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Abstract— Telepresence robots enable users to interact with
remote environments, but efficient and intuitive navigation
remains a challenge. In this work, we developed and evalu-
ated a shared control method, in which the robot navigates
autonomously while allowing users to affect the path generation
to better suit their needs. We compared this with control
switching, where users toggle between direct and automated
control. We hypothesized that shared control would maintain
efficiency comparable to control switching while potentially
reducing user workload. The results of two consecutive user
studies (each with final sample of n = 20) showed that shared
control does not degrade navigation efficiency, but did not
show a significant reduction in task load compared to control
switching. Further research is needed to explore the underlying
factors that influence user preference and performance in these
control systems.

I. INTRODUCTION

Telepresence robots represent a class of robotic systems in
which a mobile robot is equipped with a camera streaming
live video to a display that is watched by a remote user. These
robots have already found a wide domain of applications
ranging from business meetings and factory tours to per-
sonal events such as graduations and weddings. Furthermore,
immersive-telepresence robots allow a panoramic camera
stream to be watched by a remote user via a head-mounted
display (HMD). These systems carry great potential in im-
proving the user interaction with the remote environment,
which is found to be lacking in the commercial systems [1].
One of the key advantages of telepresence robots lies in their
ability to navigate the remote environment without being
anchored to a particular location. However, effective control
of the robot that accommodates the diverse preferences and
needs of remote users is a challenge.

Controlling a robot in a remote location falls on a spec-
trum between full manual operation and complete autonomy
(see [2] for a survey on this different levels of remote
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mobile robot control). On one end, manual control gives
users direct authority over every movement, but it can be
tiring and requires continuous input [3]. On the other end,
full autonomoy allows the robot to navigate independently,
reducing workload but potentially making decisions that do
not match with user’s preference or expectations. In between
these extremes, different control strategies aim to assist users
while preserving their sense of control, but each approach
introduces trade-offs.

Among these methods that allow sharing the robot con-
trol between a user and an autonomous control module,
one approach is to use waypoint navigation, where a user
selects intermediate goals rather than steering the robot
continuously [4]. However, this method does not allow fine
control over movement. Another approach is safeguard-based
control, where the controller intervenes only to prevent
collisions [5]-[8]. While this reduces the task load, it does
not assist with general navigation or decision-making. An
alternative is control switching, where users alternate be-
tween manual and autonomous modes, either by choice or
based on predefined conditions [9]. This approach, seen in
commercial telepresence robots such as the Double 3 [10],
allows flexibility but requires users to manage transitions
effectively. Finally, policy or trajectory blending combines
user input with the control commands coming from an
autonomous control module (see for example [11]-[15]).
These methods offer smoother integration of user intent but
are often limited in scope: some do not guarantee complete
safety [12], [13], and some focus on robots that are not
mobile platforms [11]. Additionally, none of them took into
consideration communication delay, which can significantly
degrade the user experience in real-world scenarios.

In the context of telepresence, a shared control method
should not only assist navigation but do so in a way that
enhances user comfort rather than diminishing it, and takes
into account the diverse preferences of users. The users
should be able to adjust the robot’s trajectory effortlessly,
enabling them to avoid close proximity to others or move
toward points of interest not accounted for by autonomous
navigation. To account for these additional requirements,
in our previous work [16], we developed a shared control
method that allowed users to influence a robot’s motion
while maintaining collision-free navigation. We compared
this approach to an alternative, where users switched between
manual and autonomous control. While it allowed users to
affect robot motion without manual steering, participants



reported difficulty due to the robot overriding user input once
manual influence ceased, leading to a feeling of “fighting
against the robot.”

Motivated by these findings, we developed a new shared
control method which integrates the user input into planning
to mitigate the feeling of “fighting against the robot,” and
furthermore, allows the user to adjust the robot’s speed.
Our approach modifies the costmap used for planning, in
real time, based on user input, allowing for longer lasting
trajectory adjustments. Unlike our previous work, our new
approach continuously adapts the robot’s trajectory to better
align with user preferences, helping to reduce conflicts
between the user and the system. Compared to blending or
switching methods, our approach integrates user feedback
directly into the planner, maintaining consistent autonomous
control while respecting user-driven adjustments.

