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Abstract—This paper proposes methods for achieving basic
tasks such as navigation, patrolling, herding, and coverage
by exploiting the wild motions of very simple bodies in the
environment. Bodies move within regions that are connected
by gates that enforce specific rules of passage. This leads to
a hybrid systems approach in which the behaviors define a
discrete transition system. Tasks can even be specified using
a Linear Temporal Logic (LTL) formula and are converted
into a multibody implementation that satisfies the formula.
Common issues such as dynamical system modeling, precise
state estimation, and state feedback are avoided. The method is
demonstrated in a series of experiments that manipulate the flow
of weasel balls (without the weasels) and Hexbug Nano vibrating
bugs.

I. I NTRODUCTION

In everyday life we see many examples of independently
moving bodies that are gracefully corralled into behaving in
a prescribed way. For example, when the free breakfast area
closes in a hotel, the manager usually locks the door from
the outside so that no one else can enter, but people eating
are able to finish their meals and leave. This has the effect of
clearing everyone from the room without people feeling that
they have been tightly controlled or coerced. People install a
“doggie door” on their house door to enable pets to move in
either one direction or both. In a subway system, turnstiles
cause people to flow in prescribed directions to ensure that
proper fares are paid.

These scenarios, and many others, involve numerous bod-
ies moving together in one environment with two important
principles:

1) Each body moves independently, possibly with a “mind
of its own”, in a way that seems to exhaustively explore
its environment.

2) The bodies are effectively controlled without precisely
measuring their state and without forcefully actuating
them.

On the other hand, robots are typically controlled in the op-
posite way. There is a large modeling burden, which includes
system identification (learning the equations of motion) and
constructing a map of the environment. Powerful sensors are
used for mapping and localization of the robots. Filters are
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Fig. 1. a) One vehicle of study is a $4 weasel ball; b) it consists entirely of
a battery and slowly oscillating motor mounted to a plastic shell.

developed that provide state estimates at all times so that plans
or policies can make actions depend on state feedback. In the
case of multi-robot coordination, further complications arise.
Difficult coordination strategies may be required. Furthermore,
careful communication between robots and possibly a central
controller is often necessary. For some tasks, we wonder
whether all of these issues can be avoided altogether.

Fig. 2. The Bunimovich stadium is a well-known example of an ergodic
system [7]. The “hockey puck” will strike every open set along the boundary
as it travels forever. (Figure courtesy of Wikipedia.)

By taking inspiration from the everyday life principles
above, we propose an unusual paradigm to control multiple
robots. In contrast to most approaches, we start with a “wildly
behaving” body for which its precise equations of motion are
unknown; it is far from stable, and has little or no sensing
capabilities. Our main “vehicle” of study is a $4 weasel ball
(see Figure 1), which has no sensors, no computation, and one



motor, which oscillates constantly at about2Hz.
In our experiments, the particular choice of body is not

critical (Section V-A will show other systems). We instead
care only about its high-level motion properties. We informally
consider a body to bewild if when placed into a bounded
region r ⊂ R

2, it moves along a trajectory that strikes
every open interval along the boundary ofr infinitely often.
This concept is closely related to the notion oftopological
transitivity in the branch of dynamical systems known as
dynamical billiards [44]. An example is shown in Figure
2, which can be imagined as a billiard ball that bounces
off of the table sides forever. A strong system property that
arises in that work and achieves our required wild behavior is
ergodicity.1 It is even known that in the space of all simple
(including nonconvex) polygons and all initial configurations
for the body, the resulting trajectory is ergodic except for
cases that lie in a set of measure zero [24], [25], [28]. The
idea of exploiting wild motions in robotics is reminiscent of
the randomization work by Erdmann [14] and designing robot
systems with ergodic dynamics by Shell et al. [42].

How do we control such systems? We are first inspired
by the power of abstraction used in hybrid systems [6], [12],
[19], [21], [26], [46]. As is common in many approaches, we
partition the state space into a finite set of regions over which
a discrete transition system is defined. Whereas it is common
in hybrid system approaches to derive state-feedback control
laws while vehicles are within continuous regions [12], [20],
[30], [36], [43], we simply let our “vehicle” behave wildly.

One unusual aspect of our approach is that we embed
simple mechanisms in the environment that force the bodies
to achieve goals while remaining wild. To control each body,
we designgatesthat appear only along region boundaries and
connect to other regions. When a body strikes a gate, the gate
will induce our planned behavior, which might be to remain
in the region or transition to another region. In this sense,
the gate “gently guides” the body. The gates themselves have
configurations that determine what type of passage is allowed
between adjacent regions. The gates can be fixed in advance
(static gates), can have actuators that change configurations
(controllable gates), or can have their configurations changed
mechanically by absorbing energy from the bodies (pliant
gates). This way of controlling bodies leads to many inter-
esting open questions regarding the space of tasks that can
be solved and the overall system complexity required to solve
them.

Our approach draws inspiration from several areas, in-
cluding nonprehensile manipulation[15], [23], [40], vibrating
plates [5], [41], [47], and billiard models of quantum comput-
ing [22]. Even more closely related are designingvirtual fences
to control herds of cows [8] and designing fire evacuation
strategies to safely “herd” humans out of a burning building
[9]. We are also inspired by the family of work that converts
high-level specifications into low-level control laws for the

1In this context, ergodicity does not necessarily have anything to do with
probabilities, as in the more commonly seen case of ergodicity in Markov
chains.

hybrid system [29], [39], [45]. In particular, much of our work
uses the Linear Temporal Logic (LTL) framework that has
been developed in several recent works [1], [16], [17], [20],
[30], [31], [32], [33], [34], [35], [36], [43], [48]. The idea is
to express a complicated task using a logical formula and then
converting the specification into a control law that satisfies the
formula, thereby accomplishing the task.

