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Abstract— We consider a robot that can move in a straight
line, until it hits any wall of a given 2D rectangle room. If the
robot hits a corner of the room then it will stop, otherwise
the robot bounces off the wall using the laws of reflection and
again move in another straight line. The room may contain an
unbroken opening of unit length on a wall, which is unknown
to the robot. If the robot reaches any point of the opening
with a non-zero angle, then it escapes through the opening.
The objective of the problem is to devise an algorithm for
the robot which enables it to find if there is an opening on
the perimeter of any given rectangle or detect that the room
contains no opening. This work is a continuation of our previous
publication [1], where we presented an algorithm that enables
the robot to find the opening or correctly declare that there is
none, when any two adjacent sides of the rectangle are integer
and co-prime. In this work, we study the problem for rectangles
of any lengths and we have proposed a strategy where the
robot is guaranteed to find the opening or correctly declare
that there is none. Additionally, We provide other interesting
results related to our proposed algorithm.

I. INTRODUCTION

This work is an extension of our previous work [1]. For the
sake of completeness, we discuss here some of the concepts,
which were described in our previous work.

We first consider the concept of a symmetric bounce.
If a robot hits an obstacle and changes its direction, the
action is called bouncing. The point on the obstacle where
the bouncing robot path meets the obstacle is called the
“bouncing point”. The path of the bouncing robot before
the bounce makes an angle with the perpendicular to the
tangent of the obstacle. which is called the “incident angle”
of the bounce. Similarly, the path of the bouncing robot after
the bounce makes an angle with the same perpendicular to
the tangent of the obstacle, which is called the “reflection
angle” of the bounce. When the incident angle and the
reflection angle are equal, the bouncing is called symmetric
bouncing. This above definition is given in the context of a
generic obstacle. If the obstacle is a straight line, then the
incident angle and reflection angle are measured from the
perpendicular of that straight line. Refer to Figure 1.

We consider a rectangle which is denoted by (a×b), whose
sides are of length a, b ∈ R+, a ≤ b. There is a possibility
that there is an opening on the perimeter of unit length. If the
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α β

Fig. 1: An example of a symmetric bounce on the wall made
by the robot. α is the angle of incidence, β is the angle of
reflection. Here, α = β. The discovered portion of the wall
is indicated by the thick line segment. The bouncing points
are indicated by a black dot.

opening is present, then there is only one opening which can
not span across two sides. If in practice the opening length is
not unit length, then we can always scale the rectangle such
a way that the opening becomes unit length. Hence, we can
conclude a, b ≥ 1.

Once the robot starts moving it will not stop unless it hits
a corner or finds the opening. Thus, once the robot starts its
movement, it will follow a predetermined path till it stops. It
is clear the algorithm, that the robot should follow is defined
by the starting point and the starting angle of the robot, with
respect to any of the walls of the rectangle. Without loss
of generality, we define the longer sides of the rectangle
as the horizontal sides, and one of the horizontal sides we
call the base or x-axis. One of the shorter, or the vertical,
sides we denote as the y-axis. The intersection points or the
corner of the base and the y-axis is called the origin point.
The starting angle is measured with respect to the y-axis
which is denoted by θ ∈ R. We always measure the angle
in clockwise direction of the interior of the rectangle. It is
clear that if the robot starts with an angle 0 or π

2 with respect
to any wall, then the robot will either hit a corner or will
go into an infinite oscillation along one line between two
opposite walls. So it follows that θ ∈

(
0, π

2

)
. Without loss

of generality we assume that the robot will start from some
point at either x-axis or y-axis. We also measure the starting
point of the robot from the origin along the y-axis and denote
that with y0 ∈ R. If the robot starts at a point on the base
x distance from the origin, then, from geometry we can say
that y0 = −x tan θ. So y0 ∈ [−b · tan θ, b · tan θ].

At any given time, the points on the perimeter where the
robot has bounced form a set of “bounced points”. It is to
be noted that none of the bounced points can be part of the
opening. Thus, if the distance between any two visited points
are at most 1, then it is guaranteed to not have the opening
between those two points. If the distance between any visited
point and a corner are at most 1, then it is guaranteed to not
have the opening in between the point and the corner. At any
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given time those parts of the perimeter which are guaranteed
to not have the opening are called “discovered points”.