To evaluate this method, we conducted two user studies.
In the first experiment, participants primarily focused on
controlling the robot’s motion. However, we realized that
without any additional cognitive demands, users were fully
engaged in navigation, making it difficult to assess how well
the system supports natural task execution in a realistic telep-
resence scenario. To address this, we conducted a second
experiment where participants were also tasked with spotting
animals in a forest environment during navigation. This
additional task introduced a more representative use case for
telepresence, where users must divide their attention between
navigation and their primary objective. While our results
show no significant differences in preference or the task load
compared to control switching, they provide valuable insights
into the challenges of designing shared control for immersive
telepresence robots.

The remainder of the paper introduces the proposed
method (§1I), followed by the description of the user study
(8§1III), and concludes with a discussion on the results (§IV).

II. PROPOSED SHARED CONTROL METHOD

We consider a scenario in which a robot must navigate to
a goal while avoiding obstacles. During navigation, a remote
user can provide inputs to adjust the robot’s path based on
visual feedback coming from a camera attached to the robot.
In the following, we formally describe the motion planning
problem and our proposed solution to integrate user input.

A. Motion planning problem
The robot kinematics is given in discrete time by the model
z(k+1) = z(k) + v(k) cos 0(k) At
y(k+1) =y(k) +v(k)sin (k) At (1)
Ok +1) = 0(k) + w(k)At,

in which (z,y) is the robot position and 6 is the orientation
with respect to a global reference frame, the control input
u = (v,w) corresponds to the linear and angular velocities
with respect to the robot-fixed reference frame. The robot
configuration is expressed as ¢ = (x,y,60) and it is con-
strained in the set Q C R? x S1. The control input is subject

to actuation constraints and it takes part in a compact set of
admissible controls U C R2.

Let E C R? be the planar environment in which the robot
is moving. The environment contains obstacles, which are
open sets and subsets of E that prohibit the robot from
occupying certain configurations due to collisions. These ob-
stacles change dynamically, and their information is available
to the robot locally. Let Eys(k) C E be the union of all the
obstacles known to the robot at time k At. The part of the
environment free from obstacles is Etrec(k) = E'\ Eops(k).
Consecutively, the set of configurations that the robot can be
in without collisions is denoted by Q free (k).

The motion planning problem is defined as finding a
sequence of control inputs @* = (u*(1),u*(2),...,u*(N))
for some N such that the resulting sequence of configurations
obtained via (1) satisfies for all k = 1,...,N + 1 that
q(k) € Qprec(k), q(0) = qr. q(1) = qg, in which ¢;
and g¢ are initial and goal configurations. Furthermore, @*
minimizes

N
J(u(1),...,u(N)) =" £(q(k),u(k),d(k), ()
k

=1

in which d is the user input, and ¢ is an appropriate cost
function.

B. Planner

We consider that the motion planning of the robot is
achieved by two interacting modules: the planner and the
controller. The planner is responsible for computing an
optimal path to the goal with respect to an appropriate
objective, for example, a shortest path. Note that typically
the path is computed over Ey,... in which case it may not
be feasible with respect to the robot kinematics given in (1).
Consecutively, the controller determines the control inputs
for tracking the resulting path.

In our approach, we take the user input into account at the
planner level. We assume that the user is presented with the
path that the robot is following and when desired they can
indicate a deviation from this path by adjusting the lateral
offset through visual feedback (see Fig.la). Considering a
planner based on grid search, we design a costmap that incor-
porates the desired deviation from the robot path. Therefore,
the cost function given in (2) is implicitly minimized by
the controller following an optimal path computed using the
costmap.

