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Mobile robots combine three kinds of systems:

1. Actuation: Powered mechanical systems that cause motion.
Examples are motors, thrusters, and propellers.

2. Sensing: Devices that output signals in response to external stimuli.
Examples are cameras, laser scanners, and microphones.

3. Computation: One or more digital processors (CPUs) with memory.
Examples are laptops, embedded processors, and microcontroller boards.

Actuation is the topic of this chapter: If a signal is sent to the actuation system,
what happens? The robot should move in some desired way. Ideally, it should move
predictably. In reality, it may move mostly as desired but with some unpredictable
errors. In either case, we want to characterize what will happen so that we can
add in the other two systems. Sensors will provide information that is used to
decide whether to change the signals to the actuation system. Computation may
be needed to process the sensor readings and all prior information, and make a
decision that helps solve the task. Sensors and computation are the subjects of
later chapters.

2.1 Mechanical Hardware

Robot locomotion is a general subject that addresses ways in which a mobile robot
could move. Locomotion is an old branch robotics, yet remains one of the most

25

26 S. M. LaValle: Mobile Robotics

Figure 2.1: A few legs that clumsily “roll” along can be considered as a rimless
wheel. Increasing the number of legs gradually produces a wheel.

active areas of research. The particular choice of locomotion method depends on
many factors, such as:

1. Medium: What kind of environment will the robot traverse? Examples are
rugged terrain, factory floors, air, space, on top of water, and under water.

2. Stability: Will the robot platform shake, vibrate, or tumble while moving?
The robot might need to carry a camera that streams video without making
viewers sick. Alternatively, perhaps the robot carries delicate materials.

3. Payload: How much weight will the robot be required to carry?

4. Energy consumption: Mobile robots are notoriously limited by their bat-
tery capacity. Low-energy methods of locomotion contribute greatly to their
longevity.

5. Durability: Can the robot survive extended use in harsh conditions such as
cold weather, snow, rain? Can the robot overcome collisions with obstacles
and other robots?

6. Cost: The lower the cost, the greater the likelihood that the robot will be
mass produced, which leads to greater impact on society.

Thousands of robot designs exist, which each address these factors in different
ways. Chapter 1 showed robots that perform legged locomotion by walking through
indoor and outdoor environments. Refer to Figures 1.5(e) and 1.6. An important
design consideration is the gait, which specifies the motions of legs and the order
in which feet are placed on the ground and removed from the ground. Ensuring
stability while one or more feet are not touching the ground is a challenging prob-
lem. Other methods of locomotion that involve gaits include slithering snakes, the
swimming robot of Figure 1.9(a), and the vibrating bug in Figure 1.13. Locomo-
tion may also be achieved by thrusting, as in the case of the autonomous motor
boat in Figure 1.9(b), the UAV in Figure 1.9(c), and the quad-rotor helicopter in
Figure 1.10.
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Figure 2.2: A low-cost robot built at the University of Illinois by extending the
SERB open-source mobile design. The wheels and platform are cut from acrylic
sheets. Each wheel is connected to a servo, and an Arduino microcontroller pro-
vides commands.

Finally, the oldest and most common form of locomotion was offered by the
invention of the wheel. By comparing to the rimless wheel shown in Figure 2.1,
rolling locomotion is the beautiful limiting case of having an infinite number of
legs that continuously move in unison. This case will be the main focus for the
remainder of this chapter; however, keep in mind that mathematical models of
other locomotion methods have similar forms. Most of the robots from Section 1.1
move by rolling.

For rolling locomotion, each wheel is usually connected to an axle that is turned
by a motor. A simple, low-cost design is shown in Figure 2.2. At the high end,
virtually any car, truck, or construction vehicle that has been designed for human
use has been retrofitted for automated driving. An example is the Google car from
Figure 1.5(c). Large robotic vehicles at the high end use sophisticated electrical
and mechanical systems that incorporate sensor feedback and gearing to deliver
predictable, reliable performance. Most of these build on extensive automotive
technology that has been developed over the past century. In addition, many un-
usual rolling locomotion systems have been designed specifically for mobile robots.
For example, the Mecanum (or Swedish) wheel (Figure 2.3) can roll both forward
as an ordinary wheel and perfectly sideways, which is quite unusual. This greatly
increases the robot’s mobility, an issue which becomes important in this chapter.

At the “unsophisticated” extreme, low-end robots can be constructed from
simple components with a minimal amount of wiring and assembly skills. It is
worthwhile to read popular, hobbyist robotics books (and build some robots!) to
become familiar with widely available components []. Each wheel axle is normally
attached to the armature of a battery-powered, DC (direct current) motor. Step-
per motors are a common choice because the 360-degree rotation cycle is divided
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Figure 2.3: In 1985, the CMU URANUS mobile robot achieved omnidirectional
rolling by driving four Mecanum wheels, which were invented by Bengt Ilon.

(a) Lego NXT servo (b) Hobby servos

Figure 2.4: Cheap, common servo motors: (a) A servo included in the Lego Mind-
storm NXT robot kit. (b) A couple of servos that often appear on hobby vehicles,
such as remote-controlled cars. (Source: Wikipedia)

into a predetermined number of steps. This allows more accurate prediction of
the amount of wheel rotation. The system should be well calibrated so that the
number of steps can be reliably commanded and predicted. A precise clock signal
can be used to provide voltage pulses to the motor for prescribed time periods.
Ultimately, performance is greatly improved by using a servo motor (or servo),
which incorporates sensor feedback to ensure that the commanded amount of ro-
tation has been achieved. Examples of commonly used servos are shown in Figure
2.4. Servos can alter the steering direction of a robot in addition to driving its
wheels.

The remaining sections of this chapter describe the effects of commands that
are given to the mobile robot. A command is a digital signal that is converted
into wheel actuation using a circuit such as the H-bridge shown in Figure 2.5(a).
The battery is connected to the motor, but there are four controllable switches. A
cheap solid-state device, shown in Figure 2.5(b), is used to convert digital signals
into opened or closed switch configurations. Table 2.1 describes the response of
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(a) (b)

Figure 2.5: (a) An H-bridge circuit, which is a standard way to control a robot
motor. The power source and motor are represented inside of circles labeled “V”
and “M”, respectively. There are four switches, S1 to S4, that can be independently
open or closed. (b) A solid-state MOSFET device that implements the H-bridge.