The paper is organized as follows. Section II presents some
preliminary concepts, including the interaction between the
wild body, the gates, and the regions. Sections III and IV
present our approach for the cases of a single and multiple
bodies, respectively. Section V presents experiments and Sec-
tion VI concludes the paper with some promising directions for
future research. This paper is built upon two earlier conference
publications [2], [4].

II. T HE OVERALL DESIGN

A. Connectivity between regions and gates

Consider a planar workspaceE ⊆ R
2 that is partitioned

into an obstacle setO and a finite set of bounded cells with
connected open interior, each of which is either aregion
or a gate; Figure 3 shows a simple example. The following
conditions are imposed: 1) No region shares a boundary with
any other region; 2) no gate shares a boundary with any other
gate; 3) every region shares a boundary with at least one gate;
4) if a gate and a region share a boundary, then the boundary
is a connected interval (rather than being a point or being
disconnected). LetR denote the set of all regions andG denote
the set of all gates. The union of allr ∈ R, all g ∈ G, andO
yieldsE.

g4

g1

r1

r2 r3

r5r4

O

O

g2

g3

Fig. 3. An example arrangement of five regions and four gates.

B. Wild bodies

We now place abody b into the workspace. The body is
assumed to be “small” with respect to the sizes of regions,
gates, and their shared boundaries. It is therefore modeled
geometrically as a point even though it may have complicated
shape, kinematics, and dynamics. We assume that the body
moves in a wild, uncontrollable way, but the trajectory satisfies
the following high-level property:

For any regionr ∈ R, it is assumed thatb moves
on a trajectory that causes it to strike every open

2



r3g3r2

r1 g2 r4 r5

g1 g4

r3r2

r1 r4 r5

(a) (b)

Fig. 4. a) A bipartite graph representation of the arrangement of regions
and gates from Figure 3. b) A flow graph that corresponds to oneparticular
composite mode. Each gate configuration allows alternative possible flow
directions between every pair of regions that are adjacent to the gate:g1
allows bidirectional flow;g2 allows no flow; g3 allows flow from left to
right; g4 allows clockwise flow amongr3, r4, andr5.

interval in ∂r (the boundary ofr) infinitely often,
with non-zero, non-tangential velocities.

A body that satisfies this property is calledwild. We can
now imagine that a wild body travels on a path through the
bipartite graph shown in Figure 4(a), with transitions occurring
only if specific gates allow it, which is the next topic.

C. Gate configurations and flow graphs

Every gateg ∈ G has an associated finite setC(g) of
local configurationsthat determine the flow of bodies between
adjacent regions. LetC denote theglobal configuration space,
which is defined as thek-fold Cartesian product ofC(g) over
everyg ∈ G andk = |G|.

Let R(g) denote the regions adjacent to a gateg ∈ G. For
the example in Figure 3,R(g4) = {r3, r4, r5}. For each region
pair r, r′ ∈ R(g), the local configurationc ∈ C(g) could allow
one of four body flows:

1) Allow bidirectional passage betweenr′ andr.
2) Allow passage only fromr to r′.
3) Allow passage only fromr′ to r.
4) Block all passage betweenr andr′.

For each global configuration(c1, . . . , ck) ∈ C, a flow graph
F (c) is a directed graph that is defined as follows. The set of
vertices isR. A directed edge inF (c) exists fromr to r′ if and
only if there exists some gategi ∈ G with r, r′ ∈ R(g) and
g allows passage fromr to r′ while in global configuration
(c1, . . . , ck). Note that a fixed global configuration(c1, . . . , ck)
fixes a particular local configuration inci ∈ C(g). Figure 4(b)
shows an example of a possible flow graph for the regions and
gates of Figure 3.

D. Static and dynamic gates

The “control” in our system occurs by designing the behav-
ior of gates. The simplest case is astatic gate, which means
that |C(g)| = 1, thereby fixing the flow between adjacent
regions. For example, ifR(g) = {r, r′}, then the gateg
might permanently allow bodies to flow fromr to r′, but not
from r′ to r. Otherwise, we obtain adynamic gate, for which
|C(g)| > 1. See Section V-B for examples of implemented
gates.

Once dynamic gates are present, an interesting question
arises: What information is available to use a feedback in pre-
scribing the configuration? This is a standard control issue. For
our purposes, the complete information case will correspond
to each gate having at its disposal the local configuration of
all gates and the region that contains the body (or the regions
corresponding to all bodies, if there are multiple bodies).In
general, however, our systems will operate with less than
complete information by using whatever sensor observations
and information states are available. An interesting problem is
determine the minimal amount of sensing and filtering needed
to solve a specified task in our framework.

III. C ONTROLLING ONE WILD BODY

This section presents a method for designing gates that
effectively control a wild body that must visit regions in a
prescribed way.

A. Specifying tasks in LTL

We want to specify tasks in some high-level way, possibly
starting from structured English or some simple logic. We
chose Linear Temporal Logic (LTL) due to its increasing
popularity and available toolkits; see [13]. The syntax includes
a setΠ of propositions, propositional logic symbols, and some
temporal operators. Formulasφ are constructed from atoms
π ∈ Π using the grammar [11]:

φ ::= π | ¬φ | (φ ∨ φ′) | © φ | φUφ′,

in which U and© are temporal operators meaninguntil and
next, respectively. A formula is consideredtrue or is said to
hold based on the truth values of the propositions at each state
and time and the semantic rules of the various logic symbols
and operators. The full specification of LTL semantics is not
included here. ForφUφ′ to hold, it means that there is a state
at which φ′ holds andφ holds at every state before it. For
©φ to hold, it means thatφ holds at the next state. Other
operators and logic symbols can be derived from the grammar:
conjunction(∧), implication (⇒), equivalence(⇔), eventually
(♦), andalways(�).

