Motion Planning for Dynamic Environments Part I - Motion Planning: Living in C-Space

Steven M. LaValle University of Illinois

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 1 / 71

The Basic Path Planning Problem

Geometric Models	-		
Transforming Robots		Goal	
Topology			
C-Spaces			
Metric Spaces			
C-Space Obstacles			
0 0 0		_	

Given obstacles, a robot, and its motion capabilities, compute collision-free robot motions from the start to goal.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 2 / 71

Geometric Models
Transforming Robots
Topology
C-Spaces
,

Metric Spaces

C-Space Obstacles

Geometric Models

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 3 / 71

Geometric Models

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces

C-Space Obstacles

The robot and obstacles live in a *world* or *workspace* \mathcal{W} . Usually, $\mathcal{W} = \mathbb{R}^2$ or $\mathcal{W} = \mathbb{R}^3$. The *obstacle region* $\mathcal{O} \subset \mathcal{W}$ is a closed set. The *robot* $\mathcal{A}(q) \subseteq \mathcal{W}$ is a closed set. (placed at configuration q).

Representation issues:

- Can it be obtained automatically or with little processing?
- What is the complexity of the representation?
- Can collision queries be efficiently resolved?
- Can a solid or surface be easily inferred?

Geometric Models: Linear Primitives

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 5 / 71

Geometric Models: Semi-Algebraic Sets

Geometric Models
Transforming Robots
Topology

C-Spaces Metric Spaces

C-Space Obstacles

Consider primitives of the form:

$$H_i = \{(x, y, z) \in \mathcal{W} \mid f_i(x, y, z) \le 0\},\$$

which is a *half-space* is f_i is linear.

Now let f_i be any polynomial, such as $f(x, y) = x^2 + y^2 - 1$.

Obstacles can be formed from finite intersections:

 $\mathcal{O} = H_1 \cap H_2 \cap H_3 \cap H_4.$

And from finite unions of those:

$$\mathcal{O} = \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_n.$$

 \mathcal{O} could then become any *semi-algebraic* set.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 6 / 71

Geometric Models: Polygon Soup

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces
C-Space Obstacles

In CAD models inside-outside may not be clearly defined

Throw it all into a collision checker and hope for the best...

A typical representation: Triangle strips and fans

Geometric Models: Point Clouds

Geometric Models
Transforming Robots
Tapalagy
Торогоду
C-Spaces
Metric Spaces

C-Space Obstacles

The most natural: Take data straight from range sensors

See the Point Cloud Library.

Problem: Hard to define and test for "collision"

Geometric	Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Transforming Robots

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 9 / 71

Transforming Robots

Geometric Models	
Transforming Robots	
Topology	

C-Spaces

Metric Spaces

C-Space Obstacles

May be rigid, articulated, deformable, reconfigurable, ... The *degrees of freedom* is important.

Transforming Robots: Planar Rigid Body

Geometric Models
Transforming Robots
C-Spaces
Matria Crasses
ivietric Spaces

C-Space Obstacles

Translation of the robot

Translation of the frame

Translation:

Translate \mathcal{A} by $x_t \in \mathbb{R}$ and $y_y \in \mathbb{R}$. This means for every $(x, y) \in \mathcal{A}$, we obtain

$$(x,y)\mapsto (x+x_t,y+y_t)$$

The result is denoted as $\mathcal{A}(x_t, y_t)$.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 11 / 71

Transforming Robots: Planar Rigid Body

Geometric Models	
Transforming Robots	
Topology	
C-Spaces	
Metric Spaces	

C-Space Obstacles

This means for every $(x,y)\in \mathcal{A}$, we obtain

$$(x, y) \mapsto (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$$

The result is $\mathcal{A}(\theta)$.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 12 / 71

Combining Translation and Rotation

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Important: Rotate first, then translate

$$(x,y) \mapsto \begin{pmatrix} x\cos\theta - y\sin\theta + x_t \\ x\sin\theta + y\cos\theta + y_t \end{pmatrix}$$

The operations can be performed by a matrix:

$$\begin{pmatrix} \cos\theta & -\sin\theta & x_t \\ \sin\theta & \cos\theta & y_t \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta + x_t \\ x\sin\theta + y\cos\theta + y_t \\ 1 \end{pmatrix}$$

Technically: A rigid body transformation is an orientation-preserving, isometric embedding.

