section 4.4. It will not be assumed in general that any of the functions
determining yy are required to be sufficient statistics. Section 5.3 presents an observation

space that is not a sufficient statistic, and also one that is trivially a sufficient statistic.
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4.3 IFE-Independent Membership Probability

In this section we use the definitions of the previous section to derive an expres-
sion for the membership probability, given observations from R, and R; under the [E-
independent model. We begin with the definitions of the parameter space, observation
space, degradation model, prior model, and the refined event probabilities from Section
3.4. The result is an expression requiring three integrations on the parameter space,
given by (4.23) and (4.43).

Recall that with the IE-independent model, only information obtained from R,
the refinement region, and R;, the initial region for ©;, is relevant to determining the
membership probability. The vectors Y, and Yj represent the observation spaces of R,
and R;, respectively. In other words, the random variables Y, correspond to applying the
VU, functions to the variables, Xi[z, ], ..., Xi[7, j|, which are taken from points belonging
to R,. Similarly, Y; is obtained from R;.

Note that 7;, and Tg are two important events that affect the interdependence of Y,

and Yj;. These explicitly are
7, ={1€0,: R, €T} (4.12)

and

o ={T€®;:R, ¢ T} (4.13)

These events are depicted in Figures 4.1 and 4.2. The dashed-line for 7" indicates that it
can vary over all of the segments in 7;, (or TZ%). The difference between these two events
can be regarded as a difference in the assumption about the boundary of 7'. Since it is
always true that R; € T', the event 7;, implies that the data elements in R, and R; share
the same (but unknown) parameter vector. The event 7'5 implies the opposite, that R,

and R; have distinct (unknown) parameter values.
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Figure 4.1 An element, 7', of the event 7;,.
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Figure 4.2 An element, T, of the event 7'2-(;;.

The parameter space captures an important dependency between observations made
from R, and observations made from R;. The two events 7;, and TZ% will induce different
conditional densities on the observation space of K,. This difference between the two will
ultimately lead to a formulation of the Bayesian posterior membership probability.

The functions ¥, and V¥;, applied to the image elements yield observations of the ran-
dom variables Y, and Yj. These serve as the evidence used to determine the membership

probability, which is represented as
P(7ipy o, ¥i)- (4.14)
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There is a natural dependency between Y, and Y; when the event 7;, is given, since
R, U R; hypothesized to be homogeneous (since each region belongs to the inclusion set).

We can apply Bayes’ rule on 7;, and y,, while leaving y; as a condition:®

p(Yp |Tip7 Yi)P(TiP |Yi)

P,y yi) = 4.15
( P| P 1) p(yp|yi) ( )
The denominator can be expanded to yield
PYolTips Y1) P(Tin | ¥
P(7iply o, yi) = Wolip Y1) PUply3) (4.16)

P(YolTips Vi) P(T0lyi) + P(yol75, ¥1) P75 lyi)
Note that the numerator and the first term of the denominator are identical. The only
difference between the two terms in the denominator is the condition 7;, or TZ»(;;. The
denominator is the standard normalizing factor from Bayes’ rule, over the binary sample
space, {Tip,Ti(;;}.

Before proceeding further, the prior membership probability, P(7;,), must be specified,
corresponding to the probability before values for Y, and Y; are observed. Recall that
Section 3.6 discussed the issue of membership priors, stating that in the presence of no
evidence some membership probability must be assigned. In this chapter we will denote
the prior membership probability as Fp.

We note that the two probabilities in the denominator of (4.16) can be expressed in
terms Fy. We first note that 7;, is marginally independent of Yj, but 7, is conditionally
dependent on Y; given the observation y,, because, in the absence of any information
about the region R, (which would be contained in the observed y,), the membership
probability will be unaffected when given the observation from R;. In other words,
before y, has been observed, the observation of Y; has no effect on the membership

probability. In (4.16) we can therefore set

P(riolyi) = P(7i,) = Fo. (4.17)

6The mixture of discrete events and densities in Bayes’ rule does not present a problem. See for

instance Stark and Woods [90].
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Similarly for the negation,
P(r5lyi) = P(r) =1 - P, (4.18)

By substituting these into (4.16), the expression becomes

P(Yo|7io, ¥i) Fo
p(Yp|Tip7 Yi)PO + p()’p|7'$; Yi)[l - PO]

P(riplyp,yi) = (4.19)

Using the fact that a/(a + b) is equal to (1 + b/a)™" for 0 < a,b < oo, the resulting

expression 1s
-1
(1 = Po) p(y,|7;. ¥i)
PO p(Yp|Tip7 y1)

P(ri,ly,yi) = |1+ (4.20)

The expression above can be decomposed into a function of two ratios; one depends

only on the prior membership probability, and the other depends on the events 7;, and

7'5 and the observation variables. Let Ay denote the ratio based only on priors, and let

A (Y, ¥i) denote the ratio representing the effects of the observation. With (4.20) these

become
1-F
A = 4.21
=1 (121

and
p(y,l75, 1)

M(Ypryi) = : (4.22)
S p(y,o|7-ip7Yi)
By using these definitions, the membership probability expression becomes
1 o
P(Tily,,yi) = (4.23)

1+ do My yi)

The Ao and A;(y,,¥yi) ratios represent an interesting decomposition of the factors
contributing to the membership probability. The range of values of these ratios is re-
stricted to 0 < A\g < o0 and 0 < A\ (y,,yi) < oo. When either takes on the value of 1,
the ratio essentially does not bias the posterior membership probability. For example,
first consider what happens when A (y,,y;) = 1. The posterior membership probability

remains the same as the prior membership probability. If the prior is 1/3, then Ag is
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2, and the resulting posterior membership probability is 1/3. As Ag approaches 0, the
posterior membership probability approaches 1. Alternatively, as A\ approaches infinity,
the posterior membership probability approaches 0. Also, A(y,,yi) behaves in a similar
manner. Consider the case in which Ag is 1. This corresponds to a membership prior of
1/2, representing membership uniformity as discussed in Section 3.6. The evidence will
guide the ratio A (y,,yi); if the event TZS causes a larger pdf value to be obtained for
the observation y, than the event 7;,, then by (4.22) the ratio A\i(y,,y;) will be greater
than one. This causes a decrease in the membership posterior which is expected since the
event Tg is more favorable. Analogous behavior occurs when the event 7;, is favorable
over 7'5. This decomposition of the membership probability into contributing factors
corresponds to our intuitive expectations.

The next goal is to express the ratio A\1(y,,¥i) in terms of the given model densities
p(uyk) and p(yk|uk). Together these two will be combined in (4.23) to give the resulting
membership posterior probability. The ratio Ag is simply defined using the membership

prior in (4.21), leaving the rest of this section to determining A (y,, yi)-

Consider (4.9), conditioned on some event A. The expression becomes

p(y14) = [ p(ylu, A)p(ulA)du. (4.21)

We can use (4.24) with A = {77, y;} in the numerator and A = {7;,,y;} in the denomi-

nator of (4.22), and the expression (4.22) is expanded into

[ ol 7 yidp(u, |75, vi)du,

My, yi) (4.25)

R /p(-YP|upvTivai)p(up|Ti,07Yi)dup.
The integrand in the numerator of (4.25) represents the joint density of Y, and U,
under the condition {Tg, vi}. The integral is taken over the parameter space, yielding a
marginal density (with respect to U,) of Y,. Similarly, the integrand in the denominator
of (4.25) represents the joint density under the condition {7;,,y;}, which is integrated to

give another marginal density on Y.
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The terms p(y,|u,, 7:,,yi) and p(yp|up,7'$,yi), appearing in (4.25), can be reduced.
Recall that p(y,|u,) is given. By using (4.10), we observe that y; can be removed from
the conditions. Since there is no longer a dependency on information from R,, the events
7;, and 7'5 can also be removed. These statements are equivalent to asserting that nothing
is learned about the degradation model when observations are made from other regions
having the same given parameter value. Essentially, all other information is irrelevant

once the parameter value for u, is given. These observations result in

p(yP|up7Tip7Yi) :p(Yp|up) (426)
and

p(YP|uPaTii7Yi) = p(Yp|up)- (427)
Consequently, A\;(y,,yi) becomes

[ oyl ot |75, yi)du,

/p(YP|up)p(up|Tip7 .Yi)dup

M (Yo, ¥i) (4.28)

Using Bayes’ rule, under the condition 7;,, the following replacement can be made in

the denominator of (4.25):

p(yilu,, 7ip)p(u, |7, )du .
p(u,|7,, yi)du, = p(u,lyi, 7i,)du, = (i p’ p)P(Up|7ip) L. (4.29)
p(Yi|Tip)

Similarly, the term in the numerator can be replaced using Bayes’ rule under the condition

C
T

p(yilu,, 75)p(u,| 75 )du,
P(Yi|7¢€)

p(up|Ti€7Yi)dup = (430)

The only information obtained from R, and R; comes from the observation of the
random variables Y, and Yj. Hence, if the condition is 7;,, without y; or y,, no evidence

is present to influence the density of U,. This similarly holds for the TZ»(;; case, allowing

some reductions:

p(u,|7i,) = p(u,) (4.31)
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and
p(u,lry) = p(u,). (4.32)
Here p(u,) denotes the noninformative prior density on the parameter space for R, when
no relevant information is present.
For similar reasons some reductions can be made to the denominators of (4.29) and
(4.30). Since no information has been obtained from R, (via Y,), Y; does not depend on
7;,- The event 7;, only hypothesizes that R; and R, have the same underlying parameter

value, but provides no information about R,. This observation yields

p(yilmio) = p(yi) (4.33)
and

p(yil) = p(yi)- (4.34)

When the reductions of (4.31), (4.32), (4.33), and (4.34) are substituted back into

(4.29) and (4.30), the expressions become

p(yilu,, 7, )p(u,)du .
e (1.3
1

and

p(yilu,, 75)p(u,)du .
R (1.36)
1

These Bayesian expansions may be substituted back into (4.25) to yield

u,, 7, )p(u
[ty i),

p(yi)

Yi|Up, Tip)p\ U '
/pyp|up) ( 1| P P) ( P)dup

p(yi)

Note that p(y;) does not depend on the variables of integration in either the numerator

)\I(YIHYI = (4'37)

or denominator above, hence, they can be removed, and cancelled to yield

[ polu)p(vilu,. m)p(u,)du,

y,07y1 -
(i, 7 p(u,)du,

A (4.38)
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This form clearly displays the influence of the membership events 7;, and TZS. Both
of the integrals are taken over the parameter space of E,. The distinction between the

numerator and denominator is, as expected, the condition Tg

or 7;,. Two densities still
remain that were not given as part of the model. These are p(y;|u,, TZ%) and p(yilu,, 7ip)-
It will turn out that the denominator term can be expressed in terms of the given model
densities; however, the numerator term, in this general setting would require further
specification of the model. It is unclear how the observation variables Y; should be
affected when the parameter value is given for some other region that is not even related
R; (due to the given event TS). It seems natural to make the assumption that knowing
the parameter value for one region is independent from the observation variables from
some other regions, given to belong to some other segment.

If a model is introduced in which parameter densities of adjacent segments (which
are assumed to have distinct parameter values) are dependent, this is the natural place
to model it (i.e., by defining p(yi|up,'r$) in (4.38)). For instance, if the parameter
space represents surface normals to a plane, there may be knowledge that all surfaces
corresponding to segments in the scene meet at right angles. An assumption such as this
would cause some expectation about the parameter densities of neighboring segments if
the parameter value for some segment is known. From this point onward we preclude
models of this type, since they require higher-level image models than we wish to consider

at this stage.

Using the independence assumption just discussed, we obtain
p(yi) = p(yilu,, 7). (4.39)
Using this, (4.37) becomes

[ (v u,)p(yi)p(u,)du,

(Yo yi) = :
[ ol )pyilug, 7)o, )du,

(4.40)
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Again, p(yi) can be removed from the numerator integrand to obtain

p(vi) [ Py, lu,)p(u,)du,

M(ye,¥i) = . (4.41)
[ (v olu)p(ilup, mp)p(u,)du,
By using (4.9), p(yi) can be expressed as
plyi) = /p(yilui)p(ui)dui- (4.42)

The condition {u,, 7;,} in the denominator of (4.40) can be rewritten. This condition
means that R, and R; have the same underlying parameter value, and the parameter
value for R, is given. Hence it follows that, given 7;,, we have u; = u,. If the prior model
is assumed not to be region dependent, then we can write p(u,) = p(u;) = p(u). This

yields

MY yi) = [/P(Yp|up)P(up)dup] [/P(.Yihli)p(ui)dui |
/p(Yp|u)p(Yi|u)p(U)du

This expression, in conjunction with Ag, will give the Bayesian membership proability
P(riyly,y3) using (4.23).

An interesting interpretation can be derived by treating the pdf’s in the integrals

(4.43)

as random variables. Define a random variable Z, as a measurable function on the
parameter space u. Define this function to be precisely the value of the conditional pdf
p(yx|uk). Hence, Zj is the random variable corresponding the marginal density p(yx|uk).

The components of (4.43) can be written as expectations of Z, and Z; by

v wpwdu = [ Zp(u)du = E(z,) (4.44)
[ ptvilwp(u)du = B[z}, (4.45)

and
[ oy lwplvilwp(w)du = E[Z, Z). (4.46)
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By using these definitions, (4.43) becomes

ElZ,] E[Z]

A D) — 4.47
1(yP7YI) E[Zp ZZ] ( )

The definition of independence for 7, and Z; is
E|Z,| E|Z;] = E[Z, Z;]. (4.48)

When this occurs, A\1(y,,yi) = 1, corresponding to the case of no information. Recall that
when A\ (y,,yi) = 1, the priors, represented by Ag, completely determine the resulting
membership probability. This is precisely what we would expect; if the observations
c

made from R, and R; are independent of the assumption that 7;, or 7;

., then it is natural

to expect that the priors will completely determine the probability. This result indicates

that (4.43) is similar to correlation.

4.4 ITE-Dependent Membership Probability

Recall that with the I E-dependent model, the probability of homogeneity is expressed
as

Pr=P(ri, |7(1,, E,),e). (4.49)

This expression is similar to that for the [ F-independent model, with the only differ-
ence being the condition 7(/,, £,). We would therefore expect some similarities between
the derivation of this membership probability and that for the [ E-independent model,
and, indeed, this is the case.

Due to the added complexity of the [ E-dependent model, some new issues arise. To
begin with, we will retain the assumption that the excluded regions £, do not affect the
observation variables. In the most general model, these regions may be considered.

With the [ E-independent model, only R; and R, were used to influence the parameter

space density. With the /E-dependent model, all of the regions that belong to I, will be
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used. It may be possible that the models are formulated in such a way that is possible
to create an observation variable obtained from the region given by
U R (4.50)
Ryel,
In other words there are Y1 and Uy for R;, with a given conditional pdf p(y1|ug).

Alternatively, we may treat each region in 7, individually, with each region having its
own set of observation variables. The observations from each region in I,, together with
¥, can be used to determine the posterior membership probability.

These two alternatives (creating one large region or considering individual observation
spaces), in general, produce different results. We describe the situation in which the two
coincide by again considering the notion of a sufficient statistic, which was introduced in
Section 4.2. The two alternatives coincide when both Yy and the observation variables
from each of the regions in [, are sufficient statistics. When this occurs, the same
information regarding the parameter density will be obtained whether observations are
made from each region individually, or one observation is made from the union of the
regions. Since each individual region observation is equivalent to using all of the points in
1, directly, the resulting parameter densities will be the same for both, yielding identical
results for either approach. In Section 5.4.1.2, this difference is shown for particular
observation spaces and the implicit polynomial surface model.

For the case in which one single region Ry is constructed, the [ £- independent model

may be applied directly, with R; being replaced with R;. This results in the evidence-

[/pyplu ] [/pyxlu
(4
[ (s lw)p(yifu)p(a)du

The situation is more interesting when individual observations are considered from

based ratio,

>

.51)

y/M YI

each of the regions in I,. Recall that with the /F-independent model, only information

obtained from R, and R; is relevant to determining the membership probability. For the
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I E-dependent case, all of the regions in I, become relevant. Let I, = {Ry,..., R} be
the region names for the included regions. The random variables obtained from these
regions using Wq,..., ¥, are Yq,..., Y. It is assumed again that all information to be
considered is represented by these variables. All of these observations, together, are the

evidence that is used to determine the membership probability. This is represented as

P(Tip|yl)ay17---aymaT(IpaEp))' (4'52)

To simplify some of the notation, it will be assumed that the condition 7(7,, E,) is always
given. Hence, from this point onward, the assumption will be utilized, but not expressed
in the conditionals.

Figures 4.3 and 4.4 depict the membership events for the dependent model. For
7;, in this model, it is assumed that I, (which includes R;) and R, all belong to any
segment, 7', in 7, N 7(I,, FE,). It is also assumed that none of the regions in F, belong
toT € m;,,N7(1,, E,). The second figure is similar to the first, with the difference being

the condition 7¢

., replacing 7;,.

We can again apply Bayes’ rule to expand the membership probability, giving

P(YolTips Y15 ¥Ym) P(Tip|y1s- -, ¥Ym)

. 4.53
P(Yoly1s---,Ym) (4.53)

P(Tip|yl)7y17 e 7ym) =

Expanding the denominator as before yields

P(Tip|yl)7y17 e 7ym)

P(YolTips Y15 ¥Ym) P(Tin|y1s- -, ¥Ym)

p(le|Tip7 Y1, .- 7ym)P(Tip|y17 s 7ym) + p(y—p|7-ii7 Y1, .- 7Ym)P(T$|Y17 s 7ym)
(4.54)

Once again, the numerator and the first term of the denominator are identical. The only
difference between the two terms in the denominator is the event 7;, or TZ»(;;.

It is again assumed that the membership prior is given. In (4.53) we can set
P(7i,ly1,- -, ¥Ym) = P(7m,) = Fo, (4.55)
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Figure 4.3 An element, 7', of the event 7;,, given 7(/1,, E,).

Figure 4.4 An element, 7', of the event Tg, given 7(1,, E,).

since no observation has been made from R,. Similarly for the negation
P(r{ly1.....ym) = P(75) =1 - P (4.56)

Substituting these into (4.53), the expression becomes

P(YolTios Y15+ ym) Po
p(Yp|Tip;y1; s 7ym)P0 +p(y,0|7—2€7y17 s ;Ym)[l - PO]

Again, using the fact that a/(a + b) is equal to (1 + b/a)™" for 0 < a,b < oo, the

P(7iplyp, 1, ¥ym) = . (4.57)

resulting expression is
-1

(1 B PO) p(y,l)|7_i€7y17 s a.Ym)
PO p(yp|7—ip7y17 s 7ym)

P(Tip|Yp7y17 e 7Ym) = |1 + (458)
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Define g as before, representing a ratio based entirely on priors (4.21). Define
M(Yp, ¥1,---,¥m) as the ratio representing the effects of the model-based evidence. This

results in
p(Yp|Ti€7y17 s 7ym)

)\1(}’ ' Y1,---5Y )E s (459)
’ " p(Yp|Tip7YI7"'7yrn)
and consequently
P(r| ) 1 (1.60)
T Y1, -, = . .
e Ym 1+)‘0 Al(vaYla"'a}Im)
The Ao and A1(y,,¥1,...,¥m) ratios represent the same decomposition of the factors

contributing to the membership probability. By using (4.24) with A = {7‘5, Yis---,¥Ym}
in the numerator and A = {7;,,¥1,...,ym} in the denominator of (4.59), the expression

(4.59) is expanded into

/p(yl)|u/)7 7—57 Yi,... ,Ym)p(uph—g, Yi,... 7ym)dul)

)‘l(y,o;)fl,---;}’m) (461)

- /p(yplupmp,yl,---,ym)p(uplnp,yl,---,ym)dup
The integrands in (4.61) above represent the joint density p(y,,u,) corresponding to
region R,, under the two different conditions. The u, is integrated out to give the
marginal density of Y, under the remaining conditions.

The terms p(y,|u,, 7ip, ¥1,---,¥m) and p(y,|u,, 7'5, Yi,...,¥Ym) can be simplified.
Since the joint pdf p(y,,u,) is essentially given, Y, is independent of 7;, and y1,...,¥m
when u, is given. Also, Y, is independent of 7'5 and y1,...,ym when u, is given. The
simplification is

PVl iy Y15 Ym) = p(Yoluy) (4.62)
and
PYolus 75,1, ym) = p(y,lu,). (4.63)

Then, M (¥,,¥1,--.,¥m) becomes

[ polu)pu 7S,y ym)du,

MY Y15, Ym) (4.64)

/p(Yp|up)p(up|Tipa Yi;---,Ym)du,
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Using Bayes’ rule, under the condition 7;,, the following replacement can be made in

the denominator of (4.61):

p(y17 cee 7.Ym|up7 Tip)p(up|7-ip)dup
piu |y17"'7y y Ti du, = . 4.65
( 14 m P) P p(y17---7Ym|7_ip) ( )

Similarly, the term in the numerator can be replaced using Bayes’ rule under the condition
7'5, giving

p(y17 s 7ym|up7 ng)p(uphii)dup

(1.66)
p(yla cee >.Ym|7'g)

P(Upb’h <+ ¥Ym, Tii)dup =

We can use the observations from (4.31) and (4.32) to simplify the parameter space

densities. For similar reasons as for (4.33) and (4.34), another simplification can be made:

p(y177}’m|7-zp) :p(y177ym) (467)
and

(Y1, ¥Yml|7is) = p(¥1,--+, ¥Ym)- (4.68)
When these expressions are substituted back into (4.65) and (4.66) we obtain

p(y17 cee 7Ym|up7 Tip)p(up)dup

p(u,|7i,,¥1,. .., ym)du, = 4.69
(Wl m)du, p(¥1,---,¥m) (4:69)
and
c
C p(yla'"7ym|uP7Tip)p(uP)duP
Plu,|7,,¥1,---,Y du, = . 4.70
(w,l7;, m)du, 271,y (4.70)

Up until now the derivation has been, for the most part, the same as that for the
independent case. Here is where a fundamental difference enters. Since u, is given along
with 7,, and 7([,, F,), the parameter values are given for each of the regions in /,. This
means that the common parameter value is given for all of the regions in [, and R,

hence the yy are conditionally independent. Explicitly this is

p(yk|u,, 7ip, ¥i) = p(yxlu,, 7,) Vk, h with k # h. (4.71)
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From this, we have

m

p(ylv"'ayrn|upa7-ip) = HP(Yk|up77—ip)- (472)
k=1

This allows (4.69) to be rewritten as

T ol ot
p(up|7-ip7 Yi,... 7ym)dup = = . (473)
p(Y1,- s ¥m)

The Bayesian expansions, (4.69) and (4.70), may be substituted back into (4.61) to

yield

P(y1,-- - Ymlu,, 75)p(u,)
/p(ny|up) — P ’ du,

P(Y1;---,¥m)
[[Ti21 P(Yk|ap, 7ip)] p(u
Tty sl ) ),
p(y1,- -, ¥Ym)
The assumption is made here, as before, that knowledge of the parameter value for an

MYy Y1y Ym) = (4.74)

p

excluded region does not affect the observation random variable. In this context, the

assumption becomes

p(y17---;Ym) :p(yla"'aym|upa7_ic)' (475)
Then (4.74) becomes

/P(Yp|up)p(up)dup

MY, Y1y Ym) = — : (4.76)
k=1 o P(ylaa}’m) ?
We can remove p(y1,...,ym) from the denominator integral (since it does not depend
the parameter space) to obtain
PY1e s ym) [ p(3,lu,)p(u,)du,
MYy Y1,y Ym) = (4.77)

/ Lﬁ p(yx|u,, Tip)l p<yﬂ|up)p(up)dup'

The condition {u,, 7;,} will again be rewritten. Recall that in order to simplify notation,
the condition 7(1,, E,) was dropped from (4.52). Thus 7(/,, £,) is an implicit condition

in (4.77). Specifically, the condition {u,, 7;,} can be rewritten as {u,,7,,,7({,, E,)}.
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Hence the condition means that R, and all of the regions in [, have the same un-
derlying parameter value, and the parameter value for R, is given. Therefore, it follows
that the parameter value for any Ry € I,, ux = u,. The condition can be replaced, and

the expression becomes

pv1 o vm) [ Byl )p(u,)du,

M(Yp, Y153 Ym) = — . (4.78)
[ [T ptsstan)| st o, e,
k=1
The parameter value, u, common to all of /,, can be used to express p(y1,...,ym) as
PV Ym) = [ (Y1 Yamlu)p(u)du. (1.79)

Given that Rq,..., R,, all belong to the same segment, they all share the same un-
derlying parameter value. Hence when the value u is given, Y1,..., Ym become condi-

tionally independent. The independence allows

p(¥1,-- -, ¥Ym) = / Lﬁ[l P(.Yk|u)] p(u)du. (4.80)

Now this is expressed in terms of the conditional and prior densities that are given with

the model. This can be substituted back into (4.78), resulting in

[/pyplup) (ude] {/[HPYHU] (u)d }

/lﬂp .Yk|u] (y,/u)p(u)du

MY Y1, Ym) = (4.81)

This form is intuitively pleasing since it is nearly the same as (4.43) for I E-independent
membership probability. The distinction is that the product of pdf’s over different re-
gions which appear here in the integrals replaces the pdf corresponding only to region R;

for the independent model.
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4.5 Dirac Delta-Function Approximation and Its
Applicability

Suppose that the parameter value for R; can be reliably estimated, and that the
parameter value for R, cannot. We show that some simplifications can be made to
the membership probability expression (4.43), reducing computation. This is often a
reasonble assumption, since it could be the case that there are several large regions in
the image for which estimation is very reliable, and most of the uncertainty is due to
smaller regions, which produce poor parameter estimates. If larger regions contribute
more information about the parameter value and are used as initial regions (i.e., T'SSs
are built from them), then reliable estimation may be possible. Note, however, that in
this general context it is difficult to directly relate the size of a region (or other properties)
to the quality of estimates; these ideas are application dependent.

If the parameter value for R; is known, then the I E-independent vs. [ F-dependent
distinction is no longer necessary. In either case, the observations corresponding to other
regions in [, have no effect on the parameter since their common parameter value is
given.