We want to express tasks in terms of the regions that are
visited by the body. Therefore, letΠ = {π1, π2, ..., πn} be a
set of Boolean propositions for whichπi is true if and only
if the body is inri ∈ R. Examples of task specifications are
[34]:

• Navigation:♦π1

• Sequencing:♦(π1 ∧ ♦(π2 ∧ ♦(π3 ∧ · · · ♦πk) · · · )
• Coverage:♦π1 ∧ ♦π2 ∧ · · · ♦πk

• Avoiding regions:¬(π1 ∨ π2 · · · ∨ πk)Uπfinal

• Patrolling:�(♦π1 ∧ ♦π2 ∧ . . .♦πk).

B. Discrete abstraction of motion

We now define a discrete transition system

S1 = (R, r0,→1), (1)

in which r0 is the initial region andR is the set of system
states. A discrete transition system can be thought of as a
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directed graph in which paths or walks are possible system
trajectories. The set of vertices isR and the an edge fromr
to r′ exists if the transition relationr →1 r′ is true. There
is an edge fromr to r′ if and only if there exists a gate
some gategi ∈ G with r, r′ ∈ R(g). You can think ofS1 as
representing a maximal flow graph in the sense that it includes
as many directed edges as possible, based only on regions
that are adjacent through some gate. The approach, which is
discussed next, is to determine which particular transitions are
needed to yield a region sequence that satisfies a desired LTL
formula φ.

C. The method

Suppose that an environment contains a setR of regions and
that an LTL formulaφ that expresses the task in terms of the
region-based propositions inΠ. The approach is summarized
as follows:

1) Design a body that is wild with respect to every region
in R.

2) Start the system with the body inr0.
3) Apply a standard model-checking algorithm toφ to

determine a (possibly infinite) region sequencer̃ =
(r0, r1, . . .) that satisfiesφ.

4) Ensure that each transition fromri to ri+1 occurs by
setting the global gate configuration appropriately. The
resulting execution satisfiesφ.

In the third step, widely available model checking software,
such as NuSMV [10] or SPIN [27], can be used to producer̃.

What gate designs are needed to ensure thatr̃ is executed?
Suppose that a transition fromri to ri+1 must occur andg is
the gate through which they are adjacent. If it is known that
the body has arrived inri, then the local gate configuration
c ∈ C(g) should be set so that the flow graph contains an
edge fromri to ri+1 and there is no edge fromri to any
other region.

Depending onr̃, much less information may be needed
during execution to determine the global gate configuration.
Suppose that iñr there does not exist anyi < j for which
ri = rj and ri+1 6= rj+1. In other words, if the body is in
ri = rj , then the next required region is unique and does not
depend on the particular position iñr. Call this theuniqueness
condition. In this case, static gates are sufficient for forcing
the body follow the region sequencẽr and satisfyφ.

D. A simple example

This environment is used for some experiments in Section
V. In Figure 5, there are five regionsR = {r0, r1, r2, r3, r4}
and five gatesG = {a, b, c, d, e, f}, shown in blue. Suppose
that the LTL formula is

φ = ♦(π2 ∧ ♦(π1 ∧ ♦(π0 ∧ ♦π4))). (2)

After running NuSMV on the systemS1 and φ, the se-
quencer̃ = (r2, r1, r0, r4) is returned. Since this satisfies the
uniqueness condition, an implementation with static gatesis
sufficient:

1) Set gatec to allow passage fromr2 to r1.

Fig. 5. An example of an arrangement of five regions and five gates.

2) Set gateb to allow passage fromr1 to r0.
3) Set gatea to allow passage fromr0 to r4.

More complicated examples, which require sensing and the
greater expressive power of LTL are given in Section V.

IV. CONTROLLING MULTIPLE WILD BODIES

Now consider extending the ideas of Section III to control
multiple bodies. The bodies are not able to communicate or
coordinate with each other. However, they are allowed to
collide with each other. Each body is assumed to be wild in
each region, in spite of these collisions. We have observed in
experiments that interference with other bodies does not pre-
vent them from contacting the boundary and becoming wild;
however, in theory this depends on the particular mechanics
of the body.

A. Discrete abstraction for multiple bodies

One of the main issues with multiple bodies is distin-
guishability. To model various cases, a collectionB =
{b1, . . . , bk} of k bodies can be assignedlabelsby a function
λ : B → L. For example,L could be a set of colors,
L = {blue, red, yellow, green}.

At one extreme, the bodies could be completely distinguish-
able. In this case,λ is one-to-one, yielding a unique label for
every body. Each body can then be controlled independently
by using the concepts from Section III. An LTL formulaφi

is defined for eachbi ∈ B. This yields a region sequence
r̃i that satisfiesφi. Imagine the execution. At any time, there
are k flow graphs, one for eachbi. It is possible to design
discriminating gates which allow onlybi to pass. If each body
has its own associated gates and will be blocked by all others,
then everybi is handled independently by its own gates. If the
gates are shared between bodies, however, then conflict occurs
in cases in which bodiesb andb′ are in some regionr: b must
transition tor′, andb′ must transition to another region. The
gate betweenr andr′ must allowb to pass, but blockb′. The
gate’s local configuration space could be designed to generate
this behavior; however, the implementation may be difficult.