Homogeneous Transformation Matrix

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

 $T(x_t, y_t, \theta) = \begin{pmatrix} \cos \theta & -\sin \theta & x_t \\ \sin \theta & \cos \theta & y_t \\ 0 & 0 & 1 \end{pmatrix}$

contains a rotation matrix in the upper left and a translation column vector on the right.

$$T(x_t, y_t, \theta) = \begin{pmatrix} R(\theta) & v \\ 0 & 1 \end{pmatrix}$$

in which

$$R(\theta) = \begin{pmatrix} x\cos\theta - y\sin\theta\\ x\sin\theta + y\cos\theta \end{pmatrix}$$

and $v = (x_y, y_t)$.

The 3 by 3 matrix

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Now, $\mathcal{W}=\mathbb{R}^3$ and $\mathcal{A}\subset\mathbb{R}^3.$

Translation:

Translate \mathcal{A} by $x_t, y_t, z_t \in \mathbb{R}$. This means for every $(x, y) \in \mathcal{A}$, we obtain

 $(x, y) \mapsto (x + x_t, y + y_t, z + z_t)$

The result is denoted as $\mathcal{A}(x_t, y_t, z_t)$.

C-Space Obstacles

Yaw: Rotation of α about the *z*-axis:

$$R_z(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 16 / 71

Geometric Models Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Pitch: Rotation of β about the *y*-axis:

$$R_y(\beta) = \begin{pmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{pmatrix}.$$

Roll: Rotation of γ about the *x*-axis:

$$R_x(\gamma) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\gamma & -\sin\gamma\\ 0 & \sin\gamma & \cos\gamma \end{pmatrix}.$$

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 17 / 71

C-Space Obstacles

Combining them is sufficient to produce any rotation:

 $R(\alpha,\beta,\gamma) = R_z(\alpha) R_y(\beta) R_x(\gamma) = \begin{pmatrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma\\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma\\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma & \cos\beta\cos\gamma \end{pmatrix}$

Every rotation matrix must have:

- Unit column vectors
- Pairwise orthogonal columns
- Determinant 1

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

We now obtain a 4 by 4 homogeneous transformation matrix:

$$T(\alpha, \beta, \alpha, x_t, y_t, z_t) = \begin{pmatrix} R(\alpha, \beta, \gamma) & v \\ 0 & 1 \end{pmatrix}$$

Transforming Robots: Multiple Bodies

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces

C-Space Obstacles

For n independent bodies, just use n separate homogeneous transformation matrices.

However, if they are non-rigidly attached:

then use specialized, chained transformations.

Transforming Robots: Multiple Bodies

C-Space Obstacles

One matrix for each link:

$$T_1 = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & x_t \\ \sin \theta_1 & \cos \theta_1 & y_t \\ 0 & 0 & 1 \end{pmatrix}$$

A chain of matrices for the chain of links:

$$T_1 T_2 \cdots T_m \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 21 / 71

Transforming Robots: Multiple Bodies

Transforming Robots: Trees and Loops

Geometric Models	•
	•
Transforming Robots	•
Topology	•
	•
C-Spaces	
	•
Metric Spaces	•
	•
C-Space Obstacles	•

General idea: Need to find good parametrizations of the freedom of motion between attached links.

Warning: Extremely hard for closed chains.

Geometric Models	
Transforming Robots	
Topology	

C-Spaces

Metric Spaces

C-Space Obstacles

Topology

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 24 / 71

The Space of All Transformations

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces
C-Space Obstacles

- Path planning becomes a search on a space of transformations
- What does this space look like?
- How should it be represented?
- What alternative representations are allowed and how do they affect performance?

The C-Space

Geometric Models
Tropolo umin a Doboto
Transforming Robots
Topology
C-Spaces
Metric Spaces
C-Space Obstacles

Three views of the configuration space:

- 1. As a topological manifold
- 2. As a metric space
- 3. As a differentiable manifold

Number 3 is too complicated! There is no calculus in basic path planning.

Topological Spaces

```
Geometric Models
Transforming Robots
Topology
```

C-Spaces

Metric Spaces

C-Space Obstacles

```
Start with any set X.
```

Declare some of the sets in pow(X) to be *open* sets. If these hold:

- 1. The union of any number of open sets is an open set.
- 2. The intersection of a **finite number** of open sets is an open set.
- 3. Both X and \emptyset are open sets.

then X is a topological space.