When the robot bounces on a vertical side of the rectangle
it changes its horizontal direction. This process is called
a “Switch”. Starting from one vertical side, when a robot
moves, to another vertical side, it is called a “Traversal”.
We do not consider the very first starting action as a switch.
The vertical distance of the starting point from the base for
a vertical side after t traversal is given yt.

Related works are presented in Section II. In Section III
we discuss our preliminary results, followed by Section IV
with our main results and observations. We also present some
additional interesting results in section V. Finally, the future
work and conclusion are provided in Section VI.

II. RELATED WORK

Robot path planning has been studied in the field of
robotics by a wide range of researchers for many purposes,
such as for coverage path planning where the goal is to
cover all points in a given environment by the robot [2], [3],
[4]. Coverage as well has several applications, such as lawn
mowing and milling [5], [6].

Through analysis of some dynamical systems, bouncing
robots were studied considering both random bounces and
bounces in which the angle of reflection equals the angle of
incident [7], [8]. Such dynamic systems also arise and are
studied in classical mechanics [9]. The coverage problem
for a given bouncing robot in a rectangular room, where
the robot reflects with π

4 angle from the obstacle, was also
studied in [1]. The topic is of interest in combinatorics and
discrete math as well, where the bouncing robots refer to
billiard balls or ergodic systems [10], [11].

The path on which the robot moves is the same as the path
that a light ray follows if the ray can reflect from the edges of
the polygon. As such, this research has a strong connection
with the topic of visibility with reflection, which is studied
in the field of computational geometry for specific cases:
diffuse or specular. In specular reflection, the ray of light
travels according to the rules of reflection where the angle
of reflection equals the angle with which the light hits the
obstacle. In diffuse reflection, the light reflects in all different
directions after hitting the obstacle. Aronov et al. studied the
combinatorial complexity of the light emanating from a given
point in a given polygon P when one or more edges of P are
reflective [12], [13]. Parsad et al. established a new bound
on the complexity of the area that is visible for a given point
after k diffuse reflections [14]. Ghosh et al. have proposed
an algorithm to calculate the diffuse reflection path between
two given points s and t [15]. O’Rourke and Petrovici
also proposed a natural mirror trapping question where they
explored if light can be trapped in a given environment,
and developed some partial answers for the question [16].
Barequet et al. determined the maximum number of diffuse
reflections needed for a point to illuminate the entirety of a
simple polygon [17]. Recently, Eppstein studied the path of
a ray traversing an octagonal mirror maze [18].

III. PRELIMINARIES

In this section we discuss some of the preliminary results,
that will be used for establishing our final results. One of
the proof is described from our previous paper [1], which
we are presenting here for the sake of completeness.

Lemma 1. If the robot hits the same point twice on the
boundary, then the robot’s path repeats after that.

Proof. The sides of the rectangle are orthogonal to each
other. Hence, from the laws of symmetric reflection, it
follows that for every bounce on the wall, the angle of
incidence and the angle of reflection on any vertical side
is θ and

(
π
2 − θ

)
for any horizontal side. Thus, if the robot

hits a point twice then it will always use the same reflection
angle on that point. Hence, from the same point, if the robot
uses the same direction, then it arrives at the same set of
points going further. Thus, the path repeats.

It is evident that for finding the opening, we need an
algorithm, the robot should discover new points so that the
set of discovered points are increased. For this the robot
should avoid the corners and make sure the all the bounced
points are unique.

It follows that the two consecutive bounces on horizontal
sides will be on two opposite horizontal sides and the hori-
zontal distances between those two consecutive bounces are
same and it is denoted by d, which is given by d = a tan θ.
The distance between two consecutive bounce on the same
horizontal side within the same traverse is 2d.

Lemma 2. The position yt of the robot along the vertical
side, measured from the base, after t traverse is given by

yt = y0 +
b · t
tan θ

− nt · a,

in which, nt = ⌊y0+b·t/ tan θ
a ⌋.