At the other extreme, the bodies could be completely
indistinguishable. In this case,λ assigns the same label to
all bodies and there is no reason for the gates to distinguish
between them. Tasks are then described in terms of thenumber
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of bodies in each region. Let adistribution d of bodies
be a k-dimensional vectord = (c1, . . . , cn), in which each
componentci is a nonnegative integer representing the count
(number of bodies) for each region. Fork bodies andn
regions, note thatc1 + · · · + cn = k. Let Dk be the set of
all possible distributions for a givenk (n is assumed to be
fixed well in advance). The size ofDk is

(

n+k−1
k

)

, which
from combinatorics is the number of ways to placek balls
(bodies) inton boxes or urns (regions).

Once the graph of regions and gates is defined, a discrete
transition system of the form

Sk = (Dk, d0,→k). (3)

naturally captures the possible transitions between distribu-
tions of k bodies.

The relationd →k d′ is true if and only if d′ can be
obtained fromd by the passage of a single body through a
gate. This uses region adjacency constraints as in the case of
S1 from Section III-B. For example, suppose there aren = 4
regions andk = 12 bodies. Supposed = (2, 3, 5, 2) and
d′ = (2, 4, 5, 1). For d →k d′ to be true, there must be a
gate between the second and fourth regions, which allows a
body to transition from the fourth region to the second. For
each transition, exactly two components of the distribution
are allowed to change: One is incremented and the other is
decremented.

It is possible to extend the transition systems to the case of
partially distinguishablebodies, which could correspond to as-
signing them nonunique colors. In the limiting case, each body
receives a unique color, making them fully distinguishable. To
make a transition system fork bodies, the state space would be
Rk, which is thek-fold Cartesian product ofR. The transitions
can be assigned in a standard way if the gates are independent;
however, it becomes more complicated if gates are shared
between bodies, as mentioned above. If there arei bodies of
the same color, then the correspondingi components inRk

are replaced byDi to express the distribution ofi bodies, due
to their mutual indistinguishability. These extensions lead to
interesting open questions, however, we restrict the remainder
of the paper to the completely indistinguishable case.

B. The methods

Assume that the initial distribution is given. To express tasks
in LTL, let Π be the set of all propositions of the formπd

for every d ∈ Dk. An LTL formula φ can then be defined
to express any task that involves distributions of bodies across
the regions. The method follows in the same way as in Section
III-C, which yields a distribution sequencẽd = (d0, d1, . . .)
that satisfiesφ. To ensure that the execution follows̃d, each
gate must be aware of the current distribution to allow the
transition, if appropriate. Each time a transition occurs,the
count for the adjacent regions is incrementally modified.

An alternative method will now be given. The solutions so
far are deterministic in the sense that the sequencer̃ or d̃ must
be predictably executed. However, it is usually that case that
many alternative sequences would also satisfy the formula.For

the case of a single body, it might not be necessary to force
it along the precise sequencẽr of regions. For the case of
multiple bodies, the situation is even worse because the bodies
are prescribed to follow a precise sequenced̃ of distributions.
For example, to arrive from a distribution of(4, 0, 0) to
(0, 0, 4), the first transition should be(4, 0, 0) → (3, 1, 0).
In the next transition, however, both(3, 1, 0) → (3, 0, 1) and
(3, 1, 0) → (2, 2, 0) make progress toward the goal.

For the simple task of navigating one body to regionrg,
a nondeterministic flow graph that solves the problem can be
constructed as follows. Define a distance functionρ : R → N,
in which ρ(r) is the number of regions encountered on the
shortest path in the bipartite graph (recall Figure 4) fromr to
ri. Note thatρ(rg) = 1. The values ofρ can be calculated by
simple breadth-first search over the graph. Each static gateg

can be configured as follows: Ifρ(r) < ρ(r′) for a pairr, r′ ∈
N(g), thenm ∈ M(g) is set to allow flow fromr′ to r. In
the flow graph, this construction generally allows multipleout
edges from a single region. It does not matter which gate the
body crosses in this case; any gate transition causes progress
to be made.

C. A simple example

For the case of completely indistinguishable bodies, Fig-
ure 6(a) shows an example that has three regionsR =
{r1, r2, r3} and three gatesG = {a, b, c}. Suppose that
each gate allows the bodies to transition in either direction,
depending on its configuration. The discrete transition system
S2 is given by (3) fork = 2. A distribution sequencẽd for
S2 corresponds to a walk through the graph shown in Figure
6(b). Each edge is labeled with the gate that is crossed by the
body that caused the transition.

a

cb

2

1 3

c

b aa b

c

c

a b

(a) (b)

Fig. 6. a) An example with three regions, three gates, and two bodies; b)
a graph that for which the vertices areD2, the set of possible distributions,
and the edges correspond to possible transitions.

Consider the following task. Suppose that both bodies are
initially in r1, as shown in Figure 6(a). The task is to bring
them tor3, then r2, and then return tor1. A corresponding
LTL formula is

♦(π(2,0,0) ∧ ♦(π(0,0,2) ∧ ♦(π(0,2,0) ∧ ♦π(2,0,0)))). (4)

A possible solution trajectory forS2 is depicted in Figure 7
as a sequence of body distributions for which transitions are
caused by setting gate directions.
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a b

c

a b

d2 d3 d4

d5

d6d0

d1

Fig. 7. An example sequencẽd = (d0, . . . , d6) of distributions that satisfies
the LTL formula given in (4).

(a) (b)

Fig. 8. a) The vibrating Hexbug Nano toy also exhibits the wild property
and is used in experiments; b) it in fact comes equipped with a “habitat” that
it nicely explores.