We can consider estimating u; by maximizing the observation likelihood

a; = argmacz p(y1|ui)7 (4 82)

uj
in which yj is the observation from R;, as discussed previously. This is the standard
maximum likelihood estimator (MLE) of uj. By stating that the estimate is reliable,
we mean that the density p(yi|u;j) is sharply peaked. For the purpose of membership
probability computation, the peaking of this density will be represented as a multiple of
a Dirac delta function,
oo if u; = G

8(us, G;) = (4.83)

0 otherwise
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in which
/ §(u;, &;)du; = 1. (4.84)
Uj

Although the density p(yi|u;) is peaked, we need to allow for some unknown scaling
constant, s. This must be allowed since p(yj|u;) is not normalized over u; (i.e., the
integral over the parameter space of the degradation density is not necessarily one).
Hence we represent the density as

oo ifup =

p(yilu) =~ s6(us, G;) = : (4.85)
0 otherwise

Next, consider substituting (4.85) into (4.43). This yields

[ ot lupta)au, ] | [ s ot 60)p(us)du,

MY, yi) = - (4.86)
[ p3lu) s 8(ui, w)p(u,)du,
The delta function representation simplifes two of the integrals into
/3 6(uj, G;)p(uj)duj = s p(1;) (4.87)
and
/P(Yp|up) s 6(uj, 4j)p(u,)du, = s p(y,|G;)p(1;). (4.88)

These have been rewritten using the standard substitution that occurs when using the

delta function in an integral [90]. Using the simplifications we have

o [ | - [routugon,

p(.Yp |ﬁi)

s p(1;)
s p(y,|a;)p

)\1 (y,o7 YI) =

The resulting simplified form has an interesting interpretation. The average value over
u, of the observation density (the numerator) is compared to the value of the density
value at G; (the denominator). As the known parameter value causes the observation to
appear much more likely than average, the ratio approaches zero, and the membership
probability will approach one. In the other case, as the known parameter value causes
the observation to appear much less likely than average, then the membership probability

approaches zero.
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4.6 Multiple Independent Models

Since a Bayesian model is used to determine membership proability, there is a nat-
ural extension to the case of multiple, independent models of evidence. We begin the
discussion with the prior membership probability. When the evidence-based probability
is determined from the first model, the resulting probability can be treated as a member-
ship prior for the next evidence model. This is a natural benefit of using this Bayesian
approach, as opposed to formulating some decision criterion for each model. Hence, one
can combine evidence from multiple sources.

For simplicity, the multiple model case will be derived only for the I E-independent
case. The results carry over to the [ FE-dependent model in a straightforward manner.
Consider having some set of models, with each one specified as in Section 4.2. Take
some region R,. There are m models, each with its own parameter space: U(l17 5 Ugh

The superscripts denote different parameter spaces, not exponents. Also, consider sets

m

q » With each set y¥ corresponding to relevant obser-

of observation variables Y(l17 oY
vations about the parameter space UX. We require that these observation variables, for
different parameter spaces, are taken from different X;[¢,7]. In other words, no single
image variable X[z, j] is used for two or more observation variable sets.

The functions ¥, and ¥; from each of the m models, applied to the image elements,
yield observations of the random variables yg, sy, and yil, ..., ¥t This will be

all of the evidence used to determine the membership probability, and the posterior

membership probability is represented as

We apply Bayes rule as for the independent model to obtain

Py, YTy Y P(Tolyis -y
plyL, .. y®lyl, .y

P(sz|y;77y;n7y1177YIn) =
(4.91)
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The denominator can be expanded to yield

P(sz|y,}77yzn7y1177y1rn)

(4.92)
P Ly P ripy L Y P(riplyd oy )
p(y%,...,yinlnp,yil,...,yim)P(ﬂplyil,...,yi )+p(y}7 7y£n|TFp,y1, SY{MP(r Fply - ,ym)

Again the numerator and the first term of the denominator are identical. The only
difference between the two terms in the denominator is the event 7;, or TZ-?;.
The membership prior must be specified. In this expression it is the probability of

membership, before any of the models are applied. The usual definitions result:
P(TZP|Y1177YIH) :P(Tip) = Fo (493)

and
P(rlyis - ¥ih) = P(7) = 1 = Py, (4.94)

By substituting these into (4.91), we obtain

P(Tz,o|y,}77y/r)n7y1177ylrn)

X (4.95)
. (Yp7"‘7Yp |TZP7YI7"'7y1 )PO
p(Y;?"'?Yp |7—2p7y17"'7Yi )P0+p(y/)7"'7y/) |sz7ylv"'7y{n)[1_P0]
Once again, this can be rearranged to
-1
P(T' |y1 ym yl ym): 1+(1_P0)p(y/}77y/)| p7y17"'7Yirn)
Pl po 1Y p X » i Pop(y%7,,.,yp |sz,yi,.--,}f{n)
(4.96)

Define Ag to represent the prior ratio, (4.21). Define )\(y;, LY yi, ..., y™) as the

ratio representing the effects of all of the model-based evidence. This results in

p( ""7yP| pvyla"'7Yirn)

1

(4.97)
p(Yp?‘ : '7y/r)n|7-lp7Yi7' : 7y1rn)

A(Y;‘?"'7Y?7Yi17"'7y-irn) =

We haved assumed that the parametric models are independent. This means that all

observations from one model are independent of the observations in another. From this
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we have

Py YR eyl oy = T p(yE 7, ¥ (4.98)
k=1
and
p(Yz‘?"'?Yp | p’}Il?"'?y-irn):H (Yp| p7YZ)' (4'99)
k=1

Using (4.98) and (4.99) in (4.97), the result is

Hp (yl7is, v
m (|5, v
MYpse Yo ¥i ¥ = 5 = [ Bl (4.100)

—1 P\Y,lTip, Y,
Lottty = POy
k=1

Define each element of the product as

p(yilrs, vE)
(yp |7—Z,07 Yy )

M(yy,y7) (4.101)

Note that each )\k(y];, yF) is equivalent to the definition for A;(y,,y;i) for the single I E-
independent model case. Hence (4.43) can be used to compute the ratios corresponding
to each of the independent models.

By using these definitions, the membership probability expression becomes

1
P(Tip|yp,y/},...,y;n,yi1,...,yim) = — . (4.102)

I+ Ao H )\k(Y/]j?ygc)

k=1

For the case in which m = 1 this specializes to be (4.23) from the single [ F-independent
model.

Again, this framework has provided a decomposition of the evidence into components.
The prior component Ag behaves as before, affecting membership probability. Each of the
)\k(y’;, y¥) independently contributes to the region membership probability in the same

manner as for the single, I £-independent model.
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4.7 Discrete Random Variable Cases

In the discussion so far, both Yy and Uy were introduced as mappings on a continuous
probability space. For the sake of completeness, the corresponding expressions when
either or both are discrete-valued sets of random variables are presented. There are
no fundamental differences presented by these cases, hence no further derivations are
explicated. The discrete cases are merely notational variants of the previously derived
expressions. The single, I K-independent model cases are given; the [ F-dependent and
multiple model distinctions can be easily extrapolated from these expressions.

If the observation variables Yy are discrete valued, and the Uy are continuous, then

the evidence-based ratio is

|/ POsuiptu)du] | [ Plvilwp(wdu
[ P PEiwpwdn

Above, P(yx|u) simply replaces p(yk|u).

MY, ¥i) = (4.103)

If the parameter space Uy is discrete valued, and the Yy are continuous, then we

have

Sstvor)] [ ot rw)
S plys el P |

If both are discrete valued, the result is

[ZP<yp|u>P<u>] [ZP<yi|u>P<u>]
My, yi) = =2 v . (4.105)
3 PO, Pl ()

M(Yp i) = (4.104)

4.8 An Illustrative Example

An example of the region membership probability model will now be discussed in
detail. The discussion is provided to illustrate some of the concepts presented in this

chapter. To keep things simple, the example involves the single, / E-independent model.
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Take the parameter space to be the closed unit interval [0,1]. This could, for example,
represent normalized intensity values in an intensity image (neglecting the discreteiza-
tion). Let U denote the single parameter random variable, and u € [0, 1] its value. Take
Y to be a single, real-valued observation variable. Let each image element D[z, j] contain
only one variable X[i, ], that also takes on real values. Consider some region Rj. Let

Ny denote the number of points in K. Define the random variable Y}, by

Y, = — Z X[z, g]. (4.106)
k Dli,s1eRy

Hence, by this definition, Y} is the mean of the X[i, j] variables comprising R;. We
must next specify p(u) and p(y|u). We define the prior parameter space density to be
uniform on [0, 1], hence we have p(u) = 1. The density p(y|u) represents the noise model.
It will be assumed that all of the points in a region are observations of the same real
value, under an additive noise model. In other words, without noise, each X[e¢,j] in a
region should take on the same value. This value, without noise, will also be on the unit
interval. The parameter space represents this value, which is unknown to the observer
because of noise. If this is considered as an intensity image application, all pixels in a
region would have the same intensity value, without noise.

The pdf of the data variable X[z, 7], taken from region Ry, given the value uy, will be

distributed as X[i, j] ~ n(u,c?). Explicitly, the density is

N SN (T X
(el ] Jue) = mpl i ] (1.107)

The density of Y, given uy, will also be normally distributed, as Y;, ~ n(u,a?/Ny),

since this is the mean of the data elements. The specification of p(yx|ux) is thus

plyr |ur) = _1 e:zrplNk(yk__u’“)Q]. (4.108)
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The complete model has now been specified in accordance with the required densities
presented in this chapter. In this context, the evidence-based ratio (4.43) becomes
1 1
[ stwlwptwyde] | [ ptustptuyd

)\l(yl)vyi) = o 1 . (4109)
| pluslptuilp(u)du

By using the density definitions just given, we obtain

o] N,(y, —u)? o1 Ni(y; — u)?
/ exp P(y/) U) du / exp (y M) du
o —20? 0 27;\7_? —20?

O i

N, :

A (Yps i) =

185 1) /1 1 cep [Np(yp - 'u)Q] 1 cep [Ni('yi — U)Z] Jdu
0 /27rj¢\7_i —20? /-W?V_i —202

(4.110)
The term in front of each of the exp functions does not depend on u, and hence can be

removed from each of the integrals, and cancelled:

[ o[ ] [ o[ 7]
[ e[ T Bl

—20? —20?

M (Yoo i) = (4.111)

Recall that by using (4.111), along with the prior ratio Ag, the membership probability
can be determined with (4.23). We are now prepared to evaluate the membership proba-
bility for several cases. The results presented were determined from numerical integration
of (4.111).

Consider an example in which ¢? = 0.02. Also, assume that 7;, is true (unknown
to the observer), hence R, and R; have the same parameter value u, which is unknown.
Take the underlying parameter vector to be u = 1/3. The densities of the image elements
X[z, ] are identical, and shown in Figure 4.5. Assume also that the membership priors
are given by P(7;,) = P(7{]) = 1/2. Consider the case in which ¥; = 1/3. Given this
model, it is most likely that the observation of y, will be close to Y;. Figure 4.6 shows the

membership proability plotted against different values for y, when N, = N; = 1. This
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Figure 4.5 The conditional density of X[¢, 7] when u = 1/3 is given.

Figure 4.6 Membership probability for different y, when P(7;,) = 0.5, u = 1/3, y; = 1/3,
N,=1, N; =1, and ¢* = 0.02.
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peaks at y, = 1/3 since this represents the correct parameter value. Note that for most
of the range of observations, the membership probability is between 0.4 and 0.6. With
no information available, the priors should cause the membership probability to be 0.5.
Since there is only one sample for each region, there is very little information, and this is
reflected by fact that most of the probability is close to 0.5, the prior value. Suppose the
number of samples in the regions is increased from 1 to 5. Figure 4.7 shows the resulting
membership probability. When y, = 1/3, the membership probability is higher than it
was for the 1-sample case. Also the graph is more peaked around the correct parameter
value. This results since more information is available when 5 points are used for each
region. When the number of points in each region is 50, the distribution is even more
peaked (see Figure 4.8). Note that the maximum membership value (occurring now at
y, = 1/3) is now well above 0.9. This again, corresponding to the increase in information
due to more samples.

Consider changing the membership prior (leaving the rest of the experiment fixed) by
letting P(7;,) = 0.9 (consequently P(TZ-(;;) = 0.1). Consider again, the cases of 1 sample
and 5 samples. Figure 4.9 shows the resulting membership probabilities for the one-point
case. Most of the probability is close to the prior probability of membership, as expected.
In Figure 4.10, it can be seen that this distribution becomes peaked in the presence of
more evidence, tending to override the strong prior bias.

Next, consider the situation in which R, and R; have distinct parameter values, which
implies that TZ% is true. The same graphs will be obtained, since it is never known to
the observer whether the two share the same parameter value. Only the difference in
observations of y, and y; will affect the membership probability. If these regions truly
do not have the same parameter value, then it is much more likely to observe largely
differing values for Y, and Y;. Assume, for instance that y;, = 1/3 and y, = 2/3 for

5-point region example. The point on the graph in Figure 4.7 at y, = 2/3 gives us the
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Figure 4.7 Membership probability for different y, when P(7;,) = 0.5, u = 1/3, y; = 1/3,
N, =5, N; =5, and ¢* = 0.02.

Figure 4.8 Membership probability for different y, when P(7;,) = 0.5, u = 1/3, y; = 1/3,
N, =50, N; =50, and o* = 0.02.
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Figure 4.9 Membership probability for different y, when P(7;,) = 0.9, u = 1/3, y; = 1/3,
N,=1, N; =1, and ¢* = 0.02.

Figure 4.10 Membership probability for different y, when P(7;,) = 0.9, v = 1/3, y; =
1/3, N, =5, N; =5, and o* = 0.02.
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resulting membership probability (which is about 0.2). From this observation, all of the

membership probability graphs are the same, since only y, and y; are used as information.

4.9 Expressions for a Texture Model on Intensity
Data

In this section we briefly describe how the four components of the region merging
probability model are applied to a standard class of texture models, previously consid-
ered in [21],[43]. An image element, DIi, j] represents a single intensity value, X[z, j].
The observation space, Y is defined as the vector of points X[, j| in some region Ry
(this corresponds to applying identity maps to the data). We have an N-dimensional
parameter space, Uy representing the texture parameters. The mean, pg, in Ry is repre-
sented by Uy, and U, represents the variance, 7. The remaining N —3 parameters are the
interaction parameters, usually denoted with 3. In a first-order MRF, for example, there
are four parameters corresponding to interactions of X[z, j] with X[z + 1, 7], X[¢ — 1, 7],
X[i,7 + 1], X[¢,7 — 1]. The expressions we present pertain to any general order of MRF

['" parameter interaction is denoted by Tj(z).

interactions, and the image element of the
Recall Section 2.2, which described the general MRF approach.
We define the prior model by assigning a uniform density to the parameter space. Let
u; denote a vector of minimum parameter values, and uy. denote a vector of maximum
parameter values. The prior density is
S|

plu) = [[ — (4.112)

1=1

The degradation density for Ry is:”

p(ykluk) = ] \/;T?exp {% lr —ur — Y up(Ti(z) — ul)] } : (4.113)

zERy =3

“This joint density uses an efficiency-based independence assumption, also used in [21, 43].
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By expanding the product, we obtain

p<yk|uk>=<2wu§>'z—‘“'exp{% 3 [x—ul—;umnw)—unl } (4.114)

Finally, (4.43) can be specialized to obtain

Uk k
fui{ e fui{ e

" % EzGRl [g;—ul _E;\;S ul(Tl(lf)—’lu)]z }duk] |: u % ExGRz [I_ul _Ell\;g ul(Tl(I)_ul)]Q}duk]

1=1\"1¢ 7

u” -1 N _ 2
N ol ol k 2“% EmGRl URy [aj U1 ZZ:S ul(Tl(I) ul)] }d
1L, (u )/ui< e u

(4.115)
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CHAPTER 5

IMPLICIT POLYNOMIAL SURFACES AND
NOISE MODELS

In this chapter we apply the Bayesian membership probability model of Chapter 4 to
the case in which the parameter space represents a set of implicit polynomial surfaces.
We develop specifications of the parameter and observation spaces, and the two required
probability densities: the prior model, p(u), and the degradation model, p(y|u). Each
parameter value u, in this context, represents a vector of coefficients which uniquely
identifies a polynomial surface. Each observation component represents a function of the
signed-distances of the observed data points in a region to a polynomial surface.

The model developed in this chapter is summarized as follows:
Parameter Space Coefficient vector representing implicit polynomial equations
Observation Space Functions of displacements of observed points from a given surface
Degradation Model Densities of functions of displacements from a given surface
Prior Model A noninformative uniform distribution over a space of polynomial surfaces

We later use this formulation for the cases of planar and quadric surfaces. The parameter
space arising from these models provides a challenging integration problem when comput-

ing the membership probability (due to high dimension of the parameter space), and this
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issue is treated in Chapter 6. Our experiments were conducted using the formulations in
this chapter, and the results are presented in Chapter 8.

Section 5.1 discusses the use of implicit surface models for segmentation, and related
work. A motivational example is presented in Section 5.2, displaying some of the features
of the Bayesian membership model in comparison an estimation-based approach. Sec-
tion 5.3 describes the four components needed to use the Bayesian membership model.
Section 5.3.1 defines the implicit polynomial surface model, and the choices that arise
in determining its parameter space. Two alternative parameter spaces may be used (the
nonhomogeneous parameter space and the homogeneous parameter space), and the im-
plications of each are treated. Section 5.3.2 defines the observation space for the implicit
polynomial model. In Sections 5.3.3 and 5.3.4, the degradation and prior models are
defined. Section 5.4 presents simplifications and resulting membership probability ex-
pressions. Section 5.5 gives the parameter space and observation space formulations for
the case of planar and quadric models, as a specialization of the results in the previous

sections.

5.1 Surface Models in Image Segmentation

Image segmentation approaches using the surface patch model are generally consid-
ered region-based, since the homogeneity predicate holds when the union of two regions
can be represented by a single polynomial surface. Besl and Jain use bivariate polynomi-
als of variable order for segmentation and select the best model by analyzing fitting-error
signs and the mean-square error [91]. Leonardis et al. also use bivariate polynomials of
variable order and select an appropriate image description through a cost/benefit objec-
tive function to obtain a segmentation [92]. Silverman and Cooper use explicit quadric

and planar equations to model surfaces patches in intensity images for clustering-based
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segmentation [43]. Faugeras and Hebert perform segmentation on range images using
implicit
As a demonstration of our approach, we have selected the implicit polynomial surface

model for the following reasons, each of which will be discussed:

e A broad class of images/objects can be represented using this model.

e Implicit surfaces have gained increasing popularity both for segmentation and

model-based object recognition.

e The model is sufficiently challenging to demonstrate the applicability of our pro-

posed framework.

Implicit polynomial surface models have been used extensively in computer vision,
with particular use for range-image segmentation, object modeling, and model-based
object recognition. An implicit equation is an equation of the form f(x) =0, in which x
represents a point in the space (for our purposes, £*). We are concerned with the case in
which f(x) is a polynomial, and the implicit surface is the solution set, {x : f(x) = 0},
to the implicit equation.

One reason for the use of implicit surfaces is the range of expressive power, compared
to parametric equations (e.g., of the form 3 = f(x1,23)). For instance, objects such as
spheres, ellipsoids, and tori cannot be represented by a single explicit equation. Also,
any rotation or translation can be applied to an implicit surface, with relative ease. With
an explicit model, some rotations will cause f to no longer be a function. These features
have made implicit surfaces attractive for recognition and object models, particularly
with range data, in which the image directly corresponds to points in the scene (as

opposed to intensities).
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For object modeling by implicit polynomial surfaces, we paraphrase a description

presented by Taubin [93]. An object, O, is a collection of surface patches,

g
0= U 9;, (5'1)
7=1
in which each surface patch is connected, and a subset of an implicit surface,
0; € {x: f(x) =0}, (5.2

This is the ideal model, and due to noise, the observed surface patches are only approx-
imated by subsets of implicit surfaces.

An image segmentation can also be considered in this form by defining the segments
to be connected sets in the image, that correspond to implicit surface patches. Hence
a segmentation is considered as a set of subsets of implicit surfaces. In terms of the

homogeneity predicate we have
e H(Ry U Ry) = true if and only if 35 such that the points in R; U Ry belong to O;.

Bolle and Cooper have modeled objects appearing in ranges images with patches of
planes, spheres, and cylinders for position estimation [94]. Faugeras and Hebert have used
implicit quadric and planar models for object modeling, segmentation, and recognition
[86]. Taubin and Cooper have developed an efficient estimation procedure for implicit
polynomial curves and surfaces of arbitrary order, with application to object recognition
[93],[95]. Several other applications of surface models to recognition can be found in
[96],[97]. A survey of 3-D surface models and parameter estimation is presented in [98].

For demonstration of our proposed framework, this model is particularly challenging
for several reasons. First, the dimension of the parameter space is high when considering
our interest in evaluating integrals on the parameter space, appearing in (4.43). For the
planar case, there are 3 or 4 parameters, and for quadrics (second-degree equations) there

are 9 or 10 parameters. For higher-degree models, the number of parameters increases
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considerably. Second, we will need to work extensively with a function of distance of
points to a given implicit surface. For implicit models, a closed-form expression does not
exist, and we use a distance approximation that has been used for implicit surface esti-
mation [95]. Finally, the surface patch model involves statistical dependencies between
data points that are mutually distant in the image, which we stated as a goal for our

approach.

5.2 Comparison to Estimation and Decisions

Before continuing with a detailed presentation, we introduce a simple example which
illustrates the purpose of the membership model in this context. In particular, we indi-
cate a primary difficulty with using an estimation-based approach, and show when the
Bayesian membership model produces a reasonable result. This example is provided to
motivate the concepts to be introduced in this chapter, and consequently, some of the
details are omitted, to be clarified in the coming sections.

Our example involves a planar model with range data (represented by x1, x5 and x3
coordinates). The parameter space for a region, Ry, corresponds to the set of possible
unit normals to a plane (in the positive z3 direction), represented by uyx = [u; uy uz]”.
In the parameter space, u; is component of the unit normal in the z; direction. The
parameter space represents the unit hemisphere in R°.

We are given two regions R; and Ry which consist of 26 and 34 points, respectively.
The points lie at contiguous integer coordinates in the x;-z5 plane, and the z3 value is
sampled from a Gaussian distribution with zero mean, and unit variance. The projection
of the points in R; and R,, into the z;-z, plane, is depicted in Figure 5.1. The correct
]T

parameter value (unknown to the observer) is u3 = uz = [0 0 1]*. This corresponds to

the x1-z5 plane, where the points would lie if there were no noise component.
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Figure 5.1 The relative x1-x5 locations of the points in R; and R,.

Take R, as the initial region, and consider the membership probability corresponding
to the event 7({Ry, R2},0). Alternatively, this can be considered as the probability that

Ry U Ry is homogeneous. The correct parameter value (unknown to the observer) is
u; =uz =[0 0 1]%. (5.3)

This corresponds to the xi-z5 plane, where the points would lie if there were no noise
component.

Figures 5.2 and 5.3 represent the densities of the observed data sets in Ry and R,
given the parameter value (and using the optimal choice for scalar offset in the plane
equation). The details of these densities are yet to be discussed; however, the plot is
obtained by extending a radius from the center of the sphere, representing the likelihood
of each surface normal by a longer or shorter radius. The radius function in the plots is
given by

¢1 + 2 p(yx|uk), (5.4)

with ¢; and ¢y chosen to make the make the function visible. Observe that the densities

tend to be aligned in different directions for Ry and R,. This result is due to the spatial
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Figure 5.3 The conditional observation space density for R
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relationship of the points in the regions. The regions are narrow along one direction, and
most of the density aligns in an orthogonal direction.

Suppose we wish to determine the membership probability based on the distance be-
tween parameter estimates for B; and H;. Or consider the simpler task of formulating
a decision criterion, based on the distance, which determines whether or not R; and R,
have the same underlying parameter value. We can use maximum likelihood estima-
tion to obtain optimal parameter estimates 13 and Gz. This involves selecting values
that minimize the sum-of-squares error over the points. Using a standard least-squares

minimization technique, the optimal values for our example are

iy = [—0.258305 —0.025461 0.965728]" (5.5)
and

fia = [0.0953739 — 0.147327 0.984479]T. (5.6)

To compute distance, one natural choice is the Euclidean distance between the es-
timates in the parameter space. For any two parameter vectors u and v we define the

Euclidean metric m by

m(u,v) = /(ur — v1)? + (uz — v2)2 + (us — v3)2. (5.7)
For our example, the distance is computed to be
m(f1,02) = 0.3325 . (5.8)

Since the parameter space represents surface normals to the plane, this is a measure of
the distance in orientation of the estimated planes. There is a 21.588 deg angle between
these surface normals, reflecting a substantial difference.

A distance-based criterion could, in terms of the homogeneity predicate, be

H(Ry U Ry) = true if m(1,02) < € (5.9)
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for some small € > 0. In most applcations, it would seem that e should be selected
small enough to cause the uniformity predicate to evaluate to false if the distance is as
large as 0.3325 (i.e., the planes differ in orientation by 21.588 deg). But in this case, we
have observed that the distance can be this large, even though Ry and R, have the same
underlying parameter value.

Suppose we were to remedy this situation by choosing € large enough to declare
H(RyURy) = true for our example, such as e = 0.40. This would cause another problem.
Suppose we observe two square regions R3 and R4 with |R3| = 400 and |R4| = 400 with
integer spacing, and their correct parameter vectors are the same as the estimates for R,
and Rs:

uz = [—0.258305 — 0.025461 0.965728]" (5.10)

and

ug = [0.0953739 — 0.147327 0.984479]" . (5.11)

We would incorrectly declare H(RsUR4) = true, if the correct estimates are obtained.
The difficulty is that the metric space loses some of the information in the parameter
and observation spaces that is relevant to determine homogeneity. In this instance, we
observed that both the number of points and the position of points in space can affect
the decision criterion. We will observe that the Bayesian membership model naturally
encodes this information in the prior and degradation model densities.

Our problem is actually more difficult than simply formulating a decision. Since
decision making is avoided in our approach, we need to compute the probability of ho-
mogeneity for the union of two regions, as opposed to declaring their union homogeneous
vs. not homogeneous. For this particular example, using the methods presented in this

chapter, we obtain the following intuitively satistying membership probabilities:

P(r({Ry, R}, 0)ly1,y2) = 0.767 (5.12)
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and

P(r({Rs3, Ra},0)|ys,ya) ~ 0.000. (5.13)

These are computed with a prior membership probability of 0.5. The details involved in

modeling and performing this computation are discused in this chapter and in Chapter 6.