Let EaA be a set of points representing the discretized
position space. Given a user input d and Ef.c., a cost
function g : o — {0,1,...,255}, also referred to as a
costmap, assigns a non-negative integer cost to each grid
point. Finding an optimal path then amounts to applying
an efficient grid search algorithm such as A* [17] on a 4
or 8 connected grid. In the next section, we explain the
design of this costmap. To keep the notation light, we drop
the dependency on time instance k, however it should be
understood that the environment and the robot configuration
is updated and the control input is determined accordingly.
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C. Costmap

Our method integrates user input into the path planning
by dynamically modifying the costmap used by the planner.
It is composed of two components such that

g(l', y) = max(gobs (l’, y) Y gobs(xv y) + guz(xa y)); (3)

in which g.ps is part of the cost function related to the
obstacles and g,,; is the one related to the user input.

To take the robot size into account, the obstacles are
inflated. Let E,p. be the inflated obstacles which typically
corresponds to E.ps = Eps ®D, in which D is an appropri-
ate sized disk and @ denotes the Minkowski sum. The grid
points that fall into the obstacles, that is, Ea N Eyps, are
assigned the highest value of 255 in the costmap, therefore

255
decay(z,y)

if (z,9) € Eops
otherwise,

gobs(xay) = { (4)

in which decay is a function that assigns an integer cost to
the points A N Efre. that is inversely proportional to the
distance from the nearest point in £, gradually decreasing
from 255 to 0.

To allow user influence over the robot’s path, we introduce
the cost component g,,; such that minimizing this cost would
lead to a robot motion according to the direction indicated
by the user. To this end, the user input d corresponds to a
lateral offset along the r, axis of the robot-fixed reference
frame (see Fig. 1b). Everytime a user input is received, a
new reference frame {C'} is created with its origin at (d, 0)
(coordinates expressed with respect to {R}) and rotated so
that the ¢, axis is aligned with the general direction of the
robot. The general direction of the robot is determined as the
vector aligned with the line fitted to a fixed-length portion' of
the global path starting from the point closest to the robot’s
current position (see Fig. 1b).

Once the reference frame for the cost, {C'}, is defined, a
cost filter that encodes the user input by creating a low-cost
region which favors the direction indicated by the user is

IFor this work we used a fixed-length of 5 meters that is truncated as the
robot is in the vicinity of the goal.
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(a) The user is presented with the robot path (red) and can select a lateral offset (white). (b) Robot and cost reference frames, { R} and {C'},

5 and they are positioned symmetrically with offsets &b, in which b = 7

, corresponding to the example given in (a).
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defined as follows
gilc}(cq"vcy) = round(s(l - flat(cfc)flong(cy)))y (5)

in which fi, and fio, are functions that control the lateral
and longitudinal influence of the user input over the cost
filter, and s € [0,255] is a parameter adjusting the strength
of the cost filter that determines the contribution of the user
input to the computation of the global path. Finally, to be
consistent with the memory constraints on storing the cost
filter, it is quantized into 256 channels by rounding it to the
nearest integer, that is, applying the round function.

Specifically, the cost filter generates a cost valley favor-
ing the user indicated direction (see Fig. 1d). The lateral
influence, controlling the width of the cost valley is defined
according to the following equation

1
6w + 6w
1+ew($te) 1 4ew(¥—ca)

frar(cz) = -1 (©
where w is the width of the cost valley, and p is a multiplier
that lowers the cost on the side of the cost filter that aligns
with the direction initially indicated by the user (see Fig.1d).
This adjustment encourages the robot to navigate on the
side that matches the user’s initial input when traversing the
center of the valley is not possible. Each sigmoid function
has a width a, and the coefficient 16 is chosen so that
a =~ 7. The coefficient 4 appears because the sigmoids are
offset symmetrically by a distance b = 7 from the origin,
ensuring that the valley centers around c,; = 0 (see Fig. 1c).
Consecutively, the longitudinal influence is determined by
another set of sigmoid functions according to the following
equation

1
1 + 6207/_2l) (1 + 6—4cy—2) ’

flon(cy) = ( (7)
in which, [ corresponds the length of the cost valley, that is,
the extent to which user input would affect the path along
the direction of motion.