S1 S2 S3 S4 Result
1 0 0 1 Actuate wheel in forward direction
0 1 1 0 Actuate wheel in reverse
0 0 0 0 Allow the wheel to coast
0 1 0 1 Apply braking to stop the wheel quickly
1 1 0 0 Short circuit (useless)

Table 2.1: The effects of five switch configurations from the H-bridge circuit from
Figure 2.5(a). A “0” indicates that the switch is open, and “1” indicates closed.
The remaining nine possible configurations each produce one of these five results.

the motor for several configurations of the switches.

2.2 Kinematics of Perfect Rolling Robots

The section describes the kinematics of rolling robots. The term kinematics means
the geometry of motion without describing the forces that cause it. Every robot in
this section is modeled as a rigid platform that has attached wheels. Wheels are
able to rotate, but some are driven by a motor and others just passively roll. In
some cases, the direction that the wheel is pointing may also rotate with respect to
the platform. If the direction is driven by a motor, then the robot can be steered.
We want a precise account of where the robot will go when motors are turned on
and the wheels are rolling. The robots are considered “perfect” in this section in
the sense that they behave in a predictable way that can be described with simple
equations. Section 2.4 covers the case in which they become less predictable due
to bumpy surfaces, slipping wheels, dying batteries, and so on.
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(a) (b)

Figure 2.6: (a) The mobile robot moves in an infinite plane, with positions specified
by x and y coordinates. (b) When the robot is placed at configuration (x, y, θ), it
is moved from its home configuration (depicted by dashed lines) into the shown
position and orientation.

2.2.1 Single-Wheel Drive

To begin talking about the motion of a mobile robot, we will use the coordinate
system shown in Figure 2.6(a). The robot moves along a “floor” that is the XY -
plane and extends infinitely in all directions. The position and orientation of the
robot platform will be called the configuration. To uniquely describe every possible
configuration, we will use three parameters: x, y, and θ, which are written together
as (x, y, θ). See Figure 2.6(b). The “home” configuration of the robot is (0, 0, 0).
The special point is a location on the robot that has coordinates (0, 0) when the
robot is at its home configuration. Any other configuration (x, y, θ) means that
the special point on the robot is at position (x, y), and the robot is rotated by θ
with respect to its home configuration. The x and y parameters may take any real
value; however, to eliminate redundancy, θ is limited from 0 to 2π (including 0,
but not 2π).

Any point (xp, yp) on the robot when it is in its home configuration will end
up at

(x+ xp cos θ − yp sin θ, y + xp sin θ + yp cos θ) (2.1)

if the robot is at configuration (x, y, θ). This is derived by first rotating the robot
by θ and then translating (shifting) it by x in the X-direction and y in the Y
direction. Using a 2× 2 rotation matrix,

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

, (2.2)
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Figure 2.7: If wheels oriented in the directions shown, then is it possible for this
platform to roll without any wheels skidding?

the rotation part can be written as

(

xp cos θ − yp sin θ
xp sin θ + yp cos θ

)

= R(θ)

(

xp
yp

)

. (2.3)

To perform the translation part, x is added to the first coordinate, and y to the
second. This yields (2.1).

Now consider attaching small wheels to the platform. Each wheel has a direc-
tion with respect to the X axis, when the robot is at configuration (0, 0, 0). See
Figure 2.7. Here is a fundamental kinematics question:

If some wheels are placed at specific positions and directions on the
platform, under what conditions is the platform capable of rolling?

If the wheels are not aligned in a proper way, then some wheels may roll while
others are skidding. How do we ensure that all wheels will roll?

One of the easiest ways to ensure rolling is to point all wheels in the same
direction, as shown in Figure 2.8(a). Many other wheel placements will work,
however, by considering an important concept from kinematics called the instan-
taneous center of rotation (ICR). Draw a line in the XY plane that is centered on
the wheel and is perpendicular to its direction. In other words, it is the axis about
which the wheel rotates, but projected down into the XY plane. If all of the lines
intersect at one point, then their common point of intersection is called the ICR.

Our fundamental kinematics has a simple answer. The platform will roll if
and only if all lines are parallel or there is an ICR. Figure 2.8 shows examples.
If the lines are parallel, then the robot will rotate along a straight line. If there
is an ICR, then the robot will rotate along a circular arc. The ICR is the center
of the circle that contains the arc. In the case of parallel lines, imagine that the
ICR is infinitely far away, in a direction perpendicular to the lines, and the robot
moves along a circle of “infinite radius”. All of our rolling robot models will be
constructed from the ICR principle.
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(a) (b) (c)

Figure 2.8: A top-down view of the wheels under a platform and their fixed di-
rections: (a) If all wheel lines are parallel, then straight rolling occurs. (b) In this
case, no instantaneous center of rotation (ICR) exists and the robot cannot roll.
(c) The robot rolls with every wheel traversing a circle that is centered at the ICR.

(a) (b)

Figure 2.9: (a) A classic tricycle. (b) An old robot version: The Neptune robot at
Carnegie Mellon University in 1984. Motors handle the “pedaling” and “steering”.
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Figure 2.10: The important parameters of a tricycle.

For a simple illustration, consider pedaling a tricycle (Figure 2.9(a)). The
front wheel is powered by pedaling and is steered by turning the handlebars. Figure
2.9(b) shows an old robotic equivalent of this. Figure 2.10 depicts the arrangement
of wheels. The front wheel is shaded to indicate that it is powered. The white
wheels rotate passively and are always directed forward. If the front wheel is
pointing straight ahead, then clearly the robot moves straight and forward. If
front wheel is turned left, as shown in Figure 2.10, then it traverses a circle,
centered at the ICR.

We will now try to determine the configuration of the robot after it is driven.
Suppose the robot starts at configuration (0, 0, 0) and the front wheel is steered to
the left by angle φ > 0. See Figure 2.10. Let (xc, yc) denote the coordinates of the
ICR. In this case, xc = 0 and yc = ℓ/ tanφ. To derive the position of yc, note that
a right triangle is formed by the line through the special point and the front wheel
center, and the two lines perpendicular to the wheels. The base of the triangle
is ℓ and the height is yc. Its upper interior angle is φ; hence, from trigonometry
tanφ = ℓ/yc. The triangle height is also the radius rc of the circle traced out by
the robot special point as it rolls. The circle is centered at the ICR: (xc, yc). Note
that as φ decreases to zero, rc = yc increases to infinity. In the limiting case when
φ = 0, the robot rolls straight, and the ICR does not exist (or is “at northern
infinity”).