Equivalently, yt = (y0 + b · t/ tan θ) mod a.

Fig. 2: Perpetual Bounce (not to scale)

Proof. This bouncing on the vertical side is equivalent to
continuing in a straight line through the wall inside the un-
folded rectangle, which can be created reflecting (unfolding)
the rectangle about the wall. Refer to Figure 2. Thus, if
the robot finishes t total traversals, then it would have gone
through the t unfolded rectangles of size b, equivalent to 1
traversal of a rectangle of horizontal side (t · b). Within that
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rectangle of sides a×(t ·b) at every bounce, the robot moves
(a · tan θ) distance away horizontally from the corner.

Starting from y0 distance away from the base on the
vertical side is equivalent to starting from y0 · tan θ distance
away from the left (sides opposite to the direction of the
starting movement) of the origin on the horizontal side. From
this, it follows that

y0 · tan θ + b · t = nt · a · tan θ + rt,

in which
nt =

⌊
y0 · tan θ + b · t

a · tan θ

⌋
,

and rt is the remainder of length (y0 · tan θ + b · t) divided
by (a · tan θ). It follows that, rt equals

(y0 ·tan θ+b·t) mod (a·tan θ) = (y0 tan θ+b·t) mod d.

Also, it follows rt = yt · tan θ, and r0 = y0 · tan θ. From
there, the result of the lemma follows.

From the above lemma the following observation follows.

Observation 1. For k-th traversal
1)

y0 · tan θ + b · t = nt · d+ rt

y0 · tan θ + b · (t− 1) = nt−1 · d+ rt−1

=⇒ rt − rt−1 = b+ (nt − nt−1) · d

=⇒ rt = (b+ rt−1) + (nt − nt−1) · d.

So, rt = (b + rt−1) mod d, in which rt−1 is the
distance of the first bounce on any horizontal side from
its starting vertical side, and rt is the distance of the
last bounce on the same horizontal side from its ending
vertical side within a traverse.

2) The i-th bounce on the base horizontal side is (r0+i·2d)
away from the starting vertical side.

Fig. 3: Distance between visited points

Lemma 3. In two consecutive traversals, the maximum
distance between any two closest visited points on any
horizontal side is max{2r, 2(d−r)}, where r is the distance
of the last bounce on the same horizontal side from the
vertical side about which the switch occurs.

Proof. Consider the robot hits a vertical side coming from a
horizontal side, we denote that horizontal side by CD and
the other horizontal side which is opposite to CD as AB.
We denote the vertical side where the switch happens as BC.
We denote the corner where BC and AB meet as B, and
the corner where BC and CD meet as C.

The hitting point G on CD is at a distance r from the
corner C. Hence, the last point E the robot hit on AB must
be r + d distance away from the corner B; see Figure 3.

After hitting the vertical side BC, the robot will move to
the side AB and will hit a point J at d − r distance from
the corner. Thus, the distance between the points E and J is
(d+ r)− (d− r) = 2r, and the distance of the point E from
the next visited point M after J following the switch on AB
is 2d−2r = 2(d−r). Therefore, the distance from any corner
to the nearest visited point is less than max{2r, 2(d − r)}.
Furthermore, the distance from any corner on the switching
side to the adjacent visited points is max{r, (d − r)}. Let
the first bounce from the starting vertical side be of distance
r0 from D, and r0 = d + (d − r). The distance from any
corner to the nearest visited point is either r if r0 > r, or
d − r otherwise. Therefore, the distance from any corner
to the nearest visited point is max{r, (d − r)}. Combining
these, the maximum distance between the two nearest visited
points after one switch is max{2r, 2(d− r)}.

Now we choose d in a particular way, such that

d =
b

p/q
, (1)

in which

p, q ∈ Z+, gcd(p, q) = 1, p > q,

and b, p has no common divisor, and a, q has no common
divisor. More precisely

∀i ∈ Z+ : (i · b) mod p = 0 =⇒ i = k · p, k ∈ Z+,

∀i ∈ Z+ : (i · a) mod q = 0 =⇒ i = k · q, k ∈ Z+.

