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1. An I-space view of planning, starting with temporal filters

2. General planning issues

3. Maze searching

4. Visibilty-based pursuit-evasion

5. Shadow information spaces

6. Gap navigation trees

7. Landmark-based navigation

8. Bug algorithms

9. Sensorless manipulation

10. Wild bodies
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Let I be any I-space.

Assume a filter

ιk = φ(ιk−1, uk−1, yk)

is given.

Let G ⊂ I be a goal region.

Starting from ι0, what sequence of actions u1, u2, . . ., will lead to some

future I-state ιk ∈ G?
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The future may be unpredictable.

Introduce an I-state dependent plan:

π : I → U

Using a filter φ, the execution of a plan can be expressed as

ιk = φ(ιk−1, yk, π(ιk−1))

The I-space I is just a sort of “C-space” that is being explored.
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The following issues arise repreatedly in planning:

1. Predictability
2. Reachability
3. Optimality
4. Computability



Predictability

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 8 / 115

Are the effects of actions predictable in the I-space I?

If yes , then a path through the I-space is obtained.

Example: Sensorless manipulation

Example: Visibility-based pursuit evasion

By analogy to path planning in C-space:

1. Combinatorial planning in I-space

2. Sampling-based planing in I-space

If no , then information feedback is critical

It is like feedback planning (or control) in C-space, but instead over I-space
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Reachability:
Is the goal region G ⊂ I even reachable from the initial I-state?

Do there even exist actions that will take us to G?

Does there exist a plan that can reach G?

With unpredictability, is G guaranteed to be reached, over all possible

disturbances?

A more basic question is whether the goal can even be adequately

expressed in I .
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Perhaps many plans can reach G

What criteria should be formulated to compare plans?

Which plans are the best, or optimal with respect to criteria?

Do optimal plans even exist?
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Given a description of the problem, can an algorithm be determined that

automatically computes a useful plan?

Sometimes a clever human designs the plan (e.g. bug algorithms)

What is the algorithmic complexity of computing a solution plan?

What is the implementation difficulty of computing a solution plan?
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State feedback: I-space is I = X and plan is π : X → U

Open loop: I = N and π : N → U
π can be written as (u1, u2, u3, . . .)

Sensor feedback: I = Y and π : Y → U

History feedback I = Ihist and π : Ihist → U

Recall the previous filters over these 4 I-spaces.

Now we move from passive to active.



Overall Process

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 13 / 115

Based on the task, an overall approach that leads to planning:

1. Design the system, which includes the environment, bodies, and

sensors.
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Based on the task, an overall approach that leads to planning:

1. Design the system, which includes the environment, bodies, and

sensors.

2. Define the models, which provide the state space X , the sensor

mapping h, and the state transition function f .
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Based on the task, an overall approach that leads to planning:

1. Design the system, which includes the environment, bodies, and

sensors.

2. Define the models, which provide the state space X , the sensor

mapping h, and the state transition function f .

3. Select an I-space I for which a filter φ can be practically computed.
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Based on the task, an overall approach that leads to planning:

1. Design the system, which includes the environment, bodies, and

sensors.

2. Define the models, which provide the state space X , the sensor

mapping h, and the state transition function f .

3. Select an I-space I for which a filter φ can be practically computed.

4. Take the desired goal, expressed over X , and convert it into an

expression over I .

5. Compute a plan π over I that achieves the goal in terms of I .

Really, all steps should be considered together.

Might have to backtrack.
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� A 2D environment, possibly curved

� Unpredictable point “evaders” move with unbounded speed

� Point “pursuers” use visibility sensors to find all evaders
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Try to solve using one pursuer with 360◦ vision:
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You might have to revisit the same place many times...

Ω(n) recontaminations
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Environment Inflections

Bitangents Cell Decomposition
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Identify all unique situations that can occur:

An information state is identified by (x, S) in which

x = the position of the pursuer

S = set of possible evader positions

The set of all information states forms an information space.

Many closed-path motions retain the same information state.
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� Let G(V,E) be the dual of the cell decomposition

� For each v ∈ V , there are finitely many information classes

� Form a directed information state graph, GI(VI , EI)
� Each v ∈ VI is an information class

� Each e ∈ EI indicates a transition between information classes

(crossing an inflection or bitangent)

For each information class, label each shadow component with “1” for

contaminated or “0” for clear.