Because the cost filter is defined in the reference frame
{C}, we obtain the respective values in the global reference
frame as

gui(z,y) = 957N (Troy (2,)),



in which Tcy maps the points expressed in the global
reference frame to those expressed in {C}. Finally, g,; is
combined with g.ps, defined in (4), according to (3) leading
to the planner to return paths that are aligned with the user’s
input while ensuring obstacle avoidance.

III. EXPERIMENTAL EVALUATION

We designed a user study to evaluate the effectiveness
of our shared control system in an immersive telepresence
setting. The study aimed to compare our approach with
a conventional control switching method, assessing factors
such as user workload, perceived control, navigation ef-
ficiency, and overall user experience. By analyzing user
behavior, questionnaire responses, and objective performance
metrics, we aimed to understand whether our shared control
method improves the telepresence experience and to identify
potential challenges in its adoption.

A. Design

Fig. 2. A user controlling the simulated robot using a joystick.

In this study, we compared the proposed shared control
method (shared control) condition against a baseline con-
troller (control switching), in which the user is able to switch
between completely manual, and completely autonomous
control.

1) Control Switching: In the Control Switching (CS)
condition, the robot moves autonomously, but the operator
can take over the direct control of the robot by pressing a
button allowing them to alter the course of the robot motion.
The control input is determined as

- {Uh = (vn,wn)

Ugqg = (vaa wa)

if user input given )
otherwise,

where u, is the input given by the controller and wuy, is the
user input given using the joystick that can be seen in Fig. 2.
Let (jz,jy) € [—1,1] x [=1,1] be the input given by the
operator where j, is the horizontal position of the joystick
with O being the origin, and j, is the position of the speed
lever with O being the middle position. The user input is
mapped to uy, = (vp,wy,) as follows:

1+0535, ifj,>0
v = . Jy Jy . ©)
1+ 7y otherwise,
and
jz if 5, >0
Je +0.87, otherwise.

This mapping is designed to ensure intuitive control, where
the robot moves at its intended velocity (1m/s) when the
speed lever is in the central position. Pushing the lever to its
upper limit allows the robot to reach its maximum velocity
(1.5m/s) while pulling it to the lower limit brings it to a
stop. The angular velocity mapping is designed to reduce
the maximum angular velocity at lower speeds, minimizing
the risk of accidental oversteering. However, the robot is still
allowed to turn at a slow rate even when stationary.

To let the user adjust the speed while the robot was in
autonomous mode, we limited the maximum linear velocity
to the value given by (9).

2) Shared Control: Similar to the CS condition, also in
this case, the operator uses a joystick to provide input to the
system. However, this time the robot would always follow
the input u, = (v4,w,) given by the controller.

To modify the robot’s path, the operators used the Shared
Control method explained in Section II. To do this, they
would hold down the trigger button and move the joystick
left or right. The position of the joystick at the moment they
released the trigger determined the placement of the costmap
filter. The displacement d of the costmap filter relative to the
robot’s center was computed as:

Y

where j, is the horizontal axis value of the joystick input. A
negative j, value shifted the costmap filter to the left, while
a positive value shifted it to the right relative to the robot’s
orientation.

To allow the users to adjust the robot’s speed, the con-
troller’s input u, = (v4,w,) was limited such that:

d = 5.7567

Vo < h,  |wal < wh, (12)

where vy, and w;, are the user-defined maximum linear and
angular velocities, respectively, as defined in (9) and (10).

B. Hypotheses

To investigate the impact of different control methods on
user experience and performance in immersive telepresence,
we tested the following hypotheses:

H1: The task load in the shared control condition will
be lower than in the control switching condition as
indicated by lower NASA-TLX scores.

H2: There will be no difference in user performance across
conditions as measured by similar cumulative radiation
values (see Section III-C.1), and similar completion
times.