5.3 The Membership Components for Implicit
Polynomial Surfaces

For the models introduced here, we will be concerned only with the case in which
Dli, j] represents a point in R*, specified by [x1, 29, x3] coordinates. For simplicity of
notation, we will denote some element of the image D by x instead of D[z, j]. Rather
than using the ¢, 7 indices, we will index points that belong to some region Ry by x € Ry,
assuming the set of regions, R, has been given.

It is assumed that all points in a region Rj; came from the same polynomial surface
patch, with some noise occurring in the observation process. This is consistent with the
assumption that regions are homogeneous, made in Chapter 3. The segmentation goal in
this context is to determine maximal connected sets of regions that belong to the same
polynomial surface. The problem is that the observer cannot directly obtain the surface

parameters, due to noise.

5.3.1 The parameter space

We will now introduce the general, implicit polynomial model, applying to 3D sur-
faces. A more general formulation of implicit polynomial models, pertaining to curves
and surfaces of arbitrary degree and dimension, has been developed by Taubin [93]. A
polynomial can be considered as a linear combination of monomial basis functions. Let

W denote a set of monomials in z1,z2, and z3. The ;% element of W is represented by
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g]x?.l The integers a;, b;, and ¢; represent the exponents of the variables. Other

'
basis functions could be used in W, but we avoid this generality for clarity.

There are two distinct ways in which the elements of W can be combined to define
implicit polynomial surfaces. These determine the nonhomogeneous parameter space and
the homogeneous parameter space (or simply the nonhomogeneous space and the homo-
geneous space). The difference arises when we consider the definition of the parameter
space (the coefficients from the linear combination of basis functions).

Before giving the formal expressions we provide an intuitive explanation, in terms of
the simple plane equation. Recall that a plane can be uniquely expressed by its unit
normal and some real-valued constant. The nonhomogeneous case defines the parameter
space as the space of all possible unit normals to a plane (in a canonical direction). The
homogeneous case defines the parameter space obtained by adjoining both the space of
all unit normals and the space of all scalar offsets. Higher-degree polynomial models have
similar interpretations.

Let u denote a vector of dimension N, and there are N elements of W. The two ways

to construct implicit polynomial surfaces are: nonhomogeneous,

N
o u,d) = D ujw; = Zu]m?.rg]x? +d=0 (5.14)
w;EW 7=1
and homogeneous,
N41 R
é(-,u) = E ujw; = Z uj:c?]:c;xgj =0 (5.15)
w; EW 7=1
with
AN41 = bN+1 = CN41 = 0 (516)

The -’s used here indicate that we have an implicit function with x as a vector of variables.

In later expressions, we will refer to ¢(x,u) and ¢(x,u,d), which yield a nonzero value

!Since we are considering linear combinations of these functions, without loss of generality we can
assume there are no real-valued coefficients in front of the monomials.
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unless x is on the surface. The degree of the polynomial model is the maximum over 5 of
a; + b; + ¢;. The planar model is of degree one, and the quadric model is of degree two.

With the nonhomogeneous space, it is assumed that 1 € W. In other words, the scalar
offset d is not treated as part of the parameter vector u. Specification of u will identify an
implicit surface up to the scalar offset. This identifies an uncountable number of distinct
polynomial surfaces, and in practice, a unique surface is obtained by choosing an optimal
value for d, given some u and some data points; the details of this optimization will be
deferred until Section 5.4.2.

With the homogeneous space, it is assumed that wxy41 = 1. The scalar offset is thus
incorporated into the parameter space, and the linear combination of basis functions
uniquely identifies an implicit polynomial equation. We can convert a polynomial rep-
resented by the nonhomogeneous model into the homogeneous representation by letting
ugt1 = d and adding 1 to the set W; similarly, we can transform in the other direction.
The homogeneous /nonhomogeneous distinction may appear trivial at this point; however,
we will be integrating over the parameter space to obtain membership probabilities, and
the definition of the parameter space directly affects this.

No estimation will be required to compute the membership probability with the homo-
geneous model. We will need to integrate over the parameter space, and every parameter
value determines a unique surface. However, for the nonhomogeneous model, the esti-
mation of d is required. The fundamental difference between the nonhomogeneous and
homogeneous spaces can be interpreted as whether d is treated as a parameter, with a
value that can estimated, or as a random variable, with some density associated with it.

From our experiments, we have found the nonhomogeneous space to be more computa-
tionally efficient. The next chapter discusses our Monte Carlo-based integration method,
which is used to compute the membership probabilities. It will be seen that the perfor-

mance of the integration method degrades as the function on the parameter space be-
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comes more peaked. It turns out that the homogeneous space tends to have more sharply
peaked densities than the nonhomogeneous space, hence we have experimented primar-
ily with the nonhomogeneous space. In this section, the nonhomogeneous/homogeneous
distinctions are minor notational variants.

With the present formulation, there are redundant representations of the solution sets
(i.e., there are many parameter vectors that describe the same surface in R*, even when d
is specified). As indicated, we will be considering probability densities on the parameter
space u, and be performing integration, as prescribed by (4.43). Hence, it is profitable to
choose some restriction of the parameter space that facilitates the integration. It is also
important that this restriction retain the full expressive power of the original parameter
space. This constrained parameter space will be termed the parameter manifold.

For the nonhomogeneous space, observe that ¢(-,u,d) and m¢(-,u,d) for any m >
0 represent the same zero set.? In other words, we have replaced u by mu and d
by md. Also, ¢(-,u,d) and —¢(-,u,d) represent the same zero sets. The sign and
scalar-constant multiplications can also be performed for the homogeneous space to yield
identical solution sets.

One way to enforce uniqueness is to add the constraints ||u]| = 1 and u; > 0. Here,
|| - || is taken to be the standard Euclidean norm. The constraint ||u| = 1 represents the
equation of a unit hypersphere centered at the origin of the parameter space. This is
a single polynomial constraint, and this represents an (N — 1)-dimensional manifold in
RN. Combined with u; > 0, we obtain one-half of a hypersphere. We will denote this
half-hypersphere by ¥V, which is a subset of V.3 These constraints do not restrict the
expressive power of the parameter space, and the space has been reduced to a compact
manifold. We can use the same constraint for the homogeneous space, yielding XV *! by

using the Euclidean norm on the N + 1 parameters.

2This is simply scalar multiplication by m.
3This notation differs slightly from the usual hypersphere notation, S™¥ =1, which is a subset of R .
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In general, other constraints could be used. The set of all parameter points that
correspond to the same zero set form a line through the origin (in the parameter space).*
The ¥V restriction selects a single point on this line, at unit distance from the origin.
The Fuclidean norm was chosen because we have a parameterization of the resulting
manifold that is used for integration, in Chapter 6. The [* or [°° norms (as opposed to
the *, Euclidean norm) could alternatively be used, giving rise to hypercube parameter
manifolds. We will later specify a prior density on this parameter manifold, and the choice
of constraints will, in general, affect the actual distribution over the space of surfaces.

This definition of polynomial surfaces is fairly standard. When performing param-
eter estimation, the homogeneous/nonhomogeneous distinction is not important. This
is because the parameter values are selected to minimize some performance functional,
regardless of whether d is treated as a separate scalar or as one of the parameters. Since,

in general, we consider the parameter space as a vector of random variables and define

densities on them, the distinction becomes important.

5.3.2 The observation space

The next step is to define the observation space, Yy, for the implicit polynomial
model. In this section, we will use the subscript k to refer to parameters/observations
from some region Rj;. Recall from Chapter 4 that Yy is specified by defining a set of
functions from the data in each region Rj. Also, recall that we do not work with a
direct definition of p(yk), but rather we define p(yx|ux) and p(ug). The density p(yx)
is obtained as a marginal density, through integration on the parameter space. This
does not mean that a parameter estimate is necessary for computing the membership
probability, but that the observation density depends on values of uy, and only a pdf on

Uy is known.

4The nonhomogeneous parameter space is actually projective space of dimension N — 1 [99].

123



The observations considered here are functions of the signed distances of the points
x € Ry from the surface determined by uy. These signed distances will be referred to
as displacements. For the homogeneous parameter manifold, the parameter uy uniquely
determines a zero set; however, for the nonhomogeneous parameter manifold, we will
consider the distances of the points from the surface determined by uy and by selecting
an optimal value for the scalar offset dj. Assuming the given membership model is true
(e.g., the objects truly are composed of quadric surface patches), the only reason for any
displacement to be observed is sensor-based noise.

The functions Wy from Chapter 4 will now be defined for this particular context. For
the homogeneous case, define 6(x, (-, ug)) to be the displacement of the point x to the
nearest point on the surface described by the zero set, {x : ¢(x,ux) = 0}. The function
6(x, ¢(-, ug)) takes on negative values on one side of the surface and positive on the other.
Equivalently, we will use 6(x, ¢(-, ug, d)) for the nonhomogeneous case.

There are a number of ways in which the displacements § at each of the points in
a region can be combined to yield an observation space. Recall that it is important to
consider the effects on choices for p(ux) when defining the parameter space; it is also
important to consider the effects on choices for p(yx|ux) when defining the observation
space. For some choices of functions that define the observation space, it may be difficult
or impossible to formulate a degradation model that can be used for computation.

Consider the following possible definitions for the observation space with the homoge-
neous case (similar expressions apply for the nonhomogeneous case by replacing ¢(-, ux)
with ¢(-, ux, dx)):
sum of squares (/* norm),’

yk(Rkvuk) = Z [6(X7 ¢)('7uk))]27 (5'17)

XERk

5Note that we use y;, instead of y) When the observation space is scalar.
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median of squares,

yk(Rk7uk) = (S(X“¢(‘,Uk)) (518)
in which
6%, 6 (-, )| = median|(x, 6(-, w), (5.19)
identity maps,
Yi( B, uk) = [6(x1, (-, uk)) 8(x2, 6(- uk)) -+ (xR, ¢(+, uk))], (5.20)
and [* norm,
yr( B, uk) = max [6(x, ¢(-, ug)). (5.21)

It will be seen in the next section, when degradation densities are presented, that the

identity maps model can be alternatively expressed as

yk(Rk,uk) = [Xl X9 .. X|Rk|]- (5.22)

This equivalence occurs within the degradation model, since the identity maps model is
a function of the displacements.

These functions of the displacements are often used for polynomial parameter esti-
mation. All of these are statistics in the estimation-theoretic sense. In other words, they
could be used for estimation of uy, given the observations yy. Taubin has considered
both the sum-of-squares and [° norm observation spaces [93].

For our experiments we have considered the sum-of-squares and the identity-maps
models. The other two models could be used for the observation space; however, some
work must be done to efficiently compute the integrals that will result from using them.
We included the models here merely to indicate the generality of the formalism.

Although we have defined the observation space with functions of the displacements,

a closed-form expression for the displacement of a point from a polynomial surface does
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not exist in general. We use a displacement estimate presented by Taubin and Cooper
[95]:

& . ¢(X7u )
6(x, (-, uk)) = m

This is a good approximation for small displacements, and it will turn out that for

(5.23)

our approach good approximations are required only for small displacements. Large
displacement errors will not cause difficulty because of the approximately zero tail values

of the chi-square and Gaussian pdfs. These will be discussed in the next section.

5.3.3 The degradation model

To define the degradation model, we first need to express the density corresponding
to the displacement of an observed point from a given surface. Initially, we will give
the expressions for the homogeneous case, and then mention the minor difference for the
nonhomogeneous case. We use a simple probability model for range-scanning error, used
and justified by Bolle and Cooper [94], and also used by Taubin [93]. The model asserts
that the displacements of observed points from their true surfaces are a set of Gaussian
independent identically distributed random variables with zero mean and some known
variance o?. It is possible to estimate noise variance in an image before performing
segmentation, and methods that accomplish this are discussed in [100],[93]. Extensions
to segment-dependent variances and nonzero means could also be considered, but these
are primarily notational variants. The degradation model utilized here was merely chosen
as a representative of possible models that can be used. In practice, for different imaging

systems, other models may be more appropriate. Ikeuchi and Kanade provide a detailed

discussion of the modeling of a variety of range-imaging sensors [11].
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The expressions are given for the homogeneous case, and again we replace ¢(-,u) with

é(-,u,d) for the nonhomogeneous case. Explicitly, the displacement density is

-0 7¢ ) ’
\/2171_761}’) (X2 2( ») . (5.24)

p(dlu) =

Since taking the sum-of-squares displacements of Gaussian variables yields the chi-

square density, the degradation density using (5.17) is

1
, U2 i Sk /2=1 —yy /2 ‘
pykluk) = X, (vk) = Wyk K121 e —uk/2 (5.25)

Here y;, is the sum-of-squares for a given region, Ry, and parameter value ux (and dj
is given for the nonhomogeneous case). Also, ['(+) is the standard gamma function and
my = |Ri| (the number of elements in Ry). Above, (5.25) represents the chi-square pdf
with m; degrees of freedom.

Next, consider using the identity-maps observation space (5.22). Each coordinate
in the observation space represents the displacement of one point from a given surface.
The observation space random variables, Yy (corresponding to Rj), are conditionally
independent, given the parameter value uyx. Hence, the observation space density is

p(yrlux) = I p(6(x, ¢(-, u)) ). (5.26)
X€ Ry,
This results in a product of Gaussians,

plyxluk) = ] \/;76;1:]0 {—% (w) } . (5.27)

XERk

The product can be expanded, and the exponents summed to obtain

P(yk|uk) = ;lwe:cp{—% 3 (w) } (5.28)

(2r0?) 2 XER,, o

While the homogeneous parameter manifold uniquely identifies a surface with uy, the
nonhomogeneous parameter manifold requires the extra specification of di. Although dj

is not treated as a random variable, for the nonhomogeneous space, we write it in the
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condition of the degradation density. The expressions corresponding to (5.25) and (5.28)

are
1 -1 _
ol &) = St (5.29)
and
! 1 6(x, ¢, ux, dr) )’
p(yxluk, dy) = ———zezpd —5 D ( : (5.30)
(270?) e 2 ehy o?
respectively.

5.3.4 The prior model

The prior model is the only piece of the membership model that remains to be spec-
ified. It is a specification of the density on the parameter manifold in the presence of
no information. Since the parameter space has been restricted to a bounded set, we can
define the prior pdf to have equal value everywhere on the parameter manifold. This
captures the notion of uniformity due to the lack of information; however, it is important
to note that our choice of parameter manifold affects the prior distribution on the space
of surfaces. If other constraints were used on the parameter space, and we assumed a
constant-valued pdf, the distribution would be somewhat different from the one we have
selected here. Once some information is present, i.e., some observed data points, this
distinction becomes less important.

Since the density over the parameter manifold must integrate to one, the uniform
density is the inverse of the surface area of the half-hypersphere that defines the parameter
manifold. In Section 6.2, some simple expressions are derived for this area.® The area of

an (N — 1)-dimensional parameter manifold is denoted here by Ay, and we obtain

1

Recall that N is the number of monomial basis functions.

6A 2-dimensional parameter manifold is a unit hemisphere, and the area is 27.
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5.4 Determining the Membership Expressions

Using the results of Section 5.3, the membership probability can be expressed explic-
itly. Recall from Chapter 4 that P(7;,|y,,yi) was given by (4.23), which was a function of
two ratios, A1 (y,,yi) and Ag. Recall that A\;(y,,¥;) is the only portion of the membership
probability that depends on the observation space, parameter space, degradation model,

or prior model. Using this ratio, the membership probability is directly computed.

5.4.1 General expressions

5.4.1.1 The /FE-independent model case

For simplicity, the expressions in this section apply to the homogeneous parameter
manifold only. Hence, every parameter value uniquely identifies a surface. In Section
5.4.2 we describe how d is eliminated when using the nonhomogeneous space.

We will obtain expressions for A\1(y,,yi) by specializing (4.43). We do not have to
distinguish U, from Uj since both have the same prior distribution, hence they will both
be referred to as U. In general, with the implicit polynomial model, we are integrating

over half of the unit hypersphere. These observations yield

[/ P(yslwip( )du] [/NP(YiIU)p(u)du]

1(Yp,yi) = (5.32)
L, P lwp(yilu)p()du
We can use (5.31) directly to obtain
[ [ pviwaa] [ [ plyiluydul
MY yi) = i Ax . (5.33)

A/ p(y,a)p y‘IIU)

The areas, Ay, are removed from the integrals since they do not depend on u, and a pair

of them will cancel.
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We will now give the expressions using the sum-of-squares and identity maps observa-
tion spaces. First consider the sum-of-squares; by substitution of the degradation density

(5.25) into (5.33), the expression for A;(y,,y;) is

1 1 |
s mpf2-1 —yp/2d / ,mif/2-1 _yi/zd
VzN 27T (m,[2)" “] l sy 2 (mf2)”

1 1
mp/2=1,_—yp/2 ,mz/2 Lo-vi/2g4
/EN 9ol (m,j2)7" ¢ 2miT(my2)Yt ¢

(5.34)

The fractions that appear in front of the exponential functions depend only on the degrees
of freedom, and not on u. Hence, these can be removed from the integrands, and cancelled

in the ratio to obtain

[ / i y;np/z—le—ypmdu] [ / ey
by by

An y/()mp/z 1)y(mi/2_1)e—(yp+yi)/2du

A (Yo, yi) = (5.35)

Now consider the identity-maps observation space. In (5.28) the degradation density
was expressed as a function of the sum-of-squares of displacements. For some region Ry,
let z; denote this function of the sum of squares:

1 x = ¢(-u))
Zr=3—= 3 (7’) . (5.36)
2 xe o

The expression above is the sum of squares multiplied by 1/20?. Using this definition

L 1
[/ 7(2 2)|R2|e Pdu] [/EN _(27T0_2)|2i|€ du]
MY, yi) = ik ; . . (5.37)
Ay T € e du
(27702) (270?) 2

and (5.28) we have

The fractions in front of the exponents do not depend on u, and can be removed from
the integrals and cancelled to obtain

e [ ] .

)\l(y yYi) =
n Ay [ et du
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5.4.1.2 The [FE-dependent model case

For the I E-dependent model, similar expressions are obtained through direct substi-
tution of the four membership components into (4.51) or (4.81). In order to use (4.51),
the definitions must be extended, however, to Rj.

We next discuss the difference between using (4.51) or (4.81). First, consider the
identity maps observation space. Since all of the data are directly used to obtain a joint
density, the observation space is trivially a sufficient statistic; the sum-of-squares space
is not.

It was stated in Section 4.4 that the two different formulations of the [ F-dependent
membership model are equivalent when y is a set of sufficient statistics. Indeed, this
and R

is true for our identity maps space. Consider two regions, R

i i»» which belong
to I,. They share the same parameter value, u, since the implicition is made that
H(R;, UR;,) = true. Since the observation variables are conditionally independent given

u, the joint degradation density is

1 .. 1 .. 1 . _
p(Yir: ¥ip[u) = {7@“6 " {ﬁe ’2] = e (5:39)
(2ro?) 2 (2r0?) 2 (2ro?)— =2
Also, the degradation density for R; = R;, U R;, is
1 . 1 2 4
o g mIC T T (5.40)
(2ro?) 2 (2ro?)— =z

These forms are equal, and the two approaches outlined in Section 4.4 coincide. For the
sum-of-squares density, this equivalence does not occur.

Note that the integrands of (5.35) and (5.38) are all functions of the sum-of-squares
displacements. This is a nice benefit of using the Gaussian noise model; however, in
general, one can expect the sum-of-squares model to be simpler, since the observation
space is one dimensional, as opposed to varying with the number of points. These

integrals will be evaluated numerically using Monte-Carlo integration, which is discussed
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in the next chapter. To perform the function evaluations for these two models efficiently,
it will be necessary to construct an efficient representation of the sum-of-squares error
for a given parameter value. This is the motivation for Section 5.4.3, but before this,

Section 5.4.2 presents expressions for the nonhomogeneous membership probability.

5.4.2 Eliminating d; for the nonhomogeneous space

In this section we consider the nonhomogeneous case, and the problem of eliminating
d. The goal is to determine the optimal value for dj, given some parameter value uy
in Rj. We should denote this as di(uy); however, to simplify the notation we will write
only di. Since dj is required, along with uy, to uniquely identify a surface, consider

representing (5.32) as

[/XIN py,[u, cip)p(u)du] [/EN p(yilu, d)p(u)du

[ poldp wilyilu, dig)p(w)du

M(ypoyi) = S a
in which ch (or c?z) represents values of d, in region R, (or d; in R;) given u, (or u;).
Also, czz-p represents the value for d;, in region” R, U R;. Using the sum-of-squares and
identity-maps model expressions, (5.29) and (5.30), the expressions for A\ (y,,y;) will
appear identical to (5.35) and (5.38), with the implicit understanding that the value for
dy, 1s given for each u.

We need to derive a simple expression for the optimal value of di, given a region Ry
and ug. We will see in Section 5.4.3 that the estimated sum-of-squares displacements in

some region, Ry, can be written

> [é(x, ug, di)]*

Z [S(X7 ¢('7uk7dk))]2 = 1 XERy 2. (542)
xeH ] 2 V=00 e do)l
X€Eig

“In general this may not be a region by our technical definition due to lack of connectivity, but this
will not affect the values.
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This displacement function depends on dj, and the integrations in the membership prob-
ability are taken over uy. This gives an uncountable number of choices for the value of
dy, each yielding a different displacement.

We will select the optimal value for di, denoted by czk, which minimizes the sum-of-
squares displacements for a given value of uyg. This requires one corresponding dy for
every value uyx. It turns out that we can obtain an expression for cik, and work it into a
quadratic form which depends only on uy. This is done by selecting a value for dj for
which (5.42) is optimized. This is represented as

S B, 60w ) = min 3 [8(x, 6 i, i) (5.43)
XERy X€ Ry
A single value dy is chosen over all of the points in Ry, since we can always find a value
for d; which reduces the displacement of a single point to zero.
The optimal choice for dj occurs when

6idk { 3 lé(x, ¢>(-,uk,dk))]2} = 0. (5.44)

XERk
Using (5.42) we have
Z [¢(X7 UK, dk)]2

83 XEL = 0. (5.45)
D2 IVed (s uk, dy)|f?
XERk

Note that V,¢(-, uy, di) is not a function of dj since there is no monomial in x appearing
in front of d, in (5.14). Consequently, it does not affect the gradient, and the denominator

may be removed to obtain

== > [¢(x,uy, dp)]* = 0. (5.46)

By a slight abuse of terminology, we will denote the ;"

element of the parameter
vector uy by u;. In other words, the reference to R, will be understood, and not explicitly

mentioned. Using the explicit definition for nonhomogeneous surfaces, (5.14), we have

0 N a; by ¢ 2_8 N‘“' 2 _ 5
o 2 (Cwelayed) i) = 50 3 (Cww) +d)P=0. (547

XERk j=1 XERk j=1
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In the second part of the equation we are denoting the monomial xijxg].xgj (evaluated
at some x € Ry) by w;, for notational convenience. Performing the differentiation we

obtain
N
XeER, 7=1
Solving for dj, we obtain

|Rk| Z Eu]u] (5.49)

XERy j=1
in which |Ry| is taken to be the number of elements in Ry. Using R, = R;, R, = R,,

and Ry = R;, we obtain the values czi, a?p, and czz-p, respectively.

For computational efficiency, the expression can be rewritten as

Z Uj E w;), (5.50)
7=1 XERy
or, equivalently,
N
—Zu]"lz?j. (551)
7=1
Above, each w; is the mean of a single monomial over all points in Ry:
w; w;j 5.52
w; |Rk| E J- ( )

Hence the dj, are simple linear combinations of the means. These means do not depend

on the parameter value, and they can be computed in advance for each region.

5.4.3 Efficient representation of the sum-of-squares
displacements

We are required to perform several integrations on the parameter manifold in order
to determine the membership probability. The observation space density apears in the
integrands and hence will be converted into a computationally efficient form to facilitate

the integrations.
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When the integrals are evaluated numerically, it will become particularly important to
minimize the computational cost of performing a single integrand evaluation for a given
parameter value. The goal is to represent the sum-of-squares displacements in a way that
does not involve a summation over all of the points in a region. This can be accomplished
by writing the sum-of-squares as a ratio of two matrix quadratic forms. For each region,
two matrices are stored, corresponding to the numerator and the denominator quadratic
forms. These are computed during a preprocessing stage and are independent of any
parameter vector. The vector of the quadratic form is the parameter vector. For each
function evaluation a different parameter value is used, and simple matrix multiplications
are performed to yield the sum-of-squares displacements. These resulting matrices will be
symmetric, and in practice only the upper triangles are determined, and used to compute

the sum-of-squares.

5.4.3.1 Sum of squares for the homogeneous space

First, we will treat the homogeneous space. Using the displacement estimate (5.23),

the sum-of-squares expression is
: ST, .

2 0ot = 2 o waT o)

We want to compute the sums independently from the parameter value, so that the

function can be evaluated for new parameter vectors without recomputing expensive

sums. Based entirely of the need for computational efficiency, we borrow a simplification

used by Taubin and Cooper [95]. In their work, the simplification was performed to

facilitate optimization for the purpose of parameter estimation of implicit surfaces. This

simplification makes the assumption that the magnitude of the gradient remains fairly

constant over the set of points, for a given parameter value. Using this, (5.53) can

be rewritten with a numerator summation and a denominator summation. Since their
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definition for the parameter space coincides with our homogeneous parameter manifold,
this simplification is equally valid for our work.

For the homogeneous space, this simplification yields

2 5 loc w)
Z [¢(X7 uk)] ~ XERy . (554)

e IVep w2 1 S IVe6(- a2

|Rk| XERk

Recall that ¢(-,uy) is linear in the parameters ux. The numerator above must be a
quadratic function in the parameter value, since it is a linear function squared. The
denominator is also quadratic, since the gradient yields a linear function of uy, and the
magnitude squared yields a quadratic. The numerator and denominator represent sums
of quadratics, and hence are in turn quadratic. From this, they can each be expressed as

an (N 4+ 1) x (N 4 1) quadratic form. This gives

ukTMhuk

> [0, (-, w))J*

2 T O (5.55)

Both M}, and @), are symmetric nonnegative definite matrices. The parameter vector
has been represented in column form, and ux? denotes the transpose of uy (row form).
The specific matrices are cumbersome to denote, and the specific planar and quadric
cases are given in Section 5.5. Each element of M} and () are functions only of x € Ry,

and not dependent on uy. From this, the matrices remain static as different parameter

values are chosen.