A set $C \subseteq X$ is *closed* if and only if $X \setminus C$ is open.

Many subsets of X could be neither open nor closed.

What Topology to Use?

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces

C-Space Obstacles

Although elegant, the previous definition was much too general.

We will only consider spaces of the form $X \subseteq \mathbb{R}^n$.

 \mathbb{R}^n comes equipped with standard open sets:

 \mathbb{R}^{n}

A set O is open if every $x \in O$ is contained in a ball that is contained in O.

To get the open sets of X, take every open set $O \subseteq \mathbb{R}^n$ and form $O' = O \cap X$.

Interior, Exterior, Boundary

With respect to a subset $U \subseteq X$, a point $x \in X$ may be:

- a *boundary point*, as in x_1 above,
- an *interior point*, as in x_2 ,
- or an exterior point, as in x_3 .

Continuous Functions

Geometric Models Transforming Robots

```
Topology
```

C-Spaces

Metric Spaces

C-Space Obstacles

Let X and Y be any topological spaces.

A function $f: X \to Y$ is called *continuous* if for any open set $O \subseteq Y$, the preimage $f^{-1}(O) \subseteq X$ is an open set.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 30 / 71

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

A bijection $f: X \to Y$ is called a *homeomorphism* if both f and f^{-1} are continuous.

If f exists, then X and Y are homeomorphic.

Example: For X = (-1, 1) and $Y = \mathbb{R}$, let $x \mapsto 2 \tan^{-1}(x)/\pi$ (-1, 1).

These are all homeomorphic subspaces of \mathbb{R}^2 .

These are homeomorphic, but not with the ones above them.

Homeomorphism Examples

These are all mutually non-homeomorphic

Geometric Models
Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Let $M \subseteq \mathbb{R}^m$ be any set that becomes a topological space using the subset topology.

M is called a *manifold* if for every $x \in M$, an open set $O \subset M$ exists such that: 1) $x \in O$, 2) O is homeomorphic to \mathbb{R}^n , and 3) n is fixed for all $x \in M$.

It "feels like" \mathbb{R}^n around every $x \in M$.

Manifold or Not?

Yes

Yes

No

All it takes is one bad point to fail the manifold test.

No

Manifold Examples

Geometric Models Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

 \mathbb{R}^n is a distinct manifold for each n

$$S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$
 is a circle manifold

Here are some 2D cylinders (all homeomorphic!):

Another one: $M = \mathbb{R}^2 \setminus \{(0,0)\}$ (the punctured plane)

Let (x, y) denote a point on the manifold.

Include the x = 0 points and define equivalence relation \sim :

$$(0,y) \sim (1,y)$$

for all $y \in (0, 1)$.

Flat Möbius Band

Geometric Models
Transforming Robots
Topology
C-Spaces

Metric Spaces

C-Space Obstacles

Typical appearance

A flat representation

Change the equivalence relation to

$$(0, y) \sim (1, 1 - y)$$

for all $y \in (0, 1)$.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 37 / 71

More Flat Manifolds

Geometric Models	Many usefu	
Transforming Robots	polytope.	
C-Spaces		
Metric Spaces		
C-Space Obstacles		
T ILLINOIS		

lany useful, distinct manifolds can be made by identifying edges of a olytope.

Geometric Models	5
------------------	---

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

C-Spaces

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 39 / 71

C-Spaces for Rigid Bodies

Geometric Models Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

A simple way to describe the manifold of all transformations

$$T(q) = \begin{pmatrix} R & v \\ 0 & 1 \end{pmatrix}$$

SE(n) is the group of all (n+1) by (n+1) dimensional homogeneous transformation matrices.

Thus, SE(2) is just a subset of \mathbb{R}^9 and SE(3) is a subset of \mathbb{R}^{16} . But which matrices are allowed? Is there a nice parametrization?

C-Space for 2D Rigid Body

The *configuration space* C is the set of all allowable robot transformations.

Translation parameters: $x_t, y_t \in \mathbb{R}$ Rotation parameter: $\theta \in [0, 2\pi]$

Using the homeomorphism $\theta \mapsto (\cos \theta, \sin \theta)$, the space of all rotations is S^1 .

The configuration space is $\mathcal{C} = \mathbb{R}^2 \times S^1$.

