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Overview of Part II: Motion Planning

Planning in Continuous Spaces

Part II makes the transition from discrete to continuous state spaces. Two al-
ternative titles are appropriate for this part: 1) motion planning, or 2) planning
in continuous state spaces. Chapters 3–8 are based on research from the field of
motion planning, which has been building since the 1970s; therefore, the name
motion planning is widely known to refer to the collection of models and algo-
rithms that will be covered. On the other hand, it is convenient to also think of
Part II as planning in continuous spaces because this is the primary distinction
with respect to most other forms of planning.

In addition, motion planning will frequently refer to motions of a robot in a
2D or 3D world that contains obstacles. The robot could model an actual robot,
or any other collection of moving bodies, such as humans or flexible molecules. A
motion plan involves determining what motions are appropriate for the robot so
that it reaches a goal state without colliding into obstacles. Recall the examples
from Section 1.2.

Many issues that arose in Chapter 2 appear once again in motion planning.
Two themes that may help to see the connection are as follows.

1. Implicit representations

A familiar theme from Chapter 2 is that planning algorithms must deal with im-
plicit representations of the state space. In motion planning, this will become
even more important because the state space is uncountably infinite. Further-
more, a complicated transformation exists between the world in which the models
are defined and the space in which the planning occurs. Chapter 3 covers ways to
model motion planning problems, which includes defining 2D and 3D geometric
models and transforming them. Chapter 4 introduces the state space that arises
for these problems. Following motion planning literature [344, 304], we will refer
to this state space as the configuration space. The dimension of the configura-
tion space corresponds to the number of degrees of freedom of the robot. Using
the configuration space, motion planning will be viewed as a kind of search in
a high-dimensional configuration space that contains implicitly represented ob-
stacles. One additional complication is that configuration spaces have unusual
topological structure that must be correctly characterized to ensure correct oper-
ation of planning algorithms. A motion plan will then be defined as a continuous
path in the configuration space.

2. Continuous → discrete

A central theme throughout motion planning is to transform the continuous model
into a discrete one. Due to this transformation, many algorithms from Chapter
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2 are embedded in motion planning algorithms. There are two alternatives to
achieving this transformation, which are covered in Chapters 5 and 6, respec-
tively. Chapter 6 covers combinatorial motion planning, which means that from
the input model the algorithms build a discrete representation that exactly repre-
sents the original problem. This leads to complete planning approaches, which are
guaranteed to find a solution when it exists, or correctly report failure if one does
not exist. Chapter 5 covers sampling-based motion planning, which refers to algo-
rithms that use collision detection methods to sample the configuration space and
conduct discrete searches that utilize these samples. In this case, completeness is
sacrificed, but it is often replaced with a weaker notion, such as resolution com-
pleteness or probabilistic completeness. It is important to study both Chapters 5
and 6 because each methodology has its strengths and weaknesses. Combinatorial
methods can solve virtually any motion planning problem, and in some restricted
cases, very elegant solutions may be efficiently constructed in practice. However,
for the majority of “industrial-grade” motion planning problems, the running
times and implementation difficulties of these algorithms make them unappeal-
ing. Sampling-based algorithms have fulfilled much of this need in recent years
by solving challenging problems in several settings, such as automobile assembly,
humanoid robot planning, and conformational analysis in drug design. Although
the completeness guarantees are weaker, the efficiency and ease of implementation
of these methods have bolstered interest in applying motion planning algorithms
to a wide variety of applications.

Two additional chapters appear in Part II. Chapter 7 covers several exten-
sions of the basic motion planning problem from the earlier chapters. These
extensions include avoiding moving obstacles, multiple robot coordination, ma-
nipulation planning, and planning with closed kinematic chains. Algorithms that
solve these problems build on the principles of earlier chapters, but each extension
involves new challenges.

Chapter 8 is a transitional chapter that involves many elements of motion
planning but is additionally concerned with gracefully recovering from unexpected
deviations during execution. Although uncertainty in predicting the future is not
explicitly modeled until Part III, Chapter 8 redefines the notion of a plan to be
a function over state space, as opposed to being a path through it. The function
gives the appropriate actions to take during exection, regardless of what con-
figuration is entered. This allows the true configuration to drift away from the
commanded configuration. In Part III such uncertainties will be explicitly mod-
eled, but this comes at greater modeling and computational costs. It is worthwhile
to develop effective ways to avoid this.



Chapter 3

Geometric Representations and
Transformations

This chapter provides important background material that will be needed for Part
II. Formulating and solving motion planning problems require defining and ma-
nipulating complicated geometric models of a system of bodies in space. Section
3.1 introduces geometric modeling, which focuses mainly on semi-algebraic mod-
eling because it is an important part of Chapter 6. If your interest is mainly
in Chapter 5, then understanding semi-algebraic models is not critical. Sections
3.2 and 3.3 describe how to transform a single body and a chain of bodies, re-
spectively. This will enable the robot to “move.” These sections are essential for
understanding all of Part II and many sections beyond. It is expected that many
readers will already have some or all of this background (especially Section 3.2,
but it is included for completeness). Section 3.4 extends the framework for trans-
forming chains of bodies to transforming trees of bodies, which allows modeling
of complicated systems, such as humanoid robots and flexible organic molecules.
Finally, Section 3.5 briefly covers transformations that do not assume each body
is rigid.

3.1 Geometric Modeling

A wide variety of approaches and techniques for geometric modeling exist, and
the particular choice usually depends on the application and the difficulty of the
problem. In most cases, there are generally two alternatives: 1) a boundary repre-
sentation, and 2) a solid representation. Suppose we would like to define a model
of a planet. Using a boundary representation, we might write the equation of a
sphere that roughly coincides with the planet’s surface. Using a solid represen-
tation, we would describe the set of all points that are contained in the sphere.
Both alternatives will be considered in this section.

The first step is to define the worldW for which there are two possible choices:
1) a 2D world, in which W = R2, and 2) a 3D world, in which W = R3. These
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choices should be sufficient for most problems; however, one might also want to
allow more complicated worlds, such as the surface of a sphere or even a higher
dimensional space. Such generalities are avoided in this book because their current
applications are limited. Unless otherwise stated, the world generally contains two
kinds of entities:

1. Obstacles: Portions of the world that are “permanently” occupied, for
example, as in the walls of a building.

2. Robots: Bodies that are modeled geometrically and are controllable via a
motion plan.

Based on the terminology, one obvious application is to model a robot that moves
around in a building; however, many other possibilities exist. For example, the
robot could be a flexible molecule, and the obstacles could be a folded protein.
As another example, the robot could be a virtual human in a graphical simulation
that involves obstacles (imagine the family of Doom-like video games).

This section presents a method for systematically constructing representations
of obstacles and robots using a collection of primitives. Both obstacles and robots
will be considered as (closed) subsets of W . Let the obstacle region O denote the
set of all points in W that lie in one or more obstacles; hence, O ⊆ W . The
next step is to define a systematic way of representing O that has great expressive
power while being computationally efficient. Robots will be defined in a similar
way; however, this will be deferred until Section 3.2, where transformations of
geometric bodies are defined.

3.1.1 Polygonal and Polyhedral Models

In this and the next subsection, a solid representation of O will be developed in
terms of a combination of primitives. Each primitive Hi represents a subset of W
that is easy to represent and manipulate in a computer. A complicated obstacle
region will be represented by taking finite, Boolean combinations of primitives.
Using set theory, this implies thatO can also be defined in terms of a finite number
of unions, intersections, and set differences of primitives.

Convex polygons First consider O for the case in which the obstacle region is
a convex, polygonal subset of a 2D world, W = R2. A subset X ⊂ Rn is called
convex if and only if, for any pair of points in X, all points along the line segment
that connects them are contained in X. More precisely, this means that for any
x1, x2 ∈ X and λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ X. (3.1)

Thus, interpolation between x1 and x2 always yields points in X. Intuitively, X
contains no pockets or indentations. A set that is not convex is called nonconvex
(as opposed to concave, which seems better suited for lenses).
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Figure 3.1: A convex polygonal region can be identified by the intersection of
half-planes.

A boundary representation of O is anm-sided polygon, which can be described
using two kinds of features: vertices and edges. Every vertex corresponds to a
“corner” of the polygon, and every edge corresponds to a line segment between a
pair of vertices. The polygon can be specified by a sequence, (x1, y1), (x2, y2), . . .,
(xm, ym), of m points in R2, given in counterclockwise order.

A solid representation of O can be expressed as the intersection of m half-
planes. Each half-plane corresponds to the set of all points that lie to one side
of a line that is common to a polygon edge. Figure 3.1 shows an example of an
octagon that is represented as the intersection of eight half-planes.

An edge of the polygon is specified by two points, such as (x1, y1) and (x2, y2).
Consider the equation of a line that passes through (x1, y1) and (x2, y2). An
equation can be determined of the form ax + by + c = 0, in which a, b, c ∈ R

are constants that are determined from x1, y1, x2, and y2. Let f : R2 → R be
the function given by f(x, y) = ax + by + c. Note that f(x, y) < 0 on one side
of the line, and f(x, y) > 0 on the other. (In fact, f may be interpreted as a
signed Euclidean distance from (x, y) to the line.) The sign of f(x, y) indicates a
half-plane that is bounded by the line, as depicted in Figure 3.2. Without loss of
generality, assume that f(x, y) is defined so that f(x, y) < 0 for all points to the
left of the edge from (x1, y1) to (x2, y2) (if it is not, then multiply f(x, y) by −1).

Let fi(x, y) denote the f function derived from the line that corresponds to
the edge from (xi, yi) to (xi+1, yi+1) for 1 ≤ i < m. Let fm(x, y) denote the line
equation that corresponds to the edge from (xm, ym) to (x1, y1). Let a half-plane
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Figure 3.2: The sign of the f(x, y) partitions R2 into three regions: two half-planes
given by f(x, y) < 0 and f(x, y) > 0, and the line f(x, y) = 0.

Hi for 1 ≤ i ≤ m be defined as a subset of W :

Hi = {(x, y) ∈ W | fi(x, y) ≤ 0}. (3.2)

Above, Hi is a primitive that describes the set of all points on one side of the
line fi(x, y) = 0 (including the points on the line). A convex, m-sided, polygonal
obstacle region O is expressed as

O = H1 ∩H2 ∩ · · · ∩Hm. (3.3)

Nonconvex polygons The assumption that O is convex is too limited for most
applications. Now suppose that O is a nonconvex, polygonal subset ofW . In this
case O can be expressed as

O = O1 ∪ O2 ∪ · · · ∪ On, (3.4)

in which each Oi is a convex, polygonal set that is expressed in terms of half-
planes using (3.3). Note that Oi and Oj for i 6= j need not be disjoint. Using this
representation, very complicated obstacle regions in W can be defined. Although
these regions may contain multiple components and holes, if O is bounded (i.e., O
will fit inside of a big enough rectangular box), its boundary will consist of linear
segments.

In general, more complicated representations of O can be defined in terms of
any finite combination of unions, intersections, and set differences of primitives;
however, it is always possible to simplify the representation into the form given
by (3.3) and (3.4). A set difference can be avoided by redefining the primitive.
Suppose the model requires removing a set defined by a primitiveHi that contains

1

fi(x, y) < 0. This is equivalent to keeping all points such that fi(x, y) ≥ 0, which is
equivalent to −fi(x, y) ≤ 0. This can be used to define a new primitive H ′

i, which

1In this section, we want the resulting set to include all of the points along the boundary.
Therefore, < is used to model a set for removal, as opposed to ≤.
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when taken in union with other sets, is equivalent to the removal of Hi. Given
a complicated combination of primitives, once set differences are removed, the
expression can be simplified into a finite union of finite intersections by applying
Boolean algebra laws.

Note that the representation of a nonconvex polygon is not unique. There
are many ways to decompose O into convex components. The decomposition
should be carefully selected to optimize computational performance in whatever
algorithms that model will be used. In most cases, the components may even be
allowed to overlap. Ideally, it seems that it would be nice to represent O with the
minimum number of primitives, but automating such a decomposition may lead to
an NP-hard problem (see Section 6.5.1 for a brief overview of NP-hardness). One
efficient, practical way to decompose O is to apply the vertical cell decomposition
algorithm, which will be presented in Section 6.2.2

Defining a logical predicate What is the value of the previous representation?
As a simple example, we can define a logical predicate that serves as a collision
detector. Recall from Section 2.4.1 that a predicate is a Boolean-valued function.
Let φ be a predicate defined as φ :W → {true, false}, which returns true for
a point in W that lies in O, and false otherwise. For a line given by f(x, y) =
0, let e(x, y) denote a logical predicate that returns true if f(x, y) ≤ 0, and
false otherwise.

A predicate that corresponds to a convex polygonal region is represented by a
logical conjunction,

α(x, y) = e1(x, y) ∧ e2(x, y) ∧ · · · ∧ em(x, y). (3.5)

The predicate α(x, y) returns true if the point (x, y) lies in the convex polyg-
onal region, and false otherwise. An obstacle region that consists of n convex
polygons is represented by a logical disjunction of conjuncts,

φ(x, y) = α1(x, y) ∨ α2(x, y) ∨ · · · ∨ αn(x, y). (3.6)

Although more efficient methods exist, φ can check whether a point (x, y) lies
in O in time O(n), in which n is the number of primitives that appear in the
representation of O (each primitive is evaluated in constant time).

Note the convenient connection between a logical predicate representation and
a set-theoretic representation. Using the logical predicate, the unions and inter-
sections of the set-theoretic representation are replaced by logical ORs and ANDs.
It is well known from Boolean algebra that any complicated logical sentence can
be reduced to a logical disjunction of conjunctions (this is often called “sum of
products” in computer engineering). This is equivalent to our previous statement
that O can always be represented as a union of intersections of primitives.

Polyhedral models For a 3D world, W = R3, and the previous concepts can
be nicely generalized from the 2D case by replacing polygons with polyhedra and
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replacing half-plane primitives with half-space primitives. A boundary represen-
tation can be defined in terms of three features: vertices, edges, and faces. Every
face is a “flat” polygon embedded in R3. Every edge forms a boundary between
two faces. Every vertex forms a boundary between three or more edges.

Several data structures have been proposed that allow one to conveniently
“walk” around the polyhedral features. For example, the doubly connected edge
list [146] data structure contains three types of records: faces, half-edges, and
vertices. Intuitively, a half-edge is a directed edge. Each vertex record holds the
point coordinates and a pointer to an arbitrary half-edge that touches the vertex.
Each face record contains a pointer to an arbitrary half-edge on its boundary.
Each face is bounded by a circular list of half-edges. There is a pair of directed
half-edge records for each edge of the polyhedon. Each half-edge is shown as an
arrow in Figure 3.3b. Each half-edge record contains pointers to five other records:
1) the vertex from which the half-edge originates; 2) the “twin” half-edge, which
bounds the neighboring face, and has the opposite direction; 3) the face that is
bounded by the half-edge; 4) the next element in the circular list of edges that
bound the face; and 5) the previous element in the circular list of edges that
bound the face. Once all of these records have been defined, one can conveniently
traverse the structure of the polyhedron.

Now consider a solid representation of a polyhedron. Suppose that O is a con-
vex polyhedron, as shown in Figure 3.3. A solid representation can be constructed
from the vertices. Each face of O has at least three vertices along its boundary.
Assuming these vertices are not collinear, an equation of the plane that passes
through them can be determined of the form

ax+ by + cz + d = 0, (3.7)

in which a, b, c, d ∈ R are constants.
Once again, f can be constructed, except now f : R3 → R and

f(x, y, z) = ax+ by + cz + d. (3.8)

Let m be the number of faces. For each face of O, a half-space Hi is defined as a
subset of W :

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0}. (3.9)

It is important to choose fi so that it takes on negative values inside of the
polyhedron. In the case of a polygonal model, it was possible to consistently
define fi by proceeding in counterclockwise order around the boundary. In the
case of a polyhedron, the half-edge data structure can be used to obtain for each
face the list of edges that form its boundary in counterclockwise order. Figure
3.3b shows the edge ordering for each face. For every edge, the arrows point in
opposite directions, as required by the half-edge data structure. The equation
for each face can be consistently determined as follows. Choose three consecutive
vertices, p1, p2, p3 (they must not be collinear) in counterclockwise order on the
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(a) (b)

Figure 3.3: (a) A polyhedron can be described in terms of faces, edges, and
vertices. (b) The edges of each face can be stored in a circular list that is traversed
in counterclockwise order with respect to the outward normal vector of the face.

boundary of the face. Let v12 denote the vector from p1 to p2, and let v23 denote
the vector from p2 to p3. The cross product v = v12 × v23 always yields a vector
that points out of the polyhedron and is normal to the face. Recall that the vector
[a b c] is parallel to the normal to the plane. If its components are chosen as
a = v[1], b = v[2], and c = v[3], then f(x, y, z) ≤ 0 for all points in the half-space
that contains the polyhedron.

As in the case of a polygonal model, a convex polyhedron can be defined as
the intersection of a finite number of half-spaces, one for each face. A nonconvex
polyhedron can be defined as the union of a finite number of convex polyhedra.
The predicate φ(x, y, z) can be defined in a similar manner, in this case yielding
true if (x, y, z) ∈ O, and false otherwise.

3.1.2 Semi-Algebraic Models

In both the polygonal and polyhedral models, f was a linear function. In the
case of a semi-algebraic model for a 2D world, f can be any polynomial with
real-valued coefficients and variables x and y. For a 3D world, f is a polynomial
with variables x, y, and z. The class of semi-algebraic models includes both
polygonal and polyhedral models, which use first-degree polynomials. A point set
determined by a single polynomial primitive is called an algebraic set; a point set
that can be obtained by a finite number of unions and intersections of algebraic
sets is called a semi-algebraic set.

Consider the case of a 2D world. A solid representation can be defined using
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Figure 3.4: (a) Once again, f is used to partition R2 into two regions. In this case,
the algebraic primitive represents a disc-shaped region. (b) The shaded “face” can
be exactly modeled using only four algebraic primitives.

algebraic primitives of the form

H = {(x, y) ∈ W | f(x, y) ≤ 0}. (3.10)

As an example, let f = x2 + y2 − 4. In this case, H represents a disc of radius
2 that is centered at the origin. This corresponds to the set of points (x, y) for
which f(x, y) ≤ 0, as depicted in Figure 3.4a.

Example 3.1 (Gingerbread Face) Consider constructing a model of the shaded
region shown in Figure 3.4b. Let the center of the outer circle have radius r1 and
be centered at the origin. Suppose that the “eyes” have radius r2 and r3 and are
centered at (x2, y2) and (x3, y3), respectively. Let the “mouth” be an ellipse with
major axis a and minor axis b and is centered at (0, y4). The functions are defined
as

f1 = x2 + y2 − r21,
f2 = −

(

(x− x2)2 + (y − y2)2 − r22
)

,

f3 = −
(

(x− x3)2 + (y − y3)2 − r23
)

,

f4 = −
(

x2/a2 + (y − y4)2/b2 − 1
)

.

(3.11)

For f2, f3, and f4, the familiar circle and ellipse equations were multiplied by −1
to yield algebraic primitives for all points outside of the circle or ellipse. The
shaded region O is represented as

O = H1 ∩H2 ∩H3 ∩H4. (3.12)

�
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In the case of semi-algebraic models, the intersection of primitives does not
necessarily result in a convex subset of W . In general, however, it might be
necessary to form O by taking unions and intersections of algebraic primitives.

A logical predicate, φ(x, y), can once again be formed, and collision checking
is still performed in time that is linear in the number of primitives. Note that
it is still very efficient to evaluate every primitive; f is just a polynomial that is
evaluated on the point (x, y, z).

The semi-algebraic formulation generalizes easily to the case of a 3D world.
This results in algebraic primitives of the form

H = {(x, y, z) ∈ W | f(x, y, z) ≤ 0}, (3.13)

which can be used to define a solid representation of a 3D obstacle O and a logical
predicate φ.

Equations (3.10) and (3.13) are sufficient to express any model of interest. One
may define many other primitives based on different relations, such as f(x, y, z) ≥
0, f(x, y, z) = 0, f(x, y, z) < 0, f(x, y, z) = 0, and f(x, y, z) 6= 0; however, most
of them do not enhance the set of models that can be expressed. They might,
however, be more convenient in certain contexts. To see that some primitives do
not allow new models to be expressed, consider the primitive

H = {(x, y, z) ∈ W | f(x, y, z) ≥ 0}. (3.14)

The right part may be alternatively represented as −f(x, y, z) ≤ 0, and −f may
be considered as a new polynomial function of x, y, and z. For an example that
involves the = relation, consider the primitive

H = {(x, y, z) ∈ W | f(x, y, z) = 0}. (3.15)

It can instead be constructed as H = H1 ∩H2, in which

H1 = {(x, y, z) ∈ W | f(x, y, z) ≤ 0} (3.16)

and

H2 = {(x, y, z) ∈ W | − f(x, y, z) ≤ 0}. (3.17)

The relation < does add some expressive power if it is used to construct primi-
tives.2 It is needed to construct models that do not include the outer boundary
(for example, the set of all points inside of a sphere, which does not include points
on the sphere). These are generally called open sets and are defined Chapter 4.

2An alternative that yields the same expressive power is to still use ≤, but allow set comple-
ments, in addition to unions and intersections.
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Figure 3.5: A polygon with holes can be expressed by using different orientations:
counterclockwise for the outer boundary and clockwise for the hole boundaries.
Note that the shaded part is always to the left when following the arrows.