Search GI from a state in which

All labels are “1”
to a state in which

All labels are “0”
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Pursuit-evasion planar graph problem:

A geometric equivalent:

Results:

Deciding whether a simple polygon can be searched by k pursuers is NP

hard.

Ω(lg n +
√

h) pursuers needed for some polygons



Ω(lg n) Pursuers for Simple Polygon

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 22 / 115

This sequence requires Ω(lg n) pursuers.
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� Constructing and searching equivalence classes in the information

space

� A complete algorithm for 360◦ visibility

� A complete algorithm for 1 pursuer with 1 flashlight

� A complete algorithm for 2 pursuers with 1 flashlight each

All of these assume perfect mapping, control, and localization.

Alternative pursuit-evasion approaches:

� Using the gap sensor (Sachs, Rajko, LaValle, IJRR 2004)

� Using a wall-following robot (Katsev, Tovar, Yershova, Ghrist, LaValle,

IEEE Trans. Robotics, 2011
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Each E ∈ E is a bounded set of white tiles.

X ⊂ Z × Z × D × E

Actions: 1) Rotate 90 degrees CCW; 2) Move foward one tile.

Task: Make a plan that systematically searches all white tiles.

For example, find a hidden treasure.
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Could try I = pow(Z × Z × D × E).

Too large!

Instead, maintain I-states B (known black tiles) and W (known white tiles).
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All other tiles assumed “unknown”.

I-space I is all ways to partition Z × Z into connected “white”, “black”,

and “unknown” tiles.

Linear space required for an I-state (filter memory).
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I-state: Latitude (integer) and orientation (two bits)

Only logarithmic space required: Not enough for a “map”.

They found an I-space that is much smaller than the set of all maps.
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For gap navigation trees, two active tasks:

1. Full exploration of the environment

2. Distance-optimal navigation to retrieve objects

Tovar, Murrieta, LaValle, IEEE Trans. Robotics, 2007.



Introduce an Action

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 30 / 115

A gap-chasing action is introduced:

Move the robot toward a gap g until a critical event occurs.

One of two events must occur:

1. The gap g splits into two gaps g′ and g′′.
2. The gap g disappears.
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If a gap ever appears, mark it as primitive.

This is an extension to the filter I-state.

1. Mark all gaps in the initial tree as non-primitive.

2. Let k = 1.

3. Chase any gap g that is a non-primtive leaf.

4. If g disappears, then go to Step 6.

5. If g splits, then chase one of its children.

6. Unless all leaves are primitive, increment k and go to Step 3.

At the end, all leaves are primitive and the environment has been fully

explored.
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Chase every non-primitive leaf:
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Eventually, all leaves become primitive.



Optimal Object Retrieval
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There are no coordinates.

Objects hide behind gaps.

a

fe

b

dc

g

f

g

f

 object is visible

Chase the appropriate sequence of gaps.
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Many configuraton-environment pairs have the same tree.

The robot does not have to distinguish!



Learning convex hulls of landmarks
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Recall: Cyclic Permutation Sensor
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Relation: “is to the left of in counterclockwise order”

4

3

5

2

1

Observation: y = (1, 2, 4, 3, 5)



Making an Active Version
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Tovar, Freda, LaValle, 2007.

� Landmark locations are unknown

� Introduce action: “Go to landmark i”
� Can notice which landmarks are “to the left” of the path.

1

8

6

2
3

5

7

4

9

”Go to 9”

Sense that (6, 1, 5) is to the right of (7, 2, 3, 8).
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By visiting all pairs, the filter can learn:

� For any subset L′ ⊂ L of landmarks, which others in L lie in the

convex hull of L′.

� Equivalently, the robot learns the dual arrangement, order types,

oriented matroid.

� The robot can navigation to any goal specified as a cyclic permutation.
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Recall Bug Algorithms
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xGxI

Navigate without being given an initial map E

Lumelsky, Stepanov, 1987; Kamon, Rivlin, Rimon, 1997; many others...
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Taylor, LaValle, ICRA 2009

� The plane contains unknown obstacles with piecewise analytic

boundary.