So in this case b
d = p

q > 1, and ∀i ∈ {1, . . . , q − 1}, (i · p)
mod q > 0. This implies that ∀i ∈ {1, . . . , q − 1},

i · p =

⌊
i · p
q

⌋
· q + (i · p) mod q,

=⇒ i · p · d
q
=

⌊
i · p
q

⌋
· d+ ((i · p) mod q) · d

q
,

=⇒ i · b =
⌊
i · p
q

⌋
· d+ ((i · p) mod q) · b

p
.

That means ∀i ∈ {1, . . . , q},

(i · b mod d) = ((i · p) mod q) · b
p
.

Going forward, unless otherwise specified, we use this
particular value of d to calculate the starting angle θ given
by θ = arctan

(
d
a

)
.

For the sake of completeness, we reproduce the following
lemma and the proof which was developed in [1].
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Lemma 4. Consider x, y ∈ Z+ which are co-prime and
x < y. Let R be the collection of all the remainders of p · y
mod x, ∀p ∈ {1, . . . , x}. Then, R = {0, . . . , x− 1}.

Alternatively, we can rewrite this above lemma for two
co-prime integer x, y. With x < y all the remainders of p · y
mod x, ∀p ∈ {1, . . . , x} are unique.

Thus, if the robot made the traversal q times then
(q · b) mod d = ((q · p) mod q) · b

p = 0. Thus, after q
number of traversals there will be no remainder and the robot
will hit a corner. After k < q number of traversals, it follows
that ((k · p) mod q) · b

p > 0, as b is not a multiple of p.
Thus, there will be a positive remainder, and the robot will
not hit a corner.

Moreover, the robot will encounter different remainders
for every switch of every bouncing on the vertical side as per
Lemma 4. Thus, every hit on the vertical sides the distances
from the nearest corners will be unique before encountering
a corner. In other words, the starting point for every traversal
will be unique. Thus, the subsequent bouncing points will be
also unique.

Lemma 5. Starting from a corner if the robot first hits any
corner, the maximum distance between the two adjacent vis-
ited points on any horizontal side is 2d

q and adjacent visited
points are uniformly distributed over the range (0, 2d].

Proof. If the robot performs k number of traversals, then it is
equivalent to one traversal within the rectangle with vertical
side a and horizontal side (k · b).

When a robot bounces on the horizontal sides, in each
bounce it moves d distance horizontally. Suppose the robot
starts from a corner of a vertical side L and moves to the
opposite vertical side R, which is (k · b) away from the side
L. If the robot does not hit any corner of R, then the last
bounce of the robot on a horizontal side just before it hits
R will be some distance away from R. Let that distance be
r, which is given by r = (k · b) mod d.

Suppose the robot starts from a corner and reaches another
corner after q number of traversals. This is equivalent to
traversals in the rectangles with vertical side a and horizontal
sides (k · b),∀k ∈ {1, . . . , q}, which will generate q number
of different remainders or q − 1 number of unique non-
zero remainders, as per Lemma 4. In every traversal, the
maximum distance between two adjacent points will decrease
by twice the changes in the remainder.

Each remainder corresponds to one unique integer in
{1, . . . , q}, which means that the remainders are uniformly
distributed, over the range (0, d]. Hence, at the end when the
robot hits the corner, the difference between the encountered
remainders will be d

q . Now the remainders are equidistant
over d, so the differences of the remainders with d will also
be equidistant and will correspond to the other members of
the remainder set. Thus, as per Lemma 3, the maximum
distance between two adjacent visited points will be 2 · d

q

and will be uniformly distributed over the range (0, 2d].

Lemma 6. If the robot starts from a corner, and after a
sequence of bounces and traversals, upon encountering a

corner, the maximum distance between the two adjacent
visited points on any vertical side is a/

⌊
q
2

⌋
or a/

⌈
q
2

⌉
.

Proof. If the robot starts from a corner, when it first hits
a corner it will have q number of traversals. Half of that
number will bounce on one vertical side and the rest will be
on another vertical side.