5.4.3.2 Sum of squares for the nonhomogeneous space

Now we discuss the nonhomogeneous space. This space is more difficult since an
optimal value for dp must be determined for each value of ug. It will turn out that we
can still obtain a quadratic form that incorporates the optimal value for di. The value

for dj is not explicitly computed, but represented implicitly in the quadratic form.
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First, we argue that the nonhomogeneous denominator matrix, ),, is a submatrix
of Qn. Recall that V,¢(-, uk,d;) is not a function of di. Also, uny41 does not appears
in V;¢(-,ug). Consider the quadratic form obtained by expanding the denominator of
(5.42), and denote the corresponding N x N quadratic form matrix by @),,. Since neither
dj nor uny1 appears in the gradient expressions, the quadric polynomials that represent
the gradient for the two cases are identical. Therefore, (), contains zeros in its final
row and column (these represent factors combined with uy41). We obtain @,, by simply
removing the final row and column of Q).

The only work left is to determine an N x N quadratic form with M, for the numerator
matrix. The estimate for di, given by (5.51), can be substituted into the numerator of
(5.42) to yield

X N X N
D (el e di)]* = D0 (O wjwy) +di)* = Y (D u(w; —w;)*. (5.56)

XER X€ERy j=1 XERy j=1
The result in (5.56) is quadratic in ug, and can be expanded into a quadratic form
ui ' M,uy. The matrix M, is N x N nonnegative symmetric with the (s, ) component

given by

> (wy = wy)(wy — wy). (5.57)

XERk

This matrix form evaluated on the points is a quadratic polynomial in uyx with dj
eliminated. The elimination brought the expression from linear to quadratic. This pro-
cedure for eliminating dj, and setting up the quadratic form has been used in [50] for the
problem of linear estimation for planes.

These matrices produce an efficient representation of the sum-of-squares displacement,

similar to (5.55),

ukTMnuk

Z [S(Xv ¢(7 uk))]2 ~ (558)

Xl u? Qpux

In Chapter 6, these forms will be used to represent the membership-probability inte-

grands.
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5.5 Special Cases

In this section we present specializations of the models introduced to the cases of
planes and quadrics. These are the cases that we examined in our experiments. The
planar case is interesting because the sum-of-squares expression simplifies further, and
because the nonhomogeneous parameter manifold can be easily visualized (since it is
embedded in £?). The quadric case raises some of the more interesting issues involved in
using higher-degree models, and provides a concrete example of the implicit models for

a more interesting case.

5.5.1 The planar model

The set of monomials for the planar model is simply W = {zy, z3, z3}. The non-

homogeneous parameter manifold is uy = [u; uy us)?, and the corresponding equation
is

¢(', ug, dk) = u1x1 + usxry + usrs + dk = 0. (559)

The uniqueness constraints are uz > 0 and ||ug|| = ui+uj+u3 = 1. These constraints

yield the unit hemisphere, shown in Figure 5.4. For this case the parameter manifold

corresponds to normals to the plane since

Vm(ul.rl —|— U229 —|— U3zT3 —|— dk) = [ul U2 ’Ug]. (560)
From (5.60), and since ||ug|| = 1, the displacement estimate (5.23) becomes exact:
0(x, ¢(-, uk, dg)) = ¢(x,uk, d) = u1x1 + usxy + uzxs + dy. (5.61)

The sum-of-squares displacements (5.17) is

Z (ulxl + U229 + U3T3 + dk)Q (562)

XERk
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Figure 5.4 The nonhomogeneous parameter manifold uy for the planar model is a unit

hemisphere at the origin in 2.

The resulting matrix M, is

Yo (w1 — ) Yo (e — @) (w2 —22) Y (21— 1)(ws — Ts)

XERy XERy XER

do(wa—Ta)(wr — 1) Y (w2 — Ty)? > (w2 — Ty) (w5 — Ta)
XERk XERk XERk

o (w3 —Ta)(wr — 1) Y (3 — Ts)(wa — Ta) Y (23— Ts)?

XERk XERk XERk

in which
1
T; = —/—— Z;.
7ol 25

The homogeneous planar equation is

U1 + Uy + uszrs + uy = 0,
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and W = {z,x9,23,1}. The uniqueness constraints are uz > 0 and |jug|| = u} + uj +

u? + u3 = 1. The matrix, My, is

Z CC% Z T1T2 Z 13 Z I

XERy XERy XERy XERy

Z Lol Z :cg Z ToX3 Z T2

XER, XERy XERy XERy ) (566)
Z 3l Z T3T2 Z CL’?)) E I3

XERy XERy XERy XERy

DETEEED SEREED DETD Ob

XERy XERy XER XERy

The denominator matrix, (), is

1 000
01 00
(5.67)
00 10
0000
The quadratic form in the denominator is simply ux? Qruy = u? + u2 + ul.
5.5.2 The quadric model
For the quadric case, the monomials for the nonhomogeneous case are
W = {23, 23, 22, 2123, T173, ToT3, T1, Ta, T3}, (5.68)
and the parameter manifold is given by ux = [u; uy ... wugl. It is difficult to express

M,, on a single page. It is similar in appearance to (5.63), although with dimensions 9 x 9.

The denominator matrix (), is determined by expanding the gradient, and organizing
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the terms into a matrix. This yields

Q, =

4a?

0

0
2x129

2$1$3

2$1

0 0

423 0

0 4a?
2129 0

0 211x3
2x9x3 2913
0 0

219 0

0 2z

2$1I2

2$1$2

x%%—x%
Tol3
T1T3
Z2

€1

0

2$1$3 0

0 2T9x3
2$1I3 2$2$3
o3 13
x%-+—x§ T1T9
19 1€ +—$§
I3 O

0 3

1 T2

2$1

T2

o O = O

0

2$2

T

z3

0

2$3

€1

T2

(5.69)

The homogeneous quadric parameter space is 10-dimensional, with the addition of 1

to W. The matrix @)} is similar to (),,, with one row and column of zeros added. The

matrix M}, is computed by taking the sum over all x in Ry of

4
Lq

2..2
L1y

2.2
Ti1T3

$?$2

$?$3

$%$§ $?$2
$%I§ $1$§
4
T3 L1223
$1$2$§ $%I§
$1$§ $%I2$3
$2$§ legIg
2 2
T3 TiT2
$2I§ $1$%
$§ T1T2X3

1
5L1T2

$?$3 $%$2$3
2
T1XX3 Tyd3
$1$§ $2$§
2 2
TiT2T3 T1T5T3
$§$§ L1T2T3
T1X2T3 x%x%
$2$ T1X2X
1+3 14243
T1L2X3 $2$3
I1$§ $2$§
l$1$3 l1’2$3

2
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$1$% $§
$1$§ I2$§
$%$2 $1I§
$%$3 T1T2X3
2
L1LaX3 T3
$% T1T2
T1T2 $§
123 13
1 1
21 202

123

T2T3
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CHAPTER 6

INTEGRATION ON THE
IMPLICIT-POLYNOMIAL PARAMETER
MANIFOLD

This chapter is concerned with efficient evaluation of the integrals that appear in the
membership probability expressions. In particular, we need to evaluate the integrals in
the expression of A1(y,,¥yi), using the implicit polynomial models (5.35) and (5.38). In

general, we want to perform the integration

/EN h(u)du (6.1)

in which h(u) is some arbitrary function on the parameter manifold.

The region of integration is a half-hypersphere, and is typically high-dimensional (the
dimension is two for the nonhomogeneous planar model, and eight for nonhomogeneous
quadrics). Therefore, standard numerical techniques for integration are impractical. Us-
ing the method presented in this chapter, the integrals can be approximately evalu-
ated, yielding the membership probability for the implicit polynomial model. Section
6.1 develops a parameterization which transforms the region of integration from the half-
hypersphere to a unit hypercube, as shown in Figure 6.1. The half-hypersphere area nor-
malization factors, which are needed to express p(u), are derived in Section 6.2. Section
6.3 discusses the Monte-Carlo integration method that we use to evaluate the integrals.

An alternative method, using polynomial approximation is discussed in Appendix A.2.
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0

Figure 6.1 The parameter manifold is transformed into the unit hypercube for integra-
tion.

In Section 6.4, a technique is described which significantly improves the convergence of
the Monte-Carlo integration. Section 6.5 describes how the Dirac delta-function approx-
imation (discussed in Section 4.5) can be used to efficiently compute the membership

probability in some cases. Finally, Section 6.6 discusses some implementation details.

6.1 Hypersphere Parameterization

As formulated in (6.1), the integral is technically an (N — 1)-dimensional manifold
integration in ®V. In this section we present an appropriate parameterization and corre-
sponding transformation Jacobian, which will convert the integral into a standard volume
integral over a hypercube region. This avoids the use of any calculus of differential forms
or other intricate methods for evaluating the manifold integral. The reader should be
able to follow the conversion that takes place in this section; however, a more detailed
derivation of the transformation of the manifold integral into a volume integral is given

in Appendix A.
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The unit hypersphere, including its interior in £, may be parameterized as [101]

(t) =tnsin(ty)sin(tz)sin(ts)...sin(ty-1)

!
U !
2(t)  =tnsin(ty)sin(tz)sin(ts). .. cos(tn_1)

g
g

(6.2)
uUN—2 = gn_o(t) = tysin(ty)sin(tz)cos(ts)

tysin(ty)cos(tz)

UN—1 = gf\f—1(t)

uny  =gn(t) =tncos(ty).
A similar parameterization can also be found in [102]. For the case of N = 2 or N = 3, this
parameterization specializes to standard polar and spherical coordinates, respectively. On
YN we have ty = 1, which is the case we will be interested in. For the full hypersphere
we have 0 <t; <7 for 0 <3 < N —2and 0 <iy_y <27 As discussed in the previous
chapter, we are interested only in half of the hypersphere, ¥V, and will consequently take
0<ty_1 <m.

The integrand of (6.1) is a function of u, and the equations of (6.2) express each
element of u as a function of t. We take t as the N-dimensional vector of parameter
variables, [t; ... ty]. From this the integrand will be represented as h(g(t),...,gn(t)).

Recall from advanced calculus that when performing a curvilinear transformation
of integrals, the Jacobian must be computed to relate a differential volume element in
the initial space to the corresponding volume element in the transformed space [103].
The magnitude of the Jacobian appears in the transformed integrand (for instance, with
standard spherical coordinates this factor is ¢3sin(1)).

The differential relationship is

and |J} | represents the magnitude of the Jacobian. The Jacobian is a matrix of partial

derivatives, corresponding to all pairings of elements from u and t. This is represented
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as

O(u1, Uz, ..., un)
Jy = L . 6.4
N0t g, tN) (6.4)
For the parameterization (6.2), the magnitude of the Jacobian is [102]
|Jy| = t%_lsinN_Q(tl)sinN_B(tg) st (ty_z)sin(tn_a). (6.5)
For our purposes, ty is fixed at one; therefore, it can be eliminated to obtain
|y = sinN_Q(tl)sinN_S(tg) costn® (ty_g)sin(tn_a). (6.6)

At this point, the region of integration has been converted to a hypercube of size 7
with respect to each axis (with ¢y fixed at one). If we use the following slightly modified,
nonstandard transformation, the region of integration becomes a unit hypercube. We
choose this form to make the discussion in Section 6.3 simpler. The modified transfor-
mation is

Uy =gi1(t) =tysin(nty)sin(wtz)sin(xts)...sin(xty_1)

uy = go(t)  =tysin(wty)sin(wly)sin(wts). .. cos(rtn_1)

un—2 = gn-2(t) = tysin(wty)sin(wty)cos(nts)
un—1 = gn-1(t) = tysin(wty)cos(nts)

uny  =gn(t) =tycos(nty).
Relating to the previous transformation, we have ¢;(t) = ¢i(xt) Vi. The new magni-

tude of the Jacobian, with ¢ty =1, is

N-1

|In| =7 sinN_Q(th)sinN_S(ﬂ'tg) . 'SiﬂQ(WtN_g)Sin(WtN_g). (6.8)

Finally, the transformed integral becomes

/01.../Olh(gl(t),...,gN(t)) | dtidts ... dtn_. (6.9)

The volume integration technique of Section 6.3 applies directly to the integral in this

form.
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6.2 Expressions for the Area of Xy

Recall from Section 5.3.4 that we need the area of the half-hypersphere to determine
prior model density (5.31). Using (6.9) with A(-) = 1, we obtain an expression for the

half-hypersphere area. This requires computing

1 1
AN:/ / x| dtydts ... dtx_,. (6.10)
0 0

Since the limits of integration are constant, and the integrand is a product of univari-

ate functions, this multiple integral can be separated into a product of single integrals:

N-=2 1
H 7r/ sinN_k_l(Wtk)dtk. (6.11)
k=1 7Y
By simple substitution and from standard integration tables we have
s ifr=20
224 (r—1
1 w [ ( ) if r >0 1s odd
7r/ sin”(wt)dt = / sin’ (t)dt = 1-3...p ) (6.12)
0 0
wl-3---(r—1
| ( ) if r > 0 is even
R

The product in (6.11) can be expanded with (6.12) substituted, and, through cancel-

lations, we obtain an explicit formula for the half-hypersphere area for N > 3,

~(N/2)
m lf N iS even .

Ay = T (6.13)
o(N-1)/2 if NV is odd

(N=2)(N—-4)---1
Recall that the prior density, p(u) is 1/An. The prior density value for four special

instances mentioned in the previous chapter are presented in Table 6.1.
6.3 Monte Carlo Integration

The Monte-Carlo integration method iteratively approximates a definite integral by

uniformly sampling from the domain of integration, and averaging the function values
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Table 6.1 Specific prior model densities

‘ Parameter Manifold ‘ p(u) ‘
nonhomogeneous planar 1/2x
homogeneous planar 1/x?
nonhomogeneous quadric 105/167*
homogeneous quadric 24 /7°

at the samples. The integrand is treated as a random variable. A sampling/averaging
scheme yields a parameter estimate of the mean, or expected value of the random vari-
able. We use the most basic Monte Carlo method. More elaborate schemes with faster
convergence rates are discussed in [104]; however, improvement in the convergence rate
for these methods is possible only for low-dimensional cases (N < 3). For our purposes,
since the dimension is high, the basic Monte Carlo integration methods is appropriate.
For a complete introduction to Monte-Carlo integration, see [105].

For our purposes the basic Monte Carlo integration method is appropriate for the

following reasons:

e The number of iterations required for a certain accuracy does not depend on the

dimension of the domain of integration.

Most numerical integration techniques (such as quadrature) require some number of
samples along each of the N axes. Consequently, the complexity of such methods with
respect to dimension is usually high. The Monte-Carlo method is derived purely from
properties of random variables and sampling, and hence does not depend on dimension.
For our purposes the integration time will increase somewhat for higher degree models
since, although the number of iterations is fixed, the amount of time required to evaluate

the integrand increases.

e High accuracy is not an important concern, and computation efficiency can be

increased (or decreased) by decreasing (increasing) the number of samples.
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Since our approach represents distributions of alternative segments and segmenta-
tions, there is no great loss for some small error (= 1%) in the membership probability
computation. If the goal is to select a single, best segment or segmentation, small errors
may be an issue; however, slightly incorrect membership probabilities will slightly change
the ordering with respect to probability of the segments or segmentations in the resulting

TSS representation. This effect can be seen in some of the experiments in Section 8.4.
e There are no computational dependencies between consecutive iterations.

Since the samples are taken independently, each of the function evaluations can be
performed independently. From this, straightforward parallelization is possible by having
any number of computation modules perform averages and by using recursive binary
subdivision to propagate the final average.

In the derivation that follows, we treat the region of integration as a vector of random
variables, denoted by T. Take h: T — R and h € L2! The integral (6.9) is represented

as
I(h) = / h(t)dt. (6.14)
T
Take a set of n independent samples t1, ta2, - -+, ty, drawn uniformly from the space T.

The nt" estimate of I(h) is

Zn:h (6.15)

=1

SIH

By the strong law of large numbers, ||1,(h) — I(Rh)|| — 0 as n — oo, with probability

~—~

one. Consider the variance of the estimate, o2 = FE[I[,(h) — I(h)]*. From (6.15), we
observe by linearity that E[[,(k)] = E[I(h)] = I(h). From this observation we obtain an

expression for the variance of the estimate [106],
= E[1;] = 2E[L.(R) E[I(h)] + E[I(R)]* = %{](h(“)) — (R} (6.16)

This indicates that the error rate is reduced at a rate of 1/n.

!By h € L?, we mean that [ h? < co.
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6.4 Improving the Monte-Carlo Convergence Rate

Note that the integration accuracy depends on the difference between I(f*) and
[I(f)]*. In our context, this relationship affects the performance of the integrations
on the conditional densities. We have determined through experimentation that this
difference increases as the amount of information in the regions increases.? For instance,
a region with more points will have greater integration error than a region with fewer
points. Also, if the variance of the noise model is decreased, the amount of information
increases. These changes cause the density on the parameter hypersphere to become
more peaked, and the Monte Carlo convergence becomes too slow to be of practical use.

In this section, we identify a rectangular region in the domain of integration which
contains nearly all of the points that significantly contribute to the integral. As the
region information increases, the size of this rectangular region shrinks accordingly. The
random sampling is performed only inside the rectangular box, and the number of samples
required is significantly reduced (by thousands of times in many practical cases).

First we consider the case of evaluating an integral in the numerator of (5.33) for
some region Ry with size n. We are evaluating the degradation density at various points
throughout the integration. We can take some maximum value, k; >> no?, such that
sample points that yield a value for the sum-of-squares displacements greater than &
contribute relatively little to the integration, since the sum-of-squares and degradation
densities asymptotically approach zero. We use the Cornish-Fischer approximation [107]
to the chi-square cumulative distribution function to obtain a k; at the 99.9th percentile
for some n. The left side of the equation below represents the set of all parameter values

that yield sum-of-squares displacements less than k;. Note that this is a subset of the

2We intuitively describe the concept of information, and could alternatively use the Shannon entropy
on the parameter space as a formal measure.

149



right side:

T T
uyx Muk uyx Muk
P < k1 C : < kg 6.17
{Uk url' Quy 1} B {Uk ma:l:(ukTQuk) 1} ( )
Since ||uk|| = 1, the maximum value in the denominator on the right above is given by

the maximum eigenvalue of Q):
maz(ug’ Quy) = mazeig(Q) = ky. (6.18)

Therefore, the right side of (6.19) is the equation of a solid ellipsoid, centered at ux = 0,
which encloses all of the points in the parameter space that significantly contribute to

the integration:

T
uyk Muk T
——— <k C : M kiky ¢ . 6.19
{uk T Ouy 1} - {Uk ux Mug < ky 2} (6.19)
Let {\1, Aq, ..., An} denote the eigenvalues of M, in order of increasing magnitude. Also,

let S denote the corresponding eigenvector matrix, which is a rotation matrix that aligns

the ellipsoid with the coordinate axes (diagonalizing M). Take ux = Svy, and we obtain
ukTMuk = (SVk)TM(SVk) = VkTSTMSVk = VkTAVk (620)

in which A = diag{)\;, A2, ..., An}. Using vy, the ellipsoid equation becomes

The halt-lengths of the principle ellipsoid axes are
k1 ks
b, = . 22
K (6.22)

The rectangular subset of ¥ that has corners located at coordinates 4b; encloses the
ellipsoid, and the rectangular faces are tangent to the ellipsoid surface. We can apply the
inverse transformation to the equations (6.2) to map the corners of the box into T'. These

form a rectangular subset, 7", of 7' in which the corners have coordinates we denote by

1/2 £ ¢;.3

3Some of rectangular faces in the parameter space may lie outside the unit hypersphere. When the
first axis is found that is outside, the remaining ¢; are set to their maximum value, 1/2.
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The portion of parameter space that significantly contributes to the resulting integral
lies within 77, hence we need to draw samples uniformly only from 7”. Using these

results, an integral in the numerator of (5.33) can be computed by

1 02
o () 622
Above, F represents the ratio of the area of 7" to T', and n is the number of samples, vy,
that are used. The F' also represents the factor by which the number of required samples
is reduced.
To compute the denominator integral, we use the smaller rectangular region, 7", (and
corresponding rotation matrix S) of the two regions R; and R,. If that region is R,, then

the integral is computed by

sz (M) f (M) (6.24)
nk " vi! STQ,Svy vil STQ;Svi
in which the A; are the eigenvalues of M; and S is its eigenvector matrix.

The integral convergence is fastest using the nonhomogeneous parameter space, but
we have also found it useful for performing integrations on the homogeneous parameter
manifold. For nonhomogeneous planes, the rectangular box 7" obtained from this method
produces a very tight bound on the peak, yielding nearly constant performance, regardless
of the amount of information in the region. For quadrics, we also obtain a significant
reduction in the number of samples, allowing the practical computation of region merging

probabilities.

6.5 Using the Dirac Delta Model to Compute the
Membership Probability

Recall from Section 4.5 that if estimation can be reliably performed for one of the

regions, a simplified version of the membership probability computation results. In this
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section we discuss how this model can be used in some cases, particularly when the
Monte-Carlo integration becomes inefficient.

As will be discussed in Chapter 7, it is best to select an initial region that contains
the most information regarding the parameter manifold. In other words, it is best to
select the region that is most likely to have a peaked parameter manifold distribution.
In our experiments, we simply selected regions with the most data points. From the
discussion in the previous section, this can, however, cause problems for the Monte-Carlo
integration. For these cases, if estimation can be reliably performed, the delta model is
appropriate. Using the nonhomogeneous parameter manifold, the goal is to estimate the
parameter value for R;, denoted by G (we can also compute estimates for d; and d,).
Using (4.89), the expression for A\i(y,,yi) in the context of implicit polynomial surfaces

becomes

L P00l dy(u,)p(u, ),
p(y |, ciz)

Hence, we need to obtain the estimate Gj. For performing the estimate, we assume

MY, yi) = (6.25)

that the identity maps model is being used. The maximum likelihood estimate (MLE)

of uj will be the value yielding the smallest sum-of-squares displacements

5 uiTMnui
S 8(x, 6 ug, d))P o

A .
XER; ul Q’I’Lul

(6.26)

For our experiments, we estimated u; by minimizing the numerator quadratic form.
From linear algebra, it is known that the minimum of the quadratic form u;? M, u; is
attained by selecting G; as the eigenvector corresponding to the minimum eigenvalue of
M,.

Parameter estimation is not the primary focus of our work, and for our experiments
with the delta model, this estimation technique was simple and usually produced reason-
able results. A better solution to this estimation problem has been used by Taubin [95].

In our context, his method corresponds to minimizing the homogeneous ratio to estimate
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uj,

: i Myu;
2 B0c o) = % (6.27)

This form is minimized by determining the generalized eigenvectors and generalized eigen-

values of the matrix equation

lli(Mh - )\Qh) = 0. (628)

The solution is given by the minimum eigenvector/eigenvalue pair.
Both of the methods discussed use the approximation given by (5.54). In general,
one could alternatively apply a nonlinear optimization technique, such as Levenberg-

Marquardt [108], directly to the minization of

ol ull® _
xgk V2o (-, ug) |2 (6.29)

This does not use the approximation in (5.54); however, this optimization will be more

costly than the linear, eigenvector approaches.

6.6 Some Efficiency Issues

6.6.1 Efficient function evaluation

In this section, we provide the details necessary to efficiently evaluate the integrand
at each iteration of the Monte-Carlo integration, using the nonhomogeneous model. We
also use, however, the homogeneous matrices, M} and ). For each region in R, we
precompute and store the matrices M,,, My, (), Qn, discussed in Section 5.4.3.

First, consider one of the two integrals appearing in the numerator of (5.41). The

operations in the j* iteration of the integration procedure on R} are
1. Obtain the parameter value uj.

2. Compute g, from the nonhomogeneous quadratic form ratio, (5.58).

153



3. Use degradation density to compute p(g|uj, cik)
4. Multiply the Jacobian value, (6.8), to result of 3, and add to the total.

For the first step, the parameter value is determined from the given sample points using
(6.7). For the second step, recall that the nonhomogeneous quadratic form, (5.58), im-
plicitly encodes the optimal estimate dr. From this the observation value, 9z, is directly
obtained. Note that since the matrices are symmetric, only the upper triangles of M,
and (), are needed. Consequently, off-diagonal elements are multiplied by two. The
third step involves substituting the values directly into the degradation density. Finally,
the magnitude of the Jacobian at that sample point is determined and multiplied by the
value obtained from the third step.

A single evaluation of the integrand in the denominator of (5.41) requires more work

than the previous integrals. The operations in the j** iteration are
1. Obtain the parameter value uj.
2. Compute optimal estimate ciip.
3. Compute y; from homogeneous quadratic form ratio, (5.55).
4. Compute g, from homogeneous quadratic form ratio, (5.55).

A

5. Use degradation density and estimates to compute p(y;|uj, di, ).

6. Use degradation density and estimates to compute p(y,|u,, ciip).

7. Multiply Jacobian and results from 5 and 6, and add to the total.

The first step is the same as before. In the second step, the optimal estimate for a?z-p is
directly computed directly from (5.51). The coordinate sums are stored for each region,

and the sums for R; and R, are combined to yield the estimate.
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Although we are using the nonhomogeneous model, the homogeneous quadratic form
is used in the third and fourth steps. The estimate a?z-p is treated as the (N + l)th

parameter value, creating the vector
[up ug ... uy dip]T. (6.30)

This vector is substituted directly into (5.55), using M} and @ for each of R; and
R,. Hence, the observation f; and ¢, values are obtained. Again, we store and work
only with the upper triangles of the matrices. The observations are substituted into the
degradation densities in the fifth and sixth steps. Finally, the two degradation density

values are multiplied with the magnitude of the Jacobian to yield the result.

6.6.2 Multiple use of some integrals

Several further computational savings are possible for the IFE-independent model.
Two of the three integrals in the expression for A1 (y,,yi), (4.43), involve only a single
region. Once these integrals are computed, we can typically expect the regions to appear
in many other membership probability computations.

The initial-region integral,

L., plilw)du, (6.31)
will be used for every membership probability computation performed in the construction
of a TSS representation. It needs to be computed only once during the construction of
the TSS representation.

Also, as we saw in the example in Chapter 3, one region is often used for refinement

numerous times in a TSS. Hence

[, Pyl (6:32)

can be stored and recalled many times.
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If a full image segmentation is required, and the delta-function model is used at each
refinement, all individual region integrals can be performed as a preprocessing stage.

Recall that with this model the denominator integral of A\;(y,,¥i),

[ PPy}, (6.:33)

reduces to a single function evaluation. Hence, the TSS and SSS contructions are per-

formed very rapidly, since membership probabilities are quickly computed.
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CHAPTER 7

TSS AND SSS ALGORITHMS

In Chapter 3, a framework was introduced which allows us to construct and repre-
sent distributions of segments and segmentations efficiently. In particular, the refinement
operation is a single step used in the construction of the representations. Subsequently,
Chapters 4-6 addressed the issue of assigning probabilities to refined events. The pri-
mary purpose of this chapter is to present efficient algorithms for building T'SS and 555
representations. These algorithms require iterations of the refinement operation and cor-
responding membership probability computation. The algorithms presented here were
used to obtain experimental results, which appear in Chapter 8.