� Each obstacle boundary has finite length.

� A tower sends a constant signal.

� Robot has very limited sensors.

� Command the robot so that it reaches the tower.
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� Boundary (or Contact) sensor:
Indicate whether or not robot is on the boundary.

� Tower alignment/gradient sensor:
Indicate whether robot is facing the tower (or intensity gradient).

� Transformed signal intensity sensor:
Observe the value of m(p − pt).

Regarding m:

� m has only only local maximum, at the tower.

� The function m itself is not given.

� Level sets of m may be symmetric (circles) or asymmetric.
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There are three possible actions:

ufwd: Go straight until either ∂E is hit, tower is hit, or local intensity

maximum detected.

ufol: Follow ∂E until local maximum detected.

uori: Rotate until facing tower (or local gradient).



A Plan Designed by Humans

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 44 / 115

Illustration of the Plan

Guaranteed to converge; upper bound on distance shown.



Information Spaces
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State space: X ⊂ R
2 × S1 × E

I-space: I = Y 3 ⊂ R
3

I-state components:

1. Current observation

2. Observation when obstacle was last contacted

3. Observation just prior to application of ufwd



Multiple Iterations in the Interior
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� Equivalent to Steepest Descent with Line Search.

� Result: Convergence is obtained, but distance bound depends on

properties of m.
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Proposition: Using its sensors and motion primitives, it is impossible for

the robot to determine whether the tower is reachable, in other words

whether pt ∈ E.
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Try to force parts into a known orientation

d(θ)

Mason, Goldberg, 1990

X = S1 I = pow(X)

Plan: π = (u1, u2, . . . , un)
A sequence of squeeze operations



Sensorless Manipulation

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 50 / 115

b

aa
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0 π/2 π 3π/2 2π

d(α)

α

Consider the “diameter” as a function of orientation.
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a

b

0 π/2 π 3π/2 2π

1 2 3 4 1

α

d(α)

There are four regions of attraction.

This causes a funneling effect when actions are applied.
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A computed plan that applies two squeeze actions
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Recall the simple filter that determines whether two bodies are in the

same region.

b

c

a

Da

Dc Db
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bc

b c
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� A 2D environment, possibly curved

� Unpredictable point “evaders” move with unbounded speed

� Point “pursuers” use visibility sensors to find all evaders
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s1 s2

s3

s4

s5
s6

s7

Keep track of bodies out of view–in the shadows.

How many are there? What kinds of bodies are there?
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� Key exploited property in filters: Motion continuity
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� Key exploited property in filters: Motion continuity
� Bring in actuation , but continue with minimalism, reduced I-spaces

� Passive → Avoid state estimation

Active → Avoid system identification

� What is the new key property?
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� Key exploited property in filters: Motion continuity
� Bring in actuation , but continue with minimalism, reduced I-spaces

� Passive → Avoid state estimation

Active → Avoid system identification

� What is the new key property? Wildness
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� No map is given in advance
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� No map is given in advance

� No position estimation is available
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� No map is given in advance

� No position estimation is available

� No system identification has been performed
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� No map is given in advance

� No position estimation is available

� No system identification has been performed

� No sensors, inside or outside of the robot
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� No map is given in advance

� No position estimation is available

� No system identification has been performed

� No sensors, inside or outside of the robot

� No computer or any other digital devices
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� No map is given in advance

� No position estimation is available

� No system identification has been performed

� No sensors, inside or outside of the robot

� No computer or any other digital devices

� Only one motor, oscillating at 2Hz
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An old, popular toy (costs about $4)
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We say that a body is wild in a region R ⊆ R
2 if it moves on a trajectory

that causes it to repeatedly strike every open interval in ∂R (the boundary

of R), with non-zero, non-tangential velocities.

Somewhat informal
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� It is far from stable

� Almost impossible to predict

� Dynamical system modeling or identification is difficult
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� It is far from stable

� Almost impossible to predict

� Dynamical system modeling or identification is difficult

Hmm...the situation is similar for humans.
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How to clear out the breakfast area after 9:30am?
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Also: bug traps
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� Tray tilting, Mason, Erdmann, 1988

� Virtual fences for herding cows, Butler, Corke, Peterson, Rus, 2004.

