
Part IV

Planning Under Differential Constraints

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press



713

Overview of Part IV:

Planning Under Differential Constraints

Part IV is a continuation of Part II. It is generally not necessary to read Part
III before starting Part IV. In the models and methods studied in Part II, it was
assumed that a path can be easily determined between any two configurations
in the absence of obstacles. For example, the sampling-based roadmap approach
assumed that two nearby configurations could be connected by a “straight line”
in the configuration space. The constraints on the path are global in the sense
that the restrictions are on the set of allowable configurations.

The next few chapters introduce differential constraints, which restrict the
allowable velocities at each point. These can be considered as local constraints,
in contrast to the global constraints that arise due to obstacles. Some weak
differential constraints, such as smoothness requirements, arose in Chapter 8.
Part IV goes much further by covering differential consraints in full detail and
generality.

Differential constraints arise everywhere. In robotics, most problems involve
differential constraints that arise from the kinematics and dynamics of a robot.
One approach is to ignore them in the planning process and hope that the dif-
ferential constraints can be appropriately handled in making refinements. This
corresponds to applying the techniques of Part II in robotics applications and then
using control techniques to ensure that a computed path is executed as closely as
possible. If it is practical, a better approach is to consider differential constraints
in the planning process. This yields plans that directly comply with the natural
motions of a mechanical system.

Chapter 13 is similar in spirit to Chapter 3. It explains how to construct
and represent models that have differential constraints, whereas Chapter 3 did
the same for geometric models. It also provides background and motivation for
Part IV by giving a catalog of numerous models that can be used in planning
algorithms. Differential models are generally expressed as ẋ = f(x, u), which is
the continuous-time counterpart of the state transition equation, xk+1 = f(xk, uk).
Thus, the focus of Chapter 13 it to define transition functions.

Chapter 14 covers sampling-based planning algorithms for problems that in-
volve differential constraints. There is no chapter on combinatorial algorithms
in this context because they exist only in extremely limited cases. Differential
constraints seem to destroy most of the nice properties that are needed by com-
binatorial approaches. Rather than develop complete algorithms, the focus is on
resolution-complete planning algorithms. This is complicated by the discretiza-
tion of three spaces (state space, action space, and time), whereas in Chapter
5 resolution completeness only involved discretization of the C-space. The main
topics are extending the incremental sampling and searching framework of Section
5.4, extending feedback motion planning of Chapter 8, and developing decoupled
methods for trajectory planning.

714

Chapter 15 overviews powerful ideas and tools that come mainly from control
theory. The planning methods of Chapter 14 can be greatly enhanced by utiliz-
ing the material from Chapter 15. The two chapters are complementary in that
Chapter 14 is mainly algorithmic and Chapter 15 is mainly about mathematical
techniques. The main topics of Chapter 15 are system stability, optimality con-
cepts (Hamilton-Jacobi-Bellman equation and Pontryagin’s minimum principle),
shortest paths for wheeled vehicles, nonholonomic system theory, and nonholo-
nomic steering methods. The term nonholonomic comes from mechanics and
refers to differential constraints that cannot be fully integrated to remove time
derivatives of the state variables.



Chapter 13

Differential Models

This chapter provides a continuous-time counterpart to the state transition equa-
tion, xk+1 = f(xk, uk), which was crucial in Chapter 2. On a continuous state
space, X (assumed to be a smooth manifold), it will be defined as ẋ = f(x, u),
which intentionally looks similar to the discrete version. It will still be referred
to as a state transition equation. It will also be called a system (short for control
system), which is a term used in control theory. There are no obstacle regions in
this chapter. Obstacles will appear again when planning algorithms are covered
in Chapter 14. In continuous time, the state transition function f(x, u) yields a
velocity as opposed to the next state. Since the transitions are no longer discrete,
it does not make sense to talk about a “next” state. Future states that satisfy the
differential constraints are obtained by integration of the velocity. Therefore, it
is natural to specify only velocities. This relies on the notions of tangent spaces
and vector fields, as covered in Section 8.3.

This chapter presents many example models that can be used in the planning
algorithms of Chapter 14. Section 13.1 develops differential constraints for the
case in which X is the C-space of one or more bodies. These constraints com-
monly occur for wheeled vehicles (e.g., a car cannot move sideways). To represent
dynamics, constraints on acceleration are needed. Section 13.2 therefore intro-
duces the phase space, which enables any problem with dynamics to be expressed
as velocity constraints on an enlarged state space. This collapses the higher order
derivatives down to being only first-order, but it comes at the cost of increasing the
dimension of the state space. Section 13.3 introduces the basics of Newton-Euler
mechanics and concludes with expressing the dynamics of a free-floating rigid
body. Section 13.4 introduces some concepts from advanced mechanics, including
the Lagrangian and Hamiltonian. It also provides a model of the dynamics of a
kinematic chain of bodies, which applies to typical robot manipulators. Section
13.5 introduces differential models that have more than one decision maker.

715

716 S. M. LaValle: Planning Algorithms

13.1 Velocity Constraints on the Configuration

Space

In this section, it will be assumed that X = C, which is a C-space of one or more
rigid bodies, as defined in Section 4.2. Differential models in this section are all
expressed as constraints on the set of allowable velocities at each point in C. This
results in first-order differential equations because only velocities are constrained,
as opposed to accelerations or higher order derivatives.

To carefully discuss velocities, it will be assumed that C is a smooth manifold,
as defined in Section 8.3.2, in addition to a topological manifold, as defined in
Section 4.1.2. It may be helpful to keep the cases C = R

2 and C = R
3 in mind. The

velocities are straightforward to define without resorting to manifold technicalities,
and the dimension is low enough that the concepts can be visualized.

13.1.1 Implicit vs. Parametric Representations

There are two general ways to represent differential constraints: parametric and
implicit. Many parallels can be drawn to the parametric and implicit ways of
specifying functions in general. Parametric representations are generally easier to
understand and are simpler to use in applications. Implicit representations are
more general but are often more difficult to utilize. The intuitive difference is
that implicit representations express velocities that are prohibited, whereas para-
metric representations directly express the velocities that are allowed. In this
chapter, a parametric representation is obtained wherever possible; nevertheless,
it is important to understand both.

Implicit representation

The planar case For purposes of illustration, suppose that C = R
2. A configu-

ration is expressed as q = (x, y) ∈ R
2, and a velocity is expressed as (ẋ, ẏ). Each

(ẋ, ẏ) is an element of the tangent space Tq(R
2), which is a two-dimensional vector

space at every (x, y). Think about the kinds of constraints that could be imposed.
At each q ∈ R

2, restricting the set of velocities yields some set U(q) ⊂ Tq(R
2).

The parametric and implicit representations will be alternative ways to express
U(q) for all q ∈ R

2.

Here are some interesting, simple constraints. Each yields a definition of U(q)
as the subset of Tq(R

2) that satisfies the constraints.

1. ẋ > 0: In this case, imagine that you are paddling a boat on a swift river
that flows in the positive x direction. You can obtain any velocity you like
in the y direction, but you can never flow against the current. This means
that all integral curves increase monotonically in x over time.



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 717

2. ẋ ≥ 0: This constraint allows you to stop moving in the x direction. A
velocity perpendicular to the current can be obtained (for example, (0, 1)
causes motion with unit speed in the positive y direction).

3. ẋ > 0, ẏ > 0: Under this constraint, integral curves must monotonically
increase in both x and y.

4. ẋ = 0: In the previous three examples, the set of allowable velocities
remained two-dimensional. Under the constraint ẋ = 0, the set of allowable
velocities is only one-dimensional. All vectors of the form (0, ẏ) for any
ẏ ∈ R are allowed. This means that no motion in the x direction is allowed.
Starting at any (x0, y0), the integral curves will be of the form (x0, y(t)) for
all t ∈ [0,∞), which confines each one to a vertical line.

5. aẋ+bẏ = 0: This constraint is qualitatively the same as the previous one.
The difference is that now the motions can be restricted along any collection
of parallel lines by choosing a and b. For example, if a = b = 1, then only
diagonal motions are allowed.

6. aẋ + bẏ + c = 0: This constraint is similar to the previous one, however
the behavior is quite different because the integral curves do not coincide.
An entire half plane is reached. It also impossible to stop becasue ẋ = ẏ = 0
violates the constraint.

7. ẋ2 + ẏ2 ≤ 1: This constraint was used in Chapter 8. It has no effect on
the existence of solutions to the feasible motion planning problem because
motion in any direction is still allowed. The constraint only enforces a
maximum speed.

8. ẋ2 + ẏ2 ≥ 1: This constraint allows motions in any direction and at any
speed greater than 1. It is impossible to stop or slow down below unit speed.

Many other constraints can be imagined, including some that define very com-
plicated regions in R

2 for each U(q). Ignoring the fact that ẋ and ẏ represent
derivatives, the geometric modeling concepts from Section 3.1 can even be used to
define complicated constraints at each q. In fact, the constraints expressed above
in terms of ẋ and ẏ are simple examples of the semi-algebraic model, which was
introduced in Section 3.1.2. Just replace x and y from that section by ẋ and ẏ
here.

If at every q there exists some open set O such that (0, 0) ∈ O and O ⊆ U(q),
then there is no effect on the existence of solutions to the feasible motion planning
problem. Velocities in all directions are still allowed. This holds true for velocity
constraints on any smooth manifold [246].

So far, the velocities have been constrained in the same way at every q ∈ R
2,

which means that U(q) is the same for all q ∈ R
2. Constraints of this kind are of

the form g(ẋ, ẏ) ⊲⊳ 0, in which ⊲⊳ could be =, <, >, ≤, or ≥, and gi is a function

718 S. M. LaValle: Planning Algorithms

from R
2 to R. Typically, the = relation drops the dimension of U(x) by one, and

the others usually leave it unchanged.

Now consider the constraint ẋ = x. This results in a different one-dimensional
set, U(q), of allowable velocities at each q ∈ R

2. At each q = (x, y), the set of
allowable velocities must be of the form (x, ẏ) for any ẏ ∈ R. This means that as
x increases, the velocity in the x direction must increase proportionally. Starting
at any positive x value, there is no way to travel to the y-axis. However, starting
on the y-axis, the integral curves will always remain on it! Constraints of this
kind can generally be expressed as g(x, y, ẋ, ẏ) ⊲⊳ 0, which allows the dependency
on x or y.

General configuration spaces Velocity constraints can be considered in the
same way on a general C-space. Assume that C is a smooth manifold (a man-
ifold was not required to be smooth in Chapter 4 because derivatives were not
needed there). All constraints are expressed using a coordinate neighborhood, as
defined in Section 8.3.2. For expressing differential models, this actually makes
an n-dimensional manifold look very much like R

n. It is implicitly understood
that a change of coordinates may occasionally be needed; however, this does not
complicate the expression of constraints. This makes it possible to ignore many of
the manifold technicalities and think about the constraints as if they are applied
to R

n.

Now consider placing velocity constraints on C. Imagine how complicated
velocity constraints could become if any semi-algebraic model is allowed. Velocity
constraints on C could be as complicated as any Cobs. It is not even necessary to
use algebraic primitives. In general, the constraints can be expressed as

g(q, q̇) ⊲⊳ 0, (13.1)

in which ⊲⊳ could once again be =, <, >, ≤, or ≥. The same expressive power
can be maintained even after eliminating some of these relations. For example,
any constraint of the form (13.1) can be expressed as a combination of constraints
of the form g(q, q̇) = 0 and g(q, q̇) < 0. All of the relations are allowed here,
however, to make the formulations simpler.

Constraints expressed in the form shown in (13.1) are called implicit. As
explained in Chapters 3 and 4, it can be very complicated to obtain a parametric
representation of the solutions of implicit equations. This was seen, for example,
in Section 4.4, in which it was difficult to characterize the set of configurations
that satisfy closure constraints. Nevertheless, we will be in a much better position
in terms of developing planning algorithms if a parametric representation of the
constraints can be obtained. Fortunately, most constraints that are derived from
robots, vehicles, and other mechanical systems can be expressed in parametric
form.



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 719

Parametric constraints

The parametric way of expressing velocity constraints gives a different interpre-
tation to U(q). Rather than directly corresponding to a velocity, each u ∈ U(q)
is interpreted as an abstract action vector. The set of allowable velocities is then
obtained through a function that maps an action vector into Tq(C). This yields
the configuration transition equation (or system)

q̇ = f(q, u), (13.2)

in which f is a continuous-time version of the state transition function that was
developed in Section 2.1. Note that (13.2) actually represents n scalar equations,
in which n is the dimension of C. The system will nevertheless be referred to as a
single equation in the vector sense. Usually, U(q) is fixed for all q ∈ C. This will
be assumed unless otherwise stated. In this case, the fixed action set is denoted
as U .

There are two interesting ways to interpret (13.2):

1. Subspace of the tangent space: If q is fixed, then f maps from U into
Tq(C). This parameterizes the set of allowable velocities at q because a
velocity vector, f(q, u), is obtained for every u ∈ U(q).

2. Vector field: If u is fixed, then f can be considered as a function that
maps each q ∈ C into Tq(C). This means that f defines a vector field over C
for every fixed u ∈ U .

Example 13.1 (Two Interpetations of q̇ = f(q, u)) Suppose that C = R
2,

which yields a two-dimensional velocity vector space at every q = (x, y) ∈ R
2. Let

U = R, and q̇ = f(q, u) be defined as ẋ = u and ẏ = x.
To obtain the first interpretation of q̇ = f(q, u), hold q = (x, y) fixed; for

each u ∈ U , a velocity vector (ẋ, ẏ) = (u, x) is obtained. The set of all allowable
velocity vectors at q = (x, y) is

{(ẋ, ẏ) ∈ R
2 | ẏ = x}. (13.3)

Suppose that q = (1, 2). In this case, any vector of the form (u, 1) for any u ∈ R

is allowable.
To obtain the second interpretation, hold u fixed. For example, let u = 1. The

vector field (ẋ, ẏ) = (1, x) over R2 is obtained. �

It is important to specify U when defining the configuration transition equa-
tion. We previously allowed, but discouraged, the action set to depend on q. Any
differential constraints expressed as q̇ = f(q, u) for any U can be alternatively
expressed as q̇ = u by defining

U(q) = {q̇ ∈ R
n | ∃u ∈ U such that q̇ = f(q, u)} (13.4)

720 S. M. LaValle: Planning Algorithms

for each q ∈ C. In this definition, U(q) is not necessarily a subset of U . It is
usually more convenient, however, to use the form q̇ = f(q, u) and keep the same
U for all q. The common interpretation of U is that it is a set of fixed actions
that can be applied from any point in the C-space.

In the context of ordinary motion planning, a configuration transition equation
did not need to be specifically mentioned. This issue was discussed in Section 8.4.
Provided that U contains an open subset that contains the origin, motion in any
direction is allowed. The configuration transition equation for basic motion plan-
ning was simply q̇ = u. Since this does not impose constraints on the direction, it
was not explicitly mentioned. For the coming models in this chapter, constraints
will be imposed on the velocities that restrict the possible directions. This requires
planning algorithms that handle differential models and is the subject of Chapter
14.

Conversion from implicit to parametric form

There are trade-offs between the implicit and parametric ways to express dif-
ferential constraints. The implicit representation is more general; however, the
parametric form is more useful because it explicitly gives the possible actions. For
this reason, it is often desirable to derive a parametric representation from an
implicit one. Under very general conditions, it is theoretically possible. As will be
explained shortly, this is a result of the implicit function theorem. Unfortunately,
the theoretical existence of such a conversion does not help in actually perform-
ing the transformations. In many cases, it may not be practical to determine a
parametric representation.

To model a mechanical system, it is simplest to express constraints in the
implicit form and then derive the parametric representation q̇ = f(q, u). So far
there has been no appearance of u in the implicit representation. Since u is
interpreted as an action, it needs to be specified while deriving the parametric
representation. To understand the issues, it is helpful to first assume that all
constraints in implicit form are linear equations in q̇ of the form

g1(q)q̇1 + g2(q)q̇2 + · · ·+ gn(q)q̇n = 0, (13.5)

which are called Pfaffian constraints. These constraints are linear only under the
assumption that q is known. It is helpful in the current discussion to imagine that
q is fixed at some known value, which means that each of the gi(q) coefficients in
(13.5) is a constant.

Suppose that k Pfaffian constraints are given for k ≤ n and that they are
linearly independent.1 Recall the standard techniques for solving linear equations.
If k = n, then a unique solution exists. If k < n, then a continuum of solutions
exists, which forms an (n − k)-dimensional hyperplane. It is impossible to have
k > n because there can be no more than n linearly independent equations.

1If the coefficients are placed into an k × n matrix, its rank is k.



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 721

If k = n, only one velocity vector satisfies the constraints for each q ∈ C. A
vector field can therefore be derived from the constraints, and the problem is not
interesting from a planning perspective because there is no choice of velocities.
If k < n, then n − k components of q̇ can be chosen independently, and then
the remaining k are computed to satisfy the Pfaffian constraints (this can be ac-
complished using linear algebra techniques such as singular value decomposition
[110, 254]). The components of q̇ that can be chosen independently can be con-
sidered as n−k scalar actions. Together these form an (n−k)-dimensional action
vector, u = (u1, . . . , un−k). Suppose without loss of generality that the first n− k
components of q̇ are specified by u. The configuration transition equation can
then be written as

q̇1 = u1 q̇n−k+1 = fn−k+1(q, u)

q̇2 = u2 q̇n−k+2 = fn−k+2(q, u)

...
... (13.6)

q̇n−k = un−k q̇n = fn(q, u),

in which each fi is a linear function of u and is derived from the Pfaffian constraints
after substituting ui for q̇i for each i from 1 to n − k and then solving for the
remaining components of q̇. For some values of q, the constraints may become
linearly dependent. This only weakens the constraints, which means the dimension
of u can be increased at any q for which independence is lost. Such points are
usually isolated and will not be considered further.

Example 13.2 (Pfaffian Constraints) Suppose that C = R
3, and there is one

constraint of the form (13.5)

2q̇1 − q̇2 − q̇3 = 0. (13.7)

For this problem, n = 3 and k = 1. There are two action variables because
n− k = 2. The configuration transition equation is

q̇1 = u1

q̇2 = u2

q̇3 = 2u1 − u2,
(13.8)

in which the last component was obtained by substituting u1 and u2, respectively,
for q̇1 and q̇2 in (13.7) and then solving for q̇3.

The constraint given in (13.7) does not even depend on q. The same ideas
apply for more general Pfaffian constraints, such as

(cos q3)q̇1 − (sin q3)q̇2 − q̇3 = 0. (13.9)

Following the same procedure, the configuration transition equation becomes

q̇1 = u1

q̇2 = u2

q̇3 = (cos q3)u1 − (sin q3)u2.

(13.10)

722 S. M. LaValle: Planning Algorithms

�

The ideas presented so far naturally extend to equality constraints that are not
linear in ẋ. At each q, an (n− k)-dimensional set of actions, U(q), is guaranteed
to exist if the Jacobian ∂(g1, . . . , gk)/∂(q̇1, . . . , q̇n) (recall (6.28) or see [137]) of
the constraint functions has rank k at q. This follows from the implicit function
theorem [137].

Suppose that there are inequality constraints of the form g(q, q̇) ≤ 0, in addi-
tion to equality constraints. Using the previous concepts, the actions may once
again be assigned directly as q̇i = ui for all i such that 1 ≤ i ≤ n − k. Without
inequality constraints, there are no constraints on u, which means that U = R

n.
Since u is interpreted as an input to some physical system, U will often be con-
strained. In a physical system, for example, the amount of energy consumed may
be proportional to u. After performing the q̇i = ui substitutions, the inequality
constraints indicate limits on u. These limits are expressed in terms of q and the
remaining components of q̇, which are the variables q̇n−k+1, . . ., q̇n. For many
problems, the inequality constraints are simple enough that constraints directly
on U can be derived. For example, if u1 represents scalar acceleration applied to
a car, then it may have a simple bound such as |u1| ≤ 1.

One final complication that sometimes occurs is that the action variables
may already be specified in the equality constraints: g(q, q̇, u) = 0. In this
case, imagine once again that q is fixed. If there are k independent constraints,
then by the implicit function theorem, q̇ can be solved to yield q̇ = f(q, u) (al-
though theoretically possible, it may be difficult in practice). If the Jacobian
∂(f1, . . . , fn)/∂(u1, . . . , uk) has rank k at q, then actions can be applied to yield
any velocity on a k-dimensional hyperplane in Tq(C). If k = n, then there are
enough independent action variables to overcome the constraints. Any velocity
in Tq(C) can be achieved through a choice of u. This is true only if there are no
inequality constraints on U .

13.1.2 Kinematics for Wheeled Systems

The most common family of examples in robotics arises from wheels that are
required to roll in the direction they are pointing. Most wheels are not designed
to slide sideways. This imposes velocity constraints on rolling vehicles. As a result,
there are usually less action variables than degrees of freedom. Such systems are
therefore called underactuated. It is interesting that, in many cases, vehicles can
execute motions that overcome the constraint. For example, a car can parallel park
itself anywhere that it could reach if all four wheels could turn to any orientation.
This leads to formal concepts such as nonholonomic constraints and small-time
local controllability, which are covered in Section 15.4.



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 723

L

ρ

φ

θ

(x, y)

Figure 13.1: The simple car has three degrees of freedom, but the velocity space
at any configuration is only two-dimensional.

A simple car

One of the easiest examples to understand is the simple car, which is shown in
Figure 13.1. We all know that a car cannot drive sideways because the back wheels
would have to slide instead of roll. This is why parallel parking is challenging.
If all four wheels could be turned simultaneously toward the curb, it would be
trivial to park a car. The complicated maneuvers for parking a simple car arise
because of rolling constraints.

The car can be imagined as a rigid body that moves in the plane. Therefore,
its C-space is C = R

2 × S
1. Figure 13.1 indicates several parameters associated

with the car. A configuration is denoted by q = (x, y, θ). The body frame of the
car places the origin at the center of rear axle, and the x-axis points along the
main axis of the car. Let s denote the (signed) speed2 of the car. Let φ denote
the steering angle (it is negative for the wheel orientations shown in Figure 13.1).
The distance between the front and rear axles is represented as L. If the steering
angle is fixed at φ, the car travels in a circular motion, in which the radius of the
circle is ρ. Note that ρ can be determined from the intersection of the two axes
shown in Figure 13.1 (the angle between these axes is |φ|).

Using the current notation, the task is to represent the motion of the car as a

2Having a signed speed is somewhat unorthodox. If the car moves in reverse, then s is
negative. A more correct name for s would be velocity in the x direction of the body frame, but
this is too cumbersome.

724 S. M. LaValle: Planning Algorithms

set of equations of the form

ẋ = f1(x, y, θ, s, φ)

ẏ = f2(x, y, θ, s, φ)

θ̇ = f3(x, y, θ, s, φ).

(13.11)

In a small time interval, ∆t, the car must move approximately in the direction
that the rear wheels are pointing. In the limit as ∆t tends to zero, this implies
that dy/dx = tan θ. Since dy/dx = ẏ/ẋ and tan θ = sin θ/ cos θ, this condition
can be written as a Pfaffian constraint (recall (13.5)):

−ẋ sin θ + ẏ cos θ = 0. (13.12)

The constraint is satisfied if ẋ = cos θ and ẏ = sin θ. Furthermore, any scalar
multiple of this solution is also a solution; the scaling factor corresponds directly
to the speed s of the car. Thus, the first two scalar components of the configuration
transition equation are ẋ = s cos θ and ẏ = s sin θ.

The next task is to derive the equation for θ̇. Let w denote the distance
traveled by the car (the integral of speed). As shown in Figure 13.1, ρ represents
the radius of a circle that is traversed by the center of the rear axle, if the steering
angle is fixed. Note that dw = ρdθ. From trigonometry, ρ = L/ tanφ, which
implies

dθ =
tanφ

L
dw. (13.13)

Dividing both sides by dt and using the fact that ẇ = s yields

θ̇ =
s

L
tanφ. (13.14)

So far, the motion of the car has been modeled, but no action variables have
been specified. Suppose that the speed s and steering angle φ are directly specified
by the action variables us and uφ, respectively. The convention of using a u
variable with the old variable name appearing as a subscript will be followed.
This makes it easy to identify the actions in a configuration transition equation.
A two-dimensional action vector, u = (us, uφ), is obtained. The configuration
transition equation for the simple car is

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
L

tan uφ.

(13.15)

As expressed in (13.15), the transition equation is not yet complete without
specifying U , the set of actions of the form u = (us, uφ). First suppose that any
us ∈ R is possible. What steering angles are possible? The interval [−π/2, π/2]
is sufficiently large for the steering angle uφ because any other value is equivalent



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 725

to one between −π/2 and π/2. Steering angles of π/2 and −π/2 are problematic.
To derive the expressions for ẋ and ẏ, it was assumed that the car moves in the
direction that the rear wheels are pointing. Imagine you are sitting on a tricycle
and turn the front wheel perpendicular to the rear wheels (assigning uφ = π/2).
If you are able to pedal, then the tricycle should rotate in place. This means that
ẋ = ẏ = 0 because the center of the rear axle does not translate.

This strange behavior is not allowed for a standard automobile. A car with
rear-wheel drive would probably skid the front wheels across the pavement. If a
car with front-wheel drive attempted this, it should behave as a tricycle; however,
this is usually not possible because the front wheels would collide with the front
axle when turned to φ = π/2. Therefore, the simple car should have a maximum
steering angle, φmax < π/2, and we require that |φ| ≤ φmax. Observe from Figure
13.1 that a maximum steering angle implies a minimum turning radius, ρmin. For
the case of a tricycle, ρmin = 0. You may have encountered the problem of a
minimum turning radius while trying to make an illegal U-turn. It is sometimes
difficult to turn a car around without driving it off of the road.

Now return to the speed us. On level pavement, a real vehicle has a top
speed, and its behavior should change dramatically depending on the speed. For
example, if you want to drive along the minimum turning radius, you should not
drive at 140km/hr. It seems that the maximum steering angle should reduce at
higher speeds. This enters the realm of dynamics, which will be allowed after
phase spaces are introduced in Section 13.2. Following this, some models of cars
with dynamics will be covered in Sections 13.2.4 and 13.3.3.

It has been assumed implicitly that the simple car is moving slowly to safely
neglect dynamics. A bound such as |us| ≤ 1 can be placed on the speed without
affecting the configurations that it can reach. The speed can even be constrained
as us ∈ {−1, 0, 1} without destroying reachability. Be careful, however, about a
bound such as 0 ≤ us ≤ 1. In this case, the car cannot drive in reverse! This
clearly affects the set of reachable configurations. Imagine a car that is facing a
wall and is unable to move in reverse. It may be forced to hit the wall as it moves.

Based on these considerations regarding the speed and steering angle, several
interesting variations are possible:

Tricycle: U = [−1, 1]× [−π/2, π/2]. Assuming front-wheel drive, the “car”
can rotate in place if uφ = π/2 or uφ = π/2. This is unrealistic for a simple
car. The resulting model is similar to that of the simple unicycle, which
appears later in (13.18).

Simple Car [164]: U = [−1, 1]× (−φmax, φmax). By requiring that |uφ| ≤
φmax < π/2, a car with minimum turning radius ρmin = L/ tanφmax is
obtained.

Reeds-Shepp Car [212, 245]: Further restrict the speed of the simple

726 S. M. LaValle: Planning Algorithms

car so that us ∈ {−1, 0, 1}.3 This model intuitively makes us correspond to
three discrete “gears”: reverse, park, or forward. An interesting question
under this model is: What is the shortest possible path (traversed in R

2

by the center of the rear axle) between two configurations in the absence of
obstacles? This is answered in Section 15.3.

Dubins Car [85]: Remove the reverse speed us = −1 from the Reeds-
Shepp car to obtain us ∈ {0, 1} as the only possible speeds. The shortest
paths in R

2 for this car are quite different than for the Reeds-Shepp car; see
Section 15.3.

The car that was shown in Figure 1.12a of Section 1.2 is even more restricted than
the Dubins car because it is additionally forced to turn left.

Basic controllability issues have been studied thoroughly for the simple car.
These will be covered in Section 15.4, but it is helpful to develop intuitive no-
tions here to assist in understanding the planning algorithms of Chapter 14. The
simple car is considered nonholonomic because there are differential constraints
that cannot be completely integrated. This means that the car configurations
are not restricted to a lower dimensional subspace of C. The Reeds-Shepp car
can be maneuvered into an arbitrarily small parking space, provided that a small
amount of clearance exists. This property is called small-time local controllability
and is presented in Section 15.1.3. The Dubins car is nonholonomic, but it does
not possess this property. Imagine the difficulty of parallel parking without using
the reverse gear. In an infinitely large parking lot without obstacles, however, the
Dubins car can reach any configuration.

A differential drive

Most indoor mobile robots do not move like a car. For example, consider the
mobile robotics platform shown in Figure 13.2a. This is an example of the most
popular way to drive indoor mobile robots. There are two main wheels, each of
which is attached to its own motor. A third wheel (not visible in Figure 13.2a) is
placed in the rear to passively roll along while preventing the robot from falling
over.

To construct a simple model of the constraints that arise from the differential
drive, only the distance L between the two wheels, and the wheel radius, r, are
necessary. See Figure 13.2b. The action vector u = (ur, ul) directly specifies the
two angular wheel velocities (e.g., in radians per second). Consider how the robot
moves as different actions are applied. See Figure 13.3. If ul = ur > 0, then the
robot moves forward in the direction that the wheels are pointing. The speed is
proportional to r. In general, if ul = ur, then the distance traveled over a duration
t of time is rtul (because tul is the total angular displacement of the wheels). If

3In many works, the speed us = 0 is not included. It appears here so that a proper termination
condition can be defined.



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 727

r

L

x

y

(a) (b)

Figure 13.2: (a) The Pioneer 3-DX8 (courtesy of ActivMedia Robotics: MobileR-
obots.com), and many other mobile robots use a differential drive. In addition to
the two drive wheels, a caster wheel (as on the bottom of an office chair) is placed
in the rear center to prevent the robot from toppling over. (b) The parameters of
a generic differential-drive robot.

(a) (b)

Figure 13.3: (a) Pure translation occurs when both wheels move at the same angu-
lar velocity; (b) pure rotation occurs when the wheels move at opposite velocities.

728 S. M. LaValle: Planning Algorithms

ul = −ur 6= 0, then the robot rotates clockwise because the wheels are turning in
opposite directions. This motivates the placement of the body-frame origin at the
center of the axle between the wheels. By this assignment, no translation occurs
if the wheels rotate at the same rate but in opposite directions.

Based on these observations, the configuration transition equation is

ẋ =
r

2
(ul + ur) cos θ

ẏ =
r

2
(ul + ur) sin θ

θ̇ =
r

L
(ur − ul).

(13.16)

The translational part contains cos θ and sin θ parts, just like the simple car be-
cause the differential drive moves in the direction that its drive wheels are pointing.
The translation speed depends on the average of the angular wheel velocities. To
see this, consider the case in which one wheel is fixed and the other rotates. This
initially causes the robot to translate at 1/2 of the speed in comparison to both
wheels rotating. The rotational speed θ̇ is proportional to the change in angular
wheel speeds. The robot’s rotation rate grows linearly with the wheel radius but
reduces linearly with respect to the distance between the wheels.

It is sometimes preferable to transform the action space. Let uω = (ur + ul)/2
and uψ = ur − ul. In this case, uω can be interpreted as an action variable that
means “translate,” and uψ means “rotate.” Using these actions, the configuration
transition equation becomes

ẋ = ruω cos θ

ẏ = ruω sin θ

θ̇ =
r

L
uψ.

(13.17)

In this form, the configuration transition equation resembles (13.15) for the simple
car (try setting uψ = tan uφ and us = ruω). A differential drive can easily simulate
the motions of the simple car. For the differential drive, the rotation rate can be
set independently of the translational velocity. The simple car, however, has the
speed us appearing in the θ̇ expression. Therefore, the rotation rate depends on
the translational velocity.

Recall the question asked about shortest paths for the Reeds-Shepp and Du-
bins cars. The same question for the differential drive turns out to be uninteresting
because the differential drive can cause the center of its axle to follow any con-
tinuous path in R

2. As depicted in Figure 13.4, it can move between any two
configurations by: 1) first rotating itself to point the wheels to the goal position,
which causes no translation; 2) translating itself to the goal position; and 3) ro-
tating itself to the desired orientation, which again causes no translation. The
total distance traveled by the center of the axle is always the Euclidean distance
in R

2 between the two desired positions.



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 729

Figure 13.4: The shortest path traversed by the center of the axle is simply the
line segment that connects the initial and goal positions in the plane. Rotations
appear to be cost-free.

θr

y

x

Figure 13.5: Viewed from above, the unicycle model has an action uω that changes
the wheel orientation θ.

This may seem like a strange effect due to the placement of the coordinate
origin. Rotations seem to have no cost. This can be fixed by optimizing the
total amount of wheel rotation or time required, if the speed is held fixed [18].
Suppose that ur, ul ∈ {−1, 0, 1}. Determining the minimum time required to
travel between two configurations is quite interesting and is covered in Section
15.3. This properly takes into account the cost of rotating the robot, even if it
does not cause a translation.

A simple unicycle

Consider the simple model of a unicycle, which is shown in Figure 13.5. Ignoring
balancing concerns, there are two action variables. The rider of the unicycle can
set the pedaling speed and the orientation of the wheel with respect to the z-axis.

730 S. M. LaValle: Planning Algorithms

d1 (x, y)

θ2

θ1

d2

θ0

L
φ

Figure 13.6: The parameters for a car pulling trailers.

Let σ denote the pedaling angular velocity, and let r be the wheel radius. The
speed of the unicycle is s = rσ. In this model, the speed is set directly by an
action variable us (alternatively, the pedaling rate could be an action variable uσ,
and the speed is derived as s = ruσ). Let ω be the angular velocity of the unicycle
orientation in the xy plane (hence, ω = θ̇). Let ω be directly set by an action
variable uω. The configuration transition equation is

ẋ = us cos θ

ẏ = us sin θ

θ̇ = uω.

(13.18)

This is just the differential drive equation (13.17) with L = 1 and the substitution
us = ruσ. Thus, a differential drive can simulate a unicycle. This may seem
strange; however, it is possible because these models do not consider dynamics.
Note that the unicycle can also simulate the simple-car model. Therefore, the
tricycle and unicycle models are similar.

A car pulling trailers

An interesting extension of the simple car can be made by attaching one or more
trailers. You may have seen a train of luggage carts on the tarmac at airports.
There are many subtle issues for modeling the constraints for these models. The
form of equations is very sensitive to the precise point at which the trailer is
attached and also on the choice of body frames. One possibility for expressing
the kinematics is to use the expressions in Section 3.3; however, these may lead to
complications when analyzing the constraints. It is somewhat of an art to find a
simple expression of the constraints. The model given here is adapted from [194].4

4The original model required a continuous steering angle.



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 731

Consider a simple car that pulls k trailers as shown in Figure 13.6. Each trailer
is attached to the center of the rear axle of the body in front of it. The important
new parameter is the hitch length di which is the distance from the center of the
rear axle of trailer i to the point at which the trailer is hitched to the next body.
Using concepts from Section 3.3.1, the car itself contributes R

2 × S
1 to C, and

each trailer contributes an S
1 component to C. The dimension of C is therefore

k + 3. Let θi denote the orientation of the ith trailer, expressed with respect to
the world frame.

The configuration transition equation is

ẋ = s cos θ0

ẏ = s sin θ0

θ̇0 =
s

L
tanφ

θ̇1 =
s

d1
sin(θ0 − θ1)

...

θ̇i =
s

di

(

i−1
∏

j=1

cos(θj−1 − θj)
)

sin(θi−1 − θi)

...

θ̇k =
s

dk

(

k−1
∏

j=1

cos(θj−1 − θj)
)

sin(θk−1 − θk).

(13.19)

An interesting variation of this model is to allow the trailer wheels to be steered.
For a single trailer, this leads to a model that resembles a firetruck [54].

13.1.3 Other Examples of Velocity Constraints

The differential models seen so far were obtained from wheels that roll along a
planar surface. Many generalizations are possible by considering other ways in
which bodies can contact each other. In robotics, many interesting differential
models arise in the context of manipulation. This section briefly covers some
other examples of velocity constraints on the C-space. Once again, dynamics is
neglected for now. Such models are sometimes classified as quasi-static because
even though motions occur, some aspects of the model treat the bodies as if they
were static. Such models are often realistic when moving at slow enough speeds.

Pushing a box

Imagine using a differential drive robot to push a box around on the floor, as
shown in Figure 13.7a. It is assumed that the box is a convex polygon, one edge
of which contacts the front of the robot. There are frictional contacts between

732 S. M. LaValle: Planning Algorithms

Robot Box

(a) Stable pushing (b) Illegal sliding (c) Illegal rotation

Figure 13.7: Lynch and Mason showed that pushing a box is very much like driving
the simple car: (a) With careful motions, the box will act as if it is attached to
the robot. b) If it turns too sharply, however, the box will slide away; this induces
limits on the steering angle. c) The box may alternatively rotate from sharp turns
[178].

the box and floor and also between the box and robot. Suppose that the robot is
moving slowly enough so that dynamics are insignificant. It is assumed that the
box cannot move unless the robot is moving. This prohibits manipulations such
as “kicking” the box across the room. The term stable pushing [3, 178, 182] refers
to the case in which the robot moves the box as if the box were rigidly attached
to the robot.

As the robot pushes the box, the box may slide or rotate, as shown in Figures
13.7b and 13.7c, respectively. These cases are considered illegal because they do
not constitute stable pushing. What motions of the robot are possible? Begin
with the configuration transition equation of the differential drive robot, and then
determine which constraints need to be placed on U to maintain stable pushing.
Suppose that (13.17) is used. It is clear that only forward motion is possible
because the robot immediately breaks contact with the box if the robot moves
in the opposite direction. Thus, s must be positive (also, to fit the quasi-static
model, s should be small enough so that dynamical effects become insignificant).
How should the rotation rate ψ be constrained? Constraints on ψ depend on the
friction model (e.g., Coulomb), the shape of the box, and the particular edge that
is being pushed. Details on these constraints are given in [178, 182]. This leads
to an interval [a, b] ⊆ [−π/2, π/2], in which a < 0 and b > 0, and it is required
that ψ ∈ [a, b]. This combination of constraints produces a motion model that
is similar to the Dubins car. The main difference is that the maximum steering
angle in the left and right directions may be different.

To apply this model for planning, it seems that the C-space should be R2×S1×
R

2×S1 because there are two rigid bodies. The manipulation planning framework
of Section 7.3.2 can be applied to obtain a hybrid system and manipulation graph
that expresses the various ways in which the robot can contact the box or fail to
contact the box. For example, the robot may be able to push the box along one



13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 733

of several possible edges. If the robot becomes stuck, it can change the pushing
edge to move the box in a new direction.

Flying an airplane

The Dubins car model from Section 13.1.2 can be extended to 3D worlds to provide
a simple aircraft flight model that may be reasonable for air traffic analysis. First
suppose that the aircraft maintains a fixed altitude and is capable only of yaw
rotations. In this case, (13.15) could be used directly by imposing the constraint
that s = 1 (or some suitable positive speed). This is equivalent to the Dubins
car, except that s = 0 is prohibited because it would imply that the aircraft can
instantaneously stop in the air. This model assumes that the aircraft is small
relative to the C-space. A more precise model should take into account pitch and
roll rotations, disturbances, and dynamic effects. These would become important,
for example, in studying the flight stability of an aircraft design. Such concerns
are neglected here.

Now consider an aircraft that can change its altitude, in addition to executing
motions like the Dubins car. In this case let C = R

3 × S
1, in which the extra R

represents the altitude with respect to flying over a flat surface. A configuration
is represented as q = (x, y, z, θ). Let uz denote an action that directly causes
a change in the altitude: ż = uz. The steering action uφ is the same as in the
Dubins car model. The configuration transition equation is

ẋ = cos θ ż = uz

ẏ = sin θ θ̇ = uω. (13.20)

For a fixed value of u = (uz, uω) such that uz 6= 0 and uω 6= 0, a helical path
results. The central axis of the helix is parallel to the z-axis, and projection of the
path down to the xy plane is a circle or circular arc. Maximum absolute values
should be set for uz and uω based on the maximum possible altitude and yaw rate
changes of the aircraft.

Rolling a ball

Instead of a wheel, consider rolling a ball in the plane. Place a ball on a table
and try rolling it with your palm placed flat on top of it. It should feel like there
are two degrees of freedom: rolling forward and rolling side to side. The ball
should not be able to spin in place. The directions can be considered as two
action variables. The total degrees of freedom of the ball is five, however, because
it can achieve any orientation in SO(3) and any (x, y) position in the plane; thus,
C = R

2 × SO(3). Given that there are only two action variables, is it possible to
roll the ball into any configuration? It is shown in [171, 133] that this is possible,
even for the more general problem of one sphere rolling on another (the plane is
a special case of a sphere with infinite radius). This problem can actually arise

734 S. M. LaValle: Planning Algorithms

in robotic manipulation when a spherical object come into contact (e.g., a robot
hand may have fingers with spherical tips); see [32, 180, 192, 195].

The resulting transition equation was shown in [189] (also see [192]) to be

θ̇ = −u2
φ̇ =

u1
cos θ

ẋ = −u1ρ sinψ − u2ρ cosψ
ẏ = −u1ρ cosψ + u2ρ sinψ

ψ̇ = −u1 tan θ.

(13.21)

In these equations, x and y are the position on the contact point in the plane, and
θ and φ are the position of the contact point in the ball frame and are expressed
using spherical coordinates. The radius of the ball is ρ. Finally, ψ expresses the
orientation of the ball with respect to the contact point.

Trapped on a surface

It is possible that the constraints cause the configuration to be trapped on a lower
dimensional surface. Let C = R

2, and consider the system

ẋ = yu ẏ = −xu, (13.22)

for (x, y) ∈ R
2 and u ∈ U = R. What are the integral curves for a constant

action u 6= 0? From any point (x, y) ∈ R
2, the trajectory follows a circle of radius

√

x2 + y2 centered at the origin. The speed along the circle is determined by |u|,
and the direction is determined by the sign of u. Therefore, (13.22) indicates that
the configuration is confined to a circle. Other than that, there are no further
constraints.

Suppose that the initial configuration is given as (x0, y0). Since the configura-
tion is confined to a circle, the C-space could alternatively be defined as C = S

1.
Each point on S

1 can be mapped to the circle that has radius r =
√

x20 + y20
and center at (0, 0). In this case, there are no differential constraints on the ve-
locities, provided that motions are trapped on the circle. Any velocity in the
one-dimensional tangent space at points on the circle is allowed. This model is
equivalent to (13.22).

Now consider the possible trajectories that are constrained to traverse a circle,

h(x, y) = x2 + y2 − r2 = 0. (13.23)

This means that for all time t,

h(x(t), y(t)) = x(t)2 + y(t)2 − r2 = 0. (13.24)

To derive a constraint on velocities, take the derivative with respect to time, which
yields

dh(x, y)

dt
= 2xẋ+ 2yẏ = 0. (13.25)



13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 735

This is an example of a Pfaffian constraint, as given in (13.5). The parametric
form of this differential constraint happens to be (13.22). Any velocity vector
that is a multiple of (y,−x) satisfies (13.25). When expressed as a differential
constraint, the radius r does not matter. This is because it is determined from
the initial configuration.

What just occurred here is a special case of a completely integrable differential
model. In general, if the model q̇ = f(q, u) can be expressed as the time derivative
of constraints of the form h(q) = 0, then the configuration transition equation is
said to be completely integrable. Obtaining an implicit differential model from
constraints of the form hi(q) = 0 is not difficult. Each constraint is differentiated
to obtain

dhi(q)

dt
= 0. (13.26)

For example, such constraints arise from closed kinematic chains, as in Section
4.4, and the implicit differential model just expresses the condition that velocities
must lie in the tangent space to the constraints. It may be difficult, however, to
obtain a parametric form of the differential model. Possible velocity vectors can
be computed at any particular q, however, by using the linear algebra techniques
described in Section 7.4.1.

It is even quite difficult to determine whether a differential model is completely
integrable, which means that the configurations are trapped on a lower dimen-
sional surface. For some systems, to be described by (13.41), this will be solved by
the Frobenius Theorem in 15.4.2. If such systems are not completely integrable,
they are called nonholonomic; otherwise, they are called holonomic. In general,
even if a model is theoretically integrable, actually performing the integration is
another issue. In most cases, it is difficult or impossible to integrate the model.

Therefore, it is sometimes important to work directly with constraints in dif-
ferential form, even if they are integrable. Furthermore, methods for planning
under differential constraints can be applied to problems that have constraints of
the form h(q) = 0. This, for example, implies that motion planning for closed
kinematic chains can be performed by planning algorithms designed to handle
differential constraints.

13.2 Phase Space Representation of Dynamical

Systems

The differential constraints defined in Section 13.1 are often called kinematic be-
cause they can be expressed in terms of velocities on the C-space. This formulation
is useful for many problems, such as modeling the possible directions of motions
for a wheeled mobile robot. It does not, however, enable dynamics to be ex-
pressed. For example, suppose that the simple car is traveling quickly. Taking
dynamics into account, it should not be able to instantaneously start and stop.

736 S. M. LaValle: Planning Algorithms

For example, if it is heading straight for a wall at full speed, any reasonable model
should not allow it to apply its brakes from only one millimeter away and expect
it to avoid collision. Due to momentum, the required stopping distance depends
on the speed. You may have learned this from a drivers education course.

To account for momentum and other aspects of dynamics, higher order dif-
ferential equations are needed. There are usually constraints on acceleration q̈,
which is defined as dq̇/dt. For example, the car may only be able to decelerate
at some maximum rate without skidding the wheels (or tumbling the vehicle).
Most often, the actions are even expressed in terms of higher order derivatives.
For example, the floor pedal of a car may directly set the acceleration. It may be
reasonable to consider the amount that the pedal is pressed as an action variable.
In this case, the configuration must be obtained by two integrations. The first
yields the velocity, and the second yields the configuration.

The models for dynamics therefore involve acceleration q̈ in addition to velocity
q̇ and configuration q. Once again, both implicit and parametric models exist. For
an implicit model, the constraints are expressed as

gi(q̈, q̇, q) = 0. (13.27)

For a parametric model, they are expressed as

q̈ = f(q̇, q, u). (13.28)

13.2.1 Reducing Degree by Increasing Dimension

Taking into account constraints on higher order derivatives seems substantially
more complicated. This section explains a convenient trick that converts con-
straints that have higher order derivatives into a new set of constraints that has
only first-order derivatives. This involves the introduction of a phase space, which
has more dimensions than the original C-space. Thus, there is a trade-off because
the dimension is increased; however, it is widely accepted that increasing the di-
mension of the space is often easier than dealing with higher order derivatives. In
general, the term state space will refer to either C-spaces or phase spaces derived
from them.

The scalar case

To make the discussion concrete, consider the following differential equation:

ÿ − 3ẏ + y = 0, (13.29)

in which y is a scalar variable, y ∈ R. This is a second-order differential equation
because of ÿ. A phase space can be defined as follows. Let x = (x1, x2) denote a
two-dimensional phase vector, which is defined by assigning x1 = y and x2 = ẏ.
The terms state space and state vector will be used interchangeably with phase



13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 737

space and phase vector, respectively, in contexts in which the phase space is
defined. Substituting the equations into (13.29) yields

ÿ − 3x2 + x1 = 0. (13.30)

So far, this does not seem to have helped. However, ÿ can be expressed as either
ẋ2 or ẍ1. The first choice is better because it is a lower order derivative. Using
ẋ2 = ÿ, the differential equation becomes

ẋ2 − 3x2 + x1 = 0. (13.31)

Is this expression equivalent to (13.29)? By itself it is not. There is one more
constraint, x2 = ẋ1. In implicit form, ẋ1 − x2 = 0. The key to making the
phase space approach work correctly is to relate some of the phase variables by
derivatives.

Using the phase space, we just converted the second-order differential equation
(13.29) into two first-order differential equations,

ẋ1 = x2

ẋ2 = 3x2 − x1,
(13.32)

which are obtained by solving for ẋ1 and ẋ2. Note that (13.32) can be expressed
as ẋ = f(x), in which f is a function that maps from R

2 into R
2.

The same approach can be used for any differential equation in implicit form,
g(ÿ, ẏ, y) = 0. Let x1 = y, x2 = ẏ, and ẋ2 = ÿ. This results in the implicit
equations g(ẋ2, x2, x1) = 0 and ẋ1 = x2. Now suppose that there is a scalar
action u ∈ U = R represented in the differential equations. Once again, the
same approach applies. In implicit form, g(ÿ, ẏ, y, u) = 0 can be expressed as
g(ẋ2, x2, x1, u) = 0.

Suppose that a given acceleration constraint is expressed in parametric form
as ÿ = h(ẏ, y, u). This often occurs in the dynamics models of Section 13.3. This
can be converted into a phase transition equation or state transition equation of
the form ẋ = f(x, u), in which f : R2 × R→ R

2. The expression is

ẋ1 = x2

ẋ2 = h(x2, x1, u).
(13.33)

For a second-order differential equation, two initial conditions are usually
given. The values of y(0) and ẏ(0) are needed to determine the exact position y(t)
for any t ≥ 0. Using the phase space representation, no higher order initial condi-
tions are needed because any point in phase space indicates both y and ẏ. Thus,
given an initial point in the phase and u(t) for all t ≥ 0, y(t) can be determined.

Example 13.3 (Double Integrator) The double integrator is a simple yet im-
portant example that nicely illustrates the phase space. Suppose that a second-
order differential equation is given as q̈ = u, in which q and u are chosen from R.

738 S. M. LaValle: Planning Algorithms

In words, this means that the action directly specifies acceleration. Integrating5

once yields the velocity q̇ and performing a double integration yields the position
q. If q(0) and q̇(0) are given, and u(t′) is specified for all t′ ∈ [0, t), then q̇(t) and
q(t) can be determined for any t > 0.

A two-dimensional phase space X = R
2 is defined in which

x = (x1, x2) = (q, q̇). (13.34)

The state (or phase) transition equation ẋ = f(x, u) is

ẋ1 = x2

ẋ2 = u.
(13.35)

To determine the state trajectory, initial values x1(0) = q0 (position) and x2(0) =
q̇0 (velocity) must be given in addition to the action history. If u is constant, then
the state trajectory is quadratic because it is obtained by two integrations of a
constant function. �

The vector case

The transformation to the phase space can be extended to differential equations
in which there are time derivatives in more than one variable. Suppose that q
represents a configuration, expressed using a coordinate neighborhood on a smooth
n-dimensional manifold C. Second-order constraints of the form g(q̈, q̇, q) = 0 or
g(q̈, q̇, q, u) = 0 can be expressed as first-order constraints in a 2n-dimensional
state space. Let x denote the 2n-dimensional phase vector. By extending the
method that was applied to the scalar case, x is defined as x = (q, q̇). For each
integer i such that 1 ≤ i ≤ n, xi = qi. For each i such that n + 1 ≤ i ≤ 2n,
xi = q̇i−n. These substitutions can be made directly into an implicit constraint to
reduce the order to one.

Suppose that a set of n differential equations is expressed in parametric form as
q̈ = h(q, q̇, u). In the phase space, there are 2n differential equations. The first n
correspond to the phase space definition ẋi = xn+i, for each i such that 1 ≤ i ≤ n.
These hold because xn+i = q̇i and ẋi is the time derivative of q̇i for i ≤ n. The
remaining n components of ẋ = f(x, u) follow directly from h by substituting the
first n components of x in the place of q and the remaining n in the place of q̇ in
the expression h(q, q̇, u). The result can be denoted as h(x, u) (obtained directly
from h(q, q̇, u)). This yields the final n equations as ẋi = hi−n(x, u), for each i
such that n+1 ≤ i ≤ 2n. These 2n equations define a phase (or state) transition
equation of the form ẋ = f(x, u). Now it is clear that constraints on acceleration
can be manipulated into velocity constraints on the phase space. This enables
the tangent space concepts from Section 8.3 to express constraints that involve

5Wherever integrals are performed, it will be assumed that the integrands are integrable.



13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 739

acceleration. Furthermore, the state space X is the tangent bundle (defined in
(8.9) for Rn and later in (15.67) for any smooth manifold) of C because q and q̇
together indicate a tangent space Tq(C) and a particular tangent vector q̇ ∈ Tq(C).

Higher order differential constraints

The phase space idea can even be applied to differential equations with order
higher than two. For example, a constraint may involve the time derivative
of acceleration q(3), which is often called jerk. If the differential equations in-
volve jerk variables, then a 3n-dimensional phase space can be defined to ob-
tain first-order constraints. In this case, each qi, q̇i, and q̈i in a constraint such
as g(q(3), q̈, q̇, q, u) = 0 is defined as a phase variable. Similarly, kth-order dif-
ferential constraints can be reduced to first-order constraints by introducing a
kn-dimensional phase space.

Example 13.4 (Chain of Integrators) A simple example of higher order dif-
ferential constraints is the chain of integrators.6 This is a higher order general-
ization of Example 13.3. Suppose that a kth-order differential equation is given
as q(k) = u, in which q and u are scalars, and q(k) denotes the kth derivative of q
with respect to time.

A k-dimensional phase space X is defined in which

x = (q, q̇, q̈, q(3), . . . , q(k−1)). (13.36)

The state (or phase) transition equation ẋ = f(x, u) is ẋi = xi+1 for each i such
that 1 ≤ i ≤ n − 1, and ẋn = u. Together, these n individual equations are
equivalent to q(k) = u.

The initial state specifies the initial position and all time derivatives up to
order k − 1. Using these and the action u, the state trajectory can be obtained
by a chain of integrations. �

You might be wondering whether derivatives can be eliminated completely by
introducing a phase space that has high enough dimension. This does actually
work. For example, if there are second-order constraints, then a 3n-dimensional
phase space can be introduced in which x = (q, q̇, q̈). This enables constraints such
as g(q, q̇, q̈) = 0 to appear as g(x) = 0. The trouble with using such formulations
is that the state must follow the constraint surface in a way that is similar to
traversing the solution set of a closed kinematic chain, as considered in Section
4.4. This is why tangent spaces arose in that context. In either case, the set of
allowable velocities becomes constrained at every point in the space.

Problems defined using phase spaces typically have an interesting property
known as drift. This means that for some x ∈ X, there does not exist any u ∈ U

6It is called this because in block diagram representations of systems it is depicted as a chain
of integrator blocks.

740 S. M. LaValle: Planning Algorithms

such that f(x, u) = 0. For the examples in Section 13.1.2, such an action always
existed. These were examples of driftless systems. This was possible because the
constraints did not involve dynamics. In a dynamical system, it is impossible to
instantaneously stop due to momentum, which is a form of drift. For example,
a car will “drift” into a brick wall if it is 3 meters way and traveling 100 km/hr
in the direction of the wall. There exists no action (e.g., stepping firmly on the
brakes) that could instantaneously stop the car. In general, there is no way to
instantaneously stop in the phase space.

13.2.2 Linear Systems

Now that the phase space has been defined as a special kind of state space that
can handle dynamics, it is convenient to classify the kinds of differential models
that can be defined based on their mathematical form. The class of linear systems
has been most widely studied, particularly in the context of control theory. The
reason is that many powerful techniques from linear algebra can be applied to
yield good control laws [58]. The ideas can also be generalized to linear systems
that involve optimality criteria [5, 150], nature [27, 147], or multiple players [16].

Let X = R
n be a phase space, and let U = R

m be an action space for m ≤ n.
A linear system is a differential model for which the state transition equation can
be expressed as

ẋ = f(x, u) = Ax+ Bu, (13.37)

in which A and B are constant, real-valued matrices of dimensions n × n and
n×m, respectively.

Example 13.5 (Linear System Example) For a simple example of (13.37),
suppose X = R

3, U = R
2, and let





ẋ1
ẋ2
ẋ3



 =





0
√
2 1

1 −1 4
2 0 1









x1
x2
x3



+





1 0
0 1
1 1





(

u1
u2

)

. (13.38)

Performing the matrix multiplications reveals that all three equations are linear in
the state and action variables. Compare this to the discrete-time linear Gaussian
system shown in Example 11.25. �

Recall from Section 13.1.1 that k linear constraints restrict the velocity to an
(n − k)-dimensional hyperplane. The linear model in (13.37) is in parametric
form, which means that each action variable may allow an independent degree of
freedom. In this case, m = n − k. In the extreme case of m = 0, there are no
actions, which results in ẋ = Ax. The phase velocity ẋ is fixed for every point
x ∈ X. If m = 1, then at every x ∈ X a one-dimensional set of velocities may
be chosen using u. This implies that the direction is fixed, but the magnitude is



13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 741

chosen using u. In general, the set of allowable velocities at a point x ∈ R
n is an

m-dimensional linear subspace of the tangent space Tx(R
n) (if B is nonsingular).

In spite of (13.37), it may still be possible to reach all of the state space from
any initial state. It may be costly, however, to reach a nearby point because of the
restriction on the tangent space; it is impossible to command a velocity in some
directions. For the case of nonlinear systems, it is sometimes possible to quickly
reach any point in a small neighborhood of a state, while remaining in a small
region around the state. Such issues fall under the general topic of controllability,
which will be covered in Sections 15.1.3 and 15.4.3.

Although not covered here, the observability of the system is an important
topic in control [58, 130]. In terms of the I-space concepts of Chapter 11, this
means that a sensor of the form y = h(x) is defined, and the task is to determine
the current state, given the history I-state. If the system is observable, this means
that the nondeterministic I-state is a single point. Otherwise, the system may
only be partially observable. In the case of linear systems, if the sensing model is
also linear,

y = h(x) = Cy, (13.39)

then simple matrix conditions can be used to determine whether the system is
observable [58]. Nonlinear observability theory also exists [130].

As in the case of discrete planning problems, it is possible to define differential
models that depend on time. In the discrete case, this involves a dependency on
stages. For the continuous-stage case, a time-varying linear system is defined as

ẋ = f(x(t), u(t), t) = A(t)x(t) + B(t)u(t). (13.40)

In this case, the matrix entries are allowed to be functions of time. Many powerful
control techniques can be easily adapted to this case, but it will not be considered
here because most planning problems are time-invariant (or stationary).

13.2.3 Nonlinear Systems

Although many powerful control laws can be developed for linear systems, the
vast majority of systems that occur in the physical world fail to be linear. Any
differential models that do not fit (13.37) or (13.40) are called nonlinear systems.
All of the models given in Section 13.1.2 are nonlinear systems for the special case
in which X = C.

One important family of nonlinear systems actually appears to be linear in
some sense. Let X be a smooth n-dimensional manifold, and let U ⊆ R

m. Let
U = R

m for some m ≤ n. Using a coordinate neighborhood, a nonlinear system
of the form

ẋ = f(x) +
m
∑

i=1

gi(x)ui (13.41)

742 S. M. LaValle: Planning Algorithms

for smooth functions f and gi is called a control-affine system or affine-in-control
system.7 These have been studied extensively in nonlinear control theory [130,
221]. They are linear in the actions but nonlinear with respect to the state. See
Section 15.4.1 for further reading on control-affine systems.

For a control-affine system it is not necessarily possible to obtain zero velocity
because f causes drift. The important special case of a driftless control-affine
system occurs if f ≡ 0. This is written as

ẋ =
m
∑

i=1

gi(x)ui. (13.42)

By setting ui = 0 for each i from 1 to m, zero velocity, ẋ = 0, is obtained.

Example 13.6 (Nonholonomic Integrator) One of the simplest examples of
a driftless control-affine system is the nonholonomic integrator introduced in con-
trol literature by Brockett in [46]. It some times referred to as Brockett’s sys-
tem, or the Heisenberg system because it arises in quantum mechanics [34]. Let
X = R

3, and let the set of actions U = R
2. The state transition equation for the

nonholonomic integrator is

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1.
(13.43)

�

Many nonlinear systems can be expressed implicitly using Pfaffian constraints,
which appeared in Section 13.1.1, and can be generalized from C-spaces to phase
spaces. In terms of X, a Pfaffian constraint is expressed as

g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0. (13.44)

Even though the equation is linear in ẋ, a nonlinear dependency on x is allowed.
Both holonomic and nonholonomic models may exist for phase spaces, just

as in the case of C-spaces in Section 13.1.3. The Frobenius Theorem, which is
covered in Section 15.4.2, can be used to determine whether control-affine systems
are completely integrable.

13.2.4 Extending Models by Adding Integrators

The differential models from Section 13.1 may seem unrealistic in many applica-
tions because actions are required to undergo instantaneous changes. For example,

7Be careful not to confuse control-affine systems with affine control systems, which are of the
form ẋ = Ax+Bu+ w, for some constant matrices A,B and a constant vector w.



13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 743

in the simple car, the steering angle and speed may be instantaneously changed
to any value. This implies that the car is capable of instantaneous acceleration
changes. This may be a reasonable approximation if the car is moving slowly
(for example, to analyze parallel-parking maneuvers). The model is ridiculous,
however, at high speeds.

Suppose a state transition equation of the form ẋ = f(x, u) is given in which
the dimension of X is n. The model can be enhanced as follows:

1. Select an action variable ui.

2. Rename the action variable as a new state variable, xn+1 = ui.

3. Define a new action variable u′i that takes the place of ui.

4. Extend the state transition equation by one dimension by introducing ẋn+1 =
u′i.

This enhancement will be referred to as placing an integrator in front of ui. This
procedure can be applied incrementally as many times as desired, to create a chain
of integrators from any action variable. It can also be applied to different action
variables.

Better unicycle models

Improvements to the models in Section 13.1 can be made by placing integrators
in front of action variables. For example, consider the unicycle model (13.18).
Instead of directly setting the speed using us, suppose that the speed is obtained
by integration of an action ua that represents acceleration. The equation ṡ = ua
is used instead of s = us, which means that the action sets the change in speed. If
ua is chosen from some bounded interval, then the speed is a continuous function
of time.