V. EXPERIMENTS

We designed and developed low-cost hardware to illustrate
the methodology. For the executions, the printed frames in this
section do not do justice to the execution of the system. Full
videos appear at

http://msl.cs.uiuc.edu/dts/

A. Wild body implementations

The first task is to find bodies that appear to fulfill the
wildness condition of Section II-B. The main body used in our
work is the weasel ball, which was shown in Figure 1. It costs
around $4 US and consists of a plastic ball of radius8.5cm that
has only a single offset motor inside which oscillates at about
2Hz. We performed hundreds of experiments that consisted
of placing one or more balls into regions and observing their
motions. Without fail, they easily strike any reachable place
along the boundary of a region, therefore becoming a suitable
candidate for a wild body. We acknowledge, however, that no
model of its mechanics is provided here and it is not formally
proved to be wild. It is only verified experimentally.

An alternative to the weasel ball is theHexbug Nano(Figure
8), which is a cheap (around $10 US) vibrating toy that looks
like the end of a toothbrush with rubberized bristles and a
vibrating motor mounted on top. This highly popular toy has
been demonstrated to explore complex habitats with regions
and gates, which can be purchased. In this case, the gates are
opened (allowing bidirectional flow) or closed (blocking all

(a) (b)

Fig. 9. a) A sample trajectory from a body that moves straight and then
bounces at a random angle; b) a sample trajectory for the case of bouncing
at the angle of incidence (as in an ideal billiard ball).

(a) (b)

(c) (d)

Fig. 10. A simulation of200 robots in a complex environment with10
regions. Each robot moves straight until it hits a boundary and then reflects
at a random angle. The robots are guided from the upper left region to the
lower right region using static gates.

flow) manually by the user. Recent kits even provide static
gates that permit flow in one direction only.

Numerous other possibilities exist for wild bodies. Simple
robot platforms can be used, which incorporate sensor feed-
back to determine that boundary contact has occurred. For
example, consider a differential drive robot with a contact
sensor. The robot rolls straight until it hits a wall. It then
rotates a random amount and continues moving straight.
Simulation trajectories are shown in Figure 9(a) for this motion
model. Another reasonable motion model is to deterministi-
cally bounce, like in the Bunimovich stadium (recall Figure

(a) (b) (c)

Fig. 11. Some simple robots that we have used to implement the straight-line
motion with random bouncing: a) A Roomba iCreate; b) a simple home-brew
robot made from a pager motor (total cost less than $30 US); c) a SERB
open-source robot constructed from acrylic, cheap motors, and an Arduino
microcontroller (total cost less then $120 US).
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(a) (b)

Fig. 12. a) A static, directional gate can be implemented makinga flexible
“door” from a stack of paper; in this case, the body can transition only from
the bottom region to the top; b) this works much like a “doggie door”.

(a) (b)

Fig. 13. A pliant gate with two modes: a) a ball can pass from left to right,
but its blocked the other way; b) a ball can only pass from right to left.

2); see Figure 9(b). Figure 10 shows200 simulated robots
accomplishing a simple task under these bouncing models.
We have implemented the random bounce angle model in
several robots, which are shown in Figure 11. Experiments
with simple, wild mobile robots are covered in [3]; however,
this paper is restricted to simpler bodies.

B. Gate designs

Recall from Section II-D that gates may be either static or
dynamic. A simple way to engineer a successful static gate
is illustrated in Figure 12. A body moving from the bottom
region to the top region can pass through the right side by
bending the paper; a body moving in the other direction is
blocked. This simple setup was reliable in experiments. In
other experiments, we have used ramps and ledges as static
gates that allow flow in one direction only.

Now consider dynamic gates. There are two categories of
dynamic gates, depending on whether external energy is used
to actuate the gates. If the gate configuration changes only as
a result of forces applied by the passing body, then the gate
is calledpliant. Otherwise, it is called acontrollablegate.

First consider the case of a pliant gates. Figure 13 shows
a simple example in which an “L”-shaped door is placed on
a swivel base. In this case, the door is made of cardboard
panels attached to a straw. The door pivots when the body
passes through. Figure 14 shows an experiment that illustrates
this for five weasel balls. On its own, this gate enforces the
constraint that the number of bodies per room must remain
roughly constant, even though any ball is allowed to pass
in either direction. This behavior can be thought of as an
alternating prisoner exchange.

(a) (b)

(c) (d)

Fig. 14. a) Initially, two bodies are in the right region and three are in the
left; the gate configuration allows a right to left transition; b) after18 seconds
a body crosses right to left, changing the gate mode; c) after40 seconds a
body moves left to right, changing the gate configuration again; d) number
of bodies in each region alternates between two and three forthe rest of the
experiment.

(a) (b)

(c) (d)

Fig. 15. a) Initially, the five bodies are together in one region and only
clockwise transfers are allowed; b) after20 seconds a body changes regions
and counterclockwise transfers are allowed; c)5 seconds later a body changes
regions; d) after92 seconds, the bodies occupy all four regions.

We also designed and implemented a four-way revolving
door, which is a pliant gate that has four adjacent regions.
It is only allowed to rotate up to90 degrees and alternates
between two modes: 1) Allowing a clockwise transfer and
2) allowing a counterclockwise transfer. An experiment with
five weasel balls is illustrated in Figure 15. Our final pliant
gate design is shown in Figure 16. In this case, the gate
configuration determines which region will receive the body,
which alternates after each transition.

Many interesting open questions remain with regard to
pliant gates. What is the family of tasks that can be solved
entirely using pliant gates? What types of mechanisms for
pliant gates can be designed? This depends on the body design.
Is it possible to allow capacitance by storing and then releasing
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(a) (b)

(c) (d)

Fig. 16. This pliant gate alternates between the destination regions by using
a rotating “T” shape. a) Initially, two bodies are in one region; b) the gate
transfers the first body to the upper region; c) the gate then transfers the
second body to the lower region; d) both bodies become trappedin separate
regions. If there are2n bodies in the initial region, then this gate would place
n bodies in each destination region.