3.1.3 Other Models

The choice of a model often depends on the types of operations that will be per-
formed by the planning algorithm. For combinatorial motion planning methods,
to be covered in Chapter 6, the particular representation is critical. On the other
hand, for sampling-based planning methods, to be covered in Chapter 5, the par-
ticular representation is important only to the collision detection algorithm, which
is treated as a “black box” as far as planning is concerned. Therefore, the models
given in the remainder of this section are more likely to appear in sampling-based
approaches and may be invisible to the designer of a planning algorithm (although
it is never wise to forget completely about the representation).

Nonconvex polygons and polyhedra The method in Section 3.1.1 required
nonconvex polygons to be represented as a union of convex polygons. Instead, a
boundary representation of a nonconvex polygon may be directly encoded by list-
ing vertices in a specific order; assume that counterclockwise order is used. Each
polygon of m vertices may be encoded by a list of the form (x1, y1), (x2, y2), . . .,
(xm, ym). It is assumed that there is an edge between each (xi, yi) and (xi+1, yi+1)
for each i from 1 to m − 1, and also an edge between (xm, ym) and (x1, y1). Or-
dinarily, the vertices should be chosen in a way that makes the polygon simple,
meaning that no edges intersect. In this case, there is a well-defined interior of
the polygon, which is to the left of every edge, if the vertices are listed in coun-
terclockwise order.

What if a polygon has a hole in it? In this case, the boundary of the hole
can be expressed as a polygon, but with its vertices appearing in the clockwise
direction. To the left of each edge is the interior of the outer polygon, and to the
right is the hole, as shown in Figure 3.5

Although the data structures are a little more complicated for three dimen-
sions, boundary representations of nonconvex polyhedra may be expressed in a
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Figure 3.6: Triangle strips and triangle fans can reduce the number of redundant
points.

similar manner. In this case, instead of an edge list, one must specify faces, edges,
and vertices, with pointers that indicate their incidence relations. Consistent ori-
entations must also be chosen, and holes may be modeled once again by selecting
opposite orientations.

3D triangles Suppose W = R3. One of the most convenient geometric models
to express is a set of triangles, each of which is specified by three points, (x1, y1, z1),
(x2, y2, z2), (x3, y3, z3). This model has been popular in computer graphics because
graphics acceleration hardware primarily uses triangle primitives. It is assumed
that the interior of the triangle is part of the model. Thus, two triangles are
considered as “colliding” if one pokes into the interior of another. This model offers
great flexibility because there are no constraints on the way in which triangles must
be expressed; however, this is also one of the drawbacks. There is no coherency
that can be exploited to easily declare whether a point is “inside” or “outside” of
a 3D obstacle. If there is at least some coherency, then it is sometimes preferable
to reduce redundancy in the specification of triangle coordinates (many triangles
will share the same corners). Representations that remove this redundancy are
called a triangle strip, which is a sequence of triangles such that each adjacent
pair shares a common edge, and a triangle fan, which is a triangle strip in which
all triangles share a common vertex. See Figure 3.6.

Nonuniform rational B-splines (NURBS) These are used in many engi-
neering design systems to allow convenient design and adjustment of curved sur-
faces, in applications such as aircraft or automobile body design. In contrast to
semi-algebraic models, which are implicit equations, NURBS and other splines are
parametric equations. This makes computations such as rendering easier; how-
ever, others, such as collision detection, become more difficult. These models may
be defined in any dimension. A brief 2D formulation is given here.

A curve can be expressed as

C(u) =

n
∑

i=0

wiPiNi,k(u)

n
∑

i=0

wiNi,k(u)

, (3.18)

in which wi ∈ R are weights and Pi are control points. The Ni,k are normalized
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basis functions of degree k, which can be expressed recursively as

Ni,k(u) =

(

u− ti
ti+k − ti

)

Ni,k−1(u) +

(

ti+k+1 − u
ti+k+1 − ti+1

)

Ni+1,k−1(u). (3.19)

The basis of the recursion isNi,0(u) = 1 if ti ≤ u < ti+1, andNi,0(u) = 0 otherwise.
A knot vector is a nondecreasing sequence of real values, {t0, t1, . . . , tm}, that
controls the intervals over which certain basic functions take effect.

Bitmaps For either W = R2 or W = R3, it is possible to discretize a bounded
portion of the world into rectangular cells that may or may not be occupied.
The resulting model looks very similar to Example 2.1. The resolution of this
discretization determines the number of cells per axis and the quality of the ap-
proximation. The representation may be considered as a binary image in which
each “1” in the image corresponds to a rectangular region that contains at least
one point of O, and “0” represents those that do not contain any of O. Although
bitmaps do not have the elegance of the other models, they often arise in applica-
tions. One example is a digital map constructed by a mobile robot that explores
an environment with its sensors. One generalization of bitmaps is a gray-scale
map or occupancy grid. In this case, a numerical value may be assigned to each
cell, indicating quantities such as “the probability that an obstacle exists” or the
“expected difficulty of traversing the cell.” The latter interpretation is often used
in terrain maps for navigating planetary rovers.

Superquadrics Instead of using polynomials to define fi, many generalizations
can be constructed. One popular primitive is a superquadric, which generalizes
quadric surfaces. One example is a superellipsoid, which is given for W = R3 by

(

|x/a|n1 + |y/b|n2
)n1/n2 + |z/c|n1 − 1 ≤ 0, (3.20)

in which n1 ≥ 2 and n2 ≥ 2. If n1 = n2 = 2, an ellipse is generated. As n1 and n2

increase, the superellipsoid becomes shaped like a box with rounded corners.

Generalized cylinders A generalized cylinder is a generalization of an ordinary
cylinder. Instead of being limited to a line, the center axis is a continuous spine
curve, (x(s), y(s), z(s)), for some parameter s ∈ [0, 1]. Instead of a constant
radius, a radius function r(s) is defined along the spine. The value r(s) is the
radius of the circle obtained as the cross section of the generalized cylinder at the
point (x(s), y(s), z(s)). The normal to the cross-section plane is the tangent to
the spine curve at s.

3.2 Rigid-Body Transformations

Any of the techniques from Section 3.1 can be used to define both the obstacle
region and the robot. Let O refer to the obstacle region, which is a subset of W .
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Let A refer to the robot, which is a subset of R2 or R3, matching the dimension
of W . Although O remains fixed in the world, W , motion planning problems will
require “moving” the robot, A.

3.2.1 General Concepts

Before giving specific transformations, it will be helpful to define them in general to
avoid confusion in later parts when intuitive notions might fall apart. Suppose that
a rigid robot, A, is defined as a subset of R2 or R3. A rigid-body transformation is
a function, h : A →W , that maps every point of A intoW with two requirements:
1) The distance between any pair of points of A must be preserved, and 2) the
orientation of A must be preserved (no “mirror images”).

Using standard function notation, h(a) for some a ∈ A refers to the point in
W that is “occupied” by a. Let

h(A) = {h(a) ∈ W | a ∈ A}, (3.21)

which is the image of h and indicates all points inW occupied by the transformed
robot.

Transforming the robot model Consider transforming a robot model. If A
is expressed by naming specific points in R2, as in a boundary representation of a
polygon, then each point is simply transformed from a to h(a) ∈ W . In this case,
it is straightforward to transform the entire model using h. However, there is a
slight complication if the robot model is expressed using primitives, such as

Hi = {a ∈ R2 | fi(a) ≤ 0}. (3.22)

This differs slightly from (3.2) because the robot is defined in R2 (which is not
necessarily W), and also a is used to denote a point (x, y) ∈ A. Under a trans-
formation h, the primitive is transformed as

h(Hi) = {h(a) ∈ W | fi(a) ≤ 0}. (3.23)

To transform the primitive completely, however, it is better to directly name
points in w ∈ W , as opposed to h(a) ∈ W . Using the fact that a = h−1(w), this
becomes

h(Hi) = {w ∈ W | fi(h−1(w)) ≤ 0}, (3.24)

in which the inverse of h appears in the right side because the original point
a ∈ A needs to be recovered to evaluate fi. Therefore, it is important to be
careful because either h or h−1 may be required to transform the model. This will
be observed in more specific contexts in some coming examples.
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A parameterized family of transformations It will become important to
study families of transformations, in which some parameters are used to select
the particular transformation. Therefore, it makes sense to generalize h to accept
two variables: a parameter vector, q ∈ Rn, along with a ∈ A. The resulting
transformed point a is denoted by h(q, a), and the entire robot is transformed to
h(q,A) ⊂ W .

The coming material will use the following shorthand notation, which requires
the specific h to be inferred from the context. Let h(q, a) be shortened to a(q), and
let h(q,A) be shortened to A(q). This notation makes it appear that by adjusting
the parameter q, the robot A travels around in W as different transformations
are selected from the predetermined family. This is slightly abusive notation, but
it is convenient. The expression A(q) can be considered as a set-valued function
that yields the set of points in W that are occupied by A when it is transformed
by q. Most of the time the notation does not cause trouble, but when it does, it
is helpful to remember the definitions from this section, especially when trying to
determine whether h or h−1 is needed.

Defining frames It was assumed so far that A is defined in R2 or R3, but before
it is transformed, it is not considered to be a subset of W . The transformation h
places the robot in W . In the coming material, it will be convenient to indicate
this distinction using coordinate frames. The origin and coordinate basis vectors
ofW will be referred to as the world frame.3 Thus, any point w ∈ W is expressed
in terms of the world frame.

The coordinates used to define A are initially expressed in the body frame,
which represents the origin and coordinate basis vectors of R2 or R3. In the case
of A ⊂ R2, it can be imagined that the body frame is painted on the robot.
Transforming the robot is equivalent to converting its model from the body frame
to the world frame. This has the effect of placing4 A into W at some position
and orientation. When multiple bodies are covered in Section 3.3, each body will
have its own body frame, and transformations require expressing all bodies with
respect to the world frame.

3.2.2 2D Transformations

Translation A rigid robotA ⊂ R2 is translated by using two parameters, xt, yt ∈
R. Using definitions from Section 3.2.1, q = (xt, yt), and h is defined as

h(x, y) = (x+ xt, y + yt). (3.25)

3The world frame serves the same purpose as an inertial frame in Newtonian mechanics.
Intuitively, it is a frame that remains fixed and from which all measurements are taken. See
Section 13.3.1.

4Technically, this placement is a function called an orientation-preserving isometric embed-

ding.
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A boundary representation of A can be translated by transforming each vertex in
the sequence of polygon vertices using (3.25). Each point, (xi, yi), in the sequence
is replaced by (xi + xt, yi + yt).

Now consider a solid representation of A, defined in terms of primitives. Each
primitive of the form

Hi = {(x, y) ∈ R2 | f(x, y) ≤ 0} (3.26)

is transformed to

h(Hi) = {(x, y) ∈ W | f(x− xt, y − yt) ≤ 0}. (3.27)

Example 3.2 (Translating a Disc) For example, suppose the robot is a disc
of unit radius, centered at the origin. It is modeled by a single primitive,

Hi = {(x, y) ∈ R2 | x2 + y2 − 1 ≤ 0}. (3.28)

Suppose A = Hi is translated xt units in the x direction and yt units in the y
direction. The transformed primitive is

h(Hi) = {(x, y) ∈ W | (x− xt)2 + (y − yt)2 − 1 ≤ 0}, (3.29)

which is the familiar equation for a disc centered at (xt, yt). In this example, the
inverse, h−1 is used, as described in Section 3.2.1. �

The translated robot is denoted as A(xt, yt). Translation by (0, 0) is the iden-
tity transformation, which results in A(0, 0) = A, if it is assumed that A ⊂ W
(recall that A does not necessarily have to be initially embedded in W). It will
be convenient to use the term degrees of freedom to refer to the maximum number
of independent parameters that are needed to completely characterize the trans-
formation applied to the robot. If the set of allowable values for xt and yt forms
a two-dimensional subset of R2, then the degrees of freedom is two.

Suppose that A is defined directly in W with translation. As shown in Figure
3.7, there are two interpretations of a rigid-body transformation applied to A: 1)
The world frame remains fixed and the robot is transformed; 2) the robot remains
fixed and the world frame is translated. The first one characterizes the effect of
the transformation from a fixed world frame, and the second one indicates how
the transformation appears from the robot’s perspective. Unless stated otherwise,
the first interpretation will be used when we refer to motion planning problems
because it often models a robot moving in a physical world. Numerous books
cover coordinate transformations under the second interpretation. This has been
known to cause confusion because the transformations may sometimes appear
“backward” from what is desired in motion planning.
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Moving
the Robot

Moving the
Coordinate
Frame

(a) Translation of the robot (b) Translation of the frame

Figure 3.7: Every transformation has two interpretations.

Rotation The robot, A, can be rotated counterclockwise by some angle θ ∈
[0, 2π) by mapping every (x, y) ∈ A as

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ). (3.30)

Using a 2× 2 rotation matrix,

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

, (3.31)

the transformation can be written as

(

x cos θ − y sin θ
x sin θ + y cos θ

)

= R(θ)

(

x
y

)

. (3.32)

Using the notation of Section 3.2.1, R(θ) becomes h(q), for which q = θ. For
linear transformations, such as the one defined by (3.32), recall that the column
vectors represent the basis vectors of the new coordinate frame. The column
vectors of R(θ) are unit vectors, and their inner product (or dot product) is zero,
indicating that they are orthogonal. Suppose that the x and y coordinate axes,
which represent the body frame, are “painted” on A. The columns of R(θ) can be
derived by considering the resulting directions of the x- and y-axes, respectively,
after performing a counterclockwise rotation by the angle θ. This interpretation
generalizes nicely for higher dimensional rotation matrices.

Note that the rotation is performed about the origin. Thus, when defining the
model of A, the origin should be placed at the intended axis of rotation. Using
the semi-algebraic model, the entire robot model can be rotated by transforming
each primitive, yielding A(θ). The inverse rotation, R(−θ), must be applied to
each primitive.
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Combining translation and rotation Suppose a rotation by θ is performed,
followed by a translation by xt, yt. This can be used to place the robot in any
desired position and orientation. Note that translations and rotations do not
commute! If the operations are applied successively, each (x, y) ∈ A is transformed
to

(

x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

)

. (3.33)

The following matrix multiplication yields the same result for the first two vector
components:





cos θ − sin θ xt
sin θ cos θ yt
0 0 1









x
y
1



 =





x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

1



 . (3.34)

This implies that the 3× 3 matrix,

T =





cos θ − sin θ xt
sin θ cos θ yt
0 0 1



 , (3.35)

represents a rotation followed by a translation. The matrix T will be referred to
as a homogeneous transformation matrix. It is important to remember that T
represents a rotation followed by a translation (not the other way around). Each
primitive can be transformed using the inverse of T , resulting in a transformed
solid model of the robot. The transformed robot is denoted by A(xt, yt, θ), and
in this case there are three degrees of freedom. The homogeneous transformation
matrix is a convenient representation of the combined transformations; therefore,
it is frequently used in robotics, mechanics, computer graphics, and elsewhere. It
is called homogeneous because over R3 it is just a linear transformation without
any translation. The trick of increasing the dimension by one to absorb the
translational part is common in projective geometry [404].

3.2.3 3D Transformations

Rigid-body transformations for the 3D case are conceptually similar to the 2D
case; however, the 3D case appears more difficult because rotations are signifi-
cantly more complicated.

3D translation The robot, A, is translated by some xt, yt, zt ∈ R using

(x, y, z) 7→ (x+ xt, y + yt, z + zt). (3.36)

A primitive of the form

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0} (3.37)
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Figure 3.8: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

is transformed to

{(x, y, z) ∈ W | fi(x− xt, y − yt, z − zt) ≤ 0}. (3.38)

The translated robot is denoted as A(xt, yt, zt).

Yaw, pitch, and roll rotations A 3D body can be rotated about three or-
thogonal axes, as shown in Figure 3.8. Borrowing aviation terminology, these
rotations will be referred to as yaw, pitch, and roll:

1. A yaw is a counterclockwise rotation of α about the z-axis. The rotation
matrix is given by

Rz(α) =





cosα − sinα 0
sinα cosα 0
0 0 1



 . (3.39)

Note that the upper left entries of Rz(α) form a 2D rotation applied to the
x and y coordinates, whereas the z coordinate remains constant.

2. A pitch is a counterclockwise rotation of β about the y-axis. The rotation
matrix is given by

Ry(β) =





cos β 0 sin β
0 1 0

− sin β 0 cos β



 . (3.40)

3. A roll is a counterclockwise rotation of γ about the x-axis. The rotation
matrix is given by

Rx(γ) =





1 0 0
0 cos γ − sin γ
0 sin γ cos γ



 . (3.41)
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Each rotation matrix is a simple extension of the 2D rotation matrix, (3.31). For
example, the yaw matrix, Rz(α), essentially performs a 2D rotation with respect
to the x and y coordinates while leaving the z coordinate unchanged. Thus, the
third row and third column of Rz(α) look like part of the identity matrix, while
the upper right portion of Rz(α) looks like the 2D rotation matrix.

The yaw, pitch, and roll rotations can be used to place a 3D body in any
orientation. A single rotation matrix can be formed by multiplying the yaw,
pitch, and roll rotation matrices to obtain

R(α,β, γ) = Rz(α)Ry(β)Rx(γ) =




cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cos β cos γ



 .

(3.42)

It is important to note that R(α, β, γ) performs the roll first, then the pitch, and
finally the yaw. If the order of these operations is changed, a different rotation
matrix would result. Be careful when interpreting the rotations. Consider the
final rotation, a yaw by α. Imagine sitting inside of a robot A that looks like
an aircraft. If β = γ = 0, then the yaw turns the plane in a way that feels
like turning a car to the left. However, for arbitrary values of β and γ, the final
rotation axis will not be vertically aligned with the aircraft because the aircraft is
left in an unusual orientation before α is applied. The yaw rotation occurs about
the z-axis of the world frame, not the body frame of A. Each time a new rotation
matrix is introduced from the left, it has no concern for original body frame of
A. It simply rotates every point in R3 in terms of the world frame. Note that 3D
rotations depend on three parameters, α, β, and γ, whereas 2D rotations depend
only on a single parameter, θ. The primitives of the model can be transformed
using R(α, β, γ), resulting in A(α, β, γ).

Determining yaw, pitch, and roll from a rotation matrix It is often
convenient to determine the α, β, and γ parameters directly from a given rotation
matrix. Suppose an arbitrary rotation matrix





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (3.43)

is given. By setting each entry equal to its corresponding entry in (3.42), equations
are obtained that must be solved for α, β, and γ. Note that r21/r11 = tanα and
r32/r33 = tan γ. Also, r31 = − sin β and

√

r232 + r233 = cos β. Solving for each
angle yields

α = tan−1(r21/r11), (3.44)

β = tan−1
(

− r31
/

√

r232 + r233

)

, (3.45)
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and
γ = tan−1(r32/r33). (3.46)

There is a choice of four quadrants for the inverse tangent functions. How can
the correct quadrant be determined? Each quadrant should be chosen by using
the signs of the numerator and denominator of the argument. The numerator
sign selects whether the direction will be above or below the x-axis, and the
denominator selects whether the direction will be to the left or right of the y-axis.
This is the same as the atan2 function in the C programming language, which
nicely expands the range of the arctangent to [0, 2π). This can be applied to
express (3.44), (3.45), and (3.46) as

α = atan2(r21, r11), (3.47)

β = atan2
(

− r31,
√

r232 + r233

)

, (3.48)

and
γ = atan2(r32, r33). (3.49)

Note that this method assumes r11 6= 0 and r33 6= 0.

The homogeneous transformation matrix for 3D bodies As in the 2D
case, a homogeneous transformation matrix can be defined. For the 3D case, a
4× 4 matrix is obtained that performs the rotation given by R(α, β, γ), followed
by a translation given by xt, yt, zt. The result is

T =







cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ xt
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ yt
− sinβ cosβ sin γ cosβ cos γ zt

0 0 0 1






.

(3.50)
Once again, the order of operations is critical. The matrix T in (3.50) represents
the following sequence of transformations:

1. Roll by γ 3. Yaw by α
2. Pitch by β 4. Translate by (xt, yt, zt).

The robot primitives can be transformed to yield A(xt, yt, zt, α, β, γ). A 3D rigid
body that is capable of translation and rotation therefore has six degrees of free-
dom.

3.3 Transforming Kinematic Chains of Bodies

The transformations become more complicated for a chain of attached rigid bodies.
For convenience, each rigid body is referred to as a link. Let A1, A2, . . . , Am

denote a set of m links. For each i such that 1 ≤ i < m, link Ai is “attached” to
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link Ai+1 in a way that allows Ai+1 some constrained motion with respect to Ai.
The motion constraint must be explicitly given, and will be discussed shortly. As
an example, imagine a trailer that is attached to the back of a car by a hitch that
allows the trailer to rotate with respect to the car. In general, a set of attached
bodies will be referred to as a linkage. This section considers bodies that are
attached in a single chain. This leads to a particular linkage called a kinematic
chain.

3.3.1 A 2D Kinematic Chain

Before considering a kinematic chain, suppose A1 and A2 are unattached rigid
bodies, each of which is capable of translating and rotating in W = R2. Since
each body has three degrees of freedom, there is a combined total of six degrees
of freedom; the independent parameters are x1, y1, θ1, x2, y2, and θ2.

Attaching bodies When bodies are attached in a kinematic chain, degrees of
freedom are removed. Figure 3.9 shows two different ways in which a pair of 2D
links can be attached. The place at which the links are attached is called a joint.
For a revolute joint, one link is capable only of rotation with respect to the other.
For a prismatic joint is shown, one link slides along the other. Each type of joint
removes two degrees of freedom from the pair of bodies. For example, consider a
revolute joint that connects A1 to A2. Assume that the point (0, 0) in the body
frame of A2 is permanently fixed to a point (xa, ya) in the body frame of A1.
This implies that the translation of A2 is completely determined once xa and ya
are given. Note that xa and ya depend on x1, y1, and θ1. This implies that A1

and A2 have a total of four degrees of freedom when attached. The independent
parameters are x1, y1, θ1, and θ2. The task in the remainder of this section is to
determine exactly how the models of A1, A2, . . ., Am are transformed when they
are attached in a chain, and to give the expressions in terms of the independent
parameters.