How should the transition equation be represented in this case? The set of
possible values for ua imposes a second-order constraint on x and y because double
integration is needed to determine their values. By applying the phase space idea,
s can be considered as a phase variable. This results in a four-dimensional phase
space, in which each state is (x, y, θ, s). The state (or phase) transition equation
is

ẋ = s cos θ θ̇ = uω

ẏ = s sin θ ṡ = ua, (13.45)

which should be compared to (13.18). The action us was replaced by s because
now speed is a phase variable, and an extra equation was added to reflect the
connection between speed and acceleration.

The integrator idea can be applied again to make the unicycle orientations a
continuous function of time. Let uα denote an angular acceleration action. Let

744 S. M. LaValle: Planning Algorithms

ω denote the angular velocity, which is introduced as a new state variable. This
results in a five-dimensional phase space and a model called the second-order
unicycle:

ẋ = s cos θ ṡ = ua

ẏ = s sin θ ω̇ = uα (13.46)

θ̇ = ω,

in which u = (ua, uα) is a two-dimensional action vector. In some contexts, s may
be fixed at a constant value, which implies that ua is fixed to ua = 0.

A continuous-steering car

As another example, consider the simple car. As formulated in (13.15), the steer-
ing angle is allowed to change discontinuously. For simplicity, suppose that the
speed is fixed at s = 1. To make the steering angle vary continuously over time,
let uω be an action that represents the velocity of the steering angle: φ̇ = uω.
The result is a four-dimensional state space, in which each state is represented as
(x, y, θ, φ). This yields a continuous-steering car,

ẋ = cos θ θ̇ =
tanφ

L

ẏ = sin θ φ̇ = uω, (13.47)

in which there are two action variables, us and uω. This model was used for
planning in [223].

A second integrator can be applied to make the steering angle a C1 smooth
function of time. Let ω be a state variable, and let uα denote the angular acceler-
ation of the steering angle. In this case, the state vector is (x, y, θ, φ, ω), and the
state transition equation is

ẋ = cos θ φ̇ = ω

ẏ = sin θ ω̇ = uα (13.48)

θ̇ =
tanφ

L
.

Integrators can be applied any number of times to make any variables as smooth
as desired. Furthermore, the rate of change in each case can be bounded due to
limits on the phase variables and on the action set.

Smooth differential drive

A second-order differential drive model can be made by defining actions ul and ur
that accelerate the motors, instead of directly setting their velocities. Let ωl and



13.3. BASIC NEWTON-EULER MECHANICS 745

ωr denote the left and right motor angular velocities, respectively. The resulting
state transition equation is

ẋ =
r

2
(ωl + ωr) cos θ ω̇l = ul

ẏ =
r

2
(ωl + ωr) sin θ ω̇r = ur (13.49)

θ̇ =
r

L
(ωr − ωl).

In summary, an important technique for making existing models somewhat
more realistic is to insert one or more integrators in front of any action variables.
The dimension of the phase space increases with the introduction of each inte-
grator. A single integrator forces an original action to become continuous over
time. If the new action is bounded, then the rate of change of the original ac-
tion is bounded in places where it is differentiable (it is Lipschitz in general, as
expressed in (8.16)). Using a double integrator, the original action is forced to be
C1 smooth. Chaining more integrators on an action variable further constrains
its values. In general, k integrators can be chained in front of an original action
to force it to be Ck−1 smooth and respect Lipschitz bounds.

One important limitation, however, is that to make realistic models, other
variables may depend on the new phase variables. For example, if the simple car
is traveling fast, then we should not be able to turn as sharply as in the case of a
slow-moving car (think about how sharply you can turn the wheel while parallel
parking in comparison to driving on the highway). The development of better
differential models ultimately requires careful consideration of mechanics. This
provides motivation for Sections 13.3 and 13.4.

13.3 Basic Newton-Euler Mechanics

Mechanics is a vast and difficult subject. It is virtually impossible to provide
a thorough introduction in a couple of sections. Here, the purpose instead is to
overview some of the main concepts and to provide some models that may be used
with the planning algorithms in Chapter 14. The presentation in this section and
in Section 13.4 should hopefully stimulate some further studies in mechanics (see
the suggested literature at the end of the chapter). On the other hand, if you
are only interested in using the differential models, then you can safely skip their
derivations. Just keep in mind that all differential models produced in this section
end with the form ẋ = f(x, u), which is ready to use in planning algorithms.

There are two important points to keep in mind while studying mechanics:

1. The models are based on maintaining consistency with experimental obser-
vations about how bodies behave in the physical world. These observations
depend on the kind of experiment. In a particular application, many effects
may be insignificant or might not even be detectable by an experiment. For

746 S. M. LaValle: Planning Algorithms

example, it is difficult to detect relativistic effects using a radar gun that
measures automobile speed. It is therefore important to specify any simpli-
fying assumptions regarding the world and the kind of experiments that will
be performed in it.

2. The approach is usually to express some laws that translate into constraints
on the allowable velocities in the phase space. This means that implicit
representations are usually obtained in mechanics, and they must be con-
verted into parametric form. Furthermore, most treatments of mechanics
do not explicitly mention action variables; these arise from the intention
of controlling the physical world. From the perspective of mechanics, the
actions can be assumed to be already determined. Thus, constraints appear
as g(ẋ, x) = 0, instead of g(ẋ, x, u) = 0.

Several formulations of mechanics arrive at the same differential constraints,
but from different mathematical reasoning. The remainder of this chapter overviews
three schools of thought, each of which is more elegant and modern than the
one before. The easiest to understand is Newton-Euler mechanics, which follows
from Newton’s famous laws of physics and is covered in this section. Lagrangian
mechanics is covered in Section 13.4.1 and arrives at the differential constraints
using very general principles of optimization on a space of functions (i.e., calculus
of variations). Hamiltonian mechanics, covered in Section 13.4.4, defines a higher
dimensional state space on which the differential constraints can once again be
obtained by optimization.

13.3.1 The Newtonian Model

The most basic formulation of mechanics goes back to Newton and Euler, and
parts of it are commonly studied in basic physics courses. Consider a world W
defined as in Section 3.1, except here a 1D world W = R is allowed, in addition
to 2D and 3D worlds. A notion of time is also needed. The space of motions
that can be obtained in the space-time continuum can be formalized as a Galilean
group [10]; however, the presentation here will utilize standard intuitive notions
of time and Euclidean space. It is also assumed that any relativistic effects due to
curvature of the time-space continuum are nonexistent (Newton and Euler did not
know about this, and it is insignificant for most small-scale mechanical systems
on or near the earth).

Inertial coordinate frames Central to Newton-Euler mechanics is the idea
that points in W are expressed using an inertial coordinate frame. Imagine locat-
ing the origin and axes ofW somewhere in our universe. They need to be fixed in
a way that does not interfere with our observations of the basic laws of motion.
Imagine that we are playing racquetball in an indoor court and want to model
the motion of the ball as it bounces from wall to wall. If the coordinate frame is



13.3. BASIC NEWTON-EULER MECHANICS 747

rigidly attached to the ball, it will appear that the ball never moves; however, the
walls, earth, and the rest of the universe will appear to spin wildly around the
ball (imagine we have camera that points along some axis of the ball frame – you
could quickly become ill trying to follow the movie). If the coordinate frame is
fixed with respect to the court, then sensible measurements of the ball positions
would result (the movie would also be easier to watch). For all practical purposes,
we can consider this fixed coordinate frame to be inertial. Note, however, that the
ball will dance around wildly if the coordinate frame is instead fixed with respect
to the sun. The rotation and revolution of the earth would cause the ball to move
at incredible speeds. In reality, inertial frames do not exist; nevertheless, it is a
reasonable assumption for earth-based mechanical systems that an inertial frame
may be fixed to the earth.

The properties that inertial frames should technically possess are 1) the laws
of motions appear the same in any inertial frame, and 2) any frame that moves at
constant speed without rotation with respect to an inertial frame is itself inertial.
As an example of the second condition, suppose that the racquetball experiment
is performed inside of a big truck that is driving along a highway. Ignoring vibra-
tions, if the truck moves at constant speed on a straight stretch of road, then an
inertial coordinate frame can be fixed to the truck itself, and the ball will appear
to bounce as if the court was not moving. If, however, the road curves or the truck
changes its speed, the ball will not bounce the right way. If we still believe that
the frame attached to the truck is inertial, then the laws of motion will appear
strange. The inertial frame must be attached to the earth in this case to correctly
model the behavior of the truck and ball together.

Closed system Another important aspect of the Newton-Euler model is that
the system of bodies for which motions are modeled is closed, which means that
no bodies other than those that are explicitly modeled can have any affect on the
motions (imagine, for example, the effect if we forget to account for a black hole
that is a few hundred meters away from the racquetball court).

Newton’s laws The motions of bodies are based on three laws that were ex-
perimentally verified by Newton and should hold in any inertial frame:

1. An object at rest tends to stay at rest, and an object in motion tends to
stay in motion with fixed speed, unless a nonzero resultant8 force acts upon
it.

2. The relationship between a body mass m, its acceleration a, and an applied
force f is f = ma.

3. The interaction forces between two bodies are of equal magnitude and in
opposite directions.

8This is the sum of all forces acting on the point.

748 S. M. LaValle: Planning Algorithms

Based on these laws, the differential constraints on a system of moving bodies can
be modeled.

13.3.2 Motions of Particles

The Newton-Euler model is described in terms of particles. Each particle is con-
sidered as a point that has an associated mass m. Forces may act on any particle.
The motion of a rigid body, covered in Section 13.3.3, is actually determined by
modeling the body as a collection of particles that are stuck together. Therefore,
it is helpful to first understand how particles behave.

Motion of a single particle

Consider the case of a single particle of mass m that moves in W = R. The force
becomes a scalar, f ∈ R. Let q(t) denote the position of the particle in W at
time t. Using this notation, acceleration is q̈, and Newton’s second law becomes
f = mq̈. This can be solved for q̈ to yield

q̈ = f/m. (13.50)

If f is interpreted as an action variable u, and if m = 1, then (13.50) is precisely
the double integrator q̈ = u from Example 13.3. Phase variables x1 = q and
x2 = q̇ can be introduced to obtain a state vector x = (q, q̇). This means that for
a fixed u, the motion of the particle from any initial state can be captured by a
vector field on R

2. The state transition equation is

ẋ1 = x2

ẋ2 =
u

m
,

(13.51)

in which x1 = q, x2 = q̇, and u = f . Let U = [−fmax, fmax], in which fmax repre-
sents the maximum magnitude of force that can be applied to the particle. Forces
of arbitrarily high magnitude are not allowed because this would be physically
unrealistic.

Now generalize the particle motion to W = R
2 and W = R

3. Let n denote
the dimension of W , which may be n = 2 or n = 3. Let q denote the position
of the particle in W . Once again, Newton’s second law yields f = mq̈, but in
this case there are n independent equations of the form fi = mq̈i. Each of these
may be considered as an independent example of the double integrator, scaled by
m. Each component fi of the force can be considered as an action variable ui.
A 2n-dimensional state space can be defined as x = (q, q̇). The state transition
equation for n = 2 becomes

ẋ1 = x3 ẋ3 = u1/m (13.52)

ẋ2 = x4 ẋ4 = u2/m,



13.3. BASIC NEWTON-EULER MECHANICS 749

mg

fu

flfr

Figure 13.8: There are three thrusters on the lunar lander, and it is under the
influence of lunar gravity. It is treated as a particle; therefore, no rotations are
possible. Four orthogonal forces may act on the lander: Three arise from thrusters
that can be switched on or off, and the remaining arises from the acceleration of
gravity.

and for n = 3 it becomes

ẋ1 = x4 ẋ4 = u1/m

ẋ2 = x5 ẋ5 = u2/m (13.53)

ẋ3 = x6 ẋ6 = u3/m.

For a fixed action, these equations define vector fields on R
4 and R

6, respectively.
The action set should also be bounded, as in the one-dimensional case. Suppose
that

U = {u ∈ R
n | ‖u‖ ≤ fmax}. (13.54)

Now suppose that multiple forces act on the same particle. In this case, the
vector sum

F =
∑

f (13.55)

yields the resultant force over all f taken from a collection of forces. The resultant
force F represents a single force that is equivalent, in terms of its effect on the
particle, to the combined forces in the collection. This enables Newton’s second
law to be formulated as F = mq̈. The next two examples illustrate state transition
equations that arise from a collection of forces, some of which correspond to
actions.

750 S. M. LaValle: Planning Algorithms

Example 13.7 (Lunar Lander) Using the Newton-Euler model of a particle,
an example will be constructed for which X = R

4. A lunar lander is modeled as
a particle with mass m in a 2D world shown in Figure 13.8. It is not allowed to
rotate, implying that C = R

2. There are three thrusters on the lander, which are
on the left, right, and bottom of the lander. The forces acting on the lander are
shown in Figure 13.8. The activation of each thruster is considered as a binary
switch. Each has its own associated binary action variable, in which the value 1
means that the thruster is firing and 0 means the thruster is dormant. The left and
right lateral thrusters provide forces of magnitude fl and fr, respectively, when
activated (note that the left thruster provides a force to the right, and vice versa).
The upward thruster, mounted to the bottom of the lander, provides a force of
magnitude fu when activated. Let g denote the scalar acceleration constant for
gravity (this is approximately 1.622 m/s2 for the moon).

From (13.55) and Newton’s second law, F = mq̈. In the horizontal direction,
this becomes

mq̈1 = ulfl − urfr, (13.56)

and in the vertical direction,

mq̈2 = uufu −mg. (13.57)

Opposing forces are subtracted because only the magnitudes are given by fl, fr,
fu, and g. If they were instead expressed as vectors in R

2, then they would be
added.

The lunar lander model can be transformed into a four-dimensional phase space
in which x = (q1, q2, q̇1, q̇2). By replacing q̈1 and q̈2 with ẋ3 and ẋ4, respectively,
(13.56) and (13.57) can be written as

ẋ3 =
1

m
(ulfl − urfr) (13.58)

and

ẋ4 =
uufu
m
− g. (13.59)

Using ẋ1 = x3 and ẋ2 = x4, the state transition equation becomes

ẋ1 = x3 ẋ3 =
fs
m
(ulfl − urfr)

ẋ2 = x4 ẋ4 =
uufu
m
− g, (13.60)

which is in the desired form, ẋ = f(x, u). The action space U consists of eight
elements, which indicate whether each of the three thrusters is turned on or off.
Each action vector is of the form (ul, ur, uu), in which each component is 0 or 1.
�



13.3. BASIC NEWTON-EULER MECHANICS 751

mg

θ

L

Figure 13.9: The pendulum is a simple and important example of a nonlinear
system.

The next example illustrates the importance of Newton’s third law.

Example 13.8 (Pendulum) A simple and very important model is the pendu-
lum shown in Figure 13.9. Let m denote the mass of the attached particle (the
string is assumed to have no mass). Let g denote the acceleration constant due to
gravity. Let L denote the length of the pendulum string. Let θ denote the angular
displacement of the pendulum, which characterizes the pendulum configuration.
Using Newton’s second law and assuming the pendulum moves in a vacuum (no
wind resistance), the constraint

mLθ̈ = −mg sin θ (13.61)

is obtained. A 2D state space can be formulated in which x1 = θ and x2 = θ̇.
This leads to

ẋ1 = x2

ẋ2 = −
g

L
sin x1,

(13.62)

which has no actions (the form of (13.62) is ẋ = f(x)).
A linear drag term kLθ̇ can be added to the model to account for wind resis-

tance. This yields
mLθ̈ = −mg sin θ − kLθ̇, (13.63)

which becomes

ẋ1 = x2

ẋ2 = −
g

L
sin x1 −

k

m
x2

(13.64)

in the state space form.

752 S. M. LaValle: Planning Algorithms

Now consider applying a force uf on the particle, in a direction perpendicular
to the string. This action can be imagined as having a thruster attached to the
side of the particle. This adds the term uf to (13.63). Its sign depends on the
choice of the perpendicular vector (thrust to the left or to the right). The state
transition equation ẋ = f(x, u) then becomes

ẋ1 = x2

ẋ2 = −
g

L
sin x1 −

k

m
x2 +

1

mL
uf .

(13.65)

�

Although sufficient information has been given to specify differential models for
a particle, several other concepts are useful to introduce, especially in the extension
to multiple particles and rigid bodies. The main idea is that conservation laws
can be derived from Newton’s laws. The linear momentum (or just momentum)
d of the particle is defined as

d = mq̇. (13.66)

This is obtained by integrating f = mq̈ with respect to time.
It will be convenient when rigid-body rotations are covered to work with the

moment of momentum (or angular momentum). A version of momentum that
is based on moments can be obtained by first defining the moment of force (or
torque) for a force f acting at a point q ∈ W as

n = q × f, (13.67)

in which × denotes the vector cross product in R
3. For a particle that has linear

momentum d, the moment of momentum e is defined as

e = q × d. (13.68)

It can be shown that
de

dt
= n, (13.69)

which is equivalent to Newton’s second law but is expressed in terms of momen-
tum. For the motion of a particle in a closed system, the linear momentum and
moment of momentum are conserved if there are no external forces acting on it.
This is essentially a restatement of Newton’s first law.

This idea can alternatively be expressed in terms of energy, which depends on
the same variables as linear momentum. The kinetic energy of a particle is

T =
1

2
mq̇ · q̇, (13.70)

in which · is the familiar inner product (or dot product). The total kinetic en-
ergy of a system of particles is obtained by summing the kinetic energies of the
individual particles.



13.3. BASIC NEWTON-EULER MECHANICS 753

Motion of a set of particles

The concepts expressed so far naturally extend to a set of particles that move
in a closed system. This provides a smooth transition to rigid bodies, which are
modeled as a collection of infinitesimal particles that are “stuck together,” causing
forces between neighboring particles to cancel. In the present model, the particles
are independently moving. If a pair of particles collides, then, by Newton’s third
law, they receive forces of equal magnitude and opposite directions at the instant
of impact.

It can be shown that all momentum expressions extend to sums over the par-
ticles [182]. For a set of particles, the linear momentum of each can be summed
to yield the linear momentum of the system as

D =
∑

d. (13.71)

The total external force can be determined as

F =
∑

fi, (13.72)

which is a kind of resultant force for the whole system. The relationship dD/dt =
F holds, which extends the case of a single particle. The total mass can be
summed to yield

M =
∑

m, (13.73)

and the center of mass of the system is

p =
1

M

∑

mq, (13.74)

in which m and q are the mass and position of each particle, respectively. The
expressions D = Mṗ and F = Mp̈ hold, which are the analogs of d = mq̇ and
f = mq̈ for a single particle.

So far the translational part of the motion has been captured; however, rotation
of the system is also important. This was the motivation for introducing the
moment concepts. Let the total moment of force (or total torque) be

N =
∑

q × f, (13.75)

and let the moment of momentum of the system be

E =
∑

q × d. (13.76)

It can be shown that dE/dt = N , which behaves in the same way as in the
single-particle case.

The ideas given so far make a system of particles appear very much as a single
particle. It is important, however, when conducting a simulation of their behavior

754 S. M. LaValle: Planning Algorithms

r

p

fA

Figure 13.10: A force f acting on A at r produces a moment about p of r × f .

to consider the collisions between the particles. Detecting these collisions and
calculating the resulting impact forces ensures that correct motions are obtained.

As the number of particles tends to infinity, consider the limiting case of a rigid
body. In this case, the particles are “sewn” together, which cancels their internal
forces. It will be sufficient only to handle the forces that act on the boundary of
the rigid body. The expressions for the motion of a rigid body are given in Section
13.3.3. The expressions can alternatively be obtained using other concepts, such
as those in Section 13.4.

13.3.3 Motion of a Rigid Body

For a free-floating 3D rigid body, recall from Section 4.2.2 that its C-space C
has six dimensions. Suppose that actions are applied to the body as external
forces. These directly cause accelerations that result in second-order differential
equations. By defining a state to be (q, q̇), first-order differential equations can
be obtained in a twelve-dimensional phase space X.

Let A ⊆ R
3 denote a free-floating rigid body. Let σ(r) denote the body density

at r ∈ A. Let m denote the total mass of A, which is defined using the density as

m =

∫

A

σ(r)dr, (13.77)

in which dr = dr1dr2dr3 represents a volume element in R
3. Let p ∈ R

3 denote
the center of mass of A, which is defined for p = (p1, p2, p3) as

pi =
1

m

∫

A

riσ(r)dr. (13.78)

Suppose that a collection of external forces acts on A (it is assumed that all
internal forces in A cancel each other out). Each force f acts at a point on the
boundary, as shown in Figure 13.10 (note that any point along the line of force



13.3. BASIC NEWTON-EULER MECHANICS 755

may alternatively be used). The set of forces can be combined into a single force
and moment that both act about the center of mass p. Let F denote the total
external force acting on A. Let N denote the total external moment about the
center of mass of A. These are given by

F =
∑

f (13.79)

and
N =

∑

r × f (13.80)

for the collection of external forces. The terms F and N are often called the
resultant force and resultant moment of a collection of forces. It was shown by
Poinsot that every system of forces is equivalent to a single force and a moment
parallel to the line of action of the force. The result is called a wrench, which is
the force-based analog of a screw; see [182] for a nice discussion.

Actions of the form u ∈ U can be expressed as external forces and/or moments
that act on the rigid body. For example, a thruster may exert a force on the body
when activated. For a given u, the total force and moment can be resolved to
obtain F (u) and N(u).

Important frames Three different coordinate frames will become important
during the presentation:

1. Inertial frame: The global coordinate frame that is fixed with respect to
all motions of interest.

2. Translating frame: A moving frame that has its origin at the center of
mass of A and its axes aligned with the inertial frame.

3. Body frame: A frame that again has its origin at the center of mass of A,
but its axes are rigidly attached to A. This is the same frame that was used
to define bodies in Chapter 3.

The translational part The state transition equation involves 12 scalar equa-
tions. Six of these are straightforward to obtain by characterizing the linear
velocity. For this case, it can be imagined that the body does not rotate with
respect to the inertial frame. The linear momentum is D = mṗ, and Newton’s
second law implies that

F (u) =
dD

dt
= mp̈. (13.81)

This immediately yields half of the state transition equation by solving for p̈. This
yields a 3D version of the double integrator in Example 13.3, scaled by m. Let
(p1, p2, p3) denote the coordinates of p. Let (v1, v2, v3) denote the linear velocity
the center of mass. Three scalar equations of the state transition equation are
ṗi = vi for i = 1, 2, 3. Three more are obtained as v̇i = Fi(u)/m for i = 1, 2, 3.

756 S. M. LaValle: Planning Algorithms

x

z

θ v

y

Figure 13.11: The angular velocity is defined as a rotation rate of the coordinate
frame about an axis.

If there are no moments and the body is not rotating with respect to the inertial
frame, then these six equations are sufficient to describe its motion. This may
occur for a spacecraft that is initially at rest, and its thrusters apply a total force
only through the center of mass.

The rotational part The six equations derived so far are valid even if A ro-
tates with respect to the inertial frame. They are just the translational part of
the motion. The rotational part can be decoupled from the translational part
by using the translating frame. All translational aspects of the motion have al-
ready been considered. Imagine that A is only rotating while its center of mass
remains fixed. Once the rotational part of the motion has been determined, it
can be combined with the translational part by simply viewing things from the
inertial frame. Therefore, the motion of A is now considered with respect to the
translating frame, which makes it appear to be pure rotation.

Unfortunately, characterizing the rotational part of the motion is substan-
tially more complicated than the translation case and the 2D rotation case. This
should not be surprising in light of the difficulties associated with 3D rotations in
Chapters 3 and 4.

Following from Newton’s second law, the change in the moment of momentum
is

N(u) =
dE

dt
. (13.82)

The remaining challenge is to express the right-hand side of (13.82) in a form that
can be inserted into the state transition equation.



13.3. BASIC NEWTON-EULER MECHANICS 757

Differential rotations To express the change in the moment of momentum
in detail, the concept of a differential rotation is needed. In the plane, it is
straightforward to define ω = θ̇; however, for SO(3), it is more complicated. One
choice is to define derivatives with respect to yaw-pitch-roll variables, but this
leads to distortions and singularities, which are problematic for the Newton-Euler
formulation. Instead, a differential rotation is defined as shown in Figure 13.11.
Let v denote a unit vector in R

3, and let θ denote a rotation that is analogous to
the 2D case. Let ω denote the angular velocity vector,

ω = v
dθ

dt
. (13.83)

This provides a natural expression for angular velocity.9 The change in a rotation
matrix R with respect to time is

Ṙ = ω × R. (13.84)

This relationship can be used to derive expressions that relate ω to yaw-pitch-roll
angles or quaternions. For example, using the yaw-pitch-roll matrix (3.42) the
conversion from ω to the change yaw, pitch, and roll angles is





γ̇

β̇
α̇



 =
1

cos β





cosα sinα 0
− sinα cos β cosα cos β 0
cosα sin β sinα sin β − cos β









ω1

ω2

ω3



 . (13.85)

Inertia matrix An inertia matrix (also called an inertia tensor or inertia oper-
ator) will be derived by considering A as a collection of particles that are rigidly
attached together (all contact forces between them cancel due to Newton’s third
law). The expression σ(r)dr in (13.77) represents the mass of an infinitesimal par-
ticle of A. The moment of momentum of the infinitesimal particle is r× ṙσ(r)dr.
This means that the total moment of momentum of A is

E =

∫

A(q)

(r × ṙ) σ(r)dr. (13.86)

By using the fact that ṙ = ω × r, the expression becomes

E =

∫

A(q)

r × (ω × r) σ(r)dr. (13.87)

Observe that r now appears twice in the integrand. By doing some algebraic ma-
nipulations, ω can be removed from the integrand, and a function that is quadratic
in the r variables is obtained (since r is a vector, the function is technically a

9One important issue to be aware of is that the integral of ω is not path-invariant (see
Example 2.15 of [261]).

758 S. M. LaValle: Planning Algorithms

quadratic form). The first step is to apply the identity a×(b×c) = (a ·c)b−(a ·b)c
to obtain

E =

∫

A(q)

(

(r · r)ω − (r · ω)r
)

σ(r)dr. (13.88)

The angular velocity can be moved to the right to obtain

E =

(∫

A(q)

(

(r · r)I3 − rrT
)

σ(r)dr

)

ω, (13.89)

in which the integral now occurs over a 3× 3 matrix and I3 is the 3× 3 identity
matrix.

Let I be called the inertia matrix and be defined as

I(q) =

(∫

A(q)

(

(r · r)I3 − rrT
)

σ(r)dr

)

. (13.90)

Using the definition,
E = Iω. (13.91)

This simplification enables a concise expression of (13.82) as

N(u) =
dE

dt
=
d(Iω)

dt
= I

dω

dt
+
dI

dt
ω, (13.92)

which makes use of the chain rule.

Simplifying the inertia matrix Now the inertia matrix will be considered
more carefully. It is a symmetric 3× 3 matrix, which can be expressed as

I(q) =





I11(q) I12(q) I13(q)
I12(q) I22(q) I23(q)
I13(q) I23(q) I33(q)



 . (13.93)

For each i ∈ {1, 2, 3}, the entry Iii(q) is called a moment of inertia. The three
cases are

I11(q) =

∫

A(q)

(r22 + r23)σ(r)dr, (13.94)

I22(q) =

∫

A(q)

(r21 + r23)σ(r)dr, (13.95)

and

I33(q) =

∫

A(q)

(r21 + r22)σ(r)dr. (13.96)

The remaining entries are defined as follows. For each i, j ∈ {1, 2, 3} such that
i 6= j, the product of inertia is

Hij(q) =

∫

A(q)

rirjσ(r)dr, (13.97)



13.3. BASIC NEWTON-EULER MECHANICS 759

and Iij(q) = −Hij(q).

One problem with the formulation so far is that the inertia matrix changes
as the body rotates because all entries depend on the orientation q. Recall that
it was derived by considering A as a collection of infinitesimal particles in the
translating frame. It is possible, however, to express the inertia matrix in the
body frame of A. In this case, the inertia matrix can be denoted as I because it
does not depend on the orientation of A with respect to the translational frame.
The original inertia matrix is then recovered by applying a rotation that relates
the body frame to the translational frame: I(q) = RI, in which R is a rotation
matrix. It can be shown (see Equation (2.91) and Section 3.2 of [261]) that after
performing this substitution, (13.92) simplifies to

N(u) = I
dω

dt
+ ω × (Iω). (13.98)

The body frame of A must have its origin at the center of mass p; however, its
orientation has not been constrained. For different orientations, different inertia
matrices will be obtained. Since I captures the physical characteristics of A,
any two inertia matrices differ only by a rotation. This means for a given A, all
inertia matrices that can be defined by different body frame orientations have the
same eigenvalues and eigenvectors. Consider the positive definite quadratic form
xT Ix = 1, which represents the equation of an ellipsoid. A standard technique in
linear algebra is to compute the principle axes of an ellipsoid, which turn out to be
the eigenvectors of I. The lengths of the ellipsoid axes are given by the eigenvalues.
An axis-aligned expression of the ellipsoid can be obtained by defining x′ = Rx, in
which R is the matrix formed by columns of eigenvectors. Therefore, there exists
an orientation of the body frame in which the inertia matrix simplifies to

I =





I11 0 0
0 I22 0
0 0 I33



 (13.99)

and the diagonal elements are the eigenvalues. If the body happens to be an
ellipsoid, the principle axes correspond to the ellipsoid axes. Moment of inertia
tables are given in many texts [183]; in these cases, the principle axes are usually
chosen as the axis of the body frame because they result in the simplest expression
of I.

Completing the state transition equation Assume that the body frame of
A aligns with the principle axes. The remaining six equations of motion can finally

760 S. M. LaValle: Planning Algorithms

be given in a nice form. Using (13.99), the expression (13.98) reduces to [182]




N1(u)
N2(u)
N3(u)



 =





I11 0 0
0 I22 0
0 0 I33









ω̇1

ω̇2

ω̇3



+





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









I11 0 0
0 I22 0
0 0 I33









ω1

ω2

ω3



 .

(13.100)

Multiplying out (13.100) yields

N1(u) = I11ω̇1 + (I33 − I22)ω2ω3

N2(u) = I22ω̇2 + (I11 − I33)ω3ω1

N3(u) = I33ω̇3 + (I22 − I11)ω1ω2.

(13.101)

To prepare for the state transition equation form, solving for ω̇ yields

ω̇1 =
(

N1(u) + (I22 − I33)ω2ω3

)

/I11

ω̇2 =
(

N2(u) + (I33 − I11)ω3ω1

)

/I22

ω̇3 =
(

N3(u) + (I11 − I22)ω1ω2

)

/I33.

(13.102)

One final complication is that ω needs to be related to angles that are used to
express an element of SO(3). The mapping between these depends on the partic-
ular parameterization of SO(3). Suppose that quaternions of the form (a, b, c, d)
are used to express rotation. Recall that a can be recovered once b, c, and d
are given using a2 + b2 + c2 + d2 = 1. The relationship between ω and the time
derivatives of the quaternion components is obtained by using (13.84) (see [183],
p. 433):

ḃ = ω3c− ω2d

ċ = ω1d− ω3b

ḋ = ω2b− ω1c.

(13.103)

This finally completes the specification of ẋ = f(x, u), in which

x = (p1, p2, p3, v1, v2, v3, b, c, d, ω1, ω2, ω3) (13.104)

is a twelve-dimensional phase vector. For convenience, the full specification of the
state transition equation is

ṗ1 = v1 ḃ = ω3c− ω2d

ṗ2 = v2 ċ = ω1d− ω3b

ṗ3 = v3 ḋ = ω2b− ω1c (13.105)

v̇1 = F1(u)/m ω̇1 =
(

N1(u) + (I22 − I33)ω2ω3

)

/I11

v̇2 = F2(u)/m ω̇2 =
(

N2(u) + (I33 − I11)ω3ω1

)

/I22

v̇3 = F3(u)/m ω̇3 =
(

N3(u) + (I11 − I22)ω1ω2

)

/I33.



13.3. BASIC NEWTON-EULER MECHANICS 761

The relationship between inertia matrices and ellipsoids is actually much deeper
than presented here. The kinetic energy due to rotation only is elegantly expressed
as

T = 1
2
ωT Iω. (13.106)

A fascinating interpretation of rotational motion in the absence of external forces
was given by Poinsot [10, 182]. As the body rotates, its motion is equivalent to
that of the inertia ellipsoid, given by (13.106), rolling (without sliding) down a
plane with normal vector Iω in R

3.

The 2D case The dynamics of a 2D rigid body that moves in the plane can be
handled as a special case of a 3D body. Let A ⊂ R

2 be a 2D body, expressed in its
body frame. The total external forces acting on A can be expressed in terms of
a two-dimensional total force through the center of mass and a moment through
the center of mass. The phase space for this model has six dimensions. Three
come from the degrees of freedom of SE(2), two come from linear velocity, and
one comes from angular velocity.

The translational part is once again expressed as

F (u) =
dD

dt
= mp̈. (13.107)

This provides four components of the state transition equation.
All rotations must occur with respect to the z-axis in the 2D formulation. This

means that the angular velocity ω is a scalar value. Let θ denote the orientation
of A. The relationship between ω and θ is given by θ̇ = ω, which yields one more
component of the state transition equation.

At this point, only one component remains. Recall (13.92). By inspecting
(13.101) it can be seen that the inertia-based terms vanish. In that formulation,
ω3 is equivalent to the scalar ω for the 2D case. The final terms of all three
equations vanish because ω1 = ω2 = 0. The first terms of the first two equations
also vanish because ω̇1 = ω̇2 = 0. This leaves N3(u) = I33ω̇3. In the 2D case, this
can be notationally simplified to

N(u) =
dE

dt
=
d(Iω)

dt
= I

dω

dt
= Iω̇, (13.108)

in which I is now a scalar. Note that for the 3D case, the angular velocity can
change, even when N(u) = 0. In the 2D case, however, this is not possible. In
both cases, the moment of momentum is conserved; in the 2D case, this happens
to imply that ω is fixed. The sixth component of the state transition equation is
obtained by solving (13.108) for ω̇.

The state transition equation for a 2D rigid body in the plane is therefore

ṗ1 = v1 v̇1 = F1(u)/m

ṗ2 = v2 v̇2 = F2(u)/m (13.109)

θ̇ = ω ω̇ = N(u)/I.

762 S. M. LaValle: Planning Algorithms

A car with tire skidding This section concludes by introducing a car model
that considers it as a skidding rigid body in the plane. This model was suggested
by Jim Bernard. The C-space is C = R

2×S
1, in which q = (x, y, θ). Suppose that

as the car moves at high speeds, the tires are able to skid laterally in a direction
perpendicular to the main axis of the car (i.e., parallel to the rear axle). Let ω
denote the angular velocity of the car. Let v denote the lateral skidding velocity,
which is another state variable. This results in a five-dimensional state space in
which each state is a vector of the form (x, y, θ, ω, v).

The position of the rear axle center can be expressed as

ẋ = s cos θ − v sin θ
ẏ = s sin θ + v cos θ,

(13.110)

which yields two components of the state transition equation. Let ω = θ̇ denote
the angular velocity, which yields one more component of the state transition
equation. This leaves only two equations, which are derived from 2D rigid body
mechanics (which will be covered in Section 13.3.3). The state transition is

ẋ = s cos θ − v sin θ
ẏ = s sin θ + v cos θ

θ̇ = ω

ω̇ = (aff − bfr)/I
v̇ = −sω + (ff + fr)/m,

(13.111)

in which ff and fr are the front and rear tire forces, m is the mass, I is the
moment of inertia, and a and b are the distances from the center of mass to the
front and rear axles, respectively. The first force is

ff = cf
(

(v + aω)/s+ φ
)

, (13.112)

in which cf is the front cornering stiffness, and φ is the steering angle. The second
force is

fr = cr(v − bω)/s, (13.113)

in which cr is the rear cornering stiffness. The steering angle can be designated
as an action variable: uφ = φ. An integrator can be placed in front of the speed
to allow accelerations. This increases the state space dimension by one.

Reasonable values for the parameters for an automotive application are: m =
1460 kg, cf = 17000, cr = 20000, a = 1.2 m, b = 1.5 m, I = 2170 kg/m2,
and s = 27 m/sec. This state transition equation involves a linear tire skidding
model, which is a poor approximation in many applications. Nonlinear tire models
provide better approximations to the actual behavior of cars [25]. For a thorough
introduction to the dynamics of cars, see [216].



13.4. ADVANCED MECHANICS CONCEPTS 763

13.4 Advanced Mechanics Concepts

Newton-Euler mechanics has the advantage that it starts with very basic prin-
ciples, but it has frustrating restrictions that make modeling more difficult for
complicated mechanical systems. One of the main limitations is that all laws
must be expressed in terms of an inertial frame with orthogonal axes. This sec-
tion introduces the basic ideas of Lagrangian and Hamiltonian mechanics, which
remove these restrictions by reducing mechanics to finding an optimal path using
any coordinate neighborhood of the C-space. The optimality criterion is expressed
in terms of energy. The resulting techniques can be applied on any coordinate
neighborhood of a smooth manifold. The Lagrangian formulation is usually best
for determining the motions of one or more bodies. Section 13.4.1 introduces
the basic Lagrangian concepts based on the calculus of variations. Section 13.4.2
presents a general form of the Euler-Lagrange equations, which is useful for deter-
mining the motions of numerous dynamical systems, including chains of bodies.
The Lagrangian is also convenient for systems that involve additional differential
constraints, such as friction or rolling wheels. These cases are briefly covered
in Section 13.4.3. The Hamiltonian formulation in Section 13.4.4 is based on a
special phase space and provides an alternative to the Lagrangian formulation.
The technique generalizes to Pontryagin’s minimum principle, a powerful optimal
control technique that is covered in Section 15.2.3.

13.4.1 Lagrangian Mechanics

Calculus of variations

Lagrangian mechanics is based on the calculus of variations, which is the subject of
optimization over a space of paths. One of the most famous variational problems
involves constraining a particle to travel along a curve (imagine that the particle
slides along a frictionless track). The problem is to find the curve for which the
ball travels from one point to the other, starting at rest, and being accelerated
only by gravity. The solution is a cycloid function called the Brachistochrone curve
[219]. Before this problem is described further, recall the classical optimization
problem from calculus in which the task is to find extremal values (minima and
maxima) of a function. Let x̃ denote a smooth function from R to R, and let x(t)
denote its value for any t ∈ R. From standard calculus, the extremal values of x̃
are all t ∈ R for which ẋ = 0. Suppose that at some t′ ∈ R, x̃ achieves a local
minimum. To serve as a local minimum, tiny perturbations of t′ should result in
larger function values. Thus, there exists some d > 0 such that x(t′ + ǫ) > x(t′)
for any ǫ ∈ [−d, d]. Each ǫ represents a possible perturbation of t′.

The calculus of variations addresses a harder problem in which optimization
occurs over a space of functions. For each function, a value is assigned by a
criterion called a functional.10 A procedure analogous to taking the derivative

10This is the reason why a cost functional has been used throughout the book. It is a function

764 S. M. LaValle: Planning Algorithms

t

x(t)

Figure 13.12: The variation is a “small” function that is added to x̃ to perturb it.

of the function and setting it to zero will be performed. This will be arrived
at by considering tiny perturbations of an entire function, as opposed to the ǫ
perturbations mentioned above. Each perturbation is itself a function, which is
called a variation. For a function to minimize a functional, any small enough
perturbation of it must yield a larger functional value. In the case of optimizing
a function of one variable, there are only two directions for the perturbation:
±ǫ. See Figure 13.12. In the calculus of variations, there are many different
“directions” because of the uncountably infinite number of ways to construct a
small variation function that perturbs the original function (the set of all variations
is an infinite-dimensional function space; recall Example 8.5).

Let x̃ denote a smooth function from T = [t0, t1] into R. The functional is
defined by integrating a function over the domain of x̃. Let L be a smooth, real-
valued function of three variables, a, b, and c.11 The arguments of L may be any
a, b ∈ R and c ∈ T to yield L(a, b, c), but each has a special interpretation. For
some smooth function x̃, L is used to evaluate it at a particular t ∈ T to obtain
L(x, ẋ, t). A functional Φ is constructed using L to evaluate the whole function x̃
as

Φ(x̃) =

∫

T

L(x(t), ẋ(t), t)dt. (13.114)

The problem is to select an x̃ that optimizes Φ. The approach is to take the
derivative of Φ and set it equal to zero, just as in standard calculus; however,
differentiating Φ with respect to x̃ is not standard calculus. This usually requires
special conditions on the class of possible functions (e.g., smoothness) and on the
vector space of variations, which are implicitly assumed to hold for the problems
considered in this section.

on a space of functions.
11Unfortunately, L is used here to represent a cost function, on which a functional Φ will

be based. This conflicts with using l as a cost function and L as the functional in motion
planning formulations. This notational collision remains because L is standard notation for the
Lagrangian. Be careful to avoid confusion.



13.4. ADVANCED MECHANICS CONCEPTS 765

Example 13.9 (Shortest-Path Functional) As an example of a functional,
consider

L(x, ẋ, t) =
√
1 + ẋ2. (13.115)

When evaluated on a function x̃, this yields the arc length of the path. �

Another example of a functional has already been seen in the context of motion
planning. The cost functional (8.39) assigns a cost to a path taken through the
state space. This provided a natural way to formulate optimal path planning. A
discrete, approximate version was given by (7.26).

Let h be a smooth function over T , and let ǫ ∈ R be a small constant. Consider
the function defined as x(t)+ǫh(t) for all t ∈ [0, 1]. If ǫ = 0, then (13.114) remains
the same. As ǫ is increased or decreased, then Φ(x̃+ǫh) may change. The function
h is like the “direction” in a directional derivative. If for any smooth function h,
their exists some ǫ > 0 such that the value Φ(x̃ + ǫh) increases, then x̃ is called
an extremal of Φ. Any small perturbation to x̃ causes the value of Φ to increase.
Therefore, x̃ behaves like a local minimum in a standard optimization problem.

Let g = ǫh for some ǫ > 0 and function h. The differential of a functional can
be approximated as [10]

Φ(x̃+ g)− Φ(x̃) =

∫

T

(

L(x(t) + g(t), ẋ(t) + ġ(t), t)− L(x(t), ẋ(t), t)
)

dt+ · · ·

=

∫

T

(

∂L

∂x
g +

∂L

∂ẋ
ġ

)

dt+ · · ·

=

∫

T

(

∂L

∂x
g − d

dt

∂L

∂ẋ
g

)

dt+

(

∂L

∂ẋ
g

)

∣

∣

∣

∣

∣

t1

t0

+ · · · ,

(13.116)

in which · · · represents higher order terms that will vanish in the limit. The last
step follows from integration by parts:

(

∂L

∂ẋ
g

)

∣

∣

∣

∣

∣

t1

t0

=

∫

T

∂L

∂ẋ
ġdt+

∫

T

d

dt

∂L

∂ẋ
hdt, (13.117)

which is just uv =
∫

vdu +
∫

udv. Consider the value of (13.116) as ǫ becomes
small, and assume that h(t0) = h(t1) = 0. For x̃ to be an extremal function, the
change expressed in (13.116) should tend to zero as the variations approach zero.
Based on further technical assumptions, including the Fundamental Lemma of the
Calculus of Variations (see Section 12 of [10]), the Euler-Lagrange equation,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (13.118)

is obtained as a necessary condition for x̃ to be an extremum. Intuition can be
gained by studying the last line of (13.116). The integral attains a zero value

766 S. M. LaValle: Planning Algorithms

precisely when (13.118) is satisfied. The other terms vanish because h(t0) =
h(t1) = 0, and higher order terms disappear in the limit process.

The partial derivatives of L with respect to ẋ and x are defined using standard
calculus. The derivative ∂L/∂ẋ is evaluated by treating ẋ as an ordinary variable
(i.e., as ∂L/∂b when the variables are named as in L(a, b, c)). Following this, the
derivative of ∂L/∂ẋ with respect to t is taken. To illustrate this process, consider
the following example.

Example 13.10 (A Simple Variational Problem) Let L be a functional de-
fined as

L(x, ẋ, t) = x3 + ẋ2. (13.119)

The partial derivatives with respect to x and ẋ are

∂L

∂x
= 3x2 (13.120)

and
∂L

∂ẋ
= 2ẋ. (13.121)

Taking the time derivative of (13.121) yields

d

dt

∂L

∂ẋ
= 2ẍ (13.122)

Substituting these into the Euler-Lagrange equation (13.118) yields

d

dt

∂L

∂ẋ
− ∂L

∂x
= 2ẍ− 3x2 = 0. (13.123)

This represents a second-order differential constraint that constrains the acceler-
ation as ẍ = 3x2/2. By constructing a 2D phase space, the constraint could be
expressed using first-order differential equations. �

Hamilton’s principle of least action

Now sufficient background has been given to return to the dynamics of mechanical
systems. The path through the C-space of a system of bodies can be expressed
as the solution to a calculus of variations problem that optimizes the difference
between kinetic and potential energy. The calculus of variations principles gen-
eralize to any coordinate neighborhood of C. In this case, the Euler-Lagrange
equation is

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (13.124)

in which q is a vector of n coordinates. It is actually n scalar equations of the
form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (13.125)



13.4. ADVANCED MECHANICS CONCEPTS 767

The coming presentation will use (13.124) to obtain a phase transition equa-
tion. This will be derived by optimizing a functional defined as the change in
kinetic and potential energy. Kinetic energy for particles and rigid bodies was de-
fined in Section 13.3.1. In general, the kinetic energy function must be a quadratic
function of q̇. Its definition can be interpreted as an inner product on C, which
causes C to become a Riemannian manifold [51]. This gives the manifold a notion
of the “angle” between velocity vectors and leads to well-defined notions of cur-
vature and shortest paths called geodesics. Let K(q, q̇) denote the kinetic energy,
expressed using the manifold coordinates, which always takes the form

K(q, q̇) = 1
2
q̇TM(q)q̇, (13.126)

in which M(q) is an n× n matrix called the mass matrix or inertia matrix.
The next step is to define potential energy. A system is called conservative if

the forces acting on a point depend only on the point’s location, and the work
done by the force along a path depends only on the endpoints of the path. The
total energy is conserved under the motion of a conservative system. In this case,
there exists a potential function φ : W → R such that F = ∂φ/∂p, for any p ∈ W .
Let V (q) denote the total potential energy of a collection of bodies, placed at
configuration q.

It will be assumed that the dynamics are time-invariant. Hamilton’s principle
of least action states that the trajectory, q̃ : T → C, of a mechanical system
coincides with extremals of the functional,

Φ(q̃) =

∫

T

(

K(q(t), q̇(t))− V (q(t))
)

dt, (13.127)

using any coordinate neighborhood of C. The principle can be seen for the case of
C = R

3 by expressing Newton’s second law in a way that looks like (13.124) [10]:

d

dt
(mq̇)− ∂V

∂q
= 0, (13.128)

in which the force is replaced by the derivative of potential energy. This suggests
applying the Euler-Lagrange equation to the functional

L(q, q̇) = K(q, q̇)− V (q), (13.129)

in which it has been assumed that the dynamics are time-invariant; hence, L(q, q̇, t) =
L(q, q̇). Applying the Euler-Lagrange equation to (13.127) yields the extremals.

The advantage of the Lagrangian formulation is that the C-space does not have
to be C = R

3, described in an inertial frame. The Euler-Lagrange equation gives
a necessary condition for the motions in any C-space of a mechanical system.
The conditions can be expressed in terms of any coordinate neighborhood, as
opposed to orthogonal coordinate systems, which are required by the Newton-
Euler formulation. In mechanics literature, the q variables are often referred

768 S. M. LaValle: Planning Algorithms

to as generalized coordinates. This simply means the coordinates given by any
coordinate neighborhood of a smooth manifold.

Thus, the special form of (13.124) that uses (13.129) yields the appropriate
constraints on the motion:

d

dt

∂L

∂q̇
− ∂L

∂q
=

d

dt

∂K(q, q̇)

∂q̇
− ∂K(q, q̇)

∂q
+
∂V (q)

∂q
= 0. (13.130)

Recall that this represents n equations, one for each coordinate qi. Since K(q, q̇)
does not depend on time, the d/dt operator simply replaces q̇ by q̈ in the calculated
expression for ∂K(q, q̇)/∂q̇. The appearance of q̈ seems appropriate because the
resulting differential equations are second-order, which is consistent with Newton-
Euler mechanics.

Example 13.11 (A Falling Particle) Suppose that a particle with mass m is
falling in R

3. Let (q1, q2, q3) denote the position of the particle. Let g denote
the acceleration constant of gravity in the −q3 direction. The potential energy is
V (q) = mgq3. The kinetic energy is

K(q, q̇) = 1
2
mq̇ · q̇ = 1

2
m(q̇21 + q̇22 + q̇23). (13.131)

The Lagrangian is

L(q, q̇) = K(q, q̇)− V (q) = 1
2
m(q̇21 + q̇22 + q̇23)−mgq3 = 0. (13.132)

To obtain the differential constraints on the motion of the particle, use (13.130).
For each i from 1 to 3,

d

dt

∂L

∂q̇
=

d

dt
(mq̇i) = mq̈i (13.133)

Since K(q, q̇) does not depend on q, the derivative ∂K/∂qi = 0 for each i. The
derivatives with respect to potential energy are

∂V

∂q1
= 0

∂V

∂q2
= 0

∂V

∂q3
= mg. (13.134)

Substitution into (13.130) yields three equations:

mq̈1 = 0 mq̈2 = 0 mq̈3 +mg = 0. (13.135)

These indicate that acceleration only occurs in the −q3 direction, and this is
due to gravity. The equations are consistent with Newton’s laws. As usual, a
six-dimensional phase space can be defined to obtain first-order differential con-
straints. �

The “least” part of Hamilton’s principle is actually a misnomer. It is techni-
cally only a principle of “extremal” action because (13.130) can also yield motions
that maximize the functional.



13.4. ADVANCED MECHANICS CONCEPTS 769

Applying actions

Up to this point, it has been assumed that no actions are applied to the mechanical
system. This is the way the Euler-Lagrange equation usually appears in physics
because the goal is to predict motion, rather than control it. Let u ∈ R

n denote an
action vector. Actions can be applied to the Lagrangian formulation as generalized
forces that “act” on the right side of the Euler-Lagrange equation. This results in

d

dt

∂L

∂q̇
− ∂L

∂q
= u. (13.136)

The actions force the mechanical system to deviate from its usual behavior. In
some instances, the true actions may be expressed in terms of other variables, and
then u is obtained by a transformation (recall transforming action variables for
the differential drive vehicle of Section 13.1.2). In this case, u may be replaced in
(13.136) by φ(u) for some transformation φ. In this case, the dimension of u need
not be n.

Procedure for deriving the state transition equation

The following general procedure can be followed to derive the differential model us-
ing Lagrangian mechanics on a coordinate neighborhood of a smooth n-dimensional
manifold:

1. Determine the degrees of freedom of the system and define the appropriate
n-dimensional smooth manifold C.

2. Express the kinetic energy as a quadratic form in the configuration velocity
components:

K(q, q̇) =
1

2
q̇TM(q)q̇ =

1

2

n
∑

i=1

n
∑

j=1

mij(q)q̇iq̇j. (13.137)

3. Express the potential energy V (q).

4. Let L(q, q̇) = K(q, q̇)−V (q) be the Lagrangian function, and use the Euler-
Lagrange equation (13.130) to determine the differential constraints.

5. Convert to phase space form by letting x = (q, q̇). If possible, solve for ẋ to
obtain ẋ = f(x, u).

Example 13.12 (2D Rigid Body Revisited) The equations in (13.109) can
be alternatively derived using the Euler-Lagrange equation. Let C = R

2×S
1, and

let (q1, q2, q3) = (x, y, θ) to conform to the notation used to express the Lagrangian.
The kinetic energy is the sum of kinetic energies due to linear and angular

velocities, respectively. This yields

K(q, q̇) = 1
2
mq̇ · q̇ + 1

2
Iq̇23, (13.138)

770 S. M. LaValle: Planning Algorithms

in which m and I are the mass and moment of inertia, respectively. Assume there
is no gravity; hence, V (q) = 0 and L(q, q̇) = K(q, q̇).

Suppose that generalized forces u1, u2, and u3 can be applied to the configu-
ration variables. Applying the Euler-Lagrange equation to L(q, q̇) yields

d

dt

∂L

∂q̇1
− ∂L

∂q1
=

d

dt
(mq̇1) = mq̈1 = u1

d

dt

∂L

∂q̇2
− ∂L

∂q2
=

d

dt
(mq̇2) = mq̈2 = u2

d

dt

∂L

∂q̇3
− ∂L

∂q3
=

d

dt
(Iq̇3) = Iq̈3 = u3.

(13.139)

These expressions are equivalent to those given in (13.109). One difference is that
conversion to the phase space is needed. The second difference is that the action
variables in (13.139) do not refer directly to forces and moments. They are in-
stead interpreted as generalized forces that act on the configuration variables. A
conversion should be performed if the original actions in (13.109) are required. �

13.4.2 General Lagrangian Expressions

As more complicated mechanics problems are considered, it is convenient to ex-
press the differential constraints in a general form. For example, evaluating
(13.130) for a kinematic chain of bodies leads to very complicated expressions.
The terms of these expressions, however, can be organized into standard forms
that appear simpler and give some intuitive meanings to the components.

Suppose that the kinetic energy is expressed using (13.126), and let mij(q)
denote an entry of M(q). Suppose that the potential energy is V (q). By per-
forming the derivatives expressed in (13.136), the Euler-Lagrange equation can be
expressed as n scalar equations of the form [224]

n
∑

j=1

mij(q)q̈j +
n
∑

j=1

n
∑

k=1

hijk(q)q̇j q̇k + gi(q) = ui (13.140)

in which

hijk =
∂mij

∂qk
− 1

2

∂mjk

∂qi
. (13.141)

There is one equation for each i from 1 to n. The components of (13.140) have
physical interpretations. The mii coefficients represent the inertia with respect
to qi. The mij represent the affect on qj of accelerating qi. The hijj q̇

2
j terms

represent the centrifugal effect induced on qi by the velocity of qj. The hijkq̇j q̇k
terms represent the Coriolis effect induced on qi by the velocities of qj and qk.
The gi term usually arises from gravity.



13.4. ADVANCED MECHANICS CONCEPTS 771

An alternative to (13.140) is often given in terms of matrices. It can be shown
that the Euler-Lagrange equation reduces to

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (13.142)

which represents n scalar equations. This introduces C(q, q̇), which is an n × n
Coriolis matrix. It turns out that many possible Coriolis matrices may produce
equivalent different constraints. With respect to (13.140), the Coriolis matrix
must be chosen so that

n
∑

j=1

cij q̇j =
n
∑

j=1

n
∑

k=1

hijkq̇j q̇k. (13.143)

Using (13.141),

n
∑

j=1

cij q̇j =
n
∑

j=1

n
∑

k=1

(

∂mij

∂qk
− 1

2

∂mjk

∂qi

)

q̇j q̇k. (13.144)

A standard way to determine C(q, q̇) is by computing Christoffel symbols. By

subtracting 1
2

∂mjk

∂qi
from the inside of the nested sums in (13.144), the equation

can be rewritten as

n
∑

j=1

cij q̇j =
1

2

n
∑

j=1

n
∑

k=1

∂mij

∂qk
q̇j q̇k +

1

2

n
∑

j=1

n
∑

k=1

(

∂mij

∂qk
− ∂mjk

∂qi

)

q̇j q̇k. (13.145)

This enables an element of C(q, q̇) to be written as

cij =
n
∑

k=1

cijkq̇k, (13.146)

in which

cijk =
1

2

(

∂mij

∂qk
+
∂mik

∂qj
− ∂mjk

∂qi

)

. (13.147)

This is called a Christoffel symbol, and it is obtained from (13.145). Note that
cijk = cikj. Christoffel symbols arise in the study of affine connections in differen-
tial geometry and are usually denoted as Γijk. Affine connections provide a way
to express acceleration without coordinates, in the same way that the tangent
space was expressed without coordinates in Section 8.3.2. For affine connections
in differential geometry, see [42]; for their application to mechanics, see [51].

Conversion to a phase transition equation

The final step is to convert the equations into phase space form. A 2n-dimensional
phase vector is introduced as x = (q, q̇). The task is to obtain ẋ = f(x, u), which

772 S. M. LaValle: Planning Algorithms

θ1

θ2

ℓ1

d1

ℓ2

A1

A2

p

x

y

Figure 13.13: Parameter values for a two-link robot with two revolute joints.

represents 2n scalar equations. The first n equations are ẋi = xn+i for i from 1 to
n. The final n equations are obtained by solving for q̈.

Suppose that the general form in (13.142) is used. Solving for q̈ yields

q̈ =M(q)−1(u− C(q, q̇)q̇ − g(q)). (13.148)

The phase variables are then substituted in a straightforward manner. Each q̈i for
i from 1 to n becomes ẋn+i, and M(q), C(q, q̇), and g(q) are expressed in terms
of x. This completes the specification of the phase transition equation.

Example 13.13 (Two-Link Manipulator) Figure 13.13 shows a two-link ma-
nipulator for which there are two revolute joints and two links, A1 and A2. Hence,
C = S

1 × S
1. Let q = (θ1, θ2) denote a configuration. Each of the two joints is

controlled by a motor that applies a torque ui. Let u1 apply to the base, and let
u2 apply to the joint between A1 and A2. Let d1 be the link length of A1. Let ℓi
be the distance from the Ai origin to its center of mass. For each Ai, let mi and
Ii be its mass and moment of inertia, respectively.

The kinetic energy of A1 is

K1(q̇) =
1
2
m1ℓ1θ̇

2
1 +

1
2
I1θ̇

2
1, (13.149)

and the potential energy of A1 is

V1(q) = m1gℓ1 sin θ1. (13.150)

The kinetic energy of A2 is

K2(q̇) =
1
2
p · p+ 1

2
I2(θ̇1 + θ̇2)

2, (13.151)



13.4. ADVANCED MECHANICS CONCEPTS 773

in which p denotes the position of the center of mass of A1 and is given from
(3.53) as

p1 = d1 cos θ1 + ℓ2 cos θ2

p2 = d1 sin θ1 + ℓ2 sin θ2.
(13.152)

The potential energy of A2 is

V2(q) = m2g(d1 sin θ1 + ℓ2 sin θ2). (13.153)

At this point, the Lagrangian function can be formed as

L(q, q̇) = K1(θ̇1) +K2(θ̇1, θ̇2)− V1(θ1)− V2(θ1, θ2) (13.154)

and inserted into (13.118) to obtain the differential constraints in implicit form,
expressed in terms of q̈, q̇, and q. Conversion to the phase space is performed
by solving the implicit constraints for q̈ and assigning x = (q, q̇), in which x is a
four-dimensional phase vector.

Rather than performing the computations directly using (13.118), the con-
straints can be directly determined using (13.140). The terms are

M(q) =

(

m11 m12

m21 m22

)

, (13.155)

in which

m11 = I1 +m1ℓ
2
1 + I2 +m2(d

2
1 + ℓ22 + 2d1ℓ2 cos θ2)

m12 = m21 = I2 +m2(ℓ
2
2 + d1ℓ2 cos θ2)

m22 = I2 +m2ℓ
2
2,

(13.156)

and

c111 =
1

2

∂m11

∂θ1
= 0

c112 = c121 =
1

2

∂m11

∂θ2
= −m2ℓ1ℓ2p2

c122 =
∂m12

∂θ2
− 1

2

∂m22

∂θ1
= −m2ℓ1ℓ2p2

c211 =
∂m21

∂θ1
− 1

2

∂m11

∂θ2
= m2ℓ1ℓ2p2

c212 = c221 =
1

2

∂m22

∂θ1
= 0

c222 =
1

2

∂m22

∂θ2
= 0.

(13.157)

The final term is defined as

g1 = (m1ℓ1 +m2d1)gp1 +m1ℓ2p2

g2 = m2ℓ2gp2.
(13.158)

774 S. M. LaValle: Planning Algorithms

The dynamics can alternatively be expressed using M(q), C(q, q̇), and g(q) in
(13.142). The Coriolis matrix is defined using (13.143) to obtain

C(q, q̇) = −m2ℓ1ℓ2p2

(

θ̇2 θ̇1 + θ̇2
θ̇1 0

)

, (13.159)

in which p2 is defined in (13.152) and is a function of q. For convenience, let

r = m2ℓ1ℓ2p2. (13.160)

The resulting expression, which is now a special form of (13.142), is

m11θ̈1 +m12θ̈2 − 2rθ̇1θ̇2 − rθ̇22 + g1(q) = u1

m22θ̈1 +m21θ̈2 + rθ̇21 + g2(q) = u2.
(13.161)

The phase transition equation is obtained by letting x = (θ1, θ2, θ̇1, θ̇2) and
substituting the state variables into (13.161). The variables θ̈1 and θ̈2 become ẋ3
and ẋ4, respectively. The equations must be solved for ẋ3 and ẋ4. An extension
of this model to motors that have gear ratios and nonnegligible mass appears in
[224]. �

The example provided here barely scratches the surface on the possible systems
that can be elegantly modeled. Many robotics texts cover cases in which there are
more links, different kinds of joints, and frictional forces [105, 192, 224, 241, 261].

The phase transition equation for chains of bodies could alternatively be de-
rived using the Newton-Euler formulation of mechanics. Even though the La-
grangian form is more elegant, the Newton-Euler equations, when expressed re-
cursively, are far more efficient for simulations of multibody dynamical systems
[105, 228, 261].

13.4.3 Extensions of the Euler-Lagrange Equations

Several extensions of the Euler-Lagrange equation can be constructed to handle
complications that arise in addition to kinetic energy and potential energy in a
conservative field. Each extension usually involves adding more terms to (13.129)
to account for the new complication. Problems that can be handled in this way
are closed kinematic chains, nonholonomic constraints, and nonconservative forces
(such as friction).