If the front wheel rolls distance dw along the circular arc, then what is the
position and orientation of the robot? Another way to express this is to say that the
wheel has rolled ψ radians and has radius r. In this case, dw = ψr, and we are back
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Figure 2.11: If the front wheel is turned to φ = π/2, then the ICR coincides with
the robot’s special point and the robot rotates in place.

to the original question. The center of the front wheel is distance rw =
√

ℓ2 + r2c
from the ICR. Hence, it moves along a circle of radius rw, centered at (xc, yc).
The back wheels, however, move along concentric circles of different radii because
they are not distance rw from the ICR. To determine the robot configuration,
we need to determine where the special point moves to and how much the robot
rotates. Let ds denote the distance traveled along a circular arc by the special
point. The special point travels less than the front wheel because rc < rw. The
moving robot is a rigid body that rotates counterclockwise about the ICR. The
distance therefore scales according to the difference in radii: ds = dwrc/rw. If the
special point moves distance ds along the circle of radius rc, centered at (xc, yc),
then it rotates by angle ∆θ = ds/rc (this is just what fraction of the circumference
was traversed, scaled by 2π). The position of the special point will be

(x, y) = (rc sin∆θ, yc − rc cos∆θ) (2.4)

The resulting configuration is (x, y,∆θ).
If φ is negative, then the same method works, however, the robot will rotate

clockwise, turning right the whole time. In this case, rc is negative and the circle
radius is actually −rc. Any angle φ can be handled except π/2 or −π/2; see
Figure 2.11. In this case, the ICR coincides with the special point. The front
wheel traverses the circle of radius ℓ while the special point remains stationary
and the back wheels rotate around it. The rotation is counterclockwise and rc = ℓ
in the case of φ = π/2. It is clockwise and rc = −ℓ in the case of φ = −π/2. Note
that if |φ| > π/2, it is equivalent to rolling backwards, which is not a problem.
For example, φ = 2π/3 is equivalent to φ = −π/3, but rotating the wheel in the
opposite direction.

Now consider the more complicated case in which the robot does not start from
its home configuration:

1. The robot starts in some generic configuration (x, y, θ).
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(a) (b)

Figure 2.12: These two robot designs behave kinematically the same was the
tricycle: (a) The rear wheels can instead be motorized; however, they must be
coupled to roll together and have the same radius. (b) The pair of rear wheels can
be replaced by a single wheel to obtain a bicycle; however, side-to-side balancing
becomes an issue.

2. The front wheel is pointing φ degrees from the forward direction.

3. The front wheel drives distance dw along the arc.

The task is to determine the resulting configuration, (x′, y′, θ′). The first problem
is that the ICR must be transformed. The ICR at (xc, yc) = (0, rc) is rotated
by θ and then translated by x and y. Again, rc = ℓ/ tanφ and may be positive,
negative, or zero. The ICR when the robot is at configuration (x, y, θ) is then:

(xc, yc) = (x− rc sin θ, y + rc cos θ). (2.5)

Note that for (x, y, θ) = (0, 0, 0), we obtain (2.4). The extension of driving along
the circle from (2.4), is transformed to configuration (x, y, θ) to obtain

x′ = xc + rc sin(θ +∆θ)

y′ = yc − rc cos(θ +∆θ)

θ′ = θ +∆θ.

(2.6)

The model presented so far works for other wheel configurations. The rear
wheels could be powered instead of the front wheel, as shown in Figure 2.12(a).
In this case, careful motor coupling is needed to ensure that the wheels roll at the
proper rate. If the robot is turning, then the inner wheel must rotate more slowly
than the outer wheel. This problem is solved in automobiles by the differential
mechanism. Figure 2.12 shows what happens if the two rear rears wheels are
reduced to one: A bicycle is obtained. It rolls the same way as the tricycle,
however, it must be capable of balancing. For a human-operated bicycle this is
greatly helped by conservation of angular momentum.

2.2.2 Differential Drive

The most popular kinematic model for mobile robots is the differential drive, which
avoids having to turn the wheels. Figure 2.13 depicts the wheel arrangement.
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Figure 2.13: The differential-drive robot has independent motors that power each
of the two rear wheels. A caster wheel is placed on the front for balance.

(a) (b)

Figure 2.14: Differential-drive robots: (a) The Roomba autonomous vacuum
cleaner. (b) The Arduino Controlled Servo Robot (SERB) robot, which is a low-
cost, open-source platform.
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Figure 2.15: The Segway uses a differential drive to send standing users on their
way. Rather than using an extra wheel for balance, a control system provides
vertical stability.

Figures 2.14 and 2.15 show some real examples. For a differential drive, two non-
steerable wheels are aligned so that a single perpendicular line crosses through
both wheel centers. Both wheels have the same radius. Each wheel can be rotated
independently. If they are rotated at different speeds, then the robot turns. There
is usually a third wheel that simply keeps the robot from tipping over. A caster
wheel is often used, as on the bottom of an office chair. The wheel orients itself
to roll in any direction that it is forced.

Suppose that the two wheel motors are switched on so that each runs at a
constant speed. Let dl and dr denote the distance rolled by the left and right
wheels, respectively. The following simple motions arise:

1. If dl = dr > 0, then the robot rolls straight and forward.

2. If dl = dr < 0, then the robot rolls straight and backwards.

3. If dr > 0 and dl = −dr, then the robot rotates in place counterclockwise.

4. If dr < 0 and dl = −dr, then the robot rotates in place clockwise.

For the last two cases, how far does the robot rotate? Also, what happens in
all other cases, meaning that |dl| 6= |dr|? These can be answered by determining
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(a) (b)

Figure 2.16: Car-like robots: (a) A car with a steered front axle. (b) A car
with Ackerman steering, which is allows the front wheels to turn in place while
maintaining the existence of the ICR.

the ICR and then applying the techniques from Section 2.2.1. It is clear that the
ICR will lie along the common perpendicular line through the rear wheels and the
special point.