(a) (b) (c)

Fig. 17. The three gate configurations: a) the gate allows a body to cross in
the left to right direction, b) the gate prevents bodies fromcrossing in either
direction, and c) the gate allows an body to cross in the rightto left direction.

bodies? Would this allow additional tasks to be accomplished?
Now consider controllable gates. In this case, what infor-

mation is available to determine when to change the configu-
ration? This requires the incorporation of sensors that provide
necessary information during execution.

Our controllable gate is made from a piece of acrylic in
the form of aramp. By tilting the ramp, the direction of the
gate is altered, and we can obtain three gate configurations to
execute the gate actions, as seen in Figure 17.

The acrylic ramp element is attached to Futaba S3003 servo
motors using standard servo horns. Servo motors were chosen
for this application because they are inexpensive (around $8
US each) and allow precise control of output angle by the
use of negative feedback. Additionally, the only control input
required is a Pulse-Width Modulation (PWM) signal, which is
easily generated by most microcontrollers.

Simple sensor feedback is provided to the gate. A body
crossing is detected through the use of optical emitter-detector
pairs. Laser pointers were chosen because they are inexpensive
(about $3 US each) and easily aimed. The laser pointers
were modified to run on external battery packs and held in
place by simple armature mounts (about $3 US each). Simple
photodiodes (about $2 US each) were mounted on the opposite
side to detect the laser beams.

A change in voltage is observed when a body crosses
the beam, thereby blocking the laser beam from reaching

(a) (b)

Fig. 18. a) A ball that has just crossed the gate interrupts the laser beam,
while b) a body simply moving within a region does not interruptthe laser
beam, which is visible just above the ball in the picture.

the photodetector. As can be seen in Figure 18, the laser
beam/photodetector pairs are placed so that only an body
which has just crossed a gate causes a beam crossing.

As previously mentioned, the ramp-type gates are imple-
mented using servo motors. The angular position of these
servo motors is determined by the duty cycle of the PWM
signal they receive. For this purpose, we used an Arduino
Mega microcontroller board based on the Atmel ATmega1280
microcontroller. This platform was chosen because it is easy
to configure and inexpensive (about $35 US). Additionally,
Arduino documentation and code examples are plentiful.

C. Single-body experiments

Several experiments are presented using the method pre-
sented in Section III-C. We chose typical tasks specified using
LTL, similar to those in [34]. If the solution region sequence r̃

enabled it due to the uniqueness condition of Section III-C,we
solve the problem using static gates. Otherwise, the systemof
controllable gates, as described in Section V-B were sufficient
for enforcing any solutioñr to be achieved during execution.

Several experiments were conduced with a weasel ball in
an environment of approximately2 by 3 meters and five gates;
see Figure 19. For the region and gate names, recall Figure
5. The specification of the task that we would like to achieve
is: “Starting in r2, go to r4”. An LTL formula that captures
this specification isφ = ♦π4. We applied NuSMV on the
corresponding discrete transition systemS1 and the formula
φ. The output region sequencẽr = (r2, r3, r4) implies that
gatesd ande should allow transitions fromr2 to r3 and from
r3 to r4. The execution is shown in Figure 19.

We also demonstrated patrolling by introducing the LTL
formula

φ = �(♦π0 ∧ ♦π1 ∧ ♦π3), (5)

which means thatr0, r1, and r3 must be visited infinitely
often. An infinite sequencẽr that cycles through all regions
was returned by NuSMV. A gate configuration that implements
the sequence is shown in Figure 20 along with part of the
actual execution. The ball visits attempts to visit the required
regions infinitely often (in reality, its battery dies).

Figure 21 shows an example in which regions must be
visited in a particular sequence. Suppose that we want a
subsequence of̃r to visit regions in the following order:r0
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(a) (b)

(c) (d)

Fig. 19. “Starting inr2, go to r4”: a) The weasel ball is placed initially in
r4 (leftmost); b) after30 seconds strikes gated and entersr3; c) after105
seconds it strikes gatee and d) moves intor4, which completes the task.

(a) (b)

(c) (d)

Fig. 20. “Patrol regionsr0, r3 and r1”: a) The ball starts its route; b)
after107 seconds it has entered two new regions; c) after212 seconds it has
visited most regions; d) after225 seconds, it completes a tour of all regions,
and continues.

(upper right),r1 (upper left),r2 (lower left), r3 (lower right),
r2, r1, r0. An LTL formula that achieves this is

φ = ♦(π0∧♦(π1∧♦(π2∧♦(π3∧♦(π2∧♦(π1∧♦π0)))))).
(6)

The experiment for this example appears in Figure 21.
Finally, Figure 22 shows a more complicated example. The

LTL formula that describes the task is:

φ =π1 ∧©�(¬π1 ∧ ♦π2 ∧ ♦π3 ∧ (π5 → ©π4)∧

∀j 6=4(((π4 ∧©πj) → ¬♦(πj ∧©π4))

∧ ((πj ∧©π4) → ¬♦(π4 ∧©πj))))

(7)

Starting inr1, we want the robot to patrolr2 andr3, requiring
that the body moves tor5 after being inr4 (and not reversed),
and all flows incident tor4 are constrained to move in one
direction for all time ; moreover,r1 must be avoided once
it is visited. In 0.031 seconds, the NuSMV package (running
under Ubuntu 10.04 on a PC with Intel Core 2 Quad 2.4GHz

(a) (b)

(c) (d)

Fig. 21. A coverage task: a) The body crosses into the upper-left region;
b) after15 seconds, the body crosses into the lower-right region, completing
the coverage; c) after50 seconds, the body crosses into the upper-left region
on the return trip; d) after240 seconds, the body returns to the upper-right
region.

r2r1

r4r3

r5

Fig. 22. An example that involves5 regions and8 gates.

processor and 4GB of memory) returned the infinite sequence

r̃ = r1(r5r4r2r5r4r3)
+ (8)

in which + denotes that the subsequence repeats forever. This
was by far the longest running time of any applications of
NuSMV to our LTL formulas for a single body. The policy was
successfully implemented in simulation. Note that it cannot be
implemented with static gates becauser̃ does not satisfy the
uniqueness condition from Section III-C.