� Manipulation by vibration, Canny, Reznick, 1998; Vose, Lynch, 2011

� Building evacuation, Chalmet, Francis, Saunders, Fire Technology,

1982.
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g1 g4

The plane R
2 is partitioned into:

1) obstacle set, 2) finite set of regions, 3) finite set of gates.

A bipartite graph represents the connectivity.
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� Design some “wild” bodies

� Place bodies into regions

� Design gates to control them at the region level

Imagine an unusual hybrid system

A discrete flow across regions can be obtained

r3g3r2

r1 g2 r4 r5

g1 g4

→ r3g3r2

r1 g2 r4 r5

g1 g4
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� Static gates: The gates are fixed in advance and allow one-way

motions from region to region.

� Pliant gates: The gates have internal modes that affect how bodies

are permitted to transition between regions and the modes may

passively change via contact with bodies.

� Controllable gates: Based on information states, the gate modes are

externally changed during execution.

� Virtual gates: Based on robot sensing, and never represent true

physical obstructions.
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Strips of paper, wedged between bricks
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g1 g4

Compute a discrete flow to the goal region (BFS, Dijkstra).

Related work: Sequential composition of funnels, Lozano-Perez, Mason,

Taylor, 1984; Mason, Goldberg, 1990; Burridge, Rizzi, Koditschek, 1999;

Conner, Rizzi, Choset, 2003.
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Goal: Flow to lower left region.
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Six balls must flow to the upper right region.
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Controlling 10 Hexbug Nanos.



Static Gates: Single-Body Patrolling

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 74 / 115

Repeatedly travel a route through all regions.
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Send all bodies on patrol, asynchronously.
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A tale of 50 weaselballs...
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A pliant gate g has a finite set M(g) of modes.

A body coming from region r into a gate g in mode m induces a mode

transition:

m′ = f(m, r)

Mode transitions are caused by the bodies while they traverse gates.
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Left to right Right to left

A two-mode pliant gate that maintains region counts.
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Keeping the number of balls roughly constant in each region.
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Controllable Gates
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Now suppose that the mode can be externally set by actuators.

Example modes M(g) per gate g:

1. Block all passage

2. Allow left to right passage only

3. Allow right to left passage only

4. Allow bidirectional passage

Let M be the Cartesian product of all mode sets.

Key issue: What information is used to set m ∈ M?
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For some time interval T = [0, t]:

π : T → M

Time feedback

For sensor with observation space Y :

π : Y → M

Sensor feedback

More generally, for any information space I , we have:

π : I → M



Sensor Feedback and Tilting Ramps

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 83 / 115

Tilting ramp:

L to R Blocked R to L

Sensor beam feedback:
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Consider Linear Temporal Logic (LTL):

� Navigation: ♦π1

� Sequencing: ♦(π1 ∧ ♦(π2 ∧ ♦(π3 ∧ · · · ♦πk) · · · )
� Coverage: ♦π1 ∧ ♦π2 ∧ · · · ♦πk

� Avoiding regions: ¬(π1 ∨ π2 · · · ∨ πk)Uπfinal

� Patrolling: �(♦π1 ∧ ♦π2 ∧ . . .♦πk).

Examples are from Kress-Gazit, Fainekos, Pappas, 2005.

RSS 2011: From LTL to weaselball implementations.
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Approach:

1. Express the task in some logic

2. Convert into a solution in terms of region sequences

3. Implement using controllable gates and sensor feedback
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� Imagine indistinguishable balls in boxes.

� There is a natural transition graph.

� Express tasks using logic, and convert to sequences of distributions.
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Splitting Video:

Merging Video
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A cheap color sensor detects a virtual gate crossing.

Communication allows simulation of a physical-gate system.
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A simple information-feedback plan: π : I → M

η0: White open, red closed

η1: White closed, red open

RED

WHITE=y

=y
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Separation into classes

Each robot can treat the boundaries (red and white) differently.
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b

c

a

History I-state: abbacbacabababcabcbba

Question: Are the bodies in the same room?
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This two-bit machine can read strings of any length and correctly report

the answer.
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1 = closed

0 = open

a

bc

b c

a

000

110

101 011

Information space: I = {T,Da, Db, Dc}
Information feedback plan: π : I → M
Communication is needed between the robots.
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� Connections to results in mathematics

� Performance analysis

� Designing better motions

� Optimal searching for the gate
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History: Poincare, Hadamard, Artin, Sinai, Bunimovich, ...