All four of the simple motions above fit the following formula:

rc =
ℓ(dl + dr)

2(dr − dl)
. (2.7)

In the case of dr = dl, then rc = ∞, which implies that the robot moves straight
(along a “circle with infinite radius”). The formula in (2.7) correctly specifies rc
for all other values of dl and dr, assuming that each motor rotates at a constant
speed.

2.2.3 Car-Like Robots

Another common variant of the tricycle is the car or car-like robot. In this case
there are two steered wheels in the front and two fixed wheels in the back. See
Figure 2.16. The front wheels could be attached to a single steerable axle or they
could be rotate in place, which is like virtually all automobiles. If they rotate
in place, then the steering must be coupled in a special way so that their per-
pendicular lines both intersect the ICR. This is referred to as Ackerman steering.
If both front wheels are instead turned at the same angle, then skidding would
occur. As you may already know from automobiles, the power to the wheels could
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be in the front, back, or both. This yields front-wheel drive, rear-wheel drive, and
four-wheel drive, respectively.

The car moves in the same way as the tricycle. It is just a matter of figuring
out the equivalent parameters. For the steered axle car in Figure 2.16(a), its
motion is equivalent to having a single front wheel in the middle. The equations
from Section 2.2.1 correctly describe the motion using the same φ and substituting
ℓ2 = ℓ. Now consider the Ackerman steered car in Figure 2.16(b). If there were
a wheel in front center and it is turned angle φ, then the car would turn with
radius rc = ℓ2/ tanφ. To achieve the same radius using the Ackerman steering,
the steering angles shown in Figure 2.16(b) must satisfy

rc + ℓ1/2 = ℓ2 tanφ1 (2.8)

and

rc − ℓ1/2 = ℓ2 tanφ2. (2.9)

Solving for φ1 and φ2 yields the steering angles that avoid skidding.
One important difference between the car-like robot and the other models has

been overlooked so far. In a car, there is usually a limit on how far the wheels can
be turned. Thus, if φmax is the limit, with φmax > 0 and φmax < π/2, then the
steering angle must be limited to |φ| ≤ φmax. This prevents the car from rotating
in place, which is a capability of the tricycle and the differential drive. Instead,
the car has a minimum turning radius rmin = ℓ2/ tanφmax, which corresponds to
the smallest circular arc that it can drive along.

2.3 Defining a Control System

A control system is a convenient mathematical way to express the effects of com-
mands on the states of a electrical or mechanical system that evolves over time.
In the context of mobile robotics, the command usually indicates which motors to
activate, at what rate, for how long, and so on. This section merely describes the
effect of the command, without regard to how it is chosen. That is the topic of
coming chapters.

2.3.1 Discrete-Time Systems

Every control system has the following components:

1. An command set U , which represents every command that can be given to
the system.1

2. A state space X, which characterizes every possible configuration or status
of the system. Examples are coming soon!

1Common, alternative names for U are the input set or action set.
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3. A state transition equation, which specifies how the state changes under the
influence of a command.

In a continuous-time control system, the state transition equation is a differential
equation. In a discrete-time control system, it instead provides the next state as a
function of the current state and current command. Suppose x (which belongs to
X) is the current state and u (which belongs to U) is a command that is applied
to the system. The discrete-time state transition equation is

x′ = fd(x, u), (2.10)

in which the function f provides the next state x′ for every possible combination
of x in X and u in U. This idea appears in many other subjects, such as automata
theory, finite state machines, and planning algorithms.

We now show take the kinematic models from Section 2.2 and make them
into control systems. Recall the tricycle from Figure 2.10. What are the possible
commands? The power to the wheel motor and the desired steering angle are
natural candidates. To keep it simple at first, suppose that the motor is always
rolling forward at some constant rate. The command is the steering angle u = φ.
The command set is U = [−π, π).

Each state x is a configuration (x, y, θ) of the tricycle. The state space X
represents all possible (x, y, θ). For the first two coordinates, any (x, y) ∈ R

2 is
possible. For θ, any value from 0 to 2π is possible; however, we must be careful to
declare θ = 0 and θ = 2π as the same orientation.

We now have enough notation to specify the state and command, but what
does the “next state” mean? This means the state at some future point in time,
usually when a special event occurs. In later chapters, this could correspond to
the arrival of a special sensor reading. For example, it might indicate that the
robot has hit an obstacle. In this chapter, we define it to mean the state after a
predetermined amount ∆t > 0 of time has passed.

The state transition equation x′ = fd(x,u) means that if the tricycle starts
in configuration x = (x, y, θ) and command u = φ is applied, then it will be in
configuration x′ = (x′, y′, θ′) after ∆t seconds have elapsed. Assume that during
the ∆t time interval, the command cannot change. Figures 2.17 shows an example.

Figure 2.18 shows the effect of the commands from Figure 2.17. Let x1 denote
the initial configuration. The first command u1 = π/4 is applied for time ∆t,
and the robot traverses a semicircle to the left, arriving in state x2 = fd(x1, π/4).
Recall that Equation (2.6) tells how to get x1 from x2 if the robot rotates by θr,
which in this case is θr = π. At the next stage, u2 = −π/4 and the robot traverses
a semicircle to its right, reaching x3 = fd(x2,−π/4). After that, u3 = 0, the the
robot moves straight to reach x4. Finally, u4 is applied to yield the final state x5.

The discrete time model is conceptually simple. We apply a sequence of k
commands:

(u1,u2, . . . ,uk) (2.11)

and the robot moves along k circular arcs or line segments. Some of its limitations
are:
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Figure 2.17: In our discrete-time model, the command is held constant over each
∆t interval, and then it may switch to another command (or remain the same).

1. It may be too restrictive to hold the command constant over each ∆t. The
robot can move along a greater variety of curves if the command can vary
continuously over time. Section 2.3 allows this by using a differential equa-
tion to express the state transition equation.

2. It is not physically feasible to instantaneously change the commands. For
example, the wheel can not be changed from φ = 0 to φ = π/4 without going
through all angles in between. Alternatively, the motor can not be instan-
taneously switched on to a desired speed with going through intermediate
speeds. These problems are fixed by introducing more state variables, which
is the subject of Section 2.3.3.