Section 7.1 addresses the problem of generating a TSS representation. An algorithm
is presented which returns a user-specified number, n, of ground events that have high-
est probability. A termination criterion is given, which, if met, guarantees that the
top n segments were determined (i.e., there does not exist another segment with higher
probability than one of the returned segments). Section 7.2 presents one algorithm to
obtain a single, good segmentation and two algorithms for generating an SSS represen-
tation. A termination criterion that guarantees that the algorithm returns the best n
segmentations is presented, but we expect that in many practical situations this criterion
cannot be achieved with moderate computation. Hence, these algorithms can sometimes

be considered as searches for several good segmentations. Section 7.2 concludes with
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descriptions of modifications required to represent a distribution over a set of m-segment

groupings.

7.1 Constructing TSS Representations

This section presents algorithms that explicitly represent a subset of the set of seg-
ments in ©;, in which each segment has a higher probability than the complementary set
of segments. We consider the high-probability segments to be the interesting portion of
the TSS. Given the large size of ©; that we expect in real applications (with dozens or
hundreds of regions in R), obtaining the segments that represent the interesting portion
of the T'SS may seem to be an unreasonable expectation. There are, however, some fac-
tors which enable us to approach this task. It is important to remember the difference
between the size of ©;, and the number of segments that we find interesting. Suppose,
for example, that the segments that have high probability contain only three of the four
regions, although there are hundreds of regions in R. In a situation such as this, there
will be thousands of segments with very low probability in the TSS (for instance, the
segment R € O, if D is connected).

We want to determine a sequence of refinements that efficiently leads to a T'SS repre-
sentation. Specifically, we want to represent some number of ground events (correspond-
ing to single segments) that have high probability. Note that each refinement increases
the number of events in a cover by one (one event is removed, and replaced by two).
Hence, restricting the total number of refinements and obtaining a compact representa-

tion of the T'SS are closely related. Recall that the refinement event B, and the refinement

158



region R, completely determine a refinement mapping p(C, B,, R,) to apply to a cover

C'. Hence, the following two issues pertain to the construction of a TSS representation:

e B, should be selected to maximize the probability that it contains interesting

ground events.

e 17, should be chosen to maximize the efficiency of the representation.

Recall that we represent some event B € B; using the sets [ and F. We do not
have direct access to specific segments contained in B, or even the number of segments
in B. Determining these requires performing enough refinements to divide B into all of
its ground events. We argue that if we are given a cover C, then the element B € C
that has highest probability should be selected for refinement, since it is most likely to
contain ground events with larger probabilities (assuming there is no information about
the number of segments in each event).

The refinement region, R,, which of course depends on the choice for B,, is chosen
in a way that uses the strongest evidence first. In other words, out of all of the choices
for R,, we seek the region that gives a membership probability closest to zero or one.
The motivation for this choice is that in constructing a compact representation, it is
beneficial to have the largest portion of the TSS possible (in terms of the number of
segments) belonging to a set with low probability. This greatly reduces the number of
segments that are still in consideration after the refinement. Considering the set of all
valid choices for R,, a membership probability close to zero will assign low probability to
the event 7(I,U{R,}, E,). If the probability is sufficiently low, the new event will not be
considered for subsequent refinement. The complementary event, 7({,, £, U {R,}), will
have high probability, and is likely to be selected for further refinement. An analogous
situation occurs when the membership probability is close to one.

We need to define the set of possible alternatives for R, for a single refinement step.

Recall the constraints on [ and F from Section 3.3. The sets [ and E are mutually disjoint
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sets of regions, [ is connected, and each element in F is adjacent to some element in [.
Our choice for R, must create valid include and exclude sets: [ U{R,} and E U {R,}.
We call the set of possible refinement regions for a given B,, the frontier. This is defined

and denoted as
FRONTIER(B,) ={R, € R: R, ¢ [,UE, and {R;} U I, is connected}. (7.1)

For some set of regions, R;, as possible choices for refinement, we select R, € R; by

SELECT-R,(R;) = argmin {min [ P(7({, U{Ri}, E,)|e), P(t({,, £, U{Ri})le)]}.

Ry, € R;
(7.2)

We use e to denote a generic piece of evidence as in Chapter 3. The expression selects
the R, that yields a membership probability closest to zero or one. We will often take
R; as the frontier set.

To present the algorithms formally, we will use some standard definitions, found in
[109]. A priority queue is a finite set of elements with a linear ordering. An element, a, is
inserted into a priority queue, X, (in a position that maintains the linear ordering) with
INSERT (X, a). The highest-priority element in X is removed and returned by EXTRACT-
MAX(X). The highest-priority element in X is referred to as MAX(X) (without being
removed). We will refer to the n'* element in the queue as NTH(X,n). In practice, the
priority queue can be efficiently implemented using heaps [109].

Recall that a cover C represents a set of TSS events that form a partition of ©;. This
cover may contain ground events and nonground events. We divide the cover into two

priority queues, C; and C}, such that
C=C,UC, and C,NC,=10, . (7.3)

The queue C, contains the ground events of C', and C}, contains the remaining, nonground
events of C'. We define the ordering on the queue to be >, applied to the probabilities of

the events. Hence EXTRACT-MAX(C,) returns the ground event with highest probability.
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The queue C; contains the events that represent individual segments, which will
eventually form the distribution of ground-event probabilities. The queue C}, represents
the portion of the TSS left to be explored, and the first element of C}, is the unexplored
event that has highest probability. Together, these two lists always determine a cover
and hence an approximate representation of the TSS, as discussed in Chapter 3.

We will represent each element of C) by its I and E sets. Hence, an event will
be represented in the algorithms as {/, £}, implicitly representing the set of segments
given by 7(I, E). For some event B, in the algorithm descriptions that follow (here
represents some generic subscript), we will directly use its include and exclude sets, I,
and E,. Thus, B, = 7(I;, E;) will be implicitly represented by {1, E.}.

We are interested in determining some number of ground events and their correspond-
ing probabilities. One natural way to express this goal is to request a representation of
n segments that have high probability.! The ideal situation would be to obtain the n
segments with the highest probability out of all ground events in B;. The following

proposition gives a termination criterion that achieves this:

Proposition 3 If P(NTH(Cy,n)) > P(MAX(C})), then for any T € ©;, such that {T'} ¢
C,, PUTY) < P(NTH(C,,n)).

Proof Suppose to the contrary that 37' € ©; such that {7} & C,, and P({T}) >
P(NTH(C,,n)). Since C,UC), = C (which covers ©,) and {T'} & C,, there is some B € C},
such that {T'} € B. This implies P({T'}) < P(B). We also have P(B) < P(MAX(C},)).
This leads to a contradiction since:

P(MAX(C})) < P(NTH(Cy,n)) < P({T'}) < P(B) < P(MAX(C})). O

! Another reasonable request is to obtain some number of ground events, with total probability above

some threshold (e.g. above 0.99).
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7.1.1 An [F-independent algorithm which builds a TSS
representation

We now present an algorithm for constructing a TSS representation, which exploits
the computational savings of the I E-independent model. Recall that these savings are
possible since under this model, the membership probability depends only on R,, and not
on the other regions in I, or £,. This implies that the membership probability (derived
from A1(y,,¥yi)) can be precomputed and stored with each region in R. When a region
is selected for a refinement, the membership probability has already been determined.
Hence for a TSS algorithm, using the / F-independent model, there will be fewer than |R|
membership computations, since these represent all possible refinement regions, regard-
less of B,. A similar approach is taken for agglomerative clustering, when the merging
likelihood function is precomputed for all adjacent-region pairs in the image [43].

We could choose to determine the membership probabilities as needed, to avoid the
possibility of unnecessary computations that correspond to low-probability events. How-
ever, making the selection for R, with (7.2) requires knowing the membership probabili-
ties for each region in the frontier set.

We compromise between the two extremes by incrementally computing the member-
ship probabilities for the frontier set of each new refinement event, B,. This way there
are a sufficient number of membership probabilities available to use (7.2), and we will
not be forced to compute the membership probabilities for all regions in R — {R;}.

The algorithm accepts as inputs: the regions, R; the initial region, R;; and the number
of greatest-probability ground events to determine, n. We assume that the adjacency
structure for R has been given. Note that we store the probabilities of any events that
appear in C} or Cy, but to keep the algorithm specification concise, these will not be

explicitly represented.
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GET-TOP-SEGMENTS (R, R;, n)

1 NEW-MEM-PROBS( R;, FRONTIER({{R;},0}))

2 Cyo—10; Cpe=10

3 INSERT(Cy, {{R:},0})

4 repeat

5 B, —EXTRACT-MAX(C})

6 R, «SELECT-R, (FRONTIER(B,))

7 By —{I,U{R,},E,}; Bg«— {l,,E,U{R,}}
8 Compute and store P(Byle) and P(Bgle)

9 if FRONTIER(DBy) # ()

10 then

11 INSERT(C},, Br)

12 NEW-MEM-PROBS(R;, FRONTIER(B))
13 else

14 INSERT(C'y, By)

15 if FRONTIER(Bg) # ()

16 then

17 INSERT(C},, Bg)

18 else

19 INSERT(Cy, Bp)

20 until [C}, = 0] or [|Cy| > n and P(NTH(C,,n)) > P(MAX(C}))]
21 return C,

Figure 7.1 An [ E-independent algorithm returning the best n segments.

The formal algorithm description is presented in Figure 7.1. The function NEW-MEM-
PROBS accepts as arguments, R;, and some set of regions, e.g., R;. For any R, € R;
that is considered for the first time, the membership probability, P(7({R;, Rk}, })|e), is
computed and stored. As more refinements are performed, the number of membership
probabilities that are actually computed by NEW-MEM-PROBS decreases, since many
regions are reconsidered.

Line 1 of GET-TOP-SEGMENTS determines the membership probabilities for the
regions adjacent to R;. These are sufficient for the selection of the first refinement region.
Lines 2 and 3 initialize C; and C}. There are no ground events determined yet, hence
C, = 0. We initialize C}, to contain an implicit representation of 7({R;},#). The two

priority queues together initially represent the entire TSS with a single event.
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Lines 5 to 19 are repeated until the termination condition in Line 20 is met. Each
iteration corresponds to a single refinment made to the cover C; U C),. The second
part of the termination condition, [|C,| > n and P(NTH(Cy,n)) > P(MAX(C}))] , uses
Proposition 3 with the constraint that at least n ground events have been determined.
Termination by this part of the condition guarantees that the n segments that have
highest probability are represented. The C), = () portion of the condition is met when
all ground events in ©; have been represented (i.e., no further expansion is possible). In
practice, we can also terminate if P(FIRST(C})) < € for some € ~ 0, or if |C}| exceeds
some space limit (e.g., 20n), without having met the criterion in Proposition 3. These
final two conditions are merely heuristics and are used only to force an early termination,
if desired.

Each iteration creates a new cover by removing an element from C}, performing
a refinement, and defining the next cover by adding the new events to C} or C; as
appropriate. Line 5 removes the highest-probability element from C} for refinement.
Line 6 chooses the refinement region, R,, by comparing the membership probabilities for
elements of the frontier set, as prescribed by (7.2). Line 7 constructs the two refined
events, By and Bg. In Line 8, the membership probability for the pair of regions, R; and
R,, is used to compute and store P(Bjle) and P(Bgle), using (3.8) and (3.9).

The remaining portion of the iteration decides whether the new events, By and Bg,
belong to C}, or Cy. Line 9 is equivalent to testing whether By is a T'SS nonground event.
If the condition is true, then Line 11 adds By to ). The addition of By to C;, may cause
more membership probabilities to be evaluated (these are needed in advance for Line 6
since a new region, R,, has been considered). If By is a ground event, then it is added
to C, in Line 14. Lines 15 to 19 proceed for By as Lines 9 to 14 do for B;. Since Bp
excludes R,, no further membership probability computations are necessary (because the

frontier has not been extended).
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7.1.2 An [F-dependent algorithm which builds a TSS
representation

With the [FE-independent model, the membership probabilities are computed in
batches, as the frontier is expanded. For the IFE-dependent model, the membership
probabilities must be computed at each refinement. The membership probabilities will,
in general, be distinct for different refinements with the same R,, since the probability
now depends on /,, which will be distinct for different iterations. Hence we do not per-
form the computation of membership probabilities for regions appearing in the frontier
set, as with GET-TOP-SEGMENTS.

Also, we do not have the luxury of knowing in advance the membership probabilities
needed to use (7.2). If the cost of computing the membership probability is not a concern,
we could, of course, compute the membership probability for every Ry in the frontier set,
and then use (7.2) to choose R,.

In practice, we can make the refinement region selection based on the amount of
information contained in a given region.? The region with the most information tends to
yield a membership probability that is closer to zero or one. This consideration guided
the selection of the refinment region for GET-TOP-SEGMENTS. One heuristic measure
for this is the size of the region, which is what was used in our experiments. We could
alternatively use the factor F' from (6.23), which corresponds to the degree to which the
conditional density over the parameter space is peaked. For the [FE-dependent model,
the modified version of GET-TOP-SEGMENTS is presented in Figure 7.2.

GET-TOP-SEGMENTS-DEP is similar to GET-TOP-SEGMENTS, with the differ-
ences being the location of membership probability computations, and SELECT- R, selects

the largest region. The function MEM-PROB computes and stores the membership prob-

2We intuitively describe the concept of information, and could alternatively use the Shannon entropy
on the parameter space as a formal measure.
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GET-TOP-SEGMENTS-DEP (R, R;, n)

1 C,—0; Cp—10

2 INSERT(Cy, {{R:},0})

3 repeat

4 B, —EXTRACT-MAX(C})

5 R, «SELECT-R, (FRONTIER(B,))

6 MEM-PROB(B,, R,)

7 By —{I,U{R,},E,}; Bp« {l,,E,U{R,}}
8 Compute and store P(Byle) and P(Bgle)
9 if FRONTIER(By) # ()

10 then

11 INSERT(C}, Br)

12 else

13 INSERT(C'y, By)

14 if FRONTIER(Bg) # ()

15 then

16 INSERT(C}, Bg)

17 else

18 INSERT(Cy, Bp)

19  until [C, =0] or [|C,] > n and P(NTH(C,,n)) > P(MAX(C}))]
20 return C,

Figure 7.2 An [ E-dependent algorithm returning the best n segments.

ability, which depends on the refinement event, B, (using /,), and the refinement region,

R,.

7.2 Constructing SSS Representations

The next step is to consider the distributions arising from combinations of different
segments in the image. This leads to a distribution over the SSS ground events, each
representing a full-image segmentation. Our goal is analogous to that of the previous
section: we wish to consider covers of the SSS (which will be defined shortly), partitioned
into ground and nonground SSS events, and to efficiently obtain a representation of the

SSS ground events with the highest probability. The fundamental difference is that now
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we are concerned with the concept of covers and ground events pertaining to the SSS, as
opposed to the TSS.

Three algorithms will be presented. GREEDY-SEGMENTATION is the simplest al-
gorithm, and generates a single segmentation by taking the best segments from a sequence
of applications of GET-TOP-SEGMENTS (or GET-TOP-SEGMENTS-DEP) with n =
1. The other two algorithms generate a distribution over SSS ground events. BEAM-
SEARCH-SEGMENTATIONS uses GET-TOP-SEGMENTS (or GET-TOP-SEGMENTS-
DEP) as a single iteration and performs a search on the space of segmentations to obtain
a set of segmentations that have high probability. GET-TOP-SEGMENTATIONS is sim-
ilar to GET-TOP-SEGMENTS, except SSS refinements and covers are used as opposed
to TSS refinements and covers.

In the algorithms that follow, it is necessary at various stages to choose a new initial
region, R;, to begin the construction of a new TSS. We can describe the ideal choice of an
initial region using the concepts from Chapter 4, although in practice, some empirically
based, heuristic choice of initial region may be used. We want to select the region that
contains the most information about the parameter space. If there is enough information
in some region that its parameter value is essentially known, then the delta model can
be employed. That region would be an ideal choice, since the membership probability
computations would be significantly reduced.

This choice of regions containing more information tends to cause more extreme
values for Ai(y,,yi) (tending toward zero or infinity), yielding a more compact TSS
representation. If there is little information present in the initial region, then the resulting
TSS probabilities are close to their prior values, and numerous competing T'SS ground-
events are obtained. This effect can be seen in our experiments in Section 8.3. In practice,
we used the size of a region as an estimate of the amount of information present, and

hence chose the largest regions as initial regions. If the goal is to obtain a distribution
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GREEDY-SEGMENTATION (R)

1 S 10

2 R, — 0

3 repeat

4 R; «SELECT-INITIAL-REGION(R — R,)

5 {B,} «GET-TOP-SEGMENTS(R — R,, R;, 1)
6 R, — R, U,

7 S« SuUil}

8 until R, =R

9 return S

Figure 7.3 A greedy algorithm which returns one good segmentation.

over several adjacent segments, then the choice of initial regions may be restricted to

regions that are adjacent to previously considered segments.

7.2.1 A greedy segmentation algorithm

If the goal is to obtain a single segmentation that has high probability, the following
algorithm can be used. It is termed greedy since it picks the best segment from a TSS
distribution at each iteration, in a sequence of iterations that produces a resulting seg-
mentation. This can also be considered as a kind of best-first search, often appearing in
AT algorithms [110]. The formal specification is given in Figure 7.3.

Line 1 initializes the variable, S, which will hold the segmentation. The variable R,
holds a list of regions that are removed from consideration at a given iteration, and is
initialized to ) in Line 2. Lines 4 to 7 generate a segment to add to S. Line 4 selects
the next initial region for a new T'SS, removing the regions in R, from consideration. In
Line 5, GET-TOP-SEGMENTS (or GET-TOP-SEGMENTS-DEP) is used to obtain a
single, best segment from the TSS constructed for R;. The left side of the assignment
is written as {B,} since we want to select the one ground event from the singleton set
of events returned by GET-TOP-SEGMENTS. The variable R, is extended in Line 6 so

that the regions in the new segment will not be considered in subsequent iterations. Line
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7 adds the new segment to the list of segments, which eventually becomes the full-image
segmentation. Line 8 is the termination condition, which is met when the entire image

is represented in S.

7.2.2 Algorithms for obtaining a distribution of segmentations

The next two algorithms build an approximate representation of the SSS. Just as the
approximate TSS representation yielded a distribution over a set of segments, the approx-
imate SSS representation yields a distribution over a set of segmentations. We first define
an implicit representation of SSS events, which is analogous to the 7(/, F) representation
of TSS events. We next define cover and refinement on the SSS, which are analogous to
their T'SS counterparts. Once these are introduced, we present the algorithms, BEAM-
SEARCH-SEGMENTATIONS and GET-TOP-SEGMENTATIONS. It will be seen that
BEAM-SEARCH-SEGMENTATIONS is a generalization of GREEDY-SEGMENT that
considers b alternative segments from each TSS construction (GREEDY-SEGMENT uses
one segment from each TSS construction). GET-TOP-SEGMENTATIONS uses SSS re-
finements and SSS covers to build an SSS representation in the same manner used in
GET-TOP-SEGMENTS to build an TSS representation. A termination criterion analo-
gous to the one given by Proposition 3 is used to guarantee that the best n segmentations
in the SSS have been explicitly represented.

Recall from Section 3.5.2 that SSS representations can be built from multiple TSS
representations. Given a TSS ground event, {11}, we can consider a second TSS by
choosing an initial region not contained in 7. The second TSS builds a set of segments
that do not include any regions that are members of 7}. Each TSS ground event, e.g.,
{T,}, in the second TSS corresponds to a pair of segments, {77, T3}, in the original image.

With respect to the SSS, the TSS ground event in the second TSS represents the set of all
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segmentations containing both 7} and T5. From the TSS ground event {73}, a third TSS
can be considered, and this process can be iterated until the entire image is represented.

We will argue that any SSS event that is constructed in the manner presented in
Section 3.5.2 can be implicitly represented by a set of segments, F', an include set, I, and
an exclude set E. The elements of F' are the segments obtained from the ground events
in the sequence of TSS constructions. The [ and £ sets are the include and exclude
sets of the current TSS construction, which represents some TSS event, (7, E). In this
context, we use (0;,B;, P) to denote the current TSS.

Formally, we consider a function o:
o(F,I,E)y={Sell:TeSVTeF}[fi(r(l,E)). (7.4)

As defined in Section 3.5.2, f; is the function that maps TSS events in B; to their
corresponding SSS events. In this context, the corresponding SSS event is
filr(,E)= |J {Sell:Tes} (7.5)
Ter(1,E)
Of the segmentations represented by (7.5), (7.4) represents only those that contain all of
the segments in F'. It is assumed that the segments in F' were obtained from previous
TSS constructions, and hence are fixed in the event o(F, I, E).

An SSS cover, C, is a set of pairwise-disjoint events in A that form a partition of II.
An SSS cover may contain SSS ground events and/or nonground events. We consider (as
was done with a TSS cover) dividing the SSS cover into two priority queues, C, and Cy,
such that

C=C,UC, and C,NC}; =0, (7.6)

The queue C, contains the SSS ground events of C. The queue C;, contains the remain-
ing, nonground events of C. Again, we define the queue ordering to be >, applied to the

probabilities of the events.
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In Section 3.3.2 we introduced the TSS refinement operation, and now we introduce
the SSS refinement operation. An event, A, = o(F},,1,, F,), is selected as the SSS
refinement event. A region, R,, is selected as the SSS refinement region. We constrain
R, to be adjacent to some region in [, and not in any of F,, I,, or E,. An 5SS refinement is
obtained by applying the TSS refinement operation on the I, and E, sets in o(F,, [,, E,).
The SSS refinement operation applies to an SSS cover, C, and yields a new cover, C', in
which A, is replaced by two SSS refined events.

Although SSS refinement applies the TSS refinement operation using the I, and E,
sets of o(F,,I,, F,), there are two cases that must be treated differently. We are con-
cerned with the TSS event 7(1,, £,). If this event is not a TSS ground event, then an
SSS refinement will be formed by performing a TSS refinement operation on 7(1,, E,).
If 7(1,, E,) represents a TSS ground event, then a new initial region must be selected,
which initiates the construction of a new TSS. These cases will now be described in
further detail.

First, consider the case in which A, = o(F),,,, E,)), and 7(1,, E,) represents a non-

ground TSS event. The two SSS refined events are
Ap=o(F, 1,U{R,}, E,) (7.7)

and

Ag =0o(F, 1, E,U{R,}). (7.8)

We have the following proposition:

Proposition 4 If A, =o(F,,1,,E,)), and 7(1,, E,) represents a nonground TSS event,

then Ay and Ag, giwven above, form a disjoint partition of A,.
Proof Using the definition of o, (7.4), the intersection of A; and Ag is
{Sell:TeSVI'e Fp}ﬂfi(T(]p U {Rp}aEp))ﬂfi(T(Ivap U{R,})) (7.9)
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This set is empty since 7(1, U {R,}, F,) and 7({,, £, U{R,}) represent TSS refinement
events ( which are known to be disjoint), and the application of f; to each of them yields
disjoint sets of segmentations (recall (3.32)).

Taking the union of Ay and Ag we obtain

{Sell:Tesvr e} [fi(r(,u{R,}, B))Uflr(L, £,0 {B,})].  (7.10)

This is equivalent to
{Sell: TeSVT e F}()fi(r(1,,E,)) = A, (7.11)

since

fi(r(1,,E,)) = fi(r(I,U{R,}, E)) U fi(r(1,, E, U {R,})). (7.12)

We now treat the case in which 7(7,, F,) is a TSS ground event. When this case
occurs, we select a region, R;, that is not in F, U I,. The notation F' is used to refer to
the set of all regions that are contained in the segments of F'. This region is used as the
initial region for a new TSS. When presented with the SSS event o(F), [,, E,), the new
event corresponding to the selection of R, yields the same event, although with a slightly

different notation. We state this equivalence as a proposition:

Proposition 5 For an SSS ground event o(F,,1,, E,) and some region R; & F,UI,, we
have

o(Fy 1, E,) = o(F, U{l,},{R;},0). (7.13)

Proof In the first expression, F, represents a set of segments, and I, and E, represent
an additional segment (a TSS ground event). This additional segment can be identified

by its set of regions, which is I,. To obtain the second expression, we add the additional
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segment, [,, to F,, and represent a new TSS with the include set, { R;}, and exclude set,
0.

This equivalence becomes clearer when the definition of o is applied to left and right

sides of (7.13) to obtain
{Sell: TeSVT e Fp}ﬂfi(T(IP,Ep)) (7.14)

and

{Sell: T eSVT e (F,u{L)}fi(r({R;},0)), (7.15)

respectively. The first expression describes the set of all segmentations that contain the
segments in F), and contain the segment I, (given by the ground event 7(/,, F,)). The
second expression describes the set of all segmentations that include F, and [,, and also
contain some segment that contains R;. The second condition is not restrictive since
every segmentation must contain a segment that contains R; (i.e., fi(7({R;},0)) = II).

Therefore, the two representations denote the same SSS event. O

If 7(1,, E,) is a TSS ground event, and some refinement region, R, has been selected,

then by Proposition 5 the SSS refined events are
Ar= U(FPU{]P}7{Rj7RP}7®) (716)

and

Ap = o(F, U{L}, {1}, {R,}), (7.17)

in which R; is the new initial region. Again, these represent a disjoint partition of A,.
When 7(1,, E,) is a not a TSS ground event, the probabilities of the SSS refined

events are computed by

P(o(F,, 1, U{R,}, E,)le) = P(r(I, U{R,}, E,)le) ]I PHT}) (7.18)

TEF,
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and

P(o(F,, I, E, U{R,})|e) = P(r(1,, E, U {R,})le) [T PHT}). (7.19)

TEF,

Each P({T'}) represents the probability of the ground event {1'} in its corresponding
TSS. If 7({,, E,) is a TSS ground event, then we use (3.39).
Using the concepts of 5SS cover and SSS refinement, we can formulate an SSS analog

of Proposition 3:

Proposition 6 If P(NTH(C,,n)) > P(MAX(Cy})), then for any S € 1l such that {S} ¢
C,, P({S}) < P(NTH(C,, 1))

Proof Use the same argument as the proof of Proposition 3, but with the consideration

of SSS refinements and SSS covers. O

7.2.2.1 Using a beam search

The next algorithm generates a distribution of segmentations by repreatedly applying
GET-TOP-SEGMENTS for different initial regions. We refer to the following algorithm
as a beam-search because of its similarities to the classical Al-search strategy by that
name [110]. The inputs are R, the regions; n, the desired number of segmentations; and
b, the beam size. The beam size represents the number of TSS ground events considered
for any given T'SS. When b = 1, this algorithm reduces to GREEDY-SEGMENTATION.