C. Experiment 1

1) Study setup: The hypotheses were tested using a sim-
ulated environment created with the Unity 3D-game engine.
The virtual environment consisted of a forest area with
path going through it (see Fig. 1a). Participants encountered
pools of toxic waste that they had to avoid, open areas
with concrete buildings, and people in hazard suits, creating
a structured yet varied setting. The simulated telepresence
robot used in the experiment comprised of a mobile base as



described in Section II and a simulated 360° camera attached
1.5 meters above the robot from which the users could see
the virtual world using a virtual reality headset. The robot’s
autonomous navigation was based on the Robot Operating
System (ROS) and its Nav2 project [18]. In this experiment,
the robot was navigating towards a fixed goal, but had no
prior knowledge of the positions of the toxic pools or people
standing along the path. It was the participants’ responsibility
to avoid the toxicity coming from the pools as effectively
as possible. Toxicity levels were visually represented using
a green glow effect on the floor, with the intensity of the
glow indicating the level of toxicity at a given location. To
better simulate real-world telepresence scenarios, a 1-second
delay was introduced to the user controls, reflecting network
latency that can occur in remote operation. Additionally,
a visual interference effect was applied using a shader,
overlaying the user’s view with a distorted version of the
environment to simulate video feed disruptions due to lost
data (see Fig. 3).

Fig. 3.

Simulated video feed disruptions.

2) Analyses: To measure the task load experienced during
each of the conditions, we asked the participants to fill
out Nasa Task Load Index (NASA-TLX) questionnaire after
completion of each of the tasks. The questionnaire consists
of six subscales, each representing a different aspect of work-
load. To calculate the total workload, each subscale score is
multiplied by a weight value. These weights are determined
individually for each participant by having them compare all
pairs of subscales and rank their relative importance to the
task they just completed.

To measure the performance of the participants, we mea-
sured the completion time of the task, and the cumulative
radiation during the task. The cumulative radiation was
calculated by taking the distance to the closest toxic pool
at each time step and integrating it over time. As the
participants in our previous study had mentioned having
control over the robot as the main reason for preferring the
CS condition, we asked the participants Likert-scale rating
for how much they felt like they had control over the robot.
To learn more about the usability of the methods, we asked
the participants to fill out a System Usability Scale (SUS)-
questionnaire [19] after each of the conditions. After the
second task, we additionally asked forced-choice questions
about the participants’ preference between the two methods.
We also asked open-ended questions about the reasons for
their choices and whether there were any specific situations

in which they would prefer one of the methods over another.

Continuous data was tested for normality using Shapiro-
Wilk tests. T-tests were used to evaluate normally distributed
data and Wilcoxon signed rank tests were used for non-
normal or Likert scale data. Bayes factors were calculated
to estimate support for null hypotheses. For normally dis-
tributed data, the ‘ttestBF’ function from the R package
‘BayesFactor’ package was used [20], and for non-normally
distributed data, the Wilcoxon-signed-rank Bayes factor ap-
proach from van Doorn et al. 2020 was used [21]. Both cases
implemented a standard Cauchy prior. Bayes factors between
1 and 0.33, less than 0.33, and less than 0.2 are interpreted
here as anecdotal, moderate, and strong support for the null
hypothesis, respectively.

3) Procedure: The participants were presented with two
conditions corresponding to the Shared-Control (SC), and CS
control methods. The same path was used in both conditions,
however, on one of the conditions the path was traversed
in reverse direction to mitigate learning effects. The order
and direction of these conditions was counterbalanced across
participants. Upon arrival, the participants were greeted by
a researcher and signed a form to indicate their consent to
participate. Participants were then asked if they were expe-
riencing any nausea or headaches to ensure they were not
feeling unwell before the experiment began. Afterward, they
filled out a demographic questionnaire and received general
instructions. Their interpupillary distance was measured, and
they were shown how to put on the HMD.

After the experimenter made sure the HMD was fitted
properly and that the participant was able to see the virtual
environment clearly, the participants were asked to take
off the HMD, and they were given the instructions for
the first task. The participants were told that they were
inspecting a forest where toxic waste had been dumped.
Although the robot could navigate autonomously, it could
not detect the toxic pools or people standing along the path.
Participants were instructed to avoid the toxic waste indicated
by the green glow on the ground. The control method for
the first task was explained, after which they were told
to put the HMD back on and practice the controls in a
separate environment for up to 5 minutes. After practice, the
participants were asked if they were ready for the task, and
the appropriate task scenario was initiated. Upon completing
the task, participants removed the HMD and filled out a
questionnaire regarding their experience with that specific
control method. This procedure was then repeated with the
other control method. Finally, the participants were given
20€ gift card to a local store chain as compensation.