3. If we want to control the robot using the discrete-time model, then a clock or
chronometer is needed to indicate precisely when ∆t has elapsed so that the
command is changed. We might instead want to change the command based
on some other event, which is sensed. This becomes crucial in later chapters,
to develop robots that respond to their sensor readings, rather than simply
a ∆t timer expiring.

2.3.2 Kinematics as a Differential Equation

Consider starting with a discrete-time model and making ∆t very small. If some
command u is applied, the robot will correspondingly move a small amount. Let
∆x = x′ − x denote the small change in the state. For our robots of Section 2.2,
we write ∆x = (∆x,∆y,∆θ), meaning that x, y, and θ change by a small amount.
Using the state transition equation (2.10),

x+∆x = fd(x,u). (2.12)
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Figure 2.18: The special point on the robot traces out a path composed of circular
arcs and line segments.

We want to develop a way to obtain the state in the limit as ∆t approaches zero.
Note that

∆x

∆t
≈ dx

dt
, (2.13)

in which dx/dt is just the derivative with respect to time of every component of
the state. For our robots,

dx

dt
=

(

dx

dt

dy

dt

dθ

dt

)

. (2.14)

For convenience, we will place a dot “.” over each variable to denote its time
derivative. For example θ̇ means dθ/dt.

For each value of x and u, we want to know the corresponding ẋ. This leads
to a differential equation known as the continuous-time state transition equation:

ẋ = f(x,u). (2.15)

Once f is fully specified, the state velocity ẋ can always be determined. This can
in turn be used to calculate future states via integration:

x(t) = x0 +

∫ t

0

f(u(t), u(t)). (2.16)
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Figure 2.19: The side view of the bicycle. Forward rolling moves it to the left.

Figure 2.20: The wheel rotation rate is the gear ratio times the pedaling rotation
rate. Similar gearing occurs in motors.

This expression uses the notation x(t) and u(t) to specify the state and command,
respectively, at time t. This implicitly defines two time paramtrized functions.

To understand why (2.16) works, consider performing a rectangular approxi-
mation to the integral. Using the fact that ∆x ≈ ẋ∆t, we can approximate the
integral in (2.16) as

x̃(t) ≈ x0 +
k−1
∑

i=0

f(x̃(k∆t), ũ(k∆t))∆t. (2.17)

In each step, f is applied to determine the state velocity at time k∆t. In the limit
as ∆t tends to zero, (2.16) is obtained.

Now we specialize (2.15) for our rolling robots. First consider the bicycle with
rear-wheel drive (Figure 2.12(b)). Figure 2.19 shows a side view of the wheels. A
motor turns at some rate, such as 2 revolutions per second. For a bicycle with a
chain (Figure 2.20) this is the rate at which you are pedaling (you are the “motor”).
By using gears, the rate is multiplied by some constant factor to obtain the wheel
rotation rate. For example, if the gear sprockets have a 3-to-1 ratio of teeth, then
the wheel would turn at 2 · 3 = 6 revolutions per second. This means that the
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rear wheel angle ψ2 rotates through 12π radians in one second. The total distance
that it rolls is r2ψ2. If the bicycle is not rolling straight, then it is the length of
the traversed curve.

Let ω2 = ψ̇2, which is the angular velocity if the rear wheel. The linear speed of
the robot special point, which is at the rear wheel center, is s = r2ω2. If the robot
orientation is θ, then the speed is divided into X and Y velocity components.
For example, if θ = 0, then ẋ = s. If θ = π/2, then ẏ = s. If θ = π/4, then
ẋ = ẏ = 1/

√
2. The

√
2 appears because the speed s is the magnitude of the

velocity
√

ẋ2 + ẏ2. In general, we obtain ẋ = s cos θ and ẏ = s sin θ from simple
trigonometry. The state transition equation is therefore

ẋ = s cos θ

ẏ = s sin θ

θ̇ = ω,

(2.18)

in which the third equation expresses the derivative of θ in terms of the robot’s
angular rate ω of rotation. Recall from Section 2.2 that if the steering angle is φ,
then the robot moves along a circle of (signed) radius rc = ℓ2/ tanφ. To convert
linear velocity into angular velocity, divide s by rc to obtain:

ẋ = s cos θ

ẏ = s sin θ

θ̇ =
s

ℓ
tanφ.

(2.19)

This equation works for all cases except |φ| = π/2. In this case, the rear-wheel
drive bicycle cannot roll. If the front wheel were powered instead, then the rear
wheel would be rotating about the Z axis (out of the plane!) with a single point
touching the ground, rather than rolling.

Recall that the commands u and the command set U are critical parts of any
control system. What is the command u for the control system in (2.19)? A
reasonable choice is the vector u = (s, φ). Since s can be derived from the rear
wheel angular velocity ω2, we could instead use u = (ω2, φ) and express (2.19) in
terms of ω2. We could even define u = (ωm, φ), in which ωm is the motor’s angular
velocity, which is then converted into s by using the gear ratio and wheel radius.
To specify U, we need to give the limits on φ and s. For example, we can assert
that −π/2 < φ < π/2 and −1 ≤ s ≤ 1. This makes U into a rectangular subset
of the plane: U = (−π/2, π/2)× [−1, 1]. Including s = 0 allows the robot to stop,
and s = −1 allows it to move in reverse.

By using (2.19), the robot is no longer required to move in circular arcs and
line segments. For example, if s is held constant at s = 1 and φ(t) = πe−t/2,
then the robot will travel along a spiral. The particular curve is obtained by
integrating (2.19), as shown in (2.16). This could be performed numerically using
(2.17), which results in a piecewise-circular approximation to the spiral. Many
methods exist that produce closer approximation. One of the most widely used is
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(a) (b)

Figure 2.21: The continuous-time transition equation allows paths that are not
circular arcs or line segments by varying the command variables. (a) Keeping con-
stant speed but varying the steering angle gradually from π/4 to 0. (b) Gradually
decreasing the steering angle from π/2 to −π/2.