Consider a bouncing point O on a vertical side after k
traversals. If the remainder after k traversals is rk, then the
point O is rk · tan θ distance from the horizontal side from
where it came to point O.

Now ∀k ∈ {1, . . . , q}, rk will be unique and equidistant,
which in turn indicates that the points on the vertical sides
are also equidistant.

Furthermore, it means that in one vertical side there will be⌊
q
2

⌋
points and another vertical side there will be

⌈
q
2

⌉
points,

which are equally spread over the side of length a. Thus, the
max distances between those points in one vertical side will
be a/

⌊
q
2

⌋
and in another vertical side will be a/

⌈
q
2

⌉
.

Lemma 7. Suppose the robot starts from a corner C of the
given rectangle with one particular angle. The next time it
hits a corner, that corner must not be C.

Fig. 4: Arithmetic Billiard Bounce

Proof. If the robot starts from a corner, it will hit a corner
the first time after q traversals. The path followed by the
reflection on a wall is equivalent to the straight path taken
by the robot going through the wall on the rectangle that is
created by the reflection of the actual rectangle about the wall
(unfolding the rectangle about the wall). Refer to Figure 4.
Here, the rectangle is reflected about the vertical side q times,
and each of these reflected rectangles is again reflected about
the horizontal side some number times, which we denote by
n and given by n = b·q

d = p. Here, unfolding of the rectangle
occurs q times horizontally and p times vertically. For the
robot to move from one corner to the same corner after q
vertical and p horizontal bounces, both p and q must be even,
which is not possible as p and q are co-prime. So starting
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from a corner, the robot after q traversals will go to a corner
other than the starting corner.

Lemma 8. If the robot starts at a point on a side which is
y0 ≤ a distance from a corner C, then the robot returns to
the starting point after 2 · q traversals.

Proof. The path followed by the reflection on a wall is
equivalent to the straight path taken by the robot going
through the wall on the rectangle that is created by the
reflection of the actual rectangle about the wall (unfolding
the rectangle about the wall). Refer to Figure 4. Here, the
rectangle is reflected about the vertical side q times, and
each of these reflected rectangles is again reflected about
the horizontal side some number times, which we denote by
n and is given by p. This way, all the combined unfolded
rectangles will create a rectangle of side lengths (b·q)×(a·n).
The robot goes from the starting corner to another corner of
that rectangle along the diagonal, which creates an angle θ
with the vertical side; see Lemma 7. If the robot is allowed
to hypothetically continue after it first hits the corner with
the same starting angle, then it will come back to the starting
corner retracing the path. This is equivalent to moving
through the rectangle of side lengths (2 · b · q) × (2 · a · p).
We denote that rectangle as R.

If the robot starts at y0 distance from the previous starting
corner with the same angle θ, then it will be parallel to the
diagonal of the rectangle R. It will finally hit the point on the
vertical side that is equivalent to the same side of the starting
vertical side at y0 distance from the previous starting corner.
Thus, the robot returns to the original position after 2 · q
traversals and 2 · p vertical bounces.

IV. MAIN RESULTS

From the above discussion, it follows that if the robot
starts at y0 ≤ (a mod (q · x)) distance from a corner, then
the robot returns to the starting point after 2 · q traversals.
By that time, the distance between the visited points on the
horizontal sides are 2d

q /2 = d
q , and the maximum distances

of the end visiting points from the corners are d
2·q . Whereas

the distance between the visited points on the vertical sides
are (a/

⌊
q
2

⌋
)/2 or (a/

⌈
q
2

⌉
)/2. These can be resolved to⌈

a
q

⌉
as the maximum gap. The maximum distances of the

end visiting points from the corners are (a mod q). To
ensure that the robot will be able to escape the rectangle,
the maximum distance between two visited points must be
at most the minimum length of the opening is 1. Therefore,
the choice of d must satisfy:

b

p
=

d

q
≤ 1,

a

q
≤ 1, =⇒ a ≤ q, b ≤ p,

This implies b
a ≤ p

q .

Lemma 9. Suppose the robot starts from a corner. The next
time that it hits a corner, it has traveled distance

(
b·q
sin θ

)
.