4) Participants: All participants gave written informed
consent to participate in the experiments. All experimental
procedures were in accordance with the Declaration of
Helsinki and approved by the University of Oulu ethical
review board (ERB). A total of 28 participants were recruited
from the University of Oulu campus and community, but
eight of them had to be excluded as they were not able to
finish both of the tasks without taking off the HMD. Of the
20 included participants, five were women and 15 were men,



and their ages ranged from 21 to 45 years with a mean of
29.05. The responses of the participants to how often they
use Virtual Reality (VR) systems were: 35% just a couple
of times and at least once, 25% once or twice a year, 35%
once or twice a month, and 5% once or twice a week.

5) Results: Distributions corresponding to NASA-TLX,
cumulative radiation, and completion times in Experiment 1
can be seen in Figure 4. The NASA-TLX score differences
followed a normal distribution, as indicated by Shapiro-Wilk
test, W = 0.97, p = 0.66. Therefore, a paired t-test was
performed to compare the differences in task load scores
between the SC (M = 48.5, SD = 23.04) and CS (M =
50.92, SD = 24.58) conditions. The results indicated that
there was no significant difference in the task load between
the two conditions, ¢(19) = —0.68, p = 0.51, BF = 0.21.

The differences in cumulative radiation scores also dis-
played normal distribution characteristics, as indicated by
Shapiro-Wilk test, W = 0.95, p = 0.29. Therefore, a
paired t-test was performed to compare the differences in
cumulative radiation scores between the SC (M = 55.35,
SD = 15.47) and CS (M = 53.31, SD = 19.48) conditions.
Once again, the results indicated that there was no significant
difference in the scores between the two conditions, ¢(19) =
—0.56, p = 0.58, BF = 0.20.

The the differences between the completion times were
not normally distributed, as indicated by Shapiro-Wilk test,
W = 0.90, p = 0.039. Since the normality assumption for
the paired t-test was violated, a Wilcoxon signed-rank test
was performed to compare the differences in the completion
times between the SC (M = 283.20, SD = 32.40) and
CS (M = 287.34, SD = 25.80) conditions. The results
indicated that there was no significant difference in the scores
between the two conditions, Z = —0.78, p = 0.45, BF =
0.19.

Both results show that the performance of the SC is
slightly better than CS but there is no significant difference
between the conditions, supporting Hl. When asked which
condition they preferred more, 11 out of 20 participants
(55%) selected the CS condition, showing no significant
tendency in either direction in preference.

A Wilcoxon signed-rank test was performed to compare
the differences in the feeling of control ratings between the
SC (M = 53, SD = 098) and CS (M = 5.1, SD =
1.17) conditions. There was no significant difference in the
feeling of control as indicated by a Wilcoxon signed-rank
test, Z = 0.60, p = 0.59, BF' = 0.20. We also asked “How
comfortable was altering the robot’s path”. Once again, a
Wilcoxon signed-rank showed that there was no significant
difference in the comfort between the SC (M = 4.6, SD =
1.60) and the CS (M = 4.9, SD = 1.21), Z = —0.79,
p=0.47, BF = 0.23.

A Shapiro-Wilk test indicated that the SUS scores of the
SC (M = 58.63, SD = 12.60) and the CS (M = 54.75,
p = 16.97) methods are not normally distributed, W = 0.89,
p = 0.023. There was no significant difference between the
SUS scores as shown by A Wilcoxon signed-rank test, Z =
0.26, p = 0.80, BF = 0.19.

D. Experiment 2

One of the purposes of shared control is to reduce the
effort required for navigation so that users can focus on
other tasks. In Experiment 1, participants had no other
task in addition to controlling the robot, making it difficult
to assess this benefit. To better reflect the use of real-
world telepresence, we conducted Experiment 2, where in
addition to navigating according to the same instructions as
in Experiment 1, the participants also had to spot animals
while navigating. This allowed us to evaluate how well the
shared control method supports multitasking.