4th-Order Runge-Kutta integration, which yields close approximations with little
computational overhead. It is based on a higher-order Taylor-series approximation
to the differential equation, rather than (2.17), which is first order and is called
Euler integration. The result is

x(∆t) ≈ x(0) +
∆t

6
(w1 + 2w2 + 2w3 + w4), (2.20)

in which

w1 = f(x(0), u(0))

w2 = f(x(0) + 1
2
∆t w1, u(

1
2
∆t))

w3 = f(x(0) + 1
2
∆t w2, u(

1
2
∆t))

w4 = f(x(0) + ∆t w3, u(∆t)).

(2.21)

The transition equation in (2.18) holds the same for all of the other rolling
robot models. The only problem is to determine precisely what s and ω depend
on in terms of motor speeds, wheel radii, and distances between wheels. For the
rear-wheel drive tricycle in Figure 2.12(a), the left and right wheels must be driven
at different rates to ensure rolling. It is harmless to imagine that there is a third
rear wheel placed midway between the two actual rear wheels. Therefore, we can
reuse (2.19) by calculating the inner and outer rear wheel speeds that produce
speed s at the center. Suppose φ > 0. Using the same rc = ℓ2/ tanφ, we obtain
s(rc − ℓ1/2) for the left wheel speed and s(rc + ℓ2/2) for the right wheel speed.
This is derived by scaling the speed s to account for the different wheel radii with
respect to the circle centered at the ICR. Note that if the tricycle turns sharply,
then the wheels must be powered to rotate in opposite directions. This behavior is
closely related to the differential drive (Figure 2.13) which will be revisited shortly.
Note that the rear-powered tricycle can handle the case of |φ| = π/2 by powering
the rear wheels to rotate in opposite directions at the same speed.

For the bicycle, or the tricycle originally shown in Figure 2.10, the transition
equation depends on the front wheel radius r1 and angular velocity ω1, rather than
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r2 and ω2. Let sw denote the speed of the front wheel, in the direction it is rolling.
Note that sw = r2ω2. To determine s, the speed of the special point, it must be
scaled in the same way as in Section 2.2.1. In that section, dw was related to ds
as ds = dwrc/rw. Taking the time derivative of both sides yields s = swrc/rw.
Substituting this expression into (2.19) yields the transition equation. With front-
wheel drive, the tricycle can actually rotate in the case of |φ| = π/2, and we obtain
ẋ = ẏ = 0.

The car-like robot can also be adapted from (2.19). With the rear-wheel drive
car, the equations are the same. The left and right wheel speeds need to be varied,
as mentioned for the rear-powered tricycle. If the front wheels are attached to a
steered axle (Figure 2.16(a)), then φ is used in the same way as for the bicycle.
For Ackerman steering (Figure 2.16(b)), the particular φ1 and φ2 angles are given
by (2.8) and (2.9).

The only remaining robot model is the differential drive (Figure 2.13). Suppose
that both wheels had radius r. If the left and right wheels are powered at ωl and
ωr, respectively, then

ẋ =
r

2
(ωl + ωr) cos θ

ẏ =
r

2
(ωl + ωr) sin θ

θ̇ =
r

ℓ
(ωr − ωl).

(2.22)

This is a special form of (2.18) in which s = r(ωr + ωl)/2 and ω = r(ωr − ωl)/ℓ.
The translation speed depends on the average of the angular wheel velocities. To
see this, consider the case in which one wheel is fixed and the other rotates. This
initially causes the robot to translate at 1/2 of the speed in comparison to both
wheels rotating. The rotational speed θ̇ is proportional to the change in angular
wheel speeds. The robot’s rotation rate grows linearly with the wheel radius but
reduces linearly with respect to the distance between the wheels.

2.3.3 From Velocity to Acceleration

.
As mentioned at the end of Section 2.3.1, it is often unreasonable to assume

that the command can be instantaneously switched without going through inter-
mediate values. This problem is addressed by introducing more state variables.
For example, the front wheel of the tricycle cannot be instantaneously turned to
a new heading. To fix this problem, the state vector is extended to

x = (x, y, θ, φ), (2.23)

which means that φ is one of the state variables. This seems reasonable because the
steering direction must be mechanically actuated. Instead of applying φ directly as
a command, we introduce a new command variable α = φ̇ that represents the rate
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(a) (b)

Figure 2.22: (a) Using the previous transition equation (2.19) for the bicycle,
the front wheel steering angle can be changed instantaneously, discontinuously
switched from φ = 0 to φ = 1. (b) By defining φ as a new state variable in (2.25),
we apply α = φ̇ = 1 as a command to bring φ from 0 to 1 continuously (visiting
all intermediate angles).

of change of the steering angle. Suppose it is limited so that |α| ≤ 1. This means
that the steering wheel can be turned no faster than 1 rad/sec2. The command
vector becomes:

u = (α, s) (2.24)

and U = [−1, 1]× [−1, 1]. The state transition equation remains mostly the same
as in (2.19), but gains a fourth component:

ẋ = s cos θ θ̇ =
s

ℓ
tanφ (2.25)

ẏ = s sin θ φ̇ = α.

For this model, the steering angle φ must rotate through all intermediate values,
as shown in Figure 2.22.

The same criticism could be made about being able to start and stop rolling
instantaneously. Therefore, we can introduce an acceleration command variable a
with the relationship that ṡ = a. Suppose the acceleration is limited to |a| = 1.
This leads to u = (α, a), U = [−1, 1]× [−1, 1], and

ẋ = s cos θ φ̇ = α (2.26)

ẏ = s sin θ ṡ = a

θ̇ =
s

ℓ
tanφ.

What if the steering angle be instantaneously brought from α = 0 to α = 1? A
new state variable can be introduced so that the steering angle is accelerated by β
and α̇ = β. This makes φ vary smoothly, rather than having the corners shown in
Figure 2.22(b). The resulting control system has u = (β, a), U = [−1, 1]× [−1, 1],
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and

ẋ = s cos θ φ̇ = α (2.27)

ẏ = s sin θ ṡ = a

θ̇ =
s

ℓ
tanφ α̇ = β.