Consider the case of a kinematic chain in which each pair of links is attached
by a revolute joint. The first task is to specify the geometric model for each link,
Ai. Recall that for a single rigid body, the origin of the body frame determines
the axis of rotation. When defining the model for a link in a kinematic chain,
excessive complications can be avoided by carefully placing the body frame. Since
rotation occurs about a revolute joint, a natural choice for the origin is the joint
between Ai and Ai−1 for each i > 1. For convenience that will soon become
evident, the xi-axis for the body frame of Ai is defined as the line through the
two joints that lie in Ai, as shown in Figure 3.10. For the last link, Am, the
xm-axis can be placed arbitrarily, assuming that the origin is placed at the joint
that connects Am to Am−1. The body frame for the first link, A1, can be placed
using the same considerations as for a single rigid body.
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Revolute Prismatic

Figure 3.9: Two types of 2D joints: a revolute joint allows one link to rotate with
respect to the other, and a prismatic joint allows one link to translate with respect
to the other.
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Figure 3.10: The body frame of each Ai, for 1 < i < m, is based on the joints
that connect Ai to Ai−1 and Ai+1.
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Homogeneous transformation matrices for 2D chains We are now pre-
pared to determine the location of each link. The location in W of a point in
(x, y) ∈ A1 is determined by applying the 2D homogeneous transformation ma-
trix (3.35),

T1 =





cos θ1 − sin θ1 xt
sin θ1 cos θ1 yt
0 0 1



 . (3.51)

As shown in Figure 3.10, let ai−1 be the distance between the joints in Ai−1. The
orientation difference between Ai and Ai−1 is denoted by the angle θi. Let Ti
represent a 3× 3 homogeneous transformation matrix (3.35), specialized for link
Ai for 1 < i ≤ m,

Ti =





cos θi − sin θi ai−1

sin θi cos θi 0
0 0 1



 . (3.52)

This generates the following sequence of transformations:

1. Rotate counterclockwise by θi.

2. Translate by ai−1 along the x-axis.

The transformation Ti expresses the difference between the body frame of Ai and
the body frame of Ai−1. The application of Ti moves Ai from its body frame to
the body frame of Ai−1. The application of Ti−1Ti moves both Ai and Ai−1 to the
body frame of Ai−2. By following this procedure, the location in W of any point
(x, y) ∈ Am is determined by multiplying the transformation matrices to obtain

T1T2 · · ·Tm





x
y
1



 . (3.53)

Example 3.3 (A 2D Chain of Three Links) To gain an intuitive understand-
ing of these transformations, consider determining the configuration for link A3,
as shown in Figure 3.11. Figure 3.11a shows a three-link chain in which A1 is
at its initial configuration and the other links are each offset by π/4 from the
previous link. Figure 3.11b shows the frame in which the model for A3 is initially
defined. The application of T3 causes a rotation of θ3 and a translation by a2.
As shown in Figure 3.11c, this places A3 in its appropriate configuration. Note
that A2 can be placed in its initial configuration, and it will be attached cor-
rectly to A3. The application of T2 to the previous result places both A3 and A2

in their proper configurations, and A1 can be placed in its initial configuration. �

For revolute joints, the ai parameters are constants, and the θi parameters are
variables. The transformed mth link is represented as Am(xt, yt, θ1, . . . , θm). In
some cases, the first link might have a fixed location in the world. In this case, the
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(a) A three-link chain (b) A3 in its body frame
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(c) T3 puts A3 in A2’s body frame (d) T2T3 puts A3 in A1’s body frame

Figure 3.11: Applying the transformation T2T3 to the model of A3. If T1 is the
identity matrix, then this yields the location in W of points in A3.
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Revolute Prismatic Screw
1 Degree of Freedom 1 Degree of Freedom 1 Degree of Freedom

Cylindrical Spherical Planar
2 Degrees of Freedom 3 Degrees of Freedom 3 Degrees of Freedom

Figure 3.12: Types of 3D joints arising from the 2D surface contact between two
bodies.

revolute joints account for all degrees of freedom, yielding Am(θ1, . . . , θm). For
prismatic joints, the ai parameters are variables, instead of the θi parameters. It
is straightforward to include both types of joints in the same kinematic chain.

3.3.2 A 3D Kinematic Chain

As for a single rigid body, the 3D case is significantly more complicated than the
2D case due to 3D rotations. Also, several more types of joints are possible, as
shown in Figure 3.12. Nevertheless, the main ideas from the transformations of
2D kinematic chains extend to the 3D case. The following steps from Section 3.3.1
will be recycled here:

1. The body frame must be carefully placed for each Ai.

2. Based on joint relationships, several parameters are measured.

3. The parameters define a homogeneous transformation matrix, Ti.

4. The location in W of any point in Am is given by applying the matrix
T1T2 · · ·Tm.
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Figure 3.13: The rotation axes for a generic link attached by revolute joints.

Consider a kinematic chain of m links in W = R3, in which each Ai for
1 ≤ i < m is attached to Ai+1 by a revolute joint. Each link can be a complicated,
rigid body as shown in Figure 3.13. For the 2D problem, the coordinate frames
were based on the points of attachment. For the 3D problem, it is convenient to
use the axis of rotation of each revolute joint (this is equivalent to the point of
attachment for the 2D case). The axes of rotation will generally be skew lines in
R3, as shown in Figure 3.14. Let the zi-axis be the axis of rotation for the revolute
joint that holds Ai to Ai−1. Between each pair of axes in succession, let the xi-axis
join the closest pair of points between the zi- and zi+1-axes, with the origin on the
zi-axis and the direction pointing towards the nearest point of the zi+1-axis. This
axis is uniquely defined if the zi- and zi+1-axes are not parallel. The recommended
body frame for each Ai will be given with respect to the zi- and xi-axes, which
are shown in Figure 3.14. Assuming a right-handed coordinate system, the yi-
axis points away from us in Figure 3.14. In the transformations that will appear
shortly, the coordinate frame given by xi, yi, and zi will be most convenient for
defining the model for Ai. It might not always appear convenient because the
origin of the frame may even lie outside of Ai, but the resulting transformation
matrices will be easy to understand.

In Section 3.3.1, each Ti was defined in terms of two parameters, ai−1 and θi.
For the 3D case, four parameters will be defined: di, θi, ai−1, and αi−1. These
are referred to as Denavit-Hartenberg (DH) parameters [223]. The definition of
each parameter is indicated in Figure 3.15. Figure 3.15a shows the definition of
di. Note that the xi−1- and xi-axes contact the zi-axis at two different places. Let
di denote signed distance between these points of contact. If the xi-axis is above
the xi−1-axis along the zi-axis, then di is positive; otherwise, di is negative. The
parameter θi is the angle between the xi- and xi−1-axes, which corresponds to the
rotation about the zi-axis that moves the xi−1-axis to coincide with the xi-axis.
The parameter ai is the distance between the zi- and zi−1-axes; recall these are
generally skew lines in R3. The parameter αi−1 is the angle between the zi- and
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zi+1

xi

zi

xi−1

zi−1

Figure 3.14: The rotation axes of the generic links are skew lines in R3.

zi−1-axes.

Two screws The homogeneous transformation matrix Ti will be constructed by
combining two simpler transformations. The transformation

Ri =









cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di
0 0 0 1









(3.54)

causes a rotation of θi about the zi-axis, and a translation of di along the zi-
axis. Notice that the rotation by θi and translation by di commute because both
operations occur with respect to the same axis, zi. The combined operation of a
translation and rotation with respect to the same axis is referred to as a screw (as
in the motion of a screw through a nut). The effect of Ri can thus be considered
as a screw about the zi-axis. The second transformation is

Qi−1 =









1 0 0 ai−1

0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1









, (3.55)

which can be considered as a screw about the xi−1-axis. A rotation of αi−1 about
the xi−1-axis and a translation of ai−1 are performed.
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xi

xi−1

di

zi

θi

xi

zi xi−1

(a) (b)

ai−1

zi−1 zi

xi−1

αi−1

xi−1

zi−1zi

(c) (d)

Figure 3.15: Definitions of the four DH parameters: di, θi, ai−1, αi−1. The zi- and
xi−1-axes in (b) and (d), respectively, are pointing outward. Any parameter may
be positive, zero, or negative.

The homogeneous transformation matrix The transformation Ti, for each
i such that 1 < i ≤ m, is

Ti = Qi−1Ri =









cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1









.

(3.56)
This can be considered as the 3D counterpart to the 2D transformation matrix,
(3.52). The following four operations are performed in succession:

1. Translate by di along the zi-axis.

2. Rotate counterclockwise by θi about the zi-axis.

3. Translate by ai−1 along the xi−1-axis.

4. Rotate counterclockwise by αi−1 about the xi−1-axis.

As in the 2D case, the first matrix, T1, is special. To represent any position
and orientation of A1, it could be defined as a general rigid-body homogeneous
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Figure 3.16: The Puma 560 is shown along with the DH parameters and body
frames for each link in the chain. This figure is borrowed from [291] by courtesy
of the authors.

transformation matrix, (3.50). If the first body is only capable of rotation via
a revolute joint, then a simple convention is usually followed. Let the a0, α0

parameters of T1 be assigned as a0 = α0 = 0 (there is no z0-axis). This implies
that Q0 from (3.55) is the identity matrix, which makes T1 = R1.

The transformation Ti for i > 1 gives the relationship between the body frame
of Ai and the body frame of Ai−1. The position of a point (x, y, z) on Am is given
by

T1T2 · · ·Tm









x
y
z
1









. (3.57)

For each revolute joint, θi is treated as the only variable in Ti. Prismatic joints
can be modeled by allowing ai to vary. More complicated joints can be modeled as
a sequence of degenerate joints. For example, a spherical joint can be considered
as a sequence of three zero-length revolute joints; the joints perform a roll, a
pitch, and a yaw. Another option for more complicated joints is to abandon the
DH representation and directly develop the homogeneous transformation matrix.
This might be needed to preserve topological properties that become important
in Chapter 4.

Example 3.4 (Puma 560) This example demonstrates the 3D chain kinemat-
ics on a classic robot manipulator, the PUMA 560, shown in Figure 3.16. The
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Matrix αi−1 ai−1 θi di

T1(θ1) 0 0 θ1 0
T2(θ2) −π/2 0 θ2 d2
T3(θ3) 0 a2 θ3 d3
T4(θ4) π/2 a3 θ4 d4
T5(θ5) −π/2 0 θ5 0
T6(θ6) π/2 0 θ6 0

Figure 3.17: The DH parameters are shown for substitution into each homoge-
neous transformation matrix (3.56). Note that a3 and d3 are negative in this
example (they are signed displacements, not distances).

current parameterization here is based on [29, 291]. The procedure is to determine
appropriate body frames to represent each of the links. The first three links allow
the hand (called an end-effector) to make large movements in W , and the last
three enable the hand to achieve a desired orientation. There are six degrees of
freedom, each of which arises from a revolute joint. The body frames are shown
in Figure 3.16, and the corresponding DH parameters are given in Figure 3.17.
Each transformation matrix Ti is a function of θi; hence, it is written Ti(θi). The
other parameters are fixed for this example. Only θ1, θ2, . . ., θ6 are allowed to
vary.

The parameters from Figure 3.17 may be substituted into the homogeneous
transformation matrices to obtain

T1(θ1) =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









, (3.58)

T2(θ2) =









cos θ2 − sin θ2 0 0
0 0 1 d2

− sin θ2 − cos θ2 0 0
0 0 0 1









, (3.59)

T3(θ3) =









cos θ3 − sin θ3 0 a2
sin θ3 cos θ3 0 0
0 0 1 d3
0 0 0 1









, (3.60)

T4(θ4) =









cos θ4 − sin θ4 0 a3
0 0 −1 −d4

sin θ4 cos θ4 0 0
0 0 0 1









, (3.61)
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Figure 3.18: A hydrocarbon (octane) molecule with 8 carbon atoms and 18 hy-
drogen atoms (courtesy of the New York University MathMol Library).

T5(θ5) =









cos θ5 − sin θ5 0 0
0 0 1 0

− sin θ5 − cos θ5 0 0
0 0 0 1









, (3.62)

and

T6(θ6) =









cos θ6 − sin θ6 0 0
0 0 −1 0

sin θ6 cos θ6 0 0
0 0 0 1









. (3.63)

A point (x, y, z) in the body frame of the last link A6 appears in W as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)









x
y
z
1









. (3.64)

�

Example 3.5 (Transforming Octane) Figure 3.18 shows a ball-and-stick model
of an octane molecule. Each “ball” is an atom, and each “stick” represents a bond
between a pair of atoms. There is a linear chain of eight carbon atoms, and a
bond exists between each consecutive pair of carbons in the chain. There are also
numerous hydrogen atoms, but we will ignore them. Each bond between a pair of
carbons is capable of twisting, as shown in Figure 3.19. Studying the configura-
tions (called conformations) of molecules is an important part of computational
biology. It is assumed that there are seven degrees of freedom, each of which
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Figure 3.19: Consider transforming the spine of octane by ignoring the hydrogen
atoms and allowing the bonds between carbons to rotate. This can be easily
constructed with balls and sticks (e.g., Tinkertoys). If the first link is held fixed,
then there are six degrees of freedom. The rotation of the last link is ignored.

arises from twisting a bond. The techniques from this section can be applied to
represent these transformations.

Note that the bonds correspond exactly to the axes of rotation. This suggests
that the zi axes should be chosen to coincide with the bonds. Since consecutive
bonds meet at atoms, there is no distance between them. From Figure 3.15c,
observe that this makes ai = 0 for all i. From Figure 3.15a, it can be seen that each
di corresponds to a bond length, the distance between consecutive carbon atoms.
See Figure 3.20. This leaves two angular parameters, θi and αi. Since the only
possible motion of the links is via rotation of the zi-axes, the angle between two
consecutive axes, as shown in Figure 3.15d, must remain constant. In chemistry,
this is referred to as the bond angle and is represented in the DH parameterization
as αi. The remaining θi parameters are the variables that represent the degrees of
freedom. However, looking at Figure 3.15b, observe that the example is degenerate
because each xi-axis has no frame of reference because each ai = 0. This does
not, however, cause any problems. For visualization purposes, it may be helpful
to replace xi−1 and xi by zi−1 and zi+1, respectively. This way it is easy to see
that as the bond for the zi-axis is twisted, the observed angle changes accordingly.
Each bond is interpreted as a link, Ai. The origin of each Ai must be chosen to
coincide with the intersection point of the zi- and zi+1-axes. Thus, most of the
points in Ai will lie in the −zi direction; see Figure 3.20.

The next task is to write down the matrices. Attach a world frame to the first
bond, with the second atom at the origin and the bond aligned with the z-axis,
in the negative direction; see Figure 3.20. To define T1, recall that T1 = R1 from
(3.54) because Q0 is dropped. The parameter d1 represents the distance between
the intersection points of the x0- and x1-axes along the z1 axis. Since there is no
x0-axis, there is freedom to choose d1; hence, let d1 = 0 to obtain

T1(θ1) = R1(θ1) =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









. (3.65)
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zi+1

zi

zi−1

di

Ai

xi

xi−1

Figure 3.20: Each bond may be interpreted as a “link” of length di that is aligned
with the zi-axis. Note that most of Ai appears in the −zi direction.

The application of T1 to points in A1 causes them to rotate around the z1-axis,
which appears correct.

The matrices for the remaining six bonds are

Ti(θi) =









cos θi − sin θi 0 0
sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1









, (3.66)

for i ∈ {2, . . . , 7}. The position of any point, (x, y, z) ∈ A7, is given by

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)T7(θ7)









x
y
z
1









. (3.67)

�

3.4 Transforming Kinematic Trees

Motivation For many interesting problems, the linkage is arranged in a “tree”
as shown in Figure 3.21a. Assume here that the links are not attached in ways that
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(a) (b)

Figure 3.21: General linkages: (a) Instead of a chain of rigid bodies, a “tree” of
rigid bodies can be considered. (b) If there are loops, then parameters must be
carefully assigned to ensure that the loops are closed.

form loops (i.e., Figure 3.21b); that case is deferred until Section 4.4, although
some comments are also made at the end of this section. The human body, with its
joints and limbs attached to the torso, is an example that can be modeled as a tree
of rigid links. Joints such as knees and elbows are considered as revolute joints.
A shoulder joint is an example of a spherical joint, although it cannot achieve any
orientation (without a visit to the emergency room!). As mentioned in Section
1.4, there is widespread interest in animating humans in virtual environments and
also in developing humanoid robots. Both of these cases rely on formulations of
kinematics that mimic the human body.

Another problem that involves kinematic trees is the conformational analysis of
molecules. Example 3.5 involved a single chain; however, most organic molecules
are more complicated, as in the familiar drugs shown in Figure 1.14a (Section 1.2).
The bonds may twist to give degrees of freedom to the molecule. Moving through
the space of conformations requires the formulation of a kinematic tree. Studying
these conformations is important because scientists need to determine for some
candidate drug whether the molecule can twist the right way so that it docks
nicely (i.e., requires low energy) with a protein cavity; this induces a pharmaco-
logical effect, which hopefully is the desired one. Another important problem is
determining how complicated protein molecules fold into certain configurations.
These molecules are orders of magnitude larger (in terms of numbers of atoms
and degrees of freedom) than typical drug molecules. For more information, see
Section 7.5.
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Figure 3.22: Now it is possible for a link to have more than two joints, as in A7.

Common joints for W = R2 First consider the simplest case in which there is
a 2D tree of links for which every link has only two points at which revolute joints
may be attached. This corresponds to Figure 3.21a. A single link is designated as
the root, A1, of the tree. To determine the transformation of a body, Ai, in the
tree, the tools from Section 3.3.1 are directly applied to the chain of bodies that
connects Ai to A1 while ignoring all other bodies. Each link contributes a θi to
the total degrees of freedom of the tree. This case seems quite straightforward;
unfortunately, it is not this easy in general.

Junctions with more than two rotation axes Now consider modeling a
more complicated collection of attached links. The main novelty is that one link
may have joints attached to it in more than two locations, as in A7 in Figure 3.22.
A link with more than two joints will be referred to as a junction.

If there is only one junction, then most of the complications arising from
junctions can be avoided by choosing the junction as the root. For example, for
a simple humanoid model, the torso would be a junction. It would be sensible
to make this the root of the tree, as opposed to the right foot. The legs, arms,
and head could all be modeled as independent chains. In each chain, the only
concern is that the first link of each chain does not attach to the same point on
the torso. This can be solved by inserting a fixed, fictitious link that connects
from the origin of the torso to the attachment point of the limb.

The situation is more interesting if there are multiple junctions. Suppose that
Figure 3.22 represents part of a 2D system of links for which the root, A1, is
attached via a chain of links to A5. To transform link A9, the tools from Section
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A7
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x7

x
7

φ

Figure 3.23: The junction is assigned two different frames, depending on which
chain was followed. The solid axes were obtained from transforming A9, and the
dashed axes were obtained from transforming A13.

3.3.1 may be directly applied to yield a sequence of transformations,

T1 · · ·T5T6T7T8T9





x
y
1



 , (3.68)

for a point (x, y) ∈ A9. Likewise, to transform T13, the sequence

T1 · · ·T5T6T7T12T13





x
y
1



 (3.69)

can be used by ignoring the chain formed by A8 and A9. So far everything seems
to work well, but take a close look at A7. As shown in Figure 3.23, its body frame
was defined in two different ways, one for each chain. If both are forced to use
the same frame, then at least one must abandon the nice conventions of Section
3.3.1 for choosing frames. This situation becomes worse for 3D trees because
this would suggest abandoning the DH parameterization. The Khalil-Kleinfinger
parameterization is an elegant extension of the DH parameterization and solves
these frame assignment issues [272].

Constraining parameters Fortunately, it is fine to use different frames when
following different chains; however, one extra piece of information is needed. Imag-
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ine transforming the whole tree. The variable θ7 will appear twice, once from each
of the upper and lower chains. Let θ7u and θ7l denote these θ’s. Can θ really be
chosen two different ways? This would imply that the tree is instead as pictured
in Figure 3.24, in which there are two independently moving links, A7u and A7l.
To fix this problem, a constraint must be imposed. Suppose that θ7l is treated as

A6

A13

A8

A9

A12

A5

A7u

A7l

Figure 3.24: Choosing each θ7 independently would result in a tree that ignores
that fact that A7 is rigid.

an independent variable. The parameter θ7u must then be chosen as θ7l + φ, in
which φ is as shown in Figure 3.23.