Note "=" here means "homeomorphic to"

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 41 / 71

Alternative Representations

Geometric Models
Transforming Robots
Topology
C-Spaces

C-Space Obstacles

Metric Spaces

Recall that $\mathbb{R} \times S^1$ is a cylinder. $\mathcal{C} = \mathbb{R}^2 \times S^1$ can be imagined as a "thick" cylinder.

Or a square box with the top and bottom identified:

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 42 / 71

C-Space for 3D Rigid Body

Geometric Models
Transforming Robots
Topology
C-Spaces
Topology C-Spaces

Metric Spaces

C-Space Obstacles

Translation parameters: $x_t, y_t, z_t \in \mathbb{R}$ Rotation parameters: yaw, pitch, roll?

Gimbal lock problem: An infinite number of YPR parameters map to the same rotation.

When the pitch is 90° , yaw and roll become the same. (First roll, then pitch, then yaw)

The Space of 3D Rotations

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Consider the mapping:

$$(a, b, c, d) \mapsto \begin{pmatrix} 2(a^2 + b^2) - 1 & 2(bc - ad) & 2(bd + ac) \\ 2(bc + ad) & 2(a^2 + c^2) - 1 & 2(cd - ab) \\ 2(bd - ac) & 2(cd + ab) & 2(a^2 + d^2) - 1 \end{pmatrix}$$

in which $a, b, c, d \in \mathbb{R}$.

Enforce the constraint $a^2 + b^2 + c^2 + d^2 = 1$.

In this case, the mapping above is two-to-one everywhere onto SO(3). (a, b, c, d) and (-a, -b, -c, -d) map to the same rotation.

Geometric Interpretation

Geometric Models
Transforming Robots
Topology
C-Spaces

Metric Spaces

C-Space Obstacles

$$(a, b, c, d) = \left(\cos\frac{\theta}{2}, \left(v_1 \sin\frac{\theta}{2}\right), \left(v_2 \sin\frac{\theta}{2}\right), \left(v_3 \sin\frac{\theta}{2}\right)\right)$$

These are the same rotation.

If you like algebra, consider (a, b, c, d) as a *quaternion*.

Representations of SO(3)

Geometric Models
Transforming Robots
Topology
C-Spaces

l

Metric Spaces

C-Space Obstacles

Jse upper half of
$$S^3$$
: $d \ge 0$ and $a^2 + b^2 + c^2 + d^2 = 1$

Project down: $(a, b, c, d) \mapsto (a, b, c, 0)$.

The result is a 3D ball: $B_3 = \{(a, b, c) \in \mathbb{R}^3 \mid a^2 + b^2 + c^2 \le 1\}.$

However, on the boundary of B_3 we have $(a, b, c) \sim (-a, -b, -c)$.

Representations of SO(3)

Geometric Models	
Transformation Data to	0
Iransforming Robots	
Topology	
C-Spaces	
Metric Spaces	
C-Space Obstacles	
i	

Stretching B_3 out to make a cubes.

Opposite faces are reverse identified; hence, $B_3 = \mathbb{R}P^3$.

Alternatively, could stretch S^3 out to the faces of the 4-cube. The 4-cube as 8 faces, but only $4 \ 3D$ cubes are needed.

The C-Space for Rigid Bodies

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

For a rigid body that translates and rotates in \mathbb{R}^3 :

$$\mathcal{C} = \mathbb{R}^3 \times \mathbb{R}P^3$$

The \mathbb{R}^3 components arise from translation. The $\mathbb{R}P^3$ component arises from rotation.

The C-Space for Multiple Bodies

Geometric Models Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

For independent bodies, A_1 and A_2 , take the Cartesian product:

$$\mathcal{C} = \mathcal{C}_1 \times \mathcal{C}_2$$

If they are attached to make a kinematic chain, then take the Cartesian product of their components:

$$\mathcal{C} = \mathbb{R}^2 \times S^1 \times S^1 \times S^1$$

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 49 / 71

The C-Space for Closed Kinematic Chains

 Geometric Models

 Transforming Robots

 Topology

 C-Spaces

 Metric Spaces

 C-Space Obstacles

The case of closed kinematic chains often arises in redundant robots, manipulation, protein folding, ...

A manifold may result, but it may be difficult to obtain an efficient parametrization.

Comparing Representations

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces
C-Space Obstacles

- Convenient parametrizations preferred
- I Geometric distortion should be minimized

How should be distortion be described? Metric space.