Incorporating velocity constraints

The Lagrangian formulation of Section 13.4.1 can be extended to allow additional
constraints placed on q and q̇. This is very powerful for developing state transition
equations for robots that have closed kinematic chains or wheeled bodies. If there



13.4. ADVANCED MECHANICS CONCEPTS 775

are closed chains, then the configurations may be restricted to lie in a subset of
C. If a parameterization of the solution set is possible, then C can be redefined
over the reduced C-space. This is usually not possible, however, because such a
parametrization is difficult to obtain, as mentioned in Section 4.4. If there are
wheels or other contact-based constraints, such as those in Section 13.1.3, then
extra constraints on q and q̇ exist. Dynamics can be incorporated into the models
of Section 13.1 by extending the Euler-Lagrange equation.

The coming method will be based on Lagrange multipliers. Recall from stan-
dard calculus that to optimize a function h defined over Rn, subject to an implicit
constraint g(x) = 0, it is sufficient to consider only the extrema of

h(x) + λg(x), (13.162)

in which λ ∈ R represents a Lagrange multiplier [137]. The extrema are found by
solving

∇h(x) + λ∇g(x) = 0, (13.163)

which expresses n equations of the form

∂h

∂xi
+ λ

∂g

∂xi
= 0. (13.164)

The same principle applies for handling velocity constraints on C.
Suppose that there are velocity constraints on C as considered in Section 13.1.

Consider implicit constraints, in which there are k equations of the form gi(q, q̇) =
0 for i from 1 to k. Parametric constraints can be handled as a special case of
implicit constraints by writing

gi(q, q̇) = q̇i − fi(q, u) = 0. (13.165)

For any constraints that contain actions u, no extra difficulties arise. Each ui is
treated as a constant in the following analysis. Therefore, action variables will
not be explicitly named in the expressions.

As before, assume time-invariant dynamics (see [206] for the time-varying
case). Starting with L(q, q̇) defined using (13.130), let the new criterion be

Lc(q, q̇, λ) = L(q, q̇) +
k
∑

i=1

λigi(q, q̇). (13.166)

A functional Φc is defined by substituting Lc for L in (13.114).
The extremals of Φc are given by n equations,

d

dt

∂Lc
∂q̇i
− ∂Lc
∂qi

= 0, (13.167)

and k equations,
d

dt

∂Lc

∂λ̇i
− ∂Lc
∂λi

= 0. (13.168)

776 S. M. LaValle: Planning Algorithms

The justification for this is the same as for (13.124), except now λ is included.
The equations of (13.168) are equivalent to the constraints gi(q, q̇) = 0. The first
term of each is zero because λ̇ does not appear in the constraints, which reduces
them to

∂Lc
∂λi

= 0. (13.169)

This already follows from the constraints on extremals of L and the constraints
gi(q, q̇) = 0. In (13.167), there are n equations in n+k unknowns. The k Lagrange
multipliers can be eliminated by using the k constraints gi(q, q̇) = 0. This corre-
sponds to Lagrange multiplier elimination in standard constrained optimization
[137].

The expressions in (13.167) and the constraints gi(q, q̇) may be quite compli-
cated, which makes the determination of a state transition equation challenging.
General forms are given in Section 3.8 of [206]. An important special case will be
considered here. Suppose that the constraints are Pfaffian,

gi(q, q̇) =
n
∑

j=1

gij(q)q̇j = 0, (13.170)

as introduced in Section 13.1. This includes the nonholonomic velocity constraints
due to wheeled vehicles, which were presented in Section 13.1.2. Furthermore, this
includes the special case of constraints of the form gi(q) = 0, which models closed
kinematic chains. Such constraints can be differentiated with respect to time to
obtain

d

dt
gi(q) =

n
∑

j=1

∂gi
∂qj

q̇j =
n
∑

j=1

gij(q)q̇j = 0, (13.171)

which is in the Pfaffian form. This enables the dynamics of closed chains, con-
sidered in Section 4.4, to be expressed without even having a parametrization of
the subset of C that satisfies the closure constraints. Starting in implicit form,
differentiation is required to convert them into the Pfaffian form.

For the important case of Pfaffian constraints, (13.167) simplifies to

d

dt

∂L

∂q̇i
− ∂L

∂qi
+

k
∑

j=1

λjgji(q) = 0, (13.172)

The Pfaffian constraints can be used to eliminate the Lagrange multipliers, if
desired. Note that gji represents the ith term of the jth Pfaffian constraint. An
action variable ui can be placed on the right side of each constraint, if desired.

Equation (13.172) often appears instead as

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

k
∑

l=1

λjgji(q, q̇), (13.173)



13.4. ADVANCED MECHANICS CONCEPTS 777

which is an alternative but equivalent expression of constraints because the La-
grange multipliers can be negated without affecting the existence of extremals.
In this case, a nice interpretation due to D’Alembert can be given. Expressions
that appear on the right of (13.173) can be considered as actions, as mentioned
in Section 13.4.1. As stated previously, such actions are called generalized forces
in mechanics. The principle of virtual work is obtained by integrating the reac-
tion forces needed to maintain the constraints. These reaction forces are precisely
given on the right side of (13.173). Due to the cancellation of forces, no true work
is done by the constraints (if there is no friction).

Example 13.14 (A Particle on a Sphere) Suppose that a particle travels on
a unit sphere without friction or gravity. Let (q1, q2, q3) ∈ R

3 denote the position
of the point. The Lagrangian function is the kinetic energy,

L(q, q̇) = 1
2
m(q̇21 + q̇22 + q̇23), (13.174)

in which m is the particle mass. For simplicity, assume that m = 2.
The constraint that the particle must travel on a sphere yields

g1(q) = q21 + q22 + q23 − 1 = 0. (13.175)

This can be put into Pfaffian form by time differentiation to obtain

2q1q̇1 + 2q2q̇2 + 2q3q̇3 = 0. (13.176)

Since k = 1, there is a single Lagrange multiplier λ1. Applying (13.172) yields
three equations,

q̈i − 2qiλ1 = 0, (13.177)

for i from 1 to 3. The generic form of the solution is

c1q1 + c2q2 + c3q3 = 0, (13.178)

in which the ci are real-valued constants that can be determined from the initial
position of the particle. This represents the equation of a plane through the origin.
The intersection of the plane with the sphere is a great circle. This implies that
the particle moves between two points by traveling along the great circle. These
are the shortest paths (geodesics) on the sphere. �

The general forms in Section 13.4.2 can be extended to the constrained case.
For example, (13.142) generalizes to

M(q)q̈ + C(q, q̇)q̇ + g(q) +G(q)Tλ = u, (13.179)

in which G is a n× k matrix that represents all of the gji Pfaffian coefficients. In
this case, the Lagrange multipliers can be computed as [192]

λ =
(

G(q)M(q)−1G(q)T
)−1

G(q)M(q)−1
(

u− C(q, q̇)q̇
)

, (13.180)

778 S. M. LaValle: Planning Algorithms

assuming G is time-invariant.
The phase transition equation can be determined in the usual way by perform-

ing the required differentiations, defining the 2n phase variables, and solving for
ẋ. The result generalizes (13.148).

Nonconservative forces

The Lagrangian formulation has been extended so far to handle constraints on
C that lower the dimension of the tangent space. The formulation can also be
extended to allow nonconservative forces. The most common and important ex-
ample in mechanical systems is friction. The details of friction models will not
be covered here; see [182]. As examples, friction can arise when bodies come into
contact, as in the joints of a robot manipulator, and as bodies move through a
fluid, such as air or water. The nonconservative forces can be expressed as addi-
tional generalized forces, expressed in an n×1 vector of the form B(q, q̇). Suppose
that an action vector is also permitted. The modified Euler-Lagrange equation
then becomes

d

dt

∂L

∂q̇
− ∂L

∂q
= u− B(q̇, q). (13.181)

A common extension to (13.142) is

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = u, (13.182)

in which N(q, q̇) generalizes g(q) to include nonconservative forces. This can be
generalized even further to include Pfaffian constraints and Lagrange multipliers,

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) +G(q)Tλ = u. (13.183)

The Lagrange multipliers become [192]

λ =
(

G(q)M(q)−1G(q)T
)−1

G(q)M(q)−1
(

u− C(q, q̇)q̇ −N(q, q̇)
)

. (13.184)

Once again, the phase transition equation can be derived in terms of 2n phase
variables and generalizes (13.148).

13.4.4 Hamiltonian Mechanics

The Lagrangian formulation of mechanics is the most convenient for determin-
ing a state transition equation for a collection of bodies. Once the kinetic and
potential energies are determined, the remaining efforts are straightforward com-
putation of derivatives and algebraic manipulation. Hamiltonian mechanics pro-
vides an alternative formulation that is closely related to the Lagrangian. Instead
of expressing second-order differential constraints on an n-dimensional C-space,
it expresses first-order constraints on a 2n-dimensional phase space. This idea
should be familiar from Section 13.2. The new phase space considered here is an



13.4. ADVANCED MECHANICS CONCEPTS 779

example of a symplectic manifold, which has many important properties, such as
being orientable and having an even number of dimensions [10]. The standard
phase vector is defined as x = (q, q̇); however, instead of q̇, n variables will be
introduced and denoted as p. Thus, a transformation exists between (q, q̇) and
(p, q). The p variables are related to the configuration variables through a special
function over the phase space called the Hamiltonian. Although the Hamiltonian
formulation usually does not help in the determination of ẋ = f(x, u), it is covered
here because its generalization to optimal control problems is quite powerful. This
generalization is called Pontryagin’s minimum principle and is covered in Section
15.2.3. In the context of mechanics, it provides a general expression of energy
conservation laws, which aids in proving many theoretical results [10, 109].

The relationship between (q, q̇) and (p, q) can be obtained by using the Legen-
dre transformation [10, 109]. Consider a real-valued function f of two variables,
x, y ∈ R. Its total differential [137] is

df = u dx+ v dy, (13.185)

in which

u =
∂f

∂x
and v =

∂f

∂y
. (13.186)

Consider constructing a total differential that depends on du and dy, instead of
dx and dy. Let g be a function of u and y defined as

g(u, y) = ux− f. (13.187)

The total differential of g is

dg = x du+ u dx− df. (13.188)

Using (13.185) to express df , this simplifies to

dg = x du− v dy. (13.189)

The x and v variables are now interpreted as

x =
∂g

∂u
v = −∂g

∂y
, (13.190)

which appear to be a kind of inversion of (13.186). This idea will be extended to
vector form to arrive the Hamiltonian formulation.

Assume that the dynamics do not depend on the particular time (the exten-
sion to time-varying dynamics is not difficult; see [10, 109]). Let L(q, q̇) be the
Lagrangian function defined (13.129). Let p ∈ R

n represent a generalized momen-
tum vector (or adjoint variables), which serves the same purpose as u in (13.185).
Each pi is defined as

pi =
∂L

∂q̇i
. (13.191)

780 S. M. LaValle: Planning Algorithms

In some literature, p is instead denoted as λ because it can also be interpreted as
a vector of Lagrange multipliers. The Hamiltonian function is defined as

H(p, q) = p · q̇ − L(q, q̇) =
n
∑

i=1

piq̇i − L(q, q̇) (13.192)

and can be interpreted as the total energy of a conservative system [109]. This is a
vector-based extension of (13.187) in which L and H replace f and g, respectively.
Also, p and q are the vector versions of u and x, respectively.

Considered as a function of p and q only, the total differential of H is

dH =
n
∑

i=1

∂H

∂pi
dpi +

n
∑

i=1

∂H

∂qi
dqi. (13.193)

Using (13.192), dH can be expressed as

dH =
n
∑

i=1

q̇i dpi +
n
∑

i=1

pi dq̇i −
n
∑

i=1

∂L

∂q̇i
dq̇i −

n
∑

i=1

∂L

∂qi
dqi. (13.194)

The dq̇i terms all cancel by using (13.191), to obtain

dH =
n
∑

i=1

q̇i dpi −
n
∑

i=1

∂L

∂qi
dqi. (13.195)

Using (13.118),

ṗ =
∂L

∂qi
. (13.196)

This implies that

dH =
n
∑

i=1

q̇i dpi −
n
∑

i=1

ṗi dqi. (13.197)

Equating (13.197) and (13.193) yields 2n equations called Hamilton’s equations:

q̇i =
∂H

∂pi
ṗi =

∂H

∂qi
, (13.198)

for each i from 1 to n. These equations are analogous to (13.190).
Hamilton’s equations are equivalent to the Euler-Lagrange equation. Ex-

tremals in both cases yield equivalent differential constraints. The difference is
that the Lagrangian formulation uses (q, q̇) and the Hamiltonian uses (p, q). The
Hamiltonian results in first-order partial differential equations. It was assumed
here that the dynamics are time-invariant and the motions occur in a conservative
field. In this case, dH = 0, which corresponds to conservation of total energy. In
the time-varying case, the additional equation ∂H/∂t = −∂L/∂t appears along



13.5. MULTIPLE DECISION MAKERS 781

with Hamilton’s equations. As stated previously, Hamilton’s equations are pri-
marily of interest in establishing basic results in theoretical mechanics, as opposed
to determining the motions of particular systems. For example, the Hamiltonian
is used to establish Louisville’s theorem, which states that phase flows preserve
volume, implying that a Hamiltonian system cannot be asymptotically stable [10].
Asymptotic stability is covered in Section 15.1.1. Pontryagin’s minimum princi-
ple, an extension of Hamilton’s equations to optimal control theory, is covered in
15.2.3.

13.5 Multiple Decision Makers

Differential models can be extended to model the interaction of multiple decision
makers. This leads to continuous-time extensions of sequential decision making,
from Formulation 10.1, and sequential games, from Formulation 10.4. A differen-
tial version of the state transition equation can be made for these extensions.

13.5.1 Differential Decision Making

To make a differential game against nature that extends Formulation 10.1 to
continuous time, suppose that nature actions θ(t) are chosen from Θ. A differential
model can be defined as

ẋ = f(x, u, θ). (13.199)

The state space X and action space U are used in the same way as throughout
this chapter. The difference only comes in the state transition equation. State-
dependent nature action spaces may also be used.

As observed repeatedly throughout Part III, nature can be modeled nondeter-
ministically or probabilistically. In the nondeterministic case, (13.199) is equiva-
lent to a differential inclusion [14]:

ẋ ∈ {ẋ′ | ∃θ ∈ Θ such that ẋ′ = f(x, u, θ)}. (13.200)

Possible future values for ẋ can be computed using forward projections. Reachable
sets, which will be introduced in Section 14.2.1, can be defined that characterize
the evolution of future possible states over time. Plans constructed under this
model usually use worst-case analysis.

Example 13.15 (Nondeterministic Forward Projection) As a simple ex-
ample of using (13.199), consider expressing the uncertainty model used in the
preimage planning framework of Section 12.5.1.

At each time t ≥ 0, nature chooses some θ ∈ Θ(t). The state transition
equation is

ẋ = u+ θ. (13.201)

782 S. M. LaValle: Planning Algorithms

The cone shown in Figure 12.45 is just the nondeterministic forward projection
under the application of a constant u ∈ U . �

In the probabilistic case, restrictions must be carefully placed on the nature ac-
tion trajectory (e.g., a Weiner process [242]). Under such conditions, (13.199) be-
comes a stochastic differential equation. Planning in this case becomes continuous-
time stochastic control [149], and the task is to optimize the expected cost.

Example 13.16 (A Simple Car and Nature) Uncertainty can be introduced
into any of the models of this chapter. For example, recall the simple car, (13.15).
Suppose that nature interferes with the steering action so that it is not precisely
known in which direction the car will drive. Let Θ = [−θmax, θmax], in which
θmax ∈ (0, π/2) represents the maximum amount of steering angle error that can
be caused by nature. The simple-car model can be modified to account for this
error as

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
L

tan(uφ + γ),

(13.202)

in which the domain of tan must be extended to R or other suitable restrictions
must be imposed. At each time t, a nature action12 γ ∈ Θ causes the true heading
of the car to be perturbed from the commanded direction uφ. Under nondetermin-
istic uncertainty, the maximum amount that the car deviates from the commanded
direction must be determined by the planning algorithm. A probability density
function p(γ) can be assigned to obtain a probabilistic model. When integrated
over time, (13.202) yields probability density functions over future car configura-
tions [266]. �

In a similar way, parameters that account for nature can be introduced vir-
tually anywhere in the models of this chapter. Some errors may be systematic,
which reflect mistakes or simplifications made in the modeling process. These
correspond to a constant nature action applied at the outset. In this case, nature
is not allowed to vary its action over time. Other errors could correspond to noise,
which is expected to yield different nature actions over time.

13.5.2 Differential Game Theory

The extension of sequential game theory to the continuous-time case is called
differential game theory (or dynamic game theory [16]), a subject introduced by
Isaacs [129]. All of the variants considered in Sections 9.3, 9.4, 10.5 are possible:

12The notation γ is used instead of θ to avoid conflicting with the car orientation variable θ
in this particular example.



13.5. MULTIPLE DECISION MAKERS 783

1. There may be any number of players.

2. The game may be zero-sum or nonzero-sum.

3. The state may or may not be known. If the state is unknown, then inter-
esting I-spaces arise, similar to those of Section 11.7.

4. Nature can interfere with the game.

5. Different equilibrium concepts, such as saddle points and Nash equilibria,
can be defined.

See [16] for a thorough overview of differential games. Two players, P1 and P2, can
be engaged in a differential game in which each has a continuous set of actions. Let
U and V denote the action spaces of P1 and P2, respectively. A state transition
equation can be defined as

ẋ = f(x, u, v), (13.203)

in which x is the state, u ∈ U , and v ∈ V .
Linear differential games are an important family of games because many

techniques from optimal control theory can be extended to solve them [16].

Example 13.17 (Linear Differential Games) The linear system model (13.37)
can be extended to incorporate two players. Let X = R

n be a phase space. Let
U = R

m1 and V = R
m2 be an action spaces for m1,m2 ≤ n. A linear differential

game is expressed as
ẋ = Ax+ Bu+ Cv, (13.204)

in which A, B, and C are constant, real-valued matrices of dimensions n × n,
n×m1, and n×m2, respectively. The particular solution to such games depends
on the cost functional and desired equilibrium concept. For the case of a quadratic
cost, closed-form solutions exist. These extend techniques that are developed for
linear systems with one decision maker; see Section 15.2.2 and [16].

The original work of Isaacs [129] contains many interesting examples of pursuit-
evasion differential games. One of the most famous is described next.

Example 13.18 (Homicidal Chauffeur) In the homicidal chauffeur game,
the pursuer is a Dubins car and the evader is a point robot that can translate
in any direction. Both exist in the same world, W = R

2. The speeds of the car
and robot are s1 and s2, respectively. It is assumed that |s1| > |s2|, which means
that the pursuer moves faster than the evader. The transition equation is given
by extending (13.15) to include two state variables that account for the robot
position:

ẋ1 = s1 cos θ1 ẋ2 = s2 cos v

ẏ1 = s1 sin θ1 ẏ2 = s2 sin v (13.205)

θ̇1 =
s1
L

tan uφ.

784 S. M. LaValle: Planning Algorithms

The state space is X is R4× S
1, and the action spaces are U = [−φmax, φmax] and

V = [0, 2π).
The task is to determine whether the pursuer can come within some prescribed

distance ǫ of the evader:

(x1 − x2)2 + (y1 − y2)2 < ǫ2. (13.206)

If this occurs, then the pursuer wins; otherwise, the evader wins. The solution
depends on the L, s1, s2, ǫ, and the initial state. Even though the pursuer moves
faster, the evader may escape because it does not have a limited turning radius.
For given values of L, s1, s2, and ǫ, the state space X can be partitioned into two
regions that correspond to whether the pursuer or evader wins [16, 129]. To gain
some intuition about how this partition may appear, imagine the motions that a
bullfighter must make to avoid a fast, charging bull (yes, bulls behave very much
like a fast Dubins car when provoked). �

Another interesting pursuit-evasion game arises in the case of one car attempt-
ing to intercept another [184].

Example 13.19 (A Game of Two Cars) Imagine that there are two simple
cars that move in the same world, W = R

2. Each has a transition equation given
by (13.15). The state transition equation for the game is

ẋ1 = us cos θ1 ẋ2 = vs cos θ2

ẏ1 = us sin θ1 ẏ2 = vs sin θ2 (13.207)

θ̇1 =
us
L1

tan uφ θ̇2 =
vs
L2

tan vφ.

The pursuit-evasion game becomes very interesting if both players are restricted
to be Dubins cars. �

Further Reading

This chapter was synthesized from numerous sources. Many important, related subjects
were omitted. For some mechanics of bodies in contact and manipulation in general,
see [182]. Three-dimensional vehicle models were avoided because they are complicated
by SO(3); see [117]. For computational issues associated with simulating dynamical
systems, see [75, 228].

For further reading on velocity constraints on the C-space, see [164, 192] and Sec-
tions 15.3 to 15.5. For more problems involving rolling spheres, see [141] and references
therein. The rolling-ball problem is sometimes referred to as the Chaplygin ball. A
nonholonomic manipulator constructed from rolling-ball joints was developed and ana-
lyzed in [195]. The kinematics of curved bodies in contact was studied in [171, 189]. For



13.5. MULTIPLE DECISION MAKERS 785

motion planning in this context, see [30, 32, 70, 180]. Other interesting nonholonomic
systems include the snakeboard [128, 170], roller racer [145], rollerblader [69], Trikke
[68], and examples in [34] (e.g., the Chaplygin sled).

Phase space representations are a basic part of differential equations, physics, and
control theory; see [11, 58].

Further reading in mechanics is somewhat complicated by two different levels of
treatment. Classical mechanics texts do not base the subject on differential geometry,
which results in cumbersome formulations and unusual terminology (e.g., generalized
coordinates). Modern mechanics texts overcome this problem by cleanly formulating
everything in terms of geodesics on Riemannian manifolds; however, this may be more
difficult to absorb for readers without background in differential geometry. An excellent
source for modern mechanics is [10]. One of the most famous texts for classical mechanics
is [109]. For an on-line book that covers the calculus of variations, including constrained
Lagrangians, see [207]. The constrained Lagrangian presentation is based on Chapter 3
of [206], Section 2.4 of [109], and parts of [112]. Integral constraints on the Lagrangian
are covered in [207], in addition to algebraic and differential constraints. Lagrangian
mechanics under inequality constraints is considered in [206]. The presentation of the
Hamiltonian in Section 13.4.4 is based on Chapter 7 of [109] and Section 15 of [10]. For
advanced, modern treatments of mechanics in the language of affine connections and
Christoffel symbols, see [2, 51, 181]. Another source, which is also heavily illustrated,
is [101]. For further reading on robot dynamics, see [6, 66, 192, 224, 241, 261]. For
dynamics of automobiles, see [107].

For further reading on differential game theory, primary sources are [16, 115, 129];
see also [8, 15, 202, 257, 258, 259, 260, 263]. Lower bounds for the algorithmic complexity
of pursuit-evasion differential games are presented in [215].

Exercises

1. Let C = R
4. There are two Pfaffian constraints, q̇1+q̇2+q̇3+q̇4 = 0 and q̇2−q̇4 = 0.

Determine the appropriate number of action variables and express the differential
constraints in the form q̇ = f(q, u).

2. Introduce a phase space and convert 2ÿ − 10ẏ2 + 5y = 0 into the form ẋ = f(x).

3. Introduce a phase space and convert y(4) + y = 0 into the form ẋ = f(x).

4. Derive the configuration transition equation (13.19) for a car pulling trailers.

5. Use the main idea of Section 13.2.4 to develop a smooth-steering extension of the
car pulling trailers, (13.19).

6. Suppose that two identical differential-drive robots are connected together at
their centers with a rigid bar of length d. The robots are attached at each end
of the rod, and each attachment forms a revolute joint. There are four wheels to
control; however, some combinations of wheel rotations cause skidding. Assuming
that skidding is not allowed, develop a motion model of the form q̇ = f(q, u), in
which C and U are chosen to reflect the true degrees of freedom.

786 S. M. LaValle: Planning Algorithms

θ1

m1g

L1

L2

θ2

m2q

Figure 13.14: A double pendulum.

7. Extend the lunar lander model to a general rigid body with a thruster that does
not apply forces through the center of mass.

8. Develop a model for a 3D rotating rigid body fired out of a canon at a specified
angle above level ground under gravity. Suppose that thrusters are placed on the
body, enabling it to be controlled before it impacts the ground. Develop general
phase transition equations.

9. Add gravity with respect to q2 in Example 13.12 and derive the new state tran-
sition equation using the Euler-Lagrange equation.

10. Use the constrained Lagrangian to derive the equations of motion of the pendulum
in Example 13.8.

11. Define a phase space, and determine an equation of the form ẋ = f(x) for the
double pendulum shown in Figure 13.14.

12. Extend Example 13.13 to obtain the dynamics of a three-link manipulator. The
third link, A3, is attached to the other two by a revolute joint. The new param-
eters are θ3, d2, ℓ3, m3, and I3.

13. Solve Example 13.14 by parameterizing the sphere with standard spherical coor-
dinates and using the unconstrained Lagrangian. Verify that the same answer is
obtained.

14. Convert the equations in (13.161) into phase space form, to obtain the phase
transition equation in the form ẋ = f(x, u). Express the right side of the equation
in terms of the basic parameters, such as mass, moment of inertia, and lengths.



13.5. MULTIPLE DECISION MAKERS 787

15. Define the Hamiltonian for a free-floating 2D rigid body under gravity and develop
Hamilton’s equations.

Implementations

16. Make a 3D spacecraft (rigid-body) simulator that allows any number of binary
thrusters to be placed in any position and orientation.

17. Make a simulator for the two-link manipulator in Example 13.13.

788 S. M. LaValle: Planning Algorithms



Chapter 14

Sampling-Based Planning Under
Differential Constraints

After Chapter 13, it seems that differential constraints arise nearly everywhere.
For example, they may arise when wheels roll, aircraft fly, and when the dynamics
of virtually any mechanical system is considered. This makes the basic model used
for motion planning in Part II invalid for many applications because differential
constraints were neglected. Formulation 4.1, for example, was concerned only
with obstacles in the C-space.

This chapter incorporates the differential models of Chapter 13 into sampling-
based motion planning. The detailed modeling (e.g., Lagrangian mechanics) of
Chapter 13 is not important here. This chapter works directly with a given system,
expressed as ẋ = f(x, u). The focus is limited to sampling-based approaches be-
cause very little can be done with combinatorial methods if differential constraints
exist. However, if there are no obstacles, then powerful analytical techniques may
apply. This subject is complementary to motion planning with obstacles and is
the focus of Chapter 15.

Section 14.1 provides basic definitions and concepts for motion planning un-
der differential constraints. It is particularly important to explain the distinctions
made in literature between nonholonomic planning, kinodynamic planning, and
trajectory planning, all of which are cases of planning under differential con-
straints. Another important point is that obstacles may be somewhat more com-
plicated in phase spaces, which were introduced in Section 13.2. Section 14.2
introduces sampling over the space of action trajectories, which is an essential
part of later planning algorithms.

Section 14.3 revisits the incremental sampling and searching framework of
Section 5.4 and extends it to handle differential constraints. This leads to several
sampling-based planning approaches, which are covered in Section 14.4. Familiar
choices such as dynamic programming or the RDTs of Section 5.5 appear once
again. The resulting planning methods can be used for a wide variety of problems
that involve differential constraints on C-spaces or phase spaces.

789

790 S. M. LaValle: Planning Algorithms

Section 14.5 briefly covers feedback motion planning under differential con-
straints. Approximate, optimal plans can be obtained by a simple adaptation
of value iteration from Section 8.5.2. Section 14.6 describes decoupled methods,
which start with a collision-free path that ignores differential constraints, and then
perform refinements to obtain the desired trajectory. Such approaches often lose
completeness and optimality, but they offer substantial computational savings in
many settings. Section 14.7 briefly surveys numerical techniques for optimizing
a trajectory subjected to differential constraints; the techniques can be used to
improve solutions computed by planning algorithms.

14.1 Introduction

14.1.1 Problem Formulation

Motion planning under differential constraints can be considered as a variant of
classical two-point boundary value problems (BVPs) [120]. In that setting, initial
and goal states are given, and the task is to compute a path through a state
space that connects initial and goal states while satisfying differential constraints.
Motion planning involves the additional complication of avoiding obstacles in the
state space. Techniques for solving BVPs are unfortunately not well-suited for
motion planning because they are not designed for handling obstacle regions. For
some methods, adaptation may be possible; however, the obstacle constraints usu-
ally cause these classical methods to become inefficient or incomplete. Throughout
this chapter, the BVP will refer to motion planning with differential constraints
and no obstacles. BVPs that involve more than two points also exist; however,
they are not considered in this book.

It is assumed that the differential constraints are expressed in a state transition
equation, ẋ = f(x, u), on a smooth manifold X, called the state space, which
may be a C-space C or a phase space of a C-space. A solution path will not be
directly expressed as in Part II but is instead derived from an action trajectory
via integration of the state transition equation.

Let the action space U be a bounded subset of Rm. A planning algorithm
computes an action trajectory ũ, which is a function of the form ũ : [0,∞) → U .
The action at a particular time t is expressed as u(t). To be consistent with
standard notation for functions, it seems that this should instead be denoted
as ũ(t). This abuse of notation was intentional, to make the connection to the
discrete-stage case clearer and to distinguish an action, u ∈ U , from an action
trajectory ũ. If the action space is state-dependent, then u(t) must additionally
satisfy u(t) ∈ U(x(t)) ⊆ U . For state-dependent models, this will be assumed by
default. It will also be assumed that a termination action uT is used, which makes
it possible to specify all action trajectories over [0,∞) with the understanding that
at some time tF , the termination action is applied.

The connection between the action and state trajectories needs to be formu-



14.1. INTRODUCTION 791

lated. Starting from some initial state x(0) at time t = 0, a state trajectory is
derived from an action trajectory ũ as

x(t) = x(0) +

∫ t

0

f(x(t′), u(t′))dt′, (14.1)

which integrates the state transition equation ẋ = f(x, u) from the initial con-
dition x(0). Let x̃(x(0), ũ) denote the state trajectory over all time, obtained
by integrating (14.1). Differentiation of (14.1) leads back to the state transition
equation. Recall from Section 13.1.1 that if u is fixed, then the state transition
equation defines a vector field. The state transition equation is an alternative
expression of (8.14) from Section 8.3, which is the expression for an integral curve
of a vector field. The state trajectory is the integral curve in the present context.

The problem of motion planning under differential constraints can be formu-
lated as an extension of the Piano Mover’s Problem in Formulation 4.1. The main
differences in this extension are 1) the introduction of time, 2) the state or phase
space, and 3) the state transition equation. The resulting formulation follows.

Formulation 14.1 (Motion Planning Under Differential Constraints)

1. A world W , a robot A (or A1, . . ., Am for a linkage), an obstacle region O,
and a configuration space C, which are defined the same as in Formulation
4.1.

2. An unbounded time interval T = [0,∞).

3. A smooth manifold X, called the state space, which may be X = C or it
may be a phase space derived from C if dynamics is considered; see Section
13.2. Let κ : X → C denote a function that returns the configuration q ∈ C
associated with x ∈ X. Hence, q = κ(x).

4. An obstacle region Xobs is defined for the state space. If X = C, then
Xobs = Cobs. For general phase spaces, Xobs is described in detail in Section
14.1.3. The notationXfree = X\Xobs indicates the states that avoid collision
and satisfy any additional global constraints.

5. For each state x ∈ X, a bounded action space U(x) ⊆ R
m ∪ {uT}, which

includes a termination action uT and m is some fixed integer called the
number of action variables. Let U denote the union of U(x) over all x ∈ X.

6. A system is specified using a state transition equation ẋ = f(x, u), defined
for every x ∈ X and u ∈ U(x). This could arise from any of the differential
models of Chapter 13. If the termination action is applied, it is assumed
that f(x, uT ) = 0 (and no cost accumulates, if a cost functional is used).

7. A state xI ∈ Xfree is designated as the initial state.

792 S. M. LaValle: Planning Algorithms

8. A set XG ⊂ Xfree is designated as the goal region.

9. A complete algorithm must compute an action trajectory ũ : T → U , for
which the state trajectory x̃, resulting from (14.1), satisfies: 1) x(0) = xI ,
and 2) there exists some t > 0 for which u(t) = uT and x(t) ∈ XG.

Additional constraints may be placed on ũ, such as continuity or smoothness
over time. At the very least, ũ must be chosen so that the integrand of (14.1) is
integrable over time. Let U denote the set of all permissible action trajectories over
T = [0,∞). By default, U is assumed to include any integrable action trajectory.
If desired, continuity and smoothness conditions can be enforced by introducing
new phase variables. The method of placing integrators in front of action variables,
which was covered in Section 13.2.4, can usually achieve the desired constraints.
If optimizing a criterion is additionally important, then the cost functional given
by (8.39) can be used. The existence of optimal solutions requires that U is a
closed set, in addition to being bounded.

A final time does not need to be stated because of the termination action
uT . As usual, once uT is applied, cost does not accumulate any further and the
state remains fixed. This might seem strange for problems that involve dynamics
because momentum should keep the state in motion. Keep in mind that the
termination action is a trick to make the formulation work correctly. In many
cases, the goal corresponds to a subset of X in which the velocity components
are zero. In this case, there is no momentum and hence no problem. If the goal
region includes states that have nonzero velocity, then it is true that a physical
system may keep moving after uT has been applied; however, the cost functional
will not measure any additional cost. The task is considered to be completed after
uT is applied, and the simulation is essentially halted. If the mechanical system
eventually collides due to momentum, then this is the problem of the user who
specified a goal state that involves momentum.

The overwhelming majority of solution techniques are sampling-based. This
is motivated primarily by the extreme difficultly of planning under differential
constraints. The standard Piano Mover’s Problem from Formulation 4.1 is a
special case of Formulation 14.1 and is already PSPACE-hard [214]. Optimal
planning is also NP-hard, even for a point in a 3D polyhedral environment without
differential constraints [57]. The only known methods for exact planning under
differential constraints in the presence of obstacles are for the double integrator
system q̈ = u, for C = R [197] and C = R

2 [56].

Section 14.1.2 provides some perspective on motion planning problems un-
der differential constraints that fall under Formulation 14.1, which assumes that
the initial state is given and future states are predictable. Section 14.5 briefly
addresses the broader problem of feedback motion planning under differential
constraints.



14.1. INTRODUCTION 793

14.1.2 Different Kinds of Planning Problems

There are many ways to classify motion planning problems under differential con-
straints. Some planning approaches rely on particular properties of the system;
therefore, it is helpful to characterize these general differences. The different kinds
of problems described here are specializations of Formulation 14.1. In spite of dif-
ferences based on the kinds of models described below, all of them can be unified
under the topic of planning under differential constraints.

One factor that affects the differential model is the way in which the task is
decomposed. For example, the task of moving a robot usually requires the con-
sideration of mechanics. Under the classical robotics approach that was shown in
Figure 1.19, the motion planning problem is abstracted away from the mechanics
of the robot. This enables the motion planning ideas of Part II to be applied.
This decomposition is arbitrary. The mechanics of the robot can be considered
directly in the planning process. Another possibility is that only part of the con-
straints may be considered. For example, perhaps only the rolling constraints of
a vehicle are considered in the planning process, but dynamics are handled by
another planning module. Thus, it is important to remember that the kinds of
differential constraints that appear in the planning problem depend not only on
the particular mechanical system, but also on how the task is decomposed.

Terms from planning literature

Nonholonomic planning The term nonholonomic planning was introduced
by Laumond [161] to describe the problem of motion planning for wheeled mobile
robots (see [163, 172] for overviews). It was informally explained in Section 13.1
that nonholonomic refers to differential constraints that cannot be completely
integrated. This means they cannot be converted into constraints that involve no
derivatives. A more formal definition of nonholonomic will be given in Section
15.4. Most planning research has focused on velocity constraints on C, as opposed
to a phase space X. This includes most of the models given in Section 13.1, which
are specified as nonintegrable velocity constraints on the C-space C. These are
often called kinematic constraints, to distinguish them from constraints that arise
due to dynamics.

In mechanics and control, the term nonholonomic also applies to nonintegrable
velocity constraints on a phase space [34, 35]. Therefore, it is perfectly reasonable
for the term nonholonomic planning to refer to problems that also involve dynam-
ics. However, in most applications to date, the term nonholonomic planning is
applied to problems that have kinematic constraints only. This is motivated pri-
marily by the early consideration of planning for wheeled mobile robots. In this
book, it will be assumed that nonholonomic planning refers to planning under
nonintegrable velocity constraints on C or any phase space X.

For the purposes of sampling-based planning, complete integrability is actually
not important. In many cases, even if it can be theoretically established that

794 S. M. LaValle: Planning Algorithms

constraints are integrable, it does not mean that performing the integration is
practical. Furthermore, even if integration can be performed, each constraint
may be implicit and therefore not easily parameterizable. Suppose, for example,
that constraints arise from closed kinematic chains. Usually, a parameterization
is not available. By differentiating the closure constraint, a velocity constraint is
obtained on C. This can be treated in a sampling-based planner as if it were a
nonholonomic constraint, even though it can easily be integrated.

Kinodynamic planning The term kinodynamic planning was introduced by
Canny, Donald, Reif, and Xavier [83] to refer to motion planning problems for
which velocity and acceleration bounds must be satisfied. This means that there
are second-order constraints on C. The original work used the double integrator
model q̈ = u for C = R

2 and C = R
3. A scalar version of this model appeared

Example 13.3. More recently, the term has been applied by some authors to
virtually any motion planning problem that involves dynamics. Thus, any problem
that involves second-order (or higher) differential constraints can be considered
as a form of kinodynamic planning. Thus, if x includes velocity variables, then
kinodynamic planning includes any system, ẋ = f(x, u).

Note that kinodynamic planning is not necessarily a form of nonholonomic
planning; in most cases considered so far, it is not. A problem may even involve
both nonholonomic and kinodynamic planning. This requires the differential con-
straints to be both nonintegrable and at least second-order. This situation often
results from constrained Lagrangian analysis, covered in Section 13.4.3. The car
with dynamics which was given Section 13.3.3 is both kinodynamic and nonholo-
nomic.

Trajectory planning The term trajectory planning has been used for decades
in robotics to refer mainly to the problem of determining both a path and ve-
locity function for a robot arm (e.g., PUMA 560). This corresponds to finding a
path in the phase space X in which x ∈ X is defined as x = (q, q̇). Most often
the problem is solved using the refinement approach mentioned in Section 1.4 by
first computing a path through Cfree. For each configuration q along the path, a
velocity q̇ must be computed that satisfies the differential constraints. An inverse
control problem may also exist, which involves computing for each t, the action
u(t) that results in the desired q̇(t). The refinement approach is often referred to
as time scaling of a path through C [124]. In recent times, trajectory planning
seems synonymous with kinodynamic planning, assuming that the constraints are
second-order (x includes only configuration and velocity variables). One distinc-
tion is that trajectory planning still perhaps bears the historical connotations of
an approach that first plans a path through Cfree.



14.1. INTRODUCTION 795

Terms from control theory

A significant amount of terminology that is appropriate for planning has been
developed in the control theory community. In some cases, there are even conflicts
with planning terminology. For example, the term motion planning has been used
to refer to nonholonomic planning in the absence of obstacles [51, 194]. This can
be considered as a kind of BVP. In some cases, this form of planning is referred to
as the steering problem (see [164, 192]) and will be covered in Section 15.5. The
term motion planning is reserved in this book for problems that involve obstacle
avoidance and possibly other constraints.

Open-loop control laws Differential models, such as any of those from Chap-
ter 13, are usually referred to as control systems or just systems, a term that
we have used already. These are divided into linear and nonlinear systems, as
described in Sections 13.2.2 and 13.2.3, respectively. Formulation 14.1 can be
considered in control terminology as the design of an open-loop control law for the
system (subjected to nonconvex constraints on the state space). The open-loop
part indicates that no feedback is used. Only the action trajectory needs to be
specified over time (the feedback case is called closed-loop; recall Section 8.1).
Once the initial state is given, the state trajectory can be inferred from the action
trajectory. It may also be qualified as a feasible open-loop control law, to indicate
that it satisfies all constraints but is not necessarily optimal. It is then inter-
esting to consider designing an optimal open-loop control law. This is extremely
challenging, even for problems that appear to be very simple. Elegant solutions
exist for some restricted cases, including linear systems and some wheeled vehicle
models, but in the absence of obstacles. These are covered in Chapter 15.

Drift The term drift arose in Section 13.2.1 and implies that from some states it
is impossible to instantaneously stop. This difficulty arises in mechanical systems
due to momentum. Infinite deceleration, and therefore infinite energy, would be
required to remove all kinetic energy from a mechanical system in an instant of
time. Kinodynamic and trajectory planning generally involve drift. Nonholonomic
planning problems may be driftless if only velocity constraints exist on the C-
space; the models of Section 13.1.2 are driftless. From a planning perspective,
systems with drift are usually more challenging than driftless systems.

Underactuation Action variables, the components of u, are often referred to
as actuators, and a system is called underactuated if the number of actuators is
strictly less than the dimension of C. In other words, there are less independent
action variables than the degrees of freedom of the mechanical system. Under-
actuated nonlinear systems are typically nonholonomic. Therefore, a substantial
amount of nonholonomic system theory and planning for nonholonomic systems
involves applications to underactuated systems. As an example of an underactu-

796 S. M. LaValle: Planning Algorithms

ated system, consider a free-floating spacecraft in R
3 that has three thrusters. The

amount of force applied by each thruster can be declared as an action variable;
however, the system is underactuated because there are only three actuators, and
the dimension of C is six. Other examples appeared Section 13.1.2. If the system
is not underactuated, it is called fully actuated, which means that the number
of actuators is equal to the dimension of C. Kinodynamic planning has mostly
addressed fully actuated systems.

Symmetric systems Finally, one property of systems that is important in
some planning algorithms is symmetry.1 A system ẋ = f(x, u) is symmetric if
the following condition holds. If there exists an action trajectory that brings the
system from some xI to some xG, then there exists another action trajectory that
brings the system from xG to xI by visiting the same points in X, but in reverse
time. At each point along the path, this means that the velocity can be negated by
a different choice of action. Thus, it is possible for a symmetric system to reverse
any motions. This is usually not possible for systems with drift. An example of
a symmetric system is the differential drive of Section 13.1.2. For the simple car,
the Reeds-Shepp version is symmetric, but the Dubins version is not because the
car cannot travel in reverse.

14.1.3 Obstacles in the Phase Space

In Formulation 14.1, the specification of the obstacle region in Item 4 was inten-
tionally left ambiguous. Now it will be specified in more detail. If X = C, then
Xobs = Cobs, which was defined in (4.34) for a rigid robot and in (4.36) for a robot
with multiple links. The more interesting case occurs if X is a phase space that
includes velocity variables in addition to configuration information.

Any state for which its associated configuration lies in Cobs must also be a
member of Xobs. The velocity is irrelevant if a collision occurs in the worldW . In
most cases that involve a phase space, the obstacle region Xobs is therefore defined
as

Xobs = {x ∈ X | κ(x) ∈ Cobs}, (14.2)

in which κ(x) is the configuration associated with the state x ∈ X. If the first n
variables ofX are configuration parameters, thenXobs has the cylindrical structure
shown in Figure 14.1 with respect to the other variables. If κ is a complicated
mapping, as opposed to simply selecting the configuration coordinates, then the
structure might not appear cylindrical. In these cases, (14.2) still indicates the
correct obstacle region in X.

1Sometimes in control theory, the term symmetry applies to Lie groups. This is a different
concept and means that the system is invariant with respect to transformations in a group such
as SE(3). For example, the dynamics of a car should not depend on the direction in which the
car is pointing.



14.1. INTRODUCTION 797

Cobs

Xobs

X

C

Figure 14.1: An obstacle region Cobs ⊂ C generates a cylindrical obstacle region
Xobs ⊂ X with respect to the phase variables.

Additional constraints on phase variables

In many applications, additional constraints may exist on the phase variables.
These are called phase constraints and are generally of the form hi(x) ≤ 0. For
example, a car or hovercraft may have a maximum speed for safety reasons. There-
fore, simple bounds on the velocity variables will exist. For example, it might be
specified that ‖q̇‖ ≤ q̇max for some constant q̇max ∈ (0,∞). Such simple bounds
are often incorporated directly into the definition of X by placing limits on the
velocity variables.

In other cases, however, constraints on velocity may be quite complicated. For
example, the problem of computing the re-entry trajectory of the NASA/Lockheed
Martin X-33 reusable spacecraft2 (see Figure 14.2) requires remaining within a
complicated, narrow region in the phase space. Even though there are no hard
obstacles in the traditional sense, many bad things can happen by entering the
wrong part of the phase space. For example, the craft may overheat or vibrate
uncontrollably [53, 63, 174]. For a simpler example, imagine constraints on X to
ensure that an SUV or a double-decker tour bus (as often seen in London, for
example) will not tumble sideways while turning.

The additional constraints can be expressed implicitly as hi(x) ≤ 0. As part
of determining whether some state x lies in Xfree or Xobs, it must be substituted
into each constraint to determine whether it is satisfied. If a state lies in Xfree, it
will generally be called violation-free, which implies that it is both collision-free
and does not violate any additional phase constraints.

2This project was canceled in 2001, but similar crafts have been under development.

798 S. M. LaValle: Planning Algorithms

NASA/Lockheed Martin X-33 Re-entry trajectory

Figure 14.2: In the NASA/Lockheed Martin X-33 re-entry problem, there are
complicated constraints on the phase variables, which avoid states that cause the
craft to overheat or vibrate uncontrollably. (Courtesy of NASA)

The region of inevitable collision

One of the most challenging aspects of planning can be visualized in terms of the
region of inevitable collision, denoted by Xric. This is the set of states from which
entry into Xobs will eventually occur, regardless of any actions that are applied. As
a simple example, imagine that a robotic vehicle is traveling 100 km/hr toward
a large wall and is only 2 meters away. Clearly the robot is doomed. Due to
momentum, collision will occur regardless of any efforts to stop or turn the vehicle.
At low enough speeds, Xric and Xobs are approximately the same; however, Xric

grows dramatically as the speed increases.
Let U∞ denote the set of all trajectories ũ : [0,∞)→ U for which the termina-

tion action uT is never applied (we do not want inevitable collision to be avoided
by simply applying uT ). The region of inevitable collision is defined as

Xric = {x(0) ∈ X | for any ũ ∈ U∞ , ∃t > 0 such that x(t) ∈ Xobs}, (14.3)

in which x(t) is the state at time t obtained by applying (14.1) from x(0). This
does not include cases in which motions are eventually blocked, but it is possible
to bring the system to a state with zero velocity. Suppose that the Dubins car
from Section 13.1.2 is used and the car is unable to back its way out of a dead-end
alley. In this case, it can avoid collision by stopping and remaining motionless. If
it continues to move, it will eventually have no choice but to collide. This case
appears more like being trapped and technically does not fit under the definition
of Xric. For driftless systems, Xric = Xobs.

Example 14.1 (Region of Inevitable Collision) Figure 14.3 shows a simple
illustration of Xric. Suppose that W = R, and the robot is a particle (or point



14.1. INTRODUCTION 799

q
q̇ = 0

q̇ < 0

q̇ > 0

q̇ Xric

Xric

Xric

Xobs

Xric

Figure 14.3: The region of inevitable collision grows quadratically with the speed.

mass) that moves according to the double integrator model q̈ = u (for mass, as-
sume m = 1). For simplicity, suppose that u represents a force that must be
chosen from U = [−1, 1]. The C-space is C = R, the phase space is X = R

2, and
a phase (or state) is expressed as x = (q, q̇). Suppose that there are two obstacles
in C: a point and an interval. These are shown in Figure 14.3 along the q-axis. In
the cylinder above them, Xobs appears. In the slice at q̇ = 0, Xric = Xobs = Cobs.
As q̇ increases, Xric becomes larger, even though Xobs remains fixed. Note that
Xric only grows toward the left because q̇ > 0 indicates a positive velocity, which
causes momentum in the positive q direction. As this momentum increases, the
distance required to stop increases quadratically. From a speed of q̇ = v, the
minimum distance required to stop is v2/2, which can be calculated by applying
the action u = −1 and integrating q̈ = u twice. If q̇ > 0 and q is to the right
of an obstacle, then it will safely avoid the obstacle, regardless of its speed. If
q̇ < 0, then Xric extends to the right instead of the left. Again, this is due to the
required stopping distance. �

In higher dimensions and for more general systems, the problem becomes sub-
stantially more complicated. For example, in R

2 the robot can swerve to avoid
small obstacles. In general, the particular direction of motion becomes important.
Also, the topology of Xric may be quite different from that of Xobs. Imagine that a
small airplane flies into a cave that consists of a complicated network of corridors.
Once the plane enters the cave, there may be no possible actions that can avoid
collision. The entire part of the state space that corresponds to the plane in the
cave would be included in Xric. Furthermore, even parts of the state space from
which the plane cannot avoid entering the cave must be included.

In sampling-based planning under differential constraints, Xric is not computed

800 S. M. LaValle: Planning Algorithms

because it is too complicated.3 It is not even known how to make a “collision de-
tector” for Xric. By working instead with Xobs, challenges arise due to momentum.
There may be large parts of the state space that are never worth exploring because
they lie in Xric. Unfortunately, there is no practical way at present to accurately
determine whether states lie in Xric. As the momentum and amount of clutter
increase, this becomes increasingly problematic.

14.2 Reachability and Completeness

This section provides preliminary concepts for sampling-based planning algo-
rithms. In Chapter 5, sampling over C was of fundamental importance. The
most important consideration was that a sequence of samples should be dense so
that samples get arbitrarily close to any point in Cfree. Planning under differential
constraints is complicated by the specification of solutions by an action trajectory
instead of a path through Xfree. For sampling-based algorithms to be resolution
complete, sampling and searching performed on the space of action trajectories
must somehow lead to a dense set in Xfree.

14.2.1 Reachable Sets

For the algorithms in Chapter 5, resolution completeness and probabilistic com-
pleteness rely on having a sampling sequence that is dense on C. In the present
setting, this would require dense sampling on X. Differential constraints, however,
substantially complicate the sampling process. It is generally not reasonable to
prescribe precise samples in X that must be reached because reaching them may
be impossible or require solving a BVP. Since paths in X are obtained indirectly
via action trajectories, completeness analysis begins with considering which points
can be reached by integrating action trajectories.

Reachable set

Assume temporarily that there are no obstacles: Xfree = X. Let U be the set of
all permissible action trajectories on the time interval [0,∞). From each ũ ∈ U ,
a state trajectory x̃(x0, ũ) is defined using (14.1). Which states in X are visited
by these trajectories? It may be possible that all of X is visited, but in general
some states may not be reachable due to differential constraints.

Let R(x0,U) ⊆ X denote the reachable set from x0, which is the set of all
states that are visited by any trajectories that start at x0 and are obtained from
some ũ ∈ U by integration. This can be expressed formally as

R(x0,U) = {x1 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = x1}, (14.4)

3It may, however, be possible to compute crude approximations of Xric and use them in
planning.



14.2. REACHABILITY AND COMPLETENESS 801

in which x(t) is given by (14.1) and requires that x(0) = x0.
The following example illustrates some simple cases.

Example 14.2 (Reachable Sets for Simple Inequality Constraints) Sup-
pose that X = C = R

2, and recall some of the simple constraints from Section
13.1.1. Let a point in R

2 be denoted as q = (x, y). Let the state transition
equation be ẋ = u1 and ẏ = u2, in which (u1, u2) ∈ U = R

2.
Several constraints will now be imposed on U , to define different possible action

spaces. Suppose it is required that u1 > 0 (this was ẋ > 0 in Section 13.1.1). The
reachable set R(q0,U) from any q0 = (x0, y0) ∈ R

2 is an open half-plane that is
defined by the set of all points to the right of the vertical line x = x0. In the case
of u1 ≤ 0, then R(q0,U) is a closed half-plane to the left of the same vertical line.
If U is defined as the set of all (u1, u2) ∈ R

2 such that u1 > 0 and u2 > 0, then
the reachable set from any point is a quadrant.

For the constraint au1 + bu2 = 0, the reachable set from any point is a line in
R

2 with normal vector (a, b). The location of the line depends on the particular
q0. Thus, a family of parallel lines is obtained by considering reachable states from
different initial states. This is an example of a foliation in differential geometry,
and the lines are called leaves [229].

In the case of u21+u
2
2 ≤ 1, the reachable set from any (x0, y0) is R

2. Thus, any
state can reach any other state. �

So far the obstacle region has not been considered. Let Ufree ⊆ U denote the
set of all action trajectories that produce state trajectories that map into Xfree.
In other words, Ufree is obtained by removing from U all action trajectories that
cause entry into Xobs for some t > 0. The reachable set that takes the obstacle
region into account is denoted R(x0,Ufree), which replaces U by Ufree in (14.4).
This assumes that for the trajectories in Ufree, the termination action can be
applied to avoid inevitable collisions due to momentum. A smaller reachable set
could have been defined that eliminates trajectories for which collision inevitably
occurs without applying uT .

The completeness of an algorithm can be expressed in terms of reachable sets.
For any given pair xI , xG ∈ Xfree, a complete algorithm must report a solution
action trajectory if xG ∈ R(xI ,Ufree), or report failure otherwise. Completeness is
too difficult to achieve, except for very limited cases [56, 197]; therefore, sampling-
based notions of completeness are more valuable.

Time-limited reachable set

Consider the set of all states that can be reached up to some fixed time limit. Let
the time-limited reachable set R(x0,U , t) be the subset of R(x0,U) that is reached
up to and including time t. Formally, this is

R(x0,U , t) = {x1 ∈ X | ∃ũ ∈ U and ∃t′ ∈ [0, t] such that x(t′) = x1}. (14.5)

802 S. M. LaValle: Planning Algorithms

Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the
right; (b) this is not the time-limited reachable set for the Reeds-Shepp car!

For the last case in Example 14.2, the time-limited reachable sets are closed discs
of radius t centered at (x0, y0). A version of (14.5) that takes the obstacle region
into account can be defined as R(x0,Ufree, t).

Imagine an animation of R(x0,U , t) that starts at t = 0 and gradually increases
t. The boundary of R(x0,U , t) can be imagined as a propagating wavefront that
begins at x0. It eventually reaches the boundary of R(x0,U) (assuming it has
a boundary; it does not if R(x0,U) = X). The boundary of R(x0,U , t) can
actually be interpreted as a level set of the optimal cost-to-come from x0 for a cost
functional that measures the elapsed time. The boundary is also a kind of forward
projection, as considered for discrete spaces in Section 10.1.2. In that context,
possible future states due to nature were specified in the forward projection. In the
current setting, possible future states are determined by the unspecified actions
of the robot. Rather than looking k stages ahead, the time-limited reachable set
looks for duration t into the future. In the present context there is essentially a
continuum of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reach-
able sets can be obtained from the simple car models from Section 13.1.2. Suppose
that X = C = R

2 × S
1 and Xobs = ∅.

Recall that the Dubins car can only drive forward. From an arbitrary con-
figuration, the time-limited reachable set appears as shown in Figure 14.4a. The
time limit t is small enough so that the car cannot rotate by more than π/2. Note
that Figure 14.4a shows a 2D projection of the reachable set that gives translation
only. The true reachable set is a 3D region in C. If t > 2π, then the car will be
able to drive in a circle. For any q, consider the limiting case as t approaches
infinity, which results in R(q,U). Imagine a car driving without reverse on an
infinitely large, flat surface. It is possible to reach any desired configuration by
driving along a circle, driving straight for a while, and then driving along a circle
again. Therefore, R(q,U) = C for any q ∈ C. The lack of a reverse gear means
that some extra maneuvering space may be needed to reach some configurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any
time-limited reachable set for this car must include all points from the corre-



14.2. REACHABILITY AND COMPLETENESS 803

sponding reachable set for the Dubins car because new actions have been added
to U but none have been removed. It is tempting to assert that the time-limited
reachable set appears as in Figure 14.4b; however, this is wrong. In an arbitrarily
small amount of time (or space) a car with reverse can be wiggled sideways. This
is achieved in practice by familiar parallel-parking maneuvers. It turns out in this
case that R(q,U , t) always contains an open set around q, which means that it
grows in all directions (see Section 15.3.2). The property is formally referred to
as small-time controllability and is covered in Section 15.4. �

Backward reachable sets

The reachability definitions have a nice symmetry with respect to time. Rather
than describing all points reachable from some x ∈ X, it is just as easy to describe
all points from which some x ∈ X can be reached. This is similar to the alternative
between forward and backward projections in Section 10.1.2.

Let the backward reachable set be defined as

B(xf ,U) = {x0 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = xf}, (14.6)

in which x(t) is given by (14.1) and requires that x(0) = x0. Note the intentional
similarity to (14.4). The time-limited backward reachable set is defined as

B(xf ,U , t) = {x0 ∈ X | ∃ũ ∈ U and ∃t′ ∈ [0, t] such that x(t′) = xf}, (14.7)

which once again requires that x(0) = x0 in (14.1). Completeness can even be de-
fined in terms of backward reachable sets by defining a backward-time counterpart
to U .

At this point, there appear to be close parallels between forward, backward,
and bidirectional searches from Chapter 2. The same possibilities exist in sampling-
based planning under differential constraints. The forward and backward reach-
able sets indicate the possible states that can be reached under such schemes. The
algorithms explore subsets of these reachable sets.

14.2.2 The Discrete-Time Model

This section introduces a simple and effective way to sample the space of action
trajectories. Section 14.2.3 covers the more general case. Under differential con-
straints, sampling-based motion planning algorithms all work by sampling the
space of action trajectories. This results in a reduced set of possible action trajec-
tories. To ensure some form of completeness, a motion planning algorithm should
carefully construct and refine the sample set. As in Chapter 5, the qualities of
a sample set can be expressed in terms of dispersion and denseness. The main
difference in the current setting is that the algorithms here work with a sample

804 S. M. LaValle: Planning Algorithms

T

U

T

U

A trajectory in U A trajectory in Ud
Figure 14.5: The discrete-time model results in Ud ⊂ U , which is obtained by
partitioning time into regular intervals and applying a constant action over each
interval. The action is chosen from a finite subset Ud of U .

sequence over U , as opposed to over C as in Chapter 5. This is required because
solution paths can no longer be expressed directly on C (or X).

The discrete-time model is depicted in Figure 14.5 and is characterized by three
aspects:

1. Time T is partitioned into intervals of length ∆t. This enables stages to
be assigned, in which stage k indicates that (k − 1)∆t units of time have
elapsed.

2. A finite subset Ud of the action space U is chosen. If U is already finite,
then this selection may be Ud = U .

3. The action u(t) ∈ Ud must remain constant over each time interval.

The first two discretize time and the action spaces. The third condition is needed
to relate the time discretization to the space of action trajectories. Let Ud denote
the set of all action trajectories allowed under a given time discretization. Note
that Ud completely specifies the discrete-time model.

For some problems, U may already be finite. Imagine, for example, a model of
firing one of several thrusters (turn them on or off) on a free-floating spacecraft. In
this case no discretization of U is necessary. In the more general case, U may be a
continuous set. The sampling methods of Section 5.2 can be applied to determine
a finite subset Ud ⊆ U .

Any action trajectory in Ud can be conveniently expressed as an action sequence
(u1, u2, . . . , uk), in which each ui ∈ Ud gives the action to apply from time (i−1)∆t
to time i∆t. After stage k, it is assumed that the termination action is applied.



14.2. REACHABILITY AND COMPLETENESS 805

Reachability graph

After time discretization has been performed, the reachable set can be adapted to
Ud to obtain R(x0,Ud). An interesting question is: What is the effect of sampling
on the reachable set? In other words, how do R(x0,U) and R(x0,Ud) differ?
This can be addressed by defining a reachability graph, which will be revealed
incrementally by a planning algorithm.

Let Tr(x0,Ud) denote a reachability tree, which encodes the set of all trajecto-
ries from x0 that can be obtained by applying trajectories in Ud. Each vertex of
Tr(x0,Ud) is a reachable state, x ∈ R(x0,Ud). Each edge of Tr(x0,Ud) is directed;
its source represents a starting state, and its destination represents the state ob-
tained by applying a constant action u ∈ Ud over time ∆t. Each edge e represents
an action trajectory segment, e : [0,∆t] → U . This can be transformed into a
state trajectory, x̃e, via integration using (14.1), from 0 to ∆t of f(x, u) from the
source state of e.

Thus, in terms of x̃e, Tr can be considered as a topological graph in X (Tr will
be used as an abbreviation of Tr(x0,Ud)). The swath S(Tr) of Tr is

S(Tr) =
⋃

e∈E

⋃

t∈[0,∆t]

xe(t), (14.8)

in which xe(t) denotes the state obtained at time t from edge e. (Recall topological
graphs from Example 4.6 and the swath from Section 5.5.1.)

Example 14.4 (Reachability Tree for the Dubins Car) Several stages of the
reachability tree for the Dubins car are shown in Figure 14.6. Suppose that there
are three actions (straight, right-turn, left-turn), and ∆t is chosen so that if the
right-turn or left-turn action is applied, the car travels enough to rotate by π/2.
After the second stage, there are nine leaves in the tree, as shown in Figure 14.6a.
Each stage produces 3k new leaves. In Figure 14.6b, 81 new leaves are added in
stage k = 4, which yields a total of 81+27+9+3+1 vertices. In many cases, the
same state is reachable by different action sequences. The swath after the first
four stages is the set of all points visited so far. This is a subset of C that is the
union of all vertices and all points traced out by x̃e for each e ∈ E. �

From Example 14.4 it can be seen that it is sometimes possible to arrive at the
same state using two or more alternative action trajectories. Since each action
trajectory can be expressed as an action sequence, the familiar issue arises from
classical AI search of detecting whether the same state has been reached from
different action sequences. For some systems, the reachability problem can be
dramatically simplified by exploiting this information. If the same state is reached
from multiple action sequences, then only one vertex needs to be represented.

This yields a directed reachability graph Gr(x0,Ud), which is obtained from
Tr(x0,Ud) by merging its duplicate states. If every action sequence arrives at a

806 S. M. LaValle: Planning Algorithms

Two stages Four stages

Figure 14.6: A reachability tree for the Dubins car with three actions. The kth
stage produces 3k new vertices.

unique state, then the reachability graph reduces to the reachability tree. How-
ever, if multiple action sequences arrive at the same state, this is represented as a
single vertex Gr. From this point onward, the reachability graph will be primar-
ily used. As for a reachability tree, a reachability graph can be interpreted as a
topological graph in X, and its swath S(Gr) is defined by adapting (14.8).