Example 3.6 (A 2D Tree of Bodies) Figure 3.25 shows a 2D example that
involves six links. To transform (x, y) ∈ A6, the only relevant links are A5, A2,
and A1. The chain of transformations is

T1T2lT5T6





x
y
1



 , (3.70)

in which

T1 =





cos θ1 − sin θ1 xt
sin θ1 cos θ1 yt
0 0 1



 =





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1



 , (3.71)

T2l =





cos θ2l − sin θ2l a1
sin θ2l cos θ2l 0
0 0 1



 =





cos θ2 − sin θ2 1
sin θ2 cos θ2 0
0 0 1



 , (3.72)

T5 =





cos θ5 − sin θ5 a2
sin θ5 cos θ5 0
0 0 1



 =





cos θ5 − sin θ5
√
2

sin θ5 cos θ5 0
0 0 1



 , (3.73)
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Figure 3.25: A tree of bodies in which the joints are attached in different places.

and

T6 =





cos θ6 − sin θ6 a5
sin θ6 cos θ6 0
0 0 1



 =





cos θ6 − sin θ6 1
sin θ6 cos θ6 0
0 0 1



 . (3.74)

The matrix T2l in (3.72) denotes the fact that the lower chain was followed. The
transformation for points in A4 is

T1T2uT4T5





x
y
1



 , (3.75)

in which T1 is the same as in (3.71), and

T3 =





cos θ3 − sin θ3 a2
sin θ3 cos θ3 0
0 0 1



 =





cos θ3 − sin θ3
√
2

sin θ3 cos θ3 0
0 0 1



 , (3.76)

and

T4 =





cos θ4 − sin θ4 a4
sin θ4 cos θ4 0
0 0 1



 =





cos θ4 − sin θ4 0
sin θ4 cos θ4 0
0 0 1



 . (3.77)

The interesting case is

T2u =





cos θ2u − sin θ2u a1
sin θ2u cos θ2u 0

0 0 1



 =





cos(θ2l + π/4) − sin(θ2l + π/4) a1
sin(θ2l + π/4) cos(θ2l + π/4) 0

0 0 1



 ,

(3.78)
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Figure 3.26: There are ten links and ten revolute joints arranged in a loop. This
is an example of a closed kinematic chain.

in which the constraint θ2u = θ2l + π/4 is imposed to enforce the fact that A2 is
a junction. �

For a 3D tree of bodies the same general principles may be followed. In some
cases, there will not be any complications that involve special considerations of
junctions and constraints. One example of this is the transformation of flexible
molecules because all consecutive rotation axes intersect, and junctions occur
directly at these points of intersection. In general, however, the DH parameter
technique may be applied for each chain, and then the appropriate constraints
have to be determined and applied to represent the true degrees of freedom of the
tree. The Khalil-Kleinfinger parameterization conveniently captures the resulting
solution [272].

What if there are loops? The most general case includes links that are con-
nected in loops, as shown in Figure 3.26. These are generally referred to as closed
kinematic chains. This arises in many applications. For example, with humanoid
robotics or digital actors, a loop is formed when both feet touch the ground. As
another example, suppose that two robot manipulators, such as the Puma 560
from Example 3.4, cooperate together to carry an object. If each robot grasps the
same object with its hand, then a loop will be formed. A complicated example
of this was shown in Figure 1.5, in which mobile robots moved a piano. Outside
of robotics, a large fraction of organic molecules have flexible loops. Exploring
the space of their conformations requires careful consideration of the difficulties
imposed by these loops.

The main difficulty of working with closed kinematic chains is that it is hard
to determine which parameter values are within an acceptable range to ensure
closure. If these values are given, then the transformations are handled in the
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Figure 3.27: Loops may be opened to enable tree-based transformations to be
applied; however, a closure constraint must still be satisfied.

same way as the case of trees. For example, the links in Figure 3.26 may be
transformed by breaking the loop into two different chains. Suppose we forget
that the joint between A5 and A6 exists, as shown in Figure 3.27. Consider two
different kinematic chains that start at the joint on the extreme left. There is an
upper chain from A1 to A5 and a lower chain from A10 to A6. The transformations
for any of these bodies can be obtained directly from the techniques of Section
3.3.1. Thus, it is easy to transform the bodies, but how do we choose parameter
values that ensure A5 and A6 are connected at their common joint? Using the
upper chain, the position of this joint may be expressed as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)





a5
0
1



 , (3.79)

in which (a5, 0) ∈ A5 is the location of the joint of A5 that is supposed to connect
to A6. The position of this joint may also be expressed using the lower chain as

T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)





a6
0
1



 , (3.80)

with (a6, 0) representing the position of the joint in the body frame of A6. If
the loop does not have to be maintained, then any values for θ1, . . ., θ10 may be
selected, resulting in ten degrees of freedom. However, if a loop must maintained,
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then (3.79) and (3.80) must be equal,

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)





a5
0
1



 = T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)





a6
0
1



 ,

(3.81)
which is quite a mess of nonlinear, trigonometric equations that must be solved.
The set of solutions to (3.81) could be very complicated. For the example, the
true degrees of freedom is eight because two were removed by making the joint
common. Since the common joint allows the links to rotate, exactly two degrees of
freedom are lost. If A5 and A6 had to be rigidly attached, then the total degrees
of freedom would be only seven. For most problems that involve loops, it will not
be possible to obtain a nice parameterization of the set of solutions. This a form
of the well-known inverse kinematics problem [140, 360, 395, 485].

In general, a complicated arrangement of links can be imagined in which there
are many loops. Each time a joint along a loop is “ignored,” as in the procedure
just described, then one less loop exists. This process can be repeated iteratively
until there are no more loops in the graph. The resulting arrangement of links
will be a tree for which the previous techniques of this section may be applied.
However, for each joint that was “ignored” an equation similar to (3.81) must be
introduced. All of these equations must be satisfied simultaneously to respect the
original loop constraints. Suppose that a set of value parameters is already given.
This could happen, for example, using motion capture technology to measure
the position and orientation of every part of a human body in contact with the
ground. From this the solution parameters could be computed, and all of the
transformations are easy to represent. However, as soon as the model moves, it
is difficult to ensure that the new transformations respect the closure constraints.
The foot of the digital actor may push through the floor, for example. Further
information on this problem appears in Section 4.4.

3.5 Nonrigid Transformations

One can easily imagine motion planning for nonrigid bodies. This falls outside
of the families of transformations studied so far in this chapter. Several kinds of
nonrigid transformations are briefly surveyed here.

Linear transformations A rotation is a special case of a linear transformation,
which is generally expressed by an n×n matrix,M , assuming the transformations
are performed over Rn. Consider transforming a point (x, y) in a 2D robot, A, as

(

m11 m12

m21 m22

)(

x
y

)

. (3.82)

If M is a rotation matrix, then the size and shape of A will remain the same. In
some applications, however, it may be desirable to distort these. The robot can
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Figure 3.28: Shearing transformations may be performed.

be scaled by m11 along the x-axis and m22 along the y-axis by applying

(

m11 0
0 m22

)(

x
y

)

, (3.83)

for positive real values m11 and m22. If one of them is negated, then a mirror
image of A is obtained. In addition to scaling, A can be sheared by applying

(

1 m12

0 1

)(

x
y

)

(3.84)

for m12 6= 0. The case of m12 = 1 is shown in Figure 3.28.
The scaling, shearing, and rotation matrices may be multiplied together to

yield a general transformation matrix that explicitly parameterizes each effect.
It is also possible to extend the M from n × n to (n + 1) × (n + 1) to obtain a
homogeneous transformation matrix that includes translation. Also, the concepts
extend in a straightforward way to R3 and beyond. This enables the additional
effects of scaling and shearing to be incorporated directly into the concepts from
Sections 3.2-3.4.

Flexible materials In some applications there is motivation to move beyond
linear transformations. Imagine trying to warp a flexible material, such as a
mattress, through a doorway. The mattress could be approximated by a 2D
array of links; however, the complexity and degrees of freedom would be too
cumbersome. For another example, suppose that a snake-like robot is designed
by connecting 100 revolute joints together in a chain. The tools from Section
3.3 may be used to transform it with 100 rotation parameters, θ1, . . ., θ100, but
this may become unwieldy for use in a planning algorithm. An alternative is to
approximate the snake with a deformable curve or shape.

For problems such as these, it is desirable to use a parameterized family of
curves or surfaces. Spline models are often most appropriate because they are
designed to provide easy control over the shape of a curve through the adjustment
of a small number of parameters. Other possibilities include the generalized-
cylinder and superquadric models that were mentioned in Section 3.1.3.

One complication is that complicated constraints may be imposed on the space
of allowable parameters. For example, each joint of a snake-like robot could have a
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small range of rotation. This would be easy to model using a kinematic chain; how-
ever, determining which splines from a spline family satisfy this extra constraint
may be difficult. Likewise, for manipulating flexible materials, there are usually
complicated constraints based on the elasticity of the material. Even determining
its correct shape under the application of some forces requires integration of an
elastic energy function over the material [300].

Further Reading

Section 3.1 barely scratches the surface of geometric modeling. Most literature focuses
on parametric curves and surfaces [190, 374, 399]. These models are not as popular
for motion planning because obtaining efficient collision detection is most important
in practice, and processing implicit algebraic surfaces is most important in theoretical
methods. A thorough coverage of solid and boundary representations, including semi-
algebraic models, can be found in [234]. Theoretical algorithm issues regarding semi-
algebraic models are covered in [369, 370]. For a comparison of the doubly connected
edge list to its variants, see [270].

The material of Section 3.2 appears in virtually any book on robotics, computer vi-
sion, or computer graphics. Consulting linear algebra texts may be helpful to gain more
insight into rotations. There are many ways to parameterize the set of all 3D rotation
matrices. The yaw-pitch-roll formulation was selected because it is the easiest to under-
stand. There are generally 12 different variants of the yaw-pitch-roll formulation (also
called Euler angles) based on different rotation orderings and axis selections. This for-
mulation, however, is not well suited for the development of motion planning algorithms.
It is easy (and safe) to use for making quick 3D animations of motion planning out-
put, but it incorrectly captures the structure of the state space for planning algorithms.
Section 4.2 introduces the quaternion parameterization, which correctly captures this
state space; however, it is harder to interpret when constructing examples. Therefore,
it is helpful to understand both. In addition to Euler angles and quaternions, there is
still motivation for using many other parameterizations of rotations, such as spherical
coordinates, Cayley-Rodrigues parameters, and stereographic projection. Chapter 5 of
[113] provides extensive coverage of 3D rotations and different parameterizations.

The coverage in Section 3.3 of transformations of chains of bodies was heavily influ-
enced by two classic robotics texts [140, 395]. The DH parameters were introduced in
[223] and later extended to trees and loops in [272]. An alternative to DH parameters is
exponential coordinates [378], which simplify some computations; however, determining
the parameters in the modeling stage may be less intuitive. A fascinating history of
mechanisms appears in [224]. Other texts on kinematics include [23, 163, 277, 359].
The standard approach in many robotics books [184, 432, 447, 485] is to introduce the
kinematic chain formulations and DH parameters in the first couple of chapters, and
then move on to topics that are crucial for controlling robot manipulators, including
dynamics modeling, singularities, manipulability, and control. Since this book is con-
cerned instead with planning algorithms, we depart at the point where dynamics would
usually be covered and move into a careful study of the configuration space in Chapter
4.
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Exercises

1. Define a semi-algebraic model that removes a triangular “nose” from the region
shown in Figure 3.4.

2. For distinct values of yaw, pitch, and roll, it is possible to generate the same
rotation. In other words, R(α, β, γ) = R(α′, β′, γ′) for some cases in which at
least α 6= α, β 6= β′, or γ 6= γ′. Characterize the sets of angles for which this
occurs.

3. Using rotation matrices, prove that 2D rotation is commutative but 3D rotation
is not.

4. An alternative to the yaw-pitch-roll formulation from Section 3.2.3 is considered
here. Consider the following Euler angle representation of rotation (there are
many other variants). The first rotation is Rz(γ), which is just (3.39) with α
replaced by γ. The next two rotations are identical to the yaw-pitch-roll for-
mulation: Ry(β) is applied, followed by Rz(α). This yields Reuler(α, β, γ) =
Rz(α)Ry(β)Rz(γ).

(a) Determine the matrix Reuler.

(b) Show that Reuler(α, β, γ) = Reuler(α− π,−β, γ − π).

(c) Suppose that a rotation matrix is given as shown in (3.43). Show that the
Euler angles are

α = atan2(r23, r13), (3.85)

β = atan2(
√

1− r233, r33), (3.86)

and

γ = atan2(r32,−r31). (3.87)

5. There are 12 different variants of yaw-pitch-roll (or Euler angles), depending on
which axes are used and the order of these axes. Determine all of the possibilities,
using only notation such as Rz(α)Ry(β)Rz(γ) for each one. Give brief arguments
that support why or why not specific combinations of rotations are included in
your list of 12.

6. Let A be a unit disc, centered at the origin, and W = R2. Assume that A is
represented by a single, algebraic primitive, H = {(x, y) | x2 + y2 ≤ 1}. Show
that the transformed primitive is unchanged after any rotation is applied.

7. Consider the articulated chain of bodies shown in Figure 3.29. There are three
identical rectangular bars in the plane, called A1,A2,A3. Each bar has width 2
and length 12. The distance between the two points of attachment is 10. The
first bar, A1, is attached to the origin. The second bar, A2, is attached to A1,
and A3 is attached to A2. Each bar is allowed to rotate about its point of
attachment. The configuration of the chain can be expressed with three angles,
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(0,0)

2

10

a

b

c

12

A1
A2

A3

Figure 3.29: A chain of three bodies.

(0,0) (1,0) (3,0) (4,0)
A2

A1 A3

Figure 3.30: Another exercise involving a chain of bodies.

(θ1, θ2, θ3). The first angle, θ1, represents the angle between the segment drawn
between the two points of attachment of A1 and the x-axis. The second angle, θ2,
represents the angle betweenA2 andA1 (θ2 = 0 when they are parallel). The third
angle, θ3, represents the angle between A3 and A2. Suppose the configuration is
(π/4, π/2,−π/4).

(a) Use the homogeneous transformation matrices to determine the locations of
points a, b, and c.

(b) Characterize the set of all configurations for which the final point of attach-
ment (near the end of A3) is at (0, 0) (you should be able to figure this out
without using the matrices).

8. A three-link chain of bodies that moves in a 2D world is shown Figure 3.30. The
first link, A1, is attached at (0, 0) but can rotate. Each remaining link is attached
to another link with a revolute joint. The second link, A2, is a rigid ring, and the
other two links are rectangular bars.

Assume that the structure is shown in the zero configuration. Suppose that
the linkage is moved to the configuration (θ1, θ2, θ3) = (π4 ,

π
2 ,

π
4 ), in which θ1 is

the angle of A1, θ2 is the angle of A2 with respect to A1, and θ3 is the angle of A3

with respect to A2. Using homogeneous transformation matrices, compute the
position of the point at (4, 0) in Figure 3.30, when the linkage is at configuration
(π4 ,

π
2 ,

π
4 ) (the point is attached to A3).
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9. Approximate a spherical joint as a chain of three short, perpendicular links that
are attached by revolute joints and give the sequence of transformation matrices.
Show that as the link lengths approach zero, the resulting sequence of trans-
formation matrices converges to exactly representing the freedom of a spherical
joint. Compare this approach to directly using a full rotation matrix, (3.42), to
represent the joint in the homogeneous transformation matrix.

10. Figure 3.12 showed six different ways in which 2D surfaces can slide with respect
to each other to produce a joint.

(a) Suppose that two bodies contact each other along a one-dimensional curve.
Characterize as many different kinds of “joints” as possible, and indicate
the degrees of freedom of each.

(b) Suppose that the two bodies contact each other at a point. Indicate the types
of rolling and sliding that are possible, and their corresponding degrees of
freedom.

11. Suppose that two bodies form a screw joint in which the axis of the central axis
of the screw aligns with the x-axis of the first body. Determine an appropriate
homogeneous transformation matrix to use in place of the DH matrix. Define the
matrix with the screw radius, r, and displacement-per-revolution, d, as parame-
ters.

12. Recall Example 3.6. How should the transformations be modified so that the
links are in the positions shown in Figure 3.25 at the zero configuration (θi = 0
for every revolute joint whose angle can be independently chosen)?

13. Generalize the shearing transformation of (3.84) to enable shearing of 3D models.

Implementations

14. Develop and implement a kinematic model for 2D linkages. Enable the user to
display the arrangement of links in the plane.

15. Implement the kinematics of molecules that do not have loops and show them
graphically as a “ball and stick” model. The user should be able to input the
atomic radii, bond connections, bond lengths, and rotation ranges for each bond.

16. Design and implement a software system in which the user can interactively attach
various links to make linkages that resemble those possible from using Tinkertoys
(or another popular construction set that allows pieces to move). There are several
rods of various lengths, which fit into holes in the center and around the edge of
several coin-shaped pieces. Assume that all joints are revolute. The user should
be allowed to change parameters and see the resulting positions of all of the links.

17. Construct a model of the human body as a tree of links in a 3D world. For
simplicity, the geometric model may be limited to spheres and cylinders. Design
and implement a system that displays the virtual human and allows the user to
click on joints of the body to enable them to rotate.
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18. Develop a simulator with 3D graphics for the Puma 560 model shown in Figure
3.4.
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Chapter 4

The Configuration Space

Chapter 3 only covered how to model and transform a collection of bodies; how-
ever, for the purposes of planning it is important to define the state space. The
state space for motion planning is a set of possible transformations that could be
applied to the robot. This will be referred to as the configuration space, based on
Lagrangian mechanics and the seminal work of Lozano-Pérez [343, 347, 344], who
extensively utilized this notion in the context of planning (the idea was also used
in early collision avoidance work by Udupa [462]). The motion planning litera-
ture was further unified around this concept by Latombe’s book [304]. Once the
configuration space is clearly understood, many motion planning problems that
appear different in terms of geometry and kinematics can be solved by the same
planning algorithms. This level of abstraction is therefore very important.

This chapter provides important foundational material that will be very useful
in Chapters 5 to 8 and other places where planning over continuous state spaces
occurs. Many concepts introduced in this chapter come directly from mathemat-
ics, particularly from topology. Therefore, Section 4.1 gives a basic overview of
topological concepts. Section 4.2 uses the concepts from Chapter 3 to define the
configuration space. After reading this, you should be able to precisely character-
ize the configuration space of a robot and understand its structure. In Section 4.3,
obstacles in the world are transformed into obstacles in the configuration space,
but it is important to understand that this transformation may not be explicitly
constructed. The implicit representation of the state space is a recurring theme
throughout planning. Section 4.4 covers the important case of kinematic chains
that have loops, which was mentioned in Section 3.4. This case is so difficult that
even the space of transformations usually cannot be explicitly characterized (i.e.,
parameterized).

4.1 Basic Topological Concepts

This section introduces basic topological concepts that are helpful in understand-
ing configuration spaces. Topology is a challenging subject to understand in depth.

129

130 S. M. LaValle: Planning Algorithms

The treatment given here provides only a brief overview and is designed to stim-
ulate further study (see the literature overview at the end of the chapter). To
advance further in this chapter, it is not necessary to understand all of the ma-
terial of this section; however, the more you understand, the deeper will be your
understanding of motion planning in general.

4.1.1 Topological Spaces

Recall the concepts of open and closed intervals in the set of real numbers R. The
open interval (0, 1) includes all real numbers between 0 and 1, except 0 and 1.
However, for either endpoint, an infinite sequence may be defined that converges
to it. For example, the sequence 1/2, 1/4, . . ., 1/2i converges to 0 as i tends
to infinity. This means that we can choose a point in (0, 1) within any small,
positive distance from 0 or 1, but we cannot pick one exactly on the boundary of
the interval. For a closed interval, such as [0, 1], the boundary points are included.

The notion of an open set lies at the heart of topology. The open set definition
that will appear here is a substantial generalization of the concept of an open
interval. The concept applies to a very general collection of subsets of some larger
space. It is general enough to easily include any kind of configuration space that
may be encountered in planning.

A set X is called a topological space if there is a collection of subsets of X
called open sets for which the following axioms hold:

1. The union of any number of open sets is an open set.

2. The intersection of a finite number of open sets is an open set.

3. Both X and ∅ are open sets.

Note that in the first axiom, the union of an infinite number of open sets may be
taken, and the result must remain an open set. Intersecting an infinite number of
open sets, however, does not necessarily lead to an open set.

For the special case of X = R, the open sets include open intervals, as ex-
pected. Many sets that are not intervals are open sets because taking unions and
intersections of open intervals yields other open sets. For example, the set

∞
⋃

i=1

(

1

3i
,
2

3i

)

, (4.1)

which is an infinite union of pairwise-disjoint intervals, is an open set.

Closed sets Open sets appear directly in the definition of a topological space.
It next seems that closed sets are needed. Suppose X is a topological space.
A subset C ⊂ X is defined to be a closed set if and only if X \ C is an open
set. Thus, the complement of any open set is closed, and the complement of any
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x1

U

x3

x2

O2

O1

Figure 4.1: An illustration of the boundary definition. Suppose X = R2, and U
is a subset as shown. Three kinds of points appear: 1) x1 is a boundary point, 2)
x2 is an interior point, and 3) x3 is an exterior point. Both x1 and x2 are limit
points of U .

closed set is open. Any closed interval, such as [0, 1], is a closed set because its
complement, (−∞, 0) ∪ (1,∞), is an open set. For another example, (0, 1) is an
open set; therefore, R \ (0, 1) = (−∞, 0] ∪ [1,∞) is a closed set. The use of “(”
may seem wrong in the last expression, but “[” cannot be used because −∞ and
∞ do not belong to R. Thus, the use of “(” is just a notational quirk.

Are all subsets of X either closed or open? Although it appears that open
sets and closed sets are opposites in some sense, the answer is no. For X = R,
the interval [0, 2π) is neither open nor closed (consider its complement: [2π,∞)
is closed, and (−∞, 0) is open). Note that for any topological space, X and ∅ are
both open and closed!

Special points From the definitions and examples so far, it should seem that
points on the “edge” or “border” of a set are important. There are several terms
that capture where points are relative to the border. Let X be a topological
space, and let U be any subset of X. Furthermore, let x be any point in X. The
following terms capture the position of point x relative to U (see Figure 4.1):

• If there exists an open set O1 such that x ∈ O1 and O1 ⊆ U , then x is
called an interior point of U . The set of all interior points in U is called the
interior of U and is denoted by int(U).

• If there exists an open set O2 such that x ∈ O2 and O2 ⊆ X \ U , then x is
called an exterior point with respect to U .