Its formal specification is presented in Figure 7.4. The function SELECT-INITIAL-
REGION chooses an initial region from the region set, for a new TSS. In our experiments,
this was chosen by region size.

Lines 1 to 3 perform some initializations. Line 1 chooses the initial region for the first
TSS. The variable Cj, is initialized to represent all of II with a single event, and C; is
initialized to the empty set.

Each iteration in Lines 5 to 14 corresponds to one construction of a T'SS representa-

tion, using GET-TOP-SEGMENTS or GET-TOP-SEGMENTS-DEP. Line 16 includes
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BEAM-SEARCH-SEGMENTATIONS (R, n, b)
1 R; «SELECT-INITIAL-REGION(R)

2 C,—0; C,—10

3 INSERT(Cy, {0, {R;},0})

4 repeat

5 A, «—EXTRACT-MAX(C})

6 R; + SELECT-INITIAL-REGION(R — F),)
7 AP A {FPU{]p}a{Ri}a(Z)} _

8 (i « GET-TOP-SEGMENTS(R — F,, R;, b)
9 for B, € G do

10 if sSs-GROUND({F, [,, E,})

11 then

12 INSERT(C,,{F},, [,, E,})

13 else

14 INSERT(Cy, {F}, [,, E,})

15  until [C, =0] or [|C,| > n and P(NTH(C,,n)) > P(MAX(C,))]
16 return C,

Figure 7.4 An algorithm which performs a beam-search on the space of segmentations.

the termination condition from Proposition 6; however, in this instance the condition im-
plies that no better n segmentations would be found by allowing the algorithm to execute
until Cp, is empty. It does not guarantee that the top n segmentations were determined
because many segments are not considered due to the beam width. For instance, if b = 2,
there could exist a favorable segmentation, S, in which some T € S is ranked third in its
TSS. Although P({S}) might be high, the segmentation would never be represented since
only the top two segments from each TSS construction are used to form segmentations.

Line 5 removes the SSS event that has highest probability from the queue. Line
6 selects a valid initial region, and Line 7 converts the SSS refinement event into its
equivalent representation. In Line 8, b top segments are computed, with the regions in
F, removed from R.

Lines 10 to 14 create a new set of SSS refined events from the resulting best segments.
If an SSS refined event is an SS5S ground event, then it is added to C,. Otherwise, it is

added to Cj, and may be utilized at a later iteration.
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7.2.2.2 Obtaining the top n segmentations

We next present an algorithm analogous to GET-TOP-SEGMENTS to find the best seg-
mentations. Since the SSS refinement operation is more complicated than the TSS refine-
ment, there are extra conditions for determining whether for an SSS event, o(F,, [,, F,),
is SSS ground, whether 7(7,, E,) represents a T'SS ground event, or neither. The formal
specification is given in Figure 7.5. Again, we use the notation F to refer to the set of
all regions that are contained in the segments of F'.

Since this algorithm is very similar to GET-TOP-SEGMENTS, only the major differ-
ences are indicated. Lines 1 to 4 perform the usual initialization. Lines 6 to 28 represent
one SSS refinement applied to the cover. Line 29 includes the termination criterion,
Proposition 6.

The primary difference in the conditions in Lines 10 to 28, when compared to the
analogous portion of GET-TOP-SEGMENTS, is the treatment of the special case in
which include and exclude sets represent a TSS ground event, and a new initial region

must be selected. This occurs in Lines 18-19 and Lines 27-28.

7.2.2.3 Obtaining a distribution of m-segment events

In this section we consider some modifications to the previous algorithms to generate
distributions of groups of some fixed number of adjacent segments. One requirement we
impose is that initial regions must be selected from the set of regions adjacent to at least
one of the regions in F'. This guarantees obtaining a group of connected segments in
each element of C,. Also, the user provides the first initial region, although this can be
optional.

To perform a beam-search, the modifications to BEAM-SEARCH-SEGMENTATIONS
are indicated in Figure 7.6. Line 1 is removed since R; is given initially. The added con-

dition in Line 10 determines whether an m-segment event has been determined. The
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GET-TOP-SEGMENTATIONS (R, n)

1 R; «SELECT-INITIAL-REGION(R)

2 NEW-MEM-PROBS( R;, FRONTIER({{R;},0}))

3 C, —0; Cp10

4 INSERT(Cy,, {0,{R.},0})

5 repeat

6 A, «—EXTRACT-MAX(C})

7 R, « SELECT-R,(FRONTIER({/,, E,}) — F,)

8 Ap — {Fp. 1, U{R,},E,}; Ap — {F),, 1, E, U{R,}}

9 Compute and store P(Aj|e) and P(Agle) using (7.18) and (7.19)
10 if FRONTIER({I], Ef}) — F # ()

11 then

12 INSERT(C}, Aj)

13 NEW-MEM-PROBS(R;, SELECT- R,(FRONTIER ({],, E,}) — F)
14 else

15 if $$S-GROUND(A;)

16 INSERT(C,, Aj)

17 else

18 R; +—SELECT-INITIAL-REGION(R — F))

19 INSERT(Cy, {F, U I1}, {R;},0})

20 if FRONTIER({Ig, Ep}) — F # 0

21 then

22 INSERT(C}, Ag)

23 else

24 if $SS-GROUND(Ag)

25 INSERT(C,, Ag)

26 else

27 R; +—SELECT-INITIAL-REGION(R — F,)

28 INSERT(Cy, {F, U {[,},{R:},0})

29  until [C, =] or [|C,| > n and P(NTH(C,,n)) > P(MAX(C}))]
30 return C,

Figure 7.5 An algorithm which returns the best n segmentations.
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BEAM-SEARCH-M-SEGMENT-EVENTS (R, R;, n, b, m)
1 R; «SELECT-INITIAL-REGION(R)

10 if $sS-GROUND(A, U {T'}) or SEGMENTS(B,) = m

15 return C,

Figure 7.6 A beam-search algorithm which returns n m-segment groupings.

GET-TOP-M-SEGMENT-EVENTS (R, R;, n, m)
1 R; «—SELECT-R,(R)

15 if $SS-GROUND(A;) or SEGMENTS(A;) = m
24 if $SS-GROUND(Ag) or SEGMENTS(Ag) = m

30 return C,

Figure 7.7 An algorithm which returns the n best m-segment groupings.

function SEGMENT returns the number of segments represented by B,. If B, represents
m segments, then it is treated as an SSS ground event (although in truth it is not), and
added to C,.

Similarly, modifications that can be made to GET-TOP-SEGMENTATIONS are

given in Figure 7.7.
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CHAPTER 8

EXPERIMENTAL RESULTS

8.1 Our Experimentation Strategy

In this chapter we present some experiments which illustrate the framework pro-
posed in Chapters 3 to 7. Section 8.2 provides tabular comparisons of the member-
ship probability with the planar model by varying the amount of noise, the number of
points, the distance between the regions, the observation space, and the use of the delta
model. Section 8.3 presents T'SS representations on real and synthetic range images us-
ing GET-TOP-SEGMENTS. Section 8.4 presents some SS5S representations, obtained us-
ing GET-TOP-SEGMENTATIONS and BEAM-SEARCH-SEGMENTATIONS, and also
some segmentations obtained using GREEDY-SEGMENTATION.

From the results in Section 8.2 we conclude that the membership probabilities cor-
respond to our intuitive expectations. The most general relationship to be observed
from tables is: As the amount of information in the regions, e.g., Ry and R, increases,
the membership probability tends to one if H(R; U Ry) = true, and tends to zero if
H(Ry U Ry) = false. We also have concluded that both the identity-maps, (5.22), and
sum-of-squares, (5.17), spaces are reasonable choices for the observation space, and the
identity-maps space performs particularly well in the presence of little information. We

have also noticed that the membership probability decreases as that distance between R,
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and R increases, and that the delta model (discussed in Sections 4.5 and 6.5) is a rea-
sonable alternative for adjacent regions when there is a sufficient amount of information
in one of the regions.

From the results in Section 8.3 and 8.4 we conclude that the methods of this thesis are
quite successful for practical-sized problems, on real and synthetic range data. On the
synthetic data we created large regions, and the points were placed with varying noise
levels. The larger regions make the differences between the segments (and segmentations)
clearer in the figures. However, to demonstrate the methods on more challenging region
sets and image data, we have presented several results in which the regions were gener-
ated automatically (through the fusion of a recursive fitting technique and Canny edge
detection) on real range data. When very small regions are considered in these cases,
many of the resulting segments (and segmentations) that have high probability are very
similar.

The specific membership probability components used in this chapter were developed
in Chapter 5. The regions and images used in the experiments are composed from range
data in 2. We consider the nonhomogeneous parameter manifolds from the planar and
quadric models, discussed in Section 5.3.1. We use both the sum-of-squares and identity-
maps observation spaces, as presented in Section 5.3.2. The Gaussian iid degradation
model, presented in Section 5.3.3, is used to model the noise in the range images. We
take the prior density on the parameter space to be uniform and consequently use the
manifold area expressions from Section 6.2.

In the synthetic images, the data points are placed in the image along surfaces repre-
sented in the parameter space and points are randomly displaced by sampling from the
Gaussian displacement density. We have two primary motivations for using synthetic

data:
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1. Synthetic data allows controlled experiments to be performed in which any number
of model parameters can be changed. Regions and images are constructed which
conform to the model parameters. When varying a parameter such as the noise
variance the effects on membership probability, and on TSS and SSS distributions
can be carefully studied. With a given real image the parameters are fixed due to

the characteristics of the imaging process.

2. We can judge the performance of the membership model when statistical image
models are correct. We sometimes wish to determine whether the general frame-
work is appropriate for image segmentation, without taking into account some
unknown differences between a hypothesized image model and one that is more

experimentally correct for a particular range-scanner setup.

8.2 Membership Probabilities

This section demonstrates the membership probability by performing several series of
computations of the membership probabilities for region pairs under the planar model.
For each computation, different settings for the model variables are chosen, and the result-
ing probabilities appear in tables. The prior probability remains fixed at 1/2 throughout
all of the experiments. Also, all regions considered in the experiments are square, with
integer distances between adjacent points.

We present several figures which illustrate the conditional density on the parameter
space for several regions. These are plotted using the technique discussed in Section 5.2.
Figures 8.1.(a)-(c) show the conditional observation density values for three four-point
regions. The (x1, x3) coordinates of the points are (0,0), (0,1), (1,0), and (1,1). The
x3 values are determined by sampling from the Gaussian distribution with zero mean.

The points in the first two regions were generated with o = 1.0, corresponding to a high
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degree of noise. The points for the region corresponding to Figure 8.1 were generated
with o? = 0.01, corresponding to little noise. Figure 8.1.(d) represents the conditional
density values for a region with 100 points and o = 1.0.

When we refer to regions which contain little information, we are generally referring
to regions of the type in Figures 8.1.(a) and (b), in which the density is not peaked. These
are the cases that would give an estimation-based approach the most difficulty because
it is not at all clear what value should be selected for the parameter (e.g., using MLE).
Figures 8.1.(c) and (d), on the other hand, correspond to regions which contain much
information, since either the variance is small, or there are many points in the region.

For two regions, R; and R,, the following items were varied in the experiments:
e Ry U Ry is homogeneous vs. Ry U Ry is not homogeneous

By R; U R, is homogeneous, we mean that before the noise is appled, the points in
Ry and R, lie in the same plane. For the case in which R; U R; is not homogeneous, we
rotate one of the regions by 30 deg before applying noise. Naturally, we conclude that
in the presence of a significant amount of information, the probability tends toward one

when R; U R, is homogeneous, and toward zero when R; U R, is not homoegeous.
e The number of points in Ry and R,

From the experiments we infer that as the number of points in R; and R, increases,
the membership probability approaches zero or one. When the regions are small (e.g., less
than 10 points), the membership probabilities tend to be closer to the prior membership
probability. This coincides with our intuition that smaller regions contain less information

and hence more ambiguity.
e The noise variance, o2, in R; and R,

We also infer that the increase in variance causes the same type of convergence as the

increase in region sizes. As the noise level increases the membership probability tends to
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be closer to the prior membership probability. This is also expected intuitively since the

larger amount of noise will cause more ambiguity.

e The distance between R; and R,

A greater distance between the regions tends to cause a smaller membership proba-
bility, particularly when little information is present in the regions. This is expected, and
we provide an intuitive explanation of the results. First, note that the distance between
the regions does not affect the numerator integrals of (5.33), since each regions depends
on the regions individually. Of the space of possible planes (which actually is the domain
of integration), consider how many can closely approximate two small, adjacent square
regions. As these regions are moved farther apart, there are fewer planes that can closely
approximate both regions. This situation occurs in the denominator integral of (5.33),
causing the membership probability to decrease as the regions are distanced.

We have observed that this difference in probabilities is much greater for quadrics.
Recall that with the IE-independent model, only R; and R, are considered, and are
not required to be adjacent. With the I E-dependent model, all of the regions in I, are
considered, and R, is adjacent to at least one of them. For this reason, we have used the

1 E-dependent model for the quadric experiments presented in this chapter.

e The identity-maps observation space vs. the sum-of-squares observation space

We have observed that both of these models produce reasonable results for the mem-
bership probability. For smaller regions that have high variance, it seems that the
identity-maps model produces results that most closely correspond to our intuitive expec-
tations. This is due to the fact that the identity-maps model contains more information

regarding the parameter space.

e Parameter manifold integrations vs. the delta function approximation
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As discussed in Sections 4.5 and 6.5, the delta function approximation is appropriate
when there is sufficient information regarding the parameter space in one of the regions.
We have determined that indeed the delta function approximation succeeds when 1) the
variance is low, 2) the regions contain few points, and 3) the regions are adjacent. The
distance between regions is important since slight errors in the parameter estimate cause
the surface to be displaced. When two regions are far apart, and a slightly inaccurate
estimate is obtained for Ry, is it likely that the resulting surface has moved considerably
away from R,

We present six tables which illustrate the observations that we have made. The first
three tables represent cases in which Ry U Ry is homogeneous, and the remaining three
represent cases in which Ry U Ry is not homogeneous. The numbers in the Dist column
correspond to the distances between the regions, as multiples of the width of R;. Fach
table entry is obtained by averaging several experiments, to make the trends clearer.
Tables 8.1 and 8.4 provide membership probabilities when both regions contain only four
points. Tables 8.2 and 8.5 provide membership probabilities for medium-sized regions (49
points). Finally, Tables 8.3 and 8.6 provide membership probabilities for large regions
(100 to 400 points).

8.3 TSS Representations

In this section we present experimental results which show TSS representations on
four real range images and one synthetic image. Each TSS representation was obtained
by running GET-TOP-SEGMENTS with n = 20, and the termination criterion given by
Proposition 3 was met for every T'SS experiment. We used a prior membership probability
of 0.5 for the planar model, and 0.99 for the quadric model. A higher prior member-
ship probability is required for the quadric case, otherwise the posterior membership

probabilities are relatively low. This is due to the fact that even when the union
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Figure 8.1 (a) The conditional observation space density for a four-point region with
o? = 1.0; (b) the density for another four-point region with o = 1.0; (c) the density for
a four-point region with o? = 0.01; (d) the density for a 100-point region with a* = 1.0.
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Table 8.1 Probabilities when R; and R, are small, and R; U R, is homogeneous.

Points Noise | Dist Integration Delta Model
| R1| ‘ |Ry| | o A Identity ‘ Chi-square Identity ‘ Chi-square
4 4 2.0 0 0.7794 0.9401 0.5459 0.9743
4 4 2.0 1 0.6301 0.9130 0.1958 0.5662
4 4 2.0 5 0.3620 0.7706 0.0728 0.1272
4 4 1.0 0 0.7138 0.9055 0.3032 0.8557
4 4 1.0 1 0.5523 0.8232 0.1355 0.3279
4 4 1.0 5 0.3061 0.6060 0.0851 0.1179
4 4 0.1 0 0.7257 0.8467 0.3801 0.5901
4 4 0.1 1 0.6221 0.7520 0.0988 0.3590
4 4 0.1 5 0.4238 0.5186 0.0079 0.0391
4 4 0.01 0 0.9730 0.9890 0.5220 0.8175
4 4 0.01 1 0.9337 0.9790 0.2415 0.5018
4 4 0.01 5 0.8551 0.9418 0.0972 0.1201
4 4 0.001 |0 0.9704 0.9982 0.6178 0.6821
4 4 0.001 |1 0.9582 0.9966 0.3769 0.4825
4 4 0.001 |5 0.9397 0.9890 0.0761 0.0873
4 4 0.0001 |0 0.9769 0.9997 0.5385 0.7421
4 4 0.0001 |1 0.9755 0.9995 0.4029 0.4888
4 4 0.0001 | 5 0.9517 0.9987 0.1541 0.2793
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Table 8.2 Probabilities when R; is medium-sized, and Ry U R, is homogeneous.

Points Noise | Dist Integration Delta Model
| R1| ‘ |Ry| | o A Identity ‘ Chi-square Identity ‘ Chi-square
49 |14 2.0 0 0.4820 0.9032 0.0326 0.6900
49 |14 2.0 5 0.3826 0.7992 0.0236 0.2128
49 |14 1.0 0 0.8018 0.9755 0.3801 0.9505
49 |14 1.0 5 0.7156 0.9453 0.1490 0.4979
49 |4 0.1 0 0.9326 0.9982 0.6765 0.9199
49 |14 0.1 5 0.9343 0.9961 0.2784 0.7583
49 |4 0.01 |0 0.9969 0.9998 0.6233 0.9674
49 |4 0.01 |5 0.9958 0.9996 0.2438 0.6895
49 |14 0.001 |0 0.9993 1.0000 0.7137 0.9959
49 |4 0.001 |5 0.9993 1.0000 0.2524 0.7605
49 19 2.0 0 0.6268 0.9023 0.3290 0.5578
49 19 2.0 5 0.4811 0.7717 0.0975 0.2229
49 19 1.0 0 0.6808 0.9714 0.1786 0.8316
49 19 1.0 5 0.5048 0.9280 0.0408 0.3008
49 |9 0.1 0 0.9687 0.9984 0.6354 0.8981
49 19 0.1 5 0.9295 0.9956 0.2853 0.6198
49 |9 001 |0 0.9993 0.9999 0.8678 1.0000
49 |9 0.01 |5 0.9979 0.9996 0.3714 0.7957
49 |9 0.001 | 0 0.9997 1.0000 0.6367 0.9225
49 |9 0.001 |5 0.9973 1.0000 0.3074 0.5827
49 |16 |2.0 0 0.6993 0.9193 0.2991 0.6976
49 |16 |2.0 5 0.4762 0.7684 0.0824 0.2346
49 |16 | 1.0 0 0.7641 0.9705 0.4397 0.7873
49 |16 | 1.0 5 0.6309 0.9016 0.0756 0.4024
49 |16 |0.1 0 0.9205 0.9983 0.6797 0.9136
49 |16 |0.1 5 0.8959 0.9944 0.1674 0.6504
49 |16 0.01 |0 0.9968 0.9998 0.7635 0.9199
49 |16 001 |5 0.9863 0.9994 0.2910 0.5527
49 |16 ]0.001 |0 0.9600 1.0000 0.6323 0.9200
49 |16 ]0.001 |5 0.9586 0.9999 0.2510 0.4865
49 149 |20 0 0.6466 0.9171 0.2366 0.7479
49 149 |2.0 5 0.2993 0.6586 0.0708 0.2221
49 149 | 1.0 0 0.7199 0.9713 0.4284 0.7344
49 149 | 1.0 5 0.5681 0.8798 0.0800 0.0890
49 149 0.1 0 0.9473 0.9985 0.4419 0.9031
49 49 0.1 5 0.8419 0.9917 0.0412 0.2325
49 |49 10.01 |0 0.9967 0.9998 0.4430 0.9534
49 |49 10.01 |5 0.9847 0.9991 0.0440 0.0801
49 |49 10.001 |0 0.9998 1.0000 0.7331 1.0000
49 |49 10.001 |5 0.9940 0.9999 0.1430 0.3212
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Table 8.3 Probabilities when R; is large, and R; U R; is homogeneous.

Points Noise | Dist Integration Delta Model
| Rq| ‘ |Ry| | o A Identity ‘ Chi-square Identity ‘ Chi-square
100 | 4 2.0 0 0.7953 0.9854 0.3281 0.9140
100 | 4 2.0 5 0.7566 0.9718 0.1695 0.5701
100 | 4 1.0 0 0.9089 0.9929 0.3946 0.9410
100 |4 1.0 5 0.8674 0.9870 0.2979 0.5628
100 | 4 0.1 0 0.9977 0.9994 0.7410 1.0000
100 | 4 0.1 5 0.9900 0.9989 0.4115 0.9135
100 | 4 001 |0 0.9977 0.9999 0.6878 0.9999
100 | 4 0.01 |5 0.9960 0.9999 0.4531 0.8637
100 | 4 0.001 |0 0.9997 1.0000 0.8769 0.9600
100 | 4 0.001 |5 0.9992 1.0000 0.5184 0.8807
100 | 16 | 2.0 0 0.7443 0.9844 0.2337 0.8650
100 | 16 | 2.0 5 0.6125 0.9552 0.0403 0.3798
100 | 16 | 1.0 0 0.9399 0.9943 0.6439 0.9601
100 | 16 | 1.0 5 0.9104 0.9839 0.1786 0.4550
100 | 16 | 0.1 0 0.9831 0.9994 0.7443 0.9600
100 | 16 | 0.1 5 0.9508 0.9984 0.2766 0.7859
100 |16 |0.01 |O 0.9997 0.9999 0.6787 1.0000
100 | 16 |0.01 |5 0.9787 0.9999 0.2556 0.6651
100 | 16 | 0.001 |0 0.9999 1.0000 0.7799 0.9990
100 | 16 | 0.001 |5 0.9996 1.0000 0.3094 0.7409
100 | 100 | 2.0 0 0.7258 0.9853 0.3896 0.9002
100 | 100 | 2.0 5 0.5516 0.9178 0.0000 0.1360
100 | 100 | 1.0 0 0.9720 0.9940 0.4428 0.9157
100 | 100 | 1.0 5 0.6553 0.9603 0.0400 0.1585
100 | 100 | 0.1 0 0.9877 0.9996 0.6116 0.9897
100 | 100 | 0.1 5 0.8053 0.9976 0.0485 0.2847
100 | 100 [0.01 |O 0.9979 1.0000 0.6596 1.0000
100 | 100 | 0.01 |5 0.8863 0.9997 0.2801 0.4273
100 | 100 | 0.001 | O 0.9949 1.0000 0.6763 1.0000
100 | 100 | 0.001 |5 0.9582 1.0000 0.1215 0.4010
400 | 4 2.0 0 0.9874 0.9988 0.6415 1.0000
400 | 4 2.0 5 0.9120 0.9983 0.3779 0.9999
400 | 16 | 2.0 0 0.9107 0.9987 0.6249 0.9999
400 | 16 | 2.0 5 0.8274 0.9975 0.3833 0.9060
400 | 100 | 2.0 0 0.9051 0.9988 0.3635 0.9795
400 | 100 | 2.0 5 0.5940 0.9953 0.1025 0.4855
400 | 400 | 2.0 0 0.9350 0.9987 0.7346 0.9999
400 | 400 | 2.0 5 0.6244 0.9931 0.0314 0.4395
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Table 8.4 Probabilities when Ry and R, are small and Ry U R, is not homogeneous.

Points Noise | Dist Integration Delta Model
| R1| ‘ |Ry| | o A Identity ‘ Chi-square Identity ‘ Chi-square
4 4 2.0 0 0.7887 0.9373 0.7261 0.9761
4 4 2.0 1 0.6507 0.9100 0.4299 0.7442
4 4 2.0 5 0.3834 0.7664 0.2166 0.3659
4 4 1.0 0 0.7219 0.9127 0.6113 0.9161
4 4 1.0 1 0.5620 0.8418 0.2466 0.5829
4 4 1.0 5 0.2985 0.6412 0.0941 0.1544
4 4 0.1 0 0.5160 0.7842 0.2508 0.5196
4 4 0.1 1 0.4042 0.6448 0.1916 0.3528
4 4 0.1 5 0.2585 0.3870 0.1126 0.1910
4 4 0.01 0 0.0689 0.3840 0.0521 0.2302
4 4 0.01 1 0.0173 0.1142 0.0307 0.1486
4 4 0.01 5 0.0000 0.0135 0.0000 0.0021
4 4 0.001 |0 0.0000 0.0000 0.0000 0.0000
4 4 0.001 |1 0.0000 0.0000 0.0000 0.0000
4 4 0.001 |5 0.0000 0.0000 0.0000 0.0000
4 4 0.0001 |0 0.0000 0.0000 0.0000 0.0000
4 4 0.0001 |1 0.0000 0.0000 0.0000 0.0000
4 4 0.0001 | 5 0.0000 0.0000 0.0000 0.0000
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Table 8.5 Probabilities when R; is medium-sized, and R; U R, is not homogeneous.