The simplest case of arriving at the same state was observed in Example 2.1.
The discrete grid in the plane can be modeled using the terminology of Chapter
13 as a system of the form ẋ = u1 and ẏ = u2 for a state space X = R

2. The
discretized set Ud of actions is {(1, 0), (0, 1), (−1, 0), (0,−1)}. Let ∆t = 1. In this
case, the reachability graph becomes the familiar 2D grid. If (0, 0) is the initial
state, then the grid vertices consist of all states in which both coordinates are
integers.

Through careless discretization of an arbitrary system, such a nice grid usually
does not arise. However, in many cases a discretization can be carefully chosen



14.2. REACHABILITY AND COMPLETENESS 807

so that the states become trapped on a grid or lattice. This has some advantages
in sampling-based planning. Section 14.4.1 covers a method that exploits such
structure for the system q̈ = u. It can even be extended to more general systems,
provided that the system can be expressed as q̈ = g(q, q̇, u) and it is not under-
actuated. It was shown recently that by a clever choice of discretization, a very
large class of nonholonomic systems4 can also be forced onto a lattice [198]. This
is usually difficult to achieve, and under most discretizations the vertices of the
reachability graph are dense in the reachable set.

It is also possible to define backward versions of the reachability tree and
reachability graph, in the same way that backward reachable sets were obtained.
These indicate initial states and action sequences that will reach a given goal state
and are no more difficult to define or compute than their forward counterparts.
They might appear more difficult, but keep in mind that the initial states are not
fixed; thus, no BVP appears. The initial states can be obtained by reverse-time
integration of the state transition equation; see Section 14.3.2.

Resolution completeness for ẋ = u

Sampling-based notions of completeness can be expressed in terms of reachable
sets and the reachability graph. The requirement is to sample U in a way that
causes the vertices of the reachability graph to eventually become dense in the
reachable set, while also making sure that the reachability graph is systematically
searched. All of the completeness concepts can be expressed in terms of forward
or backward reachability graphs. Only the forward case will be described because
the backward case is very similar.

To help bridge the gap with respect to motion planning as covered in Part II,
first suppose: 1) X = C = R

2, 2) a state is denoted as q = (x, y), 3) U = [−1, 1]2,
and 4) the state transition equation is ẋ = u1 and ẏ = u2. Suppose that the
discrete-time model is applied to U . Let ∆t = 1 and

Ud = {(−1, 0), (0,−1), (1, 0), (0, 1)}, (14.9)

which yields the Manhattan motion model from Example 7.4. Staircase paths
are produced as was shown in Figure 7.40. In the present setting, these paths are
obtained by integrating the action trajectory. From some state xI , the reachability
graph represents the set of all possible staircase paths with unit step size that can
be obtained via (14.1).

Suppose that under this model, Xfree is a bounded, open subset of R2. The
connection to resolution completeness from Chapter 5 can be expressed clearly in
this case. For any fixed ∆t, a grid of a certain resolution is implicitly defined via
the reachability graph. The task is to find an action sequence that leads to the goal
(or a vertex close to it in the reachability graph) while remaining in Xfree. Such

4The class is all driftless, nilpotent systems. The term nilpotent will be defined in Section
15.5.

808 S. M. LaValle: Planning Algorithms

a sequence can be found by a systematic search, as considered in Section 2.2. If
the search is systematic, then it will correctly determine whether the reachability
graph encodes a solution. If no solution exists, then the planning algorithm can
decrease ∆t by a constant factor (e.g., 2), and perform the systematic search
again. This process repeats indefinitely until a solution is found. The algorithm
runs forever if no solution exists (in practice, of course, one terminates early and
gives up). The approach just described is resolution complete in the sense used
in Chapter 5, even though all paths are expressed using action sequences.

The connection to ordinary motion planning is clear for this simple model
because the action trajectories integrate to produce motions that follow a grid.
As the time discretization is improved, the staircase paths can come arbitrarily
close to some solution path. Looking at Figure 14.5, it can be seen that as the
sampling resolution is improved with respect to U and T , the trajectories obtained
via discrete-time approximations converge to any trajectory that can be obtained
by integrating some ũ. In general, convergence occurs as ∆t and the dispersion
of the sampling in U are driven to zero. This also holds in the same way for the
more general case in which ẋ = u and X is any smooth manifold. Imagine placing
a grid down on X and refining it arbitrarily by reducing ∆t.

Resolution completeness for ẋ = f(x, u)

Beyond the trivial case of ẋ = u, the reachability graph is usually not a simple
grid. Even if X is bounded, the reachability graph may have an infinite number of
vertices, even though ∆t is fixed and Ud is finite. For a simple example, consider
the Dubins car under the discretization ∆t = 1. Fix uφ = −φmax (turn left) for
all t ∈ T . This branch alone generates a countably infinite number of vertices
in the reachability graph. The circumference of the circle is 2πρmin, in which
ρmin is the minimum turning radius. Let ρmin = 1. Since the circumference is
an irrational number, it is impossible to revisit the initial point by traveling k
seconds for some integer k. It is even impossible to revisit any point on the circle.
The set of vertices in the reachability graph is actually dense in the circle. This
did not happen in Figure 14.6 because ∆t and the circumference were rationally
related (i.e., one can be obtained from the other via multiplication by a rational
number). Consider what happens in the current example when ρmin = 1/π and
∆t = 1.

Suppose that ẋ = f(x, u) and the discrete-time model is used. To ensure
convergence of the discrete-time approximation, f must be well-behaved. This
can be established by requiring that all of the derivatives of f with respect to u
and x are bounded above and below by a constant. More generally, f is assumed
to be Lipschitz, which is an equivalent condition for cases in which the derivatives
exist, but it also applies at points that are not differentiable. If U is finite, then
the Lipschitz condition is that there exists some c ∈ (0,∞) such that

‖f(x, u)− f(x′, u)‖ ≤ c‖x− x′‖ (14.10)



14.2. REACHABILITY AND COMPLETENESS 809

for all x, x′ ∈ X, for all u ∈ U , and ‖ · ‖ denotes a norm on X. If U is infinite,
then the condition is that there must exist some c ∈ (0,∞) such that

‖f(x, u)− f(x′, u′)‖ ≤ c(‖x− x′‖+ ‖u− u′‖), (14.11)

for all x, x′ ∈ X, and for all u, u′ ∈ U . Intuitively, the Lipschitz condition indicates
that if x and u are approximated by x′ and u′, then the error when substituted
into f will be manageable. If convergence to optimal trajectories with respect
to a cost functional is important, then Lipschitz conditions are also needed for
l(x, u). Under such mild assumptions, if ∆t and the dispersion of samples of Ud
is driven down to zero, then the trajectories obtained from integrating discrete
action sequences come arbitrarily close to solution trajectories. In other words,
action sequences provide arbitrarily close approximations to any ũ ∈ U . If f is
Lipschitz, then the integration of (14.14) yields approximately the same result for
ũ as the approximating action sequence.

In the limit as ∆t and the dispersion of Ud approach zero, the reachability
graph becomes dense in the reachable set R(xI ,U). Ensuring a systematic search
for the case of a grid was not difficult because there is only a finite number of
vertices at each resolution. Unfortunately, the reachability graph may generally
have a countably infinite number of vertices for some fixed discrete-time model,
even if X is bounded.

To see that resolution-complete algorithms nevertheless exist if the reachability
graph is countably infinite, consider triangular enumeration, which proves that
N×N is countable, in which N is the set of natural numbers. The proof proceeds
by giving a sequence that starts at (0, 0) and proceeds by sweeping diagonally
back and forth across the first quadrant. In the limit, all points are covered. The
same idea can be applied to obtain resolution-complete algorithms. A sequence of
discrete-time models can be made for which the time step ∆t and the dispersion
of the sampling of U approach zero. Each discretization produces a reachability
graph that has a countable number of vertices.

A resolution-complete algorithm can be made by performing the same kind
of zig-zagging that was used to show that N × N is countable. See Figure 14.7;
suppose that U is finite and Ud = U . Along the horizontal axis is a sequence of
improving discrete-time models. Each model generates its own reachability graph,
for which a systematic search eventually explores all of its vertices. Imagine this
exploration occurs one step at a time, in which one new vertex is reached in each
step. The vertical axis in Figure 14.7 indicates the number of vertices reached so
far by the search algorithm. A countably infinite set of computers could explore all
of reachability graphs in parallel. With a single computer, it can still be assured
that everything is eventually explored by zig-zagging as shown. Thus a resolution-
complete algorithm always exists if U is finite. If U is not finite, then Ud must
also be refined as the time step is decreased. Of course, there are numerous other
ways to systematically explore all of the reachability graphs. The challenging task
is to find a way that leads to good performance in practice.

810 S. M. LaValle: Planning Algorithms

1

2

3

4

5

6

∆t 1

2
∆t 1

4
∆t 1

8
∆t 1

16
∆t 1

32
∆t 1

64
∆t

It
er

at
io

n

Time step

Figure 14.7: By systematically alternating between exploring different reachability
graphs, resolution completeness can be achieved, even if each reachability graph
has a countably infinite number of vertices.

The discussion so far has assumed that a sampling-based algorithm can uncover
a subgraph of the reachability graph. This neglects numerical issues such as
arithmetic precision and numerical integration error. Such issues can additionally
be incorporated into a resolution completeness analysis [59].

14.2.3 Motion Primitives

The discrete-time model of Section 14.2.2 is just one of many possible ways to
discretize the space of action trajectories. It will now be considered as a special
case of specifying motion primitives. The restriction to constant actions over fixed
time intervals may be too restrictive in many applications. Suppose we want to
automate the motions of a digital actor for use in a video game or film. Imagine
having a database of interesting motion primitives. Such primitives could be
extracted, for example, from motion capture data [9, 143]. For example, if the
actor is designed for kung-fu fighting, then each motion sequence may correspond
to a basic move, such a kick or punch. It is unlikely that such motion primitives
correspond to constant actions over a fixed time interval. The durations of the
motion primitives will usually vary.

Such models can generally be handled by defining a more general kind of
discretization. The discrete-time model can be used to formulate a discrete-time



14.2. REACHABILITY AND COMPLETENESS 811

Hover Forward flight

Steady left turn

Steady right turn

Figure 14.8: A maneuver automaton, proposed by Frazzoli [102], captures the
constraints on allowable sequences of motion primitives.

state transition equation of the form

xk+1 = fd(xk, uk), (14.12)

in which xk = x((k − 1)∆t), xk+1 = x(k∆t), and uk is the action in Ud that is
applied from time (k − 1)∆t to time k∆t. Thus, fd is a function fd : X × Ud →
X that represents an approximation to f , the original state transition function.
Every constant action u ∈ Ud applied over ∆t can be considered as a motion
primitive.

Now generalize the preceding construction to allow more general motion prim-
itives. Let ũp denote a motion primitive, which is a function from an interval of
time into U . Let the interval of time start at 0 and stop at tF (ũ

p), which is a final
time that depends on the particular primitive. From any state x ∈ Xfree, suppose
that a set Up(x) of motion primitives is available. The set may even be infinite, in
which case some additional sampling must eventually be performed over the space
of motion primitives by a local planning method. A state transition equation that
operates over discrete stages can be defined as

xk+1 = fp(xk, ũ
p
k), (14.13)

in which ũpk is a motion primitive that must be chosen from Up(xk). The time
discretization model and (14.12) can be considered as a special case in which the
motion primitives are all constant over a fixed time interval [0,∆t). Note that in
(14.13) the stage index k does not necessarily correspond to time (k− 1)∆t. The
index k merely represents the fact that k− 1 motion primitives have been applied
so far, and it is time to decide on the kth motion primitive. The current time is
determined by summing the durations of all k−1 primitives applied so far. If a set
Up(x) of primitives is given for all x ∈ X, then a reachability graph and its swath
can be defined by simple extensions of the discrete-time case. The discrete-time
model Ud can now be interpreted as a special set of motion primitives.

For some motion primitives, it may not be possible to immediately sequence
them without applying transitional motions. For example, in [103], two different

812 S. M. LaValle: Planning Algorithms

kinds of motion primitives, called trim trajectories and maneuvers, are defined for
autonomous helicopter flight. The trim trajectories correspond to steady motions,
and maneuvers correspond to unsteady motions that are needed to make transi-
tions between steady motions. Transitions from one trim trajectory to another
are only permitted through the execution of a maneuver. The problem can be
nicely modeled as a hybrid system in which each motion primitive represents a
mode [102] (recall hybrid system concepts from Sections 7.3, 8.3.1, and 10.6). The
augmented state space is X ×M , in which M is a set of modes. The transition
equation (14.13) can be extended over the augmented state space so that motion
primitives can change modes in addition to changing the original state. The pos-
sible trajectories for the helicopter follow paths in a graph called the maneuver
automaton. An example from [102] is shown in Figure 14.8. Every edge and every
vertex corresponds to a mode in the maneuver automaton. Each edge or vertex
actually corresponds to a parameterized family of primitives, from which a par-
ticular one is chosen based on the state. A similar state machine is proposed in
[123] for animating humans, and the motion primitives are called behaviors.

Discretizations based on general motion primitives offer great flexibility, and in
many cases dramatic performance improvements can be obtained in a sampling-
based planning algorithm. The main drawback is that the burden of establishing
resolution completeness is increased.

14.3 Sampling-Based Motion Planning Revisited

Now that the preliminary concepts have been defined for motion planning under
differential constraints, the focus shifts to extending the sampling-based planning
methods of Chapter 5. This primarily involves extending the incremental sampling
and searching framework from Section 5.4 to incorporate differential constraints.
Following the general framework, several popular methods are covered in Section
14.4 as special cases of the framework. If an efficient BVP solver is available,
then it may also be possible to extend sampling-based roadmaps of Section 5.6 to
handle differential constraints.

14.3.1 Basic Components

This section describes how Sections 5.1 to 5.3 are adapted to handle phase spaces
and differential constraints.

Distance and volume in X

Recall from Chapter 5 that many sampling-based planning algorithms rely on
measuring distances or volumes in C. If X = C, as in the wheeled systems from
Section 13.1.2, then the concepts of Section 5.1 apply directly. The equivalent is
needed for a general state space X, which may include phase variables in addition



14.3. SAMPLING-BASED MOTION PLANNING REVISITED 813

to the configuration variables. In most cases, the topology of the phase variables
is trivial. For example, if x = (q, q̇), then each q̇i component is constrained to
an interval of R. In this case the velocity components are just an axis-aligned
rectangular region in R

n/2, if n is the dimension of X. It is straightforward in
this case to extend a measure and metric defined on C up to X by forming the
Cartesian product.

A metric can be defined using the Cartesian product method given by (5.4).
The usual difficulty arises of arbitrarily weighting different components and com-
bining them into a single scalar function. In the case of C, this has involved
combining translations and rotation. For X, this additionally includes velocity
components, which makes it more difficult to choose meaningful weights.

Riemannian metrics A rigorous way to define a metric on a smooth manifold is
to define a metric tensor (or Riemannian tensor), which is a quadratic function of
two tangent vectors. This can be considered as an inner product on X, which can
be used to measure angles. This leads to the definition of the Riemannian metric,
which is based on the shortest paths (called geodesics) in X [42]. An example
of this appeared in the context of Lagrangian mechanics in Section 13.4.1. The
kinetic energy, (13.70), serves as the required metric tensor, and the geodesics
are the motions taken by the dynamical system to conserve energy. The metric
can be defined as the length of the geodesic that connects a pair of points. If
the chosen Riemannian metric has some physical significance, as in the case of
Lagrangian mechanics, then the resulting metric provides meaningful information.
Unfortunately, it may be difficult or expensive to compute its value.

The ideal distance function The ideal way to define distance on X is to use
a cost functional and then define the distance from x ∈ Xfree to x

′ ∈ Xfree as the
optimal cost-to-go from x to x′ while remaining in Xfree. In some cases, it has
been also referred to as the nonholonomic metric, Carnot-Caratheodory metric,
or sub-Riemannian metric [164]. Note that this not a true metric, as mentioned
in Section 5.1.2, because the cost may not be symmetric. For example, traveling
a small distance forward with Dubins car is much shorter than traveling a small
distance backward. If there are obstacles, it may not even be possible to reach
configurations behind the car.

This concept of distance should be somewhat disturbing because it requires
optimally solving the motion planning problem of Formulation 14.1. Thus, it
cannot be practical for efficient use in a motion planning algorithm. Neverthe-
less, understanding this ideal notion of distance can be very helpful in designing
practical distance functions on X. For example, rather than using a weighted
Euclidean metric (often called Mahalanobis metric) for the Dubins car, a distance
function can be defined based on the length of the shortest path between two
configurations. These lengths are straightforward to compute, and are based on
the optimal curve families that will be covered in Section 15.3. This distance

814 S. M. LaValle: Planning Algorithms

function neglects obstacles, but it should still provide better distance information
than the weighted Euclidean metric. It may also be useful for car models that
involve dynamics.

The general idea is to get as close as possible to the optimal cost-to-go without
having to perform expensive computations. It is often possible to compute a useful
underestimate of the optimal cost-to-go by neglecting some of the constraints, such
as obstacles or dynamics. This may help in applying A∗ search heuristics.

Defining measure As mentioned already, it is straightforward to extend a mea-
sure on C to X if the topology associated with the phase variables is trivial. It
may not be possible, however, to obtain an invariant measure. In most cases, C
is a transformation group, in which the Haar measure exists, thereby yielding the
“true” volume in a sense that is not sensitive to parameterizations of C. This was
observed for SO(3) in Section 5.1.4. For a general state space X, a Haar measure
may not exist. If a Riemannian metric is defined, then intrinsic notions of surface
integration and volume exist [42]; however, these may be difficult to exploit in a
sampling-based planning algorithm.

Sampling theory

Section 14.2.2 already covered some of the sampling issues. There are at least two
continuous spaces: X, and the time interval T . In most cases, the action space
U is also continuous. Each continuous space must be sampled in some way. In
the limit, it is important that any sample sequence is dense in the space on which
sampling occurs. This was required for the resolution completeness concepts of
Section 14.2.2.

Sampling of T and U can be performed by directly using the random or deter-
ministic methods of Section 5.2. Time is just an interval of R, and U is typically
expressed as a convex m-dimensional subset of Rm. For example, U is often an
axis-aligned rectangular subset of Rm.

Some planning methods may require sampling on X. The definitions of dis-
crepancy and dispersion from Section 5.2 can be easily adapted to any measure
space and metric space, respectively. Even though it may be straightforward to
define a good criterion, generating samples that optimize the criterion may be
difficult or impossible.

A convenient way to avoid this problem is to work in a coordinate neighbor-
hood of X. This makes the manifold appear as an n-dimensional region in R

n,
which in many cases is rectangular. This enables the sampling concepts of Section
5.2 to be applied in a straightforward manner. While this is the most straightfor-
ward approach, the sampling quality depends on the particular parameterization
used to define the coordinate neighborhood. Note that when working with a co-
ordinate neighborhood (for example, by imagining that X is a cube), appropriate
identifications must be taken into account.



14.3. SAMPLING-BASED MOTION PLANNING REVISITED 815

Collision detection

As in Chapter 5, efficient collision detection algorithms are a key enabler of
sampling-based planning. If X = C, then the methods of Section 5.3 directly
apply. If X includes phase constraints, then additional tests must be performed.
These constraints are usually given and are therefore straightforward to evaluate.
Recall from Section 4.3 that this is not efficient for the obstacle constraints on C
due to the complicated mapping between obstacles in W and obstacles in C.

If only pointwise tests are performed, the trajectory segment between the
points is not guaranteed to stay in Xfree. This problem was addressed in Section
5.3.4 by using distance information from collision checking algorithms. The same
problem exists for the phase constraints of the form hi(x) ≤ 0. In this general
form there is no additional information that can be used to ensure that some
neighborhood of x is contained in Xfree. Fortunately, the phase constraints are
not complicated in most applications, and it is possible to ensure that x is at least
some distance away from the constraint boundary. In general, careful analysis of
each phase constraint is required to ensure that the state trajectory segments are
violation-free.

In summary, determining whether x ∈ Xfree involves

1. Using a collision detection algorithm as in Section 5.3 to ensure that κ(x) ∈
Cfree.

2. Checking x to ensure that other constraints of the form hi(x) ≤ 0 have been
satisfied.

Entire trajectory segments should theoretically be checked. Often times, in prac-
tice, only individual points are checked, which is more efficient but technically
incorrect.

14.3.2 System Simulator

A new component is needed for sampling-based planning under differential con-
straints because of (14.1). Motions are now expressed in terms of an action trajec-
tory, but collision detection and constraint satisfaction tests must be performed in
X. Therefore, the system, ẋ = f(x, u) needs to be integrated frequently during the
planning process. Similar to the modeling of collision detection as a “black box,”
the integration process is modeled as a module called the system simulator. See
Figure 14.9. Since the systems considered in this chapter are time-invariant, the
starting time for any required integration can always be shifted to start at t = 0.
Integration can be considered as a module that implements (14.1) by computing
the state trajectory resulting from a given initial state x(0), an action trajectory
ũt, and time t. The incremental simulator encapsulates the details of integrating
the state transition equation so that they do not need to be addressed in the de-
sign of planners. However, that information from the particular state transition
equation may still be important in the design of the planning algorithm.

816 S. M. LaValle: Planning Algorithms

System
Simulatorũt

x(0)

t

x̃t

Figure 14.9: Using a system simulator, the system ẋ = f(x, u) is integrated from
x(0) using ũt : [0, t]→ U to produce a state trajectory x̃t : [0, t]→ X. Sometimes
x̃ is specified as a parameterized path, but most often it is approximated as a
sequence of samples in X.

Closed-form solutions According to (14.1), the action trajectory must be in-
tegrated to produce a state trajectory. In some cases, this integration leads to a
closed-form expression. For example, if the system is a chain of integrators, then
a polynomial expression can easily be obtained for x(t). For example, suppose q is
a scalar and q̈ = u. If q(0) = q̇(0) = 0 and a constant action u = 1 is applied, then
x(t) = t2/2. If ẋ = f(x, u) is a linear system (which includes chains of integrators;
recall the definition from Section 13.2.2), then a closed-form expression for the
state trajectory can always be obtained. This is based on matrix exponentials
and is given in many control theory texts (e.g, [58]).

Euler method For most systems, the integration must be performed numeri-
cally. A system simulator based on numerical integration can be constructed by
breaking t into smaller intervals and iterating classical methods for computing
numerical solutions to differential equations. The Euler method is the simplest of
these methods. Let ∆t denote a small time interval over which the approximation
will be made. This can be considered as an internal parameter of the system
simulator. In practice, this ∆t is usually much smaller than the ∆t used in the
discrete-time model of Section 14.2.2. Suppose that x(0) and u(0) are given and
the task is to estimate x(∆t).

By performing integration over time, the state transition equation can be used
to determine the state after some fixed amount of time ∆t has passed. For exam-
ple, if x(0) is given and u(t′) is known over the interval t′ ∈ [0,∆t], then the state
at time ∆t can be determined as

x(∆t) = x(0) +

∫ ∆t

0

f(x(t), u(t))dt. (14.14)

The integral cannot be evaluated directly because x(t) appears in the integrand
and is unknown for time t > 0.

Using the fact that

f(x, u) = ẋ =
dx

dt
≈ x(∆t)− x(0)

∆t
, (14.15)

solving for x(∆t) yields the classic Euler integration method

x(∆t) ≈ x(0) + ∆t f(x(0), u(0)). (14.16)



14.3. SAMPLING-BASED MOTION PLANNING REVISITED 817

The approximation error depends on how quickly x(t) changes over time and on
the length of the interval ∆t. If the planning algorithm applies a motion primitive
ũp, it gives tF (ũ

p) as the time input, and the system simulator may subdivide
the time interval to maintain higher accuracy. This allows the developer of the
planning algorithm to ignore numerical accuracy issues.

Runge-Kutta methods Although Euler integration is efficient and easy to
understand, it generally yields poor approximations. Taking a Taylor series ex-
pansion of x̃ at t = 0 yields

x(∆t) = x(0) + ∆t ẋ(0) +
(∆t)2

2!
ẍ(0) +

(∆t)3

3!
x(3)(0) + · · · . (14.17)

Comparing to (14.16), it can be seen that the Euler method just uses the first
term of the Taylor series, which is an exact representation (if x̃ is analytic). Thus,
the neglected terms reflect the approximation error. If x(t) is roughly linear, then
the error may be small; however, if ẋ(t) or higher order derivatives change quickly,
then poor approximations are obtained.

Runge-Kutta methods are based on using higher order terms of the Taylor
series expansion. One of the most widely used and efficient numerical integration
methods is the fourth-order Runge-Kutta method. It is simple to implement and
yields good numerical behavior in most applications. Also, it is generally recom-
mended over Euler integration. The technique can be derived by performing a
Taylor series expansion at x(1

2
∆t). This state itself is estimated in the approxi-

mation process.
The fourth-order Runge-Kutta integration method is

x(∆t) ≈ x(0) +
∆t

6
(w1 + 2w2 + 2w3 + w4), (14.18)

in which

w1 = f(x(0), u(0))

w2 = f(x(0) + 1
2
∆t w1, u(

1
2
∆t))

w3 = f(x(0) + 1
2
∆t w2, u(

1
2
∆t))

w4 = f(x(0) + ∆t w3, u(∆t)).

(14.19)

Although this is more expensive than Euler integration, the improved accuracy is
usually worthwhile in practice. Note that the action is needed at three different
times: 0, 1

2
∆t, and ∆t. If the action is constant over [0,∆t), then the same value

is used at all three times.
The approximation error depends on how quickly higher order derivatives of

x̃ vary over time. This can be expressed using the remaining terms of the Taylor
series. In practice, it may be advantageous to adapt ∆t over successive iterations
of Runge-Kutta integration. In [75], for example, it is suggested that ∆t is scaled
by (∆t/∆x)1/5, in which ∆x = ‖x(∆t)− x(0)‖, the Euclidean distance in R

n.

818 S. M. LaValle: Planning Algorithms

Multistep methods Runge-Kutta methods represent a popular trade-off be-
tween simplicity and efficiency. However, by focusing on the integration problem
more carefully, it is often possible to improve efficiency further. The Euler and
Runge-Kutta methods are often referred to as single-step methods. There exist
multi-step methods, which rely on the fact that a sequence of integrations will be
performed, in a manner analogous to incremental collision detection in Section
5.3.3. The key issues are ensuring that the methods properly initialize, ensuring
numerical stability over time, and estimating error to adaptively adjust the step
size. Many books on numerical analysis cover multi-step methods [13, 120, 228].
One of the most popular families is the Adams methods.

Multistep methods require more investment to understand and implement.
For a particular application, the decision to pursue this route should be based on
the relative costs of planning, collision detection, and numerical integration. If
integration tends to dominate and efficiency is critical, then multi-step methods
could improve running times dramatically over Runge-Kutta methods.

Black-box simulators For some problems, a state transition equation might
not be available; however, it is still possible to compute future states given a cur-
rent state and an action trajectory. This might occur, for example, in a complex
software system that simulates the dynamics of a automobile or a collection of
parts that bounce around on a table. In computer graphics applications, sim-
ulations may arise from motion capture data. Some simulators may even work
internally with implicit differential constraints of the form gi(x, ẋ, u) = 0, instead
of ẋ = f(x, u). In such situations, many sampling-based planners can be applied
because they rely only on the existence of the system simulator. The planning
algorithm is thus shielded from the particular details of how the system is repre-
sented and integrated.

Reverse-time system simulation Some planning algorithms require integra-
tion in the reverse-time direction. For some given x(0) and action trajectory that
runs from −∆t to 0, the backward system simulator computes a state trajectory,
x̃ : [−t, 0] → X, which when integrated from −∆t to 0 under the application of
ũt yields x(0). This may seem like an inverse control problem [224] or a BVP as
shown in Figure 14.10; however, it is much simpler. Determining the action trajec-
tory for given initial and goal states is more complicated; however, in reverse-time
integration, the action trajectory and final state are given, and the initial state
does not need to be fixed.

The reverse-time version of (14.14) is

x(−∆t) = x(0) +

∫ −∆t

0

f(x(t), u(t))dt = x(0) +

∫ ∆t

0

−f(x(t), u(t))dt, (14.20)

which relies on the fact that ẋ = f(x, u) is time-invariant. Thus, reverse-time
integration is obtained by simply negating the state transition equation. The Euler



14.3. SAMPLING-BASED MOTION PLANNING REVISITED 819

Two-Point
Boundary-Value
Solver

ũt

xI

xG

Figure 14.10: Some methods in Chapter 15 can solve two-point boundary value
problems in the absence of Xobs. This is difficult to obtain for most systems, but
it is more powerful than the system simulator. It is very valuable, for example, in
making a sampling-based roadmap that satisfies differential constraints.

and Runge-Kutta methods can then be applied in the usual way to −f(x(t), u(t)).

14.3.3 Local Planning

The methods of Chapter 5 were based on the existence of a local planning method
(LPM) that is simple and efficient. This represented an important part of both the
incremental sampling and searching framework of Section 5.4 and the sampling-
based roadmap framework of Section 5.6. In the absence of obstacles and differ-
ential constraints, it is trivial to define an LPM that connects two configurations.
They can, for example, be connected using the shortest path (geodesic) in C. The
sampling-based roadmap approach from Section 5.6 relies on this simple LPM.

In the presence of differential constraints, the problem of constructing an LPM
that connects two configurations or states is considerably more challenging. Recall
from Section 14.1 that this is the classical BVP, which is difficult to solve for most
systems. There are two main alternatives to handle this difficulty in a sampling-
based planning algorithm:

1. Design the sampling scheme, which may include careful selection of motion
primitives, so that the BVP can be trivially solved.

2. Design the planning algorithm so that as few as possible BVPs need to be
solved. The LPM in this case does not specify precise goal states that must
be reached.

Under the first alternative, the BVP solver can be considered as a black box,
as shown in Figure 14.10, that efficiently connects xI to xG in the absence of
obstacles. In the case of the Piano Mover’s Problem, this was obtained by moving
along the shortest path in C. For many of the wheeled vehicle systems from
Section 13.1.2, steering methods exist that could serve as an efficient BVP solver;
see Section 15.5. Efficient techniques also exist for linear systems and are covered
in Section 15.2.2.

If the BVP is efficiently solved, then virtually any sampling-based planning
algorithm from Chapter 5 can be adapted to the case of differential constraints.
This is achieved by using the module in Figure 14.10 as the LPM. For example,

820 S. M. LaValle: Planning Algorithms

a sampling-based roadmap can use the computed solution in the place of the
shortest path through C. If the BVP solver is not efficient enough, then this
approach becomes impractical because it must typically be used thousands of
times to build a roadmap. The existence of an efficient module as shown in Figure
14.10 magically eliminates most of the complications associated with planning
under differential constraints. The only remaining concern is that the solutions
provided by the BVP solver could be quite long in comparison to the shortest path
in the absence of differential constraints (for example, how far must the Dubins
car travel to move slightly backward?).

Under the second alternative, it is assumed that solving the BVP is very costly.
The planning method in this case should avoid solving BVPs whenever possible.
Some planning algorithms may only require an LPM that approximately reaches
intermediate goal states, which is simpler for some systems. Other planning algo-
rithms may not require the LPM to make any kind of connection. The LPM may
return a motion primitive that appears to make some progress in the search but is
not designed to connect to a prescribed state. This usually involves incremental
planning methods, which are covered in Section 14.4 and extends the methods of
Sections 5.4 and 5.5 to handle differential constraints.

14.3.4 General Framework Under Differential Constraints

The framework presented here is a direct extension of the sampling and searching
framework from Section 5.4.1 and includes the extension of Section 5.5 to allow
the selection of any point in the swath of the search graph. This replaces the
vertex selection method (VSM) by a swath-point selection method (SSM). The
framework also naturally extends the discrete search framework of Section 2.2.4.
The components are are follows:

1. Initialization: Let G(V,E) represent an undirected search graph, for which
the vertex set V contains a vertex for xI and possibly other states in Xfree,
and the edge set E is empty. The graph can be interpreted as a topological
graph with a swath S(G).

2. Swath-point Selection Method (SSM): Choose a vertex xcur ∈ S(G)
for expansion.

3. Local Planning Method (LPM):Generate a motion primitive ũp : [0, tF ]→
Xfree such that u(0) = xcur and u(tF ) = xr for some xr ∈ Xfree, which may
or may not be a vertex in G. Using the system simulator, a collision detec-
tion algorithm, and by testing the phase constraints, ũp must be verified to
be violation-free. If this step fails, then go to Step 2.

4. Insert an Edge in the Graph: Insert ũp into E. Upon integration, ũp

yields a state trajectory from xcur to xr. If xr is not already in V , it is



14.3. SAMPLING-BASED MOTION PLANNING REVISITED 821

XGxI xI

xG

BVP

(a) (b)

xI

xG
BVP xG

xI

BVP

(c) (d)

Figure 14.11: (a) Forward, unidirectional search for which the BVP is avoided.
(b) Reaching the goal precisely causes a BVP. (c) Backward, unidirectional search
also causes a BVP. (d) For bidirectional search, the BVP arises when connecting
the trees.

added. If xcur lies in the interior of an edge trajectory for some e ∈ E, then
e is split by the introduction of a new vertex at xcur.

5. Check for a Solution: Determine whether G encodes a solution path. In
some applications, a small gap in the state trajectory may be tolerated.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied. In the latter case, the algorithm reports
failure.

The general framework may be applied in the same ways as in Section 5.4.1
to obtain unidirectional, bidirectional, and multidirectional searches. The issues
from the Piano Mover’s Problem extend to motion planning under differential
constraints. For example, bug traps cause the same difficulties, and as the number
of trees increases, it becomes difficult to coordinate the search.

The main new complication is due to BVPs. See Figure 14.11. Recall from
Section 14.1.1 that for most systems it is important to reduce the number of BVPs

822 S. M. LaValle: Planning Algorithms

that must be solved during planning as much as possible. Assume that connecting
precisely to a prescribed state is difficult. Figure 14.11a shows the best situation,
in which forward, unidirectional search is used to enter a large goal region. In
this case, no BVPs need to be solved. As the goal region is reduced, the problem
becomes more challenging. Figure 14.11b shows the limiting case in which XG is
a point {xG}. This requires the planning algorithm to solve at least one BVP.

Figure 14.11c shows the case of backward, unidirectional search. This has the
effect of moving the BVP to xI . Since xI is precisely given (there is no “initial
region”), the BVP cannot be avoided as in the forward case. If an algorithm
produces a solution ũ for which x(0) is very close to xI , and if XG is large, then it
may be possible to salvage the solution. The system simulator can be applied to ũ
from xI instead of x(0). It is known that x̃(x(0), ũ) is violation-free, and x̃(xI , ũ)
may travel close to x̃(x(0), ũ) at all times. This requires f to vary only a small
amount with respect to changes in x (this would be implied by a small Lipschitz
constant) and also for ‖xI −x(0)‖ to be small. One problem is that the difference
between points on the two trajectories usually increases as time increases. If it is
verified by the system simulator that x̃(xI , ũ) is violation-free and the final state
still lies in XG, then a solution can be declared.

For bidirectional search, a BVP must be solved somewhere in the middle of
a trajectory, as shown in Figure 14.11d. This complicates the problem of deter-
mining whether the two trees can be connected. Once again, if the goal region is
large, it may be possible remove the gap in the middle of the trajectory by moving
the starting state of the trajectory produced by the backward tree. Let ũ1 and ũ2
denote the action trajectories produced by the forward and backward trees, re-
spectively. Suppose that their termination times are t1 and t2, respectively. The
action trajectories can be concatenated to yield a function ũ : [0, t1 + t2]→ U by
shifting the domain of ũ2 from [0, t2] to [t1, t1 + t2]. If t ≤ t1, then u(t) = u1(t);
otherwise, u(t) = u2(t − t1). If there is a gap, the new state trajectory x̃(xI , ũ)
must be checked using the system simulator to determine whether it is violation-
free and terminates in XG. Multi-directional search becomes even more difficult
because more BVPs are created. It is possible in principle to extend the ideas
above to concatenate a sequence of action trajectories, which tries to remove all
of the gaps.

Consider the relationship between the search graph and reachability graphs.
In the case of unidirectional search, the search graph is always a subset of a
reachability graph (assuming perfect precision and no numerical integration error).
In the forward case, the reachability graph starts at xI , and in the backward case
it starts at xG. In the case of bidirectional search, there are two reachability
graphs. It might be the case that vertices from the two coincide, which is another
way that the BVP can be avoided. Such cases are unfortunately rare, unless xI
and xG are intentionally chosen to cause this. For example, the precise location
of xG may be chosen because it is known to be a vertex of the reachability graph
from xI . For most systems, it is difficult to force this behavior. Thus, in general,



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 823

BVPs arise because the reachability graphs do not have common vertices. In the
case of multi-directional search, numerous reachability graphs are being explored,
none of which may have vertices that coincide with vertices of others.

14.4 Incremental Sampling and Searching Meth-

ods

The general framework of Section 14.3.4 will now be specialized to obtain three
important methods for planning under differential constraints.

14.4.1 Searching on a Lattice

This section follows in the same spirit as Section 5.4.2, which adapted grid search
techniques to motion planning. The difficulty in the current setting is to choose a
discretization that leads to a lattice that can be searched using any of the search
techniques of Section 2.2. The section is inspired mainly by kinodynamic planning
work [81, 83, 121].

A double-integrator lattice

First consider the double integrator from Example 13.3. Let C = Cfree = R and
q̈ = u. This models the motion of a free-floating particle in R, as described in
Section 13.3.2. The phase space is X = R

2, and x = (q, q̇). Let U = [−1, 1]. The
coming ideas can be easily generalized to allow any acceleration bound amax > 0
by letting U = [−amax, amax]; however, amax = 1 will be chosen to simplify the
presentation.

The differential equation q̈ = u can be integrated once to yield

q̇(t) = q̇(0) + ut, (14.21)

in which q̇(0) is an initial speed. Upon integration of (14.21), the position is
obtained as

q(t) = q(0) + q̇(0) t+ 1
2
ut2, (14.22)

which uses two initial conditions, q(0) and q̇(0).
A discrete-time model exists for which the reachability graph is trapped on a

lattice. This is obtained by letting Ud = {−1, 0, 1} and ∆t be any positive real
number. The vector fields over X that correspond to the cases of u = −1, u = 0,
and u = 1 are shown in Figure 14.12. Switching between these fields at every ∆t
and integrating yields the reachability graph shown in Figure 14.13.

This leads to a discrete-time transition equation of the form xk+1 = fd(xk, uk),
in which uk ∈ Ud, and k represents time t = (k− 1)∆t. Any action trajectory can
be specified as an action sequence; for example a six-stage action sequence may

824 S. M. LaValle: Planning Algorithms

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x

(a) u = −1 (b) u = 0 (c) u = 1

Figure 14.12: The reachability graph will be obtained by switching between these
vector fields at every ∆t. The middle one produces horizontal phase trajectories,
and the others produce parabolic curves.

be given by (−1, 1, 0, 0,−1, 1). Start from x1 = x(0) = (q1, q̇1). At any stage k
and for any action sequence, the resulting state xk = (qk, q̇k) can be expressed as

qk = q1 + i1
2
(∆t)2

q̇k = q̇1 + j∆t,
(14.23)

in which i, j are integers that can be computed from the action sequence. Thus,
any action sequence leads to a state that can be expressed using integer coordi-
nates (i, j) in the plane. Starting at x1 = (0, 0), this forms the lattice of points
shown in Figure 14.13. The lattice is slanted (with slope 1) because changing
speed requires some motion. If infinite acceleration were allowed, then q̇ could be
changed instantaneously, which corresponds to moving vertically in X. As seen
in (14.21), q̇ changes linearly over time. If q 6= 0, then the configuration changes
quadratically. If u = 0, then it changes linearly, except when q̇ = 0; in this case,
no motion occurs.

The neighborhood structure is not the same as those in Section 5.4.2 because
of drift. For u = 0, imagine having a stack of horizontal conveyor belts that carry
points to the right if they are above the q-axis, and to the left if they are below
it (see Figure 14.12b). The speed of the conveyor belt is given by q̇. If u = 0, the
distance traveled along q is q̇∆t. This causes horizontal motion to the right in the
phase plane if q̇ > 0 and horizontal motion to the left if q̇ < 0. Observe in Figure
14.13 that larger motions result as |q̇| increases. If q̇ = 0, then no horizontal
motion can occur. If q 6= 0, then the q̇ coordinate changes by ±1

2
u(∆t)2. This

slowing down or speeding up also affects the position along q.
For most realistic problems, there is an upper bound on speed. Let vmax > 0

be a positive constant and assume that |q̇| ≤ vmax. Furthermore, assume that
C is bounded (all values of q ∈ C are contained in an interval of R). Since the
reachability graph is a lattice and the states are now confined to a bounded sub-



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 825

q̇

q

Figure 14.13: The reachability graph from the origin is shown after three stages
(the true state trajectories are actually parabolic arcs when acceleration or decel-
eration occurs). Note that a lattice is obtained, but the distance traveled in one
stage increases as |q̇| increases.

set of R2, the number of vertices in the reachability graph is finite. For any fixed
∆t, the lattice can be searched using any of the algorithms of Section 2.2. The
search starts on a reachability graph for which the initial vertex is xI . Trajecto-
ries that are approximately time-optimal can be obtained by using breadth-first
search (Dijkstra’s algorithm could alternatively be used, but it is more expensive).
Resolution completeness can be obtained by reducing ∆t by a constant factor each
time the search fails to find a solution. As mentioned in Section 5.4.2, it is not
required to construct an entire grid resolution at once. Samples can be gradually
added, and the connectivity can be updated efficiently using the union-find algo-
rithm [74, 217]. A rigorous approximation algorithm framework will be presented
shortly, which indicates how close the solution is to optimal, expressed in terms
of input parameters to the algorithm.

Recall the problem of connecting to grid points, which was illustrated in Figure
5.14b. If the goal region XG contains lattice points, then exact arrival at the goal
occurs. If it does not contain lattice points, as in the common case of XG being
a single point, then some additional work is needed to connect a goal state to a
nearby lattice point. This actually corresponds to a BVP, but it is easy to solve
for the double integrator. The set of states that can be reached from some state
xG within time ∆t lie within a cone, as shown in Figure 14.14a. Lattice points
that fall into the cone can be easily connected to xG by applying a constant action
in U . Likewise, xI does not even have to coincide with a lattice point. Thus, it is
straightforward to connect xI to a lattice point, obtain a trajectory that arrives

826 S. M. LaValle: Planning Algorithms

xg

q̇

q

xi

q̇

q

(a) Backward reachable set from xG (b) Forward reachable set from xI

Figure 14.14: The initial and goal states can be connected to lattice points that
call within cones in X that represent time-limited reachable sets.

at a lattice point near xG, and then connect it exactly to xG.

Extensions and other considerations

Alternative lattices for the double integrator Many alternative lattices can
be constructed over X. Different discretizations of U and time can be used. Great
flexibility is allowed if feasibility is the only concern, as opposed to optimality.
Since C = R, it is difficult to define an obstacle avoidance problem; however, the
concepts will be soon generalized to higher dimensions. In this case, finding a
feasible trajectory that connects from some initial state to a goal state may be
the main concern. Note, however, that if xI and xG are states with zero velocity,
then the state could hover around close to the q-axis, and the speeds will be so
slow that momentum is insignificant. This provides some incentive for at least
reducing the travel time as much as possible, even if the final result is not optimal.
Alternatively, the initial and goal states may not have zero velocity, in which case,
any feasible solution may be desired. For example, suppose the goal is to topple
a sports utility vehicle (SUV) as part of safety analysis.

To get a feeling for how to construct lattices, recall again the analogy to
conveyor belts. A lattice can be designed by placing horizontal rows of sample
points at various values of q̇. These could, for example, be evenly spaced in the q̇
direction as in Figure 14.13. Imagine the state lies on a conveyor belt. If desired,
a move can be made to any other conveyor belt, say at q̇′, by applying a nonzero
action for some specific amount of time. If q̇′ > q̇, then u > 0; otherwise, u < 0.
If the action is constant, then after time |q̇− q̇′|/u has passed, the state will arrive
at q̇′. Upon arrival, the position q on the conveyor belt might not coincide with a
sample point. This is no problem because the action u = 0 can be applied until the
state drifts to the next sample point. An alternative is to choose an action from
U that drives directly to a lattice point within its forward, time-limited reachable
set. Recall Figure 14.14; the cone can be placed on a lattice point to locate other
lattice points that can be reached by application of a constant action in U over



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 827

some time interval.
Recall from Figure 14.13 that longer distances are traveled over time ∆t as |q̇|

increases. This may be undesirable behavior in practice because the resolution
is essentially much poorer at higher speeds. This can be compensated for by
placing the conveyor belts closer together as |q̇| increases. As the speed increases,
a shorter time interval is needed to change belts, and the distance traveled can be
held roughly the same for all levels. This corresponds to the intuition that faster
response times are needed at higher speeds.

A multi-resolution version can also be made [213]. The simple problem con-
sidered so far can actually be solved combinatorially, without any approximation
error [197]; however, the lattice-based approach was covered because it can be
extended to much harder problems, as will be explained next.

Multiple, independent double integrators Now consider generalizing to a
vector of n double integrators. In this case, C = R

n and each q ∈ C is an n-
dimensional vector. There are n action variables and n double integrators of the
form q̈i = ui. The action space for each variable is Ui = [−1, 1] (once again, any
acceleration bound can be used). The phase space X is R2n, and each point is x =
(q1, . . . , qn, q̇1, . . . , q̇n). The ith double integrator produces two scalar equations of
the phase transition equation: ẋi = xn+i and ẋn+i = ui.

Even though there are n double integrators, they are decoupled in the state
transition equation. The phase of one integrator does not depend on the phase of
another. Therefore, the ideas expressed so far can be extended in a straightforward
way to obtain a lattice over R2n. Each action is an n-dimensional vector u. Each
Ui is discretized to yield values −1, 0, and 1. There are 3n edges emanating from
any lattice point for which q̇i 6= 0 for all i. For any double integrator for which
q̇i = 0, there are only two choices because ui = 0 produces no motion. The
projection of the reachability graph down to (xi, xn+i) for any i from 1 to n looks
exactly like Figure 14.13 and characterizes the behavior of the ith integrator.

The standard search algorithms can be applied to the lattice over R2n. Breadth-
first search once again yields solutions that are approximately time-optimal. Res-
olution completeness can be obtained again by bounding X and allowing ∆t to
converge to zero. Now that there are more dimensions, a complicated obstacle
region Xobs can be removed from X. The traversal of each edge then requires
collision detection along each edge of the graph. Note that the state trajectories
are linear or parabolic arcs. Numerical integration is not needed because (14.22)
already gives the closed-form expression for the state trajectory.

Unconstrained mechanical systems A lattice can even be obtained for the
general case of a fully actuated mechanical system, which for example includes
most robot arms. Recall from (13.4) that any system in the form q̇ = f(q, u) can
alternatively be expressed as q̇ = u, if U(q) is defined as the image of f for a fixed
q. The main purpose of using f is to make it easy to specify a fixed action space

828 S. M. LaValle: Planning Algorithms

U ′(q, q̇)

R
n

R
n

(a) (b)

Figure 14.15: (a) The set, U ′(q, q̇), of new actions and grid-based sampling. (b)
Reducing the set by some safety margin to account for its variation over time.

U that maps differently into the tangent space for each q ∈ C.
A similar observation can be made regarding equations of the form q̈ =

h(q, q̇, u), in which u ∈ U and U is an open subset of Rn. Recall that this form was
obtained for general unconstrained mechanical systems in Sections 13.3 and 13.4.
For example, (13.148) expresses the dynamics of open-chain robot arms. Such
equations can be expressed as q̈ = u′ by directly specifying the set of allowable
accelerations. Each u will map to a new action u′ in an action space given by

U ′(q, q̇) = {q̈ ∈ R
n | ∃u ∈ U such that q̈ = h(q, q̇, u)} (14.24)

for each q ∈ C and q̇ ∈ R
n.

Each u′ ∈ U ′(q, q̇) directly expresses an acceleration vector in R
n. Therefore,

using u′ ∈ U(q, q̇), the original equation expressed using h can be now written as
q̈ = u′. In its new form, this appears just like the multiple, independent double
integrators. The main differences are

1. The set U ′(q, q̇) may describe a complicated region in R
n, whereas U in the

case of the true double integrators was a cube centered at the origin.

2. The set U ′(q, q̇) varies with respect to q and q̇. Special concern must be
given for this variation over the time sampling interval ∆t. In the case of
the true double integrators, U was fixed.

The first difference is handled by performing grid sampling over Rn and making
an edge in the reachability graph for every grid point that falls into U ′(q, q̇); see
Figure 14.15a. The grid resolution can be improved along with ∆t to obtain
resolution completeness. To address the second problem, think of U ′(q(t), q̇(t))
as a shape in R

n that moves over time. Choosing u′ close to the boundary of
U ′(q(t), q̇(t)) is dangerous because as t increases, u′ may fall outside of the new



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 829

action set. It is often possible to obtain bounds on how quickly the boundary of
U ′(q, q̇) can vary over time (this can be determined, for example, by differentiating
h with respect to q and q̇). Based on the bound, a thin layer near the boundary of
U ′(q, q̇) can be removed from consideration to ensure that all attempted actions
remain in U ′(q(t), q̇(t)) during the whole interval ∆t. See Figure 14.15b.

These ideas were applied to extend the approximation algorithm framework to
the case of open-chain robot arms, for which h is given by (13.148). Suppose that
U is an axis-aligned rectangle, which is often the case for manipulators because
the bounds for each ui correspond to torque limits for each motor. If q and q̇
are fixed, then (13.140) applies a linear transformation to obtain q̈ from u. The
rectangle is generally sheared into a parallelepiped (a n-dimensional extension of
a parallelogram). Recall such transformations from Section 3.5 or linear algebra.

Approximation algorithm framework The lattices developed in this section
were introduced in [83] for analyzing the kinodynamic planning problem in the
rigorous approximation algorithm framework for NP-hard problems [199]. Suppose
that there are two or three independent double integrators. The analysis shows
that the computed solutions are approximately optimal in the following sense. Let
c0 and c1 be two positive constants that define a function

δ(c0, c1)(q̇) = c0 + c1‖q̇‖. (14.25)

Let tF denote the time at which the termination action is applied. A state tra-
jectory is called δ(c0, c1)-safe if for all t ∈ [0, tF ], the ball of radius δ(c0, c1)(q̇)
that is centered at q(t) does not cause collisions with obstacles in W . Note that
the ball radius grows linearly as the speed increases. The robot can be imagined
as a disk with a radius determined by speed. Let xI , xG, c0, and c1 be given
(only a point goal region is allowed). Suppose that for a given problem, there
exists a δ(c0, c1)-safe state trajectory (resulting from integrating any ũ ∈ U) that
terminates in xG after time topt. It was shown that by choosing the appropriate
∆t (given by a formula in [83]), applying breadth-first search to the reachability
lattice will find a (1− ǫ)δ(c0, c1)-safe trajectory that takes time at most (1+ ǫ)topt,
and approximately connects xI to xG (which means that the closeness in X de-
pends on ǫ). Furthermore, the running time of the algorithm is polynomial in 1/ǫ
and the number of primitives used to define polygonal obstacles.5 One of the key
steps in the analysis is to show that any state trajectory can be closely tracked
using only actions from Ud and keeping them constant over ∆t. One important
aspect is that it does not necessarily imply that the computed solution is close to
the true optimum, as it travels through X (only the execution times are close).
Thus, the algorithm may give a solution from a different homotopy class from the

5One technical point: It is actually only pseudopolynomial [199] in amax, vmax, c0, c1, and
the width of the bounding cube in W. This means that the running time is polynomial if
the representations of these parameters are treated as having constant size; however, it is not
polynomial in the actual number of bits needed to truly represent them.

830 S. M. LaValle: Planning Algorithms

one that contains the true optimal trajectory. The analysis was extended to the
general case of open-chain robot arms in [81, 121].

Backward and bidirectional versions There is a perfect symmetry to the
concepts presented so far in this section. A reachability lattice similar to the
one in Figure 14.13 can be obtained by integrating backward in time. This in-
dicates action sequences and associated initial states from which a fixed state
can be reached. Note that applying the ideas in the reverse direction does not
require the system to be symmetric. Given that the graphs exist in both direc-
tions, bidirectional search can be performed. By using the forward and backward
time-limited reachability cones, the initial and goal states can be connected to a
common lattice, which is started, for example, at the origin.

Underactuated and nonholonomic systems Many interesting systems can-
not be expressed in the form q̈ = h(q, q̇, u) with n independent action variables
because of underactuation or other constraints. For example, the models in Sec-
tion 13.1.2 are underactuated and nonholonomic. In this case, it is not straight-
forward to convert the equations into a vector of double integrators because the
dimension of U(q, q̇) is less than n, the dimension of C. This makes it impossible
to use grid-based sampling of U(q, q̇). Nevertheless, it is still possible in many
cases to discretize the system in a clever way to obtain a lattice. If this can be
obtained, then a straightforward resolution-complete approach based on classical
search algorithms can be developed. If X is bounded (or a bounded region is
obtained after applying the phase constraints), then the search is performed on a
finite graph. If failure occurs, then the resolution can be improved in the usual
way to eventually obtain resolution completeness. As stated in Section 14.2.2,
obtaining such a lattice is possible for a large family of nonholonomic systems
[198]. Next, a method is presented for handling reachability graphs that are not
lattices.

14.4.2 Incorporating State Space Discretization

If the reachability graph is not a lattice, which is typically the case with under-
actuated and nonholonomic systems, then state space discretization can be used
to force it to behave like a lattice. If there are no differential constraints, then
paths can be easily forced to travel along a lattice, as in the methods of Section
7.7.1. Under differential constraints, the state cannot be forced, for example, to
follow a staircase path. Instead of sampling X and forcing trajectories to visit
specific points, X can be partitioned into small cells, within which no more than
one vertex is allowed in the search graph. This prevents a systematic search algo-
rithm from running forever if the search graph has an infinite number of vertices
in some bounded region. For example, with the Dubins car, if u is fixed to an
integer, an infinite number of vertices on a circle is obtained, as mentioned in



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 831

Section 14.2.2. The ideas in this section are inspired mainly by the Barraquand-
Latombe dynamic programming method [20], which has been mainly applied to
the models in Section 13.1.2. In the current presentation, however, the approach
is substantially generalized. Here, optimality is not even necessarily required (but
can be imposed, if desired).

Decomposing X into cells At the outset, X is decomposed into a collection of
cells without considering collision detection. Suppose that X is an n-dimensional
rectangular subset of Rn. If X is more generally a smooth manifold, then the
rectangular subset can be defined in a coordinate neighborhood. If desired, iden-
tifications can be used to respect the topology of X; however, coordinate changes
are technically needed at the boundaries to properly express velocities (recall Sec-
tion 8.3).

The most common cell decomposition is obtained by splittingX into n-dimensional
cubes of equal size by quantizing each coordinate. This will be called a cubical par-
tition. Assume in general thatX is partitioned into a collectionD of n-dimensional
cells. Let D ∈ D denote a cell, which is a subset of X. It is assumed here that all
cells have dimension n. In the case of cubes, this means that points on common
boundaries between cubes are declared to belong to only one neighboring cube
(thus, the cells may be open, closed, or neither).

Note that X is partitioned into cells, and not Xfree, as might be expected
from the methods in Chapter 6. This means that collision detection and other
constraints on X are ignored when defining D. The cells are defined in advance,
just as grids were declared in Section 5.4.2. In the case of a cubical partition, the
cells are immediately known upon quantization of each coordinate axis.

Searching The algorithm fits directly into the framework of Section 14.3.4. A
search graph is constructed incrementally from xI by applying any systematic
search algorithm. It is assumed that the system has been discretized in some way.
Most often, the discrete-time model of Section 14.2.2 is used, which results in a
fixed ∆t and a finite set Ud of actions.

In the basic search algorithms of Section 2.2.1, it is important to keep track of
which vertices have been explored. Instead of applying this idea to vertices, it is
applied here to cells. A cell D is called visited if the search graph that has been
constructed so far contains a vertex inD; otherwise, D is called unvisited. Initially,
only the cell that contains xI is marked as visited. All others are initialized to
unvisited. These labels are used to prune the reachability graph during the search,
as shown in Figure 14.16.

The basic algorithm outline is shown in Figure 14.17. LetQ represent a priority
queue in which the elements are vertices of the search graph. If optimization of
a cost functional is required, then Q may be sorted by the cost accumulated
along the path constructed so far from xI to x. This cost can be assigned in many
different ways. It could simply represent the time (number of ∆t steps), or it could

832 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 14.16: (a) The first four stages of a dense reachability graph for the Dubins
car. (b) One possible search graph, obtained by allowing at most one vertex per
cell. Many branches are pruned away. In this simple example, there are no cell
divisions along the θ-axis.

count the number of times the action has changed. As the algorithm explores, new
candidate vertices are encountered. They are only saved in the search graph and
placed into Q if they lie in a cell marked unvisited and are violation-free. Upon
encountering such a cell, it becomes marked as visited. The reached function
generates a set of violation-free trajectory segments. Under the discrete-time
model, this means applying each u ∈ Ud over time ∆t and reporting only those
states reached without violating the constraints (including collision avoidance).

As usual, the BVP issue may arise if XG is small relative to the cell size. If
XG is large enough to include entire cells, then this issue is avoided. If xG is a
single point, then it may only be possible to approximately reach xG. Therefore,
the algorithm must accept reaching xG to within a specified tolerance. This can
be modeled by defining XG to be larger; therefore, tolerance is not explicitly
mentioned.

Maintaining the cells There are several alternatives for maintaining the cells.
The main operation that needs to be performed efficiently is point location [77]:
determine which cell contains a given state. The original method in [20] preallo-
cates an n-dimensional array. The collision-checking is even performed in advance.
Any cell that contains at least one point in Xobs can be labeled as occupied. This



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 833

CELL-BASED SEARCH(xI , xG)
1 Q.insert(xI);
2 G.init(xI);
3 while Q 6= ∅ and xG is unvisited
4 xcur → Q.pop();
5 for each (ũt, x) ∈ reached(xcur)
6 if x is unvisited
7 Q.insert(x);
8 G.add vertex(x);
9 G.add edge(ũt);
10 Mark cell that contains x as visited;
11 Return G;

Figure 14.17: Searching by using a cell decomposition of X.

allows cells that contain collision configurations to be avoided without having to
call the collision detection module. For a fixed dimension, this scheme finds the
correct cell and updates the labels in constant time. Unfortunately, the space
requirement is exponential in dimension.

An alternative is to use a hash table to maintain the collection of cells that
are labeled as visited. This may be particularly valuable if optimality is not
important and if it is expected that solutions will be found before most of the
cells are reached. The point location problem can be solved efficiently without
explicitly storing a multi-dimensional array.

Suppose that the cubical decomposition is not necessarily used. One general
approach is to define D as the Voronoi regions of a collection P of m samples
{p1, . . . , pm} in X. The “name” of each cell corresponds uniquely to a sample
in P . The cell that contains some x ∈ X is defined as the nearest sample in P ,
using some predetermined metric on X. As a special case, the cubical decom-
position defines the cells based on a Sukharev grid (recall Figure 5.5a). If the
dimension of X is not too high, then efficient nearest-neighbor schemes can be
used to determine the appropriate cell in near-logarithmic time in the number
of points in P (in practice, Kd-trees, mentioned in Section 5.5.2, should perform
well). For maintaining a cubical decomposition, this approach would be cumber-
some; however, it works for any sample set P . If no solution is found for a given
P , then the partition could be improved by adding more samples. This allows any
dense sequence to be used to guide the exploration of X while ensuring resolution
completeness, which is discussed next.

Resolution issues One of the main complications in using state discretization
is that there are three spaces over which sampling occurs: time, the action space,
and the state space. Assume the discrete-time model is used. If obtaining optimal
solutions is important, then very small cells should be used (e.g., 50 to 100 per

834 S. M. LaValle: Planning Algorithms

Uses minimum turning radius

Pruned away from
the search graph

D

(a) (b)

Figure 14.18: (a) The Dubins car is able to turn around if it turns left as sharply as
possible. (b) Unfortunately, the required vertex is pruned because one cell along
the required trajectory already contains a vertex. This illustrates how missing a
possible action can cause serious problems many stages later.

axis). This limits its application to state spaces of a few dimensions. The time
interval ∆t should also be made small, but if it is too small relative to the cell size,
then it may be impossible to leave a cell. If only feasibility is the only requirement,
then larger cells may be used, and ∆t must be appropriately increased. A course
quantization of U may cause solutions to be missed, particularly if ∆t is large. As
∆t decreases, the number of samples in Ud becomes less important.

To obtain resolution completeness, the sampling should be improved each time
the search fails. Each time that the search is started, the sampling dispersion for
at least one of the three spaces should be decreased. The possibilities are 1) the
time interval ∆t may be reduced, 2) more actions may be added to Ud, or 3) more
points may be added to P to reduce the cell size. If the dispersion approaches zero
for all three spaces, and if XG contains an open subset of Xfree, then resolution
completeness is obtained. If XG is only a point, then solutions that come within
some ǫ > 0 must be tolerated.

Recall that resolution completeness assumes that f has bounded derivatives
or at least satisfies a Lipschitz condition (14.11). The actual rate of convergence
is mainly affected by three factors: 1) the rate at which f varies with respect
to changes in u and x (characterized by Lipschitz constants), 2) the required
traversal of narrow regions in Xfree, and 3) the controllability of the system. The
last condition will be studied further for nonholonomic systems in Section 15.4.