1) Study setup: Experiment 2 followed the same general
setup as Experiment 1, with participants navigating a virtual
forest environment using the telepresence robot. However, to
better evaluate the benefits of shared control, an additional
task was introduced: Participants were asked to report the
animals they spotted during navigation. When they saw an
animal in the environment, they had to scroll through pictures
of animals using buttons on the controller and pull the trigger
button when they found a matching picture from the list. This
simulated a real-world scenario in which users must divide
their attention between navigation and some other objective.

Another key difference from Experiment 1 was the way
toxicity levels were conveyed. Instead of a visual green glow
on the ground, participants were alerted to increasing toxicity
levels through a Geiger counter sound effect, which inten-
sified as they approached hazardous areas. This change was
made to encourage participants to focus on both navigation
and the animal-spotting task, rather than relying on direct
visual cues for where the robot should be moving.

In Experiment 1, a visual interference effect was in-
troduced to simulate video feed disruptions, illustrating a
scenario where shared control could assist when visibility is
compromised. However, to reduce unnecessary VR-sickness
and ensure that participants could fully concentrate on the
animal-spotting task, this effect was omitted in the second
experiment. The experiment procedure remained otherwise
the same, with participants experiencing both control meth-
ods in a counterbalanced order, practicing the controls before
the task, and filling out questionnaires after each condition.

2) Analyses: In addition to the measures used in Ex-
periment 1, we asked participants to complete a locus-
of-control questionnaire [22]. This decision was based on
the feedback from Experiment 1, where some participants
emphasized the importance of feeling in control of the robot.
We aimed to determine whether there was a connection
between participants’ preference for a control method and
the personality traits measured by this questionnaire.

3) Participants: A total of 24 participants were recruited
from the University of Oulu campus and community. Partic-
ipants from Experiment 1 were not allowed to participate in
thise experiment. Four participants had to be excluded as they
were not able to complete both tasks without taking off the
HMD. Of the 20 included participants, 10 were women, nine
were men and one preferred not to say, and their ages ranged
from 20 to 46 years with a mean of 27.75. The responses
of the participants to how often they use VR systems were:
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30% had never used VR, 25% just a couple of times and at
least once, 20% once or twice a year, 15% once or twice a
month, 5% once or twice a week, and 5% several times a
week.

4) Results: Distributions corresponding to NASA-TLX,
cumulative radiation, and completion times in Experiment 2
can be seen in Figure 5. This time the differences in NASA-
TLX scores were not normally distributed, as indicated by
Shapiro-Wilk test, W = 0.87, p 0.010. Therefore, a
Wilcoxon signed-rank test was performed to compare the
differences in task load scores between the SC (M = 50.58,
SD = 20.18) and CS (M = 50.33, SD = 21.65) conditions.
The results indicated that there was no significant difference
in the task load between the two conditions, Z = —0.75,
p =0.47, BF =0.18.

The Shapiro-Wilk test showed that the differences in the
cumulative radiation scores were again normally distributed,
w 0.99, p = 0.99. Therefore, a paired t-test was
performed to compare the differences in cumulative radiation
scores between the SC (M = 72.69, SD = 17.02) and CS
(M =79.34, SD = 21.98) conditions. The results indicated
that there was no significant difference in the scores between
the two conditions, ¢(19) = —1.23, p = 0.23, BF = 0.35.

The distribution of the difference between the completion
times was normal, as indicated by Shapiro-Wilk test, W =
0.97, p = 0.84. A t-test was performed to compare the
differences in the completion times between the SC (M =
323.98, SD = 54.40) and CS (M = 334.70, SD = 42.72)
conditions. The results indicated that there was no significant
difference in the scores between the two conditions, ¢(19) =
—0.85, p = 041, BF = 0.24. When asked “Thinking
about both of the tasks you did, which control method did
you prefer more?” 10 out of 20 participants (50%) selected
the CS condition showing no significant tendency in either
direction in preference.