Points Noise | Dist Integration Delta Model
| R1| ‘ |Ry| | o A Identity ‘ Chi-square Identity ‘ Chi-square
49 |14 2.0 0 0.3592 0.8601 0.2505 0.4128
49 |14 2.0 5 0.1021 0.7306 0.0023 0.1563
49 |14 1.0 0 0.0191 0.7993 0.0014 0.1108
49 |4 1.0 5 0.0000 0.4352 0.0000 0.2220
49 |4 0.1 0 0.0000 0.0000 0.0000 0.0000
49 |14 0.1 5 0.0000 0.0000 0.0000 0.0000
49 |14 0.01 |0 0.0000 0.0000 0.0000 0.0000
49 |14 0.01 |5 0.0000 0.0000 0.0000 0.0000
49 |4 0.001 |0 0.0000 0.0000 0.0000 0.0000
49 |4 0.001 |5 0.0000 0.0000 0.0000 0.0000
49 19 2.0 0 0.1713 0.8744 0.1011 0.4883
49 19 2.0 5 0.0890 0.5832 0.0380 0.2277
49 19 1.0 0 0.0015 0.8020 0.0000 0.1452
49 |9 1.0 5 0.0001 0.3045 0.0000 0.1496
49 |9 0.1 0 0.0000 0.0000 0.0000 0.0000
49 19 0.1 5 0.0000 0.0000 0.0000 0.0000
49 |9 001 |0 0.0000 0.0000 0.0000 0.0000
49 |9 0.01 |5 0.0000 0.0000 0.0000 0.0000
49 |9 0.001 | 0 0.0000 0.0000 0.0000 0.0000
49 |9 0.001 |5 0.0000 0.0000 0.0000 0.0000
49 |16 |2.0 0 0.1708 0.8594 0.0042 0.5231
49 |16 |2.0 5 0.0641 0.5112 0.0347 0.3243
49 |16 | 1.0 0 0.0215 0.8352 0.0000 0.0985
49 |16 | 1.0 5 0.0001 0.3337 0.0000 0.1949
49 |16 |0.1 0 0.0000 0.0000 0.0000 0.0000
49 |16 |0.1 5 0.0000 0.0000 0.0000 0.0000
49 |16 0.01 |0 0.0000 0.0000 0.0000 0.0000
49 |16 001 |5 0.0000 0.0000 0.0000 0.0000
49 |16 ]0.001 |0 0.0000 0.0000 0.0000 0.0000
49 |16 ]0.001 |5 0.0000 0.0000 0.0000 0.0000
49 149 |20 0 0.0788 0.8130 0.0334 0.3157
49 149 |2.0 5 0.0007 0.3989 0.0001 0.0397
49 149 | 1.0 0 0.0000 0.8218 0.0000 0.0402
49 149 | 1.0 5 0.0000 0.1328 0.0000 0.0409
49 149 0.1 0 0.0000 0.0000 0.0000 0.0000
49 149 0.1 5 0.0000 0.0000 0.0000 0.0000
49 |49 10.01 |0 0.0000 0.0000 0.0000 0.0000
49 |49 10.01 |5 0.0000 0.0000 0.0000 0.0000
49 |49 10.001 |0 0.0000 0.0000 0.0000 0.0000
49 |49 10.001 |5 0.0000 0.0000 0.0000 0.0000
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Table 8.6 Probabilities when R, is large, and R; U Ry is not homogeneous.

Points Noise | Dist Integration Delta Model
| Rq| ‘ |Ry| | o A Identity ‘ Chi-square Identity ‘ Chi-square
100 |4 2.0 0 0.0000 0.6754 0.0000 0.0000
100 | 4 2.0 5 0.0000 0.2514 0.0000 0.0353
100 |4 1.0 0 0.0000 0.0483 0.0000 0.0000
100 |4 1.0 5 0.0000 0.0003 0.0000 0.0000
100 | 4 0.1 0 0.0000 0.0000 0.0000 0.0000
100 | 4 0.1 5 0.0000 0.0000 0.0000 0.0000
100 | 4 0.01 |0 0.0000 0.0000 0.0000 0.0000
100 | 4 0.01 |5 0.0000 0.0000 0.0000 0.0000
100 | 4 0.001 |0 0.0000 0.0000 0.0000 0.0000
100 | 4 0.001 |5 0.0000 0.0000 0.0000 0.0000
100 |16 | 2.0 0 0.0000 0.6534 0.0000 0.0062
100 |16 | 2.0 5 0.0000 0.0975 0.0000 0.0790
100 | 16 1.0 0 0.0000 0.0999 0.0000 0.0000
100 | 16 1.0 5 0.0000 0.0000 0.0000 0.0000
100 |16 | 0.1 0 0.0000 0.0000 0.0000 0.0000
100 |16 | 0.1 5 0.0000 0.0000 0.0000 0.0000
100 |16 [0.01 |0 0.0000 0.0000 0.0000 0.0000
100 |16 [0.01 |5 0.0000 0.0000 0.0000 0.0000
100 | 16 | 0.001 | O 0.0000 0.0000 0.0000 0.0000
100 | 16 | 0.001 |5 0.0000 0.0000 0.0000 0.0000
100 | 100 | 2.0 0 0.0000 0.6867 0.0000 0.0022
100 | 100 | 2.0 5 0.0000 0.0689 0.0000 0.0000
100 | 100 | 1.0 0 0.0000 0.0533 0.0000 0.0000
100 | 100 | 1.0 5 0.0000 0.0000 0.0000 0.0000
100 | 100 | 0.1 0 0.0000 0.0000 0.0000 0.0000
100 | 100 | 0.1 5 0.0000 0.0000 0.0000 0.0000
100 | 100 [ 0.01 |O 0.0000 0.0000 0.0000 0.0000
100 | 100 [ 0.01 |5 0.0000 0.0000 0.0000 0.0000
100 | 100 | 0.001 | O 0.0000 0.0000 0.0000 0.0000
100 | 100 | 0.001 | 5 0.0000 0.0000 0.0000 0.0000
400 | 4 2.0 0 0.0000 0.0000 0.0000 0.0000
400 | 4 2.0 5 0.0000 0.0000 0.0000 0.0000
400 | 100 | 2.0 0 0.0000 0.0000 0.0000 0.0000
400 | 100 | 2.0 5 0.0000 0.0000 0.0000 0.0000
400 | 400 | 2.0 0 0.0000 0.0000 0.0000 0.0000
400 | 400 | 2.0 5 0.0000 0.0000 0.0000 0.0000
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of two regions is homogeneous, there are many quadric surfaces which well-approximate
one region and not the other, causing A\ (y,,yi) to be low.

The results obtained on the real range data were completely automated. Without
regard to a degradation model that may be more experimentally correct for the given
range-scanning system, we directly used the degradation model presented in Section 5.3.3.

The initial regions were obtained by a fusion of label maps generated by three processes:

1. Regions obtained from a recursive splitting procedure, which attempts to closely

fit planes to region data

2. A set of edges obtained from running the Canny edge detector [12] on the corre-

sponding intensity image of the range data
3. The boundaries between valid and invalid data points.

The three of these, together, produce a set of small regions in which nearly all regions are
homogeneous. There are inevitably, however, several regions which are not homogeneous.
From the experiments, we have observed that these regions tend to be left alone (i.e.,
they are not included in a TSS representation, and treated as one-region segments in an
SSS representation).

The synthetic image uses the planar model, and noise is introduced by sampling from
the displacement density, (5.24). Hence, the degradation model is statistically valid for
this image. In addition, for the synthetic image, the set of regions was constructed by
hand, with each region being truly homogeneous. This synthetic example provides an
opportunity to observe the behavior of the representations under correct model assump-
tions, and also to vary the some of the model parameters for comparison.

The synthetic image consists of 10000 data points (100 x 100). Figure 8.2.(a) shows
the data set before noise is applied. When the points are projected into the z;-z5 plane,

there is integer spacing between adjacent points. There is one four-sided pyramid in the
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Figure 8.2 (a) The range data without noise; (b) the data with o = 0.1; (c¢) the data
with ¢? = 1.0; (d) the data with ¢ = 2.0
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image, with a plane in the background. Note that the height of the pyramid is distorted
in the figure: the z; and x; coordinates range from 0 to 100, while the height of the
pyramid, given by maximum value of z3, is only 12. This makes the problem more
challenging than the figure may suggest.

Three different noise levels were used for the experiments presented for the synthetic
image. Figure 8.2.(b) shows the range image after applying noise with 2 = 0.1. Figure
8.2.(c) shows the range image after applying noise with o? = 1.0. Figure 8.2.(d) shows
the range image after applying noise with o? = 2.0.

Figures 8.4-8.9 show results with 02 = 1.0 on the set of regions shown in Figure 8.3.
These experiments use the sum-of-squares observation space (from Section 5.3.2), and
the I E-independent model (from Section 3.4.2). These results correspond to a fairly high
degree of noise, hence the segments that we would judge to be correct do not necessarily
obtain the highest probability. In Figure 8.4, a TSS representation of ©14 is obtained,
and the correct segment is ranked fourth. We next show that the particular choice of
initial region is not important (assuming the alternative regions roughly contain the same
amount of information). Using an alternative initial region (inside the same segment), we
obtain a T'SS representation of ©13, shown in Figure 8.5. The use of R;3 instead of Ry4
produces a similar result. Representations of @49, O34, 42, and O3 are shown in Figures
8.6, 8.7, 8.8, and 8.9, respectively. Due to the noise level and use of the [ E-independent
model, the correct segment in O3 is not represented in the top twenty ground events.
Note that the probabilities in this case are close to zero, and the probability distribution
over the alternatives is fairly uniform.

Figures 8.10-8.15 show results obtained under the same conditions as the previous six
experiments, but with with a lower noise level: 02 = 0.1. These results show the correct

segment obtained with probability above 0.99 for every case.
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Figure 8.3 The set of regions, R, that is presented to the T'SS and SSS algorithms. This
image shows the region boundaries projected into the z;-z5 plane, and the regions are
labeled with integers for reference.
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Figure 8.4 Twenty segments that have highest probability in ©14. There were 228
events in the final cover, with 25 ground events. In this experiment, c? = 1.0, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.5 Twenty segments that have highest probability in ©;3. There were 222
events in the final cover, with 29 ground events. In this experiment, c? = 1.0, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.6 Twenty segments that have highest probability in ©y. There were 173
events in the final cover, with 27 ground events. In this experiment, c? = 1.0, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.7 Twenty segments that have highest probability in ©ss. There were 312
events in the final cover, with 20 ground events. In this experiment, c? = 1.0, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.8 Twenty segments that have highest probability in ©43. There were 216
events in the final cover, with 36 ground events. In this experiment, c? = 1.0, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.9 Twenty segments that have highest probability in ©73. There were 362
events in the final cover, with 22 ground events. In this experiment, c? = 1.0, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.10 Twenty segments that have highest probability in ©14. There were 169
events in the final cover, with 27 ground events. In this experiment, 0 = 0.1, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.11 Twenty segments that have highest probability in ©;3. There were 198
events in the final cover, with 28 ground events. In this experiment, 0 = 0.1, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.12 Twenty segments that have highest probability in ©y. There were 123
events in the final cover, with 25 ground events. In this experiment, 0 = 0.1, and the
sum-of-squares observation space and [ K-independent model are in use.
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Figure 8.13 Twenty segments that have highest probability in ©s¢. There were 234
events in the final cover, with 22 ground events. In this experiment, 0 = 0.1, and the
sum-of-squares observation space and I K-independent model are in use.
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Figure 8.14 Twenty segments that have highest probability in ©43. There were 103
events in the final cover, with 26 ground events. In this experiment, o = 0.1, and the
sum-of-squares observation space and [ K-independent model are in use.
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Figure 8.15 Twenty segments that have highest probability in ©73. There were 550
events in the final cover, with 29 ground events. In this experiment, o = 0.1, and the
sum-of-squares observation space and [ K-independent model are in use.
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We next present present three examples which use the I E-dependent model (keeping
the sum-of-squares observation space). Figure 8.16 shows the TSS representation ob-
tained for ©73. In this case, the correct segments is ranked second, which is significantly
improved over the case in Figure 8.9. Figures 8.17 and 8.18 show two cases with an
extremely high noise level, o2 = 2.0.

The final three TSS experiments on the synthetic image demonstrate the alternative
use the identity-maps observation space. There are three representations of ©14 shown
in Figures 8.19-8.21, under different conditions.

We next turn our attention to the real range images. The first two use the planar
model, and the other two use the quadric model. For each of these images we present
an artificial intensity rendering of the data set, and a map of the region set, R. The
sum-of-squares observation space is used in each of these experiments.

We first consider the image and regions given by Figure 8.22. Three different ini-
tial regions, which are used in the experiments, are indicated in Figure 8.23. Figures
8.24-8.26 show the resulting TSS representations for each of the initial regions, using the
I E-independent model. Since there are many small regions presented, the favorable seg-
ments in the TSS appear very similar. Figures 8.27-8.29 show some TSS representations,
determined when smaller regions are removed. In these cases, the differences between the
alternative segments are clearer. Figures 8.30-8.32 show the results when alternatively
using the [ E-dependent model.

We next consider the image shown in Figure 8.33, and an initial region, shown in
Figure 8.34. A result using the [ E-independent model is shown in Figure 8.35, and a
result using the [ F-dependent model is shown in Figure 8.36.

We finally consider two quadric images, shown in Figures 8.37 and 8.38, with initial
regions shown in Figures 8.39.(a) and 8.39.(b). The initial regions shown in Figure

8.37.(c) were obtained by starting with around 900 tiny regions (using the method from
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Figure 8.16 Twenty segments that have highest probability in ©14. There were 230
events in the final cover, with 29 ground events. In this experiment, o = 1.0, and the
sum-of-squares observation space and I £-dependent model are in use.
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Figure 8.17 Twenty segments that have highest probability in ©14. There were 285
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17: 0.009528 18: 0.009435 19: 0.009008 20: 0.008954

Figure 8.18 Twenty segments that have highest probability in ©y. There were 627
events in the final cover, with 41 ground events. In this experiment, c? = 2.0, and the
sum-of-squares observation space and I £-dependent model are in use.
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1: 0.205017 2: 0.172421 3: 0.168315 4: 0.098996
5: 0.047653 6: 0.040486 7: 0.040077 8: 0.034049
9: 0.023010 10: 0.019549 11: 0.012873 12: 0.012705
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13: 0.010826

14: 0.010568
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16: 0.007197
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17: 0.006864

18: 0.006216

19: 0.006140

20: 0.006053

Figure 8.19 Twenty segments that have highest probability in ©14. There were 144
events in the final cover, with 25 ground events. In this experiment, c? = 1.0, and the
identity-maps observation space and I E-independent model are in use.
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17: 0.001836

18: 0.001785

19: 0.001569

20: 0.001074

Figure 8.20 Twenty segments that have highest probability in ©14. There were 166
events in the final cover, with 25 ground events. In this experiment, o = 0.1, and the
identity-maps observation space and [ E-independent model are in use.
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Figure 8.21 Twenty segments that have highest probability in ©14. There were 143
events in the final cover, with 25 ground events. In this experiment, c? = 1.0, and the
identity-maps observation space and [ E-dependent model are in use.
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Figure 8.22 (a) A rendering of the data set, (b) the set of regions, R.

Figure 8.23 Initial regions that were selected for TSS experiments: (a) Rasq (b) Raoa,
(C) RlSl-
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1: 0.013670 4: 0.008475

5: 0.007205 8: 0.005467

9: 0.004609 10: 0.004467 11: 0.004280 12: 0.003743

13: 0.003497 14: 0.003227 15: 0.003059 16: 0.003053

17: 0.002973 18: 0.002840 19: 0.002808 20: 0.002696

Figure 8.24 Twenty segments that have highest probability in ©y64. There were 2294
events in the final cover, with 20 ground events. In this experiment, the sum-of-squares
observation space and [ E-independent model are in use.
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17: 0.009631 18: 0.006968 19: 0.006613 20: 0.006556

Figure 8.25 Twenty segments that have highest probability in ©3,4. There were 405
events in the final cover, with 29 ground events. In this experiment, the sum-of-squares
observation space and [ E-independent model are in use.
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17: 0.007332 18: 0.007085 19: 0.006099 20: 0.006044

Figure 8.26 Twenty segments that have highest probability in ©13;. There were 483
events in the final cover, with 31 ground events. In this experiment, the sum-of-squares
observation space and [ E-independent model are in use.
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14: 0.015486 15: 0.014380

17: 0.008696 18: 0.007903 19: 0.007106 20: 0.006598

Figure 8.27 Twenty segments that have highest probability in ©444. There were 361
events in the final cover, with 23 ground events. In this experiment, the sum-of-squares
observation space and [ F-independent model are in use. Regions, Ry, such that |R;| < 24
have been removed.
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1: 0.785845 2: 0.060649 3: 0.042663 4: 0.034070

5: 0.014327 6: 0.009798 7: 0.009176 8: 0.004976

9: 0.004352 10: 0.003824

13: 0.002999 15: 0.001850 16: 0.001617

17: 0.001106 18: 0.000848 19: 0.000778 20: 0.000756

Figure 8.28 Twenty segments that have highest probability in ©3,4. There were 255
events in the final cover, with 28 ground events. In this experiment, the sum-of-squares
observation space and [ F-independent model are in use. Regions, Ry, such that |R;| < 24
have been removed.

220



1: 0.893200 2: 0.021113 3: 0.020287 4: 0.012456

5: 0.009270 6: 0.008316 7: 0.007749

9: 0.003735 10: 0.003611 11: 0.002923 12: 0.002202

13: 0.002042 15: 0.000294 16: 0.000283

17: 0.000219 18: 0.000214 19: 0.000211 20: 0.000197

Figure 8.29 Twenty segments that have highest probability in ©13,. There were 205
events in the final cover, with 27 ground events. In this experiment, the sum-of-squares
observation space and [ F-independent model are in use. Regions, Ry, such that |R;| < 24

have been removed.
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1: 0.137826 4: 0.045870

9: 0.032621 8: 0.016622

9: 0.013220 10: 0.011086 11: 0.008903 12: 0.008011

13: 0.007850

17: 0.006623 18: 0.006127 19: 0.005958 20: 0.005650

Figure 8.30 Twenty segments that have highest probability in ©444. There were 927
events in the final cover, with 38 ground events. In this experiment, the sum-of-squares
observation space and [ E-dependent model are in use.
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17: 0.004558 18: 0.004042 19: 0.003942 20: 0.003439

Figure 8.31 Twenty segments that have highest probability in ©3,4. There were 475
events in the final cover, with 34 ground events. In this experiment, the sum-of-squares
observation space and [ E-dependent model are in use.
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17: 0.004165 18: 0.003828 19: 0.003580 20: 0.003517

Figure 8.32 Twenty segments that have highest probability in ©13;. There were 537
events in the final cover, with 41 ground events. In this experiment, the sum-of-squares
observation space and [ E-dependent model are in use.
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Figure 8.33 (a) The rendering of the data set, (b) the set of regions, R

Figure 8.34 The initial region, Rses
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1: 0.027337 2: 0.013282 3: 0.009224 4: 0.008458

5: 0.007431 6: 0.006106 7: 0.005895 8: 0.004964

9: 0.004481 10: 0.004109 11: 0.004105 12: 0.003998

13: 0.003698 14: 0.003610 15: 0.003602 16: 0.003019

17: 0.002966 18: 0.002864 19: 0.002854 20: 0.002690

Figure 8.35 Twenty segments that have highest probability in @ses. There were 1638
events in the final cover, with 29 ground events. In this experiment, the sum-of-squares
observation space and [ E-independent model are in use.
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1: 0.383294 2: 0.020545 3: 0.016377 4: 0.015867

9: 0.015395 6: 0.015048 7: 0.014235 8: 0.014006

9: 0.013584 10: 0.012212 11: 0.011944 12: 0.011713

13: 0.010073 14: 0.010069 15: 0.009979 16: 0.009481

17: 0.009337 18: 0.009334 19: 0.008878 20: 0.008597

Figure 8.36 Twenty segments that have highest probability in ©sss. There were 949
events in the final cover, with 35 ground events. In this experiment, the sum-of-squares
observation space and [ E-dependent model are in use.
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Figure 8.37 (a) The rendering of the data set; (b) the set of regions used in a prepro-
cessing step; (c) the set of regions, R

HEEHF
L
}'.r
1]
r.l
P,
_—1|
'_'-d
_'_'__l_
| [+

(T 40

|=-__
P

(a) (b)

Figure 8.38 (a) The rendering of the data set; (b) the set of regions, R
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Figure 8.39 Initial regions that were selected for the quadric TSS experiments: (a) Rrss,
(b) Risi
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this section), shown in Figure 8.37.(b), and iteratively grouping regions that have very
high membership probability under the planar model, resulting in the regions shown in
Figure 8.37.(c). The quadric experiments use the I EK-independent model, since the mem-
bership probabilities become extremely small for quadrics when the regions are distant.
The results are shown in Figures 8.40 and 8.41. The leading segment in Figure 8.40 is the
one we would judge to be correct, and other reasonable alternatives are given. In Figure
8.41, many regions are not homogeneous, and the resulting segments crudely represent

the cylindrical surface.

8.4 SSS Representations and Segmentations

In this section we present experimental results which show SSS representations and
individual segmentations on the images that were used in Section 8.3. FEach of the
algorithms presented in Section 7.2 is demonstrated here. Some SSS representations
were obtained by running GET-TOP-SEGMENTATIONS with n = 20. Others were
obtained from BEAM-SEARCH-SEGMENTATIONS. The termination criterion given by
Proposition 6 was met for every SSS experiment. Finally, some segmentations obtained
using GREEDY- SEGMENTATION are presented. All of the experiments in this section
use the sum-of-squares observation space.

Figure 8.42 shows an SSS representation for the synthetic image, with 02 = 0.1 and the
I E-independent model. This result was obtained using GET-BEST-SEGMENTATIONS.
Since the noise level is low, the correct segmentation receives first rank and has a high
probability. When the noise level is increased to o = 1.0, some reasonable segmentations
are obtained, as shown in Figure 8.43. The correct segmentation, however, does not
appear in the top twenty.

The next four results are obtained using the I FE-dependent model on the synthetic
image. Figure 8.44 shows the SSS representation using GET-BEST-SEGMENTATIONS
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2: 0.012041 4: 0.005795

6: 0.003254 7: 0.001619 8: 0.000664

9: 0.000263 10: 0.000201 11: 0.000165 12: 0.000104

13: 0.000084 14: 0.000081 15: 0.000046 16: 0.000034

17: 0.000031 18: 0.000016 19: 0.000016 20: 0.000010

Figure 8.40 Twenty segments that have highest probability in ©s3. There were 150
events in the final cover, with 37 ground events. In this experiment, the sum-of-squares
observation space and [ E-dependent model are in use.

231



2: 0.12330 3: 0.10474

6: 0.04372 7: 0.04271 8: 0.03994

9: 0.02696 10: 0.01930 12: 0.01151

14: 0.00906 16: 0.00613

17: 0.00609 18: 0.00524 19: 0.00509 20: 0.00479

Figure 8.41 Twenty segments that have highest probability in ©15;. There were 716
events in the final cover, with 28 ground events. In this experiment, the sum-of-squares
observation space and [ E-dependent model are in use.
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1: 0.958295 2: 0.003712 3: 0.002556 4: 0.002176
s}

5: 0.001674 6: 0.001458 7: 0.001393 8: 0.001344

il

9: 0.001264 10: 0.001263 11: 0.001092 12: 0.001088
T

13: 0.001077 14: 0.001066 15: 0.001055 16: 0.000970

5%
3
17: 0.000942 18: 0.000902 19: 0.000847 20: 0.000831

Figure 8.42 Twenty segmentations that have highest probability in II. In this exper-
iment, 02 = 0.1, and the sum-of-squares observation space and IE-independent model
are in use.
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15: 0.005106
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17: 0.004854

18: 0.004794

19: 0.004652

Figure 8.43 Twenty segmentations that have highest probability in 1I. In this exper-
iment, 02 = 1.0, and the sum-of-squares observation space and IE-independent model
are in use.
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1: 0.982061 2: 0.003699 3: 0.001161 4: 0.001011
&

5

5: 0.000855 6: 0.000810 7: 0.000688 8: 0.000647
o ey
9: 0.000606 10: 0.000604 11: 0.000462 12: 0.000420
13: 0.000417 14: 0.000391 15: 0.000390 16: 0.000350
g
s

17: 0.000320 18: 0.000284 19: 0.000239 20: 0.000229

Figure 8.44 Twenty segmentations that have highest probability in II. In this experi-
ment, 0 = 0.1, and the sum-of-squares observation space and I E-dependent model are
in use.
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with 0 = 0.1. Again, the correct segmentation is decisively obtained with first rank.
With ¢ = 1.0, a significantly improved result from Figure 8.43 is obtained, shown
in Figure 8.45. The best segmentation is very close to the correct segmentation, and
the correct segmentation is ranked 14**. Figures 8.46 and 8.47 show the results from
applying BEAM-SEARCH-SEGMENTATIONS (with ¢? = 1.0) with 6 = 10 and b = 3,
respectively. Notice that when b = 3, the correct segmentation is no longer represented
in the top twenty.

The probabilities of a given segmentation should, in theory, be identical for the past
three experiments. There are minor differences in the probabilities, however, due to the
crude approximation that was chosen for the Monte-Carlo integration. The inaccuracies
are compounded when the membership-probabilities are multiplied to yield the segmen-
tation probability, causing some of the segmentations to slightly change their rank in the
final representation.

We next present several SSS results obtained on some of the real range images. Fach
of these is obtained using BEAM-SEARCH-SEGMENTATIONS with b = 5. Figures
8.48 and 8.49 show distributions of segmentations, using the [ E-independent and [ E-
dependent models, respectively. Figure 8.50 shows another SSS result, using the IFE-
dependent model. Due to the size of the figures, and the number of small regions, the
segmentations in these results appear quite similar. There are, however, minor variations
in the segmentations, and each is a reasonable alternative.