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 835

For a concrete example, consider making a U-turn with a Dubins car that has
a very large turning radius, as shown in Figure 14.18. A precise turn may be
required to turn around, and this may depend on an action that was chosen many
stages earlier. The Dubins car model does not allow zig-zagging (e.g., parallel
parking) maneuvers to make local corrections to the configuration.

Backward and bidirectional versions As usual, both backward and bidi-
rectional versions of this approach can be made. If the XG is large (or the goal
tolerance is large) and the BVP is costly to solve, then the backward version seems
less desirable if the BVP is hard. The forward direction is preferred because the
BVP can be avoided altogether.

For a bidirectional algorithm, the same collection D of cells can be used for
both trees. The problem could be considered solved if the same cell is reached
by both trees; however, one must be careful to still ensure that the remaining
BVP can be solved. It must be possible to find an action trajectory segment that
connects a vertex from the initial-based tree to a vertex of the goal-based tree.
Alternatively, connections made to within a tolerance may be acceptable.

14.4.3 RDT-Based Methods

The rapidly exploring dense tree (RDT) family of methods, which includes the
RRT, avoids maintaining a lattice altogether. RDTs were originally developed for
handling differential constraints, even though most of their practical application
has been to the Piano Mover’s Problem. This section extends the ideas of Section
5.5 from C to X and incorporates differential constraints. The methods covered
so far in Section 14.4 produce approximately optimal solutions if the graph is
searched using dynamic programming and the resolution is high enough. By
contrast, RDTs are aimed at returning only feasible trajectories, even as the
resolution improves. They are often successful at producing a solution trajectory
with relatively less sampling. This performance gain is enabled in part by the lack
of concern for optimality.

Let α denote an infinite, dense sequence of samples in X. Let ρ : X × X →
[0,∞] denote a distance function on X, which may or may not be a proper metric.
The distance function may not be symmetric, in which case ρ(x1, x2) represents
the directed distance from x1 to x2.

The RDT is a search graph as considered so far in this section and can hence
be interpreted as a subgraph of the reachability graph under some discretization
model. For simplicity, first assume that the discrete-time model of Section 14.2.2
is used, which leads to a finite action set Ud and a fixed time interval ∆t. The
set Up of motion primitives is all action trajectories for which some u ∈ Ud is held
constant from time 0 to ∆t. The more general case will be handled at the end of
this section.

Paralleling Section 5.5.1, the RDT will first be defined in the absence of ob-

836 S. M. LaValle: Planning Algorithms

SIMPLE RDT WITH DIFFERENTIAL CONSTRAINTS(x0)
1 G.init(x0);
2 for i = 1 to k do
3 xn ← nearest(S(G), α(i));
4 (ũp, xr)← local planner(xn, α(i));
5 G.add vertex(xr);
6 G.add edge(ũp);

Figure 14.19: Extending the basic RDT algorithm to handle differential con-
straints. In comparison to Figure 5.16, an LPM computes xr, which becomes the
new vertex, instead of α(i). In some applications, line 4 may fail, in which case
lines 5 and 6 are skipped.

Apply some ũ
p

xn

α(i)

Figure 14.20: If the nearest point S lies in the state trajectory segment associated
to an edge, then the edge is split into two, and a new vertex is inserted into G.

stacles. Hence, let Xfree = X. The construction algorithm is defined in Figure
14.19; it may be helpful to compare it to Figure 5.16, which was introduced on
C for the Piano Mover’s Problem. The RDT, denoted by G, is initialized with a
single vertex at some x0 ∈ X. In each iteration, a new edge and vertex are added
to G. Line 3 uses ρ to choose xn, which is the nearest point to α(i) in the swath
of G. In the RDT algorithm of Section 5.5, each sample of α becomes a vertex.
Due to the BVP and the particular motion primitives in Up, it may be difficult or
impossible to precisely reach α(i). Therefore, line 4 calls an LPM to determine a
primitive ũp ∈ Up that produces a new state xr upon integration from xn. The
result is depicted in Figure 14.20. For the default case in which Up represents the
discrete-time model, the action is chosen by applying all u ∈ U over time ∆t and
selecting the one that minimizes ρ(xr, α(i)). One additional constraint is that if
xn has been chosen in a previous iteration, then ũp must be a motion primitive
that has not been previously tried from xn; otherwise, duplicate edges would re-
sult in G or time would be wasted performing collision checking for reachability
graph edges that are already known to be in collision. The remaining steps add
the new vertex and edge from xn. If xn is contained in the trajectory produced



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 837

by an edge e, then e is split as described in Section 5.5.1.

Efficiently finding nearest points The issues of Section 5.5.2 arise again for
RDTs under differential constraints. In fact, the problem is further complicated
because the edges in G are generally curved. This prevents the use of simple
point-segment distance tests. Furthermore, an exact representation of the state
trajectory is usually not known. Instead, it is approximated numerically by the
system simulator. For these reasons, it is best to use the approximate method of
determining the nearest point in the swath, which is a straightforward extension
of the discussion in Section 5.5.2; recall Figure 5.22. Intermediate vertices may be
inserted if the applied motion primitive yields a state trajectory that travels far
in Xfree. If the dimension is low enough (e.g., less than 20), then efficient nearest-
neighbor algorithms (Section 5.5.2) can be used to offset the cost of maintaining
intermediate vertices.

Handling obstacles Now suppose that Xobs 6= ∅. In Section 5.5.1, the RDT
was extended until a stopping configuration qs was reached, just in front of an
obstacle. There are two new complications under differential constraints. The first
is that motion primitives are used. If ∆t is small, then in many cases the time
will expire before the boundary is reached. This can be alleviated by using a large
∆t and then taking only the violation-free portion of the trajectory. In this case,
the trajectory may even be clipped early to avoid overshooting α(i). The second
complication is due to Xric. If momentum is substantial, then pulling the tree as
close as possible to obstacles will increase the likelihood that the RDT becomes
trapped. Vertices close to obstacles will be selected often because they have large
Voronoi regions, but expansion is not possible. In the case of the Piano Mover’s
Problem, this was much less significant because the tree could easily follow along
the boundary. In most experimental work, it therefore seems best to travel only
part of the way (perhaps half) to the boundary.

Tree-based planners Planning algorithms can be constructed from RDTs in
the same way as in Section 5.5. Forward, backward, and bidirectional versions
can be made. The main new complication is the familiar BVP that the other
sampling-based methods of this section have also suffered from. If it is expensive
or even impossible to connect nearby states, then the usual complications arise. If
XG contains a sizable open set, then a forward, single-tree planner with a gentle
bias toward the goal could perform well while avoiding the BVP. However, if XG

is a point, then a tolerance must be set on how close the RDT must get to the
goal before it can declare that it has a solution. For systems with drift, the search
time often increases dramatically as this tolerance decreases.

Bidirectional search offers great performance advantages in many cases, but the
BVP exists when attempting connections between the two trees. One possibility is
to set the tolerance very small and then concatenate the two action trajectories, as

838 S. M. LaValle: Planning Algorithms

described in Section 14.3.4. If it succeeds, then the planning algorithm successfully
terminates. Unfortunately, the performance once again depends greatly on the
tolerance, particularly if the drift is substantial. Recent studies have shown that
using a bidirectional RDT with a large connection tolerance and then closing the
gap by using efficient variational techniques provides dramatic improvement in
performance [61, 154]. Unfortunately, variational techniques are not efficient for
all systems because they must essentially solve the BVP by performing a gradient
descent in the trajectory space; see Section 14.7.

Distance function issues The RDT construction algorithm is heavily influ-
enced by the distance function ρ. This was also true for RDTs applied to the
Piano Mover’s Problem; however, it becomes more critical and challenging to de-
sign a good metric in the presence of differential constraints. For example, the
metric given by Example 5.3 is inappropriate for measuring the distance between
configurations for the Dubins car. A more appropriate metric is to use length
of the shortest path from q to q′ (this length is easy to compute; see Section
15.5). Such a metric would be more appropriate than the one in Example 5.3
for comparing the configurations, even for car models that involve dynamics and
obstacles.

Although many challenging problems can be solved using weighted Euclidean
metrics [166], dramatic improvements can be obtained by exploiting particular
properties of the system. This problem might seem similar to the choice of a po-
tential function for the randomized potential field planer of Section 5.4.3; however,
since RDTs approach many different samples in α(i), instead of focusing only on
the goal, the performance degradation is generally not as severe as the local min-
imum problem for a potential field planner. There are many more opportunities
to escape in an RDT. Metrics that would fail miserably as a potential function
often yield good performance in an RDT-based planner.

The ideal distance function, as mentioned in Section 14.3, is to use the optimal
cost-to-go, denoted here as ρ∗. Of course, computing ρ∗ is at least as hard as
solving the motion planning problem. Therefore, this idea does not seem practical.
However, it is generally useful to consider ρ∗ because the performance of RDT-
based planners generally degrades as ρ, the actual metric used in the RDT, and
ρ∗ diverge. An effort to make a crude approximation to ρ∗, even if obstacles
are neglected, often leads to great improvements in performance. An excellent
example of this appears in [104], in which value iteration was used to compute the
optimal cost-to-go in the absence of obstacles for an autonomous helicopter using
the maneuver automaton model of Figure 14.8.

Ensuring resolution completeness Suppose that the discrete-time model is
used. If α is dense in X, then each RDT vertex is visited a countably infinite
number of times after it is constructed. By ensuring that the same motion prim-
itive is never applied twice from the same vertex, all available motion primitives



14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 839

will eventually be tried. This ensures that the full reachability graph is explored
for a fixed ∆t. Since the reachability graph is not necessarily finite, obtaining
resolution completeness is more challenging. The scheme described in Figure 14.7
can be applied by periodically varying ∆t during execution, and using smaller and
smaller of values of ∆t in later iterations. If U is finite, refinements can also be
made to Ud. This leads to a resolution-complete RDT.

Designing good motion primitives Up to this point, only the discrete-time
model has been considered. Although it is the most straightforward and general,
there are often many better motion primitives that can be used. For a particu-
lar system, it may be possible to design a nice family of trajectories off-line in
the absence of obstacles and then use them as motion primitives in the RDT
construction. If possible, it is important to carefully analyze the system under
consideration to try to exploit any special structure it may have or techniques that
might have been developed for it. For motion planning of a vehicle, symmetries
can be exploited to apply the primitives from different states. For example, in
flying a helicopter, the yaw angle and the particular position (unless it is close to
the ground) may not be important. A family of trajectories designed for one yaw
angle and position should work well for others.

Using more complicated motion primitives may increase the burden on the
LPM. In some cases, a simple control law (e.g., PID [12]) may perform well. Ide-
ally, the LPM should behave like a good steering method, which could be obtained
using methods in Chapter 15. It is important to note, though, that the RDT’s
ability to solve problems does not hinge on this. It will greatly improve perfor-
mance if there are excellent motion primitives and a good steering method in the
LPM. The main reason for this is that the difficulties of the differential constraints
have essentially been overcome once this happens (except for the adverse effects
of drift). Although having good motion primitives can often improve performance
in practice, it can also increase the difficulty of ensuring resolution completeness.

14.4.4 Other Methods

Extensions of virtually any other method in Chapter 5 can be made to handle
differential constraints. Several possibilities are briefly mentioned in this section.

Randomized potential fields The randomized potential field method of Sec-
tion 5.4.3 can be easily adapted to handle differential constraints. Instead of
moving in any direction to reduce the potential value, motion primitives are ap-
plied and integrated to attempt to reduce the value. For example, under the
discrete-time model, each u ∈ Ud can be applied over ∆t, and the one for which
the next state has the lowest potential value should be selected as part of the
descent. Random walks can be tried whenever no such action exists, but once
again, motion in any direction is not possible. Random actions can be chosen

840 S. M. LaValle: Planning Algorithms

instead. The main problems with the method under differential constraints are
1) it is extremely challenging to design a good potential function, and 2) random
actions do not necessarily provide motions that are similar to those of a random
walk. Section 15.1.2 discusses Lyapunov functions, which serve as good potential
functions in the presence of differential constraints (but usually neglect obstacles).
In the place of random walks, other planning methods, such as an RDT, could be
used to try to escape local minima.

Other tree-based planners Many other tree-based planners can be extended
to handle differential constraints. For example, an extension of the expansive space
planner from Section 5.4.4 to kinodynamic planning for spacecrafts appears in
[126]. Recently, a new tree-based method, called the path-directed subdivision tree,
has been proposed for planning under differential constraints [151]. The method
works by choosing points at random in the swath, applying random actions, and
also using a space-partition data structure to control the exploration.

Sampling-based roadmap planners As stated already, it is generally difficult
to construct sampling-based roadmaps unless the BVP can be efficiently solved.
The steering methods of Section 15.5 can serve this purpose [250, 226]. In prin-
ciple, any of the single-query methods of Section 14.4 could be used; however, it
may be too costly to use them numerous times, which is required in the roadmap
construction algorithm.

14.5 Feedback Planning Under Differential Con-

straints

14.5.1 Problem Definition

Formulation 14.1 assumed that feedback is not necessary. If the initial state
is given, then the solution takes the form of an action trajectory, which upon
integration yields a time-parametrized path through Xfree. This extended the
Piano Mover’s Problem of Section 4.3.1 to include phase spaces and differential
constraints. Now suppose that feedback is required. The reasons may be that the
initial state is not given or the plan execution might not be predictable due to
disturbances or errors in the system model. Recall the motivation from Section
8.1.

With little effort, the feedback motion planning framework from Chapter 8
can be extended to handle differential constraints. Compare Formulations 8.2
and 14.1. Feedback motion planning under differential constraints is obtained by
making the following adjustments to Formulation 8.2:

1. In Formulation 8.2, X = Cfree, which automatically removed Cobs from C by
definition. Now let X be any C-space or phase space, and let Xobs be defined



14.5. FEEDBACK PLANNING UNDER DIFFERENTIAL CONSTRAINTS841

as in Formulation 8.2. This leads to Xfree, as defined in Formulation 14.1.

2. In Formulation 8.2, the state transition equation was ẋ = u, which directly
specified velocities in the tangent space Tx(X). Now let any system, ẋ =
f(x, u), be used instead. In this case, U(x) is no longer a subset of Tx(X).
It still includes the special termination action uT .

3. Formulation 14.1 includes xI , which is now removed for the feedback case
to be consistent with Formulation 8.2.

4. A feedback plan is now defined as a function π : Xfree → U . For a given
state x ∈ Xfree, an action π(x) is produced. Composing π with f yields
a velocity in Tx(X) given by ẋ = f(x, π(x)). Therefore, π defines a vector
field on Xfree.

Let tF denote the time at which uT is applied. Both feasible and optimal planning
can be defined using a cost functional,

L(x̃tF , ũtF ) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF )), (14.26)

which is identical to that given in Section 8.4.1. This now specifies the problem
of feedback motion planning under differential constraints.

The most important difference with respect to Chapter 8 is that ẋ = u is re-
placed with ẋ = f(x, u), which allows complicated differential models of Chapter
13 to be used. The vector field that results from π must satisfy the differen-
tial constraints imposed by ẋ = f(x, u). In Section 8.4.4, simple constraints on
the allowable vector fields were imposed, such as velocity bounds or smoothness;
however, these constraints were not as severe as the models in Chapter 13. For
example, the Dubins car does not allow motions in the reverse direction, whereas
the constraints in Section 8.4.4 permit motions in any direction.

14.5.2 Dynamic Programming with Interpolation

As observed in Section 14.4, motion planning under differential constraints is
extremely challenging. Additionally requiring feedback complicates the problem
even further. If Xobs = ∅, then a feedback plan can be designed using numerous
techniques from control theory. See Section 15.2.2 and [58, 140, 221]. In many
cases, designing feedback plans is no more difficult than computing an open-loop
trajectory. However, if Xobs 6= ∅, feedback usually makes the problem much
harder.

Fortunately, dynamic programming once again comes to the rescue. In Sec-
tion 2.3, value iteration yielded feedback plans for discrete state spaces and state
transition equations. It is remarkable that this idea can be generalized to the case
in which U and X are continuous and there is a continuum of stages (called time).
Most of the tools required to apply dynamic programming in the current setting

842 S. M. LaValle: Planning Algorithms

were already introduced in Section 8.5.2. The main ideas in that section were to
represent the optimal cost-to-go G∗ by interpolation and to use a discrete-time
approximation to the motion planning problem.

The discrete-time model of Section 14.2.2 can be used in the current setting
to obtain a discrete-stage state transition equation of the form xk+1 = fd(xk, uk).
The cost functional is approximated as in Section 8.5.2 by using (8.65). This
integral can be evaluated numerically by using the result of the system simulator
and yields the cost-per-stage as ld(xk, uk). Using backward value iteration, the
dynamic programming recurrence is

G∗
k(xk) = min

uk∈Ud

{

ld(xk, uk) +G∗
k+1(xk+1)

}

, (14.27)

which is similar to (2.11) and (8.56). The finite set Ud of action samples is used
if U is not already finite. The system simulator is applied to determine whether
some points along the trajectory lie in Xobs. In this case, ld(xk, uk) = ∞, which
prevents actions from being chosen that violate constraints.

As in Section 8.5.2, a set P ⊂ X of samples is used to approximate G∗ over
X. The required values at points in X \ P are obtained by interpolation. For
example, the barycentric subdivision scheme of Figure 8.20 may be applied here
to interpolate over simplexes in O(n lg n) time, in which n is the dimension of X.

As usual, backward value iteration starts at some final stage F and proceeds
backward through the stage indices. Termination occurs when all of the cost-to-go
values stabilize. The initialization at stage F yields G∗

F (x) = 0 for x ∈ XG ∩ P ;
otherwise, G∗

F (x) = ∞. Each subsequent iteration is performed by evaluating
(14.27) on each x ∈ P and using interpolation to obtain G∗

k+1(xk+1).
The resulting stationary cost-to-go function G∗ can serve as a navigation func-

tion over Xfree, as described in Section 8.5.2. Recall from Chapter 8 that a nav-
igation function is converted into a feedback plan by applying a local operator.
The local operator in the present setting is

π(x) = argmin
u∈Ud

{

ld(x, u) +G∗(fd(x, u))
}

, (14.28)

which yields an action for any state in Xfree that falls into an interpolation neigh-
borhood of some samples in P .

Unfortunately, the method presented here is only useful in spaces of a few
dimensions. If X = C, then it may be applied, for example, to the systems
in Section 13.1.2. If dynamics are considered, then in many circumstances the
dimension is too high because the dimension of X is usually twice that of C. For
example, if A is a rigid body in the plane, then the dimension of X is six, which
is already at the usual limit of practical use.

It is interesting to compare the use of dynamic programming here with that of
Sections 14.4.1 and 14.4.2, in which a search graph was constructed. If Dijkstra’s
algorithm is used (or even breadth-first search in the case of time optimality), then



14.5. FEEDBACK PLANNING UNDER DIFFERENTIAL CONSTRAINTS843

by the dynamic programming principle, the resulting solutions are approximately
optimal. To ensure convergence, resolution completeness arguments were given
based on Lipschitz conditions on f . It was important to allow the resolution to
improve as the search failed to find a solution. Instead of computing a search
graph, value iteration is based on computing cost-to-go functions. In the same
way that both forward and backward versions of the tree-based approaches were
possible, both forward and backward value iteration can be used here. Providing
resolution completeness is more difficult, however, because xI is not fixed. It is
therefore not known whether some resolution is good enough for the intended
application. If xI is known, then G

∗ can be used to generate a trajectory from xI
using the system simulator. If the trajectory fails to reach XG, then the resolution
can be improved by adding more samples to P and Ud or by reducing ∆t. Under
Lipschitz conditions on f , the approach converges to the true optimal cost-to-go
[26, 55, 148]. Therefore, value iteration can be considered resolution complete
with respect to a given xI . The convergence even extends to computing optimal
feedback plans with additional actions that are taken by nature, which is modeled
nondeterministically or probabilistically. This extends the value iteration method
of Section 10.6.

The relationship between the methods based on a search graph and on value
iteration can be brought even closer by constructing Dijkstra-like versions of value
iteration, as described at the end of Section 8.5.2. These extend Dijkstra’s algo-
rithm, which was viewed for the finite case in Section 2.3.3 as an improvement to
value iteration. The improvement to value iteration is made by recognizing that in
most evaluations of (14.27), the cost-to-go value does not change. This is caused
by two factors: 1) From some states, no trajectory has yet been found that leads
to XG; therefore, the cost-to-go remains at infinity. 2) The optimal cost-to-go
from some state might already be computed; no future iterations would improve
the cost.

A forward or backward version of a Dijkstra-like algorithm can be made. Con-
sider the backward case. The notion of a backprojection was used in Section
8.5.2 to characterize the set of states that can reach another set of states in one
stage. This was used in (8.68) to define the frontier during the execution of the
Dijkstra-like algorithm. There is essentially no difference in the current setting to
handle the system ẋ = f(x, u). Once the discrete-time approximation has been
made, the definition of the backprojection is essentially the same as in (8.66) of
Section 8.5.2. Using the discrete-time model of Section 14.2.2, the backprojection
of a state x ∈ Xfree is

B(x) = {x′ ∈ Xfree | ∃u ∈ Ud such that x = fd(x
′, u)}. (14.29)

The backprojection is closely related to the backward time-limited reachable set
from Section 14.2.1. The backprojection can be considered as a discrete, one-stage
version, which indicates the states that can reach x through the application of a
constant action u ∈ Ud over time ∆t. As mentioned in Section 8.5.2, comput-
ing an overapproximation to the frontier set may be preferable in practice. This

844 S. M. LaValle: Planning Algorithms

can be obtained by approximating the backprojections, which are generally more
complicated under differential constraints than for the case considered in Section
8.5.2. One useful simplification is to ignore collisions with obstacles in defining
B(x). Also, a simple bounding volume of the true backprojection may be used.
The trade-offs are similar to those in collision detection, as mentioned in Section
5.3.2. Sometimes the structure of the particular system greatly helps in determin-
ing the backprojections. A nice wavefront propagation algorithm can be obtained,
for example, for a double integrator; this is exploited in Section 14.6.3. For more
on value iteration and Dijkstra-like versions, see [165].

14.6 Decoupled Planning Approaches

14.6.1 Different Ways to Decouple the Big Problem

As sampling-based algorithms continue to improve along with computation power,
it becomes increasingly feasible in practice to directly solve challenging planning
problems under differential constraints. There are many situations, however, in
which computing such solutions is still too costly due to expensive numerical inte-
gration, collision detection, and complicated obstacles in a high-dimensional state
space. Decoupled approaches become appealing because they divide the big prob-
lem into modules that are each easier to solve. For versions of the Piano Mover’s
Problem, such methods were already seen in Chapter 7. Section 7.1.3 introduced
the velocity-tuning method to handle time-varying obstacles, and Section 7.2.2
presented decoupled approaches to coordinating multiple robots.

Ideally, we would like to obtain feedback plans on any state space in the pres-
ence of obstacles and differential constraints. This assumes that the state can
be reliably measured during execution. Section 14.5 provided the best generic
techniques for solving the problem, but they are unfortunately limited to a few
dimensions. If there is substantial sensing uncertainty, then the feedback plan
must be defined on the I-space, which was covered in Chapter 11. Back in Section
1.4, Figure 1.19 showed a popular model of decoupling the big planning prob-
lem into a sequence of refinements. A typical decoupled approach involves four
modules:

1. Use a motion planning algorithm to find a collision-free path τ : [0, 1] →
Cfree.

2. Transform τ into a new path τ ′ so that velocity constraints on C (if there are
any) are satisfied. This might, for example, ensure that the Dubins car can
actually follow the path. At the very least, some path-smoothing is needed
in most circumstances.

3. Compute a timing function σ : [0, tF ]→ [0, 1] for τ ′ so that τ ′ ◦ σ is a time-
parameterized path through Cfree with the following requirement. The state



14.6. DECOUPLED PLANNING APPROACHES 845

trajectory x̃ must satisfy ẋ = f(x(t), u(t)) and u(t) ∈ U(x(t)) for all time,
until uT is applied at time tF .

4. Design a feedback plan (or feedback control law) π : X → U that tracks x̃.
The plan should attempt to minimize the error between the desired state
and the measured state during execution.

Given recent techniques and computation power, the significance of this approach
may diminish somewhat; however, it remains an important way to decompose and
solve problems. Be aware, however, that this decomposition is arbitrary. If every
module can be solved, then it is sufficient for producing a solution; however, such
a decomposition is not necessary. At any step along the way, completeness may
be lost because of poor choices in earlier modules. It is often difficult for modules
to take into account problems that may arise later.

Various ways to merge the modules have been considered. The methods of
Section 14.4 solve either: 1) the first two modules simultaneously, if paths that
satisfy q̇ = f(q, u) are computed through Cfree, or 2) the first three modules simul-
taneously, if paths that satisfy ẋ = f(x, u) are computed through Xfree. Section
14.5 solved all four modules simultaneously but was limited to low-dimensional
state spaces.

Now consider keeping the modules separate. Planning methods from Part II
can be applied to solve the first module. Section 14.6.2 will cover methods that
implement the second module. Section 14.6.3 will cover methods that solve the
third module, possibly while also solving the second module. The fourth module
is a well-studied control problem that is covered in numerous texts [140, 221, 224].

14.6.2 Plan and Transform

For the decoupled approach in this section, assume that X = C, which means
there are only velocity constraints, as covered in Section 13.1. The system may be
specified as q̇ = f(q, u) or implicitly as a set of constraints of the form gi(q, q̇) = 0.
The ideas in this section can easily be extended to phase spaces. The method given
here was developed primarily by Laumond (see [164]) and was also applied to the
simple car of Section 13.1.2 in [158]; other applications of the method are covered
in [164].

An outline of the plan-and-transform approach is shown in Figure 14.21. In
the first step, a collision-free path τ : [0, 1] → Cfree is computed by ignoring
differential constraints. The path is then iteratively modified until it satisfies the
constraints. In each iteration, a subinterval [s1, s2] ⊆ [0, 1] is selected by specifying
some s1, s2 ∈ [0, 1] so that s1 < s2. These points may be chosen using random
sequences or may be chosen deterministically. The approach may use binary
subdivision to refine intervals and gradually improve the resolution on [0, 1] over
the iterations.

For each chosen interval [s1, s2], an LPM is used to compute a path segment γ :
[0, 1]→ Cfree that satisfies the conditions γ(0) = τ(s1) and γ(1) = τ(s2). It might

846 S. M. LaValle: Planning Algorithms

PLAN-AND-TRANSFORM APPROACH

1. Compute a path τ : [0, 1] → Cfree using a motion planning algorithm, such
as one from Part II.

2. Choose some s1, s2 ∈ [0, 1] such that s1 < s2 and use an LPM to attempt to
replace the portion of τ from τ(s1) to τ(s2) with a path γ that satisfies the
differential constraints.

3. If τ now satisfies the differential constraints over all [0, 1], then the algorithm
terminates. Otherwise, go to Step 2.

Figure 14.21: A general outline of the plan-and-transform approach.

qG

qI

τ(s1) τ(s2)

τ

Figure 14.22: An initial path that ignores differential constraints.

be the case that the LPM fails because it cannot connect the two configurations or
a collision may occur. In this case, another subinterval is chosen, and the process
repeats. Each time the LPM succeeds, τ is updated to τ ′ as

τ ′(s) =







τ(s) if s < s1
γ((s− s1)/(s2 − s1)) if s ∈ [s1, s2]
τ(s) if s > s2.

(14.30)

The argument to γ reparameterizes it to run from s1 to s2, instead of 0 to 1.

Example 14.5 (Plan-and-Transform for the Dubins Car) For a concrete
example, suppose that the task is to plan a path for the Dubins car. Figure 14.22
shows a path τ that might be computed by a motion planning algorithm that
ignores differential constraints. Two sharp corners cannot be traversed by the
car. Suppose that s1 and s2 are chosen at random, and appear at the locations
shown in Figure 14.22. The portion of τ between τ(s1) and τ(s2) needs to be
replaced by a path that can be executed by the Dubins car. Note that matching
the orientations at τ(s1) and τ(s2) is important because they are part of the
configuration.



14.6. DECOUPLED PLANNING APPROACHES 847

γ

τ(s1) τ(s2)

Figure 14.23: A path for the Dubins car can always be found by connecting a
bitangent to two circles generated by the minimum turning radius. The path is
not necessarily optimal; see Section 15.3.1 for optimal paths.

qG

qI

τ(s1) τ(s2)

Figure 14.24: Upon replacement, the resulting path τ ′ can be followed by the
Dubins car.

A replacement path γ is shown in Figure 14.23. This is obtained by implement-
ing the following LPM. For the Dubins car, a path between any configurations can
be found by drawing circles at the starting and stopping configurations as shown
in the figure. Each circle corresponds to the sharpest possible left turn or right
turn. It is straightforward to find a line that is tangent to one circle from each
configuration and also matches the direction of flow for the car (the circles are
like one-way streets). Using γ, the path τ is updated to obtain τ ′, which is shown
in Figure 14.24, and satisfies the differential constraints for the Dubins car. This
problem was very simple, and in practice dozens of iterations may be necessary to
replace path segments. Also, if randomization is used, then intervals of the form
[0, s] and [s, 1] must not be neglected.

�

Example 14.5 seemed easy because of the existence of a simple local planner.
Also, there were no obstacles. Imagine that τ instead traveled through a narrow,

848 S. M. LaValle: Planning Algorithms

zig-zagging corridor. In this case, a solution might not even exist because of
sharp corners that cannot be turned by the Dubins car. If there had been an single
obstacle that happened to intersect the loop in Figure 14.24, then the replacement
would have failed. In general, there is no guarantee that the replacement segment
is collision-free. It is important for the LPM to construct path segments that are
as close as possible to the original path. For the Dubins car, this is not possible
in many cases. For example, moving the Dubins car a small distance backward
requires moving along the circles shown in Figure 14.23. Even as the distance
between two configurations is reduced, the distance that the car needs to travel
does not approach zero. This is true even if the shortest possible paths are used
for the Dubins car.

What property should an LPM have to ensure resolution completeness of the
plan-and-transform approach? A sufficient condition is given in [164]. Let ρ
denote a metric on X. An LPM is said to satisfy the topological property if and
only if the following statement holds: For any ǫ > 0, there exists some δ > 0
such that for any pair q, q′ ∈ Cfree having ρ(q, q′) < δ implies that ρ(τ(s), q) < ǫ
for all s ∈ [0, 1]. If an LPM satisfies the topological property, then any collision-
free path through Cfree can be transformed into one that satisfies the differential
constraints. Suppose that a path τ has some clearance of at least ǫ in Cfree. By
dividing the domain of τ into intervals so that the change in q is no more than
δ over each interval, then the LPM will produce collision-free path segments for
replacement.

It turns out that for the Reeds-Shepp car (which has reverse) such an LPM
can be designed because it is small-time locally controllable, a property that will
be covered in Sections 15.1.3 and 15.4. In general, many techniques from Chapter
15 may be useful for analyzing and designing effective LPMs.

An interesting adaptation of the plan-and-transform approach has been de-
veloped for problems that involve k implicit constraints of the form gi(q, q̇) = 0.
An outline of the multi-level approach, which was introduced in [226], is shown
in Figure 14.25 (a similar approach was also introduced in [89]). The idea is to
sort the k constraints into a sequence and introduce them one at a time. Initially,
a path is planned that ignores the constraints. This path is first transformed to
satisfy g1(q, q̇) = 0 and avoid collisions by using the plan-and-transform method
of Figure 14.21. If successful, then the resulting path is transformed into one
that is collision-free and satisfies both g1(q, q̇) = 0 and g2(q, q̇) = 0. This process
repeats by adding one constraint each time, until either the method fails or all k
constraints have been taken into account.

14.6.3 Path-Constrained Trajectory Planning

This section assumes that a path τ : [0, 1] → Cfree has been given. It may be
computed by a motion planning algorithm from Part II or given by hand. The
remaining task is to determine the speed along the path in a way that satisfies



14.6. DECOUPLED PLANNING APPROACHES 849

MULTI-LEVEL APPROACH

1. Compute a path τ : [0, 1] → Cfree using a standard motion planning algo-
rithm (as in Part II), and let i = 1.

2. Transform τ into a collision free path that satisfies gj(q, q̇) = 0 for all j from
1 to i.

3. If the transformation failed in Step 2, then terminate and report failure.

4. If i < k, the number of implicit velocity constraints, then increment i and
go to Step 2. Otherwise, terminate and successfully report τ as a path that
satisfies all constraints.

Figure 14.25: The multi-level approach considers implicit constraints one at a
time.

differential constraints on the phase space X. Assume that each state x ∈ X
represents both a configuration and its time derivative, to obtain x = (q, q̇). Let
n denote the dimension of C; hence, the dimension of X is 2n. Once a path is
given, there are only two remaining degrees of freedom in X: 1) the position
s ∈ [0, 1] along the domain of τ , and 2) the speed ṡ = ds/dt at each s. The
full state, x, can be recovered from these two parameters. As the state changes,
it must satisfy a given system, ẋ = f(x, u). It will be seen that a 2D planning
problem arises, which can be solved efficiently using many alternative techniques.
Similar concepts appeared for decoupled versions of time-varying motion planning
in Section 7.1. The presentation in the current section is inspired by work in time-
scaling paths for robot manipulators [124, 230, 233], which was developed a couple
of decades ago. At that time, computers were much slower, which motivated the
development of strongly decoupled approaches.

Expressing systems in terms of s, ṡ, and s̈

Suppose that a system is given in the form

q̈ = h(q, q̇, u), (14.31)

in which there are n action variables u = (u1, . . . , un). It may be helpful to glance
ahead to Example 14.6, which will illustrate the coming concepts for the simple
case of double integrators q̈ = u. The acceleration in C is determined from the state
x = (q, q̇) and action u. Assume u ∈ U , in which U is an n-dimensional subset of
R
n. If h is nonsingular at x, then an n-dimensional set of possible accelerations

arises from choices of u ∈ U . This means it is fully actuated. If there were fewer
than n action variables, then there would generally not be enough freedom to
follow a specified path. Therefore, U must be n-dimensional. Which choices of

850 S. M. LaValle: Planning Algorithms

u, however, constrain the motion to follow the given path τ? To determine this,
the q, q̇, and q̈ variables need to be related to the path domain s and its first and
second time derivatives ṡ and s̈, respectively. This leads to a subset of U that
corresponds to actions that follow the path.

Suppose that s, ṡ, s̈, and a path τ are given. The configuration q ∈ Cfree is

q = τ(s). (14.32)

Assume that all first and second derivatives of τ exist. The velocity q̇ can be
determined by the chain rule as

q̇ =
dτ

ds

ds

dt
=
dτ

ds
ṡ, (14.33)

in which the derivative dτ/ds is evaluated at s. The acceleration is obtained by
taking another derivative, which yields

q̈ =
d

dt

(

dτ

ds
ṡ

)

=
d2τ

ds2
ds

dt
ṡ+

dτ

ds
s̈

=
d2τ

ds2
ṡ2 +

dτ

ds
s̈,

(14.34)

by application of the product rule. The full state x = (q, q̇) can be recovered from
(s, ṡ) using (14.32) and (14.33).

The next step is to obtain an equation that looks similar to (14.31), but is
expressed in terms of s, ṡ, and s̈. A function h′(s, ṡ, u) can be obtained from
h(q, q̇, u) by substituting τ(s) for q and the right side of (14.33) for q̇:

h′(s, ṡ, u) = h(τ(s),
dτ

ds
ṡ, u). (14.35)

This yields
q̈ = h′(s, ṡ, u). (14.36)

For a given state x (which can be obtained from s and ṡ), the set of accelerations
that can be obtained by a choice of u in (14.36) is the same as that for the original
system in (14.31). The only difference is that x is now constrained to a 2D subset
of X, which are the states that can be reached by selecting values for s and ṡ.

Applying (14.34) to the left side of (14.36) constrains the accelerations to cause
motions that follow τ . This yields

d2τ

ds2
ṡ2 +

dτ

ds
s̈ = h′(s, ṡ, u), (14.37)

which can also be expressed as

dτ

ds
s̈ = h′(s, ṡ, u)− d2τ

ds2
ṡ2, (14.38)



14.6. DECOUPLED PLANNING APPROACHES 851

Cfree

τ(1)

τ(0) τ(2/3)

τ(1/3)

Figure 14.26: A bad path for path-constrained trajectory planning.

by moving the first term of (14.34) to the right. Note that n equations are actually
represented in (14.38). For each i in which dτi/ds 6= 0, a constraint of the form

s̈ =
1

dτi/ds
h′i(s, ṡ, ui)−

d2τi
ds2

ṡ2 (14.39)

is obtained by solving for s̈.

Determining the allowable accelerations

The actions in U that cause τ to be followed can now be characterized. An action
u ∈ U follows τ if and only if every equation of the form (14.39) is satisfied. If
dτi/ds 6= 0 for all i from 1 to n, then n such equations exist. Suppose that u1 is
chosen, and the first equation is solved for s̈. The required values of the remaining
action variables u2, . . ., un can be obtained by substituting the determined s̈ value
into the remaining n− 1 equations. This means that the actions that follow τ are
at most a one-dimensional subset of U .

If dτi/ds = 0 for some i, then following the path requires that q̇i = 0. Instead
of (14.39), the constraint is that hi(q, q̇, u) = 0. Example 14.6 will provide a
simple illustration of this. If dτi/ds = 0 for all i, then the configuration is not
allowed to change. This occurs in the degenerate (and useless) case in which τ is
a constant function.

In many cases, a value of u does not exist that satisfies all of the constraint
equations. This means that the path cannot be followed at that particular state.
Such states should be removed, if possible, by defining phase constraints on X.
By a poor choice of path τ violating such a phase constraint may be unavoidable.
There may exist some s for which no u ∈ U can follow τ , regardless of ṡ.

Even if a state trajectory may be optimal in some sense, its quality ultimately
depends on the given path τ : [0, 1] → Cfree. Consider the path shown in Fig-
ure 14.26. At τ(1/3), a “corner” is reached. This violates the differentiability
assumption and would require infinite acceleration to traverse while remaining on
τ . For some models, it may be possible to stop at τ(1/3) and then start again.
For example, imagine a floating particle in the plane. It can be decelerated to

852 S. M. LaValle: Planning Algorithms

rest exactly at τ(1/3) and then started in a new direction to exactly follow the
curve. This assumes that the particle is fully actuated. If there are nonholonomic
constraints on C, as in the case of the Dubins car, then the given path must at
least satisfy them before accelerations can be considered. The solution in this case
depends on the existence of decoupling vector fields [52, 71].

It is generally preferable to round off any corners that might have been pro-
duced by a motion planning algorithm in constructing τ . This helps, but it still
does not completely resolve the issue. The portion of the path around τ(2/3) is
not desirable because of high curvature. At a fixed speed, larger accelerations
are generally needed to follow sharp turns. The speed may have to be decreased
simply because τ carelessly requires sharp turns in C. Imagine developing an
autonomous double-decker tour bus. It is clear that following the curve around
τ(2/3) may cause the bus to topple at high speeds. The bus will have to slow
down because it is a slave to the particular choice of τ .

The path-constrained phase space

Recall the approach in Section 14.4.1 that enabled systems of the form q̈ =
h(q, q̇, u) to be expressed as q̈ = u′ for some suitable U ′(q, q̇) ⊆ U (this was
illustrated in Figure 14.15). This enabled many systems to be imagined as mul-
tiple, independent double integrators with phase-dependent constraints on the
action space. The same idea can be applied here to obtain a single integrator.

Let S denote a 2D path-constrained phase space, in which each element is of
the form (s, ṡ) and represents the position and velocity along τ . This parame-
terizes a 2D subset of the original phase space X. Each original state vector is
x = (q, q̇) = (τ(s), dτ/ds ṡ). Which accelerations are possible at points in S? At
each (s, ṡ), a subset of U can be determined that satisfies the equations of the
form (14.39). Each valid action yields an acceleration s̈. Let U ′(s, ṡ) ⊆ R denote
the set of all values of s̈ that can be obtained from an action u ∈ U that satisfies
(14.39) for each i (except the ones for which dτi/ds = 0). Now the system can be
expressed as s̈ = u′, in which u′ ∈ U ′(s, ṡ). After all of this work, we have arrived
at the double integrator. The main complication is that U ′(s, ṡ) can be challeng-
ing to determine for some systems. It could consist of a single interval, disjoint
intervals, or may even be empty. Assuming that U ′(s, ṡ) has been characterized,
it is straightforward to solve the remaining planning problem using techniques
already presented in this chapter. One double integrator is not very challenging;
hence, efficient sampling-based algorithms exist.

An obstacle region Sobs ⊂ S will now be considered. This includes any states
that belong to Xfree. Given s and ṡ, the state x can be computed to determine
whether any constraints on X are violated. Usually, τ is constructed to avoid
obstacle collision; however, some phase constraints may also exist. The obstacle
region Sobs also includes any points (s, ṡ) for which U ′(s, ṡ) is empty. Let Sfree
denote S \ Sobs.

Before considering computation methods, we give some examples.



14.6. DECOUPLED PLANNING APPROACHES 853

Example 14.6 (Path-Constrained Double Integrators) Consider the case
of two double integrators. This could correspond physically to a particle moving
in R

2. Hence, C = W = R
2. Let U = [−1, 1]2 and q̈ = u for u ∈ U . The

path τ will be chosen to force the particle to move along a line. For linear paths,
dτ/ds is constant and d2τ/ds2 = 0. Using these observations and the fact that
h′(s, ṡ, u) = u, (14.39) simplifies to

s̈ =
ui

dτi/ds
, (14.40)

for i = 1, 2.
Suppose that τ(s) = (s, s), which means that the particle must move along a

diagonal line through the origin of C. This further simplifies (14.40) to s̈ = u1 and
s̈ = u2. Hence any u1 ∈ [−1, 1] may be chosen, but u2 must then be chosen as
u2 = u1. The constrained system can be written as one double integrator s̈ = u′,
in which u′ ∈ [−1, 1]. Both u1 and u2 are derived from u′ as u1 = u2 = u′. Note
that U ′ does not vary over S; this occurs because a linear path is degenerate.

Now consider constraining the motion to a general line:

τ(s) = (a1s+ b1, a2s+ b2), (14.41)

in which a1 and a2 are nonzero. In this case, (14.40) yields s̈ = u1/a1 and s̈ =
u2/a2. Since each ui ∈ [−1, 1], each equation indicates that s̈ ∈ [−1/ai, 1/ai]. The
acceleration must lie in the intersection of these two intervals. If |a1| ≥ |a2|, then
s̈ ∈ [−1/a1, 1/a1]. We can designate u′ = u1 and let u2 = u′a2/a1. If |a1| > |a2|,
then s̈ ∈ [−1/a2, 1/a2], u′ = u2, and u1 = u′a1/a2.

Suppose that a1 = 0 and a2 6= 0. The path is

τ(s) = (q1, a2s+ b2), (14.42)

in which q1 is fixed and the particle is constrained to move along a vertical line
in C = R

2. In this case, only one constraint, s̈ = u2, is obtained from (14.40).
However, u1 is independently constrained to u1 = 0 because horizontal motions
are prohibited.

If n independent, double integrators are constrained to a line, a similar result
is obtained. There are n equations of the form (14.40). The i ∈ {1, . . . , n} for
which |ai| is largest determines the acceleration range as s̈ ∈ [−1/ai, 1/ai]. The
action u′ is defined as u′ = ui, and the uj for j 6= i are obtained from the remaining
n− 1 equations.

Now assume τ is nonlinear, in which case (14.39) becomes

s̈ =
ui

dτi/ds
− d2τi
ds2

ṡ2, (14.43)

for each i for which dτi/ds 6= 0. Now the set U ′(s, ṡ) varies over S. As the
speed ṡ increases, it becomes less likely that U ′(s, ṡ) is nonempty. In other words,

854 S. M. LaValle: Planning Algorithms

it is less likely that a solution exists to all equations of the form (14.43). In a
physical system, that means that staying on the path requires turning too sharply.
At a high speed, this may require an acceleration q̈ that lies outside of [−1, 1]n. �

The same ideas can be applied to systems that are much more complicated.
This should not be surprising because in Section 14.4.1 systems of the form q̈ =
h(q, q̇) were interpreted as multiple, independent double integrators of the form
q̈ = u′, in which u′ ∈ U ′(q, q̇) provided the possible accelerations. Under this
interpretation, and in light of Example 14.6, constraining the motions of a general
system to a path τ just further restricts U ′(q, q̇). The resulting set of allowable
accelerations may be at most one-dimensional.

The following example indicates the specialization of (14.39) for a robot arm.

Example 14.7 (Path-Constrained Manipulators) Suppose that the sys-
tem is described as (13.142) from Section 13.4.2. This is a common form that has
been used for controlling robot arms for decades. Constraints of the form (14.39)
can be derived by expressing q, q̇, and q̈ in terms of s, ṡ, and s̈. This requires
using (14.32), (14.33), and (14.34). Direct substitution into (13.142) yields

M(τ(s))

(

d2τ

ds2
ṡ2 +

dτ

ds
s̈

)

+ C
(

τ(s),
dτ

ds
ṡ
)dτ

ds
ṡ+ g(τ(s)) = u. (14.44)

This can be simplified to n equations of the form

αi(s)s̈+ βi(s)ṡ
2 + γi(s)ṡ = ui. (14.45)

Solving each one for s̈ yields a special case of (14.39). As in Example 14.6, each
equation determines a bounding interval for s̈. The intersection of the intervals
for all n equations yields the allowed interval for s̈. The action u′ once again
indicates the acceleration in the interval, and the original action variables ui can
be obtained from (14.45). If dτi/ds = 0, then αi(s) = 0, which corresponds to the
case in which the constraint does not apply. Instead, the constraint is that the
vector u must be chosen so that q̇i = 0. �

Computing optimal solutions via dynamic programming

Dynamic programming with interpolation, as covered in Section 14.5, can be
applied to solve the problem once it is formulated in terms of the path-constrained
phase space S ⊂ R

2. The domain of τ provides the constraint 0 ≤ s ≤ 1.
Assume that only forward progress along the path is needed; moving in the reverse
direction should not be necessary. This implies that ṡ > 0. To make S bounded,
an upper bound, ṡmax, is usually assumed, beyond which it is known that the
speed is too high to follow the path.



14.6. DECOUPLED PLANNING APPROACHES 855

ṡ

s

ṡmax

Sobs

Sobs

0 1
0

ṡ

s0 1

(a) (b)

Figure 14.27: (a) Planning occurs in the path-constrained phase space. (b) Due
to the forward-progress assumption, value iteration can be reduced to a quick
wavefront propagation across regularly spaced vertical lines in S.

This results in the planning problem shown in Figure 14.27a. The system is
expressed as s̈ = u′, in which u′ ∈ U ′(s, ṡ). The initial phase in S is (0, ṡi) and
the goal phase is (1, ṡg). Typically, ṡi = ṡg = 0. The region shown in Figure 14.27
is contained in the first quadrant of the phase space because only positive values
of s and ṡ are allowed (in Figure 14.13, q and q̇ could be positive or negative).
This implies that all motions are to the right. The actions determine whether
accelerations or decelerations will occur.

Backward value iteration with interpolation can be easily applied by discretiz-
ing S and U ′(s, ṡ). Due to the constraint ṡ > 0, making a Dijkstra-like version
of the algorithm is straightforward. A simple wavefront propagation can even be
performed, starting at s = 1 and progressing backward in vertical waves until
s = 0 is reached. See Figure 14.27b. The backprojection (14.29) can be greatly
simplified. Suppose that the s-axis is discretized into m+ 1 regularly spaced val-
ues s0, . . ., sm at every ∆s, for some fixed ∆s > 0. Thus, sk = (k∆s)/m. The
index k can be interpreted as the stage. Starting at k = m, the final cost-to-go
G∗
m(sm, ṡm) is defined as 0 if the corresponding phase represents the goal, and ∞

otherwise. At each sk, the ṡ values are sampled, and the cost-to-go function is
represented using one-dimensional linear interpolation along the vertical axis. At
each stage, the dynamic programming computation

G∗
k(sk, ṡk) = min

u′∈U ′(sk,ṡk)

{

l′d(sk, ṡk, u
′) +G∗

k+1(sk+1, ṡk+1)
}

(14.46)

is performed at each ṡ sample. This represents a special form of (14.27). Linear
interpolation over discretized ṡ values is used to evaluate G∗

k+1(sk+1, ṡk+1). The

856 S. M. LaValle: Planning Algorithms

cost term l′d is obtained from ld by computing the original state x ∈ X from
s and ṡ; however, if the trajectory segment enters Sobs, it receives infinite cost.
The computations proceed until stage k = 1, at which time the optimal cost-to-go
G∗

1(s1, ṡ1) is computed. The optimal trajectory is obtained by using the cost-to-go
function at each stage as a navigation function.

The dynamic programming approach is so general that it can even be extended
to path-constrained trajectory planning in the presence of higher order constraints
[234]. For example, if a system is specified as q(3) = h(q, q̇, q̈, u), then a 3D path-
constrained phase space results, in which each element is expressed as (s, ṡ, s̈).
The actions in this space are jerks, yielding s(3) = u′ for u′ ∈ U ′(s, ṡ, s̈).

A bang-bang approach for time optimality

The dynamic programming approach is already very efficient because the search
is confined to two dimensions. Nevertheless, trajectories that are time optimal
can be computed even more efficiently if Sobs has some special structure. The
idea is to find an alternating sequence between two motion primitives: one of
maximum acceleration and one of maximum deceleration. This kind of switching
between extreme opposites is often called bang-bang control and arises often in
the development of time-optimal control laws (look ahead to Example 15.4). The
method explained here was introduced in [38, 233]. One drawback of obtaining
time-optimal trajectories is that they cannot be tracked (the fourth module from
Section 14.6.1) if errors occur because the solutions travel on the boundary of the
reachable set.

The approach was developed for robot arms, as considered in Example 14.7.
Suppose that Sobs is a single connected component that is bounded above by ṡmax,
and on the sides it is bounded by s = 0 and s = 1. It is assumed that S arises
only due to the vanishing of the interval of allowable values for s̈ (in this case,
U ′(s, ṡ) becomes empty). It is also assumed that the lower boundary of Sobs can be
expressed as a differentiable function φ : [0, 1]→ S, called the limit curve, which
yields the maximum speed ṡ = φ(s) for every s ∈ [0, 1]. The method is extended
to handle multiple obstacles in [233], but this case is not considered here. Assume
also that dτi/ds 6= 0 for every i; the case of dτi/ds = 0 can also be handled in the
method [232].

Let u′min(s, ṡ) and u
′
max(s, ṡ) denote the smallest and largest possible acceler-

ations, respectively, from (s, ṡ) ∈ S. If (s, ṡ) 6∈ Sobs, then u′min(s, ṡ) < u′max(s, ṡ).
At the limit curve, u′min(s, φ(s)) = u′max(s, φ(s)). Applying the only feasible action
in this case generates a velocity that is tangent to the limit curve. This is called
a tangent point, (stan, ṡtan), to φ. Inside of Sobs, no accelerations are possible.

The bang-bang approach is described in Figure 14.28, and a graphical illustra-
tion appears in Figure 14.29. Assume that the initial and goal phases are (0, 0)
and (1, 0), respectively. Step 1 essentially enlarges the goal by constructing a
maximum-deceleration curve that terminates at (1, 0). A trajectory that con-
tacts this curve can optimally reach (1, 0) by switching to maximum deceleration.



14.6. DECOUPLED PLANNING APPROACHES 857

BANG-BANG APPROACH

1. From the final state (1, 0), apply reverse-time integration to s̈ = u′min(s, ṡ).
Continue constructing the curve numerically until either the interior of Sobs
is entered or ṡ = 0. In the latter case, the algorithm terminates with failure.

2. Let (scur, ṡcur) = (0, 0).

3. Apply forward integration s̈ = u′max(s, ṡ) from (scur, ṡcur) until either the
interior of Sobs is entered or the curve generated in Step 1 is crossed. In the
latter case, the problem is solved.

4. Starting at the point where the trajectory from Step 3 crossed the limit
curve, find next tangent point (stan, ṡtan) to the right along the limit curve.
From (stan, ṡtan), perform reverse integration on s̈ = u′min(s, ṡ) until the
curve from Step 3 is hit. Let (scur, ṡcur) = (stan, ṡtan) and go to Step 3.

Figure 14.28: The bang-bang approach finds a time-optimal, path-constrained
trajectory with less searching than the dynamic programming approach.

s

ṡ

0 1

Sobs

Figure 14.29: An illustration of the bang-bang approach to computing a time-
optimal trajectory. The solution trajectory is obtained by connecting the dots.

858 S. M. LaValle: Planning Algorithms

Steps 3 and 4 construct a maximum-acceleration curve followed by a maximum-
deceleration curve. The acceleration curve runs until it pierces the limit curve.
This constraint violation must be avoided. Therefore, a deceleration must be de-
termined that departs earlier from the acceleration curve and just barely misses
entering the interior of Sobs. This curve must become tangent to the limit curve;
therefore, a search is made along the limit curve for the next possible tangent
point. From there, reverse-time integration is used in Step 4 to generate a de-
celeration curve that contacts the acceleration curve. A portion of the solution
has now been obtained in which an acceleration is followed by a deceleration that
arrives at a tangent point of φ. It is possible that Step 4 is not reached because
the curve that connects to the goal is contacted. Starting from the tangent point,
Steps 3 and 4 are repeated until the goal curve is contacted.

14.7 Gradient-Based Trajectory Optimization

This section provides a brief overview of a complementary problem to motion
planning. Suppose that an algorithm in this chapter returns a feasible action
trajectory. How can the solution be improved? Trajectory optimization refers to
the problem of perturbing the trajectory while satisfying all constraints so that its
quality can be improved. For example, it may be desirable to shorten a trajectory
computed by an RRT, to remove some of the arbitrary changes in actions due to
randomization. Trajectory optimization is considered complementary to motion
planning because it usually requires an initial guess, which could be provided by a
planning algorithm. Trajectory optimization can be considered as a kind of BVP,
but one that improves an initial guess, as opposed to determining trajectories
from scratch.

The optimization issue also exists for paths computed by sampling-based algo-
rithms for the Piano Mover’s Problem; however, without differential constraints,
it is much simpler to shorten paths. The plan and transform method of Section
14.6.2 can be applied, and the LPM just connects pairs of configurations along
the shortest path in C. In the presence of differential constraints, the BVP must
be faced.

In the most general setting, it is very difficult to improve trajectories. There
are numerous methods from optimization literature; see [28, 48, 176] for overviews.
The purpose of this section is to encourage further study by briefly mentioning the
various kinds of methods that have been developed, instead of explaining them
in detail. The methods fall under the area of nonlinear programming (NLP) (or
nonlinear optimization), as opposed to linear programming, which was used to find
randomized security strategies in Section 9.3. The optimization actually occurs
in a space of possible trajectories, each of which is a function of time. Therefore,
the calculus of variations, which was used in Section 13.4.1, becomes relevant
to characterize extrema. The functional Φ from that setting becomes the cost
functional L in the current setting. The system ẋ = f(x, u) forms an additional



14.7. GRADIENT-BASED TRAJECTORY OPTIMIZATION 859

set of constraints that must be satisfied, but u can be selected in the optimization.
To enable numerical computation methods, a family of trajectories is speci-

fied in terms of a parameter space. The optimization can then be viewed as an
incremental search in the parameter space while satisfying all constraints. The
direction of motion in each step is determined by computing the gradient of a
cost functional with respect to the parameters while constrained to move in a
direction tangent to the constraints. Hence, much of nonlinear programming can
be considered as an application of Newton’s method or gradient descent. As in
standard optimization, second-order derivatives of the cost functional can be used
to indicate when the search should terminate. The numerical issues associated
with these methods are quite involved; several NLP software packages, such as
the NAG Fortran Library or packages within Matlab, are available.

Nonlinear optimal control theory can be considered as a variant of NLP.
The dynamic programming recurrence becomes a differential equation in the
continuous-time setting, and Hamilton’s equations (13.198) generalize to Pontrya-
gin’s minimum principle. These are covered in Section 15.2. The extra variables
that arise in the minimum principle can be considered as Lagrange multipliers of
a constrained optimization, in which ẋ = f(x, u) is the constraint. The differen-
tial equations arising from dynamic programming or the minimum principle are
difficult to solve analytically; therefore, in most cases, numerical techniques are
used. The case of numerical dynamic programming was covered in Section 14.5.

Shooting methods constitute the simplest family of trajectory optimization
methods. As a simple example, suppose that an action trajectory ũ : [0, tF ]→ R

has been computed of the form

u(t) = w1 + w2t, (14.47)

in which w1 and w2 are some fixed parameters. Consider perturbing w1 and w2

by some small amount and applying the integration in (14.1). If f satisfies Lip-
schitz conditions, then a small perturbation should produce a small change in
x̃. The resulting new trajectory can be evaluated by a cost functional to deter-
mine whether it is an improvement. It might, for example, have lower maximum
curvature. Rather than picking a perturbation at random, the gradient of the
cost functional with respect to the parameters can be computed. A small step
in the parameter space along the negative gradient direction should reduce the
cost. It is very likely, however, that perturbing w1 and w2 will move the final state
x(tF ). Usually, a termination condition, such as x(tF ) = xG, must be enforced
as a constraint in the optimization. This removes degrees of freedom from the
optimization; therefore, more trajectory parameters are often needed.

Suppose more generally that a motion planning algorithm computes an action
sequence based on the discrete-time model. Each action in the sequence remains
constant for duration ∆t. The time duration of each action can instead be defined
as a parameter to be perturbed. Each action variable ui over each interval could
also be perturbed using by (14.47) with the initial condition that w1 = ui and

860 S. M. LaValle: Planning Algorithms

w2 = 0. The dimension of the search has increased, but there are more degrees of
freedom. In some formulations, the parameters may appear as implicit constraints;
in this case, a BVP must be solved in each iteration. The minimum principle
is often applied in this case [28]. More details on formulating and solving the
trajectory optimization problem via shooting appear in [48].

Several difficulties are encountered when applying the shooting technique to
trajectory optimization among obstacles. Each perturbation requires integration
and collision-checking. For problems involving vehicles, the integrations can some-
times be avoided by exploiting symmetries [60]. For example, a path for the Du-
bins car can be perturbed by changing a steering angle over a short amount of
time, and the rest of the trajectory can simply be transformed using a matrix of
SE(2). A critical problem is that following the negative gradient may suggest
shortening the path in a way that causes collision. The problem can be alleviated
by breaking the trajectory into segments, as in the plan-and-transform approach;
however, this yields more optimizations. Another possible solution is to invent a
penalty function for the obstacles; however, this is difficult due to local minima
problems and the lack of representing the precise boundary of Xobs.

Another difficulty with shooting is that a small change in the action near the
starting time may lead to great changes in the states at later times. One way
to alleviate this problem is by multiple shooting (as opposed to single shooting,
which has been described so far). In this case, the trajectory is initially broken
into segments. These could correspond to the time boundaries imposed by a
sequence of motion primitives. In this case, imagine perturbing each motion
primitive separately. Extra constraints are needed in this case to indicate that all
of the trajectory pieces must remain connected. The multiple shooting method
can be generalized to a family of methods called transcription or collocation (see
[28] for references). These methods again split the trajectory into segments, but
each connection constraint relates more points along the trajectory than just the
segment endpoints. One version of transcription uses implicit constraints, which
require using another BVP solver, and another version uses parametric constraints,
which dramatically increases the dimension of the search. The latter case is still
useful in practice by employing fast, sparse-matrix computation methods.

One of the main difficulties with trajectory optimization methods is that they
can become stuck in a local minimum in the space of trajectories. This means that
their behavior depends strongly on the initial guess. It is generally impossible for
them to find a trajectory that is not homotopic to the initial trajectory. They
cannot recover from an initial guess in a bad homotopy class. If Xobs is compli-
cated, then this issue becomes increasingly important. In many cases, variational
techniques might not even find an optimal solution within a single homotopy class.
Multiple local minima may exist if the closure of Xfree contains positive curvature.
If it does not, the space is called nonpositively curved (NPC) or CAT(0), which
is a property that can be derived directly from the metric on X [45]. For these
spaces, the locally optimal trajectory with respect to the metric is always the best



14.7. GRADIENT-BASED TRAJECTORY OPTIMIZATION 861

within its homotopy class.

Further Reading

The characterization and computation of reachable sets has been growing in interest
[29, 31, 185, 186, 244, 253]. One motivation for studying reachability is verification,
which ensures that a control system behaves as desired under all possible disturbances.
This can actually be modeled as a game against nature, in which nature attempts
to bring the system into an undesirable state (e.g., crashing an airplane). For recent
progress on characterizing Xric, see [97]. The triangularization argument for complete-
ness appears in a similar context in [84]. The precise rate of convergence, expressed
in terms of dispersion and Lipschitz conditions, for resolution-complete sampling-based
motion planning methods under differential constraints is covered in [59]. For the com-
putational complexity of control problems, see [36, 200]. For further reading on motion
primitives in the context of planning, see [102, 103, 104, 108, 205, 208, 222]. For further
reading on dynamical simulation and numerical integration, see [88, 120, 228].

Section 14.4.1 was based on [81, 83, 121]. For more works on kinodynamic planning,
see [65, 73, 82, 98, 102, 166, 201, 264]. Section 14.4.2 was inspired by [20]. Section
14.4.3 was drawn from [166]. For more work on RRTs under differential constraints, see
[44, 62, 71, 87, 102, 108, 138, 252]. For other works on nonholonomic planning, see the
survey [164] and [19, 79, 90, 91, 96, 99, 132, 156, 172, 179]. Combinatorial approaches
to nonholonomic planning have appeared in [4, 40, 94].

Section 14.5 was developed by adapting value iteration to motion planning problems.
For general convergence theorems for value iteration with interpolation, see [55, 84, 111,
148, 149]. In [55], global constraints on the phase space are actually considered. The use
of these techniques and the development of Dijkstra-like variants are covered in [165].
Related work exists in artificial intelligence [190] and control theory [251].

Decoupled approaches to planning, as covered in Section 14.6, are very common in
robotics literature. For material related to the plan-and-transform method, see [89, 164,
226]. For more on decoupled trajectory planning and time scaling, see [95, 124, 125,
220, 230, 231, 234, 235], and see [33, 37, 38, 203, 233, 236, 232] for particular emphasis
on time-optimal trajectories.