D. Multiple-body experiments

The first two experiments in this section apply the first
method of Section IV-B. The controllable gate setup shown
in Figures 17 and 18 is sufficient to implement any sequence
of body distributions produced by a model checker. Using
the controllable gates, we implemented several tasks, suchas:
“Starting with all four bodies inr0 (upper-right), cover all
four regions simultaneously and then meet again inr3 (lower-
right)”. One way to achieve this is to define

φ = ♦(π(1,1,1,1) ∧ ♦π(0,0,0,4)). (9)

See Figure 23 for the implementation.
The second experiment involves two bodies in the environ-

ment shown in Figure 22. For this task we want the bodies
to meet in all of the outer regions (r1, r2, r3, r4) for dual
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(a) (b)

(c) (d)

Fig. 23. A group splitting and coverage example: a) The 4 bodies begin
together in the upper-right region; b) after 37 seconds the bodies begin to split;
c) after 45 seconds bodies have split completely into independent regions; d)
after 240 seconds bodies reconvene in the lower-left region.

patrolling (two at a time in a region) of each region;r5
is constrained to have space for only one body at a time;
moreover, afterr1 is visited, at least one body has to be there
until r4 is visited; the same restriction holds for regionsr3
andr2, respectively. Also, after any of the bodies visitsr5, it
must move tor4. The corresponding LTL formula is

φ =�(¬π(0,0,0,0,2) ∧ ♦π(2,0,0,0,0) ∧ ♦π(0,2,0,0,0)∧

♦π(0,0,2,0,0) ∧ ♦π(0,0,0,2,0)∧

((π(1,0,0,0,1) ∨ π(1,0,0,1,0) ∨ π(1,0,1,0,0) ∨ π(1,1,0,0,0)) →

((π(1,0,0,0,1) ∨ π(1,0,0,1,0) ∨ π(1,0,1,0,0) ∨ π(1,1,0,0,0)∨

π(2,0,0,0,0))Uπ(1,0,0,1,0)))∧

((π(0,0,1,0,1) ∨ π(0,0,1,1,0) ∨ π(0,1,1,0,0) ∨ π(1,0,1,0,0)) →

((π(0,0,1,0,1) ∨ π(0,0,1,1,0) ∨ π(0,1,1,0,0) ∨ π(1,0,1,0,0)∨

π(0,0,2,0,0))Uπ(0,1,1,0,0)))∧

((π(1,0,0,0,1) ∨ π(0,1,0,0,1) ∨ π(0,0,1,0,1)) →

© (π(1,0,0,1,0) ∨ π(0,1,0,1,0) ∨ π(0,0,1,1,0)))∧

(π(0,0,0,1,1) → ©π(0,0,0,2,0)))
(10)

The NuSMV package found the following solution in 0.304
seconds:

d̃ = ((2, 0, 0, 0, 0), (1, 0, 0, 0, 1), (1, 0, 0, 1, 0), (0, 0, 0, 1, 1),

(0, 0, 0, 2, 0), (0, 0, 1, 1, 0), (0, 0, 2, 0, 0), (0, 0, 1, 1, 0),

(0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 2, 0, 0, 0), (1, 1, 0, 0, 0),

(2, 0, 0, 0, 0)),
(11)

which is a distribution sequence that satisfiesφ. This solution
was implemented in a simulation of the bodies and gates.

Now recall the alternative method from Section IV-B, which
allows nondeterminism to move multiple bodies to a goal
region rg. Figure 24 shows a navigation task which modes4
bodies fromr4 to r2. In another experiment, shown in Figure
25,50 weasel balls are guided from a starting to a goal region,

(a) (b)

(c) (d)

Fig. 24. Navigation with multiple balls: a) Four weasel ballsare started in
the left-most region; b) after48 seconds some progress is made; c) after262
seconds, all but one ball have arrived at the destination; after 270 seconds,
all four balls have arrived.

Fig. 25. In this experiment,50 weasel balls were successfully manipulated
from a source region into a destination region.

in an environment with6 regions and6 gates. The regions are
complicated shapes, some with interior obstacles, and the gates
are narrow. It took around40 minutes for all50 balls to arrive
in the goal due complicated regions, small gates, and a long
tail distribution on arrival times. A nondeterministic version
of patrolling with multiple bodies is shown in Figure 26.