There is clearly no limit to this process of introducing intermediate state vari-
ables. The purpose is to provide smoother vehicle motions and satisfy the physical
limitations of mechanical systems. The models in this section provide helpful il-
lustrations, but they are not general enough express the full relationships between
accelerations, velocities, and configuration variables in general. The equations of
motion are usually derived using classical mechanics [], but can nevertheless be
converted into the control-system form ẋ = f(x,u). To develop a high-quality
model of motion, there may be dozens of variables, which is common for industrial
automotive simulations. For a car-like robot, for example, the configurations and
velocities of each of the four wheels contribute to x, in addition to the position
and orientation of the car, its steering angle, and their velocities. If the car has
a suspension system, then even more variables could be added. Furthermore, the
state space, command set, and state transition approach has been developed and
used extensively for many other classes of robotic vehicles, types of locomotion,
and environments.

2.4 Kinematics of Misbehaving Rolling Robots

The robot models given so far assume that everything is perfect. All robot pa-
rameters, such as wheel radius, steering angle, and distances between wheels are
assumed to be exactly right. The motors must turn at exactly their commanded
rate, switching instantaneously on and off, if required. It is furthermore assumed
that the robot moves along a perfectly flat and smooth surface. The wheels also
must roll perfectly without any slipping, skidding, or tire compression. There
cannot be any dirt or other small imperfections between the tire-floor contact;
otherwise, it would violate the assumptions. The perfect models are nevertheless
valuable because they provide nominal behavior for the robot, which is used for
designing strategies and mathematically analyzing motion strategies.

The perfect models also provide a good starting point upon which to add
disturbances that account for an unpredictable robot operating in the physical
world. Although it is easy to criticize the perfect models, it remains a difficult
challenge to define good models of the imperfections. One of the first steps is
measurement and calibration. The parameters, such as wheel radius, should be
measured as accurately as possible. If the wheel radius is measured at 5cm when
it is actually very close to 4.7cm, then the robot will systematically roll more
slowly than the model predicts. This error should not be accounted for as random
noise because it is a one-time mistake that consistently yields the same behavior
for the life of the robot. It is best to eliminate as much of it as possible.
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Calibration is used to make sure that the commands u are accurate. Suppose
u = (s, φ) = (1, 0) in (2.19), which means that the robot commanded to move
straight with unit speed. If experiments are performed and the robot is observed
to turn slightly left each time, then the steering angle should be shifted. Perhaps
φ′ = φ−ǫ should be used, in which ǫ > 0 accounts for the amount of bias to the left.
In other words, when the command to go straight φ = 0 is applied, the robot is
observed to turn as if φ = ǫ were given. A similar calibration procedure should be
used for the motor to make sure its rotation rate is correctly commanded. This in
combination with proper measurements should make the s command as accurate
as possible.

If the perfect model is still not accurate enough for practical use, then some
additional modeling is needed. Suppose it is possible to place the robot in typical
environments and conduct motion experiments. Starting configurations are mea-
sured, commands are given, and the resulting final configurations are measured.
Motion capture systems can be used in a laboratory setting to automatically mea-
sure robot configurations. After sufficiently many trials, an empirical model of the
unpredictable aspects could be developed. At another extreme, physical models
of wheel slippage, bumpy surfaces, nonlinear motor characteristics, and so on can
be developed to make more accurate mathematical models. An attempt can be
made to explain the observed laboratory behavior with better models.

If this fails to provide sufficient performance, then extra disturbance parameters
may be added to the model to account for all other problems. This leads to two
popular choices:

1. Nondeterministic: Upper bounds are placed on the amount of deviation
that is allowed from the perfect model. This specifies a set of possible future
outcomes. For example, if the robot is commanded to go straight, it will
stay within a narrow cone that faces straight ahead.

2. Probabilistic: A probability density function is defined over the state space.
This also provides a set of possible future outcomes, but they are weighted
by probability. More likely outcomes are given more weight, which hopefully
matches observations made in a laboratory setting.

The nondeterministic choice usually leads to worst-case analysis by developing
motion strategies that ensure that the system functions correctly in all possible
outcomes. It is often called robust. The probabilistic choice instead leads to
expected-case or average-case analysis. A strategy is then designed to optimize
performance. For example, to arrive at the goal as quickly as possible in the
average case.

2.4.1 Nondeterministic Control Systems

For the nondeterministic choice, imagine that we are playing a game against na-
ture. Whenever we send a command to the robot, “nature” issues its own com-
mand, which interferes with the outcome. There is no way to precisely know what
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command nature will choose, but its set of possible commands is at least assumed
to be known. Let each command of nature be called a disturbance, w. Each dis-
turbance w is selected from a known disturbance set W(u). It is written as W(u)
and not W to allow the possible disturbances to depend on the robot’s command
u. This gives nature an advantage in the game. We can even write W(x,u), which
allows the disturbance set to depend on the state x as well.

A nondeterministic control system is defined by extending the discrete-time
state transition equation (2.10) to account for the disturbance:

x′ = fd(x,u,w). (2.28)

For a useful example, consider extending (2.6) to obtain a front-wheel-drive
tricycle that receives interference from nature. The commands are the motor
velocity and steering angle φ. Let w = (w1, w2), in which w2 interferes with the
speed and w2 interferes with the steering. After nature chooses its command w,
the resulting radius rc and change in orientation ∆θ become

r̃c = ℓ/ tan(φ+ w2) (2.29)

and
∆̃θ = (ds + w1)/r̃c. (2.30)

The symbol ˜ is placed above variables to denote their disturbed values. We can
write s̃ = s+w1, φ̃ = φ+w2, r̃ = s̃/ω̃ and ∆θ̃ = s̃∆ω. The disturbances result in
a version of (2.6) in which r̃ and ∆θ̃ are substituted for rc and ∆θ, respectively:

x′ = xc + r̃c sin(θ +∆θ̃)

y′ = yc − r̃c cos(θ +∆θ̃)

θ′ = θ +∆θ̃.

(2.31)

The disturbances w1 and w2 can even be inserted directly into the differential
equation (2.19) to obtain

ẋ = (s+ w1) cos θ

ẏ = (s+ w1) sin θ

θ̇ =
(s+ w1)

ℓ
tan(φ+ w2).

(2.32)

This can be written equivalently as

ẋ = s̃ cos θ

ẏ = s̃ sin θ

θ̇ =
s̃

ℓ
tan(φ̃).

(2.33)

Similar disturbances can be inserted into other models, such as the differential
drive or car-like robot.