Geometric Mode	ls
----------------	----

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Metric Spaces

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 52 / 71

Metric Spaces

Geometric Models
Transforming Robots
Topology

C-Spaces

Metric Spaces

C-Space Obstacles

A metric space (X, ρ) is a topological space X equipped with a function $\rho: X \times X \to \mathbb{R}$ such that for any $a, b, c \in X$:

- 1. Nonnegativity: $\rho(a, b) \ge 0$.
- 2. Reflexivity: $\rho(a, b) = 0$ if and only if a = b.
- 3. Symmetry: $\rho(a, b) = \rho(b, a)$.
- 4. Triangle inequality: $\rho(a, b) + \rho(b, c) \ge \rho(a, c)$.

Example: Euclidean distance in \mathbb{R}^n More examples: L_p metrics in \mathbb{R}^n

Distances in SO(2)

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 54 / 71

Distances in SO(3)

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces

C-Space Obstacles

Comparing rotations in SO(3) works in a similar way, using the h = (a, b, c, d) representation:

$$\rho_s(h_1, h_2) = \cos^{-1}(a_1a_2 + b_1b_2 + c_1c_2 + d_1d_2) \tag{1}$$

However, must consider identification of antipodal points:

$$\rho(h_1, h_2) = \min \left\{ \rho_s(h_1, h_2), \rho_s(h_1, -h_2) \right\}.$$
(2)

Other possibilities: Euclidean distance in yaw-pitch-roll space, Euclidean distance in \mathbb{R}^9 (the space of 3 by 3 matrices).

Some metrics are more "natural" than others. How to formalize?

Haar Measure

Geometric Models
Transforming Dahota
Transforming Robots
Topology
C-Spaces

Metric Spaces

C-Space Obstacles

Let *G* be a matrix group, such as SO(n) or SE(n). Let μ be a *measure* on *G*. In could, for example, assign volumes by using the metric function.

If for any measurable subset $A \subseteq G$, and any element $g \in G$, $\mu(A) = \mu(gA) = \mu(Ag)$, then μ is called the *Haar measure*. The Haar measure exists for any locally compact topological group and is unique up to scale.

Example for SO(2) using the unit circle S^1 :

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 56 / 71

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

For 3D rotations, recall the mapping

$$(a, b, c, d) \mapsto SO(3)$$
 (3)

The Haar measure for SO(3) is obtained as the standard area (or 3D volume) on the surface of S^3 .

Uniform random points on S^3 yield uniform random rotations on SO(3) that are comatible with the Haar measure (it is the right way to sample).

Comparing Rotations to Translations

Geometric Models
Transforming Robots
Topology
C-Spaces

Metric Spaces

C-Space Obstacles

Let (X, ρ_x) and (Y, ρ_y) be two metric spaces. A metric space for the Cartesian product $Z = X \times Y$ is formed as

$$\rho_z(z, z') = \rho_z(x, y, x', y') = c_1 \rho_x(x, x') + c_2 \rho_y(y, y'), \quad (4)$$

in which c_1, c_2 are positive constants.

If $X = \mathbb{R}^2$ from translation and $Y = S^1$ from rotation, what should c_1 and c_2 be?

Perhaps $c_2 = c_1/r$, in which r is the point on A that is furthest from the origin.

What should the constants be for a long kinematic chain?

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 59 / 71

Obstacle Region

Geometric Models
Transforming Robots
Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Given world \mathcal{W} , a closed obstacle region $\mathcal{O} \subset \mathcal{W}$, closed robot \mathcal{A} , and configuration space \mathcal{C} .

Let $\mathcal{A}(q) \subset \mathcal{W}$ denote the placement of the robot into configuration q.

The obstacle region C_{obs} in C is

$$\mathcal{C}_{obs} = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset \},\$$

which is a closed set.

The free space C_{free} is an open subset of C:

$$\mathcal{C}_{free} = \mathcal{C} \setminus \mathcal{C}_{obs}$$

We want to keep the configuration in C_{free} at all times!

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 60 / 71

Minkowski Sum

Geometric Models
Transforming Robots
Topology
C-Spaces

Metric Spaces

C-Space Obstacles

Consider \mathcal{C}_{obs} for the case of translation only.