• If x is neither an interior point nor an exterior point, then it is called a
boundary point of U . The set of all boundary points in X is called the
boundary of U and is denoted by ∂U .

• All points in x ∈ X must be one of the three above; however, another
term is often used, even though it is redundant given the other three. If
x is either an interior point or a boundary point, then it is called a limit
point (or accumulation point) of U . The set of all limit points of U is a
closed set called the closure of U , and it is denoted by cl(U). Note that
cl(U) = int(U) ∪ ∂U .
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For the case of X = R, the boundary points are the endpoints of intervals. For
example, 0 and 1 are boundary points of intervals, (0, 1), [0, 1], [0, 1), and (0, 1].
Thus, U may or may not include its boundary points. All of the points in (0, 1)
are interior points, and all of the points in [0, 1] are limit points. The motivation
of the name “limit point” comes from the fact that such a point might be the
limit of an infinite sequence of points in U . For example, 0 is the limit point of
the sequence generated by 1/2i for each i ∈ N, the natural numbers.

There are several convenient consequences of the definitions. A closed set C
contains the limit point of any sequence that is a subset of C. This implies that
it contains all of its boundary points. The closure, cl, always results in a closed
set because it adds all of the boundary points to the set. On the other hand, an
open set contains none of its boundary points. These interpretations will come in
handy when considering obstacles in the configuration space for motion planning.

Some examples The definition of a topological space is so general that an
incredible variety of topological spaces can be constructed.

Example 4.1 (The Topology of Rn) We should expect that X = Rn for any
integer n is a topological space. This requires characterizing the open sets. An
open ball B(x, ρ) is the set of points in the interior of a sphere of radius ρ, centered
at x. Thus,

B(x, ρ) = {x′ ∈ Rn | ‖x′ − x‖ < ρ}, (4.2)

in which ‖ · ‖ denotes the Euclidean norm (or magnitude) of its argument. The
open balls are open sets in Rn. Furthermore, all other open sets can be expressed
as a countable union of open balls.1 For the case of R, this reduces to representing
any open set as a union of intervals, which was done so far.

Even though it is possible to express open sets of Rn as unions of balls, we
prefer to use other representations, with the understanding that one could revert
to open balls if necessary. The primitives of Section 3.1 can be used to gener-
ate many interesting open and closed sets. For example, any algebraic primitive
expressed in the form H = {x ∈ Rn | f(x) ≤ 0} produces a closed set. Taking
finite unions and intersections of these primitives will produce more closed sets.
Therefore, all of the models from Sections 3.1.1 and 3.1.2 produce an obstacle
region O that is a closed set. As mentioned in Section 3.1.2, sets constructed only
from primitives that use the < relation are open. �

Example 4.2 (Subspace Topology) A new topological space can easily be con-
structed from a subset of a topological space. Let X be a topological space, and
let Y ⊂ X be a subset. The subspace topology on Y is obtained by defining the
open sets to be every subset of Y that can be represented as U ∩ Y for some
open set U ⊆ X. Thus, the open sets for Y are almost the same as for X, except

1Such a collection of balls is often referred to as a basis.
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that the points that do not lie in Y are trimmed away. New subspaces can be
constructed by intersecting open sets of Rn with a complicated region defined by
semi-algebraic models. This leads to many interesting topological spaces, some of
which will appear later in this chapter. �

Example 4.3 (The Trivial Topology) For any set X, there is always one triv-
ial example of a topological space that can be constructed from it. Declare that
X and ∅ are the only open sets. Note that all of the axioms are satisfied. �

Example 4.4 (A Strange Topology) It is important to keep in mind the al-
most absurd level of generality that is allowed by the definition of a topological
space. A topological space can be defined for any set, as long as the declared open
sets obey the axioms. Suppose a four-element set is defined as

X = {cat,dog,tree,house}. (4.3)

In addition to ∅ and X, suppose that {cat} and {dog} are open sets. Using the
axioms, {cat,dog} must also be an open set. Closed sets and boundary points
can be derived for this topology once the open sets are defined. �

After the last example, it seems that topological spaces are so general that not
much can be said about them. Most spaces that are considered in topology and
analysis satisfy more axioms. For Rn and any configuration spaces that arise in
this book, the following is satisfied:

Hausdorff axiom: For any distinct x1, x2 ∈ X, there exist open sets O1 and
O2 such that x1 ∈ O1, x2 ∈ O2, and O1 ∩O2 = ∅.

In other words, it is possible to separate x1 and x2 into nonoverlapping open
sets. Think about how to do this for Rn by selecting small enough open balls. Any
topological space X that satisfies the Hausdorff axiom is referred to as a Hausdorff
space. Section 4.1.2 will introduce manifolds, which happen to be Hausdorff spaces
and are general enough to capture the vast majority of configuration spaces that
arise. We will have no need in this book to consider topological spaces that are
not Hausdorff spaces.

Continuous functions A very simple definition of continuity exists for topo-
logical spaces. It nicely generalizes the definition from standard calculus. Let
f : X → Y denote a function between topological spaces X and Y . For any set
B ⊆ Y , let the preimage of B be denoted and defined by

f−1(B) = {x ∈ X | f(x) ∈ B}. (4.4)

Note that this definition does not require f to have an inverse.
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The function f is called continuous if f−1(O) is an open set for every open set
O ⊆ Y . Analysis is greatly simplified by this definition of continuity. For example,
to show that any composition of continuous functions is continuous requires only
a one-line argument that the preimage of the preimage of any open set always
yields an open set. Compare this to the cumbersome classical proof that requires
a mess of δ’s and ǫ’s. The notion is also so general that continuous functions can
even be defined on the absurd topological space from Example 4.4.

Homeomorphism: Making a donut into a coffee cup You might have
heard the expression that to a topologist, a donut and a coffee cup appear the
same. In many branches of mathematics, it is important to define when two
basic objects are equivalent. In graph theory (and group theory), this equivalence
relation is called an isomorphism. In topology, the most basic equivalence is a
homeomorphism, which allows spaces that appear quite different in most other
subjects to be declared equivalent in topology. The surfaces of a donut and a
coffee cup (with one handle) are considered equivalent because both have a single
hole. This notion needs to be made more precise!

Suppose f : X → Y is a bijective (one-to-one and onto) function between
topological spaces X and Y . Since f is bijective, the inverse f−1 exists. If both
f and f−1 are continuous, then f is called a homeomorphism. Two topological
spaces X and Y are said to be homeomorphic, denoted by X ∼= Y , if there exists a
homeomorphism between them. This implies an equivalence relation on the set of
topological spaces (verify that the reflexive, symmetric, and transitive properties
are implied by the homeomorphism).

Example 4.5 (Interval Homeomorphisms) Any open interval of R is home-
omorphic to any other open interval. For example, (0, 1) can be mapped to (0, 5)
by the continuous mapping x 7→ 5x. Note that (0, 1) and (0, 5) are each being
interpreted here as topological subspaces of R. This kind of homeomorphism can
be generalized substantially using linear algebra. If a subset, X ⊂ Rn, can be
mapped to another, Y ⊂ Rn, via a nonsingular linear transformation, then X
and Y are homeomorphic. For example, the rigid-body transformations of the
previous chapter were examples of homeomorphisms applied to the robot. Thus,
the topology of the robot does not change when it is translated or rotated. (In
this example, note that the robot itself is the topological space. This will not be
the case for the rest of the chapter.)

Be careful when mixing closed and open sets. The space [0, 1] is not homeomor-
phic to (0, 1), and neither is homeomorphic to [0, 1). The endpoints cause trouble
when trying to make a bijective, continuous function. Surprisingly, a bounded and
unbounded set may be homeomorphic. A subset X of Rn is called bounded if there
exists a ball B ⊂ Rn such that X ⊂ B. The mapping x 7→ 1/x establishes that
(0, 1) and (1,∞) are homeomorphic. The mapping x 7→ 2 tan−1(x)/π establishes
that (−1, 1) and all of R are homeomorphic! �



4.1. BASIC TOPOLOGICAL CONCEPTS 135

Figure 4.2: Even though the graphs are not isomorphic, the corresponding topo-
logical spaces may be homeomorphic due to useless vertices. The example graphs
map into R2, and are all homeomorphic to a circle.

Figure 4.3: These topological graphs map into subsets of R2 that are not homeo-
morphic to each other.

Example 4.6 (Topological Graphs) Let X be a topological space. The pre-
vious example can be extended nicely to make homeomorphisms look like graph
isomorphisms. Let a topological graph2 be a graph for which every vertex cor-
responds to a point in X and every edge corresponds to a continuous, injective
(one-to-one) function, τ : [0, 1] → X. The image of τ connects the points in X
that correspond to the endpoints (vertices) of the edge. The images of different
edge functions are not allowed to intersect, except at vertices. Recall from graph
theory that two graphs, G1(V1, E1) and G2(V2, E2), are called isomorphic if there
exists a bijective mapping, f : V1 → V2 such that there is an edge between v1 and
v′1 in G1, if and only if there exists an edge between f(v1) and f(v

′
1) in G2.

The bijective mapping used in the graph isomorphism can be extended to
produce a homeomorphism. Each edge in E1 is mapped continuously to its cor-
responding edge in E2. The mappings nicely coincide at the vertices. Now you
should see that two topological graphs are homeomorphic if they are isomorphic
under the standard definition from graph theory.3 What if the graphs are not
isomorphic? There is still a chance that the topological graphs may be homeo-

2In topology this is called a 1-complex [226].
3Technically, the images of the topological graphs, as subspaces of X, are homeomorphic,

not the graphs themselves.
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morphic, as shown in Figure 4.2. The problem is that there appear to be “useless”
vertices in the graph. By removing vertices of degree two that can be deleted
without affecting the connectivity of the graph, the problem is fixed. In this case,
graphs that are not isomorphic produce topological graphs that are not homeomor-
phic. This allows many distinct, interesting topological spaces to be constructed.
A few are shown in Figure 4.3. �

4.1.2 Manifolds

In motion planning, efforts are made to ensure that the resulting configuration
space has nice properties that reflect the true structure of the space of transfor-
mations. One important kind of topological space, which is general enough to
include most of the configuration spaces considered in Part II, is called a mani-
fold. Intuitively, a manifold can be considered as a “nice” topological space that
behaves at every point like our intuitive notion of a surface.

Manifold definition A topological space M ⊆ Rm is a manifold4 if for every
x ∈M , an open set O ⊂M exists such that: 1) x ∈ O, 2) O is homeomorphic to
Rn, and 3) n is fixed for all x ∈ M . The fixed n is referred to as the dimension
of the manifold, M . The second condition is the most important. It states that
in the vicinity of any point, x ∈ M , the space behaves just like it would in the
vicinity of any point y ∈ Rn; intuitively, the set of directions that one can move
appears the same in either case. Several simple examples that may or may not be
manifolds are shown in Figure 4.4.

One natural consequence of the definitions is that m ≥ n. According to
Whitney’s embedding theorem [231], m ≤ 2n + 1. In other words, R2n+1 is “big
enough” to hold any n-dimensional manifold.5 Technically, it is said that the
n-dimensional manifold M is embedded in Rm, which means that an injective
mapping exists from M to Rm (if it is not injective, then the topology of M could
change).

As it stands, it is impossible for a manifold to include its boundary points
because they are not contained in open sets. A manifold with boundary can be

4Manifolds that are not subsets of Rm may also be defined. This requires that M is a
Hausdorff space and is second countable, which means that there is a countable number of open
sets from which any other open set can be constructed by taking a union of some of them.
These conditions are automatically satisfied when assuming M ⊆ Rm; thus, it avoids these
extra complications and is still general enough for our purposes. Some authors use the term
manifold to refer to a smooth manifold. This requires the definition of a smooth structure, and
the homeomorphism is replaced by diffeomorphism. This extra structure is not needed here but
will be introduced when it is needed in Section 8.3.

5One variant of the theorem is that for smooth manifolds, R2n is sufficient. This bound
is tight because RP

n (n-dimensional projective space, which will be introduced later in this
section), cannot be embedded in R2n−1.
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Figure 4.4: Some subsets of R2 that may or may not be manifolds. For the three
that are not, the point that prevents them from being manifolds is indicated.

defined requiring that the neighborhood of each boundary point of M is homeo-
morphic to a half-space of dimension n (which was defined for n = 2 and n = 3
in Section 3.1) and that the interior points must be homeomorphic to Rn.

The presentation now turns to ways of constructing some manifolds that fre-
quently appear in motion planning. It is important to keep in mind that two
manifolds will be considered equivalent if they are homeomorphic (recall the donut
and coffee cup).

Cartesian products There is a convenient way to construct new topological
spaces from existing ones. Suppose that X and Y are topological spaces. The
Cartesian product, X×Y , defines a new topological space as follows. Every x ∈ X
and y ∈ Y generates a point (x, y) in X × Y . Each open set in X × Y is formed
by taking the Cartesian product of one open set from X and one from Y . Exactly
one open set exists in X × Y for every pair of open sets that can be formed by
taking one from X and one from Y . Furthermore, these new open sets are used
as a basis for forming the remaining open sets of X × Y by allowing any unions
and finite intersections of them.

A familiar example of a Cartesian product is R×R, which is equivalent to R2.
In general, Rn is equivalent to R × Rn−1. The Cartesian product can be taken
over many spaces at once. For example, R × R × · · · × R = Rn. In the coming
text, many important manifolds will be constructed via Cartesian products.

1D manifolds The set R of reals is the most obvious example of a 1D manifold
because R certainly looks like (via homeomorphism) R in the vicinity of every
point. The range can be restricted to the unit interval to yield the manifold (0, 1)
because they are homeomorphic (recall Example 4.5).
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Another 1D manifold, which is not homeomorphic to (0, 1), is a circle, S1. In
this case Rm = R2, and let

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. (4.5)

If you are thinking like a topologist, it should appear that this particular circle
is not important because there are numerous ways to define manifolds that are
homeomorphic to S1. For any manifold that is homeomorphic to S1, we will
sometimes say that the manifold is S1, just represented in a different way. Also,
S1 will be called a circle, but this is meant only in the topological sense; it only
needs to be homeomorphic to the circle that we learned about in high school
geometry. Also, when referring to R, we might instead substitute (0, 1) without
any trouble. The alternative representations of a manifold can be considered as
changing parameterizations, which are formally introduced in Section 8.3.2.

Identifications A convenient way to represent S1 is obtained by identification,
which is a general method of declaring that some points of a space are identical,
even though they originally were distinct.6 For a topological space X, let X/ ∼
denote that X has been redefined through some form of identification. The open
sets of X become redefined. Using identification, S1 can be defined as [0, 1]/ ∼,
in which the identification declares that 0 and 1 are equivalent, denoted as 0 ∼ 1.
This has the effect of “gluing” the ends of the interval together, forming a closed
loop. To see the homeomorphism that makes this possible, use polar coordinates
to obtain θ 7→ (cos 2πθ, sin 2πθ). You should already be familiar with 0 and 2π
leading to the same point in polar coordinates; here they are just normalized to
0 and 1. Letting θ run from 0 up to 1, and then “wrapping around” to 0 is a
convenient way to represent S1 because it does not need to be curved as in (4.5).

It might appear that identifications are cheating because the definition of a
manifold requires it to be a subset of Rm. This is not a problem because Whitney’s
theorem, as mentioned previously, states that any n-dimensional manifold can be
embedded in R2n+1. The identifications just reduce the number of dimensions
needed for visualization. They are also convenient in the implementation of motion
planning algorithms.

2D manifolds Many important, 2D manifolds can be defined by applying the
Cartesian product to 1D manifolds. The 2D manifold R2 is formed by R × R.
The product R × S1 defines a manifold that is equivalent to an infinite cylinder.
The product S1 × S1 is a manifold that is equivalent to a torus (the surface of a
donut).

Can any other 2D manifolds be defined? See Figure 4.5. The identification
idea can be applied to generate several new manifolds. Start with an open square
M = (0, 1) × (0, 1), which is homeomorphic to R2. Let (x, y) denote a point in

6This is usually defined more formally and called a quotient topology.
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Plane, R2 Cylinder, R× S1

Möbius band Torus, T2

Klein bottle Projective plane, RP2

Two-sphere, S2 Double torus

Figure 4.5: Some 2D manifolds that can be obtained by identifying pairs of points
along the boundary of a square region.

the plane. A flat cylinder is obtained by making the identification (0, y) ∼ (1, y)
for all y ∈ (0, 1) and adding all of these points to M . The result is depicted in
Figure 4.5 by drawing arrows where the identification occurs.

A Möbius band can be constructed by taking a strip of paper and connecting
the ends after making a 180-degree twist. This result is not homeomorphic to the
cylinder. The Möbius band can also be constructed by putting the twist into the
identification, as (0, y) ∼ (1, 1 − y) for all y ∈ (0, 1). In this case, the arrows are
drawn in opposite directions. The Möbius band has the famous properties that
it has only one side (trace along the paper strip with a pencil, and you will visit
both sides of the paper) and is nonorientable (if you try to draw it in the plane,
without using identification tricks, it will always have a twist).

For all of the cases so far, there has been a boundary to the set. The next few
manifolds will not even have a boundary, even though they may be bounded. If
you were to live in one of them, it means that you could walk forever along any
trajectory and never encounter the edge of your universe. It might seem like our
physical universe is unbounded, but it would only be an illusion. Furthermore,
there are several distinct possibilities for the universe that are not homeomorphic
to each other. In higher dimensions, such possibilities are the subject of cosmology,
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which is a branch of astrophysics that uses topology to characterize the structure
of our universe.

A torus can be constructed by performing identifications of the form (0, y) ∼
(1, y), which was done for the cylinder, and also (x, 0) ∼ (x, 1), which identifies
the top and bottom. Note that the point (0, 0) must be included and is identified
with three other points. Double arrows are used in Figure 4.5 to indicate the
top and bottom identification. All of the identification points must be added to
M . Note that there are no twists. A funny interpretation of the resulting flat
torus is as the universe appears for a spacecraft in some 1980s-style Asteroids-like
video games. The spaceship flies off of the screen in one direction and appears
somewhere else, as prescribed by the identification.

Two interesting manifolds can be made by adding twists. Consider performing
all of the identifications that were made for the torus, except put a twist in the
side identification, as was done for the Möbius band. This yields a fascinating
manifold called the Klein bottle, which can be embedded in R4 as a closed 2D
surface in which the inside and the outside are the same! (This is in a sense
similar to that of the Möbius band.) Now suppose there are twists in both the
sides and the top and bottom. This results in the most bizarre manifold yet: the
real projective plane, RP2. This space is equivalent to the set of all lines in R3

that pass through the origin. The 3D version, RP3, happens to be one of the most
important manifolds for motion planning!

Let S2 denote the unit sphere, which is defined as

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. (4.6)

Another way to represent S2 is by making the identifications shown in the last
row of Figure 4.5. A dashed line is indicated where the equator might appear,
if we wanted to make a distorted wall map of the earth. The poles would be at
the upper left and lower right corners. The final example shown in Figure 4.5 is
a double torus, which is the surface of a two-holed donut.

Higher dimensional manifolds The construction techniques used for the 2D
manifolds generalize nicely to higher dimensions. Of course, Rn, is an n-dimensional
manifold. An n-dimensional torus, Tn, can be made by taking a Cartesian prod-
uct of n copies of S1. Note that S1 × S1 6= S2. Therefore, the notation Tn is used
for (S1)n. Different kinds of n-dimensional cylinders can be made by forming a
Cartesian product Ri×Tj for positive integers i and j such that i+ j = n. Higher
dimensional spheres are defined as

Sn = {x ∈ Rn+1 | ‖x‖ = 1}, (4.7)

in which ‖x‖ denotes the Euclidean norm of x, and n is a positive integer. Many
interesting spaces can be made by identifying faces of the cube (0, 1)n (or even faces
of a polyhedron or polytope), especially if different kinds of twists are allowed. An
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n-dimensional projective space can be defined in this way, for example. Lens spaces
are a family of manifolds that can be constructed by identification of polyhedral
faces [419].

Due to its coming importance in motion planning, more details are given on
projective spaces. The standard definition of an n-dimensional real projective
space RPn is the set of all lines in Rn+1 that pass through the origin. Each line
is considered as a point in RPn. Using the definition of Sn in (4.7), note that
each of these lines in Rn+1 intersects Sn ⊂ Rn+1 in exactly two places. These
intersection points are called antipodal, which means that they are as far from
each other as possible on Sn. The pair is also unique for each line. If we identify
all pairs of antipodal points of Sn, a homeomorphism can be defined between each
line through the origin of Rn+1 and each antipodal pair on the sphere. This means
that the resulting manifold, Sn/ ∼, is homeomorphic to RPn.

Another way to interpret the identification is that RPn is just the upper half
of Sn, but with every equatorial point identified with its antipodal point. Thus, if
you try to walk into the southern hemisphere, you will find yourself on the other
side of the world walking north. It is helpful to visualize the special case of RP2

and the upper half of S2. Imagine warping the picture of RP2 from Figure 4.5
from a square into a circular disc, with opposite points identified. The result still
represents RP2. The center of the disc can now be lifted out of the plane to form
the upper half of S2.

4.1.3 Paths and Connectivity

Central to motion planning is determining whether one part of a space is reachable
from another. In Chapter 2, one state was reached from another by applying
a sequence of actions. For motion planning, the analog to this is connecting
one point in the configuration space to another by a continuous path. Graph
connectivity is important in the discrete planning case. An analog to this for
topological spaces is presented in this section.