Some experiments are also shown for the case of Hexbug
Nanos. By placing a small piece of paper in the doorway
between two regions, we have implemented a simple way
to enforce one-way flow. The paper is allowed to bend in
one direction, but is blocked in the other. Figure 27 shows
an experiment in which4 Nanos were induced to flow from
the leftmost region to the rightmost region by designing two
one-way gates out of strips of paper. Figure 28 shows another
experiment. In this case, a small environment was constructed
from inexpensive Magna-Tiles and10 Nanos are controlled to
flow from an initial region to a goal region. In this case, each
gate was implemented by stacking tiles on the ground. Each
tile is approximately5mm wide. To induce a flow from region
r to region r′, we stackn tiles to make the floor ofr, and
(n− 1) tiles for the floor ofr′. Each Nano then experiences a
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(a) (b)

(c) (d)

Fig. 26. “Patrol all regions indefinitely”: a) 8 bodies are placed in arbitrary
regions and static gates are configured in a cycle; b) 3 minuteslater, most
bodies have changed places; (c) after 6 minutes the patrolling continues; d)
configuration 12 minutes after the initial setup

(a) (b)

(c) (d)

Fig. 27. Navigation of Hexbug Nanos: a) Initially, all the four Nanos are
together in the left region; b) after10 seconds one Nano changes regions; c)
after 17 seconds one Nano crosses from the second region to the third;d)
after 70 seconds all Nanos are in the third region.

small dropoff on the boundary betweenr andr′ and is unable
to return tor from r′. This induces the directional flow.

It is clear from these examples that allowing nondetermin-
istic region transitions leads to dramatic complexity reduction
and performance improvements. We would ideally like to take
complicated LTL formulas and synthesize an automaton that
expresses all region sequences that satisfy the formula while
simultaneously determining what sensors and gate configura-
tion combinations are sufficient for achieving the task. This
remains for future work.

VI. CONCLUSIONS

We developed an approach to solve a variety of common
robotic tasks by placing wildly moving bodies into a com-
plicated environment and then gently guiding them through
gates that can be reconfigured. This avoids many common
difficulties such as system identification, heavy sensing, filter-

(a) (b)

(c) (d)

Fig. 28. A Nano experiment involving4 regions (red, yellow, blue, and
white). The task is to move10 Nanos from the red region to the white region:
a) Initially, all 10 Nanos are placed on the highest platform (the red square at
the bottom); b) after5 seconds, significant progress has been made; c) after
8 seconds the first Nano arrives in the white goal region; d) after 44 seconds,
all 10 Nanos arrive in the goal region.

ing and estimation, map building, localization, coordination,
and communication. Tasks can be specified using a high-
level logic, such as LTL, and then gate configurations are set
to satisfy the formula and achieve the desired task. Several
experiments were shown for weasel balls and Hexbug Nanos
performing tasks such as navigation, patrolling, and coverage.
Various types of gates were designed, including static, pliant,
and controllable with sensor feedback. With the successes so
far, it seems we have barely scratched the surface on the set
of possible systems that can be developed in this way to solve
interesting tasks.

Designing information-feedback plans:A remaining chal-
lenge is to formally characterize the minimal amount of sens-
ing information that is needed to switch gate configurations
and accomplish desired tasks. For each task the requirement
may be different. Aplan or control law can generally be
expressed as an information-feedback mappingπ : I → C,
in which C is the global configuration space for gates and
I is an information spacethat takes into account actuation
histories and sensor observation histories (see Chapter 11of
[37]). Recall that for each global configuration, there is a
corresponding flow graph. We can therefore imagineπ as
specifying a dynamic flow graph, which changes its flow as
new information becomes available.

There are many possible choices forI, depending on the
kind of sensors and filters that are developed. By taking a
minimalist approach, we use the weakest sensors and filters
that can nevertheless accomplish the task. Therefore, we avoid
the case in which each information state inI specifies the
precise configuration and velocities of every body and the
configurations of all of the gates. We could considertime
feedback, for which I = T = [0, t], an interval of time.
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We will also use simple sensors that detect whether a body
has passed in or out of a gate. IfY represents the set of all
sensor outputs, then we obtainsensor feedbackplans of the
form π : Y → C. For the experiments of Section V sensor
feedback was sufficient to switch the gates. More generally,the
sensor readings could be aggregated into a filter that updates an
information state after each new reading. The filter information
state is then used as feedback for the plan. See [38] for related
details.

Analyzing execution times:Another important direction is
to analyze the time it takes to enter the gate for various motion
models, region shapes, and gate widths. Can objective criteria
be formulated for the motion and then optimized through a
simple motion strategy for the body? Furthermore, statistical
analysis might enable us to predict the expected time to
completion for a task, which is currently a weakness of our
approach.

Toward useful applications:To achieve more useful tasks,
we envision enhancing the bodies with limited amounts of
sensing, controllable actuation, and computation. This sub-
stantially changes the power of the bodies. For example, a
body can use its sensors and decide on the gate configuration
for itself. This results in a “virtual” gate, much in the same
way that artificial walls can be set up when using the popular
Roomba vacuum cleaner. For example, suppose that region
boundaries are simply marked on the floor by colored tape. We
have performed some early experiments in which an iRobot
Create equipped with a cheap color sensor can move over
colored tape on the floor, deciding whether to “bounce” from
the tape or pass through it, depending on the mode. The tape
and color sensor simulate the gate. This extension has worked
well in recent experiments and appears in [3].

We hope to develop wild bodies that solve more useful tasks.
As a step in this direction, we have equipped one weasel ball
with a small Wi-Fi module and microcontroller, allowing it
to use Wi-Fi connections while wilding moving around. This
enables more interesting tasks to be performed, such as Wi-
Fi-based SLAM [18]. Better performance could be obtained
from a specialized radio signal source. We imagine that a
collection of wild bodies would be useful for exploration and
mapping if equipped with appropriate sensors for this purpose.
As another task, we could equip each body with an Annoy-
a-tron circuit board, which costs around $13 US and emits a
loud, piercing sound at irregular intervals, without warning.
We could program the bodies to diffuse in a hostile indoor
environment and then switch into an “annoy” mode during
which the building inhabitants are constantly distracted by
tiny devices stationed in unknown locations. To accomplish
more tasks, the basic control and coordination is provided
by allowing wild motions and traveling through the discrete
transition systems, and we are free to enhance the robots
however we like.
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