We conclude this section with some segmentations obtained using the algorithm that
obtains single segmentations, GREEDY-SEGMENTATION. Figure 8.51 shows some seg-
mentations obtained for the synthetic image. Some segmentations for the real range data

are shown in 8.52.
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1: 0.296647 2: 0.153259 3: 0.132001 4: 0.052137
Iz
5: 0.039437 6: 0.034414 7: 0.024554 8: 0.018614
o
9: 0.015079 10: 0.014047 11: 0.013222 12: 0.011041
o o
13: 0.009188 14: 0.005574 15: 0.004592 16: 0.004177
T
17: 0.003926 18: 0.003794 19: 0.003626 20: 0.003433

Figure 8.45 Twenty segmentations that have highest probability in II. In this experi-
ment, 0 = 1.0, and the sum-of-squares observation space and I E-dependent model are
in use.
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1: 0.305767 2: 0.166903 3: 0.135339 4: 0.057506
X

5: 0.049524 6: 0.024372 7: 0.018969 8: 0.016403
K G

9: 0.009228 10: 0.009033 11: 0.008876 12: 0.007868

X

13: 0.006494 14: 0.005693 15: 0.005389 16: 0.003912

ot

><

17: 0.003800 18: 0.003139 19: 0.003046 20: 0.003015

Figure 8.46 Twenty segmentations obtained from a beam-search with 6 = 10. In this
experiment, 0 = 1.0, and the sum-of-squares observation space and I E-dependent model
are in use.
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12: 0.004751
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13: 0.003816

16: 0.002402
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17: 0.002259

20: 0.001592

Figure 8.47 Twenty segmentations obtained from a beam-search with b = 3. In this
experiment, 0 = 1.0, and the sum-of-squares observation space and I E-dependent model
are in use.
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1: 0.031855 2: 0.026594

7: 0.009189

11: 0.003186

14: 0.001771 15: 0.001759

g™

17: 0.001543 18: 0.001364 19: 0.001350

Figure 8.48 Twenty segmentations obtained from a beam-search with b = 5. In this
experiment, the sum-of-squares observation space and I K-independent model are in use.
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16: 0.000620

-

20: 0.000113

17: 0.000574 18: 0.000409 19: 0.000312

Figure 8.49 Twenty segmentations obtained from a beam-search with b = 5. In this
experiment, the sum-of-squares observation space and [ F-dependent model are in use.
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17: 0.002044 18: 0.001954 19: 0.001852 20: 0.001661

Figure 8.50 Twenty segmentations obtained from a beam-search with b = 5. In this
experiment, the sum-of-squares observation space and [ F-dependent model are in use.
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Figure 8.51 Greedy segmentations: (a) with o* = 0.1 and the I E-independent model;
(b) with ¢ = 0.1 and the [FE-dependent model; (c) with ¢* = 1.0 and the [FE-
independent model; (d) with 2 = 1.0 and the I E-dependent model
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Figure 8.52 Greedy segmentations: (a) using the [ F-independent model; (b) using the
I E-dependent model; (c¢) using the [F-dependent model; (d) using the IFE-dependent
model.
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CHAPTER 9

DISCUSSION

This chapter concludes the thesis by reviewing the concepts and objectives presented,
and discussing some future research potentials. Section 9.1 provides a brietf summary of
the thesis and how the originally stated objectives have been satisfied. In Section 9.2,
some areas for future research are discussed. Finally, in Section 9.3, a few concluding

remarks are made.

9.1 Review

We have presented a general Bayesian framework for representing and considering
probability distributions over spaces of segments and segmentations. A concise represen-
tation of events in the segment sample space (TSS) was developed through the use of
the 7(I, F) representation. Through the use of the refinement operation, representations
of the TSS and SSS for a particular image can be iteratively constructed. To build this
representation, we had to determine the probabilities of the refined events, as well as a
sequence of refinement operations that efficiently yield a T'SS or SSS representation.

Since we have developed a probabilistic approach, the probability assignments made
at each refinement are extremely important, causing our focus to shift to the member-

ship probability. We presented a general Bayesian model for making these probability
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assignments, expressed in terms of a general parameter space and observation space.
This model was applied to implicit polynomial surfaces in which the parameter space
represented the space of implicit surfaces of some fixed degree, and the observation space
represented functions of point-to-surface displacements. This model required integration
over a half-hypersphere parameter space. A Monte Carlo-based scheme was employed to
compute the membership probability, since the complexity of the method is independent
of dimension.

Since the combinatorics of the TSS and SSS spaces can be unmanageable, several
algorithms were developed to select the refinements and obtain representations with
moderate computational effort. Algorithms were presented that are guaranteed to pro-
duce a list of the best n segments or segmentations and their corresponding probabilities.
Experiments were performed on range data using these algorithms, with the Bayesian
membership model applied to planar and quadric surfaces.

We now discuss how the objectives stated in Section 1.2 have been achieved by this

research.

To develop a system capable of representing any number of alternative segments or seg-

mentations that have corresponding probabilities.

This goal has been the primary focus of our approach and has been demonstrated
in theory in Chapters 3-7, and with experiments in Chapter 8. The TSS and SSS rep-
resentations, discussed in Chapter 3, permit the consideration of multiple segments and
segmentations. Also, consistent probabilities are defined for these representations, and in
Chapter 4, a general statistical model was introduced which derived these probabilities
from image models. With the exception of GREEDY-SEGMENTATION, the algorithms
in Chapter 7 allow the specification of any number of segments or segmentations to be

represented.
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To derive the framework completely from underlying statistical models, which can be ex-

perimentally determined.

The Bayesian membership model is expressed in terms of statistical components:
the parameter space, observation space, prior model, and the degradation model. The
application in Chapter 5 presented a degradation density that could be estimated from
experimentation. The parts of our work that may appear arbitrary are the prior model
and the prior membership probability. It is important to note, however, that these
become dominant only in the presence of little information, and if no information is truly

available, then is seems natural to resort to some uniform, noninformative assignments.

To develop a framework capable of handling complex statistical image models (not neces-

sarily those restricted to local dependencies).

This was demonstrated by the application of the Bayesian membership model to
implicit polynomial surfaces, in Chapter 5. These implicit surfaces were combined with
the degradation model to provide a useful and challenging statistical model. The surface
model encodes dependencies that are not necessarily local. The experiments in Chapter
8 demonstrated how this statistical model can be used in practice for image segmentation

applications, with reasonable computational performance.

To build a system capable of estimating the amount of information present in the image

under a particular statistical image model.
This was a natural consequence of the ability to represent a distribution of segments

or segmentations. We can consider an entropy measure over a set of ground segments,

ground segmentations, or a binary membership event. If the Bayesian membership model
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is applied to other image models, the information content induced by the different models

can be compared.

To develop a framework that applies to the most general images and models possible.

We have been as general as possible, but restricted some of the presentation for no-
tational convenience. The concepts formulated in Chapter 3 apply to any segmentation
into connected regions, with any adjacency relation between the image elements. The
membership probability is expressed in terms of a general piece of evidence, e, until Chap-
ter 4. The algorithms presented in Chapter 7 assume that some method of computing
membership probability has been provided, and apply at the same level of generality as
Chapter 3.

The Bayesian membership model was presented in a very general form, in terms of
image elements, the parameter space, the observation space, the prior density, and the
observation density. IFE-independent, [ E-dependent, and multiple independent models
were considered. Variations for discrete-valued variables and the Dirac delta-function
approximation were also given.

In Chapters 5 and 6, an application of the Bayesian membership model was pre-
sented for implicit polynomial models. This encompasses a large class of surface models,
although higher-degree models are limited by computational expense. The dimension of
the integration increases (although the number of Monte-Carlo iterations remains fixed),
and the size of the matrices in the quadratic form grows quadratically with the number

of basis functions.

To develop a framework that readily supports extensions to incorporate higher-level mod-

els.
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As stated in Chapter 1, the Bayesian framework provides a natural way to combine
evidence from multiple models, and this was demonstrated by the membership model
in Chapter 4. Also, since an entire distribution of segments and segmentations is main-
tained, it should be possible to construct other models, which attempt to prune the alter-
natives. The next section discusses an extension that considers segment-interdependent

evidence.

To explain the implications of computationally based simplifications and, when possible,

to allow monotonic improvement of accuracy by increasing computation.

This goal was achieved in several instances. The performance of the basic Monte-Carlo
procedure degraded linearly with the number of points. The accuracy of the membership
probability computation can be arbitrarily improved, by expending extra computational
cost. The Dirac delta-function approximation allowed great computational savings by
making the assumption that the parameter value for one of the regions can be reliably es-
timated. This is an efficiency-based assumption, and in general the Monte-Carlo method
always be used at the cost of increased computation.

With the exception of GREEDY-SEGMENTATION, the algorithms in Chapter 7
have options that allow monotonic increase in performance with increase of computa-
tion. First consider GET-TOP-SEGMENTS (or GET-TOP-SEGMENTS-DEP). If the
termination condition, Proposition 3, cannot be affordably reached, there is a computa-
tional tradeoff between the quality of the obtained list of segments and the expense of
obtaining the list. A list of n segments can be obtained quickly, and as other ground
events are determined, this list monotonically improves. When a new ground event is
encountered, if its probability is greater than the smallest of the n best segments, it will
be inserted in the queue, C,. The previous n'" best segment will become the (n + 1)

best segment, and no longer be considered. Hence, only improvements can be made to
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the list, and eventually the optimal list is obtained. These same observations hold for
BEAM-SEARCH-SEGMENTATIONS and GET-TOP-SEGMENTATIONS. The perfor-
mance of the beam-search method can also be improved monotonically by increasing the
beam width, at the expense of increased computation. Any segmentation considered with
a beam size of b will also be considered with a beam size of b + 1.

The approximations and simplifications made to the distance function and sum-of-
squares in Section 5.4.3 could be greatly improved. However, we believe it would be
difficult to utilize improved estimates efficiently since this computation is only a single
iteration in the integration procedure. Removing the simplifications may not, in our
formulation of the problem, be computationally manageable. One could, however, use
some iterative method to compute the correct sum-of-squares displacements [111], and

the results would improve at the expense of increased computation.

To avoid prior specification or estimation of the number of segments in order to perform

segmentation.

The number of segments was not required to construct a TSS or SSS representation.
In fact, in a resulting SSS distribution, we have seen that varying numbers of segments
can appear in the represented segmentations. Although the number of segments is not
specified, some indirect bias can be introduced by choosing different membership prior
probabilities. A lower prior membership probability induces smaller segments, and a

higher prior membership probability induces larger segments.

To design efficient algorithms that are capable of handling large images with realistic

probability models.
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This goal was accomplished with the algorithms presented in Chapter 7. Because of
our multiple-segment and multiple-segmentation approach, this goal is challenging. The
combinatorics of considering all alternatives can be unmanageable, and by focusing on
the probabilistically interesting alternatives only, some efficient algorithms were obtained.

The experiments in Chapter 8 demonstrated their utility for real and synthetic images.

To design algorithms and representations that allow for straightforward parallelization.

The two major components of computation that were presented are parallelizable.
The Monte-Carlo integration method is trivially parallelizable since the samples are
independent and the summation can be decomposed. Also, the algorithms presented
in Chapter 7 can be significantly parallelized. Each refinement operation can in the-
ory spawn two independent computation processes. The computations resulting from
performing refinements on two refined events from the same refinement operation are
independent. For efficiency, some concern must, however, be given for attempting to

represent the priority queues of nonground events in a T'SS or the SSS.

9.2 Prospects

The purpose of this section is to provide some areas for future investigation based on
our framework. Section 9.2.1 indicates how the membership probability model can also
be used for agglomerative clustering. Section 9.2.2 describes a generalization of the mem-
bership model presented in Chapter 4 to incorporate estimation into the general model
definitions. Section 9.2.3 mentions some issues that arise when modeling dependencies

between segments.

251



9.2.1 Agglomerative clustering with the Bayesian
membership model

In this section we present general expressions that could be used to apply the Bayesian
membership model to the agglomerative clustering approach to segmentation. The ap-
proach described here is closely related to the work of Silverman and Cooper for explicit
polynomial surfaces with intensity images [43], and hence is treated as a continuation of
the discussion at the end of Section 2.1.

Recall the required steps in the agglomerative clustering algorithm from Section 2.1.
The first step builds the initial clusters and performs parameter estimation. In our
approach, the set of regions, R, is used as the initial set of clusters, and estimation is
not necessary.

The second step considered all possible pairs of adjacent clusters to merge into a
single cluster. With the membership model, this involves computing the membership
probability for all possible adjacent pairs of regions.

The third step chose the most likely pair to merge. In our case this is the pair with
the highest membership probability. With a given set of regions, R, the best pair to

merge, R,.,, R,,, satisfies

P(T({levRﬂw}v ®)|Ym17Ym2) < P(T({RhRj}v ®)|YI7YJ) VRivRJ €R (RZ 7& RJ)
(9.1)
The fourth step tested the termination criterion. If another iteration occurs, a new

set of regions is defined by
R'=[R U {Rn, UR,}] — Rn, — Rum,. (9.2)

The set R’ is used in the first step of the next iteration, and membership probabilities

that reference R,,, U R,,, are computed.
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We terminate when

(9.3)

DO | =

P(T({le ’ Rm2}7 ®)|ym17ym2) <

This occurs when even the best merge possible is not likely to produce a truly homoge-
neous region. Note that this criterion can be biased by varying the prior membership
probability. If a high prior membership probability is assigned, then more merges will
occur and there will be fewer segments. If a low probability is assigned, there will be

fewer merges, resulting in more segments.

9.2.2 Generalized estimation/integration membership model

As discussed in Chapter 2, nearly all segmentation algorithms rely on some sort of
parameter estimation. The model presented in Chapter 4 resulted in integration over
the parameter space for the purpose of segmentation. It is possible, however, to unify
estimation and integration into a single membership model.

In this thesis, there have been instances in which estimation and integration have
been combined. Chapter 5 involved a mixture of estimation and integration, with the
nonhomogeneous parameter space. The issue came about by deciding whether to estimate
the extra parameter d, or to treat is as part of the parameter space. Further, the delta-
function approximation, presented in Section 4.5, estimated all parameters for a region.
The purpose of this section is to briefly discuss a generalization of model developed in
Chapter 4 that easily incorporates these considerations.

We begin by generalizing the parameter space to include variables that can be either
estimated, or included in the integrations. We consider a vector of random variables,
Gy, to be a generalized parameter space associated with some region Rj. This space
has a similar interpretation as the parameter space in Chapter 4. We are also given an

observation space, a degradation model, and a prior model.
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The distinction between a generalized parameter space, Gk, and a parameter space,
Uy is that all the parameters in Uy are integrated in a membership probability compu-
tation; however, some of the parameters in Gy are treated as random variables, and the
remaining ones are estimated.

This requires dividing Gy into two orthogonal subspaces, which we denote by Uy
and Vy. The vector Uk represents the parameter space, as before, and Vi represents a
vector of parameters that must be estimated.

These parameters may appear anywhere in the functional expressions for the degra-
dation and prior densities. For the nonhomogeneous parameter space, Vi is represents
the scalar, d. The remaining parameters comprise Uy. Under the delta function model
all parameters belong to V.

A new example can be considered by extending the example presented at the end of
Chapter 4. Consider the ratio obtained in (4.111). In this example we can consider both
u and o to represent the generalized parameter space, Gg. In (4.111), u represents the
parameter space, Uy, and o represents Vi. We can alternatively consider both u and o
to comprise Uy. Since o is treated as a random variable, we represent it with some pdf,

p(o). This results in the following alternative expression of the evidence-based ratio:

e [0 o] [ [ on [M02 ] o]
[ oo 22 [N 2 )t

The task that remains is to decide, for each region Ry, which portion of Gy should

(9.4)

comprise Uy and which should comprise V. When a parameter can be reliably esti-
mated, it should belong to Vy; otherwise, it should be treated as a random variable in
Uy. Formulating some decision criterion for this task, in a particular application, poses

an interesting research problem.
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9.2.3 Segment interdependent models

When multiple TSS representations are constructed, we have assumed that segments
can be combined to yield independent probabilities. By modeling dependencies between
segments, a higher-level class of models can be considered. Given some distribution or
database of possible objects appearing in a scene, some combinations of segments may
be more favorable than others. In addition, since multiple segments are considered,
information from image elements at the boundaries between segments can be considered.
Hence, this is a natural place to incorporate edge-based models.

As an indication of how to proceed with this task, we present several Bayesian ex-
pressions relating to some general piece of evidence. These expressions are at the same
level of abstraction as those of Chapter 3, where the membership probability is first
introduced. We leave the investigation of feasibly incorporating statistical models into
these expressions, analogous to the work of Chapters 4-6, for future research.

Recall from Section 3.5.2 that the SSS probability is determined by multiplying the
probabilities of each of the individual segments. This is equivalent to assuming statistical
independence between the segments. Suppose we consider the two probabilities to be

dependent. Abstractly, for two segments 7} € 01 and T3 € O, this is represented as

P{T},{T2}) = PUTL}) P{T2}{Th}). (9-5)

Consider some general piece of evidence, €15, that depends on both T} and T3, but
on neither individually (e.g., this could represent some edge-based model, in which the
information is derived from the boundary between 7} and T3). Consider the expression

above in the presence of this evidence,

P({T1},{T2}]ex2) = P({T1}]er2) P({T2} {11}, €12). (9.6)

Since €13 depends on neither Ty nor T3 individually, we will have P({T}|e12) = P({T1})
and P({13}]e1z) = P({12}).
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The second part of the product above can be expanded with Bayes’ rule to obtain

P(€12|{T1}7{T2})P({T2}|{T1})'

PHT {11}, e12) = Plen{T) (9.7)
By substitution, we obtain
PUTY ALY = PUT ) P2y | Doth AL 0.9

Perz{T1})
Both P({7T1}) and P({7,}) are given by the probability maps on By and By, respectively.
The final part of the product above can be considered as another evidence-based ratio.
The denominator of this ratio is a normalizing factor and can be expanded into

P(erz) = Y Ple{Ti} AT PUTIHT}) = Y Plen{T1}, {T2})P({T3}). (9.9)

To€eO, To€eO,
9.3 General Conclusions

From this general framework we conclude that segmentation does not have to be
treated as an isolated process with an optimal solution. Instead it can be treated as
a package of low-level models that are used to constrain the space of segments and
segmentations, resulting in a probability distribution of alternatives. This work has
demonstrated that this view of segmentation can be realized in an efficient and sufficiently
general computational structure. We hope that this contribution will change some of the
focus in segmentation research toward the consideration of distributions of segments and
segmentations and stronger Bayesian models, and away from the determination of single,

near-optimal segmentations from underconstraining models.
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APPENDIX A

MORE ON PARAMETER SPACE
INTEGRATION

A.1 Converting the Hypersphere Surface Integral
into a Volume Integral

Since ¥V is a relatively simple manifold, we begin by generalizing techniques from

standard vector calculus. Recall a standard form for the surface integral in ®° [103],

/ ; (v-n)do = //'vldug A dus + vadus A duy + vsdug A dus. (A.1)

Here v = [v; vy v3] represents a vector field over 2, and n represents the unit normal to
the surface. The uy, uy, and uz are the point coordinates in R (the space in which the
surface is defined). The A operator is a standard notation from calculus of differential
forms used to distinguish the manifold differentials from ordinary volume differentials.
One can imagine them as an ordinary product of differentials, but with the distinction
that their ordering forces a certain surface orientation (i.e. duy A duy = —dugy A duy).
This surface integral will be generalized in dimension and then applied to XV in RN+1,

The equivalent of (A.1) applying to a manifold of dimension N — 1 in R" is

N
/ y ld(v-n)da = /---/Zvisgn(i,ki,ké,...,kjv_l) dugi A N dugs (A.2)
mantjo 221

The notation used above requires some explanation. The product of differentials

represents all possible ways to choose N — 1 coordinate differentials with N variables
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(i.e., there are N of them). The subscripts k; represent possible subscripts which index
the coordinate variables of u. They are written in this form so that we are not required
to give the exact ordering of the product of differentials (we are required only to choose
N — 1 of them each time). A change in the ordering can change the surface orientation,
causing the sign of the integration to change. This will become clearer when we perform
transformations (A.9). The sgn function compensates for sign changes due to the ordering
of the indices. If the sign of the permutation of the indices is even, then sgn returns 1,
otherwise —1. The value, v;, represents one component of our vector-valued function v.

For our specific application, consider a vector-valued function of u in £ defined at

every u by
v = h(u)[ug uz... uy]. (A.3)

This is a scalar function A(uq,...,uxn) multiplied across a vector consisting of the u

coordinates. Next, consider the equation of ¥V, given in implicit form,

N
a(ug,...,uy) = Zuf —1=0. (A4)
=1
Its unit normal is
Va T
n= = [uy ug ... un|". (A.5)

IVall

It can be seen that the vector-valued function v is A in the direction of the normal
to the ¥V when ||u|| = 1. The A is defined as the value of the function that is desired at
that point on the manifold.

We now want to express the integration on ¥V by specializing (A.2). First, the left

side can be written as

/EN(V-n)da — /h(ul,...,uN)[ul o un][ur ... un]Tdo = /EN h(u)do.  (A.6)

By replacing do as in (A.2), the integral becomes

N
/EN h(u)do :/---/h(u);uisgn(i,ki,k;,...,k}v_l) dugg A---Aduy . (AT)
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Since this integration takes place over X%, it is desirable to reparameterize this integral
from a difficult region of integration, to an (N —1)-dimensional rectangle. This will cause
all of the bounds of integration to be constants, keeping the integrand from growing more
complex with each iterated integration.

The hypersphere, ¥V in R, can be parameterized as [101]
up = q(t) = cos(ty)
uy = gaot) = sin(t1)cos(ts)
‘.Mg = g3(t) = sin(t1)sin(t)cos(ts) (A8)
un—1 = gn-1(t) = sin(t1)sin(tz)sin(ts)...cos(tn-1)
uny  =gn(t) = sin(ty)sin(ty)sin(ts) ... sin(ty_1).
For the case of N = 2 or N = 3, this parameterization specializes to standard polar
and spherical coordinates, respectively. For the full hypersphere we have 0 < ¢; < &
for 0 <3 < N—2and 0 < ty_; < 27. Since we are interestred in only half of the
hypersphere, we take 0 < ty_; < w. These equations can be substituted into (A.7),

and some transformation Jacobians are necessary to relate the new parameters to the

previous differentials. Each manifold differential is transformed in the sum of (A.2) by

a(uki,...,ukjv )
! = dt, ... dtn_1. A.9
Aty,. . An_y) TN (A.9)

The partial functions above represent the determinant of an N — 1 x N — 1 Jacobian

duki‘ A A dukﬁ\]_l =

matrix. It has Vu; from the equations in (A.8) as each of its rows. Also, from this
expression one can see the importance of the permutation sign since a transposition of
differentials in the wedge product corresponds to swapping rows in the Jacobian, changing
the sign of the determinant.

When the differential transformation is substituted into (A.7), the manifold integral

becomes

a(uki,...,ukjv )

N
/.../h(gl(t)...gN(t))Egi(t)sgn(i,ki,ké,...,k}v_l) 8(t1 Aty di.
i=1 Tyeees N—l)

(A.10)
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It can be shown that when the determinants are evaluated, and simplifications are made
over the sum through trigonometric identities, the resulting integral is significantly sim-

plified to

/OW . /0 h(ga(t), - ., gn(8))sin™"2(t1)sin¥ =3(t3) - - - sin®(tn—s)sin(ty—o)dtydts . .. din 1.
(A.11)

A.2 Integration by Polynomial Approximation

In this section we present a deterministic method for performing the integration on
the parameter space. This method will work if the integrand is polynomial or can be well-
approximated in the least-squares sense by a polynomial. From the degradation models
used in our experiments, the Monte Carlo method is superior; however, this method is

presented as a possible alternative.

Suppose now that h(uq,...,uy) is a multivariate polynomial of the form
9 dig d d
h(ug,...,un) = apuy " u® et (A.12)
k=1

The number of terms in the polynomial is (), and the d;; are the exponents of the
variables; k is the index of the k™ term in the sum and ¢ is the :** variable. The aj, are
just fixed scalar constants.
We can substitute in the parameterization equations (A.8) for the integration in the
next step, to obtain
Q
h(ur, o un) = Y arfga(£)]#[g2(6)]™ - [ga (8)] (A.13)

k=1

Substituting (A.12) into (A.11) yields

- r @
[ [ a0 a0 - lan (O] sin¥ ) - sin(i it (A1)
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By linearity of integration we convert it to

aku/' [l O g e g (01 sin¥ e - sin(taa)de. (A1)

The g¢; functions have been used to concisely denote that the variables have been
replaced by the transformation equations (A.8). To simplify the discussion, consider only
a single term in this summation of integrals. We will give a fast method for evaluating a
single term in this summation (i.e., each multiple integral). The single-term computation
is then applied iteratively to every term in the sum, yielding the aggregate result. A single

term in the sum (A.15) with the index variable k dropped can be represented as

o f o [l O () lan () sin¥ o) sinfvoa)dt. (A16)

When the ¢ functions are expanded, and the variables in ¢; are grouped, the integral

is of the form

/ /Hsm Jeos™ (1;)dt. (A.17)

By adding up the exponents from products of identical trigonometric functions, each of
the ; amd m; is given by

(A.18)
INco =dn_qa +dy + 1
Ino1 = dyn
and
m; =d;forl <:<N -1
(A.19)
mpy = 0.

Since (A.17) is written as a product of a functions of a single variable, the multiple

integral can be separated into

aH/ sinh Jeos™ (1;)dt;. (A.20)
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From standard tables of definite integration, a single integral evaluates to

0 if m > 1 1is odd
/7T sinl(ti)cosm(ti)dti = 2(1-1)(1=3)--4-2 if [ > 1 1is odd (A.21)
0

(I+m)(I+m—2)---(m+3)(m+1)

7(1=1)(1=3)~31:(m—1) (m—3)-:3-1

) (D) 13 if both are even.

There are similar expressions for cases in which [ or m is zero or one. The integral
problem has now been solved in a closed form. For a given multivariate polynomial A
as in (A.12), the required manifold integration reduces to a large sum of products of
elements from (A.21).

A further simplification can be made by considering the implications of (A.19) and
the fact the (A.21) is zero if m; is odd. This implies that the entire product of (A.20)
will simplify to zero if any of the exponents of the variables in the original term of the
polynomial are odd. Depending on the distribution of the odd exponents, this result
can cause numerous terms to disappear from the final sum, simply by inspection of the

exponents.
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APPENDIX B

SEGMENTATION DATA

B.1 Data Points for Example Regions, R, and R,

The point coordinates are (x1 x5 x3).

The points in Ry are:

(24.0 10.0 -1.5369262) (24.0 9.0 -0.2597535) (24.0 8.0 1.4579037)
(24.0 7.0 1.3218407) (24.0 6.0 -1.1364636) (23.0 12.0 0.8938043)
(23.0 11.0 -1.1381520) (23.0 10.0 0.2881298) (23.0 9.0 -0.5505101)
(23.0 8.0 -0.3093603) (23.0 7.0 0.0335365) (23.0 6.0 1.2867588)
(22.0 12.0 0.2791380) (22.0 11.0 0.7047143) (22.0 10.0 0.8048603)
(22.0 9.0 1.1842969) (22.0 8.0 -0.6484462) (22.0 7.0 1.0783443)
(22.0 6.0 -0.7410597) (21.0 12.0 -1.0307879) (21.0 11.0 -0.1422201)
(21.0 10.0 -0.3741038) (21.0 9.0 1.8272568) (21.0 8.0 -0.8696967)

(21.0 7.0 0.4275988) (21.0 6.0 -1.554798)
The points in R, are:

(28.0 29.0 -1.0400078) (27.0 30.0 -1.4599035) (27.0 29.0 0.7520007)
(27.0 28.0 0.0888681) (27.0 27.0 -1.5862793) (26.0 30.0 0.9179294)

(26.0 29.0 1.9066130) (26.0 28.0 -1.3594628) (26.0 27.0 -0.5189850)
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