Paths Let X be a topological space, which for our purposes will also be a
manifold. A path is a continuous function, τ : [0, 1] → X. Alternatively, R may
be used for the domain of τ . Keep in mind that a path is a function, not a set
of points. Each point along the path is given by τ(s) for some s ∈ [0, 1]. This
makes it appear as a nice generalization to the sequence of states visited when a
plan from Chapter 2 is applied. Recall that there, a countable set of stages was
defined, and the states visited could be represented as x1, x2, . . .. In the current
setting τ(s) is used, in which s replaces the stage index. To make the connection
clearer, we could use x instead of τ to obtain x(s) for each s ∈ [0, 1].

Connected vs. path connected A topological space X is said to be connected
if it cannot be represented as the union of two disjoint, nonempty, open sets. While
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this definition is rather elegant and general, if X is connected, it does not imply
that a path exists between any pair of points in X thanks to crazy examples like
the topologist’s sine curve:

X = {(x, y) ∈ R2 | x = 0 or y = sin(1/x)}. (4.8)

Consider plotting X. The sin(1/x) part creates oscillations near the y-axis in
which the frequency tends to infinity. After union is taken with the y-axis, this
space is connected, but there is no path that reaches the y-axis from the sine
curve.

How can we avoid such problems? The standard way to fix this is to use the
path definition directly in the definition of connectedness. A topological space X
is said to be path connected if for all x1, x2 ∈ X, there exists a path τ such that
τ(0) = x1 and τ(1) = x2. It can be shown that if X is path connected, then it is
also connected in the sense defined previously.

Another way to fix it is to make restrictions on the kinds of topological spaces
that will be considered. This approach will be taken here by assuming that all
topological spaces are manifolds. In this case, no strange things like (4.8) can hap-
pen,7 and the definitions of connected and path connected coincide [232]. There-
fore, we will just say a space is connected. However, it is important to remember
that this definition of connected is sometimes inadequate, and one should really
say that X is path connected.

Simply connected Now that the notion of connectedness has been established,
the next step is to express different kinds of connectivity. This may be done by
using the notion of homotopy, which can intuitively be considered as a way to
continuously “warp” or “morph” one path into another, as depicted in Figure
4.6a.

Two paths τ1 and τ2 are called homotopic (with endpoints fixed) if there exists
a continuous function h : [0, 1]× [0, 1]→ X for which the following four conditions
are met:

1. (Start with first path) h(s, 0) = τ1(s) for all s ∈ [0, 1] .

2. (End with second path) h(s, 1) = τ2(s) for all s ∈ [0, 1] .

3. (Hold starting point fixed) h(0, t) = h(0, 0) for all t ∈ [0, 1] .

4. (Hold ending point fixed) h(1, t) = h(1, 0) for all t ∈ [0, 1] .

The parameter t can be interpreted as a knob that is turned to gradually deform
the path from τ1 into τ2. The first two conditions indicate that t = 0 yields τ1

7The topologist’s sine curve is not a manifold because all open sets that contain the point
(0, 0) contain some of the points from the sine curve. These open sets are not homeomorphic to
R.
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Figure 4.6: (a) Homotopy continuously warps one path into another. (b) The
image of the path cannot be continuously warped over a hole in R2 because it
causes a discontinuity. In this case, the two paths are not homotopic.

and t = 1 yields τ2, respectively. The remaining two conditions indicate that the
path endpoints are held fixed.

During the warping process, the path image cannot make a discontinuous
jump. In R2, this prevents it from moving over holes, such as the one shown
in Figure 4.6b. The key to preventing homotopy from jumping over some holes
is that h must be continuous. In higher dimensions, however, there are many
different kinds of holes. For the case of R3, for example, suppose the space is like
a block of Swiss cheese that contains air bubbles. Homotopy can go around the air
bubbles, but it cannot pass through a hole that is drilled through the entire block of
cheese. Air bubbles and other kinds of holes that appear in higher dimensions can
be characterized by generalizing homotopy to the warping of higher dimensional
surfaces, as opposed to paths [226].

It is straightforward to show that homotopy defines an equivalence relation
on the set of all paths from some x1 ∈ X to some x2 ∈ X. The resulting notion
of “equivalent paths” appears frequently in motion planning, control theory, and
many other contexts. Suppose that X is path connected. If all paths fall into the
same equivalence class, then X is called simply connected; otherwise, X is called
multiply connected.

Groups The equivalence relation induced by homotopy starts to enter the realm
of algebraic topology, which is a branch of mathematics that characterizes the
structure of topological spaces in terms of algebraic objects, such as groups. These
resulting groups have important implications for motion planning. Therefore, we
give a brief overview. First, the notion of a group must be precisely defined. A
group is a set, G, together with a binary operation, ◦, such that the following
group axioms are satisfied:

1. (Closure) For any a, b ∈ G, the product a ◦ b ∈ G.
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2. (Associativity) For all a, b, c ∈ G, (a◦b)◦c = a◦(b◦c). Hence, parentheses
are not needed, and the product may be written as a ◦ b ◦ c.

3. (Identity) There is an element e ∈ G, called the identity, such that for all
a ∈ G, e ◦ a = a and a ◦ e = a.

4. (Inverse) For every element a ∈ G, there is an element a−1, called the
inverse of a, for which a ◦ a−1 = e and a−1 ◦ a = e.

Here are some examples.

Example 4.7 (Simple Examples of Groups) The set of integers Z is a group
with respect to addition. The identity is 0, and the inverse of each i is −i. The set
Q\0 of rational numbers with 0 removed is a group with respect to multiplication.
The identity is 1, and the inverse of every element, q, is 1/q (0 was removed to
avoid division by zero). �

An important property, which only some groups possess, is commutativity:
a ◦ b = b ◦ a for any a, b ∈ G. The group in this case is called commutative or
Abelian. We will encounter examples of both kinds of groups, both commutative
and noncommutative. An example of a commutative group is vector addition over
Rn. The set of all 3D rotations is an example of a noncommutative group.

The fundamental group Now an interesting group will be constructed from
the space of paths and the equivalence relation obtained by homotopy. The funda-
mental group, π1(X) (or first homotopy group), is associated with any topological
space, X. Let a (continuous) path for which f(0) = f(1) be called a loop. Let
some xb ∈ X be designated as a base point. For some arbitrary but fixed base
point, xb, consider the set of all loops such that f(0) = f(1) = xb. This can be
made into a group by defining the following binary operation. Let τ1 : [0, 1]→ X
and τ2 : [0, 1] → X be two loop paths with the same base point. Their product
τ = τ1 ◦ τ2 is defined as

τ(t) =

{

τ1(2t) if t ∈ [0, 1/2)
τ2(2t− 1) if t ∈ [1/2, 1].

(4.9)

This results in a continuous loop path because τ1 terminates at xb, and τ2 begins
at xb. In a sense, the two paths are concatenated end-to-end.

Suppose now that the equivalence relation induced by homotopy is applied to
the set of all loop paths through a fixed point, xb. It will no longer be important
which particular path was chosen from a class; any representative may be used.
The equivalence relation also applies when the set of loops is interpreted as a
group. The group operation actually occurs over the set of equivalences of paths.

Consider what happens when two paths from different equivalence classes are
concatenated using ◦. Is the resulting path homotopic to either of the first two?
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Is the resulting path homotopic if the original two are from the same homotopy
class? The answers in general are no and no, respectively. The fundamental group
describes how the equivalence classes of paths are related and characterizes the
connectivity of X. Since fundamental groups are based on paths, there is a nice
connection to motion planning.

Example 4.8 (A Simply Connected Space) Suppose that a topological space
X is simply connected. In this case, all loop paths from a base point xb are ho-
motopic, resulting in one equivalence class. The result is π1(X) = 1G, which is
the group that consists of only the identity element. �

Example 4.9 (The Fundamental Group of S1) Suppose X = S1. In this
case, there is an equivalence class of paths for each i ∈ Z, the set of integers.
If i > 0, then it means that the path winds i times around S1 in the counter-
clockwise direction and then returns to xb. If i < 0, then the path winds around
i times in the clockwise direction. If i = 0, then the path is equivalent to one
that remains at xb. The fundamental group is Z, with respect to the operation of
addition. If τ1 travels i1 times counterclockwise, and τ2 travels i2 times counter-
clockwise, then τ = τ1 ◦ τ2 belongs to the class of loops that travel around i1 + i2
times counterclockwise. Consider additive inverses. If a path travels seven times
around S1, and it is combined with a path that travels seven times in the opposite
direction, the result is homotopic to a path that remains at xb. Thus, π1(S

1) = Z.
�

Example 4.10 (The Fundamental Group of Tn) For the torus, π1(T
n) = Zn,

in which the ith component of Zn corresponds to the number of times a loop path
wraps around the ith component of Tn. This makes intuitive sense because Tn is
just the Cartesian product of n circles. The fundamental group Zn is obtained by
starting with a simply connected subset of the plane and drilling out n disjoint,
bounded holes. This situation arises frequently when a mobile robot must avoid
collision with n disjoint obstacles in the plane. �

By now it seems that the fundamental group simply keeps track of how many
times a path travels around holes. This next example yields some very bizarre
behavior that helps to illustrate some of the interesting structure that arises in
algebraic topology.

Example 4.11 (The Fundamental Group of RP2) Suppose X = RP2, the
projective plane. In this case, there are only two equivalence classes on the space of
loop paths. All paths that “wrap around” an even number of times are homotopic.
Likewise, all paths that wrap around an odd number of times are homotopic. This
strange behavior is illustrated in Figure 4.7. The resulting fundamental group
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Figure 4.7: An illustration of why π1(RP
2) = Z2. The integers 1 and 2 indicate

precisely where a path continues when it reaches the boundary. (a) Two paths are
shown that are not equivalent. (b) A path that winds around twice is shown. (c)
This is homotopic to a loop path that does not wind around at all. Eventually,
the part of the path that appears at the bottom is pulled through the top. It
finally shrinks into an arbitrarily small loop.

therefore has only two elements: π1(RP
2) = Z2, the cyclic group of order 2, which

corresponds to addition mod 2. This makes intuitive sense because the group
keeps track of whether a sum of integers is odd or even, which in this application
corresponds to the total number of traversals over the square representation of
RP2. The fundamental group is the same for RP3, which arises in Section 4.2.2
because it is homeomorphic to the set of 3D rotations. Thus, there are surprisingly
only two path classes for the set of 3D rotations. �

Unfortunately, two topological spaces may have the same fundamental group
even if the spaces are not homeomorphic. For example, Z is the fundamental
group of S1, the cylinder, R × S1, and the Möbius band. In the last case, the
fundamental group does not indicate that there is a “twist” in the space. Another
problem is that spaces with interesting connectivity may be declared as simply
connected. The fundamental group of the sphere S2 is just 1G, the same as for
R2. Try envisioning loop paths on the sphere; it can be seen that they all fall into
one equivalence class. Hence, S2 is simply connected. The fundamental group also
neglects bubbles in R3 because the homotopy can warp paths around them. Some
of these troubles can be fixed by defining second-order homotopy groups. For
example, a continuous function, [0, 1] × [0, 1] → X, of two variables can be used
instead of a path. The resulting homotopy generates a kind of sheet or surface
that can be warped through the space, to yield a homotopy group π2(X) that
wraps around bubbles in R3. This idea can be extended beyond two dimensions
to detect many different kinds of holes in higher dimensional spaces. This leads to
the higher order homotopy groups. A stronger concept than simply connected for
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a space is that its homotopy groups of all orders are equal to the identity group.
This prevents all kinds of holes from occurring and implies that a space, X, is
contractible, which means a kind of homotopy can be constructed that shrinks X
to a point [226]. In the plane, the notions of contractible and simply connected are
equivalent; however, in higher dimensional spaces, such as those arising in motion
planning, the term contractible should be used to indicate that the space has no
interior obstacles (holes).

An alternative to basing groups on homotopy is to derive them using homology,
which is based on the structure of cell complexes instead of homotopy mappings.
This subject is much more complicated to present, but it is more powerful for
proving theorems in topology. See the literature overview at the end of the chapter
for suggested further reading on algebraic topology.

4.2 Defining the Configuration Space

This section defines the manifolds that arise from the transformations of Chapter
3. If the robot has n degrees of freedom, the set of transformations is usually a
manifold of dimension n. This manifold is called the configuration space of the
robot, and its name is often shortened to C-space. In this book, the C-space
may be considered as a special state space. To solve a motion planning problem,
algorithms must conduct a search in the C-space. The C-space provides a powerful
abstraction that converts the complicated models and transformations of Chapter
3 into the general problem of computing a path that traverses a manifold. By
developing algorithms directly for this purpose, they apply to a wide variety of
different kinds of robots and transformations. In Section 4.3 the problem will be
complicated by bringing obstacles into the configuration space, but in Section 4.2
there will be no obstacles.

4.2.1 2D Rigid Bodies: SE(2)

Section 3.2.2 expressed how to transform a rigid body in R2 by a homogeneous
transformation matrix, T , given by (3.35). The task in this chapter is to char-
acterize the set of all possible rigid-body transformations. Which manifold will
this be? Here is the answer and brief explanation. Since any xt, yt ∈ R can be
selected for translation, this alone yields a manifoldM1 = R2. Independently, any
rotation, θ ∈ [0, 2π), can be applied. Since 2π yields the same rotation as 0, they
can be identified, which makes the set of 2D rotations into a manifold, M2 = S1.
To obtain the manifold that corresponds to all rigid-body motions, simply take
C =M1×M2 = R2×S1. The answer to the question is that the C-space is a kind
of cylinder.

Now we give a more detailed technical argument. The main purpose is that
such a simple, intuitive argument will not work for the 3D case. Our approach is
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to introduce some of the technical machinery here for the 2D case, which is easier
to understand, and then extend it to the 3D case in Section 4.2.2.

Matrix groups The first step is to consider the set of transformations as a
group, in addition to a topological space.8 We now derive several important groups
from sets of matrices, ultimately leading to SO(n), the group of n × n rotation
matrices, which is very important for motion planning. The set of all nonsingular
n × n real-valued matrices is called the general linear group, denoted by GL(n),
with respect to matrix multiplication. Each matrix A ∈ GL(n) has an inverse
A−1 ∈ GL(n), which when multiplied yields the identity matrix, AA−1 = I. The
matrices must be nonsingular for the same reason that 0 was removed from Q. The
analog of division by zero for matrix algebra is the inability to invert a singular
matrix.

Many interesting groups can be formed from one group, G1, by removing some
elements to obtain a subgroup, G2. To be a subgroup, G2 must be a subset of G1

and satisfy the group axioms. We will arrive at the set of rotation matrices
by constructing subgroups. One important subgroup of GL(n) is the orthogonal
group, O(n), which is the set of all matrices A ∈ GL(n) for which AAT = I,
in which AT denotes the matrix transpose of A. These matrices have orthogonal
columns (the inner product of any pair is zero) and the determinant is always 1
or −1. Thus, note that AAT takes the inner product of every pair of columns. If
the columns are different, the result must be 0; if they are the same, the result
is 1 because AAT = I. The special orthogonal group, SO(n), is the subgroup of
O(n) in which every matrix has determinant 1. Another name for SO(n) is the
group of n-dimensional rotation matrices.

A chain of groups, SO(n) ≤ O(n) ≤ GL(n), has been described in which
≤ denotes “a subgroup of.” Each group can also be considered as a topological
space. The set of all n×n matrices (which is not a group with respect to multipli-
cation) with real-valued entries is homeomorphic to Rn2

because n2 entries in the
matrix can be independently chosen. For GL(n), singular matrices are removed,
but an n2-dimensional manifold is nevertheless obtained. For O(n), the expres-
sion AAT = I corresponds to n2 algebraic equations that have to be satisfied.
This should substantially drop the dimension. Note, however, that many of the
equations are redundant (pick your favorite value for n, multiply the matrices,
and see what happens). There are only (n2 ) ways (pairwise combinations) to take
the inner product of pairs of columns, and there are n equations that require the
magnitude of each column to be 1. This yields a total of n(n+ 1)/2 independent
equations. Each independent equation drops the manifold dimension by one, and

8The groups considered in this section are actually Lie groups because they are smooth
manifolds [45]. We will not use that name here, however, because the notion of a smooth
structure has not yet been defined. Readers familiar with Lie groups, however, will recognize
most of the coming concepts. Some details on Lie groups appear later in Sections 15.4.3 and
15.5.1.
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the resulting dimension of O(n) is n2 − n(n + 1)/2 = n(n− 1)/2, which is easily
remembered as (n2 ). To obtain SO(n), the constraint detA = 1 is added, which
eliminates exactly half of the elements of O(n) but keeps the dimension the same.

Example 4.12 (Matrix Subgroups) It is helpful to illustrate the concepts for
n = 2. The set of all 2× 2 matrices is

{(

a b
c d

) ∣

∣

∣

∣

a, b, c, d ∈ R

}

, (4.10)

which is homeomorphic to R4. The group GL(2) is formed from the set of all
nonsingular 2×2 matrices, which introduces the constraint that ad− bc 6= 0. The
set of singular matrices forms a 3D manifold with boundary in R4, but all other
elements of R4 are in GL(2); therefore, GL(2) is a 4D manifold.

Next, the constraint AAT = I is enforced to obtain O(2). This becomes

(

a b
c d

)(

a c
b d

)

=

(

1 0
0 1

)

, (4.11)

which directly yields four algebraic equations:

a2 + b2 = 1 (4.12)

ac+ bd = 0 (4.13)

ca+ db = 0 (4.14)

c2 + d2 = 1. (4.15)

Note that (4.14) is redundant. There are two kinds of equations. One equation,
given by (4.13), forces the inner product of the columns to be 0. There is only
one because (n2 ) = 1 for n = 2. Two other constraints, (4.12) and (4.15), force the
rows to be unit vectors. There are two because n = 2. The resulting dimension of
the manifold is (n2 ) = 1 because we started with R4 and lost three dimensions from
(4.12), (4.13), and (4.15). What does this manifold look like? Imagine that there
are two different two-dimensional unit vectors, (a, b) and (c, d). Any value can be
chosen for (a, b) as long as a2 + b2 = 1. This looks like S1, but the inner product
of (a, b) and (c, d) must also be 0. Therefore, for each value of (a, b), there are
two choices for c and d: 1) c = b and d = −a, or 2) c = −b and d = a. It appears
that there are two circles! The manifold is S1 ⊔ S1, in which ⊔ denotes the union
of disjoint sets. Note that this manifold is not connected because no path exists
from one circle to the other.

The final step is to require that detA = ad− bc = 1, to obtain SO(2), the set
of all 2D rotation matrices. Without this condition, there would be matrices that
produce a rotated mirror image of the rigid body. The constraint simply forces
the choice for c and d to be c = −b and a = d. This throws away one of the circles
from O(2), to obtain a single circle for SO(2). We have finally obtained what you
already knew: SO(2) is homeomorphic to S1. The circle can be parameterized
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using polar coordinates to obtain the standard 2D rotation matrix, (3.31), given
in Section 3.2.2. �

Special Euclidean group Now that the group of rotations, SO(n), is charac-
terized, the next step is to allow both rotations and translations. This corresponds
to the set of all (n+ 1)× (n+ 1) transformation matrices of the form

{(

R v
0 1

) ∣

∣

∣

∣

R ∈ SO(n) and v ∈ Rn

}

. (4.16)

This should look like a generalization of (3.52) and (3.56), which were for n = 2
and n = 3, respectively. The R part of the matrix achieves rotation of an n-
dimensional body in Rn, and the v part achieves translation of the same body.
The result is a group, SE(n), which is called the special Euclidean group. As a
topological space, SE(n) is homeomorphic to Rn × SO(n), because the rotation
matrix and translation vectors may be chosen independently. In the case of n = 2,
this means SE(2) is homeomorphic to R2 × S1, which verifies what was stated
at the beginning of this section. Thus, the C-space of a 2D rigid body that can
translate and rotate in the plane is

C = R2 × S1. (4.17)

To be more precise, ∼= should be used in the place of = to indicate that C could
be any space homeomorphic to R2 × S1; however, this notation will mostly be
avoided.

Interpreting the C-space It is important to consider the topological impli-
cations of C. Since S1 is multiply connected, R × S1 and R2 × S1 are multiply
connected. It is difficult to visualize C because it is a 3D manifold; however,
there is a nice interpretation using identification. Start with the open unit cube,
(0, 1)3 ⊂ R3. Include the boundary points of the form (x, y, 0) and (x, y, 1), and
make the identification (x, y, 0) ∼ (x, y, 1) for all x, y ∈ (0, 1). This means that
when traveling in the x and y directions, there is a “frontier” to the C-space;
however, traveling in the z direction causes a wraparound.

It is very important for a motion planning algorithm to understand that this
wraparound exists. For example, consider R× S1 because it is easier to visualize.
Imagine a path planning problem for which C = R×S1, as depicted in Figure 4.8.
Suppose the top and bottom are identified to make a cylinder, and there is an
obstacle across the middle. Suppose the task is to find a path from qI to qG. If
the top and bottom were not identified, then it would not be possible to connect
qI to qG; however, if the algorithm realizes it was given a cylinder, the task is
straightforward. In general, it is very important to understand the topology of C;
otherwise, potential solutions will be lost.

The next section addresses SE(n) for n = 3. The main difficulty is determining
the topology of SO(3). At least we do not have to consider n > 3 in this book.
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qI

qG

Figure 4.8: A planning algorithm may have to cross the identification boundary
to find a solution path.

4.2.2 3D Rigid Bodies: SE(3)

One might expect that defining C for a 3D rigid body is an obvious extension of the
2D case; however, 3D rotations are significantly more complicated. The resulting
C-space will be a six-dimensional manifold, C = R3 × RP3. Three dimensions
come from translation and three more come from rotation.