For more on gradient-based techniques in general, see [28] and references therein.
Classical texts on the subject are [48, 176]. Gradient-based approaches to path defor-
mation in the context of nonholonomic planning appear in [60, 92, 153].

The techniques presented in this chapter are useful in other fields beyond robotics.
For aerospace applications of motion planning, see [24, 64, 118, 119, 204]. Motion
planning problems and techniques have been gaining interest in computer graphics,
particularly for generating animations of virtual humans (or digital actors); works in
this area include [9, 24, 108, 135, 142, 144, 146, 160, 167, 173, 187, 210, 256]. In many
of these works, motion capture is a popular way to generate a database of recorded
motions that serves as a set of motion primitives in the planning approach.

862 S. M. LaValle: Planning Algorithms

Exercises

1. Characterize Xric for the case of a point mass in W = R
2, with each coordinate

modeled as a double integrator. Assume that u1 = 1 and u2 may take any value
in [−1, 1]. Determine Xric for:

(a) A point obstacle at (0, 0) in W.

(b) A segment from (0,−1) to (0, 1) in W.

Characterize the solutions in terms of the phase variables q1(0), q2(0), q̇1(0), and
q̇2(0).

2. Extending the double integrator:

(a) Develop a lattice for the triple integrator q(3) = u that extends naturally
from the double-integrator lattice.

(b) Describe how to develop a lattice for higher order integrators q(n) for n > 3.

3. Make a figure similar to Figure 14.6b, but for three stages of the Reeds-Shepp
car.

4. Determine expressions for the upper and lower boundaries of the time-limited
reachable sets shown in Figure 14.14. Express them as parabolas, with q̇ as a
function of q.

5. A reachability graph can be made by “rolling” a polyhedron in the plane. For
example, suppose a solid, regular tetrahedron is placed on a planar surface. As-
suming high friction, the tetrahedron can be flipped in one of four directions by
pushing on the top. Construct the three-stage reachability graph for this problem.

6. Construct a four-stage reachability graph similar to the one shown in Figure 14.6b,
but for the case of a differential drive robot modeled by (13.17). Use the three
actions (1, 0), (0, 1), and (1, 1). Draw the graph in the plane and indicate the
configuration coordinates of each vertex.

7. Section 14.2.2 explained how resolution-complete algorithms exist for planning
under differential constraints. Suppose that in addition to continuous state vari-
ables, there are discrete modes, as introduced in Section 7.3, to form a hybrid
system. Explain how resolution-complete planning algorithms can be developed
for this case. Extend the argument shown in Figure 14.7.

Implementations

8. Compare the performance and accuracy of Euler integration to fourth-order Runge-
Kutta on trajectories generated for a single, double, and triple integrator. For
accuracy, compare the results to solutions obtained analytically. Provide recom-
mendations of which one to use under various conditions.



14.7. GRADIENT-BASED TRAJECTORY OPTIMIZATION 863

9. Improve Figure 14.13 by making a plot of the actual trajectories, which are
parabolic in most cases.

10. In Figure 14.13, the state trajectory segments are longer as |ẋ| increases. Develop
a lattice that tries to keep all segments as close to the same length as possible by
reducing ∆t as |ẋ| increases. Implement and experiment with different schemes
and report on the results.

11. Develop an implementation for computing approximately time-optimal state tra-
jectories for a point mass in a 2D polygonal world. The robot dynamics can
be modeled as two independent double integrators. Search the double-integrator
lattice in X = R

4 to solve the problem. Animate the computed solutions.

12. Experiment with RDT methods applied to a spacecraft that is modeled as a 3D
rigid body with thrusters. Develop software that computes collision-free trajecto-
ries for the robot. Carefully study the issues associated with choosing the metric
on X.

13. Solve the problem of optimally bringing the Dubins car to a goal region in a
polygonal world by using value iteration with interpolation.

14. Select and implement a planning algorithm that computes pushing trajectories
for a differential drive robot that pushes a box in a polygonal environment. This
was given as an example of a nonholonomic system in Section 13.1.3. To use the
appropriate constraints on U , see [178].

15. Select and implement a planning algorithm that computes trajectories for parking
a car while pulling a single trailer, using (13.19). Make an obstacle region in W
that corresponds to a tight parking space and vary the amount of clearance. Also,
experiment with driving the vehicle through an obstacle course.

16. Generate a 3D rendering of reachability graphs for the airplane model in (13.20).
Assume that in each stage there are nine possible actions, based on combinations
of flying to the right, left, or straight and decreasing, increasing, or maintaining
altitude.

17. Implement the dynamic programming algorithm shown in Figure 14.27 for the
two-link manipulator model given in Example 13.13.

18. Implement the bang-bang algorithm shown in Figure 14.28 for the two-link ma-
nipulator model given in Example 13.13.

19. For the Dubins car (or another system), experiment with generating a search
graph based on Figure 14.7 by alternating between various step sizes. Plot in the
plane, the vertices and state trajectories associated with the edges of the graph.
Experiment with different schemes for generating a resolution-complete search
graph in a rectangular region and compare the results.

20. Use value iteration with interpolation to compute the optimal cost-to-go for the
Reeds-Shepp car. Plot level sets of the cost-to-go, which indicate the time-limited
reachable sets. Compare the result to Figure 14.4.

864 S. M. LaValle: Planning Algorithms



Chapter 15

System Theory and Analytical
Techniques

This chapter is complementary to Chapter 14 in that it provides tools and concepts
that can be used to develop better local planning methods (LPMs). Most of the
material was developed in the field of control theory, which focuses mainly on
characterizing the behavior of particular classes of systems, and controlling them
in the absence of obstacles. The two-point boundary value problem (BVP), which
was a frequent nuisance in Chapter 14, can be better understood and solved for
many systems by using the ideas of this chapter. Keep in mind that throughout
this chapter there are no obstacles. Although planning for this case was trivial in
Part II, the presence of differential constraints brings many challenges.

The style in this chapter is to provide a brief survey of concepts and techniques,
with the hope of inspiring further study in other textbooks and research litera-
ture. Modern control theory is a vast and fascinating subject, of which only the
surface can be scratched in one chapter. Section 15.1 introduces stability and con-
trollability concepts, both of which characterize possible arrivals in a goal state.
Stability characterizes how the integral curves of a vector field behave around a
goal point, and controllability indicates whether an action trajectory exists that
arrives at a specified goal.

Section 15.2 revisits dynamic programming one last time. Here it becomes a
partial differential equation expressed in terms of the optimal cost-to-go function.
In some cases, it actually has a closed-form solution, as opposed to its main use
in computer science, which is to obtain algorithm constraints. The powerful Pon-
tryagin’s minimum principle, which can be derived from dynamic programming,
is also covered.

The remainder of the chapter is devoted to nonholonomic systems, which often
arise from underactuated mechanical systems. Section 15.3 expresses the shortest
paths between any pair of points for the Dubins car, the Reeds-Shepp car, and
a differential drive, all of which were introduced in Section 13.1.2. The paths
are a beautiful solution to the BVP and are particularly valuable as an LPM; for

865

866 S. M. LaValle: Planning Algorithms

example, some have been used in the plan-and-transform method of Section 14.6.2.
Section 15.4 addresses some basic properties of nonholonomic systems. The most
important issues are determining whether nonholonomic constraints are actually
integrable (which removes all ẋi variables) and characterizing reachable sets that
arise due to nonholonomic constraints. Section 15.5 attempts to do the same as
Section 15.3, but for more challenging nonholonomic systems. In these cases, the
BVP problem may not be solved optimally, and some methods may not even reach
the goal point precisely. Nevertheless, when applicable, they can be used to build
powerful LPMs in a sampling-based motion planning algorithm.

15.1 Basic System Properties

This section provides a brief overview of two fundamental concepts in control
theory: stability and controllability. Either can be considered as characterizing
how a goal state is reached. Stability usually involves feedback and may only
converge to the goal as time approaches infinity. Controllability assesses whether
an action trajectory exists that leads exactly to a specified goal state. In both
cases, there is no obstacle region in X.

15.1.1 Stability

The subject of stability addresses properties of a vector field with respect to a
given point. Let X denote a smooth manifold on which the vector field is defined;
X may be a C-space or a phase space. The given point is denoted as xG and
can be interpreted in motion planning applications as the goal state. Stability
characterizes how xG is approached from other states in X by integrating the
vector field.

The given vector field f is considered as a velocity field, which is represented
as

ẋ = f(x). (15.1)

This looks like a state transition equation that is missing actions. If a system of
the form ẋ = f(x, u) is given, then u can be fixed by designing a feedback plan
π : X → U . This yields ẋ = f(x, π(x)), which is a vector field on X without any
further dependency on actions. The dynamic programming approach in Section
14.5 computed such a solution. The process of designing a stable feedback plan is
referred to in control literature as feedback stabilization.

Equilibrium points and Lyapunov stability At the very least, it seems that
the state should remain fixed at xG, if it is reached. A point xG ∈ X is called
an equilibrium point (or fixed point) of the vector field f if and only if f(xG) = 0.
This does not, however, characterize how trajectories behave in the vicinity of xG.



15.1. BASIC SYSTEM PROPERTIES 867

xG

O1

O1

xI

xG

O2

(a) (b)

Figure 15.1: Lyapunov stability: (a) Choose any open set O1 that contains xG,
and (b) there exists some open set O2 from which trajectories will not be able to
escape O1. Note that convergence to xG is not required.

Let xI ∈ X denote some initial state, and let x(t) refer to the state obtained at
time t after integrating the vector field f from xI = x(0).

See Figure 15.1. An equilibrium point xG ∈ X is called Lyapunov stable if for
any open neighborhood1 O1 of xG there exists another open neighborhood O2 of
xG such that xI ∈ O2 implies that x(t) ∈ O1 for all t > 0. If X = R

n, then some
intuition can be obtained by using an equivalent definition that is expressed in
terms of the Euclidean metric. An equilibrium point xG ∈ R

n is called Lyapunov
stable if, for any t > 0, there exists some δ > 0 such that ‖xI − xG‖ < δ implies
that ‖x(t) − xG‖ < ǫ. This means that we can choose a ball around xG with a
radius as small as desired, and all future states will be trapped within this ball,
as long as they start within a potentially smaller ball of radius δ. If a single δ
can be chosen independently of every ǫ and x, then the equilibrium point is called
uniform Lyapunov stable.

Asymptotic stability Lyapunov stability is weak in that it does not even imply
that x(t) converges to xG as t approaches infinity. The states are only required
to hover around xG. Convergence requires a stronger notion called asymptotic
stability. A point xG is an asymptotically stable equilibrium point of f if:

1. It is a Lyapunov stable equilibrium point of f .

2. There exists some open neighborhood O of xG such that, for any xI ∈ O,
x(t) converges2 to xG as t approaches infinity.

For X = R
n, the second condition can be expressed as follows: There exists some

δ > 0 such that, for any xI ∈ X with ‖xI−xG‖ < δ, the state x(t) converges to xG
as t approaches infinity. It may seem strange that two requirements are needed

1An open neighborhood of a point x means an open set that contains x.
2This convergence can be evaluated using the metric ρ on X.

868 S. M. LaValle: Planning Algorithms

for asymptotic stability. The first one bounds the amount of wiggling room for
the integral curve, which is not captured by the second condition.

Asymptotic stability appears to be a reasonable requirement, but it does not
imply anything about how long it takes to converge. If xG is asymptotically stable
and there exist some m > 0 and α > 0 such that

‖x(t)− xG‖ ≤ me−αt‖xI − xG‖, (15.2)

then xG is also called exponentially stable. This provides a convenient way to
express the rate of convergence.

For use in motion planning applications, even exponential convergence may
not seem strong enough. This issue was discussed in Section 8.4.1. For example,
in practice, one usually prefers to reach xG in finite time, as opposed to only
being “reached” in the limit. There are two common fixes. One is to allow
asymptotic stability and declare the goal to be reached if the state arrives in
some small, predetermined ball around xG. In this case, the enlarged goal will
always be reached in finite time if xG is asymptotically stable. The other fix is to
require a stronger form of stability in which xG must be exactly reached in finite
time. To enable this, however, discontinuous vector fields such as the inward flow
of Figure 8.5b must be used. Most control theorists are appalled by this because
infinite energy is usually required to execute such trajectories. On the other hand,
discontinuous vector fields may be a suitable representation in some applications,
as mentioned in Chapter 8. Note that without feedback this issue does not seem as
important. The state trajectories designed in much of Chapter 14 were expected
to reach the goal in finite time. Without feedback there was no surrounding vector
field that was expected to maintain continuity or smoothness properties. Section
15.1.3 introduces controllability, which is based on actually arriving at the goal
in finite time, but it is also based on the existence of one trajectory for a given
system ẋ = f(x, u), as opposed to a family of trajectories for a given vector field
x = f(x).

Time-varying vector fields The stability notions expressed here are usually
introduced in the time-varying setting ẋ = f(x, t). Since the vast majority of
planning problems in this book are time-invariant, the presentation was confined
to time-invariant vector fields. There is, however, one fascinating peculiarity in
the topic of finding a feedback plan that stabilizes a system. Brockett’s condition
implies that for some time-invariant systems for which continuous, time-varying
feedback plans exist, there does not exist a continuous time-invariant feedback
plan [47, 51, 262]. This includes the class of driftless control systems, such as
the simple car and the unicycle. This implies that to maintain continuity of the
vector field, a time dependency must be introduced to allow the vector field to
vary as xG is approached! If continuity of the vector field is not important, then
this concern vanishes.



15.1. BASIC SYSTEM PROPERTIES 869

Domains of attraction The stability definitions given so far are often called
local because they are expressed in terms of a neighborhood of xG. Global versions
can also be defined by extending the neighborhood to all of X. An equilibrium
point is globally asymptotically stable if it is Lyapunov stable, and the integral
curve from any x0 ∈ X converges to xG as time approaches infinity. It may be the
case that only points in some proper subset of X converge to xG. The set of all
points in X that converge to xG is often called the domain of attraction of xG. The
funnels of Section 8.5.1 are based on domains of attraction. Also related is the
backward reachable set from Section 14.2.1. In that setting, action trajectories
were considered that lead to xG in finite time. For the domain of attraction only
asymptotic convergence to xG is assumed, and the vector field is given (there are
no actions to choose).

Limit cycles For some vector fields, states may be attracted into a limit cycle.
Rather than stabilizing to a point, the state trajectories converge to a loop path
in X. For example, they may converge to following a circle. This occurs in a wide
variety of mechanical systems in which oscillations are possible. Some of the basic
issues, along with several interesting examples for X = R

2, are covered in [11].

15.1.2 Lyapunov Functions

Suppose a velocity field ẋ = f(x) is given along with an equilibrium point, xG.
Can the various forms of stability be easily determined? One of the most powerful
methods to prove stability is to construct a Lyapunov function. This will be
introduced shortly, but first some alternatives are briefly mentioned.

If f(x) is linear, which means that f(x) = Ax for some constant n× n matrix
A and X = R

n, then stability questions with respect to the origin, xG = 0, are
answered by finding the eigenvalues of A [58]. The state x = 0 is asymptotically
stable if and only if all eigenvalues of A have negative real parts. Consider the
scalar case, ẋ = ax, for which X = R and a is a constant. The solution to
this differential equation is x(t) = x(0) eat, which converges to 0 only if a < 0.
This can be easily extended to the case in which X = R

n and A is an n × n
diagonal matrix for which each diagonal entry (or eigenvalue) is negative. For
a general matrix, real or complex eigenvalues determine the stability (complex
eigenvalues cause oscillations). Conditions also exist for Lyapunov stability. Every
equilibrium state of ẋ = Ax is Lyapunov stable if the eigenvalues of A all have
nonpositive real parts, and the eigenvalues with zero real parts are distinct roots
of the characteristic polynomial of A.

If f(x) is nonlinear, then stability can sometimes be inferred by linearizing
f(x) about xG and performing linear stability analysis. In many cases, however,
this procedure is inconclusive (see Chapter 6 of [51]). Proving the stability of a
vector field is a challenging task for most nonlinear systems. One approach is
based on LaSalle’s invariance principle [10, 51, 157] and is particularly useful for

870 S. M. LaValle: Planning Algorithms

showing convergence to any of multiple goal states (see Section 5.4 of [221]). The
other major approach is to construct a Lyapunov function, which is used as an
intermediate tool to indirectly establish stability. If this method fails, then it still
may be possible to show stability using other means. Therefore, it is a sufficient
condition for stability, but not a necessary one.

Determining stability Suppose a velocity field ẋ = f(x) is given along with
an equilibrium point xG. Let φ denote a candidate Lyapunov function, which will
be used as an auxiliary device for establishing the stability of f . An appropriate
φ must be determined for the particular vector field f . This may be quite chal-
lenging in itself, and the details are not covered here. In a sense, the procedure
can be characterized as “guess and verify,” which is the way that many solution
techniques for differential equations are described. If φ succeeds in establishing
stability, then it is promoted to being called a Lyapunov function for f .

It will be important to characterize how φ varies in the direction of flow induced
by f . This is measured by the Lie derivative,

φ̇(x) =
n
∑

i=1

∂φ

∂xi
fi(x). (15.3)

This results in a new function φ̇(x), which indicates for each x the change in φ
along the direction of ẋ = f(x).

Several concepts are needed to determine stability. Let a function h : [0,∞)→
[0,∞) be called a hill if it is continuous, strictly increasing, and h(0) = 0. This
can be considered as a one-dimensional navigation function, which has a single
local minimum at the goal, 0. A function φ : X → [0,∞) is called locally positive
definite if there exists some open set O ⊆ X and a hill function h such that
φ(xG) = 0 and φ(x) ≥ h(‖x‖) for all x ∈ O. If O can be chosen as O = X, and
if X is bounded, then φ is called globally positive definite or just positive definite.
In some spaces this may not be possible due to the topology of X; such issues
arose when constructing navigation functions in Section 8.4.4. If X is unbounded,
then h must additionally approach infinity as ‖x‖ approaches infinity to yield a
positive definite φ [221]. For X = R

n, a quadratic form xTMx, for which M is
a positive definite matrix, is a globally positive definite function. This motivates
the use of quadratic forms in Lyapunov stability analysis.

The Lyapunov theorems can now be stated [51, 221]. Suppose that φ is locally
positive definite at xG. If there exists an open set O for which xG ∈ O, and
φ̇(x) ≤ 0 on all x ∈ O, then f is Lyapunov stable. If −φ̇(x) is also locally positive
definite on O, then f is asymptotically stable. If φ and −φ̇ are both globally
positive definite, then f is globally asymptotically stable.

Example 15.1 (Establishing Stability via Lyapunov Functions) LetX =
R. Let ẋ = f(x) = −x5, and we will attempt to show that x = 0 is stable. Let the
candidate Lyapunov function be φ(x) = 1

2
x2. The Lie derivative (15.3) produces



15.1. BASIC SYSTEM PROPERTIES 871

φ̇(x) = −x6. It is clear that φ and −φ̇ are both globally positive definite; hence,
0 is a global, asymptotically stable equilibrium point of f . �

Lyapunov functions in planning Lyapunov functions are closely related to
navigation functions and optimal cost-to-go functions in planning. In the optimal
discrete planning problem of Sections 2.3 and 8.2, the cost-to-go values can be
considered as a discrete Lyapunov function. By applying the computed actions,
a kind of discrete vector field can be imagined over the search graph. Each ap-
plied optimal action yields a reduction in the optimal cost-to-go value, until 0
is reached at the goal. Both the optimal cost-to-go and Lyapunov functions en-
sure that the trajectories do not become trapped in a local minimum. Lyapunov
functions are more general than cost-to-go functions because they do not require
optimality. They are more like navigation functions, as considered in Chapter
8. The requirements for a discrete navigation function, as given in Section 8.2.2,
are very similar to the positive definite condition given in this section. Imagine
that the navigation function shown in Figure 8.3 is a discrete approximation to
a Lyapunov function over R

2. In general, a Lyapunov function indicates some
form of distance to xG, although it may not be optimal. Nevertheless, it is based
on making monotonic progress toward xG. Therefore, it may serve as a distance
function in many sampling-based planning algorithms of Chapter 14. Since it re-
spects the differential constraints imposed by the system, it may provide a better
indication of how to make progress during planning in comparison to a Euclidean
metric that ignores these considerations. Lyapunov functions should be particu-
larly valuable in the RDT method of Section 14.4.3, which relies heavily on the
distance function over X.

15.1.3 Controllability

Now suppose that a system ẋ = f(x, u) is given on a smooth manifold X as
defined throughout Chapter 13 and used extensively in Chapter 14. The system
can be considered as a parameterized family of vector fields in which u is the
parameter. For stability, it was assumed that this parameter was fixed by a
feedback plan to obtain some ẋ = f(x). This section addresses controllability,
which indicates whether one state is reachable from another via the existence of
an action trajectory ũ. It may be helpful to review the reachable set definitions
from Section 14.2.1.

Classical controllability Let U denote the set of permissible action trajectories
for the system, as considered in Section 14.1.1. By default, this is taken as any
ũ for which (14.1) can be integrated. A system ẋ = f(x, u) is called controllable
if for all xI , xG ∈ X, there exists a time t > 0 and action trajectory ũ ∈ U such
that upon integration from x(0) = xI , the result is x(t) = xG. Controllability can

872 S. M. LaValle: Planning Algorithms

alternatively be expressed in terms of the reachable sets of Section 14.2.1. The
system is controllable if xG ∈ R(xI ,U) for all xI , xG ∈ X.

A system is therefore controllable if a solution exists to any motion planning
problem in the absence of obstacles. In other words, a solution always exists to
the two-point boundary value problem (BVP).

Example 15.2 (Classical Controllability) All of the vehicle models in Sec-
tion 13.1.2 are controllable. For example, in an infinitely large plane, the Dubins
car can be driven between any two configurations. Note, however, that if the
plane is restricted by obstacles, then this is not necessarily possible with the Du-
bins car. As an example of a system that is not controllable, let X = R, ẋ = u,
and U = [0, 1]. In this case, the state cannot decrease. For example, there exists
no action trajectory that brings the state from xI = 1 to xG = 0. �

Many methods for determining controllability of a system are covered in stan-
dard textbooks on control theory. If the system is linear, as given by (13.37) with
dimensions m and n, then it is controllable if and only if the n×nm controllability
matrix

M = [B
... AB

... A2B
... · · · ... An−1B] (15.4)

has full rank [58]. This is called the Kalman rank condition [136]. If the system is
nonlinear, then the controllability matrix can be evaluated on a linearized version
of the system. Having full rank is sufficient to establish controllability from a
single point (see Proposition 11.2 in [221]). If the rank is not full, however, the
system may still be controllable. A fascinating property of some nonlinear systems
is that they may be able to produce motions in directions that do not seem to
be allowed at first. For example, the simple car given in Section 13.1.2 cannot
slide sideways; however, it is possible to wiggle the car sideways by performing
parallel-parking maneuvers. A method for determining the controllability of such
systems is covered in Section 15.4.

For fully actuated systems of the form q̈ = h(q, q̇, u), controllability can be
determined by converting the system into double-integrator form, as considered
in Section 14.4.1. Let the system be expressed as q̈ = u′, in which u′ ∈ U ′(q, q̇). If
U ′(q, q̇) contains an open neighborhood of the origin of Rn, and the same neigh-
borhood can be used for any x ∈ X, then the system is controllable. If a nonlinear
system is underactuated, as in the simple car, then controllability issues become
considerably more complicated. The next concept is suitable for such systems.

STLC: Controllability that handles obstacles The controllability concept
discussed so far has no concern for how far the trajectory travels in X before xG
is reached. This issue becomes particularly important for underactuated systems
and planning among obstacles. These concerns motivate a natural question: Is
there a form of controllability that is naturally suited for obstacles? It should



15.1. BASIC SYSTEM PROPERTIES 873

xI

B(xI , ǫ)

int(R(xI ,U , t′))

Figure 15.2: If the system is STLC, then motions can be made in any direction,
in an arbitrarily small amount of time.

declare that if a state is reachable from another in the absence of differential
constraints, then it is also reachable with the given system ẋ = f(x, u). This can
be expressed using time-limited reachable sets. Let R(x,U , t) denote the set of
all states reachable in time less than or equal to t, starting from x. A system
ẋ = f(x, u) is called small-time locally controllable (STLC) from xI if there exists
some t > 0 such that xI ∈ int(R(xI ,U , t′)) for all t′ ∈ (0, t] (here, int denotes the
interior of a set, as defined in Section 4.1.1). If the system ẋ = f(x, u) is STLC
from every xI ∈ X, then the whole system is said to be STLC.

Consider using this definition to answer the question above. Since int(R(xI ,U , t′))
is an open set, there must exist some small ǫ > 0 for which the open ball B(xI , ǫ)
is a strict subset of int(R(xI ,U , t′)). See Figure 15.2. Any point on the boundary
of B(xI , ǫ) can be reached, which means that a step of size ǫ can be taken in any
direction, even though differential constraints exist. With obstacles, however, we
have to be careful that the trajectory from xI to the surface of B(xI , ǫ) does not
wander too far away.

Suppose that there is an obstacle region Xobs, and a violation-free state trajec-
tory x̃ is given that terminates in xG at time tF and does not necessarily satisfy
a given system. If the system is STLC, then it is always possible to find an-
other trajectory, based on x̃, that satisfies the differential constraints. Apply the
plan-and-transform method of Section 14.6.2. Suppose that intervals for potential
replacement are chosen using binary recursive subdivision. Also suppose that an
LPM exists that computes that shortest trajectory between any pair of states;
this trajectory ignores obstacles but respects the differential constraints. Initially,
[0, tF ] is replaced by a trajectory from the LPM, and if it is not violation-free, then
[0, tF ] is subdivided into [0, tF/2] and [tF/2, tF ], and replacement is attempted on
the smaller intervals. This idea can be applied recursively until eventually the
segments are small enough that they must be violation-free.

This final claim is implied by the STLC property. No matter how small the
intervals become, there must exist a replacement trajectory. If an interval is
large, then there may be sufficient time to wander far from the original trajectory.
However, as the time interval decreases, there is not enough time to deviate far

874 S. M. LaValle: Planning Algorithms

from the original trajectory. (This discussion assumes mild conditions on f , such
as being Lipschitz.) Suppose that the trajectory is protected by a collision-free
tube of radius ǫ. Thus, all points along the trajectory are at least ǫ from the
boundary of Xfree. The time intervals can be chosen small enough to ensure that
the trajectory deviations are less than ǫ from the original trajectory. Therefore,
STLC is a very important property for a system to possess for planning in the
presence of obstacles. Section 15.4 covers some mathematical tools for determining
whether a nonlinear system is STLC.

A concept closely related to controllability is accessibility, which is only con-
cerned with the dimension of the reachable set. Let n be the dimension of X. If
there exists some t > 0 for which the dimension of R(xI ,U , t) is n, then the system
is called accessible from xI . Alternatively, this may be expressed as requiring that
int(R(xI ,U , t)) 6= ∅.

Example 15.3 (Accessibility) Recall the system from Section 13.1.3 in which
the state is trapped on a circle. In this case X = R

2, and the state transition
equation was specified by ẋ = yu and ẏ = −xu. This system is not accessible
because the reachable sets have dimension one. �

A small-time version of accessibility can also be defined by requiring that there
exists some t such that int(R(xI ,U , t′)) 6= ∅ for all t′ ∈ (0, t]. Accessibility is
particularly important for systems with drift.

15.2 Continuous-Time Dynamic Programming

Dynamic programming has been a recurring theme throughout most of this book.
So far, it has always taken the form of computing optimal cost-to-go (or cost-to-
come) functions over some sequence of stages. Both value iteration and Dijkstra-
like algorithms have emerged. In computer science, dynamic programming is a
fundamental insight in the development of algorithms that compute optimal so-
lutions to problems. In its original form, however, dynamic programming was
developed to solve the optimal control problem [22]. In this setting, a discrete
set of stages is replaced by a continuum of stages, known as time. The dy-
namic programming recurrence is instead a partial differential equation, called
the Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation can be solved
using numerical algorithms; however, in some cases, it can be solved analytically.3

Section 15.2.2 briefly describes an analytical solution in the case of linear systems.
Section 15.2.3 covers Pontryagin’s minimum principle, which can be derived from
the dynamic programming principle, and generalizes the optimization performed
in Hamiltonian mechanics (recall Section 13.4.4).

3It is often surprising to computer scientists that dynamic programming in this case does not
yield an algorithm. It instead yields a closed-form solution to the problem.



15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 875

15.2.1 Hamilton-Jacobi-Bellman Equation

The HJB equation is a central result in optimal control theory. Many other
principles and design techniques follow from the HJB equation, which itself is just
a statement of the dynamic programming principle in continuous time. A proper
derivation of all forms of the HJB equation would be beyond the scope of this
book. Instead, a time-invariant formulation that is most relevant to planning will
be given here. Also, an informal derivation will follow, based in part on [27].

The discrete case

Before entering the continuous realm, the concepts will first be described for dis-
crete planning, which is often easier to understand. Recall from Section 2.3 that
if X, U , and the stages are discrete, then optimal planning can be performed by
using value iteration or Dijkstra’s algorithm on the search graph. The stationary,
optimal cost-to-go function G∗ can be used as a navigation function that encodes
the optimal feedback plan. This was suggested in Section 8.2.2, and an example
was shown in Figure 8.3.

Suppose that G∗ has been computed under Formulation 8.1 (or Formulation
2.3). Let the state transition equation be denoted as

x′ = fd(x, u). (15.5)

The dynamic programming recurrence for G∗ is

G∗(x) = min
u∈U(x)

{l(x, u) +G∗(x′)} , (15.6)

which may already be considered as a discrete form of the Hamilton-Jacobi-
Bellman equation. To gain some insights into the coming concepts, however,
some further manipulations will be performed.

Let u∗ denote the optimal action that is applied in the min of (15.6). Imagine
that u∗ is hypothesized as the optimal action but needs to be tested in (15.6) to
make sure. If it is truly optimal, then

G∗(x) = l(x, u∗) +G∗(fd(x, u
∗)). (15.7)

This can already be considered as a discrete form of the Pontryagin minimum
principle, which will appear in Section 15.2.3. By rearranging terms, a nice inter-
pretation is obtained:

G∗(fd(x, u
∗))−G∗(x) = −l(x, u∗). (15.8)

In a single stage, the optimal cost-to-go drops by l(x, u∗) when G∗ is used as
a navigation function (multiply (15.8) by −1). The optimal single-stage cost
is revealed precisely when taking one step toward the goal along the optimal
path. This incremental change in the cost-to-go function while moving in the best
direction forms the basis of both the HJB equation and the minimum principle.

876 S. M. LaValle: Planning Algorithms

The continuous case

Now consider adapting to the continuous case. Suppose X and U are both con-
tinuous, but discrete stages remain, and verify that (15.5) to (15.8) still hold true.
Their present form can be used for any system that is approximated by discrete
stages. Suppose that the discrete-time model of Section 14.2.2 is used to approxi-
mate a system ẋ = f(x, u) on a state space X that is a smooth manifold. In that
model, U was discretized to Ud, but here it will be left in its original form. Let
∆t represent the time discretization.

The HJB equation will be obtained by approximating (15.6) with the discrete-
time model and letting ∆t approach zero. The arguments here are very informal;
see [27, 150, 243] for more details. Using discrete-time approximation, the dynamic
programming recurrence is

G∗(x) = min
u∈U(x)

{ld(x, u) +G∗(x′)} , (15.9)

in which ld is a discrete-time approximation to the cost that accumulates over
stage k and is given as

ld(x, u) ≈ l(x, u)∆t. (15.10)

It is assumed that as ∆t approaches zero, the total discretized cost converges to
the integrated cost of the continuous-time formulation.

Using the linear part of a Taylor series expansion about x, the term G∗(x′)
can be approximated as

G∗(x′) ≈ G∗(x) +
n
∑

i=1

∂G∗

∂xi
fi(x, u)∆t. (15.11)

This approximates G∗(x′) by its tangent plane at x. Substitution of (15.11) and
(15.10) into (15.9) yields

G∗(x) ≈ min
u∈U(x)

{

l(x, u)∆t+G∗(x) +
n
∑

i=1

∂G∗

∂xi
fi(x, u)∆t

}

. (15.12)

Subtracting G∗(x) from both sides of (15.12) yields

min
u∈U(x)

{

l(x, u)∆t+
n
∑

i=1

∂G∗

∂xi
fi(x, u)∆t

}

≈ 0. (15.13)

Taking the limit as ∆t approaches zero and then dividing by ∆t yields the HJB
equation:

min
u∈U(x)

{

l(x, u) +
n
∑

i=1

∂G∗

∂xi
fi(x, u)

}

= 0. (15.14)



15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 877

Compare the HJB equation to (15.6) for the discrete-time case. Both indicate
how the cost changes when moving in the best direction. Substitution of u∗ for
the optimal action into (15.14) yields

n
∑

i=1

∂G∗

∂xi
fi(x, u

∗) = −l(x, u∗). (15.15)

This is just the continuous-time version of (15.8). In the current setting, the left
side indicates the derivative of the cost-to-go function along the direction obtained
by applying the optimal action from x.

The HJB equation, together with a boundary condition that specifies the final-
stage cost, sufficiently characterizes the optimal solution to the planning problem.
Since it is expressed over the whole state space, solutions to the HJB equation
yield optimal feedback plans. Unfortunately, the HJB equation cannot be solved
analytically in most settings. Therefore, numerical techniques, such as the value
iteration method of Section 14.5, must be employed. There is, however, an im-
portant class of problems that can be directly solved using the HJB equation; see
Section 15.2.2.

Variants of the HJB equation

Several versions of the HJB equation exist. The one presented in (15.14) is suitable
for planning problems such as those expressed in Chapter 14. If the cost-to-go
functions are time-dependent, then the HJB equation is

min
u∈U(x)

{

l(x, u, t) +
∂G∗

∂t
+

n
∑

i=1

∂G∗

∂xi
fi(x, u, t)

}

= 0, (15.16)

and G∗ is a function of both x and t. This can be derived again using a Taylor
expansion, but with x and t treated as the variables. Most textbooks on optimal
control theory present the HJB equation in this form or in a slightly different form
by pulling ∂G∗/∂t outside of the min and moving it to the right of the equation:

min
u∈U(x)

{

l(x, u, t) +
n
∑

i=1

∂G∗

∂xi
fi(x, u, t)

}

= −∂G
∗

∂t
. (15.17)

In differential game theory, the HJB equation generalizes to the Hamilton-
Jacobi-Isaacs (HJI) equations [16, 129]. Suppose that the system is given as
(13.203) and a zero-sum game is defined using a cost term of the form l(x, u, v, t).
The HJI equations characterize saddle equilibria and are given as

min
u∈U(x)

max
v∈V (x)

{

l(x, u, v, t) +
∂G∗

∂t
+

n
∑

i=1

∂G∗

∂xi
fi(x, u, v, t)

}

= 0 (15.18)

878 S. M. LaValle: Planning Algorithms

and

max
v∈V (x)

min
u∈U(x)

{

l(x, u, v, t) +
∂G∗

∂t
+

n
∑

i=1

∂G∗

∂xi
fi(x, u, v, t)

}

= 0. (15.19)

There are clear similarities between these equations and (15.16). Also, the swap-
ping of the min and max operators resembles the definition of saddle points in
Section 9.3.

15.2.2 Linear-Quadratic Problems

This section briefly describes a problem for which the HJB equation can be directly
solved to yield a closed-form expression, as opposed to an algorithm that computes
numerical approximations. Suppose that a linear system is given by (13.37), which
requires specifying the matrices A and B. The task is to design a feedback plan
that asymptotically stabilizes the system from any initial state. This is an infinite-
horizon problem, and no termination action is applied.

An optimal solution is requested with respect to a cost functional based on
matrix quadratic forms. Let Q be a nonnegative definite4 n × n matrix, and let
R be a positive definite n× n matrix. The quadratic cost functional is defined as

L(x̃, ũ) =
1

2

∫ ∞

0

(

x(t)TQx(t) + u(t)TRu(t)
)

dt. (15.20)

To guarantee that a solution exists that yields finite cost, several assumptions must
be made on the matrices. The pair (A,B) must be stabilizable, and (A,Q) must
be detectable; see [5] for specific conditions and a full derivation of the solution
presented here.

Although it is not done here, the HJB equation can be used to derive the
algebraic Riccati equation,

SA+ ATS − SBR−1BTS +Q = 0, (15.21)

in which all matrices except S were already given. Methods exist that solve for
S, which is a unique solution in the space of nonnegative definite n× n matrices.

The linear vector field

ẋ =
(

A−BR−1BTS
)

x (15.22)

is asymptotically stable (the real parts of all eigenvalues of the matrix are nega-
tive). This vector field is obtained if u is selected using a feedback plan π defined
as

π(x) = −R−1BTSx. (15.23)

4Nonnegative definite means xTQx ≥ 0 for all x ∈ R, and positive definite means xTRx > 0
for all x ∈ R

n.



15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 879

The feedback plan π is in fact optimal, and the optimal cost-to-go is simply

G∗(x) = 1
2
xTSx. (15.24)

Thus, for linear systems with quadratic cost, an elegant solution exists without
resorting to numerical approximations. Unfortunately, the solution techniques do
not generalize to nonlinear systems or linear systems among obstacles. Hence, the
planning methods of Chapter 14 are justified.

However, many variations and extensions of the solutions given here do exist,
but only for other problems that are expressed as linear systems with quadratic
cost. In every case, some variant of Riccati equations is obtained by application of
the HJB equation. Solutions to time-varying systems are derived in [5]. If there is
Gaussian uncertainty in predictability, then the linear-quadratic Gaussian (LQG)
problem is obtained [147]. Linear-quadratic problems and solutions even exist for
differential games of the form (13.204) [16].

15.2.3 Pontryagin’s Minimum Principle

Pontryagin’s minimum principle5 is closely related to the HJB equation and pro-
vides conditions that an optimal trajectory must satisfy. Keep in mind, however,
that the minimum principle provides necessary conditions, but not sufficient con-
ditions, for optimality. In contrast, the HJB equation offered sufficient conditions.
Using the minimum principle alone, one is often not able to conclude that a tra-
jectory is optimal. In some cases, however, it is quite useful for finding candidate
optimal trajectories. Any trajectory that fails to satisfy the minimum principle
cannot be optimal.

To understand the minimum principle, we first return to the case of discrete
planning. As mentioned previously, the minimum principle is essentially given
by (15.7). This can be considered as a specialization of the HJB equation to the
special case of applying the optimal action u∗. This causes the min to disappear,
but along with it the global properties of the HJB equation also vanish. The
minimum principle expresses conditions along the optimal trajectory, as opposed
to the cost-to-go function over the whole state space. Therefore, it can at best
assure local optimality in the space of possible trajectories.

The minimum principle for the continuous case is essentially given by (15.15),
which is the continuous-time counterpart to (15.7). However, it is usually ex-
pressed in terms of adjoint variables and a Hamiltonian function, in the spirit of
Hamiltonian mechanics from Section 13.4.4.

Let λ denote an n-dimensional vector of adjoint variables, which are defined
as

λi =
∂G∗

∂xi
. (15.25)

5This is often called Pontryagin’s maximum principle, because Pontryagin originally defined it
as a maximization [209]. The Hamiltonian used in most control literature is negated with respect
to Pontryagin’s Hamiltonian; therefore, it becomes minimized. Both names are in common use.

880 S. M. LaValle: Planning Algorithms

The Hamiltonian function is defined as

H(x, u, λ) = l(x, u) +
n
∑

i=1

λifi(x, u), (15.26)

which is exactly the expression inside of the min of the HJB equation (15.14) after
using the adjoint variable definition from (15.25). This can be compared to the
Hamiltonian given by (13.192) in Section 13.4.4 (p from that context becomes λ
here). The two are not exactly the same, but they both are motivated by the
same basic principles.

Under the execution of the optimal action trajectory ũ∗, the HJB equation
implies that

H(x(t), u∗(t), λ(t)) = 0 (15.27)

for all t ≥ 0. This is just an alternative way to express (15.15). The fact that H
remains constant appears very much like a conservation law, which was the basis
of Hamiltonian mechanics in Section 13.4.4. The use of the Hamiltonian in the
minimum principle is more general.

Using the HJB equation (15.14), the optimal action is given by

u∗(t) = argmin
u∈U(x)

{H(x(t), u(t), λ(t))} . (15.28)

In other words, the Hamiltonian is minimized precisely at u(t) = u∗(t).
The missing piece of information so far is how λ evolves over time. It turns

out that a system of the form

λ̇ = g(x, λ, u∗) (15.29)

can be derived by differentiating the Hamiltonian (or, equivalently, the HJB equa-
tion) with respect to x. This yields two coupled systems, ẋ = f(x, u∗) and (15.29).
These can in fact be interpreted as a single system in a 2n-dimensional phase space,
in which each phase vector is (x, λ). This is analogous to the phase interpretation
in Section 13.4.4 for Hamiltonian mechanics, which results in (13.198).

Remember that λ is defined in (15.25) just to keep track of the change in G∗. It
would be helpful to have an explicit form for (15.29). Suppose that u∗ is selected
by a feedback plan to yield u∗ = π∗(x). In this case, the Hamiltonian can be
interpreted as a function of only x and λ. Under this assumption, differentiating
the Hamiltonian (15.26) with respect to xi yields

∂l(x, π∗(x))

∂xi
+

n
∑

j=1

∂λj
∂xi

fj(x, π
∗(x)) +

n
∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
. (15.30)

This validity of this differentiation requires a technical lemma that asserts that
the derivatives of π(x) can be disregarded (see Lemma 3.3.1 of [27]). Also, it will



15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 881

be assumed that U is convex in the arguments that follow, even though there exist
proofs of the minimum principle that do not require this.

The second term in (15.30) is actually λ̇i, although it is hard to see at first.
The total differential of λi with respect to the state is

dλi =
n
∑

j=1

∂λi
∂xj

dxj. (15.31)

Dividing both sides by dt yields

dλi
dt

=
n
∑

j=1

∂λi
∂xj

dxj
dt

=
n
∑

j=1

∂λi
∂xj

ẋj. (15.32)

Each ẋj is given by the state transition equation: ẋj = fj(x, π
∗(x)). Therefore,

λ̇i =
dλi
dt

=
d

dt

∂G∗

∂xi
=

n
∑

j=1

∂λi
∂xj

fj(x, π
∗(x)). (15.33)

Substituting (15.33) into (15.30) and setting the equation to zero (because the
Hamiltonian is zero along the optimal trajectory) yields

∂l(x, π∗(x))

∂xi
+ λ̇i +

n
∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
= 0. (15.34)

Solving for λ̇i yields

λ̇i = −
∂l(x, π∗(x))

∂xi
−

n
∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
. (15.35)

Conveniently, this is the same as

λ̇i = −
∂H

∂xi
, (15.36)

which yields the adjoint transition equation, as desired.
The transition equations given by ẋ = f(x, u) and (15.36) specify the evolution

of the system given by the minimum principle. These are analogous to Hamil-
ton’s equations (13.198), which were given in Section 13.4.4. The generalized
momentum in that context becomes the adjoint variables here.

When applying the minimum principle, it is usually required to use the fact
that the optimal action at all times must satisfy (15.28). Often, this is equivalently
expressed as

H(x(t), u∗(t), λ(t)) ≤ H(x(t), u(t), λ(t)), (15.37)

which indicates that the Hamiltonian increases or remains the same whenever
deviation from the optimal action occurs (the Hamiltonian cannot decrease).

882 S. M. LaValle: Planning Algorithms

Example 15.4 (Optimal Planning for the Double Integrator) Recall the
double integrator system from Example 13.3. Let q̈ = u, C = R, and U =
[−1, 1] ∪ {uT}. Imagine a particle that moves in R. The action is a force in ei-
ther direction and has at most unit magnitude. The state transition equation is
ẋ1 = x2 and ẋ2 = u, and X = R

2. The task is to perform optimal motion planning
between any two states xI , xG ∈ X. From a given initial state xI , a goal state xG
must be reached in minimum time. The cost functional is defined in this case as
l(x, u) = 1 for all x ∈ X and and u ∈ U such that u 6= uT .

Using (15.26), the Hamiltonian is defined as

H(x, u, λ) = 1 + λ1x2 + λ2u. (15.38)

The optimal action trajectory is obtained from (15.28) as

u∗(t) = argmin
u∈[−1,1]

{1 + λ1(t)x2(t) + λ2(t)u(t)} . (15.39)

If λ2(t) < 0, then u∗(t) = 1, and if λ2(t) > 0, then u∗(t) = −1. Thus, the action
may be assigned as u∗(t) = −sgn(λ2(t)), if λ2(t) 6= 0. Note that these two cases
are the “bangs” of the bang-bang control from Section 14.6.3, and they are also
the extremal actions used for the planning algorithm in Section 14.4.1. At the
boundary case in which λ2(t) = 0, any action in [−1, 1] may be chosen.

The only remaining task is to determine the values of the adjoint variables
over time. The adjoint transition equation is obtained from (15.36) as λ̇1 = 0 and
λ̇2 = −λ1. The solutions are λ1(t) = c1 and λ2(t) = c2−c1t, in which c1 and c2 are
constants that can be determined at t = 0 from (15.38) and (15.39). The optimal
action depends only on the sign of λ2(t). Since its solution is the equation of a
line, it can change signs at most once. Therefore, there are four possible kinds of
solutions, depending on the particular xI and xG:

1. Pure acceleration, u∗(t) = 1, is applied for all time.

2. Pure deceleration, u∗(t) = −1, is applied for all time.

3. Pure acceleration is applied up to some time t′ and is followed immediately
by pure deceleration until the final time.

4. Pure deceleration is applied up to some time t′ followed immediately by pure
acceleration until the final time.

For the last two cases, t′ is often called the switching time, at which point a dis-
continuity in ũ∗ occurs. These two are bang-bang solutions, which were described
in Section 14.6.3. �

This was one of the simplest possible examples, and the optimal solution was
easily found because the adjoint variables are linear functions of time. Section 15.3



15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 883

covers optimal solutions for the Dubins car, the Reeds-Shepp car, and the differ-
ential drive, all of which can be established using the minimum principle combined
with some geometric arguments. As systems become more complicated, such anal-
ysis is unfortunately too difficult. In these cases, sampling-based methods, such
as those of Chapter 14, must be used to determine optimal trajectories.

One common complication is the existence of singular arcs along the solution
trajectory. These correspond to a degeneracy in H with respect to u over some
duration of time. This could be caused, for example, by having H independent of
u. In Example 15.4, H became independent of u when λ2(t) = 0; however, there
was no singular arc because this could only occur for an instant of time. If the
duration had been longer, then there would be an interval of time over which the
optimal action could not be determined. In general, if the Hessian (recall definition
from (8.48)) of H with respect to u is a positive definite matrix, then there are no
singular arcs (this is often called the Legendre-Clebsch condition). The minimum
principle in this case provides a sufficient condition for local optimality in the
space of possible state trajectories. If the Hessian is not positive definite for some
interval [t1, t2] with t1 < t2, then additional information is needed to determine
the optimal trajectory over the singular arc from x∗(t1) to x

∗(t2).
Note that all of this analysis ignores the existence of obstacles. There is noth-

ing to prevent the solutions from attempting to enter an obstacle region. The
action set U(x) and cost l(x, u) can be adjusted to account for obstacles; however,
determining an optimal solution from the minimum principle becomes virtually
impossible, except in some special cases.

There are other ways to derive the minimum principle. Recall from Section
13.4.4 that Hamilton’s equations can be derived from the Euler-Lagrange equa-
tion. It should not be surprising that the minimum principle can also be derived
using variational principles [27, 206]. The minimum principle can also be inter-
preted as a form of constrained optimization. This yields the interpretation of
λ as Lagrange multipliers. A very illuminating reference for further study of the
minimum principle is Pontryagin’s original works [209].

Time optimality Interesting interpretations of the minimum principle exist for
the case of optimizing the time to reach the goal [116, 239]. In this case, l(x, u) = 1
in (15.26), and the cost term can be ignored. For the remaining portion, let λ be
defined as

λi = −
∂G∗

∂xi
, (15.40)

instead of using (15.25). In this case, the Hamiltonian can be expressed as

H(x, u, λ) =
n
∑

i=1

λifi(x, u) =

〈

−∂G
∗

∂x
, f(x, u)

〉

, (15.41)

which is an inner product between f(x, u) and the negative gradient of G∗. Using
(15.40), the Hamiltonian should be maximized instead of minimized (this is equiv-

884 S. M. LaValle: Planning Algorithms

alent to Pontryagin’s original formulation [209]). An inner product of two vectors
increases as their directions become closer to parallel. Optimizing (15.41) amounts
to selecting u so that ẋ is as close as possible to the direction of steepest descent of
G∗. This is nicely interpreted by considering how the boundary of the reachable
set R(x0,U , t) propagates through X. By definition, the points on ∂R(x0,U , t)
must correspond to time-optimal trajectories. Furthermore, ∂R(x0,U , t) can be
interpreted as a propagating wavefront that is perpendicular to −∂G∗/∂x. The
minimum principle simply indicates that u should be chosen so that ẋ points into
the propagating boundary, as close to being orthogonal as possible [116].

15.3 Optimal Paths for Some Wheeled Vehicles

For some of the wheeled vehicle models of Section 13.1.2, the shortest path between
any pair of configurations was completely characterized. In this section, X = C =
R

2×S
1, which corresponds to the C-space for a rigid body in the plane. For each

model, the path length in C must be carefully defined to retain some physical
significance in the world W = R

2 in which the vehicle travels. For example, in
the case of the simple car, the distance in W traveled by the center of the rear
axle will be optimized. If the coordinate frame is assigned appropriately, this
corresponds to optimizing the path length in the R2 subspace of C while ignoring
orientation. Keep in mind that the solutions given in this section depend heavily
on the particular cost functional that is optimized.

Sections 15.3.1–15.3.3 cover the shortest paths for the Dubins car, the Reeds-
Shepp car, and a differential-drive model, respectively. In each case, the paths
can be elegantly described as combinations of a few motion primitives. Due to
symmetries, it is sufficient to describe the optimal paths from a fixed initial con-
figuration qI = (0, 0, 0) to any goal configuration qG ∈ C. If the optimal path is
desired from a different qI ∈ C, then it can be recovered from rigid-body transfor-
mations applied to qI and qG (the whole path can easily be translated and rotated
without effecting its optimality, provided that qG does not move relative to qI).
Alternatively, it may be convenient to fix qG and consider optimal paths from all
possible qI .

Once qI (or qG) is fixed, C can be partitioned into cells that correspond to sets
of placements for qG (or qI). Inside of each cell, the optimal curve is described by
a fixed sequence of parameterized motion primitives. For example, one cell for the
Dubins car indicates “turn left,” “go straight,” and then “turn right.” The curves
are ideally suited for use as an LPM in a sampling-based planning algorithm.

This section mainly focuses on presenting the solutions. Establishing their cor-
rectness is quite involved and is based in part on Pontryagin’s minimum principle
from Section 15.2.3. Other important components are Filipov’s existence theorem
(see [239]) and Boltyanskii’s sufficient condition for optimality (which also justi-
fies dynamic programming) [41]. Substantially more details and justifications of
the curves presented in Sections 15.3.1 and 15.3.2 appear in [239, 240, 245]. The



15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 885

Symbol Steering: u

S 0
L 1
R -1

Figure 15.3: The three motion primitives from which all optimal curves for the
Dubins car can be constructed.

corresponding details for the curves of Section 15.3.3 appear in [18].

15.3.1 Dubins Curves

Recall the Dubins version of the simple car given in Section 13.1.2. The system was
specified in (13.15). It is assumed here that the car moves at constant forward
speed, us = 1. The other important constraint is the maximum steering angle
φmax, which results in a minimum turning radius ρmin. As the car travels, consider
the length of the curve in W = R

2 traced out by a pencil attached to the center
of the rear axle. This is the location of the body-frame origin in Figure 13.1. The
task is to minimize the length of this curve as the car travels between any qI and
qG. Due to ρmin, this can be considered as a bounded-curvature shortest-path
problem. If ρmin = 0, then there is no curvature bound, and the shortest path
follows a straight line in R

2. In terms of a cost functional of the form (8.39), the
criterion to optimize is

L(q̃, ũ) =

∫ tF

0

√

ẋ(t)2 + ẏ(t)2dt, (15.42)

in which tF is the time at which qG is reached, and a configuration is denoted as
q = (x, y, θ). If qG is not reached, then it is assumed that L(q̃, ũ) =∞.

Since the speed is constant, the system can be simplified to

ẋ = cos θ

ẏ = sin θ

θ̇ = u,

(15.43)

in which u is chosen from the interval U = [− tanφmax, tanφmax]. This implies
that (15.42) reduces to optimizing the time tF to reach qG because the integrand
reduces to 1. For simplicity, assume that tanφ = 1. The following results also
hold for any φmax ∈ (0, π/2).

It was shown in [85] that between any two configurations, the shortest path
for the Dubins car can always be expressed as a combination of no more than
three motion primitives. Each motion primitive applies a constant action over an
interval of time. Furthermore, the only actions that are needed to traverse the

886 S. M. LaValle: Planning Algorithms

α

γ

d
Rα

Sd

Lγ

qGqI
α

γ

Rγ

Rα

qG
qI

Lβ

β

RαSdLγ RαLβRγ

Figure 15.4: The trajectories for two words are shown in W = R
2.

shortest paths are u ∈ {−1, 0, 1}. The primitives and their associated symbols
are shown in Figure 15.3. The S primitive drives the car straight ahead. The L
and R primitives turn as sharply as possible to the left and right, respectively.
Using these symbols, each possible kind of shortest path can be designated as a
sequence of three symbols that corresponds to the order in which the primitives
are applied. Let such a sequence be called a word . There is no need to have
two consecutive primitives of the same kind because they can be merged into one.
Under this observation, ten possible words of length three are possible. Dubins
showed that only these six words are possibly optimal:

{LRL, RLR, LSL, LSR, RSL, RSR}. (15.44)

The shortest path between any two configurations can always be characterized by
one of these words. These are called the Dubins curves.

To be more precise, the duration of each primitive should also be specified.
For L or R, let a subscript denote the total amount of rotation that accumulates
during the application of the primitive. For S, let a subscript denote the total
distance traveled. Using such subscripts, the Dubins curves can be more precisely
characterized as

{LαRβ Lγ, Rα Lβ Rγ, Lα Sd Lγ, Lα SdRγ, Rα Sd Lγ , Rα SdRγ}, (15.45)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0. Figure 15.4 illustrates two cases.
Note that β must be greater than π (if it is less, then some other word becomes
optimal).

It will be convenient to invent a compressed form of the words to group together
paths that are qualitatively similar. This will be particularly valuable when Reeds-
Shepp curves are introduced in Section 15.3.2 because there are 46 of them, as
opposed to 6 Dubins curves. Let C denote a symbol that means “curve,” and
represents either R or L. Using C, the six words in (15.44) can be compressed to



15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 887

y

x

LSR RSL

RSL LSR

LSL

RSR

LRL

RLR

Figure 15.5: A slice at θ = π of the partition into word-invariant cells for the
Dubins car. The circle is centered on the origin.

only two base words:
{CCC, CSC}. (15.46)

In this compressed form, remember that two consecutive Cs must be filled in by
distinct turns (RR and LL are not allowed as subsequences). In compressed form,
the base words can be specified more precisely as

{CαCβ Cγ, Cα SdCγ}, (15.47)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0.
Powerful information has been provided so far for characterizing the shortest

paths; however, for a given qI and qG, two problems remain:

1. Which of the six words in (15.45) yields the shortest path between qI and
qG?

2. What are the values of the subscripts, α, β, γ, and d for the particular word?

To use the Dubins curves as an LPM, these questions should be answered effi-
ciently. One simple approach is to try all six words and choose the shortest one.
The parameters for each word can be determined by tracing out minimum-radius
circles from qI and qG, as shown in Figure 14.23. Another way is to use the precise
characterization of the regions over which a particular word is optimal. Suppose
that qG is fixed at (0, 0, 0). Based on the possible placements of qI , the C-space
can be partitioned into cells for which the same word is optimal. The cells and
their boundaries are given precisely in [239]. As an example, a slice of the cell
decomposition for θ = π is shown in Figure 15.5.

888 S. M. LaValle: Planning Algorithms

Figure 15.6: Level sets of the Dubins metric are shown in the plane. Along two
circular arcs, the metric is discontinuous (courtesy of Philippe Souères).

In addition to use as an LPM, the resulting cost of the shortest path may be
a useful distance function in many sampling-based planning algorithms. This is
sometimes called the Dubins metric (it is not, however, a true metric because it
violates the symmetry axiom). This can be considered as the optimal cost-to-go
G∗. It could have been computed approximately using the dynamic programming
approach in Section 14.5; however, thanks to careful analysis, the exact values are
known. One interesting property of the Dubins metric is that it is discontinuous;
see Figure 15.6. Compare the cost of traveling π/2 using the R primitive to the
cost of traveling to a nearby point that would require a smaller turning radius
than that achieved by the R primitive. The required action does not exist in U ,
and the point will have to be reached by a longer sequence of primitives. The
discontinuity in G∗ is enabled by the fact that the Dubins car fails to possess the
STLC property from Section 15.1.3. For STLC systems, G∗ is continuous.

15.3.2 Reeds-Shepp Curves

Now consider the shortest paths of the Reeds-Shepp car. The only difference
in comparison to the Dubins car is that travel in the reverse direction is now
allowed. The same criterion (15.42) is optimized, which is the distance traveled
by the center of the rear axle. The shortest path is equivalent to the path that
takes minimum time, as for the Dubins car. The simplified system in (15.43) can
be enhanced to obtain

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u1u2,

(15.48)

in which u1 ∈ {−1, 1} and u2 ∈ [− tanφmax, tanφmax]. The first action variable,
u1, selects the gear, which is forward (u1 = 1) or reverse (u1 = −1). Once again,



15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 889

Base α β γ d

Cα|Cβ|Cγ [0, π] [0, π] [0, π] −
Cα|CβCγ [0, β] [0, π/2] [0, β] −
CαCβ|Cγ [0, β] [0, π/2] [0, β] −
CαSdCγ [0, π/2] - [0, π/2] (0,∞)
CαCβ|CβCγ [0, β] [0, π/2] [0, β] −
Cα|CβCβ|Cγ [0, β] [0, π/2] [0, β] −
Cα|Cπ/2SdCπ/2|Cγ [0, π/2] - [0, π/2] (0,∞)
Cα|Cπ/2SdCγ [0, π/2] - [0, π/2] (0,∞)
CαSdCπ/2|Cγ [0, π/2] - [0, π/2] (0,∞)

Figure 15.7: The interval ranges are shown for each motion primitive parameter
for the Reeds-Shepp optimal curves.

assume for simplicity that u2 ∈ [−1, 1]. The results stated here apply to any
φmax ∈ (0, π/2).

It was shown in [212] that there are no more than 48 different words that
describe the shortest paths for the Reeds-Shepp car. The base word notation from
Section 15.3.1 can be extended to nicely express the shortest paths. A new symbol,
“ | ”, is used in the words to indicate that the “gear” is shifted from forward to
reverse or reverse to forward. Reeds and Shepp showed that the shortest path for
their car can always be expressed with one of the following base words:

{C|C|C, CC|C, C|CC, CSC, CCβ|Cβ C, C|Cβ Cβ|C,
C|Cπ/2SC, CSCπ/2|C, C|Cπ/2SCπ/2|C}.

(15.49)

As many as five primitives could be needed to execute the shortest path. A
subscript of π/2 is given in some cases because the curve must be followed for
precisely π/2 radians. For some others, β is given as a subscript to indicate that
it must match the parameter of another primitive. The form given in (15.49)
is analogous to (15.46) for the Dubins car. The parameter ranges can also be
specified, to yield a form analogous to (15.47). The result is shown in Figure 15.7.
Example curves for two cases are shown in Figure 15.9.

Now the base words will be made more precise by specifying the particular
motion primitive. Imagine constructing a list of words analogous to (15.44) for
the Dubins car. There are six primitives as shown in Figure 15.8. The symbols
S, L, and R are used again. To indicate the forward or reverse gear, + and −
superscripts will be used as shown in Figure 15.8.6

Figure 15.10 shows 48 different words, which result from uncompressing the
base words expressed using C, S, and “ | ” in (15.49). Each shortest path is a

6This differs conceptually from the notation used in [239]. There, r− corresponds to L− here.
The L here means that the steering wheel is positioned for a left turn, but the car is in reverse.
This aids in implementing the rule that R and L cannot be consecutive in a word.

890 S. M. LaValle: Planning Algorithms

Symbol Gear: u1 Steering: u2

S+ 1 0
S− -1 0
L+ 1 1
L− -1 1
R+ 1 -1
R− -1 -1

Figure 15.8: The six motion primitives from which all optimal curves for the
Reeds-Shepp car can be constructed.

α

γ

qG
qI

β

R+
α R+

γ

L−

β

Figure 15.9: An example of the R+
αL

−
βR

+
γ curve. This uses reverse to generate a

curve that is shorter than the one in Figure 15.4b for the Dubins car.

word with length at most five. There are substantially more words than for the
Dubins car. Each base word in (15.49) expands into four or eight words using the
motion primitives. To uncompress each base word, the rule that R and L cannot
be applied consecutively is maintained. This yields four possibilities for the first
six compressed words. The remaining three involve an intermediate S primitive,
which allows eight possible sequences of Rs and Ls for each one. Two of the 48
words were eliminated in [245]. Each of the remaining 46 words can actually occur
for a shortest path and are called the Reeds-Shepp curves.