We asked the participants for a Likert-scale rating on
how much they felt like they had control over the robot.
A Wilcoxon signed-rank test was performed to compare the
differences in the feeling of control ratings between the SC
(M =5.45, SD = 1.15) and CS (M = 5.65, SD = 0.75)
conditions. There was no significant difference in the feeling
of control, Z7 = —0.64, p = 0.57, BF = 0.20. We also
asked “How comfortable was altering the robot’s path”. A

Wilcoxon signed-rank showed that there was no significant
difference in comfort between the SC (M =5, SD = 1.13)
and the CS (M = 5.15, SD = 1.35), Z = —0.19, p = 0.87,
BF =0.17.

A Shapiro-Wilk test indicated that the SUS scores of the
SC (M = 62.25, SD = 13.55) and the CS (M = 64.0,
S'D = 10.11) methods were normally distributed, W = 0.98,
p = 0.88. There was no significant difference between the
SUS scores as shown by a paired t-test, ¢(19) = —0.84,
p=0.41, BF = 0.24.

The normality of the locus-of-control was tested using a
Shapiro-Wilk test. The results showed that the data were
normally distributed for both participants who preferred the
SC method (M = 294, SD = 10.09, W = 091, p =
0.26) and those who preferred the CS method (M = 30.8,
SD =941, W = 0.95, p = 0.67). A t-test was performed
to compare Locus of Control scores between participants
who preferred SC and those who preferred CS methods. The
results indicated that there was no significant difference in
Locus of Control scores between the two groups, ¢(18) =
—0.32, p=0.75, BF = 0.32.

IV. DISCUSSION

Our study examined how a shared control system com-
pares to control switching in immersive telepresence robot
navigation. In Experiment I, participants navigated through
a controlled environment using both methods to evaluate task
performance and workload. Results showed that although the
shared control did perform comparably to control switching,
there were no significant differences between the two ap-
proaches, suggesting that neither offered a clear advantage
in terms of efficiency or user effort. In Experiment 2, where
participants had to divide their attention between navigation
and an additional cognitive task, we observed a similar
pattern: shared control maintained the performance levels
comparable to switching, but did not significantly reduce
workload. Furthermore, associated Bayes factors in nearly
every case indicated moderate to strong support for null
hypotheses, indicating a true lack of differences between
conditions rather than merely a lack of statistical power to
detect differences.

Given this outcome, the key question becomes why shared
control did not demonstrate a stronger benefit over control
switching. One possibility is that both methods allow users to
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manage navigation effectively, just through different means.
Users who preferred control switching often cited a greater
sense of control (“I feel more control on the robot”) and
reduced complexity, noting that the ability to manually toggle
between control modes allowed them to feel more directly in
charge of the robot’s movements (“It was easy to use. Less
complex systems can target many users.”). Some also found
that control switching mode helped reduce motion sickness
(“Its easier to use and is more steady, gave me less motion
sickness”), possibly because it eliminated small, unintended
adjustments that could contribute to visual instability. On the
other hand, those who favored shared control appreciated
its ability to reduce effort and make navigation feel easier
(“It make controlling easier, less effort”). Many found that
the system’s automatic adjustments to the path required less
manual correction, making it easier to stay on course. Some
participants also mentioned it being easier to use with the
delay (“Changing the path is easier than controlling the
robots specially due to the delay in the system”).

While locus of control did not seem to influence personal
preference, it is possible that other individual factors, such
as comfort with technology, or prior experience with similar
systems, could explain why users preferred one method
over the other. Future research could explore what kinds
of individual differences contribute to users’ preferences,
pitting increased control against prioritizing ease of use,
or vice versa. Furthermore, adaptive control strategies that
allow users to dynamically adjust the level of automation is
an interesting direction to explore, which provide flexibility
based on individual preferences and task complexity.

Finally, our study confirms that introducing shared control
does not degrade performance, and the findings suggest that
it is a viable alternative to control switching, particularly for
users who prioritize ease of use over direct control. However,
additional refinements are needed to provide true benefits
beyond what is offered by current methods.
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