Proof. The robot covers (b · q) when it starts from a corner
and finishes in another corner. So, diagonally it covers total(

b·q
sin θ

)
distance.

If the robot starts at y0 distance from the origin at an angle
θ, it will travel distance

2 ·
(
b · q
sin θ

)
= 2 · b · q

√
a2 + d2

d
= 2

√
a2 · p2 + b2 · q2.

We can minimize this distance by carefully choosing the
values of p, q.

Considering the above observations, we formulate an
algorithm which ensures that the robot will find the opening
of minimum length 1 within a rectangle of size a × b as
follows: Input a, b ∈ R+

Choose
p, q ∈ Z+

such that p > b, q > a,

gcd(p, q) = 1, p > q,

∀i ∈ Z+ : (i · b) mod p = 0 =⇒ i = k · p, k ∈ Z+,

∀i ∈ Z+ : (i · a) mod q = 0 =⇒ i = k · q, k ∈ Z+.

Calculate d =
q

p
· b,

θ = arctan

(
d

a

)
.

Choose y0 ≤ (a mod q).

Minimize
2
√
a2 · p2 + b2 · q2.

Output y0, θ.
It is to be noted that the condition a ≤ b, that we assumed

is important for the constraints p > b, q > a, to be true.
Another important observation is that the constraints p >
b, q > a, need to be strict inequalities; otherwise, the next
two constraints will not always be correct.

V. ADDITIONAL RESULTS

The following results follow the case illustrated in Fig-
ure 5.

Observation 2. By the time the robot covers the boundary
of the given rectangle, the maximum radius of a circle that
fits inside the rectangle and does not intersect the robot’s
path is

(
d
q

)
cos θ.

Lemma 10. There exists an algorithm that guarantees the
robot will continue to bounce forever and cover the entire
perimeter and interior of the rectangle.

Proof. We choose d < p such that b
d ∈ R\Q ( bd is not

a rational number), and let the robot start from a corner.
∀t ∈ Z+,

b · t =
⌊
b · t
d

⌋
· d+ rt
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=⇒ b

d
· t =

⌊
b · t
d

⌋
+

rt
d
.

Here, b
d ∈ R\Q, and t ∈ Z+. So b

d · t ∈ R\Q. So
rt
d ∈ R\Q. In this case rt

d ̸= 0, which means rt ̸= 0, and
therefore the robot will never hit any corner.
Now b

d · t ∈ R\Q and the
(
b
d

)
mod 1 = r1

d . Per Weyl’s
Equidistribution Theorem, ∀t ∈ Z+,

(
b
d · t

)
mod 1 are

equidistributed within the interval [0, 1]. So, ∀t ∈ Z+,
rt
d

are equidistributed within the interval [0, 1], which in turn
means ∀t ∈ Z+, rt equidistributed within the interval [0, d].
That means that the remainders t · (b mod d),∀t ∈ Z+, are
unique and their distances will diminish as t increases. When
t → ∞ then, rt = t·(b mod d) → 0. So the robot will never
be in a loop, and the distances of the visited points on the
perimeters will reduce, eventually reaching 0. As a result,
the smallest unvisited circle inside the rectangle will be
smaller and smaller, and will eventually be 0. Thus, the entire
perimeter and the interior will eventually be visited.

Fig. 5: Circle not visited

VI. FUTURE WORK AND CONCLUSION

Given a rectangular room with an opening of a given
length, we studied a bouncing robot that follows the billiard
path trajectory. We produced a method to determine the
starting point and starting angle for the robot based on the
length of the room to be able to find the opening.

This work brings us closer to characterizing the movement
of bouncing robots in more complex environments, and under
different bouncing rules. This is useful in the design of
ergodic robot systems, as studied in other works [1], [19],
[20], [21], [22]. Specifically, the characteristics of bouncing
robots movement in different environments, including paral-
lelograms, convex polygons, or a set of connected rectangles
are of key interest. One future work extending from this work
will be to explore how the robot’s trajectory changes under
asymmetric bouncing rules.
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