For use as an LPM, the problem appears once again of determining the partic-
ular word and parameters for a given qI and qG. This was not difficult for Dubins
curves, but now there are 46 possibilities. The naive approach of testing every
word and choosing the shortest one may be too costly. The precise cell boundaries
in C over which each word applies are given in [239]. The cell boundaries are un-
fortunately quite complicated, which makes the point location algorithm difficult



15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 891

Base word Sequences of motion primitives
C|C|C (L+R−L+)(L−R+L−)(R+L−R+)(R−L+R−)
CC|C (L+R+L−)(L−R−L+)(R+L+R−)(R−L−R+)
C|CC (L+R−L−)(L−R+L+)(R+L−R−)(R−L+R+)
CSC (L+S+L+)(L−S−L−)(R+S+R+)(R−S−R−)

(L+S+R+)(L−S−R−)(R+S+L+)(R−S−L−)
CCβ|Cβ C (L+R+

β L
−
βR

−)(L−R−
β L

+
βR

+)(R+L+
βR

−
β L

−)(R−L−
βR

+
β L

+)

C|Cβ Cβ|C (L+R−
β L

−
βR

+)(L−R+
β L

+
βR

−)(R+L−
βR

−
β L

+)(R−L+
βR

+
β L

−)

C|Cπ/2SC (L+R−
π/2S

−R−)(L−R+
π/2S

+R+)(R+L−
π/2S

−L−)(R−L+
π/2S

+L+)

(L+R−
π/2S

−L−)(L−R+
π/2S

+L+) (R+L−
π/2S

−R−)(R−L+
π/2S

+R+)

CSCπ/2|C (L+S+L+
π/2R

−)(L−S−L−
π/2R

+)(R+S+R+
π/2L

−)(R−S−R−
π/2L

+)

(R+S+L+
π/2R

−)(R−S−L−
π/2R

+)(L+S+R+
π/2L

−)(L−S−R−
π/2L

+)

C|Cπ/2SCπ/2|C (L+R−
π/2S

−L−
π/2R

+)(L−R+
π/2S

+L+
π/2R

−)

(R+L−
π/2S

−R−
π/2L

+)(R−L+
π/2S

+R+
π/2L

−)

Figure 15.10: The 48 curves of Reeds and Shepp. Sussmann and Tang [245]
showed that (L−R+L−) and (R−L+R−), which appear in the first row, can be
eliminated. Hence, only 46 words are needed to describe the shortest paths.

to implement. A simple way to prune away many words from consideration is
to use intervals of validity for θ. For some values of θ, certain compressed words
are impossible as shortest paths. A convenient table of words that become active
over ranges of θ is given in [239]. Once again, the length of the shortest path can
serve as a distance function in sampling-based planning algorithms. The resulting
Reeds-Shepp metric is continuous because the Reeds-Shepp car is STLC, which
will be established in Section 15.4.

15.3.3 Balkcom-Mason Curves

In recent years, two more families of optimal curves have been determined [18, 67].
Recall the differential-drive system from Section 13.1.2, which appears in many
mobile robot systems. In many ways, it appears that the differential drive is
a special case of the simple car. The expression of the system given in (13.17)
can be made to appear identical to the Reeds-Shepp car system in (15.48). For
example, letting r = 1 and L = 1 makes them equivalent by assigning uω = u1 and
uψ = u1u2. Consider the distance traveled by a point attached to the center of the
differential-drive axle using (15.42). Minimizing this distance for any qI and qG is
trivial, as shown in Figure 13.4 of Section 13.1.2. The center point can be made to
travel in a straight line in W = R

2. This would be possible for the Reeds-Shepp
car if ρmin = 0, which implies that φmax = π/2. It therefore appeared for many
years that no interesting curves exist for the differential drive.

The problem, however, with measuring the distance traveled by the axle center
is that pure rotations are cost-free. This occurs when the wheels rotate at the

892 S. M. LaValle: Planning Algorithms

Symbol Left wheel: ul Right wheel: ur

⇑ 1 1
⇓ -1 -1
x -1 1
y 1 -1

Figure 15.11: The four motion primitives from which all optimal curves for the
differential-drive robot can be constructed.

same speed but with opposite angular velocities. The center does not move;
however, the time duration, energy expenditure, and wheel rotations that occur
are neglected. By incorporating one or more of these into the cost functional, a
challenging optimization arises. Balkcom and Mason bounded the speed of the
differential drive and minimized the total time that it takes to travel from qI to
qG. Using (13.16), the action set is defined as U = [−1, 1]× [−1, 1], in which the
maximum rotation rate of each wheel is one (an alternative bound can be used
without loss of generality). The criterion to optimize is

L(q̃, ũ) =

∫ tF

0

√

ẋ(t)2 + ẏ(t)2 + |θ̇(t)|dt, (15.50)

which takes θ into account, whereas it was neglected in (15.42). This criterion is
once again equivalent to minimizing the time to reach qG. The resulting model will
be referred to as the Balkcom-Mason drive. An alternative criterion is the total
amount of wheel rotation; this leads to an alternative family of optimal curves
[67].

It was shown in [18] that only the four motion primitives shown in Figure
15.11 are needed to express time-optimal paths for the differential-drive robot.
Each primitive corresponds to holding one action variable fixed at its limit for
an interval of time. Using the symbols in Figure 15.11 (which were used in [18]),
words can be formed that describe the optimal path. It has been shown that the
word length is no more than five. Thus, any shortest paths may be expressed as a
piecewise-constant action trajectory in which there are no more than five pieces.
Every piece corresponds to one of the primitives in Figure 15.11.

It is convenient in the case of the Balkcom-Mason drive to use the same sym-
bols for both base words and for precise specification of primitives. Symmetry
transformations will be applied to each base word to yield a family of eight words
that precisely specify the sequences of motion primitives. Nine base words describe
the shortest paths:

{y, ⇓, ⇓y, y⇓y, ⇑xπ⇓, x⇓y, ⇓yy, x⇓y⇑, ⇑x⇓y⇑}. (15.51)

This is analogous to the compressed forms given in (15.46) and (15.49). The
motions are depicted in Figure 15.12.



15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 893

Figure 15.12: Each of the nine base words is depicted [18]. The last two are only
valid for small motions; they are magnified five times and the robot outline is not
drawn.

Base T1 T2 T3 T2 ◦ T1 T3 ◦ T1 T3 ◦ T2 T3 ◦ T2 ◦ T1
A. y y y x y x x x

B. ⇓ ⇑ ⇓ ⇓ ⇑ ⇑ ⇓ ⇑

C. ⇓y ⇑y y⇓ ⇓x y⇑ ⇑x x⇓ x⇑

D. y⇓y y⇑y y⇓y x⇓x y⇑y x⇑x x⇓x x⇑x

E. ⇑xπ⇓ ⇓xπ⇑ ⇓xπ⇑ ⇑yπ⇓ ⇑xπ⇓ ⇓yπ⇑ ⇓yπ⇑ ⇑yπ⇓

F. x⇓y x⇑y y⇓x y⇓x y⇑x y⇑x x⇓y x⇑y

G. ⇓y⇑ ⇑y⇓ ⇑y⇓ ⇓x⇑ ⇓y⇑ ⇑x⇓ ⇑x⇓ ⇓x⇑

H. x⇓y⇑ x⇑y⇓ ⇑y⇓x y⇓x⇑ ⇓y⇑x y⇑x⇓ ⇑x⇓y ⇓x⇑y

I. ⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇑y⇓x⇑ ⇓y⇑x⇓ ⇓y⇑x⇓ ⇑x⇓y⇑ ⇓x⇑y⇓

Figure 15.13: The 40 optimal curve types for the differential-drive robot, sorted
by symmetry class [18].

894 S. M. LaValle: Planning Algorithms

Figure 15.14: A slice of the optimal curves is shown for qI = (x, y, π
4
) and qG =

(0, 0, 0) [18]. Level sets of the optimal cost-to-goG∗ are displayed. The coordinates
correspond to a differential drive with r = L = 1 in (13.16).

Figure 15.13 shows 40 distinct Balkcom-Mason curves that result from apply-
ing symmetry transformations to the base words of (15.51). There are 72 entries
in Figure 15.13, but many are identical. The transformation T1 indicates that
the directions of ⇑ and ⇓ are flipped from the base word. The transformation T2
reverses the order of the motion primitives. The transformation T3 flips the direc-
tions of x and y. The transformations commute, and there are seven possible
ways to combine them, which contributes to a row of Figure 15.13.

To construct an LPM or distance function, the same issues arise as for the
Reeds-Shepp and Dubins cars. Rather than testing all 40 words to find the shortest
path, simple tests can be defined over which a particular word becomes active
[18]. A slice of the precise cell decomposition and the resulting optimal cost-to-go
(which can be called the Balkcom-Mason metric) are shown in Figure 15.14.

15.4 Nonholonomic System Theory

This section gives some precision to the term nonholonomic, which was used
loosely in Chapters 13 and 14. Furthermore, small-time controllability (STLC),
which was defined in Section 15.1.3, is addressed. The presentation given here
barely scratches the surface of this subject, which involves deep mathematical
principles from differential geometry, algebra, control theory, and mechanics. The



15.4. NONHOLONOMIC SYSTEM THEORY 895

intention is to entice the reader to pursue further study of these topics; see the
suggested literature at the end of the chapter.

15.4.1 Control-Affine Systems

Nonholonomic system theory is restricted to a special class of nonlinear systems.
The techniques of Section 15.4 utilize ideas from linear algebra. The main concepts
will be formulated in terms of linear combinations of vector fields on a smooth
manifold X. Therefore, the formulation is restricted to control-affine systems,
which were briefly introduced in Section 13.2.3. For these systems, ẋ = f(x, u) is
of the form

ẋ = h0(x) +
m
∑

i=1

hi(x)ui, (15.52)

in which each hi is a vector field on X.

The vector fields are expressed using a coordinate neighborhood of X. Usually,
m < n, in which n is the dimension of X. Unless otherwise stated, assume that
U = R

m. In some cases, U may be restricted.

Each action variable ui ∈ R can be imagined as a coefficient that determines
how much of hi(x) is blended into the result ẋ. The drift term h0(x) always
remains and is often such a nuisance that the driftless case will be the main focus.
This means that h0(x) = 0 for all x ∈ X, which yields

ẋ =
m
∑

i=1

hi(x)ui. (15.53)

The driftless case will be used throughout most of this section. The set h1, . . .,
hm, is referred to as the system vector fields. It is essential that U contains at
least an open set that contains the origin of Rm. If the origin is not contained in
U , then the system is no longer driftless.7

Control-affine systems arise in many mechanical systems. Velocity constraints
on the C-space frequently are of the Pfaffian form (13.5). In Section 13.1.1, it was
explained that under such constraints, a configuration transition equation (13.6)
can be derived that is linear if q is fixed. This is precisely the driftless form (15.53)
using X = C. Most of the models in Section 13.1.2 can be expressed in this form.
The Pfaffian constraints on configuration are often called kinematic constraints
because they arise due to the kinematics of bodies in contact, such as a wheel
rolling. The more general case of (15.52) for a phase space X arises from dynamic
constraints that are obtained from Euler-Lagrange equation (13.118) or Hamilton’s
equations (13.198) in the formulation of the mechanics. These constraints capture
conservation laws, and the drift term usually appears due to momentum.

7Actually, if the convex hull of U contains an open set that contains the origin, then a driftless
system can be simulated by rapid switching.

896 S. M. LaValle: Planning Algorithms

Example 15.5 (A Simplified Model for Differential Drives and Cars) Both
the simple-car and the differential-drive models of Section 13.1.2 can be expressed
in the form (15.53) after making simplifications. The simplified model, (15.48),
can be adapted to conveniently express versions of both of them by using different
restrictions to define U . The third equation of (15.48) can be reduced to θ̇ = u2
without affecting the set of velocities that can be achieved. To conform to (15.53),
the equations can then be written in a linear-algebra form as





ẋ
ẏ

θ̇



 =





cos θ
sin θ
0



u1 +





0
0
1



u2. (15.54)

This makes it clear that there are two system vector fields, which can be combined
by selecting the scalar values u1 and u2. One vector field allows pure translation,
and the other allows pure rotation. Without restrictions on U , this system be-
haves like a differential drive because the simple car cannot execute pure rotation.
Simulating the simple car with (15.54) requires restrictions on U (such as requir-
ing that u1 be 1 or −1, as in Section 15.3.2). This is equivalent to the unicycle
from Figure 13.5 and (13.18).

Note that (15.54) can equivalently be expressed as





ẋ
ẏ

θ̇



 =





cos θ 0
sin θ 0
0 1





(

u1
u2

)

(15.55)

by organizing the vector fields into a matrix. �

In (15.54), the vector fields were written as column vectors that combine lin-
early using action variables. This suggested that control-affine systems can be
alternatively expressed using matrix multiplication in (15.55). In general, the
vector fields can be organized into an n×m matrix as

H(x) =
[

h1(x) h2(x) · · · hm(x)
]

. (15.56)

In the driftless case, this yields

ẋ = H(x) u (15.57)

as an equivalent way to express (15.53)
It is sometimes convenient to work with Pfaffian constraints,

g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0, (15.58)

instead of a state transition equation. As indicated in Section 13.1.1, a set of k
independent Pfaffian constraints can be converted into a state transition equation



15.4. NONHOLONOMIC SYSTEM THEORY 897

with m = (n − k) action variables. The resulting state transition equation is
a driftless control-affine system. Thus, Pfaffian constraints provide a dual way
of specifying driftless control-affine systems. The k Pfaffian constraints can be
expressed in matrix form as

G(x) ẋ = 0, (15.59)

which is the dual of (15.57), and G(x) is a k × n matrix formed from the gi
coefficients of each Pfaffian constraint. Systems with drift can be expressed in a
Pfaffian-like form by constraints

g0(x) + g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0. (15.60)

15.4.2 Determining Whether a System Is Nonholonomic

The use of linear algebra in Section 15.4.1 suggests further development of alge-
braic concepts. This section briefly introduces concepts that resemble ordinary
linear algebra but apply to linear combinations of vector fields. This provides
the concepts and tools needed to characterize important system properties in the
remainder of this section. This will enable the assessment of whether a system is
nonholonomic and also whether it is STLC. Many of the constructions are named
after Sophus Lie (pronounced “lee”), a mathematician who in the nineteenth cen-
tury contributed many ideas to algebra and geometry that happen to be relevant in
the study of nonholonomic systems (although that application came much later).

Completely integrable or nonholonomic?

Every control-affine system must be one or the other (not both) of the following:

1. Completely integrable: This means that the Pfaffian form (15.59) can be
obtained by differentiating k equations of the form fi(x) = 0 with respect
to time. This case was interpreted as being trapped on a surface in Section
13.1.3. An example of being trapped on a circle in R

2 was given in (13.22).

2. Nonholonomic: This means that the system is not completely integrable.
In this case, it might even be possible to reach all of X, even if the number
of action variables m is much smaller than n, the dimension of X.

In this context, the term holonomic is synonymous with completely integrable,
and nonintegrable is synonymous with nonholonomic. The term nonholonomic is
sometimes applied to non-Pfaffian constraints [159]; however, this will be avoided
here, in accordance with mechanics literature [34].

The notion of integrability used here is quite different from that required for
(14.1). In that case, the state transition equation needed to be integrable to obtain
integral curves from any initial state. This was required for all systems considered
in this book. By contrast, complete integrability implies that the system can be

898 S. M. LaValle: Planning Algorithms

expressed without even using derivatives. This means that all integral curves can
eventually be characterized by constraints that do not involve derivatives.

To help understand complete integrability, the notion of an integral curve will
be generalized from one to m dimensions. A manifoldM ⊆ X is called an integral
manifold of a set of Pfaffian constraints if at every x ∈ M , all vectors in the
tangent space Tx(M) satisfy the constraints. For a set of completely integrable
Pfaffian constraints, a partition of X into integral manifolds can be obtained by
defining maximal integral manifolds from every x ∈ X. The resulting partition is
called a foliation, and the maximal integral manifolds are called leaves [229].

Example 15.6 (A Foliation with Spherical Leaves) As an example, sup-
pose X = R

n and consider the Pfaffian constraint

x1ẋ1 + x2ẋ2 + · · · xnẋn = 0. (15.61)

This is completely integrable because it can be obtained by differentiating the
equation of a sphere,

x21 + x22 + · · · x2n − r2 = 0, (15.62)

with respect to time (r is a constant). The particular sphere that is obtained
via integration depends on an initial state. The foliation is the collection of all
concentric spheres that are centered at the origin. For example, if X = R

3, then a
maximal integral manifold arises for each point of the form (0, 0, r). In each case, it
is a sphere of radius r. The foliation is generated by selecting every r ∈ [0,∞). �

The task in this section is to determine whether a system is completely inte-
grable. Imagine someone is playing a game with you. You are given an control-
affine system and asked to determine whether it is completely integrable. The
person playing the game with you can start with equations of the form hi(x) = 0
and differentiate them to obtain Pfaffian constraints. These can then be converted
into the parametric form to obtain the state transition equation (15.53). It is easy
to construct challenging problems; however, it is very hard to solve them. The
concepts in this section can be used to determine only whether it is possible to
win such a game. The main tool will be the Frobenius theorem, which concludes
whether a system is completely integrable. Unfortunately, the conclusion is ob-
tained without producing the integrated constraints hi(x) = 0. Therefore, it is
important to keep in mind that “integrability” does not mean that you can inte-
grate it to obtain a nice form. This is a challenging problem of reverse engineering.
On the other hand, it is easy to go in the other direction by differentiating the
constraints to make a challenging game for someone else to play.



15.4. NONHOLONOMIC SYSTEM THEORY 899

Distributions

A distribution8 expresses a set of vector fields on a smooth manifold. Suppose that
a driftless control-affine system (15.53) is given. Recall the vector space definition
from Section 8.3.1 or from linear algebra. Also recall that a state transition
equation can be interpreted as a vector field if the actions are fixed and as a
vector space if the state is instead fixed. For U = R

m and a fixed x ∈ X, the state
transition equation defines a vector space in which each hi evaluated at x is a
basis vector and each ui is a coefficient. For example, in (15.54), the vector fields
h1 and h2 evaluated at q = (0, 0, 0) become [1 0 0]T and [0 0 1]T , respectively.
These serve as the basis vectors. By selecting values of u ∈ R

2, a 2D vector space
results. Any vector of the form [a 0 b]T can be represented by setting u1 = a and
u2 = b. More generally, let △(x) denote the vector space obtained in this way for
any x ∈ X.

The dimension of a vector space is the number of independent basis vectors.
Therefore, the dimension of△(x) is the rank of H(x) from (15.56) when evaluated
at the particular x ∈ X. Now consider defining △(x) for every x ∈ X. This yields
a parameterized family of vector spaces, one for each x ∈ X. The result could
just as well be interpreted as a parameterized family of vector fields. For example,
consider actions for i from 1 to m of the form ui = 1 and uj = 0 for all i 6= j. If
the action is held constant over all x ∈ X, then it selects a single vector field hi
from the collection of m vector fields:

ẋ = hi(x). (15.63)

Using constant actions, an m-dimensional vector space can be defined in which
each vector field hi is a basis vector (assuming the hi are linearly independent),
and the ui ∈ R are the coefficients:

u1h1(x) + u2h2(x) + · · ·+ umhm(x). (15.64)

This idea can be generalized to allow the ui to vary over X. Thus, rather than
having u constant, it can be interpreted as a feedback plan π : X → U , in which
the action at x is given by u = π(x). The set of all vector fields that can be
obtained as

π1(x)h1(x) + π2(x)h2(x) + · · ·+ πm(x)hm(x) (15.65)

is called the distribution of the set {h1, . . . , hm} of vector fields and is denoted as
△. If △ is obtained from an control-affine system, then △ is called the system
distribution. The resulting set of vector fields is not quite a vector space because
the nonzero coefficients πi do not necessarily have a multiplicative inverse. This
is required for the coefficients of a vector field and was satisfied by using R in the
case of constant actions. A distribution is instead considered algebraically as a

8This distribution has nothing to do with probability theory. It is just an unfortunate coin-
cidence of terminology.

900 S. M. LaValle: Planning Algorithms

X x

Tx(X)

T (X)

△
△(x)

Figure 15.15: The distribution △ can be imagined as a slice of the tangent bundle
T (X). It restricts the tangent space at every x ∈ X.

module [127]. In most circumstances, it is helpful to imagine it as a vector space
(just do not try to invert the coefficients!). Since a distribution is almost a vector
space, the span notation from linear algebra is often used to define it:

△ = span{h1, h2, . . . , hm}. (15.66)

Furthermore, it is actually a vector space with respect to constant actions u ∈ R
m.

Note that for each fixed x ∈ X, the vector space △(x) is obtained, as defined
earlier. A vector field f is said to belong to a distribution △ if it can be expressed
using (15.65). If for all x ∈ X, the dimension of △(x) is m, then △ is called a
nonsingular distribution (or regular distribution). Otherwise,△ is called a singular
distribution, and the points x ∈ X for which the dimension of △(x) is less than m
are called singular points. If the dimension of △(x) is a constant c over all x ∈ X,
then c is called the dimension of the distribution and is denoted by dim(△). If
the vector fields are smooth, and if π is restricted to be smooth, then a smooth
distribution is obtained, which is a subset of the original distribution.

As depicted in Figure 15.15, a nice interpretation of the distribution can be
given in terms of the tangent bundle of a smooth manifold. The tangent bundle
was defined for X = R

n in (8.9) and generalizes to any smooth manifold X to
obtain

T (X) =
⋃

x∈X

Tx(X). (15.67)

The tangent bundle is a 2n-dimensional manifold in which n is the dimension ofX.
A phase space for which x = (q, q̇) is actually T (C). In the current setting, each
element of T (X) yields a state and a velocity, (x, ẋ). Which pairs are possible for
a driftless control-affine system? Each △(x) indicates the set of possible ẋ values
for a fixed x. The point x is sometimes called the base and △(x) is called the fiber
over x in T (X). The distribution △ simply specifies a subset of Tx(X) for every
x ∈ X. For a vector field f to belong to △, it must satisfy f(x) ∈ △(x) for all



15.4. NONHOLONOMIC SYSTEM THEORY 901

x ∈ X. This is just a restriction to a subset of T (X). If m = n and the system
vector fields are independent, then any vector field is allowed. In this case, △
includes any vector field that can be constructed from the vectors in T (X).

Example 15.7 (The Distribution for the Differential Drive) The system
in (15.54) yields a two-dimensional distribution:

△ = span{[cos θ sin θ 0]T , [0 0 1]T}. (15.68)

The distribution is nonsingular because for any (x, y, θ) in the coordinate neigh-
borhood, the resulting vector space △(x, y, θ) is two-dimensional. �

Example 15.8 (A Singular Distribution) Consider the following system,
which is given in [130]:





ẋ1
ẋ2
ẋ3



 = h1(x)u1 + h2(x)u2 + h3(x)u3

=





x1
1 + x3

1



u1 +





x1x2
(1 + x3)x2

x2



u2 +





x1
x1
0



u3.

(15.69)

The distribution is
△ = span{h1, h2, h3}. (15.70)

The first issue is that for any x ∈ R
3, h2(x) = h1(x)x2, which implies that the

vector fields are linearly dependent over all of R
3. Hence, this distribution is

singular because m = 3 and the dimension of ∆(x) is 2 if x1 6= 0. If x1 = 0, then
the dimension of ∆(x) drops to 1. The dimension of △ is not defined because the
dimension of ∆(x) depends on x. �

A distribution can alternatively be defined directly from Pfaffian constraints.
Each gi(x) = 0 is called an annihilator because enforcing the constraint eliminates
many vector fields from consideration. At each x ∈ X, △(x) is defined as the
set of all velocity vectors that satisfy all k Pfaffian constraints. The constraints
themselves can be used to form a codistribution, which is a kind of dual to the
distribution. The codistribution can be interpreted as a vector space in which
each constraint is a basis vector. Constraints can be added together or multiplied
by any c ∈ R, and there is no effect on the resulting distribution of allowable
vector fields.

Lie brackets

The key to establishing whether a system is nonholonomic is to construct motions
that combine the effects of two action variables, which may produce motions

902 S. M. LaValle: Planning Algorithms

q(0) q(∆t)

q(2∆t)

x

y

q(2∆t)

q(4∆t)

q(3∆t)

y

x

(a) (b)

Figure 15.16: (a) The effect of the first two primitives. (b) The effect of the last
two primitives.

in a direction that seems impossible from the system distribution. To motivate
the coming ideas, consider the differential-drive model from (15.54). Apply the
following piecewise-constant action trajectory over the interval [0, 4∆t]:

u(t) =















(1, 0) for t ∈ [0,∆t)
(0, 1) for t ∈ [∆t, 2∆t)
(−1, 0) for t ∈ [2∆t, 3∆t)
(0,−1) for t ∈ [3∆t, 4∆t] .

(15.71)

The action trajectory is a sequence of four motion primitives: 1) translate forward,
2) rotate forward, 3) translate backward, and 4) rotate backward.

The result of all four motion primitives in succession from qI = (0, 0, 0) is
shown in Figure 15.16. It is fun to try this at home with an axle and two wheels
(Tinkertoys work well, for example). The result is that the differential drive moves
sideways!9 From the transition equation (15.54) such motions appear impossible.
This is a beautiful property of nonlinear systems. The state may wiggle its way in
directions that do not seem possible. A more familiar example is parallel parking a
car. It is known that a car cannot directly move sideways; however, some wiggling
motions can be performed to move it sideways into a tight parking space. The
actions we perform while parking resemble the primitives in (15.71).

Algebraically, the motions of (15.71) appear to be checking for commutativity.
Recall from Section 4.2.1 that a group G is called commutative (or Abelian) if
ab = ba for any a, b ∈ G. A commutator is a group element of the form aba−1b−1.

9It also moves slightly forward; however, this can be eliminated by either lengthening the
time of the third primitive or by considering the limit as ∆ approaches zero.



15.4. NONHOLONOMIC SYSTEM THEORY 903

−g

−f

g

f
x(∆t)

x(2∆t)

x(0)

x(3∆t)

Figure 15.17: The velocity obtained by the Lie bracket can be approximated by
a sequence of four motion primitives.

If the group is commutative, then aba−1b−1 = e (the identity element) for any
a, b ∈ G. If a nonidentity element of G is produced by the commutator, then the
group is not commutative. Similarly, if the trajectory arising from (15.71) does not
form a loop (by returning to the starting point), then the motion primitives do not
commute. Therefore, a sequence of motion primitives in (15.71) will be referred to
as the commutator motion. It will turn out that if the commutator motion cannot
produce any velocities not allowed by the system distribution, then the system is
completely integrable. This means that if we are trapped on a surface, then it is
impossible to leave the surface by using commutator motions.

Now generalize the differential drive to any driftless control-affine system that
has two action variables:

ẋ = f(x)u1 + g(x)u2. (15.72)

Using the notation of (15.53), the vector fields would be h1 and h2; however, f
and g are chosen here to allow subscripts to denote the components of the vector
field in the coming explanation.

Suppose that the commutator motion (15.71) is applied to (15.72) as shown in
Figure 15.17. Determining the resulting motion requires some general computa-
tions, as opposed to the simple geometric arguments that could be made for the
differential drive. If would be convenient to have an expression for the velocity
obtained in the limit as ∆t approaches zero. This can be obtained by using Tay-
lor series arguments. These are simplified by the fact that the action history is
piecewise constant.

The coming derivation will require an expression for ẍ under the application of
a constant action. For each action, a vector field of the form ẋ = h(x) is obtained.
Upon differentiation, this yields

ẍ =
dh

dt
=
∂h

∂x

dx

dt
=
∂h

dx
ẋ =

∂h

dx
h(x). (15.73)

This follows from the chain rule because h is a function of x, which itself is a

904 S. M. LaValle: Planning Algorithms

function of t. The derivative ∂h/∂x is actually an n× n Jacobian matrix, which
is multiplied by the vector ẋ. To further clarify (15.73), each component can be
expressed as

ẍi =
d

dt
hi(x(t)) =

n
∑

j=1

∂hi
∂xj

hj. (15.74)

Now the state trajectory under the application of (15.71) will be determined
using the Taylor series, which was given in (14.17). The state trajectory that
results from the first motion primitive u = (1, 0) can be expressed as

x(∆t) = x(0) + ∆t ẋ(0) + 1
2
(∆t)2 ẍ(0) + · · ·

= x(0) + ∆t f(x(0)) +
1

2
(∆t)2

∂f

∂x

∣

∣

∣

x(0)
f(x(0)) + · · · ,

(15.75)

which makes use of (15.73) in the second line. The Taylor series expansion for the
second primitive is

x(2∆t) = x(∆t) + ∆t g(x(∆t)) +
1

2
(∆t)2

∂g

∂x

∣

∣

∣

x(∆t)
g(x(∆t)) + · · · . (15.76)

An expression for g(x(∆t)) can be obtained by using the Taylor series expansion
in (15.75) to express x(∆t). The first terms after substitution and simplification
are

x(2∆t) = x(0) + ∆t (f + g) + (∆t)2
(

1

2

∂f

∂x
f +

∂g

∂x
f +

1

2

∂g

∂x
g

)

+ · · · . (15.77)

To simplify the expression, the evaluation at x(0) has been dropped from every
occurrence of f and g and their derivatives.

The idea of substituting previous Taylor series expansions as they are needed
can be repeated for the remaining two motion primitives. The Taylor series ex-
pansion for the result after the third primitive is

x(3∆t) = x(0) + ∆t g + (∆t)2
(

∂g

∂x
f − ∂f

∂x
g +

1

2

∂g

∂x
g

)

+ · · · . (15.78)

Finally, the Taylor series expansion after all four primitives have been applied is

x(4∆t) = x(0) + (∆t)2
(

∂g

∂x
f − ∂f

∂x
g

)

+ · · · . (15.79)

Taking the limit yields

lim
∆t→0

x(4∆t)− x(0)
(∆t)2

=
∂g

∂x
f − ∂f

∂x
g, (15.80)



15.4. NONHOLONOMIC SYSTEM THEORY 905

which is called the Lie bracket of f and g and is denoted by [f, g]. Similar to
(15.74), the ith component can be expressed as

[f, g]i =
n
∑

j=1

(

fj
∂gi
∂xj
− gj

∂fi
∂xj

)

. (15.81)

The Lie bracket is an important operation in many subjects, and is related to the
Poisson and Jacobi brackets that arise in physics and mathematics.

Example 15.9 (Lie Bracket for the Differential Drive) The Lie bracket should
indicate that sideways motions are possible for the differential drive. Consider tak-
ing the Lie bracket of the two vector fields used in (15.54). Let f = [cos θ sin θ 0]T

and g = [0 0 1]T . Rename h1 and h2 to f and g to allow subscripts to denote
the components of a vector field.

By applying (15.81), the Lie bracket [f, g] is

[f, g]1 = f1
∂g1
∂x
− g1

∂f1
∂x

+ f2
∂g1
∂y
− g2

∂f1
∂y

+ f3
∂g1
∂θ
− g3

∂f1
∂θ

= sin θ

[f, g]2 = f1
∂g2
∂x
− g1

∂f2
∂x

+ f2
∂g2
∂y
− g2

∂f2
∂y

+ f3
∂g2
∂θ
− g3

∂f2
∂θ

= − cos θ

[f, g]3 = f1
∂g3
∂x
− g1

∂f3
∂x

+ f2
∂g3
∂y
− g2

∂f3
∂y

+ f3
∂g3
∂θ
− g3

∂f3
∂θ

= 0.

(15.82)

The resulting vector field is [f, g] = [sin θ − cos θ 0]T , which indicates the side-
ways motion, as desired. When evaluated at q = (0, 0, 0), the vector [0 − 1 0]T

is obtained. This means that performing short commutator motions wiggles the
differential drive sideways in the −y direction, which we already knew from Figure
15.16. �

Example 15.10 (Lie Bracket of Linear Vector Fields) Suppose that each
vector field is a linear function of x. The n × n Jacobians ∂f/∂x and ∂g/∂x are
constant.

As a simple example, recall the nonholonomic integrator (13.43). In the linear-
algebra form, the system is





ẋ1
ẋ2
ẋ3



 =





1
0
−x2



u1 +





0
1
x1



u2. (15.83)

Let f = h1 and g = h2. The Jacobian matrices are

∂f

∂x
=





0 0 0
0 0 0
0 −1 0



 and
∂g

∂x
=





0 0 0
0 0 0
1 0 0



 . (15.84)

906 S. M. LaValle: Planning Algorithms

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =





0 0 0
0 0 0
1 0 0









1
0
−x2



−





0 0 0
0 0 0
0 −1 0









0
1
−x1



 =





0
0
2



 . (15.85)

This result can be verified using (15.81).
�

The Frobenius Theorem

The Lie bracket is the only tool needed to determine whether a system is com-
pletely integrable (holonomic) or nonholonomic (not integrable). Suppose that a
system of the form (15.53) is given. Using the m system vector fields h1, . . ., hm
there are (m2 ) Lie brackets of the form [hi, hj] for i < j that can be formed. A
distribution △ is called involutive [42] if for each of these brackets there exist m
coefficients ck ∈ R such that

[hi, hj ] =
m
∑

k=1

ckhk. (15.86)

In other words, every Lie bracket can be expressed as a linear combination of the
system vector fields, and therefore it already belongs to △. The Lie brackets are
unable to escape △ and generate new directions of motion. We did not need to
consider all n2 possible Lie brackets of the system vector fields because it turns
out that [hi, hj] = −[hj, hi] and consequently [hi, hi] = 0. Therefore, the definition
of involutive is not altered by looking only at the (m2 ) pairs.

If the system is smooth and the distribution is nonsingular, then the Frobenius
theorem immediately characterizes integrability:

A system is completely integrable if and only if it is involutive.

Proofs of the Frobenius theorem appear in numerous differential geometry and
control theory books [42, 51, 130, 221]. There also exist versions that do not
require the distribution to be nonsingular.

Determining integrability involves performing Lie brackets and determining
whether (15.86) is satisfied. The search for the coefficients can luckily be avoided
by using linear algebra tests for linear independence. The n × m matrix H(x),
which was defined in (15.56), can be augmented into an n× (m+1) matrix H ′(x)
by adding [hi, hj] as a new column. If the rank of H ′(x) is m + 1 for any pair
hi and hj, then it is immediately known that the system is nonholonomic. If the
rank of H ′(x) is m for all Lie brackets, then the system is completely integrable.
Driftless linear systems, which are expressed as ẋ = Bu for a fixed matrix B, are
completely integrable because all Lie brackets are zero.



15.4. NONHOLONOMIC SYSTEM THEORY 907

Example 15.11 (The Differential Drive Is Nonholonomic) For the dif-
ferential drive model in (15.54), the Lie bracket [f, g] was determined in Example
15.9 to be [sin θ − cos θ 0]T . The matrix H ′(q), in which q = (x, y, θ), is

H ′(q) =





cos θ 0 sin θ
sin θ 0 − cos θ
0 1 0



 . (15.87)

The rank of H ′(q) is 3 for all q ∈ C (the determinant of H ′(q) is 1). Therefore, by
the Frobenius theorem, the system is nonholonomic. �

Example 15.12 (The Nonholonomic Integrator Is Nonholonomic) We
would hope that the nonholonomic integrator is nonholonomic. In Example 15.10,
the Lie bracket was determined to be [0 0 2]T . The matrix H ′(q) is

H ′(q) =





1 0 0
0 1 0
−x2 x1 2



 , (15.88)

which clearly has full rank for all q ∈ C. �

Example 15.13 (Trapped on a Sphere) Suppose that the following system
is given:





ẋ1
ẋ2
ẋ3



 =





x2
−x1
0



u1 +





x3
0
−x1



u2, (15.89)

for which X = R
3 and U = R

2. Since the vector fields are linear, the Jacobians
are constant (as in Example 15.10):

∂f

∂x
=





0 1 0
−1 0 0
0 0 0



 and
∂g

∂x
=





0 0 1
0 0 0
−1 0 0



 . (15.90)

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =





0 0 1
0 0 0
−1 0 0









x2
−x1
0



−





0 1 0
−1 0 0
0 0 0









x3
0
−x1



 =





0
x3
−x2



 . (15.91)

This yields the matrix

H ′(x) =





x2 −x1 0
x3 0 −x1
0 x3 −x2



 . (15.92)

908 S. M. LaValle: Planning Algorithms

The determinant is zero for all x ∈ R
3, which means that [f, g] is never linearly

independent of f and g. Therefore, the system is completely integrable.10

The system can actually be constructed by differentiating the equation of a
sphere. Let

f(x) = x21 + x22 + x23 − r2 = 0, (15.93)

and differentiate with respect to time to obtain

x1ẋ1 + x2ẋ2 + x3ẋ3 = 0, (15.94)

which is a Pfaffian constraint. A parametric representation of the set of vectors
that satisfy (15.94) is given by (15.89). For each (u1, u2) ∈ R

2, (15.89) yields
a vector that satisfies (15.94). Thus, this was an example of being trapped on
a sphere, which we would expect to be completely integrable. It was difficult,
however, to suspect this using only (15.89). �

15.4.3 Determining Controllability

Determining complete integrability is the first step toward determining whether
a driftless control-affine system is STLC. The Lie bracket attempts to produce
motions in directions that do not seem to be allowed by the system distribution.
At each q, a velocity not in △(q) may be produced by the Lie bracket. By
working further with Lie brackets, it is possible to completely characterize all of
the directions that are possible from each q. So far, the Lie brackets have only been
applied to the system vector fields h1, . . ., hm. It is possible to proceed further by
applying Lie bracket operations on Lie brackets. For example, [h1, [h1, h2]] can be
computed. This might generate a vector field that is linearly independent of all
of the vector fields considered in Section 15.4.2 for the Frobenius theorem. The
main idea in this section is to apply the Lie bracket recursively until no more
independent vector fields can be found. The result is called the Lie algebra. If
the number of independent vector fields obtained in this way is the dimension of
X, then it turns out that the system is STLC.

The Lie algebra

The notion of a Lie algebra is first established in general. Let V be any vector
space with coefficients in R. In V , the vectors can be added or multiplied by
elements of R; however, there is no way to “multiply” two vectors to obtain a
third. The Lie algebra introduces a product operation to V . The product is
called a bracket or Lie bracket (considered here as a generalization of the previous
Lie bracket) and is denoted by [·, ·] : V × V → V .

10This system is singular at the origin. A variant of the Frobenius theorem given here is
technically needed.



15.4. NONHOLONOMIC SYSTEM THEORY 909

To be a Lie algebra obtained from V , the bracket must satisfy the following
three axioms:

1. Bilinearity: For any a, b ∈ R and u, v, w ∈ V ,

[au+ bv, w] = a[u, w] + b[v, w]

[u, av + bw] = a[u, w] + b[u, w].
(15.95)

2. Skew symmetry: For any u, v ∈ V ,

[u, v] = −[v, u]. (15.96)

This means that the bracket is anti-commutative.

3. Jacobi identity: For any u, v, w ∈ V ,

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0. (15.97)

Note that the bracket is not even associative.

Let L(V ) denote the Lie algebra of V . This is a vector space that includes all
elements of V and any new elements that can be obtained via Lie bracket opera-
tions. The Lie algebra L(V ) includes every vector that can be obtained from any
finite number of nested Lie bracket operations. Thus, describing a Lie algebra
requires characterizing all vectors that are obtained under the algebraic closure of
the bracket operation. Since L(V ) is a vector space, this is accomplished by find-
ing a basis of independent vectors of which all elements of L(V ) can be expressed
as a linear combination.

Example 15.14 (The Vector Cross Product) Let V be the vector space
over R3 that is used in vector calculus. The basis elements are often denoted as
ı̂, ̂, and k̂. A bracket for this vector space is simply the cross product

[u, v] = u× v. (15.98)

It can be verified that the required axioms of a Lie bracket are satisfied.
One interesting property of the cross product that is exploited often in analytic

geometry is that it produces a vector outside of the span of u and v. For example,
let W be the two-dimensional subspace of vectors

W = span{̂ı, ̂}. (15.99)

The cross product always yields a vector that is a multiple of k̂, which lies outside
of V if the product is nonzero. This behavior is very similar to constructing vector
fields that lie outside of △ using the Lie bracket in Section 15.4.2. �

910 S. M. LaValle: Planning Algorithms

Example 15.15 (Lie Algebra on Lie Groups) Lie groups are the most im-
portant application of the Lie algebra concepts. Recall from Section 4.2.1 the
notion of a matrix group. Important examples throughout this book have been
SO(n) and SE(n). If interpreted as a smooth manifold, these matrix groups are
examples of Lie groups [17]. In general, a Lie group G is both a differentiable
manifold and a group with respect to some operation ◦ if and only if:

1. The product a ◦ b, interpreted as a function from G×G→ G, is smooth.

2. The inverse a−1, interpreted as a function from G to G, is smooth.

The two conditions are needed to prevent the group from destroying the nice
properties that come with the smooth manifold. An important result in the study
of Lie groups is that all compact finite-dimensional Lie groups can be represented
as matrix groups.

For any Lie group, a Lie algebra can be defined on a special set of vector
fields. These are defined using the left translation mapping Lg : x 7→ gx. The
vector field formed from the differential of Lg is called a left-invariant vector field.
A Lie algebra can be defined on the set of these fields. The Lie bracket definition
depends on the particular group. For the case of GL(n), the Lie bracket is

[A,B] = AB − BA. (15.100)

In this case, the Lie bracket clearly appears to be a test for commutativity. If
the matrices commute with respect to multiplication, then the Lie bracket is zero.
The Lie brackets for SO(n) and SE(n) are given in many texts on mechanics and
control [51, 221]. The Lie algebra of left-invariant vector fields is an important
structure in the study of nonlinear systems and mechanics. �

Lie algebra of the system distribution

Now suppose that a set h1, . . ., hm of vector fields is given as a driftless control-
affine system, as in (15.53). Its associated distribution△ is interpreted as a vector
space with coefficients in R, and the Lie bracket operation was given by (15.81).
It can be verified that the Lie bracket operation in (15.81) satisfies the required
axioms for a Lie algebra.

As observed in Examples 15.9 and 15.10, the Lie bracket may produce vector
fields outside of△. By defining the Lie algebra of△ to be all vector fields that can
be obtained by applying Lie bracket operations, a potentially larger distribution
L(△) is obtained. The Lie algebra can be expressed using the span notation by
including h1, . . ., hm and all independent vector fields generated by Lie brackets.
Note that no more than n independent vector fields can possibly be produced.

Example 15.16 (The Lie Algebra of the Differential Drive) The Lie al-
gebra of the differential drive (15.54) is

L(△) = span{[cos θ sin θ 0]T , [0 0 1]T , [sin θ − cos θ 0]T}. (15.101)



15.4. NONHOLONOMIC SYSTEM THEORY 911

This uses the Lie bracket that was computed in (15.82) to obtain a three-dimensional
Lie algebra. No further Lie brackets are needed because the maximum number of
independent vector fields has been already obtained. �

Example 15.17 (A Lie Algebra That Involves Nested Brackets) The pre-
vious example was not very interesting because the Lie algebra was generated after
computing only one bracket. Suppose that X = R

5 and U = R
2. In this case,

there is room to obtain up to three additional, linearly independent vector fields.
The dimension of the Lie algebra may be any integer from 2 to 5.

Let the system be












ẋ1
ẋ2
ẋ3
ẋ4
ẋ5













=













1
0
x2
x3
x4













u1 +













0
1
0
0
0













u2. (15.102)

This is a chained-form system, which is a concept that becomes important in
Section 15.5.2.

The first Lie bracket produces

[h1, h2] = [0 0 − 1 0 0]T . (15.103)

Other vector fields that can be obtained by Lie brackets are

[h1, [h1, h2]] = [0 0 0 1 0]T (15.104)

and
[h1, [h1, [h1, h2]]] = [0 0 0 0 1]T . (15.105)

The resulting five vector fields are independent over all x ∈ R
5. This includes

h1, h2, and the three obtained from Lie bracket operations. Independence can be
established by placing them into a 5× 5 matrix,













1 0 0 0 0
0 1 0 0 0
x2 0 −1 0 0
x3 0 0 1 0
x4 0 0 0 1













, (15.106)

which has full rank for all x ∈ R
5. No additional vector fields can possibly be

independent. Therefore, the five-dimensional Lie algebra is

L(△) = span{h1, h2, [h1, h2], [h1, [h1, h2]], [h1, [h1, [h1, h2]]]}. (15.107)

�

912 S. M. LaValle: Planning Algorithms

Philip Hall basis of a Lie algebra

Determining the basis of a Lie algebra may be a long and tedious process. The
combinations of Lie brackets in Example 15.17 were given; however, it is not known
in advance which ones will produce independent vector fields. Numerous Lie
brackets may be needed, including some that are nested, such as [[h1, h2], h3]. The
maximum depth of nested Lie bracket operations is not known a priori. Therefore,
a systematic search must be performed (this can in fact be modeled as a discrete
planning problem) by starting with h1, . . ., hm and iteratively generating new,
independent vector fields using Lie brackets.

One popular approach is to generate the Philip Hall basis (or P. Hall basis) of
the Lie algebra L(△). The construction of the basis essentially follows breadth-
first search, in which the search depth is defined to be the number of nested levels
of bracket operations. The order (or depth) d of a Lie product is defined recursively
as follows. For the base case, let d(hi) = 1 for any of the system vector fields. For
any Lie product [φ1, φ2], let

d([φ1, φ2]) = d(φ1) + d(φ2). (15.108)

Thus, the order is just the nesting depth (plus one) of the Lie bracket operations.
For example, d([h1, h2]) = 2 and d([h1, [h2, h3]]) = 3.

In addition to standard breadth-first search, pruning should be automatically
performed to ensure that the skew symmetry and Jacobi identities are always
utilized to eliminate redundancy. A P. Hall basis is a sequence, PH = (φ1, φ2,
. . .), of Lie products for which:

1. The system vector fields hi are the first m elements of PH.

2. If d(φi) < d(φj), then i < j.

3. Each [φi, φj] ∈ PH if and only if: a) φi, φj ∈ PH and i < j, and b) either
φj = hi for some i or φj = [φl, φr] for some φl, φr ∈ PH such that l ≤ i.

It is shown in many algebra books (e.g., [227]) that this procedure results in a
basis for the Lie algebra L(△). Various algorithms for computing the basis are
evaluated in [86].

Example 15.18 (P. Hall Basis Up to Depth Three) The P. Hall basis sorts
the Lie products into the following sequence, which is obtained up to depth d = 3:

h1, h2, h3,
[h1, h2], [h2, h3], [h1, h3],
[h1, [h1, h2]], [h1, [h1, h3]], [h2, [h1, h2]], [h2, [h1, h3]],
[h2, [h2, h3]], [h3, [h1, h2]], [h3, [h1, h3]], [h3, [h2, h3]] .

So far, the only Lie product eliminated by the Jacobi identity is [h1, [h2, h3]] be-
cause

[h1, [h2, h3]] = [h2, [h1, h3]]− [h3, [h1, h2]]. (15.109)



15.4. NONHOLONOMIC SYSTEM THEORY 913

Note that all of the Lie products given here may not be linearly independent vec-
tor fields. For a particular system, linear independence tests should be performed
to delete any linearly dependent vector fields from the basis. �

When does the sequence PH terminate? Recall that dim(L(△)) can be no
greater than n, because Lx(△) ⊆ Tx(X). In other words, at every state x ∈ X,
the number of possible independent velocity vectors is no more than the dimension
of the tangent space at x. Therefore, PH can be terminated once n independent
vector fields are obtained because there is no possibility of finding more. For
some systems, there may be a depth k after which all Lie brackets are zero. Such
systems are called nilpotent of order k. This occurs, for example, if all components
of all vector fields are polynomials. If the system is not nilpotent, then achieving
termination may be difficult. It may be the case that dim(L(△)) is strictly less
than n, but this is usually not known in advance. It is difficult to determine
whether more Lie brackets are needed to increase the dimension or the limit has
already been reached.

Controllability of driftless systems

The controllability of a driftless control-affine system (15.53) can be characterized
using the Lie algebra rank condition (or LARC). Recall the definition of STLC
from Section 15.1.3. Assume that either U = R

m or U at least contains an open
set that contains the origin of Rm. The Chow-Rashevskii theorem [34, 51, 221]
states:

A driftless control-affine system, (15.53), is small-time locally controllable (STLC)
at a point x ∈ X if and only if dim(Lx(△)) = n, the dimension of X.

If the condition holds for every x ∈ X, then the whole system is STLC.
Integrability can also be expressed in terms of dim(L(△)). Assume as usual that
m < n. The three cases are:

1. dim(L(△)) = m the system is completely integrable;
2. m < dim(L(△)) < n the system is nonholonomic, but not STLC;
3. dim(L(△)) = n the system is nonholonomic and STLC.

(15.110)

Example 15.19 (Controllability Examples) The differential drive, nonholo-
nomic integrator, and the system from Example 15.17 are all STLC by the Chow-
Rashevskii theorem because dim(L(△)) = n. This implies that the state can be
changed in any direction, even though there are differential constraints. The state
can be made to follow arbitrarily close to any smooth curve in X. A method
that achieves this based on the Lie algebra is given in Section 15.5.1. The fact
that these systems are STLC assures the existence of an LPM that satisfies the

914 S. M. LaValle: Planning Algorithms

topological property of Section 14.6.2. �

Handling Control-Affine Systems with Drift

Determining whether a system with drift (15.52), is STLC is substantially more
difficult. Imagine a mechanical system, such as a hovercraft, that is moving at
a high speed. Due to momentum, it is impossible from most states to move in
certain directions during an arbitrarily small interval of time. One can, however,
ask whether a system is STLC from a state x ∈ X for which h0(x) = 0. For
a mechanical system, this usually means that it starts at rest. If a system with
drift is STLC, this intuitively means that it can move in any direction by hovering
around states that are close to zero velocity for the mechanical system.

The Lie algebra techniques can be extended to determine controllability for
systems with drift; however, the tools needed are far more complicated. See
Chapter 7 of [51] for more complete coverage. Even if dim(L(△)) = n, it does not
necessarily imply that the system is STLC. It does at least imply that the system
is accessible, which motivates the definition given in Section 15.1.3. Thus, the set
of achievable velocities still has dimension n; however, motions in all directions
may not be possible due to drift. To obtain STLC, a sufficient condition is that
the set of possible values for ẋ contains an open set that contains the origin.

The following example clearly illustrates the main difficultly with establishing
whether a system with drift is STLC.

Example 15.20 (Accessible, Not STLC) The following simple system clearly
illustrates the difficulty caused by drift and was considered in [196]. Let X = R

2,
U = R, and the state transition equation be

ẋ1 = u

ẋ2 = x21.
(15.111)

This system is clearly not controllable in any sense because x2 cannot be decreased.
The vector fields are h0(x) = [0 x21]

T and h1(x) = [1 0]T . The first independent
Lie bracket is

[h1, [h0, h1]] = [0 − 2]. (15.112)

The two-dimensional Lie algebra is

L(△) = span{h1, [h1, [h0, h1]]}, (15.113)

which implies that the system is accessible. It is not STLC, however, because the
bracket [h1, [h0, h1]] was constructed using h0 and was combined in an unfortunate
way. This bracket is indicating that changing x2 is possible; however, we already
know that it is not possible to decrease x2. Thus, some of the vector fields obtained
from Lie brackets that involve h0 may have directional constraints. �



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 915

In Example 15.20, [h1, [h0, h1]] was an example of a bad bracket [247] because
it obstructed controllability. A method of classifying brackets as good or bad has
been developed, and there exist theorems that imply whether a system with drift
is STLC by satisfying certain conditions on the good and bad brackets. Intuitively,
there must be enough good brackets to neutralize the obstructions imposed by the
bad brackets [51, 247].

15.5 Steering Methods for Nonholonomic Sys-

tems

This section briefly surveys some methods that solve the BVP for nonholonomic
systems. This can be considered as a motion planning problem under differential
constraints but in the absence of obstacles. For linear systems, optimal control
techniques can be used, as covered in Section 15.2.2. For mechanical systems that
are fully actuated, standard control techniques such as the acceleration-based
control model in (8.47) can be applied. If a mechanical system is underactuated,
then it is likely to be nonholonomic. As observed in Section 15.4, it is possible to
generate motions that appear at first to be prohibited. Suppose that by the Chow-
Rashevskii theorem, it is shown that a driftless system is STLC. This indicates
that it should be possible to design an LPM that successfully connects any pair
of initial and goal states. The next challenge is to find an action trajectory ũ
that actually causes xI to reach xG upon integration in (14.1). Many methods
in Chapter 14 could actually be used, but it is assumed that these would be too
slow. The methods in this section exploit the structure of the system (e.g, its
Lie algebra) and the fact that there are no obstacles to more efficiently solve the
planning problem.

15.5.1 Using the P. Hall Basis

The steering method presented in this section is due to Lafferriere and Sussmann
[152]. It is assumed here that a driftless control-affine system is given, in which
X is a Lie group, as introduced in Example 15.15. Furthermore, the system is
assumed to be STLC. The steering method sketched in this section follows from
the Lie algebra L(△). The idea is to apply piecewise-constant motion primitives
to move in directions given by the P. Hall basis. If the system is nilpotent, then
this method reaches the goal state exactly. Otherwise, it leads to an approximate
method that can be iterated to get arbitrarily close to the goal. Furthermore,
some systems are nilpotentizable by using feedback [122].

The main idea is to start with (15.53) and construct an extended system

ẋ =
s
∑

i=1

bi(x)vi, (15.114)

916 S. M. LaValle: Planning Algorithms

in which each vi is an action variable, and bi is a vector field in PH, the P. Hall
basis. For every i ≤ m, each term of (15.114) is bi(x)vi = hi(x)ui, which comes
from the original system. For i > m, each bi represents a Lie product in PH, and
vi is a fictitious action variable. It is called fictitious because the velocity given
by bi for i > m cannot necessarily be achieved by using a single action variable of
the system. In general, s may be larger than n because at each x ∈ X a different
subset of PH may be needed to obtain n independent vectors. Also, including
more basis elements simplifies some of the coming computations.

Example 15.21 (Extended System for the Nonholonomic Integrator) The
extended system for the nonholonomic integrator (15.83) is





ẋ1
ẋ2
ẋ3



 =





1
0
−x2



 v1 +





0
1
x1



 v2 +





0
0
2



 v3. (15.115)

The first two terms correspond to the original system. The last term arises from
the Lie bracket [h1, h2]. Only one fictitious action variable is needed because the
three P. Hall vector fields are independent at every x ∈ X.

It is straightforward to move this system along a grid-based path in R
3. Mo-

tions in the x1 and x2 directions are obtained by applying v1 = u1 and v2 = u2,
respectively. To move the system in the x3 direction, the commutator motion
in (15.71) should be performed. This corresponds to applying v3. The steering
method described in this section yields a generalization of this approach. Higher
degree Lie products can be used, and motion in any direction can be achieved. �

Suppose some xI and xG are given. There are two phases to the steering
method:

1. Determine an action trajectory ṽ for the extended system, for which x(0) =
xI and x(tF ) = xG for some tF > 0.

2. Convert ṽ into an action trajectory ũ that eliminates the fictitious variables
and uses the actual m action variables u1, . . . , um.

The first phase is straightforward. For the extended system, any velocity in the
tangent space, Tx(X), can be generated. Start with any smooth path τ : [0, 1]→
X such that τ(0) = xI and τ(1) = xG. The velocity τ̇(t) along the path τ is a
velocity vector in Tτ(t)(X) that can be expressed as a linear combination of the
bi(τ(t)) vectors using linear algebra. The coefficients of this combination are the vi
values. The second phase is much more complicated and will be described shortly.
If the system is nilpotent, then ũ should bring the system precisely from xI to xG.
By the way it is constructed, it will also be clear how to refine ũ to come as close
as desired to the trajectory produced by ṽ.



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 917

Formal calculations The second phase is solved using formal algebraic com-
putations. This means that the particular vector fields, differentiation, manifolds,
and so on, can be ignored. The concepts involve pure algebraic manipulation.
To avoid confusion with previous definitions, the term formal will be added to
many coming definitions. Recall from Section 4.4.1 the formal definitions of the
algebra of polynomials (e.g., F[x1, . . . , xn]). Let A(y1, . . . , ym) denote the formal
noncommutative algebra11 of polynomials in the variables y1, . . ., ym. The yi here
are treated as symbols and have no other assumed properties (e.g, they are not
necessarily vector fields). When polynomials are multiplied in this algebra, no
simplifications can be made based on commutativity. The algebra can be con-
verted into a Lie algebra by defining a Lie bracket. For any two polynomials
p, q ∈ A(y1, . . . , ym), define the formal Lie bracket to be [p, q] = pq − qp. The
formal Lie bracket yields an equivalence relation on the algebra; this results in a
formal Lie algebra L(y1, . . . , ym) (there are many equivalent expressions for the
same elements of the algebra when the formal Lie bracket is applied). Nilpotent
versions of the formal algebra and formal Lie algebra can be made by forcing all
monomials of degree k + 1 to be zero. Let these be denoted by Ak(y1, . . . , ym)
and Lk(y1, . . . , ym), respectively. The P. Hall basis can be applied to obtain a
basis of the formal Lie algebra. Example 15.18 actually corresponds to the basis
of L3(h1, h2, h3) using formal calculations.

The exponential map The steering problem will be solved by performing cal-
culations on Lk(y1, . . . , ym). The formal power series of A(y1, . . . , ym) is the set of
all linear combinations of monomials, including those that have an infinite number
of terms. Similarly, the formal Lie series of L(y1, . . . , ym) can be defined.

The formal exponential map is defined for any p ∈ A(y1, . . . , ym) as

ep = 1 + p+
1

2!
p2 +

1

3!
p3 + · · · . (15.116)

In the nilpotent case, the formal exponential map is defined for any p ∈ Ak(y1, . . . , ym)
as

ep =
k
∑

i=0

pi

i!
. (15.117)

The formal series is truncated because all terms with exponents larger than k
vanish.

A formal Lie group is constructed as

Gk(y1, . . . , ym) = {ep | p ∈ Lk(y1, . . . , ym)}. (15.118)

If the formal Lie algebra is not nilpotent, then a formal Lie group G(y1, . . . , ym)
can be defined as the set of all ep, in which p is represented using a formal Lie
series.

11Intuitively, being an algebra means that polynomials can be added and multiplied; for all
of the required axioms, see [127].

918 S. M. LaValle: Planning Algorithms

The following example is taken from [152]:

Example 15.22 (Formal Lie Groups) Suppose that the generators x and y
are given. Some elements of the formal Lie group G(x, y) are

ex = I + x+ 1
2
x2 + 1

6
x3 + · · · , (15.119)

e[x,y] = I + [x, y] + 1
2
[x, y]2 + · · · , (15.120)

and

ex−y+3[x,y] = I + x− y + 3[x, y] + · · · , (15.121)

in which I is the formal Lie group identity. Some elements of the formal Lie group
G2(x, y) are

ex = I + x+ 1
2
x2, (15.122)

e[x,y] = I + [x, y], (15.123)

and

ex−y+3[x,y] = I + x− y + 3[x, y] + 1
2
(x− y)2. (15.124)

�

To be a group, the axioms given in Section 4.2.1 must be satisfied. The identity
is I, and associativity clearly follows from the series representations. Each ep

has an inverse, e−p, because epe−p = I. The only remaining axiom to satisfy
is closure. This is given by the Campbell-Baker-Hausdorff-Dynkin formula (or
CBHD formula), for which the first terms for any p, q ∈ G(y1, . . . , ym) are

exp(p) exp(q) = exp(p+q+ 1
2
[p, q]+ 1

12
[[p, q], q]− 1

12
[[p, q], p]+ 1

24
[p, [q, [p, q]]]+ · · · ),

(15.125)
in which exp(x) alternatively denotes ex for any x. The formula also applies to
Gk(y1, . . . , ym), but it becomes truncated into a finite series. This fact will be
utilized later. Note that epeq 6= ep+q, which differs from the standard definition of
exponentiation.

The CBHD formula is often expressed as

epeqe−p = exp

(

∞
∑

i=0

Adip q

i!

)

, (15.126)

in which Ad0
p q = q, and Adip q = [p,Adi−1

p q]. The operator Ad provides a compact
way to express some nested Lie bracket operations. Additional terms of (15.125)
can be obtained using (15.126).



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 919

The Chen-Fliess series The P. Hall basis from Section 15.4.3 applies in general
to any Lie algebra. Let B1, . . ., Bs denote a P. Hall basis for the nilpotent formal
Lie algebra Lk(y1, . . . , ym). An important theorem in the study of formal Lie
groups is that every S ∈ Gk(y1, . . . , ym) can be expressed in terms of the P. Hall
basis of its formal Lie algebra as

S = ezsBsezs−1Bs−1 · · · ez2B2ez1B1 , (15.127)

which is called the Chen-Fliess series. The zi are sometimes called the backward
P. Hall coordinates of S (there is a forward version, for which the terms in (15.127)
go from 1 to s, instead of s to 1).

Returning to the system vector fields Now the formal algebra concepts can
be applied to the steering problem. The variables become the system vector fields:
yi = hi for all i from 1 to m. For the P. Hall basis elements, each Bi becomes bi.
The Lie group becomes the state space X, and the Lie algebra is the familiar Lie
algebra over the vector fields, which was introduced in Section 15.4.3. Consider
how an element of the Lie group must evolve over time. This can be expressed
using the differential equation

Ṡ(t) = S(t)(v1b1 + v2b2 + · · ·+ vsbs), (15.128)

which is initialized with S(0) = I. Here, S can be interpreted as a matrix, which
may, for example, belong to SE(3).

The solution at every time t > 0 can be written using the Chen-Fliess series,
(15.127):

S(t) = ezs(t)bsezs−1(t)bs−1 · · · ez2(t)b2ez1(t)b1 . (15.129)

This indicates that S(t) can be obtained by integrating b1 for time z1(t), followed
by b2 for time z2(t), and so on until bs is integrated for time zs(t). Note that
the backward P. Hall coordinates now vary over time. If we determine how they
evolve over time, then the differential equation in (15.128) is solved.