2.4. KINEMATICS OF MISBEHAVING ROLLING ROBOTS 51

(a) (b) (c)

Figure 2.23: Three forward projections for the nondeterministic tricycle: (a) In-
accurate speed. (b) Inaccurate steering angle. (c) Both speed and steering angle
are highly inaccurate.

Because it is impossible to know which disturbance w nature will choose, it is
useful to express the set of possible next states that could result if command u
is applied from state x. The result is called a forward projection, which describes
possible futures. If u is applied to x, then using (2.28), we can write

X′(x,u) = {x′ ∈ X | ∃w ∈ W(u) such that x′ = fd(x,u,w)}, (2.34)

which is the subset of X that may possibly be reached after some time ∆t. Figure
2.23 shows some forward projections for the tricycle model.

Starting from some x in X, what possible future states could arise if u1 is
applied, followed by u2, followed by u3? The forward projection (2.34) is iterated
three times to yield:

X′(X′(X′(x,u1),u2),u3). (2.35)

2.4.2 Probabilistic Control Systems

The probabilistic model is a direct extension of the nondeterministic model. The
only difference is that weights are assigned to each disturbancew inW(u) to reflect
its likelihood of occurring. Ideally, this assignment should be based on statistical
models that are obtained by driving the robot numerous times and observing its
behavior. In other words, the probabilistic model is learned through systematic
experimentation. In some settings this may be too costly or time consuming. In
others, it may be impossible. Therefore, heuristic models are often introduced
to plausibly account for the disturbances and to allow for efficient probabilistic
computations.

For any variable w, let p(w) denote a probability density function (or pdf) over
x. Figure 2.24 shows two examples. The most commonly used pdf is that of the
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(a) (b)

Figure 2.24: (a) The probability density function (pdf) for the normal (Gaussian)
distribution. (b) The pdf for a triangular density function. (Figures courtesy of
Wikipedia.)

normal (or Gaussian) distribution. The precise expression is

p(w) =
1

σ
√
2π
e−

1

2
(w−µ

σ
)
2

, (2.36)

in which µ is the mean and σ2 is the variance. The normal distribution produces
the familiar “bell curve” and arises repeatedly in probability and statistics.

Sometimes it will be helpful to allow the disturbance to depend on the chosen
command u. Whereas W(u) was used to represent the set of possible disturbances
for each possible u in U, we write p(w|u) to represent the corresponding proba-
bilistic version, which is a conditional probability density function. For example, if
the standard deviation σ grows linearly with some command u, then (2.36) would
be replaced by

p(w|u) = 1

uσ
√
2π
e−

1

2
(w−µ

uσ
)
2

, (2.37)

to obtain a normal pdf for each value of u.
It might even be the case that w depends on both x and u, which leads to a

more general W(x,u). However, for the simple kinematic models, it is unlikely
that the particular disturbance depends on the configuration x = (x, y, θ). Such
invariance with respect to position and orientation greatly simplifies the task of
learning the density p(w|u). The probabilistic counterpart of X(x,u) is the pdf
p(x′|x,u). This is a density over possible next states x′, after the command u is
applied from state x.

The disturbance w is applied to the transition equation x′ = fd(x,u,w) in
the same way as in Section 2.4.1, but now each w carries a weight, p(w|x,u).
Once x and u are given, if the mapping from w to x′ using fd is one to one, then
p(x′|x,u) = p(w|x,u). To determine the pdf value p(x′|x,u), just determine the
disturbance w that causes x′ and apply p(w|x,u). If multiple w values could
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cause the same x′ (with x and u already fixed), then it becomes slightly more
complicated. The pdf values are summed if there is a finite number of w values
or integrated if there is an infinite number.

One particular concern is that pdfs often have unbounded domain, as in the
case of a Gaussian over all of R, but are applied to bounded variables such as θ.
For example, an unlikely disturbance could be 100π. If applied directly to θ, the
resulting angle is θ + 100π = θ. To avoid this wraparound effect, the Gaussian
domain may be truncated at ±π with negligible numerical effect. Otherwise, a
bounded distribution, such as the triangular distribution of Figure 2.24(b) may
be more appropriate. A more rigorous way to handle the angular disturbance
problem is to use the von Mises distribution []:

p(w) =
1

I0(κ)2π
eκ cos(w−µ), (2.38)

in which I0 is the modified Bessel function of order 0. The parameters µ and 1/κ
are analogous to analogous to µ and σ2, respectively, in (2.36).

The density p(x′|x,u) can be considered as a one-step probabilistic forward
projection, which is the counterpart to the nondeterministic forward projection
X ′(x,u). It can be iterated for obtain a multistep forward projection, as in the
nondeterminstic case. A two-step probabilistic forward projection is expressed as:

p(x3|x1,u1,u2) =

∫

x2

p(x3|x2,u2)p(x3|x1,u1). (2.39)

Computing further forward projections requires nested summations, which marginal-
ize all of the intermediate states. For example, the three-stage forward projection
is

p(x4|x1,u1,u2,u3) =

∫

x2

∫

x3

p(x4|x3,u3)p(x3|x2,u2)p(x2|x1,u1). (2.40)

This is the probabilistic counterpart to (2.35).
Ordinarily, it is impossible to compute the integrals in closed form. Therefore,

numerical methods are used. The integrals could be evaluated, for example, over a
high-resolution grid of states. Alternatively, Monte Carlo methods can be used to
generate sample paths by simulating the behavior of nature. In each ∆t, a sample
disturbance w is drawn from the probability density. Many simple methods exist
to draw such samples. One of the most popular is the Box-Muller method. Suppose
wi follows a Gaussian with mean µ and variance σ2. Using a standard random
function that appears in most programming languages, draw u1 and u2 at random
over the interval [0, 1]. The Box-Muller method generates a Gaussian sample with
mean µ and variance σ2 as

wi =
√

−2 ln u1 cos(2πu2)σ + µ. (2.41)

To generate one sample application of (2.31), w1 and w2 are generated using (2.41).
These are transformed into r̃c and θ̃ using (2.29) and (2.30). The next configuration
(x′, y′, θ′) is then generated using (2.31). Figure 2.25 shows a collection of samples
obtained after several iterations of sampling disturbances.
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Figure 2.25: A sample set of 100 paths, obtained by iterating the tricycle model
with Gaussian disturbance for 25 ∆t steps.