The main quest in this section is to determine the topology of SO(3). In
Section 3.2.3, yaw, pitch, and roll were used to generate rotation matrices. These
angles are convenient for visualization, performing transformations in software,
and also for deriving the DH parameters. However, these were concerned with
applying a single rotation, whereas the current problem is to characterize the set
of all rotations. It is possible to use α, β, and γ to parameterize the set of rotations,
but it causes serious troubles. There are some cases in which nonzero angles yield
the identity rotation matrix, which is equivalent to α = β = γ = 0. There are
also cases in which a continuum of values for yaw, pitch, and roll angles yield the
same rotation matrix. These problems destroy the topology, which causes both
theoretical and practical difficulties in motion planning.

Consider applying the matrix group concepts from Section 4.2.1. The general
linear group GL(3) is homeomorphic to R9. The orthogonal group, O(3), is de-
termined by imposing the constraint AAT = I. There are (32) = 3 independent
equations that require distinct columns to be orthogonal, and three independent
equations that force the magnitude of each column to be 1. This means that O(3)
has three dimensions, which matches our intuition since there were three rotation
parameters in Section 3.2.3. To obtain SO(3), the last constraint, detA = 1,
is added. Recall from Example 4.12 that SO(2) consists of two circles, and the
constraint detA = 1 selects one of them. In the case of O(3), there are two
three-spheres, S3 ⊔ S3, and detA = 1 selects one of them. However, there is one
additional complication: Antipodal points on these spheres generate the same ro-
tation matrix. This will be seen shortly when quaternions are used to parameterize
SO(3).

152 S. M. LaValle: Planning Algorithms

Using complex numbers to represent SO(2) Before introducing quater-
nions to parameterize 3D rotations, consider using complex numbers to param-
eterize 2D rotations. Let the term unit complex number refer to any complex
number, a+ bi, for which a2 + b2 = 1.

The set of all unit complex numbers forms a group under multiplication. It will
be seen that it is “the same” group as SO(2). This idea needs to be made more
precise. Two groups, G and H, are considered “the same” if they are isomorphic,
which means that there exists a bijective function f : G → H such that for all
a, b ∈ G, f(a)◦f(b) = f(a◦b). This means that we can perform some calculations
in G, map the result to H, perform more calculations, and map back to G without
any trouble. The sets G and H are just two alternative ways to express the same
group.

The unit complex numbers and SO(2) are isomorphic. To see this clearly,
recall that complex numbers can be represented in polar form as reiθ; a unit
complex number is simply eiθ. A bijective mapping can be made between 2D
rotation matrices and unit complex numbers by letting eiθ correspond to the
rotation matrix (3.31).

If complex numbers are used to represent rotations, it is important that they
behave algebraically in the same way. If two rotations are combined, the matrices
are multiplied. The equivalent operation is multiplication of complex numbers.
Suppose that a 2D robot is rotated by θ1, followed by θ2. In polar form, the com-
plex numbers are multiplied to yield eiθ1eiθ2 = ei(θ1+θ2), which clearly represents a
rotation of θ1 + θ2. If the unit complex number is represented in Cartesian form,
then the rotations corresponding to a1 + b1i and a2 + b2i are combined to obtain
(a1a2−b1b2)+(a1b2+a2b1)i. Note that here we have not used complex numbers to
express the solution to a polynomial equation, which is their more popular use; we
simply borrowed their nice algebraic properties. At any time, a complex number
a+ bi can be converted into the equivalent rotation matrix

R(a, b) =

(

a −b
b a

)

. (4.18)

Recall that only one independent parameter needs to be specified because a2 +
b2 = 1. Hence, it appears that the set of unit complex numbers is the same
manifold as SO(2), which is the circle S1 (recall, that “same” means in the sense
of homeomorphism).

Quaternions The manner in which complex numbers were used to represent
2D rotations will now be adapted to using quaternions to represent 3D rotations.
Let H represent the set of quaternions, in which each quaternion, h ∈ H, is
represented as h = a + bi + cj + dk, and a, b, c, d ∈ R. A quaternion can be
considered as a four-dimensional vector. The symbols i, j, and k are used to denote
three “imaginary” components of the quaternion. The following relationships are
defined: i2 = j2 = k2 = ijk = −1, from which it follows that ij = k, jk = i, and
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v

θ

Figure 4.9: Any 3D rotation can be considered as a rotation by an angle θ about
the axis given by the unit direction vector v = [v1 v2 v3].

v

θ
2π − θ

−v

Figure 4.10: There are two ways to encode the same rotation.

ki = j. Using these, multiplication of two quaternions, h1 = a1 + b1i + c1j + d1k
and h2 = a2+b2i+c2j+d2k, can be derived to obtain h1 ·h2 = a3+b3i+c3j+d3k,
in which

a3 = a1a2 − b1b2 − c1c2 − d1d2
b3 = a1b2 + a2b1 + c1d2 − c2d1
c3 = a1c2 + a2c1 + b2d1 − b1d2
d3 = a1d2 + a2d1 + b1c2 − b2c1.

(4.19)

Using this operation, it can be shown that H is a group with respect to quaternion
multiplication. Note, however, that the multiplication is not commutative! This
is also true of 3D rotations; there must be a good reason.

For convenience, quaternion multiplication can be expressed in terms of vector
multiplications, a dot product, and a cross product. Let v = [b c d] be a three-
dimensional vector that represents the final three quaternion components. The
first component of h1 · h2 is a1a2 − v1 · v2. The final three components are given
by the three-dimensional vector a1v2 + a2v1 + v1 × v2.

In the same way that unit complex numbers were needed for SO(2), unit
quaternions are needed for SO(3), which means that H is restricted to quaternions
for which a2 + b2 + c2 + d2 = 1. Note that this forms a subgroup because the
multiplication of unit quaternions yields a unit quaternion, and the other group
axioms hold.

The next step is to describe a mapping from unit quaternions to SO(3). Let
the unit quaternion h = a+ bi+ cj + dk map to the matrix

R(h) =





2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1



 , (4.20)
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which can be verified as orthogonal and detR(h) = 1. Therefore, it belongs to
SO(3). It is not shown here, but it conveniently turns out that h represents the
rotation shown in Figure 4.9, by making the assignment

h = cos
θ

2
+

(

v1 sin
θ

2

)

i+

(

v2 sin
θ

2

)

j +

(

v3 sin
θ

2

)

k. (4.21)

Unfortunately, this representation is not unique. It can be verified in (4.20)
that R(h) = R(−h). A nice geometric interpretation is given in Figure 4.10.
The quaternions h and −h represent the same rotation because a rotation of θ
about the direction v is equivalent to a rotation of 2π− θ about the direction −v.
Consider the quaternion representation of the second expression of rotation with
respect to the first. The real part is

cos

(

2π − θ
2

)

= cos

(

π − θ

2

)

= − cos

(

θ

2

)

= −a. (4.22)

The i, j, and k components are

−v sin
(

2π − θ
2

)

= −v sin
(

π − θ

2

)

= −v sin
(

θ

2

)

= [−b − c − d]. (4.23)

The quaternion −h has been constructed. Thus, h and −h represent the same
rotation. Luckily, this is the only problem, and the mapping given by (4.20) is
two-to-one from the set of unit quaternions to SO(3).

This can be fixed by the identification trick. Note that the set of unit quater-
nions is homeomorphic to S3 because of the constraint a2 + b2 + c2 + d2 = 1. The
algebraic properties of quaternions are not relevant at this point. Just imagine
each h as an element of R4, and the constraint a2 + b2 + c2 + d2 = 1 forces the
points to lie on S3. Using identification, declare h ∼ −h for all unit quaternions.
This means that the antipodal points of S3 are identified. Recall from the end
of Section 4.1.2 that when antipodal points are identified, RPn ∼= Sn/ ∼. Hence,
SO(3) ∼= RP3, which can be considered as the set of all lines through the origin
of R4, but this is hard to visualize. The representation of RP2 in Figure 4.5 can
be extended to RP3. Start with (0, 1)3 ⊂ R3, and make three different kinds
of identifications, one for each pair of opposite cube faces, and add all of the
points to the manifold. For each kind of identification a twist needs to be made
(without the twist, T3 would be obtained). For example, in the z direction, let
(x, y, 0) ∼ (1− x, 1− y, 1) for all x, y ∈ [0, 1].

One way to force uniqueness of rotations is to require staying in the “upper
half” of S3. For example, require that a ≥ 0, as long as the boundary case of
a = 0 is handled properly because of antipodal points at the equator of S3. If
a = 0, then require that b ≥ 0. However, if a = b = 0, then require that c ≥ 0
because points such as (0, 0,−1, 0) and (0, 0, 1, 0) are the same rotation. Finally,
if a = b = c = 0, then only d = 1 is allowed. If such restrictions are made, it is
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important, however, to remember the connectivity of RP3. If a path travels across
the equator of S3, it must be mapped to the appropriate place in the “northern
hemisphere.” At the instant it hits the equator, it must move to the antipodal
point. These concepts are much easier to visualize if you remove a dimension and
imagine them for S2 ⊂ R3, as described at the end of Section 4.1.2.

Using quaternion multiplication The representation of rotations boiled down
to picking points on S3 and respecting the fact that antipodal points give the same
element of SO(3). In a sense, this has nothing to do with the algebraic properties
of quaternions. It merely means that SO(3) can be parameterized by picking
points in S3, just like SO(2) was parameterized by picking points in S1 (ignoring
the antipodal identification problem for SO(3)).

However, one important reason why the quaternion arithmetic was introduced
is that the group of unit quaternions with h and −h identified is also isomorphic to
SO(3). This means that a sequence of rotations can be multiplied together using
quaternion multiplication instead of matrix multiplication. This is important
because fewer operations are required for quaternion multiplication in comparison
to matrix multiplication. At any point, (4.20) can be used to convert the result
back into a matrix; however, this is not even necessary. It turns out that a
point in the world, (x, y, z) ∈ R3, can be transformed by directly using quaternion
arithmetic. An analog to the complex conjugate from complex numbers is needed.
For any h = a+ bi+ cj + dk ∈ H, let h∗ = a− bi− cj − dk be its conjugate. For
any point (x, y, z) ∈ R3, let p ∈ H be the quaternion 0 + xi + yj + zk. It can be
shown (with a lot of algebra) that the rotated point (x, y, z) is given by h · p · h∗.
The i, j, k components of the resulting quaternion are new coordinates for the
transformed point. It is equivalent to having transformed (x, y, z) with the matrix
R(h).

Finding quaternion parameters from a rotation matrix Recall from Sec-
tion 3.2.3 that given a rotation matrix (3.43), the yaw, pitch, and roll parameters
could be directly determined using the atan2 function. It turns out that the
quaternion representation can also be determined directly from the matrix. This
is the inverse of the function in (4.20).9

For a given rotation matrix (3.43), the quaternion parameters h = a + bi +
cj + dk can be computed as follows [113]. The first component is

a = 1
2

√
r11 + r22 + r33 + 1, (4.24)

and if a 6= 0, then

b =
r32 − r23

4a
, (4.25)

9Since that function was two-to-one, it is technically not an inverse until the quaternions are
restricted to the upper hemisphere, as described previously.
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c =
r13 − r31

4a
, (4.26)

and

d =
r21 − r12

4a
. (4.27)

If a = 0, then the previously mentioned equator problem occurs. In this case,

b =
r13r12

√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (4.28)

c =
r12r23

√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (4.29)

and
d =

r13r23
√

r212r
2
13 + r212r

2
23 + r213r

2
23

. (4.30)

This method fails if r12 = r23 = 0 or r13 = r23 = 0 or r12 = r23 = 0. These
correspond precisely to the cases in which the rotation matrix is a yaw, (3.39),
pitch, (3.40), or roll, (3.41), which can be detected in advance.

Special Euclidean group Now that the complicated part of representing SO(3)
has been handled, the representation of SE(3) is straightforward. The general
form of a matrix in SE(3) is given by (4.16), in which R ∈ SO(3) and v ∈ R3.
Since SO(3) ∼= RP3, and translations can be chosen independently, the resulting
C-space for a rigid body that rotates and translates in R3 is

C = R3 × RP3, (4.31)

which is a six-dimensional manifold. As expected, the dimension of C is exactly
the number of degrees of freedom of a free-floating body in space.

4.2.3 Chains and Trees of Bodies

If there are multiple bodies that are allowed to move independently, then their
C-spaces can be combined using Cartesian products. Let Ci denote the C-space
of Ai. If there are n free-floating bodies in W = R2 or W = R3, then

C = C1 × C2 × · · · × Cn. (4.32)

If the bodies are attached to form a kinematic chain or kinematic tree, then
each C-space must be considered on a case-by-case basis. There is no general rule
that simplifies the process. One thing to generally be careful about is that the full
range of motion might not be possible for typical joints. For example, a revolute
joint might not be able to swing all of the way around to enable any θ ∈ [0, 2π).
If θ cannot wind around S1, then the C-space for this joint is homeomorphic to R

instead of S1. A similar situation occurs for a spherical joint. A typical ball joint
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cannot achieve any orientation in SO(3) due to mechanical obstructions. In this
case, the C-space is not RP3 because part of SO(3) is missing.

Another complication is that the DH parameterization of Section 3.3.2 is de-
signed to facilitate the assignment of coordinate frames and computation of trans-
formations, but it neglects considerations of topology. For example, a common
approach to representing a spherical robot wrist is to make three zero-length links
that each behave as a revolute joint. If the range of motion is limited, this might
not cause problems, but in general the problems would be similar to using yaw,
pitch, and roll to represent SO(3). There may be multiple ways to express the
same arm configuration.

Several examples are given below to help in determining C-spaces for chains
and trees of bodies. Suppose W = R2, and there is a chain of n bodies that are
attached by revolute joints. Suppose that the first joint is capable of rotation only
about a fixed point (e.g., it spins around a nail). If each joint has the full range
of motion θi ∈ [0, 2π), the C-space is

C = S1 × S1 × · · · × S1 = Tn. (4.33)

However, if each joint is restricted to θi ∈ (−π/2, π/2), then C = Rn. If any
transformation in SE(2) can be applied to A1, then an additional R2 is needed.
In the case of restricted joint motions, this yields Rn+2. If the joints can achieve
any orientation, then C = R2 × Tn. If there are prismatic joints, then each joint
contributes R to the C-space.

Recall from Figure 3.12 that for W = R3 there are six different kinds of
joints. The cases of revolute and prismatic joints behave the same as forW = R2.
Each screw joint contributes R. A cylindrical joint contributes R× S1, unless its
rotational motion is restricted. A planar joint contributes R2 × S1 because any
transformation in SE(2) is possible. If its rotational motions are restricted, then
it contributes R3. Finally, a spherical joint can theoretically contribute RP3. In
practice, however, this rarely occurs. It is more likely to contribute R2× S1 or R3

after restrictions are imposed. Note that if the first joint is a free-floating body,
then it contributes R3 × RP3.

Kinematic trees can be handled in the same way as kinematic chains. One
issue that has not been mentioned is that there might be collisions between the
links. This has been ignored up to this point, but obviously this imposes very
complicated restrictions. The concepts from Section 4.3 can be applied to handle
this case and the placement of additional obstacles in W . Reasoning about these
kinds of restrictions and the path connectivity of the resulting space is indeed the
main point of motion planning.

4.3 Configuration Space Obstacles

Section 4.2 defined C, the manifold of robot transformations in the absence of
any collision constraints. The current section removes from C the configurations
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that either cause the robot to collide with obstacles or cause some specified links
of the robot to collide with each other. The removed part of C is referred to as
the obstacle region. The leftover space is precisely what a solution path must
traverse. A motion planning algorithm must find a path in the leftover space
from an initial configuration to a goal configuration. Finally, after the models of
Chapter 3 and the previous sections of this chapter, the motion planning problem
can be precisely described.

4.3.1 Definition of the Basic Motion Planning Problem

Obstacle region for a rigid body Suppose that the world, W = R2 or W =
R3, contains an obstacle region, O ⊂ W . Assume here that a rigid robot, A ⊂ W ,
is defined; the case of multiple links will be handled shortly. Assume that both
A and O are expressed as semi-algebraic models (which includes polygonal and
polyhedral models) from Section 3.1. Let q ∈ C denote the configuration of A, in
which q = (xt, yt, θ) for W = R2 and q = (xt, yt, zt, h) for W = R3 (h represents
the unit quaternion).

The obstacle region, Cobs ⊆ C, is defined as

Cobs = {q ∈ C | A(q) ∩ O 6= ∅}, (4.34)

which is the set of all configurations, q, at which A(q), the transformed robot,
intersects the obstacle region, O. Since O and A(q) are closed sets in W , the
obstacle region is a closed set in C.

The leftover configurations are called the free space, which is defined and de-
noted as Cfree = C \ Cobs. Since C is a topological space and Cobs is closed, Cfree
must be an open set. This implies that the robot can come arbitrarily close to
the obstacles while remaining in Cfree. If A “touches” O,

int(O) ∩ int(A(q)) = ∅ and O ∩A(q) 6= ∅, (4.35)

then q ∈ Cobs (recall that int means the interior). The condition above indicates
that only their boundaries intersect.

The idea of getting arbitrarily close may be nonsense in practical robotics, but
it makes a clean formulation of the motion planning problem. Since Cfree is open,
it becomes impossible to formulate some optimization problems, such as finding
the shortest path. In this case, the closure, cl(Cfree), should instead be used, as
described in Section 7.7.

Obstacle region for multiple bodies If the robot consists of multiple bodies,
the situation is more complicated. The definition in (4.34) only implies that the
robot does not collide with the obstacles; however, if the robot consists of multiple
bodies, then it might also be appropriate to avoid collisions between different links
of the robot. Let the robot be modeled as a collection, {A1,A2, . . . ,Am}, of m
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links, which may or may not be attached together by joints. A single configuration
vector q is given for the entire collection of links. We will write Ai(q) for each
link, i, even though some of the parameters of q may be irrelevant for moving link
Ai. For example, in a kinematic chain, the configuration of the second body does
not depend on the angle between the ninth and tenth bodies.

Let P denote the set of collision pairs, in which each collision pair, (i, j) ∈ P ,
represents a pair of link indices i, j ∈ {1, 2, . . . ,m}, such that i 6= j. If (i, j)
appears in P , it means that Ai and Aj are not allowed to be in a configuration,
q, for which Ai(q) ∩ Aj(q) 6= ∅. Usually, P does not represent all pairs because
consecutive links are in contact all of the time due to the joint that connects them.
One common definition for P is that each link must avoid collisions with any links
to which it is not attached by a joint. For m bodies, P is generally of size O(m2);
however, in practice it is often possible to eliminate many pairs by some geometric
analysis of the linkage. Collisions between some pairs of links may be impossible
over all of C, in which case they do not need to appear in P .

Using P , the consideration of robot self-collisions is added to the definition of
Cobs to obtain

Cobs =
(

m
⋃

i=1

{q ∈ C | Ai(q) ∩ O 6= ∅}
)

⋃

(

⋃

[i,j]∈P

{q ∈ C | Ai(q) ∩ Aj(q) 6= ∅}
)

.

(4.36)
Thus, a configuration q ∈ C is in Cobs if at least one link collides with O or a pair
of links indicated by P collide with each other.

Definition of basic motion planning Finally, enough tools have been intro-
duced to precisely define the motion planning problem. The problem is concep-
tually illustrated in Figure 4.11. The main difficulty is that it is neither straight-
forward nor efficient to construct an explicit boundary or solid representation of
either Cfree or Cobs. The components are as follows:

Formulation 4.1 (The Piano Mover’s Problem)

1. A world W in which either W = R2 or W = R3.

2. A semi-algebraic obstacle region O ⊂ W in the world.

3. A semi-algebraic robot is defined in W . It may be a rigid robot A or a
collection of m links, A1,A2, . . . ,Am.

4. The configuration space C determined by specifying the set of all possible
transformations that may be applied to the robot. From this, Cobs and Cfree
are derived.

5. A configuration, qI ∈ Cfree designated as the initial configuration.
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Cobs

qI

qG

Cfree

Cobs

Cobs

Figure 4.11: The basic motion planning problem is conceptually very simple using
C-space ideas. The task is to find a path from qI to qG in Cfree. The entire blob
represents C = Cfree ∪ Cobs.

6. A configuration qG ∈ Cfree designated as the goal configuration. The initial
and goal configurations together are often called a query pair (or query) and
designated as (qI , qG).

7. A complete algorithm must compute a (continuous) path, τ : [0, 1]→ Cfree,
such that τ(0) = qI and τ(1) = qG, or correctly report that such a path does
not exist.

It was shown by Reif [409] that this problem is PSPACE-hard, which implies
NP-hard. The main problem is that the dimension of C is unbounded.

4.3.2 Explicitly Modeling Cobs: The Translational Case

It is important to understand how to construct a representation of Cobs. In some
algorithms, especially the combinatorial methods of Chapter 6, this represents
an important first step to solving the problem. In other algorithms, especially
the sampling-based planning algorithms of Chapter 5, it helps to understand why
such constructions are avoided due to their complexity.

The simplest case for characterizing Cobs is when C = Rn for n = 1, 2, and
3, and the robot is a rigid body that is restricted to translation only. Under
these conditions, Cobs can be expressed as a type of convolution. For any two sets
X, Y ⊂ Rn, let their Minkowski difference10 be defined as

X ⊖ Y = {x− y ∈ Rn | x ∈ X and y ∈ Y }, (4.37)

10In some contexts, which include mathematics and image processing, the Minkowski differ-
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Figure 4.12: A one-dimensional C-space obstacle.

in which x−y is just vector subtraction on Rn. The Minkowski difference between
X and Y can also be considered as the Minkowski sum of X and −Y . The
Minkowski sum ⊕ is obtained by simply adding elements of X and Y in (4.37),
as opposed to subtracting them. The set −Y is obtained by replacing each y ∈ Y
by −y.