The next step is to figure out how the backward P. Hall coordinates evolve.
Differentiating (15.129) with respect to time yields

Ṡ(t) =
s
∑

j=1

ezsbs · · · ezj+1bj+1 żjbje
zjbj · · · ez1b1 . (15.130)

The Chen-Fliess-Sussmann equation There are now two expressions for Ṡ,
which are given by (15.128) and (15.130). By equating them, s equations of the
form

s
∑

j=1

pj,kżj = vk (15.131)

920 S. M. LaValle: Planning Algorithms

are obtained, in which pj,k is a polynomial in zi variables. This makes use of the
series representation for each exponential; see Example 15.23.

The evolution of the backward P. Hall coordinates is therefore given by the
Chen-Fliess-Sussmann (CFS) equation:

ż = Q(z)v, (15.132)

in whichQ(z) is an s×smatrix, and z(0) = 0. The entries inQ(z) are polynomials;
hence, it is possible to integrate the system analytically to obtain expressions for
the zi(t).

A simple example is given, which was worked out in [86]:

Example 15.23 (The CFS Equation for the Nonholonomic Integrator)
The extended system for the nonholonomic integrator was given in (15.115). The
differential equation (15.128) for the Lie group is

Ṡ(t) = S(t)(v1b1 + v2b2 + v3b3), (15.133)

because s = 3.
There are two expressions for its solution. The Chen-Fliess series (15.129)

becomes
S(t) = ez3(t)b3ez2(t)b2ez1(t)b1 . (15.134)

The initial condition S(0) = I is satisfied if zi(0) = 0 for i from 1 to 3. The second
expression for Ṡ(t) is (15.130), which in the case of the nonholonomic integrator
becomes

Ṡ(t) =ż3(t)b3e
z3(t)b3ez2(t)b2ez1(t)b1+

ez3(t)b3 ż2(t)b2e
z2(t)b2ez1(t)b1+

ez3(t)b3ez2(t)b2 ż1(t)b1e
z1(t)b1 .

(15.135)

Note that
S−1(t) = e−z1(t)b1e−z2(t)b2e−z3(t)b3 . (15.136)

Equating (15.133) and (15.135) yields

S−1Ṡ = v1b1 + v2b2 + v3b3 =e
−z1b1e−z2b2e−z3b3 ż3b3e

z3b3ez2b2ez1b1+

e−z1b1e−z2b2 ż2b2e
z2b2ez1b1+

e−z1b1 ż1b1e
z1b1 ,

(15.137)

in which the time dependencies have been suppressed to shorten the expression.
The formal Lie series expansions, appropriately for the exponentials, are now used.
For i = 1, 2,

ezibi = (I + zibi +
1
2
z2i b

2
i ) (15.138)

and
e−zibi = (I − zibi − 1

2
z2i b

2
i ). (15.139)



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 921

Also,

ez3b3 = (I + z3b3) (15.140)

and

e−z3b3 = (I − z3b3). (15.141)

The truncation is clearly visible in (15.140) and (15.141). The b23 terms are absent
because b3 is a polynomial of degree two, and its square would be of degree four.

Substitution into (15.137), performing noncommutative multiplication, and
applying the Lie bracket definition yields

ż1b1 + ż2(b2 − z1b3) + ż3b3 = v1b1 + v2b2 + v3b3. (15.142)

Equating like terms yields the Chen-Fliess-Sussmann equation

ż1 = v1

ż2 = v2

ż3 = v3 + z1v2.

(15.143)

Recall that ṽ is given. By integrating (15.143) from z(0) = 0, the backward P.
Hall coordinate trajectory z̃ is obtained. �

Using the original action variables Once the CFS equation has been deter-
mined, the problem is almost solved. The action trajectory ṽ was determined from
the given state trajectory ṽ and the backward P. Hall coordinate trajectory z̃ is
determined by (15.143). The only remaining problem is that the action variables
from vm+1 to vs are fictitious because their associated vector fields are not part
of the system. They were instead obtained from Lie bracket operations. When
these are applied, they interfere with each other because many of them may try
to use the same ui variables from the original system at the same time.

The CBHD formula is used to determine the solution in terms of the system
action variables u1, . . ., um. The differential equation now becomes

Ṡ(t) = S(t)(u1h1 + u2h2 + · · ·+ umhm), (15.144)

which is initialized with S(0) = I and uses the original system instead of the
extended system.

When applying vector fields over time, the CBHD formula becomes

exp(tf) exp(tg) =

exp(tf + tg +
t2

2
[f, g] +

t3

12
[[f, g], g]− t3

12
[[f, g], f ] +

t4

24
[f, [g, [f, g]]] + · · · ).

(15.145)

922 S. M. LaValle: Planning Algorithms

If the system is nilpotent, then this series is truncated, and the exact effect of
sequentially combining constant motion primitives can be determined. This leads
to a procedure for determining a finite sequence of constant motion primitives that
generate a motion in the same direction as prescribed by the extended system and
the action trajectory ṽ.

15.5.2 Using Sinusoidal Action Trajectories

The steering method presented in this section is based on initial work by Brockett
[46] and a substantial generalization of it by Murray and Sastry [194]. The ap-
proach applies to several classes of systems for which the growth of independent
vector fields occurs as quickly as possible. This means that when the P. Hall basis
is constructed, no elements need to be removed due to linear dependency on previ-
ous Lie products or system vector fields. For these systems, the approach applies
sinusoids of integrally related frequencies to some action variables. This changes
some state variables while others are automatically fixed. For more details beyond
the presentation here, see [164, 192, 194, 221].

Steering the nonholonomic integrator

The main idea of the method can be clearly illustrated for the nonholonomic
integrator,

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1,
(15.146)

which was considered throughout Section 15.5.1. This case will be explained in
detail, and the methods obtained by generalizing the principles will subsequently
be stated. The presentation given here is based on [194, 221].

As was previously indicated, growing independent vector fields as quickly as
possible is important. For the nonholonomic integrator, [h1, h2], is linearly inde-
pendent of h1 and h2, as observed in Example 15.12; thus, it satisfies this property.
Consider steering the system from some xI = x(0) to some xG = x(1) while opti-
mizing the cost functional

∫ 1

0

(

u1(t)
2 + u2(t)

2
)

dt. (15.147)

The problem can be solved by using the constrained Lagrangian formulation,
which was given in Section 13.4.3. The first step is to eliminate the u variables.
From (15.146), the cost can be expressed in terms of ẋ1 and ẋ2 by using ẋ1 = u1
and ẋ2 = u2. The third equation in (15.146) can be written as

ẋ3 = x1ẋ2 − x2ẋ1 (15.148)



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 923

and will be interpreted as a constraint on the Lagrangian, which is combined
using a (scalar) Lagrange multiplier as explained in Section 13.4.3. Define the
Lagrangian as

L(x, ẋ) = (ẋ21 + ẋ22) + λ
(

ẋ3 − x1ẋ2 + x2ẋ1
)

, (15.149)

in which the first term comes from the integrand of (15.147), and the second term
comes from (15.148).

The Euler-Lagrange equation (13.118) yields

ẍ1 + λẋ2 = 0

ẍ2 − λẋ1 = 0

λ̇ = 0.

(15.150)

Note that λ̇ = 0 implies that λ(t) is constant for all time. To obtain a differential
equation that characterizes the optimal action trajectory, use the fact that for
i = 1, 2, ẋi = ui and ẍi = u̇i. This yields the equations u̇1 = −λu̇2 and u̇2 = λu̇1.
These can be represented as second-order linear differential equations. Based on
its roots, the solution is

u1(t) = u1(0) cosλt− u2(0) sinλt
u2(t) = u1(0) sinλt+ u2(0) cosλt.

(15.151)

Given initial and goal states, the optimal action trajectory is found by determining
u1(0), u2(0), and λ. Suppose that xI = x(0) = (0, 0, 0) and xG = x(1) = (0, 0, a)
for some a ∈ R. Other cases can be obtained by applying transformations in
SE(3) to the solution.

The state trajectories for x1 and x2 can be obtained by integration of (15.151)
because ui = ẋi for i = 1 and i = 2. Starting from x1(0) = x2(0) = 0, this yields

x1(t) =
1

λ

(

u1(0) sinλt+ u2(0) cosλt− u2(0)
)

x2(t) =
1

λ

(

− u1(0) cosλt+ u2(0) sinλt+ u1(0)
)

.
(15.152)

To maintain the constraint that x1(1) = x2(1) = 0, λ must be chosen as λ = 2kπ
for some integer n. Integration of ẋ3 yields

x3(t) =

∫ 1

0

(

x1u2 − x2u1
)

dt =
1

λ

(

u21(0) + u22(0)
)

= a. (15.153)

The cost is
∫ 1

0

(

u21(t) + u22(t)
)

dt = u21(0) + u22(0) = λa. (15.154)

The minimum cost is therefore achieved for k = −1, which yields λ = 2π and
‖u‖ = 2πa. This fixes the magnitude of u(0), but any direction may be chosen.

The steering problem can be solved in two phases:

924 S. M. LaValle: Planning Algorithms

1. Apply any action trajectory to steer x1 and x2 to their desired values while
neglecting to consider x3.

2. Apply the solution just developed to steer x3 to the goal while x1 and x2
return to their values obtained in the first phase.

This idea can be generalized to other systems.

First-order controllable systems

The approach developed for the nonholonomic integrator generalizes to systems
of the form

ẋi = ui for i from 1 to m

ẋij = xiuj − xjui for all i, j so that i < j and 1 ≤ j ≤ m (15.155)

and

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m. (15.156)

Brockett showed in [46] that for such first-order controllable systems, the optimal
action trajectory is obtained by applying a sum of sinusoids with integrally related
frequencies for each of the m action variables. If m is even, then the trajectory for
each variable is a sum of m/2 sinusoids at frequencies 2π, 2 · 2π, . . ., (m/2) · 2π.
If m is odd, there are instead (m − 1)/2 sinusoids; the sequence of frequencies
remains the same. Suppose m is even (the odd case is similar). Each action is
selected as

ui =

m/2
∑

k=1

aik sin 2πkt+ bik cos 2πkt. (15.157)

The other state variables evolve as

xij = xij(0) +
1

2

m/2
∑

k=1

1

k
(ajkbik − aikbjk), (15.158)

which provides a constraint similar to (15.153). The periodic behavior of these
action trajectories causes the xi variables to return to their original values while
steering the xij to their desired values. In a sense this is a vector-based general-
ization in which the scalar case was the nonholonomic integrator.

Once again, a two-phase steering approach is obtained:

1. Apply any action trajectory that brings every xi to its goal value. The
evolution of the xij states is ignored in this stage.



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 925

2. Apply sinusoids of integrally related frequencies to the action variables.
Choose each ui(0) so that xij reaches its goal value. In this stage, the
xi variables are ignored because they will return to their values obtained in
the first stage.

This method has been generalized even further to second-order controllable
systems:

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m (15.159)

ẋijk = xijuk for all (i, j, k) ∈ J ,

in which J is the set of all unique triples formed from distinct i, j, k ∈ {1, . . . ,m}
and removing unnecessary permutations due to the Jacobi identity for Lie brack-
ets. For this problem, a three-phase steering method can be developed by using
ideas similar to the first-order controllable case. The first phase determines xi,
the second handles xij , and the third resolves xijk. See [194, 221] for more details.

Chained-form systems

Example 15.17 considered a special case of a chained-form system. The system in
(15.102) can be generalized to any n as

ẋ1 = u1 ẋ4 = x3u1

ẋ2 = u2
... (15.160)

ẋ3 = x2u1 ẋn = xn−1u1.

This can be considered as a system with higher order controllability. For these
systems, a multi-phase approach is obtained:

1. Apply any action trajectory for u1 and u2 that brings x1 and x2 to their
goal values. The evolution of the other states is ignored in this stage.

2. This phase is repeated for each k from 3 to n. Steer xk to its desired value
by applying

u1 = a sin 2πkt and u2 = b cos 2πkt, (15.161)

in which a and b are chosen to satisfy the constraint

xk(1) = xk(0) +
( a

4π

)(k−2) b

(k − 2)!
. (15.162)

Each execution of this phase causes the previous k − 1 state variables to
return to their previous values.

926 S. M. LaValle: Planning Algorithms

For a proof of the correctness of the second phase, and more information
in general, see [194, 221]. It may appear that very few systems fit the forms
given in this section; however, it is sometimes possible to transform systems to fit
this form. Recall that the original simple car model in (13.15) was simplified to
(15.54). Transformation methods for putting systems into chained form have been
developed. For systems that still cannot be put in this form, Fourier techniques
can be used to obtain approximate steering methods that are similar in spirit to
the methods in this section. When the chained-form system is expressed using
Pfaffian constraints, the result is often referred to as the Goursat normal form.
The method can be extended even further to multi-chained-form systems.

15.5.3 Other Steering Methods

The steering methods presented so far are perhaps the most widely known; how-
ever, several other alternatives exist. Most of these follow in the spirit of the
methods in Sections 15.5.1 and 15.5.2 by exploiting the properties of a specific
class of systems. Some alternatives are briefly surveyed here. This is an active
field of research; it is likely that new methods will be developed in the coming
years.

Differentially flat systems Differential flatness has become an important con-
cept in the development of steering methods. It was introduced by Fliess, Lévine,
Martin, and Rouchon in [93]; see also [193]. Intuitively, a system is said to be
differentially flat if a set of variables called flat outputs can be found for which
all states and actions can be determined from them without integration. This
specifically means that for a system ẋ = f(x, u) with X = R

n and U = R
m, there

exist flat outputs of the form

y = h(x, u, u̇, . . . , u(k)) (15.163)

such that there exist functions g and g′ for which

x = g(y, ẏ, . . . , y(j)) (15.164)

and
u = g′(y, ẏ, . . . , y(j)). (15.165)

One example is the simple car pulling trailers, expressed in (13.19); the flat outputs
are the position in W = R

2 of the last trailer. This property was used for motion
planning in [155]. Recent works on the steering of differentially flat systems include
[155, 211, 218].

Decoupling vector fields For mechanical systems in which dynamics is con-
sidered, the steering problem becomes complicated by drift. One recent approach
is based on establishing that a system is kinematically controllable, which means



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 927

that the system is STLC on the C-space, if traversed using trajectories that start
and stop at zero velocity states [52]. The method finds decoupling vector fields on
the C-space. Any path that is the integral curve of a decoupling vector field in the
C-space is executable by the full system with dynamics. If a mechanical system
admits such vector fields, then it was proved in [52] that a steering method for C
can be lifted into one for X, the phase space of the mechanical system. This idea
was applied to generate an efficient LPM in an RRT planner in [71].

Averaging methods By decomposing the state trajectory into a low-frequency
part that accounts for the long-range evolution of states and a high-frequency part
that accounts for small oscillations over short ranges, averaging methods enable
perturbations to be systematically made to state trajectories. This yields other
steering methods based on sinusoidal action trajectories [34, 114, 168, 169].

Variational techniques As might be expected, the general-purpose gradient-
based optimization techniques of Section 14.7 can be applied to the steering of
nonholonomic systems. Such methods are based on Newton iterations on the space
of possible state trajectories. This leads to a gradient descent that arrives at a
local optimum while satisfying the differential constraints. For details on applying
such techniques to steer nonholonomic systems, see [78, 90, 164, 237, 248].

Pontryagin’s minimum principle The minimum principle can be helpful in
developing a steering method. Due to the close connection between the Euler-
Lagrange equation and Hamilton’s equations, as mentioned in Section 13.4.4, this
should not be surprising. The Euler-Lagrange equation was used in Section 15.5.2
to determine an optimal steering method for the nonholonomic integrator. A
steering methodology based on the minimum principle is described in [221]. The
optimal curves of Section 15.3 actually represent steering methods obtained from
the minimum principle. Unfortunately, for the vast majority of problems, numer-
ical techniques are needed to solve the resulting differential equations. It is gener-
ally expected that techniques developed for specific classes, such as the nilpotent,
chained-form, or differentially flat systems, perform much better than general-
purpose numerical techniques applied to the Euler-Lagrange equation, Hamilton’s
equations or Pontryagin’s minimum principle.

Dynamic programming The numerical dynamic programming approach of
Section 14.5 can be applied to provide optimal steering for virtual any system. To
apply it here, the obstacle region Xfree is empty. The main drawback, however,
is that the computational cost is usually too high, particularly if the dimension
of X is high. On the other hand, it applies in a very general setting, and Lie
group symmetries can be used to apply precomputed trajectories from any initial
state. This is certainly a viable approach with systems for which the state space
is SE(2) or SO(3).

928 S. M. LaValle: Planning Algorithms

Further Reading

The basic stability and controllability concepts from Section 15.1 appear in many con-
trol textbooks, especially ones that specialize in nonlinear control; see [140, 221] for an
introduction to nonlinear control. More advanced concepts appear in [51]. For illustra-
tions of many convergence properties in vector fields, see [11]. For linear system theory,
see [58]. Brockett’s condition and its generalization appeared in [47, 262]. For more
on stabilization and feedback control of nonholonomic systems, see [51, 221, 255]. For
Lyapunov-based design for feedback control, see [80].

For further reading on the Hamilton-Jacobi-Bellman equation, see [23, 27, 134,
206, 243]. For numerical approaches to its solution (aside from value iteration), see
[1, 76, 186]. Linear-quadratic problems are covered in [5, 150]. Pontryagin’s original
works provide an unusually clear explanation of the minimum principle [209]. For other
sources, see [27, 113, 206]. A generalization that incorporates state-space constraints
appears in [249].

Works on which Section 15.3 is based are [18, 39, 67, 85, 212, 239, 240, 245]. Optimal
curves have been partially characterized in other cases; see [72, 239]. One complication
is that optimal curves often involve infinite switching [106, 265]. There is also interest
in nonoptimal curves that nevertheless have good properties, especially for use as a
local planning method for car-like robots [7, 100, 139, 208, 222]. For feedback control
of car-like robots, see [34, 175].

For further reading on nonholonomic system theory beyond Section 15.4, there are
many excellent sources: [21, 34, 35, 51, 130, 192, 196, 221]. A generalization of the
Chow-Rashevskii theorem to hybrid systems is presented in [191]. Controllability of
a car pulling trailers is studied in [162]. Controllability of a planar hovercraft with
thrusters is considered in [177]. The term holonomic is formed from two Greek words
meaning “integrable” and “law” [43].

Section 15.5 is based mainly on the steering methods in [152] (Section 15.5.1) and
[46, 194] (Section 15.5.2). The method of Section 15.5.1 is extended to time-varying
systems in [86]. A multi-rate version is developed in [188]. In [131], it was improved by
using a Lyndon basis, as opposed to the P. Hall basis. Another steering method that
involves series appears in [49, 50]. For more on chained-form systems, see [225, 238].
For a variant that uses polynomials and the Goursat normal form, instead of sinusoids,
see [221]. For other steering methods, see the references suggested in Section 15.5.3.

Exercises

1. Characterize the stability at (0, 0) of the vector field on X = R
2, given by ẋ1 = x2

and ẋ2 = −x22 − x1. Use the Lyapunov function φ(x1, x2) = x21 + x22.

2. Repeat Example 15.4, but instead use the cost term l(x, u) = u2.

3. Repeat Example 15.4, but instead for a triple integrator q(3) = u and U = [−1, 1].
4. Determine the precise conditions under which each of the four cases of Example

15.4 occurs. Define a feedback motion plan that causes time-optimal motions.

5. Note that some of the six optimal words for the Dubins car do not appear for the
Reeds-Shepp car. For each of these, illustrate why it does not appear.



15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 929

6. Retrace the steps of the Taylor series argument for deriving the Lie bracket in
Section 15.4.2. Arrive at (15.81) by showing all steps in detail (smaller steps are
skipped in Section 15.4.2).

7. Determine whether the following system is nonholonomic and STLC:

q̇1 = u1 q̇4 = q22u1

q̇2 = u2 q̇5 = q21u2 (15.166)

q̇3 = q1u2 − q2u1.

8. Prove that linear systems ẋ = Ax+Bu for constant matrices A and B cannot be
nonholonomic.

9. Determine whether the following system is nonholonomic and STLC:









ẋ

ẏ

θ̇

ψ̇









=









cos θ
sin θ
0

− sinψ









u1 +









0
0
1
1









u2. (15.167)

10. Using the commutator motion and constant actions for the differential drive,
develop a lattice over its configuration space.

11. Consider a smooth nonlinear system that has only one action variable and an n-
dimensional state space for n > 1. Are such systems always completely integrable,
always nonholonomic, or is either possible?

12. Generalize Example 15.17 to R
n with two action variables. Determine whether

the system is STLC for any n > 5.

13. Show that the vector cross product on R
3 indeed produces a Lie algebra when

used as a bracket operation.

14. Derive the CFS equation for the following system:

q̇1 = u1 q̇3 = q1u2 − q2u1
q̇2 = u2 q̇4 = q22u1. (15.168)

Implementations

15. Implement software that computes the P. Hall basis up to any desired order (this
is only symbolic computation; the Lie brackets are not expanded).

16. Implement software that displays the appropriate optimal path for the Dubins
car, between any given qI and qG.

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS i

17. Apply the planning algorithm in Section 14.4.2 to numerically determine the
Dubins curves. Use Dijkstra’s algorithm for the search, and use a high-resolution
grid. Can your software obtain the same set of curves as Dubins?

18. Experiment with using Dubins curves as a local planning method (LPM) and
metric in an RRT-based planning algorithm. Does using the curves improve
execution time? Do they lead to better solutions?



ii S. M. LaValle: Planning Algorithms

Bibliography

[1] R. Abgrall. Numerical discretization of the first-order Hamilton-Jacobi equa-
tion on triangular meshes. Communications on Pure and Applied Mathe-
matics, 49(12):1339–1373, December 1996.

[2] R. Abraham and J. Marsden. Foundations of Mechanics. Addison-Wesley,
Reading, MA, 2002.

[3] P. K. Agarwal, J.-C. Latombe, R. Motwani, and P. Raghavan. Nonholonomic
path planning for pushing a disk among obstacles. In Proceedings IEEE
International Conference on Robotics & Automation, 1997.

[4] P. K. Agarwal, P. Raghavan, and H.Tamaki. Motion planning for a steer-
ing constrained robot through moderate obstacles. In Proceedings ACM
Symposium on Computational Geometry, 1995.

[5] B. D. Anderson and J. B. Moore. Optimal Control: Linear-Quadratic Meth-
ods. Prentice-Hall, Englewood Cliffs, NJ, 1990.

[6] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods,
and Algorithms. Springer-Verlag, Berlin, 2003.

[7] D. A. Anisi, J. Hamberg, and X. Hu. Nearly time-optimal paths for a ground
vehicle. Journal of Control Theory and Applications, November 2003.

[8] M. D. Ardema and J. M. Skowronski. Dynamic game applied to coordination
control of two arm robotic system. In R. P. Hämäläinen and H. K. Ehtamo,
editors, Differential Games – Developments in Modelling and Computation,
pages 118–130. Springer-Verlag, Berlin, 1991.

[9] O. Arikan and D. Forsyth. Interactive motion generation from examples. In
Proceedings ACM SIGGRAPH, 2002.

[10] V. I. Arnold. Mathematical Methods of Classical Mechanics, 2nd Ed.
Springer-Verlag, Berlin, 1989.

[11] D. K. Arrowsmith and C. M. Place. Dynamical Systems: Differential Equa-
tions, Maps, and Chaotic Behaviour. Chapman & Hall/CRC, New York,
1992.

iii



iv BIBLIOGRAPHY

[12] K. J. Astrom and T. Hagglund. PID Controllers: Theory, Design, and Tun-
ing, 2nd Ed. The Instrument, Systems, and Automation Society, Research
Triangle Park, NC, 1995.

[13] K. E. Atkinson. An Introduction to Numerical Analysis. Wiley, New York,
1978.

[14] J.-P. Aubin and A. Cellina. Differential Inclusions. Springer-Verlag, Berlin,
1984.

[15] T. Başar. Game theory and H∞-optimal control: The continuous-time case.
In R. P. Hämäläinen and H. K. Ehtamo, editors, Differential Games – De-
velopments in Modelling and Computation, pages 171–186. Springer-Verlag,
Berlin, 1991.

[16] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory, 2nd Ed.
Academic, London, 1995.

[17] A. Baker. Matrix Groups. Springer-Verlag, Berlin, 2002.

[18] D. J. Balkcom and M. T. Mason. Time optimal trajectories for bounded ve-
locity differential drive vehicles. International Journal of Robotics Research,
21(3):199–217, 2002.

[19] J. Barraquand and P. Ferbach. A penalty function method for constrained
motion planning. In Proceedings IEEE International Conference on Robotics
& Automation, pages 1235–1242, 1994.

[20] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorith-
mica, 10:121–155, 1993.

[21] A. Bellaiche, F. Jean, and J. J. Risler. Geometry of nonholonomic systems.
In J.-P. Laumond, editor, Robot Motion Planning and Control, pages 55–92.
Springer-Verlag, Berlin, 1998.

[22] R. E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957.

[23] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

[24] I. Belousov, C. Esteves, J.-P. Laumond, and E. Ferre. Motion planning
for large space manipulators with complicated dynamics. In Proceedings
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005.

BIBLIOGRAPHY v

[25] J. Bernard, J. Shannan, and M. Vanderploeg. Vehicle rollover on smooth
surfaces. In Proceedings SAE Passenger Car Meeting and Exposition, Dear-
born, MI, 1989.

[26] D. P. Bertsekas. Convergence in discretization procedures in dynamic pro-
gramming. IEEE Transactions on Automatic Control, 20(3):415–419, June
1975.

[27] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I, 2nd
Ed. Athena Scientific, Belmont, MA, 2001.

[28] J. T. Betts. Survey of numerical methods for trajectory optimization. Jour-
nal of Guidance, Control, and Dynamics, 21(2):193–207, March-April 1998.

[29] A. Bhatia and E. Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. In R. Alur and G. J. Pappas,
editors, Hybrid Systems: Computation and Control, pages 67–78. Springer-
Verlag, Berlin, 2004. Lecture Notes in Computer Science, 2993.

[30] S. Bhattacharya and S. K. Agrawal. Design, experiments and motion plan-
ning of a spherical rolling robot. In Proceedings IEEE International Con-
ference on Robotics & Automation, pages 1207–1212, 2000.

[31] A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized
control systems. IEEE Transactions on Automatic Control, 47(4):546–563,
April 2002.

[32] A. Bicchi, D. Prattichizzo, and S. Sastry. Planning motions of rolling sur-
faces. In Proceedings IEEE Conference Decision & Control, 1995.

[33] Z. Bien and J. Lee. A minimum-time trajectory planning method for two
robots. IEEE Transactions on Robotics & Automation, 8(3):414–418, June
1992.

[34] A. M. Bloch. Nonholonomic Mechanics and Control. Springer-Verlag,
Berlin, 2003.

[35] A. M. Bloch and P. E. Crouch. Nonholonomic control systems on Rie-
mannian manifolds. SIAM Journal on Control & Optimization, 33:126–148,
1995.

[36] V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity
results in systems and control. Automatica, 36(9):1249–1274, September
2000.

[37] J. E. Bobrow. Optimal robot path planning using the minimum-time crite-
rion. IEEE Transactions on Robotics & Automation, 4(4):443–450, August
1988.



vi BIBLIOGRAPHY

[38] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control
of robotic manipulators along specified paths. International Journal of
Robotics Research, 4(3):3–17, 1985.

[39] J.-D. Boissonnat, A. Cérézo, and J. Leblond. Shortest paths of bounded
curvature in the plane. Journal of Intelligent and Robotic Systems, 11:5–20,
1994.

[40] J.-D. Boissonnat and S. Lazard. A polynomial-time algorithm for comput-
ing a shortest path of bounded curvature amidst moderate obstacles. In
Proceedings ACM Symposium on Computational Geometry, pages 242–251,
1996.

[41] V. G. Boltyanskii. Sufficient conditions for optimality and the justification
of the dynamic programming method. SIAM Journal on Control, 4:326–361,
1966.

[42] W. M. Boothby. An Introduction to Differentiable Manifolds and Rieman-
nian Geometry. Revised 2nd Ed. Academic, New York, 2003.

[43] A. V. Borisov and I .S. Mamaev. On the history of the development of
nonholonomic dynamics. Regular and Chaotic Dynamics, 7(1):43–47, 2002.

[44] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan. RRTs for non-
linear, discrete, and hybrid planning and control. In Proceedings IEEE
Conference Decision & Control, 2003.

[45] M. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature.
Springer-Verlag, Berlin, 1999.

[46] R. W. Brockett. Control theory and singular Riemannian geometry. In
P. A. Fuhrman, editor, New Directions in Applied Mathematics, pages 11–
27. Springer-Verlag, Berlin, 1981.

[47] R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W.
Brockett, R. S. Millman, and H. J. Sussmann, editors, Differential Geomet-
ric Control Theory, pages 181–191. Birkhäuser, Boston, MA, 1983.

[48] A. E. Bryson and Y.-C. Ho. Applied Optimal Control. Hemisphere Publish-
ing Corp., New York, 1975.

[49] F. Bullo. Series expansions for the evolution of mechanical control systems.
SIAM Journal on Control & Optimization, 40(1):166–190, 2001.

[50] F. Bullo. Series expansions for analytic systems linear in control. Automat-
ica, 38(9):1425–1432, September 2002.

BIBLIOGRAPHY vii

[51] F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems.
Springer-Verlag, Berlin, 2004.

[52] F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajec-
tory planning in underactuated mechanical systems. IEEE Transactions on
Robotics & Automation, 17(4):402–412, 2001.

[53] J. J. Burken, P. Lu, and Z. Wu. Reconfigurable flight control designs with
application to the X-33 vehicle. Technical Report TM-1999-206582, NASA,
Washington, DC, 1999.

[54] L. G. Bushnell, D. M. Tilbury, and S. S. Sastry. Steering three-input non-
holonomic systems: the fire truck example. International Journal of Robotics
Research, 14(4):366–381, 1995.

[55] F. Camilli and M. Falcone. Approximation of optimal control problems with
state constraints: Estimates and applications. In B. S. Mordukhovich and
H. J. Sussmann, editors, Nonsmooth Analysis and Geometric Methods in
Deterministic Optimal Control, pages 23–57. Springer-Verlag, Berlin, 1996.
Mathematics and its Applications, Vol. 78.

[56] J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic plan-
ning in the plane. Discrete and Computational Geometry, 6:461–484, 1991.

[57] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. In Proceedings IEEE Symposium on Foundations of Computer
Science, pages 49–60, 1987.

[58] C.-T. Chen. Linear System Theory and Design. Holt, Rinehart, and Win-
ston, New York, 1984.

[59] P. Cheng. Sampling-Based Motion Planning with Differential Constraints.
PhD thesis, University of Illinois, Urbana, IL, August 2005.

[60] P. Cheng, E. Frazzoli, and S. M. LaValle. Exploiting group symme-
tries to improve precision in kinodynamic and nonholonomic planning. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003.

[61] P. Cheng, E. Frazzoli, and S. M. LaValle. Improving the performance of
sampling-based planners by using a symmetry-exploiting gap reduction al-
gorithm. In Proceedings IEEE International Conference on Robotics and
Automation, 2004.

[62] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized
trajectory design. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 43–48, 2001.



viii BIBLIOGRAPHY

[63] P. Cheng, Z. Shen, and S. M. LaValle. Using randomization to find and
optimize feasible trajectories for nonlinear systems. In Proceedings Annual
Allerton Conference on Communications, Control, Computing, pages 926–
935, 2000.

[64] P. Cheng, Z. Shen, and S. M. LaValle. RRT-based trajectory design for
autonomous automobiles and spacecraft. Archives of Control Sciences, 11(3-
4):167–194, 2001.

[65] M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles.
In Proceedings IEEE International Conference on Robotics & Automation,
1999.

[66] F. L. Chernousko, N. N. Bolotnik, and V. G. Gradetsky. Manipulation
Robots. CRC Press, Boca Raton, FL, 1994.

[67] H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. T. Mason. Minimum
wheel-rotation paths for differential-drive mobile robots. In Proceedings
IEEE International Conference on Robotics and Automation, 2006.

[68] S. Chitta, P. Cheng, E. Frazzoli, and V. Kumar. RoboTrikke: A novel un-
dulatory locomotion system. In Proceedings IEEE International Conference
on Robotics & Automation, 2005.

[69] S. Chitta and V. Kumar. Dynamics and generation of gaits for a planar
rollerblader. In Proceedings IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2003.

[70] P. Choudhury and K. Lynch. Rolling manipulation with a single control. In
Proceedings Conference on Control Applications, September 2002.

[71] P. Choudhury and K. Lynch. Trajectory planning for second-order underac-
tuated mechanical systems in presence of obstacles. In Proceedings Workshop
on Algorithmic Foundations of Robotics, 2002.

[72] M. Chyba, H. Sussmann, H. Maurer, and G. Vossen. Underwater vehicles:
The minimum time problem. In Proceedings IEEE Conference Decision &
Control, The Bahamas, December 2004.

[73] C. Connolly, R. Grupen, and K. Souccar. A Hamiltonian framework for
kinodynamic planning. In Proceedings IEEE International Conference on
Robotics & Automation, 1995.

[74] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (2nd Ed.). MIT Press, Cambridge, MA, 2001.

[75] M. G. Coutinho. Dynamic Simulations of Multibody Systems. Springer-
Verlag, Berlin, 2001.

BIBLIOGRAPHY ix

[76] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi
equations. Transactions of the American Mathematical Society, 277(1):1–
42, 1983.

[77] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications, 2nd Ed. Springer-Verlag,
Berlin, 2000.

[78] A. W. Divelbiss and J. T. Wen. Nonholonomic path planning with inequality
constraints. In Proceedings IEEE International Conference on Robotics &
Automation, pages 52–57, 1994.

[79] A. W. Divelbiss and J. T. Wen. A path-space approach to nonholonomic
planning in the presence of obstacles. IEEE Transactions on Robotics &
Automation, 13(3):443–451, 1997.

[80] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti. Nonlinear Control
of Engineering Systems: A Lyapunov-Based Approach. Birkhäuser, Boston,
MA, 2003.

[81] B. R. Donald and P. Xavier. Provably good approximation algorithms for
optimal kinodynamic planning for Cartesian robots and open chain manip-
ulators. Algorithmica, 14(6):480–530, 1995.

[82] B. R. Donald and P. Xavier. Provably good approximation algorithms for
optimal kinodynamic planning: Robots with decoupled dynamics bounds.
Algorithmica, 14(6):443–479, 1995.

[83] B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic planning.
Journal of the ACM, 40:1048–66, November 1993.

[84] A. L. Dontchev. Discrete approximations in optimal control. In B. S. Mor-
dukhovich and H. J. Sussmann, editors, Nonsmooth Analysis and Geometric
Methods in Deterministic Optimal Control, pages 59–80. Springer-Verlag,
Berlin, 1996. Mathematics and Its Applications, Vol. 78.

[85] L. E. Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics, 79:497–516, 1957.

[86] I. Duleba. Algorithms of Motion Planning for Nonholonomic Robots. Tech-
nical University of Wroclaw, Wroclaw, Poland, 1998.

[87] J. Esposito, J. W. Kim, and V. Kumar. Adaptive RRTs for validating
hybrid robotic control systems. In Proceedings Workshop on Algorithmic
Foundations of Robotics, Zeist, The Netherlands, July 2004.

[88] R. Featherstone. Robot Dynamics Algorithms. Kluwer, Boston, MA, 1987.



x BIBLIOGRAPHY

[89] P. Ferbach. A method of progressive constraints for nonholonomic motion
planning. In Proceedings IEEE International Conference on Robotics &
Automation, pages 2949–2955, 1996.

[90] C. Fernandes, L. Gurvits, and Z. X. Li. A variational approach to optimal
nonholonomic motion planning. In Proceedings IEEE International Confer-
ence on Robotics & Automation, pages 680–685, 1991.

[91] C. Fernandes, L. Gurvits, and Z. X. Li. Near-optimal nonholonomic mo-
tion planning for a system of coupled rigid bodies. IEEE Transactions on
Automatic Control, 30(3):450–463, March 1994.

[92] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for smooth-
ing mobile robot trajectories. IEEE Transactions on Robotics & Automa-
tion, 11(3):441–448, 1995.

[93] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of non-
linear systems: Introductory theory and examples. International Journal of
Control, 61(6):1327–1361, 1995.

[94] S. Fortune and G. Wilfong. Planning constrained motion. In Proceedings
ACM Symposium on Theory of Computing, pages 445–459, 1988.

[95] T. Fraichard. Dynamic trajectory planning with dynamic constraints: A
’state-time space’ approach. In Proceedings IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 1393–1400, 1993.

[96] T. Fraichard and J.-M. Ahuactzin. Smooth path planning for cars. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
3722–3727, 2001.

[97] T. Fraichard and H. Asama. Inevitable collision states - a step towards safer
robots? Advanced Robotics, pages 1001–1024, 2004.

[98] T. Fraichard and C. Laugier. Kinodynamic planning in a structured and
time-varying 2D workspace. In Proceedings IEEE International Conference
on Robotics & Automation, pages 2: 1500–1505, 1992.

[99] T. Fraichard and A. Scheuer. Car-like robots and moving obstacles. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
64–69, 1994.

[100] T. Fraichard and A. Scheuer. From Reeds and Shepp’s to continuous-
curvature paths. IEEE Transactions on Robotics, 20(6):1025–1035, Decem-
ber 2004.

[101] T. Frankel. The Geometry of Physics. Cambridge University Press, Cam-
bridge, U.K., 2004.

BIBLIOGRAPHY xi

[102] E. Frazzoli. Robust Hybrid Control of Autonomous Vehicle Motion Planning.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, June
2001.

[103] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. AIAA Journal of Guidance and Control, 25(1):116–
129, 2002.

[104] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning
for nonlinear systems with symmetries. IEEE Transactions on Robotics,
21(6):1077–1091, December 2005.

[105] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics: Control, Sensing,
Vision, and Intelligence. McGraw-Hill, New York, 1987.

[106] A. T. Fuller. Relay control systems optimized for various performance cri-
teria. In Automatic and Remote Control (Proceedings First World Congress
IFAC, Moscow, 1960), pages 510–519. Butterworths, London, 1961.

[107] T. N. Gillespie. Fundamentals of Vehicle Dynamics. Society of Automotive
Engineers, Warrendale, PA, 1992.

[108] J. Go, T. Vu, and J. J. Kuffner. Autonomous behaviors for interactive
vehicle animations. In Proceedings SIGGRAPH Symposium on Computer
Animation, 2004.

[109] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.

[110] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd ed). Johns
Hopkins University Press, Baltimore, MD, 1996.

[111] R. Gonzalez and E. Rofman. On deterministic control problems: An ap-
proximation procedure for the optimal cost, parts I, II. SIAM Journal on
Control & Optimization, 23:242–285, 1985.

[112] B. R. Gossick. Hamilton’s Principle and Physical Systems. Academic, New
York, 1967.

[113] L. Grüne. An adaptive grid scheme for the discrete Hamilton-Jacobi-
Bellman equation. Numerische Mathematik, 75:319–337, 1997.

[114] L. Gurvits. Averaging approach to nonholonomic motion planning. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
2541–2546, 1992.

[115] K. Haji-Ghassemi. On differential games of fixed duration with phase coor-
dinate restrictions on one player. SIAM Journal on Control & Optimization,
28(3):624–652, May 1990.



xii BIBLIOGRAPHY

[116] H. Halkin. Mathematical foundation of system optimization. In G. Leitman,
editor, Topics in Optimization. Academic, New York, 1967.

[117] H. Harrison and T. Nettleton. Advanced Engineering Dynamics. Elsevier,
New York, 1997.

[118] J. W. Hartmann. Counter-Intuitive Behavior in Locally Optimal Solar Sail
Escape Trajectories. PhD thesis, University of Illinois, Urbana, IL, May
2005.

[119] J. W. Hartmann, V. L. Coverstone, and J. E. Prussing. Optimal counter-
intuitive solar sail escape trajectories. In Proceedings AIAA/AAS Space
Flight Mechanics Conference, 2004. Paper AAS 04-279.

[120] M. T. Heath. Scientific Computing: An Introductory Survey, 2nd Ed.
McGraw-Hill, New York, 2002.

[121] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal trajecto-
ries for a robotic manipulator: A provably good approximation algorithm.
In Proceedings IEEE International Conference on Robotics & Automation,
pages 150–155, Cincinnati, OH, 1990.

[122] H. Hermes, A. Lundell, and D. Sullivan. Nilpotent bases for distributions
and control systems. Journal of Differential Equations, 55(3):385–400, 1984.

[123] J. K. Hodgins and W. L. Wooten. Animating human athletes. In Y. Shirai
and S. Hirose, editors, Proceedings International Symposium on Robotics
Research, pages 356–367. Springer-Verlag, Berlin, 1998.

[124] J. Hollerbach. Dynamic scaling of manipulator trajectories. Technical re-
port, MIT A.I. Lab Memo 700, 1983.

[125] J. Hollerbach. Dynamic scaling of manipulator trajectories. In Proceedings
American Control Conference, pages 752–756, 1983.

[126] D. Hsu, R. Kindel, J-C. Latombe, and S. Rock. Randomized kinodynamic
motion planning with moving obstacles. In B. R. Donald, K. M. Lynch, and
D. Rus, editors, Algorithmic and Computational Robotics: New Directions.
A.K. Peters, Wellesley, MA, 2001.

[127] T. W. Hungerford. Algebra. Springer-Verlag, Berlin, 1984.

[128] S. Iannitti and K. M. Lynch. Exact minimum control switch motion planning
for the snakeboard. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2003.

[129] R. Isaacs. Differential Games. Wiley, New York, 1965.

BIBLIOGRAPHY xiii

[130] A. Isidori. Nonlinear Control Systems, 2nd Ed. Springer-Verlag, Berlin,
1989.

[131] G. Jacob. Lyndon discretization and exact motion planning. In Proceedings
European Control Conference, 1991.

[132] P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
2–7, 1989.

[133] V. Jurdjevic. The geometry of the plate-ball problem. Archives for Rational
Mechanics and Analysis, 124:305–328, 1993.

[134] V. Jurdjevic. Geometric Control Theory. Cambridge University Press, Cam-
bridge, U.K., 1997.

[135] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning collision-free
reaching motions for interactive object manipulation and grasping. Euro-
graphics, 22(3), 2003.

[136] R. E. Kalman, Y.-C. Ho, and K. S. Narendra. Controllability of dynamical
systems. Contributions to Differential Equations, 1:189–213, 1963.

[137] W. Kaplan. Advanced Calculus. Addison-Wesley, Reading, MA, 1984.

[138] T. Karatas and F. Bullo. Randomized searches and nonlinear programming
in trajectory planning. In IEEE Conference on Decision and Control, 2001.

[139] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via
parametric optimal control. International Journal of Robotics Research,
22(7-8):583–601, 2003.

[140] H. K. Khalil. Nonlinear Systems. Macmillan, New York, 2002.

[141] A. A. Kilin. The dynamics of Chaplygin ball: The qualitative and computer
analysis. Regular and Chaotic Dynamics, 6(3):291–306, 2001.

[142] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning motions with
intentions. Proceedings ACM SIGGRAPH, pages 395–408, 1994.

[143] L. Kovar and M. Gleicher. Automated extraction and parameterization of
motions in large data sets. In Proceedings ACM SIGGRAPH, 2004.

[144] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proceedings ACM
SIGGRAPH, 2002.

[145] P. S. Krishnaprasad and D. P. Tsakaris. Oscillations, SE(2)-snakes and
motion control: A study of the roller racer. Technical report, Center for
Dynamics and Control of Smart Structures, University of Maryland, 1998.



xiv BIBLIOGRAPHY

[146] J. J. Kuffner. Autonomous Agents for Real-time Animation. PhD thesis,
Stanford University, Stanford, CA, 1999.

[147] P. R. Kumar and P. Varaiya. Stochastic Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1986.

[148] H. J. Kushner. Numerical methods for continuous control problems in con-
tinuous time. SIAM Journal on Control & Optimization, 28:999–1048, 1990.

[149] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control
Problems in Continuous Time. Springer-Verlag, Berlin, 1992.

[150] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley, New
York, 1972.

[151] A. Ladd and L. E. Kavraki. Fast exploration for robots with dynamics. In
Proceedings Workshop on Algorithmic Foundations of Robotics, Zeist, The
Netherlands, July 2004.

[152] G. Laffierriere and H. J. Sussmann. Motion planning for controllable systems
without drift. In Proceedings IEEE International Conference on Robotics &
Automation, 1991.

[153] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for
non-holonomic mobile robots. IEEE Transactions on Robotics, 20(6):967–
977, December 2004.

[154] F. Lamiraux, E. Ferre, and E. Vallee. Kinodynamic motion planning: Con-
necting exploration trees using trajectory optimization methods. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
3987–3992, 2004.

[155] F. Lamiraux and J.-P. Laumond. Flatness and small-time controllability of
multibody mobile robots: Application to motion planning. IEEE Transac-
tions on Automatic Control, 45(10):1878–1881, April 2000.

[156] F. Lamiraux, S. Sekhavat, and J.-P. Laumond. Motion planning and control
for Hilare pulling a trailer. IEEE Transactions on Robotics & Automation,
15(4):640–652, August 1999.

[157] J. P. LaSalle. Stability theory for ordinary differential equations. Journal
of Differential Equations, 4:57–65, 1968.

[158] J.-C. Latombe. A fast path planner for a car-like indoor mobile robot.
In Proceedings AAAI National Conference on Artificial Intelligence, pages
659–665, 1991.

[159] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

BIBLIOGRAPHY xv

[160] M. Lau and J. J. Kuffner. Behavior planning for character animation.
In Proceedings Eurographics/SIGGRAPH Symposium on Computer Anima-
tion, 2005.

[161] J.-P. Laumond. Trajectories for mobile robots with kinematic and envi-
ronment constraints. In Proceedings International Conference on Intelligent
Autonomous Systems, pages 346–354, 1986.

[162] J.-P. Laumond. Controllability of a multibody mobile robot. IEEE Trans-
actions on Robotics & Automation, 9(6):755–763, December 1993.

[163] J.-P. Laumond. Robot Motion Planning and Control. Springer-Verlag,
Berlin, 1998. Available online at http://www.laas.fr/∼jpl/book.html.

[164] J.-P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic
motion planning for mobile robots. In J.-P. Laumond, editor, Robot Motion
Planning and Control, pages 1–53. Springer-Verlag, Berlin, 1998.

[165] S. M. LaValle and P. Konkimalla. Algorithms for computing numerical opti-
mal feedback motion strategies. International Journal of Robotics Research,
20(9):729–752, September 2001.

[166] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algo-
rithmic and Computational Robotics: New Directions, pages 293–308. A K
Peters, Wellesley, MA, 2001.

[167] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. In-
teractive control of avatars with human motion data. In Proceedings ACM
SIGGRAPH, 2002.

[168] N. E. Leonard and P. S. Krishnaprasad. Averaging for attitude control
and motion planning. In Proceedings IEEE Conference Decision & Control,
pages 3098–3104, December 1993.

[169] N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free left-
invariant systems on lie groups. IEEE Transactions on Automatic Control,
40(9):1539–1554, 1995.

[170] A. D. Lewis, J. P. Ostrowski, J. W. Burdick, and R. M. Murray. Non-
holonomic mechanics and locomotion: The snakeboard example. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
2391–2400, 1994.

[171] Z. Li and J. F. Canny. Motion of two rigid bodies with rolling constraint.
IEEE Transactions on Robotics & Automation, 6(1):62–72, February 1990.



xvi BIBLIOGRAPHY

[172] Z. Li and J. F. Canny. Nonholonomic Motion Planning. Kluwer, Boston,
MA, 1993.

[173] C. K. Liu and Z. Popovic. Synthesis of complex dynamic character motion
from simple animations. In Proceedings ACM SIGGRAPH, pages 408–416,
2002.

[174] P. Lu and J. M. Hanson. Entry guidance for the X-33 vehicle. Journal of
Spacecraft and Rockets, 35(3):342–349, 1998.

[175] A. De Luca, G. Oriolo, and C. Samson. Feedback control of a nonholo-
nomic car-like robot. In J.-P. Laumond, editor, Robot Motion Planning and
Control, pages 171–253. Springer-Verlag, Berlin, 1998.

[176] D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Wi-
ley, New York, 1973.

[177] K. M. Lynch. Controllability of a planar body with unilateral thrusters.
IEEE Transactions on Automatic Control, 44(6):1206–1211, 1999.

[178] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability,
and planning. International Journal of Robotics Research, 15(6):533–556,
1996.

[179] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie. Collision free trajectory
planning for a 3-dof robot with a passive joint. International Journal of
Robotics Research, 19(12):1171–1184, 2000.

[180] A. Marigo and A. Bicchi. Rolling bodies with regular surface: Controlla-
bility theory and applications. IEEE Transactions on Automatic Control,
45(9):1586–1599, 2000.

[181] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry.
Springer-Verlag, Berlin, 1999.

[182] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, Cambridge,
MA, 2001.

[183] D. J. McGill and W. W. King. An Introduction to Dynamics. PWS, Boston,
MA, 1995.

[184] A. W. Merz. The game of two identical cars. Journal of Optimization Theory
& Applications, 9(5):324–343, 1972.

[185] I. Mitchell, A. Bayen, and C. Tomlin. Computing reachable sets for con-
tinuous dynamic games using level set methods. IEEE Transactions on
Automatic Control, 2003. Submitted.

BIBLIOGRAPHY xvii

[186] I. Mitchell and C. J. Tomlin. Overapproximating reachable sets by
Hamilton-Jacobi projections. Journal of Scientific Computation, 19(1):323–
346, 2003.

[187] L. Molina-Tanco and A. Hilton. Realistic synthesis of novel human move-
ments from a database of motion capture examples. In Proceedings IEEE
Workshop on Human Motion, 2000.

[188] S. Monaco and D. Normand-Cyrot. An introduction to motion planning
under multirate digital control. In Proceedings IEEE Conference Decision
& Control, pages 1780–1785, 1992.

[189] D. J. Montana. The kinematics of contact and grasp. International Journal
of Robotics Research, 7(3):17–32, 1988.

[190] R. Munos and A. Moore. Variable resolution discretization in optimal con-
trol. Machine Learning, 49:291–323, 2001.

[191] T. Murphey. Control of Multiple Model Systems. PhD thesis, California
Institute of Technology, May 2002.

[192] R. M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Boca Raton, FL, 1994.

[193] R. M. Murray, M. Rathinam, and W. M. Sluis. Differential flatness of
mechanical control systems. In Proceedings ASME International Congress
and Exposition, 1995.

[194] R. M. Murray and S. Sastry. Nonholonomic motion planning: Steering using
sinusoids. IEEE Transactions on Automatic Control, 38(5):700–716, 1993.

[195] Y. Nakamura, T. Suzuki, and M. Koinuma. Nonlinear behavior and control
of a nonholonomic free-joint manipulator. IEEE Transactions on Robotics
& Automation, 13(6):853–862, 1997.

[196] H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control Sys-
tems. Springer-Verlag, Berlin, 1990.

[197] C. O’Dunlaing. Motion planning with inertial constraints. Algorithmica,
2(4):431–475, 1987.

[198] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi. Motion planning
through symbols and lattices. In Proceedings IEEE International Conference
on Robotics & Automation, pages 3914–3919, 2004.

[199] C. H. Papadimitriou and K. J. Steiglitz. Combinatorial Optimization: Al-
gorithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.



xviii BIBLIOGRAPHY

[200] C. H. Papadimitriou and J. N. Tsitsiklis. Intractable problems in control
theory. SIAM Journal of Control & Optimization, 24(4):639–654, July 1986.

[201] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic con-
straints along specified paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg,
and S. Hutchinson, editors, Algorithmic Foundations of Robotics V (WAFR
2002), pages 221–237. Springer-Verlag, Berlin, 2002.

[202] L. A. Petrosjan. Differential Games of Pursuit. World Scientific, Singapore,
1993.

[203] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning.
IEEE Journal of Robotics & Automation, RA-3(2):115–123, 1987.

[204] J. M. Phillips, N. Bedrosian, and L. E. Kavraki. Spacecraft rendezvous
and docking with real-time randomized optimization. In Proceedings AIAA
Guidance, Navigation and Control Conference, 2003.

[205] A. Piazzi, M. Romano, and C. G. Lo Bianco. G3 splines for the path planning
of wheeled mobile robots. In Proceedings European Control Conference,
2003.

[206] D. A. Pierre. Optimization Theory with Applications. Dover, New York,
1986.

[207] R. W. Pike. Optimization for Engineering Systems. [Online], 2001. Available
at http://www.mpri.lsu.edu/bookindex.html.

[208] M. Pivtoraiko and A. Kelly. Generating near minimal spanning control
sets for constrained motion planning in discrete state spaces. In Proceed-
ings IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005.

[209] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko. L. S. Pontryagin Selected Works, Volume 4: The Mathematical
Theory of Optimal Processes. Gordon and Breach, Montreux, Switzerland,
1986.

[210] J. Popovic, S. M. Seitz, M. A. Erdmann, and Z. Popovic A. P. Wiktin.
Interactive manipulation of rigid body simulations. In Proceedings ACM
SIGGRAPH, pages 209–217, 2002.

[211] M. Rathinam and R. M. Murray. Configuration flatness of Lagrangian sys-
tems underactuated by one control. SIAM Journal of Control & Optimiza-
tion, 36(1):164–179, 1998.

BIBLIOGRAPHY xix

[212] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both
forwards and backwards. Pacific Journal of Mathematics, 145(2):367–393,
1990.

[213] J. Reif and H. Wang. Non-uniform discretization approximations for kino-
dynamic motion planning. In J.-P. Laumond and M. H. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 97–112. A.K. Pe-
ters, Wellesley, MA, 1997.

[214] J. H. Reif. Complexity of the mover’s problem and generalizations. In
Proceedings IEEE Symposium on Foundations of Computer Science, pages
421–427, 1979.

[215] J. H. Reif and S. R. Tate. Continuous alternation: The complexity of pursuit
in continuous domains. Algorithmica, 10:157–181, 1993.

[216] J. Reimpell, H. Stoll, and J. W. Betzler. The Automotive Chassis: Engi-
neering Principles. Society of Automotive Engineers, Troy, MI, 2001.

[217] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Pren-
tice Hall, Englewood Cliffs, NJ, 1977.

[218] I. M. Ross and F. Fahroo. Pseudospectral methods for optimal motion
planning of differentially flat systems. IEEE Transactions on Automatic
Control, 49(8):1410–1413, 2004.

[219] H. Sagan. Introduction to the Calculus of Variations. Dover, New York,
1992.

[220] G. Sahar and J. M. Hollerbach. Planning minimum-time trajectories for
robot arms. International Journal of Robotics Research, 5(3):97–140, 1986.

[221] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer-
Verlag, Berlin, 1999.

[222] A. Scheuer and T. Fraichard. Collision-free and continuous-curvature path
planning for car-like robots. In Proceedings IEEE International Conference
on Robotics & Automation, pages 867–873, 1997.

[223] A. Scheuer and C. Laugier. Planning sub-optimal and continuous-curvature
paths for car-like robots. In Proceedings IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 25–31, 1998.

[224] L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipulators.
Springer-Verlag, Berlin, 1996.



xx BIBLIOGRAPHY

[225] S. Sekhavat and J.-P. Laumond. Topological property for collision-free non-
holonomic motion planning: The case of sinusoidal inputs for chained-form
systems. IEEE Transactions on Robotics & Automation, 14(5):671–680,
1998.

[226] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars. Multilevel
path planning for nonholonomic robots using semiholonomic subsystems.
International Journal of Robotics Research, 17:840–857, 1998.

[227] J.-P. Serre. Lie Algebras and Lie Groups. Springer-Verlag, Berlin, 1992.

[228] A. A. Shabana. Computational Dynamics. Wiley, New York, 2001.

[229] R. W. Sharpe. Differential Geometry. Springer-Verlag, Berlin, 1997.

[230] Z. Shiller and S. Dubowsky. On the optimal control of robotic manipulators
with actuator and end-effector constraints. In Proceedings IEEE Interna-
tional Conference on Robotics & Automation, pages 614–620, 1985.

[231] Z. Shiller and S. Dubowsky. On computing global time-optimal motions of
robotic manipulators in the presence of obstacles. IEEE Transactions on
Robotics & Automation, 7(6):785–797, Dec 1991.

[232] Z. Shiller and H.-H. Lu. Computation of path constrained time-optimal
motions with dynamic singularities. Transactions of the ASME, Journal of
Dynamical Systems, Measurement, & Control, 114:34–40, 1992.

[233] K. G. Shin and N. D. McKay. Minimum-time control of robot manipulators
with geometric path constraints. IEEE Transactions on Automatic Control,
30(6):531–541, 1985.

[234] K. G. Shin and N. D. McKay. A dynamic programming approach to tra-
jectory planning of robotic manipulators. IEEE Transactions on Automatic
Control, 31(6):491–500, 1986.

[235] K. G. Shin and Q. Zheng. Minimum-time collision-free trajectory plan-
ning for dual-robot systems. IEEE Transactions on Robotics & Automation,
8(5):641–644, October 1992.

[236] J.-J. E. Slotine and H. S. Yang. Improving the efficiency of time-optimal
path-following algorithms. IEEE Transactions on Robotics & Automation,
5(1):118–124, 1989.

[237] E. Sontag. Gradient technique for systems with no drift: A classical idea
revisited. In Proceedings IEEE Conference Decision & Control, pages 2706–
2711, December 1993.

BIBLIOGRAPHY xxi

[238] O. J. Sordalen. Conversion of a car with n trailers into a chained form.
In Proceedings IEEE International Conference on Robotics & Automation,
pages 1382–1387, 1993.

[239] P. Souères and J.-D. Boissonnat. Optimal trajectories for nonholonomic mo-
bile robots. In J.-P. Laumond, editor, Robot Motion Planning and Control,
pages 93–169. Springer-Verlag, Berlin, 1998.

[240] P. Souères and J.-P. Laumond. Shortest paths synthesis for a car-like robot.
In IEEE Transactions on Automatic Control, pages 672–688, 1996.

[241] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and
Control. Wiley, New York, 2005.

[242] H. Stark and J. W. Woods. Probability, Random Processes, and Estimation
Theory for Engineers. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[243] R. F. Stengel. Optimal Control and Estimation. Dover, New York, 1994.

[244] D. Stipanovic, I. Hwang, and C. J. Tomlin. Computation of an overapprox-
imation of the backward reachable set using subsystem level set functions,
dynamics of continuous, discrete, and impulsive systems. Series A: Mathe-
matical Analysis, 11:399–411, 2004.

[245] H. Sussmann and G. Tang. Shortest paths for the Reeds-Shepp car: A
worked out example of the use of geometric techniques in nonlinear optimal
control. Technical Report SYNCON 91-10, Dept. of Mathematics, Rutgers
University, Piscataway, NJ, 1991.

[246] H. J. Sussmann. A sufficient condition for local controllability. SIAM Jour-
nal on Control & Optimization, 16(5):790–802, 1978.

[247] H. J. Sussmann. A general theorem on local controllability. SIAM Journal
on Control & Optimization, 25(1):158–194, 1987.

[248] H. J. Sussmann. A continuation method for nonholonomic path-finding
problems. In Proceedings IEEE Conference Decision & Control, pages 2717–
2723, December 1993.

[249] H. J. Sussmann. A very non-smooth maximum principle with state con-
straints. In Proceedings IEEE Conference Decision & Control, pages 917–
922, December 2005.

[250] P. Svestka and M. H. Overmars. Coordinated motion planning for multiple
car-like robots using probabilistic roadmaps. In Proceedings IEEE Interna-
tional Conference on Robotics & Automation, pages 1631–1636, 1995.



xxii BIBLIOGRAPHY

[251] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, September 1995.

[252] C. Urmson and R. Simmons. Approaches for heuristically biasing RRT
growth. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2003.

[253] M. Vendittelli and J.-P. Laumond. Visible positions for a car-like robot
amidst obstacles. In J.-P. Laumond and M. H. Overmars, editors, Algo-
rithms for Robotic Motion and Manipulation, pages 213–228. A.K. Peters,
Wellesley, MA, 1997.

[254] D. S. Watkins. Fundamentals of Matrix Computations, 2nd Ed. Wiley, New
York, 2002.

[255] J. T. Wen. Control of nonholonomic systems. In W. S. Levine, editor, The
Control Handbook, pages 1359–1368. CRC Press, Boca Raton, FL, 1996.

[256] K. Yamane, J. J. Kuffner, and J. K. Hodgins. Synthesizing animations of
human manipulation tasks. In Proceedings ACM SIGGRAPH, 2004.

[257] Y. Yavin and M. Pachter. Pursuit-Evasion Differential Games. Pergamon,
Oxford, U.K., 1987.

[258] J. Yong. On differential evasion games. SIAM Journal on Control & Opti-
mization, 26(1):1–22, January 1988.

[259] J. Yong. On differential pursuit games. SIAM Journal on Control & Opti-
mization, 26(2):478–495, March 1988.

[260] J. Yong. A zero-sum differential game in a finite duration with switch-
ing strategies. SIAM Journal on Control & Optimization, 28(5):1234–1250,
September 1990.

[261] T. Yoshikawa. Foundations of Robotics: Analysis and Control. MIT Press,
Cambridge, MA, 1990.

[262] J. Zabczyk. Some comments on stabilizability. Applied Mathematics and
Optimization, 19(1):1–9, 1989.

[263] L. S. Zaremba. Differential games reducible to optimal control problems. In
Proceedings IEEE Conference Decision & Control, pages 2449–2450, Tampa,
FL, December 1989.

[264] M. Zefran, J. Desai, and V. Kumar. Continuous motion plans for robotic sys-
tems with changing dynamic behavior. In Proceedings IEEE International
Conference on Robotics & Automation, 1996.

BIBLIOGRAPHY xxiii

[265] M. I. Zelikin and V. F. Borisov. Theory of Chattering Control. Birkhäuser,
Boston, MA, 1994.

[266] Y. Zhou and G. S. Chirikjian. Probabilistic models of dead-reckoning error in
nonholonomic mobile robots. In Proceedings IEEE International Conference
on Robotics & Automation, pages 1594–1599, 2003.