The Minkowski sum of two sets is defined as

$$X \oplus Y = \{x + y \in \mathbb{R}^n \mid x \in X \text{ and } y \in Y\}$$
(5)

(from the CGAL manual)

Minkowski Sum

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

The Minkowski difference of two sets is defined as

$$X \ominus Y = \{ x - y \in \mathbb{R}^n \mid x \in X \text{ and } y \in Y \}$$
(6)

A one-dimensional example:

Sometimes called convolution.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 62 / 71

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 63 / 71

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 64 / 71

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

Туре	Vtx.	Edge	n	v	Half-Plane
VE	<i>a</i> ₃	<i>b</i> ₄ - <i>b</i> ₁	[1,0]	$[x_t - 2, y_t]$	$\{q \in \mathcal{C} \mid x_t - 2 \le 0\}$
VE	a_3	$b_1 - b_2$	[0,1]	$[x_t - 2, y_t - 2]$	$ \{q \in \mathcal{C} \mid y_t - 2 \le 0\}$
EV	b_2	a_3-a_1	[1,-2]	$\left[-x_t, 2-y_t\right]$	$ \{q \in \mathcal{C} \mid -x_t + 2y_t - 4 \le 0\}$
VE	a_1	<i>b</i> ₂ <i>-b</i> ₃	[-1,0]	$[2+x_t, y_t-1]$	$\{q \in \mathcal{C} \mid -x_t - 2 \le 0\}$
EV	b_3	a_1 - a_2	[1,1]	$\begin{bmatrix} -1 - x_t, -y_t \end{bmatrix}$	$\{q \in \mathcal{C} \mid -x_t - y_t - 1 \le 0\}$
VE	a_2	b_3-b_4	[0, -1]	$[x_t+1, y_t+2]$	$\{q \in \mathcal{C} \mid -y_t - 2 \le 0\}$
EV	b_4	$a_2 - a_3$	[-2,1]	$\left[2-x_t,-y_t\right]$	$\{q \in \mathcal{C} \mid 2x_t - y_t - 4 \le 0\}$

Geometric Models Transforming Robots	What about translation and rotation? Obtain a 3D subset of $\mathbb{R}^2 imes S^1$.	
Topology C-Spaces	Two contact types:	
Metric Spaces C-Space Obstacles		
	Type EV	Type VE
	Equations polynomial in x_t, y_t, a, b ari	se.

 $(a = \cos \theta \text{ and } b = \sin \theta)$

Forms the boundary of a 3D semi-algebraic obstacle in $\mathcal{C}=\mathbb{R}^2\times S^1$

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 66 / 71

Geometric Models	In 3D, there are three cont	act types:	
Transforming Robots			\checkmark
Тороlоду			
C-Spaces			
Metric Spaces			
C-Space Obstacles			
	Type FV	Type VF	Type EE

Forms the boundary of a 6D semi-algebraic obstacle in $\mathcal{C}=\mathbb{R}^3\times\mathbb{R}P^3$

Three different kinds of contacts that each lead to half-spaces in C:

- 1. Type FV: A face of \mathcal{A} and a vertex of \mathcal{O}
- 2. Type VF: A vertex of \mathcal{A} and a face of \mathcal{O}
- 3. Type EE: An edge of \mathcal{A} and an edge of \mathcal{O} .

The Obstacles in C-Space Can Be Complicated

Geometric Models
Transforming Robots
Topology
C-Spaces
Metric Spaces
C-Space Obstacles

For the case of two-links, $C = S^1 \times S^1$, but the obstacle region can quickly become strange and complicated:

Basic Motion Planning Problem

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 69 / 71

Summary of Part I

Geometric Models
Transforming Pohots
Transforming Robots
Topology
C-Spaces
Metric Spaces
C-Space Obstacles

- Geometric representations are an important first step.
- Planning is a search on the space of transformations.
- Think like a topologist when it comes to C-space.

More details: Planning Algorithms, Chapters 3 and 4.

Homework 1: Solve During Coffee Break

Geometric Models	A car driving on a gigantic sphere:
Transforming Robots	C2
Topology	
<u>C-Spaces</u>	
Metric Spaces	
<u>C-Space Obstacles</u>	
• •	
	The sphere is large enough so that the car does not wobble.
	The car can achieve any position and orientation on the sphe
	What is the C-space?
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN	ICRA 2012 Tutorial - Motion Planning - 14

sphere.