Bunimovich stadium
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Sinai billiard



Ergodic Dynamics: Definition

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 97 / 115

First, a measure-preserving dynamical system is a four-tuple (X,B, µ, T )
for which: 1) X is a set, 2) B is a σ-algebra over X , 3) µ : B → [0, 1] is a

measure, and 4) T : X → X is a measurable transformation that

preserves measure (each A ∈ B satisfies µ(T−1A) = µ(A)).

A measurable set A ∈ B is called T -invariant mod 0 if

µ(T−1(A) △ A) = 0, in which △ denotes the symmetric difference.

Note that if this is true then A is Tn-invariant mod 0 for all n.

T is ergodic if for every T -invariant mod 0 measurable set A, we have

µ(A) = 1 or µ(A) = 0.

Intuition: You can’t find a region (connected or not) that traps it.
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The system is a measure-preserving transformation T : X → X on a

state space X .

X

A

You can’t find a region A (connected or not) that traps the system, unless

A or its complement has measure zero.
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Let T be a planar rotation by angle θ.

X = S1

If θ/π is irrational, then T is ergodic; otherwise, it is not.

Example: θ = π/2

0

3π/2

π/2

π
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Let f by any µ-integrable function.

Time average:

lim
n→∞

1

n

n−1∑
k=0

f(T kx)

Space average:

1

µ(X)

∫
fdµ
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Birkhoff (1931): If T is ergodic, then the time and space averages are the

same (almost everywhere).

Example:

Take any A ⊆ X
Let f(x) = 1 if x ∈ A and f(1) = 0 otherwise.

In this case, Birkoff’s theorem states that the frequency of visits to A is

equal to µ(A).
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Kerckhoff, Masur, Smillie, 1986: For almost all polygons and almost all

initial conditions, the billiard trajectory is ergodic.
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� We do not care about measure-preserving maps.

� There are many alternative ways to bounce.

� Classical ergodicity may be overkill.

This is ergodic almost everywhere, but not measure-preserving:

f : x 7→ 2x mod 1

Here, f : [0, 1] → [0, 1]
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α
γ

β

γ = h(α, β)

Fundamental question: What sensors are needed?

Alternative: Select γ randomly (or with p(γ|α, β))
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Let C ⊆ X . Let x̃ : [0,∞) → X be a trajectory.

x̃ is called topologically transitive with respect to C if for every open set

O ⊂ C , there exists a time t > 0 for which x̃(t) ∈ O.

P

∂P

Suppose X ⊂ R
3, in which (x, y) ∈ P and θ ∈ S1.

Possibilities: C = X , C = ∂P × (0, π), or C = ∂P
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Angle of incoming body not relevant to trajectory after impact.
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Bodies tend to move away from corners.



Trap

From filters to planning

General issues

Visibility-based pursuit
evasion

Maze searching

Gap navigation trees

Learning convex hulls of
landmarks

Bug algorithms

Sensorless manipulation

Controlling Wild Bodies

Amirkabir Winter School 2012 (Esfand 1390) – 108 / 115

Nothing to the right of the green line will deflect a body back over the

green line.
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Nothing to the right of the purple line will deflect the body over the green

line.
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When the body crosses the green line, it moves toward the purple line,

away from the “corner”.
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The green and purple lines denote the boundaries of a basin of attraction.
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Body always reflects at a right angle, regardless of trajectory relative to

wall.
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Right angle bouncing is attracted to corners.
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The general paradigm:

� Let the bodies “run wild”, rather than stabilizing.

� Use physical or virtual gates to gently guide them.

� Use as little sensing and comminication as possible.

Challenges:

� Designing more systems of bodies and gates

� Characterizing the space of tasks that can be solved

� Development and analysis of simple bouncing primitives
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� Use filters to make I-space transitions

� Plan directly in the I-space

� General planning issues

� Need to design virtual sensors, filters, and planning around a task

� Several examples were shown

Although several examples of nice reduced-complexity I-spaces have

been found, we have barely scratched the surface...
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