In terms of the Minkowski difference, Cobs = O⊖A(0). To see this, it is helpful
to consider a one-dimensional example.

Example 4.13 (One-Dimensional C-Space Obstacle) In Figure 4.12, both
the robot A = [−1, 2] and obstacle region O = [0, 4] are intervals in a one-
dimensional world, W = R. The negation, −A, of the robot is shown as the
interval [−2, 1]. Finally, by applying the Minkowski sum to O and −A, the C-
space obstacle, Cobs = [−2, 5], is obtained. �

The Minkowski difference is often considered as a convolution. It can even
be defined to appear the same as studied in differential equations and system
theory. For a one-dimensional example, let f : R→ {0, 1} be a function such that
f(x) = 1 if and only if x ∈ O. Similarly, let g : R → {0, 1} be a function such
that g(x) = 1 if and only if x ∈ A. The convolution

h(x) =

∫ ∞

−∞
f(τ)g(x− τ)dτ, (4.38)

yields a function h, for which h(x) > 0 if x ∈ int(Cobs), and h(x) = 0 otherwise.

A polygonal C-space obstacle A simple algorithm for computing Cobs exists
in the case of a 2D world that contains a convex polygonal obstacle O and a
convex polygonal robot A [344]. This is often called the star algorithm. For this
problem, Cobs is also a convex polygon. Recall that nonconvex obstacles and robots
can be modeled as the union of convex parts. The concepts discussed below can
also be applied in the nonconvex case by considering Cobs as the union of convex

ence or Minkowski subtraction is defined differently (instead, it is a kind of “erosion”). For this
reason, some authors prefer to define all operations in terms of the Minkowski sum, ⊕, which
is consistently defined in all contexts. Following this convention, we would define X ⊕ (−Y ),
which is equivalent to X ⊖ Y .
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O
A

Figure 4.13: A triangular robot and a rectangular obstacle.

Cobs O

(a) (b)

Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in
contact. (b) The edges traced out by the origin of A form Cobs.

components, each of which corresponds to a convex component of A colliding with
a convex component of O.

The method is based on sorting normals to the edges of the polygons on the
basis of angles. The key observation is that every edge of Cobs is a translated edge
from either A or O. In fact, every edge from O and A is used exactly once in
the construction of Cobs. The only problem is to determine the ordering of these
edges of Cobs. Let α1, α2, . . ., αn denote the angles of the inward edge normals
in counterclockwise order around A. Let β1, β2, . . ., βn denote the outward edge
normals to O. After sorting both sets of angles in circular order around S1, Cobs
can be constructed incrementally by using the edges that correspond to the sorted
normals, in the order in which they are encountered.

Example 4.14 (A Triangular Robot and Rectangular Obstacle) To gain
an understanding of the method, consider the case of a triangular robot and a
rectangular obstacle, as shown in Figure 4.13. The black dot on A denotes the
origin of its body frame. Consider sliding the robot around the obstacle in such a
way that they are always in contact, as shown in Figure 4.14a. This corresponds
to the traversal of all of the configurations in ∂Cobs (the boundary of Cobs). The
origin of A traces out the edges of Cobs, as shown in Figure 4.14b. There are seven
edges, and each edge corresponds to either an edge of A or an edge of O. The
directions of the normals are defined as shown in Figure 4.15a. When sorted as
shown in Figure 4.15b, the edges of Cobs can be incrementally constructed. �
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Figure 4.15: (a) Take the inward edge normals of A and the outward edge normals
of O. (b) Sort the edge normals around S1. This gives the order of edges in Cobs.

The running time of the algorithm is O(n +m), in which n is the number of
edges defining A, and m is the number of edges defining O. Note that the angles
can be sorted in linear time because they already appear in counterclockwise order
around A and O; they only need to be merged. If two edges are collinear, then
they can be placed end-to-end as a single edge of Cobs.

Computing the boundary of Cobs So far, the method quickly identifies each
edge that contributes to Cobs. It can also construct a solid representation of Cobs
in terms of half-planes. This requires defining n +m linear equations (assuming
there are no collinear edges).

A O OA

Type EV Type VE

Figure 4.16: Two different types of contact, each of which generates a different
kind of Cobs edge [152, 344].

There are two different ways in which an edge of Cobs is generated, as shown
in Figure 4.16 [153, 344]. Type EV contact refers to the case in which an edge
of A is in contact with a vertex of O. Type EV contacts contribute to n edges
of Cobs, once for each edge of A. Type VE contact refers to the case in which
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OA

p

v

n

Figure 4.17: Contact occurs when n and v are perpendicular.

a vertex of A is in contact with an edge of O. This contributes to m edges of
Cobs. The relationships between the edge normals are also shown in Figure 4.16.
For Type EV, the inward edge normal points between the outward edge normals
of the obstacle edges that share the contact vertex. Likewise for Type VE, the
outward edge normal of O points between the inward edge normals of A.

Using the ordering shown in Figure 4.15b, Type EV contacts occur precisely
when an edge normal of A is encountered, and Type VE contacts occur when an
edge normal of O is encountered. The task is to determine the line equation for
each occurrence. Consider the case of a Type EV contact; the Type VE contact
can be handled in a similar manner. In addition to the constraint on the directions
of the edge normals, the contact vertex of O must lie on the contact edge of A.
Recall that convex obstacles were constructed by the intersection of half-planes.
Each edge of Cobs can be defined in terms of a supporting half-plane; hence, it is
only necessary to determine whether the vertex of O lies on the line through the
contact edge of A. This condition occurs precisely as n and v are perpendicular,
as shown in Figure 4.17, and yields the constraint n · v = 0.

Note that the normal vector n does not depend on the configuration of A be-
cause the robot cannot rotate. The vector v, however, depends on the translation
q = (xt, yt) of the point p. Therefore, it is more appropriate to write the condition
as n ·v(xt, yt) = 0. The transformation equations are linear for translation; hence,
n · v(xt, yt) = 0 is the equation of a line in C. For example, if the coordinates
of p are (1, 2) for A(0, 0), then the expression for p at configuration (xt, yt) is
(1 + xt, 2 + yt). Let f(xt, yt) = n · v(xt, yt). Let H = {(xt, yt) ∈ C | f(xt, yt) ≤ 0}.
Observe that any configurations not in H must lie in Cfree. The half-plane H
is used to define one edge of Cobs. The obstacle region Cobs can be completely
characterized by intersecting the resulting half-planes for each of the Type EV
and Type VE contacts. This yields a convex polygon in C that has n +m sides,
as expected.

Example 4.15 (The Boundary of Cobs) Consider building a geometric model
of Cobs for the robot and obstacle shown in Figure 4.18. Suppose that the orien-
tation of A is fixed as shown, and C = R2. In this case, Cobs will be a convex
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a1

a2

A

(−1,−1)
a3

(1, 0)

(0, 1)
b1b2

b3 b4

(1, 1)(−1, 1)

(1,−1)(−1,−1)

O

Figure 4.18: Consider constructing the obstacle region for this example.

Type Vtx. Edge n v Half-Plane

VE a3 b4-b1 [1, 0] [xt − 2, yt] {q ∈ C | xt − 2 ≤ 0}
VE a3 b1-b2 [0, 1] [xt − 2, yt − 2] {q ∈ C | yt − 2 ≤ 0}
EV b2 a3-a1 [1,-2] [−xt, 2− yt] {q ∈ C | − xt + 2yt − 4 ≤ 0}
VE a1 b2-b3 [−1, 0] [2 + xt, yt − 1] {q ∈ C | − xt − 2 ≤ 0}
EV b3 a1-a2 [1, 1] [−1− xt,−yt] {q ∈ C | − xt − yt − 1 ≤ 0}
VE a2 b3-b4 [0,−1] [xt + 1, yt + 2] {q ∈ C | − yt − 2 ≤ 0}
EV b4 a2-a3 [−2, 1] [2− xt,−yt] {q ∈ C | 2xt − yt − 4 ≤ 0}

Figure 4.19: The various contact conditions are shown in the order as the edge
normals appear around S1 (using inward normals for A and outward normals for
O).

polygon with seven sides. The contact conditions that occur are shown in Figure
4.19. The ordering as the normals appear around S1 (using inward edge normals
for A and outward edge normals for O). The Cobs edges and their corresponding
contact types are shown in Figure 4.19. �

A polyhedral C-space obstacle Most of the previous ideas generalize nicely
for the case of a polyhedral robot that is capable of translation only in a 3D
world that contains polyhedral obstacles. If A and O are convex polyhedra, the
resulting Cobs is a convex polyhedron.

There are three different kinds of contacts that each lead to half-spaces in C:

1. Type FV: A face of A and a vertex of O

2. Type VF: A vertex of A and a face of O

3. Type EE: An edge of A and an edge of O .

These are shown in Figure 4.20. Each half-space defines a face of the polyhedron,
Cobs. The representation of Cobs can be constructed in O(n+m+k) time, in which
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Type FV Type VF Type EE

Figure 4.20: Three different types of contact, each of which generates a different
kind of Cobs face.

OA
v

n
v1
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Figure 4.21: An illustration to help in constructing Cobs when rotation is allowed.

n is the number of faces of A, m is the number of faces of O, and k is the number
of faces of Cobs, which is at most nm [211].

4.3.3 Explicitly Modeling Cobs: The General Case

Unfortunately, the cases in which Cobs is polygonal or polyhedral are quite lim-
ited. Most problems yield extremely complicated C-space obstacles. One good
point is that Cobs can be expressed using semi-algebraic models, for any robots
and obstacles defined using semi-algebraic models, even after applying any of the
transformations from Sections 3.2 to 3.4. It might not be true, however, for other
kinds of transformations, such as warping a flexible material [25, 300].

Consider the case of a convex polygonal robot and a convex polygonal obstacle
in a 2D world. Assume that any transformation in SE(2) may be applied to A;
thus, C = R2 × S1 and q = (xt, yt, θ). The task is to define a set of algebraic
primitives that can be combined to define Cobs. Once again, it is important to
distinguish between Type EV and Type VE contacts. Consider how to construct
the algebraic primitives for the Type EV contacts; Type VE can be handled in a
similar manner.

For the translation-only case, we were able to determine all of the Type EV
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contacts by sorting the edge normals. With rotation, the ordering of edge normals
depends on θ. This implies that the applicability of a Type EV contact depends
on θ, the robot orientation. Recall the constraint that the inward normal of
A must point between the outward normals of the edges of O that contain the
vertex of contact, as shown in Figure 4.21. This constraint can be expressed in
terms of inner products using the vectors v1 and v2. The statement regarding the
directions of the normals can equivalently be formulated as the statement that the
angle between n and v1, and between n and v2, must each be less than π/2. Using
inner products, this implies that n · v1 ≥ 0 and n · v2 ≥ 0. As in the translation
case, the condition n · v = 0 is required for contact. Observe that n now depends
on θ. For any q ∈ C, if n(θ) · v1 ≥ 0, n(θ) · v2 ≥ 0, and n(θ) · v(q) > 0, then
q ∈ Cfree. Let Hf denote the set of configurations that satisfy these conditions.
These conditions imply that a point is in Cfree. Furthermore, any other Type
EV and Type VE contacts could imply that more points are in Cfree. Ordinarily,
Hf ⊂ Cfree, which implies that the complement, C \Hf , is a superset of Cobs (thus,
Cobs ⊂ C \Hf ). Let HA = C \Hf . Using the primitives

H1 = {q ∈ C | n(θ) · v1 ≤ 0}, (4.39)

H2 = {q ∈ C | n(θ) · v2 ≤ 0}, (4.40)

and

H3 = {q ∈ C | n(θ) · v(q) ≤ 0}, (4.41)

let HA = H1 ∪H2 ∪H3.

It is known that Cobs ⊆ HA, but HA may contain points in Cfree. The sit-
uation is similar to what was explained in Section 3.1.1 for building a model
of a convex polygon from half-planes. In the current setting, it is only known
that any configuration outside of HA must be in Cfree. If HA is intersected with
all other corresponding sets for each possible Type EV and Type VE contact,
then the result is Cobs. Each contact has the opportunity to remove a portion of
Cfree from consideration. Eventually, enough pieces of Cfree are removed so that
the only configurations remaining must lie in Cobs. For any Type EV contact,
(H1 ∪H2) \H3 ⊆ Cfree. A similar statement can be made for Type VE contacts.
A logical predicate, similar to that defined in Section 3.1.1, can be constructed to
determine whether q ∈ Cobs in time that is linear in the number of Cobs primitives.

One important issue remains. The expression n(θ) is not a polynomial because
of the cos θ and sin θ terms in the rotation matrix of SO(2). If polynomials could
be substituted for these expressions, then everything would be fixed because the
expression of the normal vector (not a unit normal) and the inner product are
both linear functions, thereby transforming polynomials into polynomials. Such
a substitution can be made using stereographic projection (see [304]); however,
a simpler approach is to use complex numbers to represent rotation. Recall that
when a+ bi is used to represent rotation, each rotation matrix in SO(2) is repre-
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sented as (4.18), and the 3× 3 homogeneous transformation matrix becomes

T (a, b, xt, yt) =





a −b xt
b a yt
0 0 1



 . (4.42)

Using this matrix to transform a point [x y 1] results in the point coordinates
(ax− by+xt, bx+ay+ yt). Thus, any transformed point on A is a linear function
of a, b, xt, and yt.

This was a simple trick to make a nice, linear function, but what was the cost?
The dependency is now on a and b instead of θ. This appears to increase the
dimension of C from 3 to 4, and C = R4. However, an algebraic primitive must be
added that constrains a and b to lie on the unit circle.

By using complex numbers, primitives in R4 are obtained for each Type EV
and Type VE contact. By defining C = R4, the following algebraic primitives are
obtained for a Type EV contact:

H1 = {(xt, yt, a, b) ∈ C | n(xt, yt, a, b) · v1 ≤ 0}, (4.43)

H2 = {(xt, yt, a, b) ∈ C | n(xt, yt, a, b) · v2 ≤ 0}, (4.44)

and
H3 = {(xt, yt, a, b) ∈ C | n(xt, yt, a, b) · v(xt, yt, a, b) ≤ 0}. (4.45)

This yields HA = H1 ∪H2 ∪H3. To preserve the correct R2 × S1 topology of C,
the set

Hs = {(xt, yt, a, b) ∈ C | a2 + b2 − 1 = 0} (4.46)

is intersected with HA. The set Hs remains fixed over all Type EV and Type VE
contacts; therefore, it only needs to be considered once.

Example 4.16 (A Nonlinear Boundary for Cobs) Consider adding rotation to
the model described in Example 4.15. In this case, all possible contacts between
pairs of edges must be considered. For this example, there are 12 Type EV con-
tacts and 12 Type VE contacts. Each contact produces 3 algebraic primitives.
With the inclusion of Hs, this simple example produces 73 primitives! Rather
than construct all of these, we derive the primitives for a single contact. Consider
the Type VE contact between a3 and b4-b1. The outward edge normal n remains
fixed at n = [1, 0]. The vectors v1 and v2 are derived from the edges adjacent to
a3, which are a3-a2 and a3-a1. Note that each of a1, a2, and a3 depend on the con-
figuration. Using the 2D homogeneous transformation (3.35), a1 at configuration
(xt, yt, θ) is (cos θ+xt, sin θ+yt). Using a+bi to represent rotation, the expression
of a1 becomes (a+xt, b+yt). The expressions of a2 and a3 are (−b+xt, a+yt) and
(−a+b+xt,−b−a+yt), respectively. It follows that v1 = a2−a3 = [a−2b, 2a+b]
and v2 = a1 − a3 = [2a − b, a + 2b]. Note that v1 and v2 depend only on the ori-
entation of A, as expected. Assume that v is drawn from b4 to a3. This yields
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v = a3 − b4 = [−a+ b+ xt − 1,−a− b+ yt + 1]. The inner products v1 · n, v2 · n,
and v · n can easily be computed to form H1, H2, and H3 as algebraic primitives.

One interesting observation can be made here. The only nonlinear primitive
is a2 + b2 = 1. Therefore, Cobs can be considered as a linear polytope (like a
polyhedron, but one dimension higher) in R4 that is intersected with a cylinder.
�

3D rigid bodies For the case of a 3D rigid body to which any transformation
in SE(3) may be applied, the same general principles apply. The quaternion
parameterization once again becomes the right way to represent SO(3) because
using (4.20) avoids all trigonometric functions in the same way that (4.18) avoided
them for SO(2). Unfortunately, (4.20) is not linear in the configuration variables,
as it was for (4.18), but it is at least polynomial. This enables semi-algebraic
models to be formed for Cobs. Type FV, VF, and EE contacts arise for the SE(3)
case. From all of the contact conditions, polynomials that correspond to each
patch of Cobs can be made. These patches are polynomials in seven variables:
xt, yt, zt, a, b, c, and d. Once again, a special primitive must be intersected
with all others; here, it enforces the constraint that unit quaternions are used.
This reduces the dimension from 7 back down to 6. Also, constraints should be
added to throw away half of S3, which is redundant because of the identification
of antipodal points on S3.

Chains and trees of bodies For chains and trees of bodies, the ideas are con-
ceptually the same, but the algebra becomes more cumbersome. Recall that the
transformation for each link is obtained by a product of homogeneous transforma-
tion matrices, as given in (3.53) and (3.57) for the 2D and 3D cases, respectively.
If the rotation part is parameterized using complex numbers for SO(2) or quater-
nions for SO(3), then each matrix consists of polynomial entries. After the matrix
product is formed, polynomial expressions in terms of the configuration variables
are obtained. Therefore, a semi-algebraic model can be constructed. For each
link, all of the contact types need to be considered. Extrapolating from Examples
4.15 and 4.16, you can imagine that no human would ever want to do all of that
by hand, but it can at least be automated. The ability to construct this rep-
resentation automatically is also very important for the existence of theoretical
algorithms that solve the motion planning problem combinatorially; see Section
6.4.

If the kinematic chains were formulated for W = R3 using the DH parameter-
ization, it may be inconvenient to convert to the quaternion representation. One
way to avoid this is to use complex numbers to represent each of the θi and αi vari-
ables that appear as configuration variables. This can be accomplished because
only cos and sin functions appear in the transformation matrices. They can be
replaced by the real and imaginary parts, respectively, of a complex number. The
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dimension will be increased, but this will be appropriately reduced after imposing
the constraints that all complex numbers must have unit magnitude.

4.4 Closed Kinematic Chains

This section continues the discussion from Section 3.4. Suppose that a collection
of links is arranged in a way that forms loops. In this case, the C-space becomes
much more complicated because the joint angles must be chosen to ensure that
the loops remain closed. This leads to constraints such as that shown in (3.80)
and Figure 3.26, in which some links must maintain specified positions relative
to each other. Consider the set of all configurations that satisfy such constraints.
Is this a manifold? It turns out, unfortunately, that the answer is generally no.
However, the C-space belongs to a nice family of spaces from algebraic geometry
called varieties. Algebraic geometry deals with characterizing the solution sets of
polynomials. As seen so far in this chapter, all of the kinematics can be expressed
as polynomials. Therefore, it may not be surprising that the resulting constraints
are a system of polynomials whose solution set represents the C-space for closed
kinematic linkages. Although the algebraic varieties considered here need not be
manifolds, they can be decomposed into a finite collection of manifolds that fit
together nicely.11

Unfortunately, a parameterization of the variety that arises from closed chains
is available in only a few simple cases. Even the topology of the variety is extremely
difficult to characterize. To make matters worse, it was proved in [253] that
for every closed, bounded real algebraic variety that can be embedded in Rn,
there exists a linkage whose C-space is homeomorphic to it. These troubles imply
that most of the time, motion planning algorithms need to work directly with
implicit polynomials. For the algebraic methods of Section 6.4.2, this does not
pose any conceptual difficulty because the methods already work directly with
polynomials. Sampling-based methods usually rely on the ability to efficiently
sample configurations, which cannot be easily adapted to a variety without a
parameterization. Section 7.4 covers recent methods that extend sampling-based
planning algorithms to work for varieties that arise from closed chains.

4.4.1 Mathematical Concepts

To understand varieties, it will be helpful to have definitions of polynomials and
their solutions that are more formal than the presentation in Chapter 3.

Fields Polynomials are usually defined over a field, which is another object from
algebra. A field is similar to a group, but it has more operations and axioms.
The definition is given below, and while reading it, keep in mind several familiar

11This is called a Whitney stratification [92, 473].
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examples of fields: the rationals, Q; the reals, R; and the complex plane, C. You
may verify that these fields satisfy the following six axioms.

A field is a set F that has two binary operations, · : F × F → F (called
multiplication) and + : F × F → F (called addition), for which the following
axioms are satisfied:

1. (Associativity) For all a, b, c ∈ F, (a+ b) + c = a+ (b+ c) and (a · b) · c =
a · (b · c).

2. (Commutativity) For all a, b ∈ F, a+ b = b+ a and a · b = b · a.

3. (Distributivity) For all a, b, c ∈ F, a · (b+ c) = a · b+ a · c.

4. (Identities) There exist 0, 1 ∈ F, such that a+ 0 = a · 1 = a for all a ∈ F.

5. (Additive Inverses) For every a ∈ F, there exists some b ∈ F such that
a+ b = 0.

6. (Multiplicative Inverses) For every a ∈ F , except a = 0, there exists
some c ∈ F such that a · c = 1.

Compare these axioms to the group definition from Section 4.2.1. Note that
a field can be considered as two different kinds of groups, one with respect to
multiplication and the other with respect to addition. Fields additionally require
commutativity; hence, we cannot, for example, build a field from quaternions.
The distributivity axiom appears because there is now an interaction between
two different operations, which was not possible with groups.

Polynomials Suppose there are n variables, x1, x2, . . . , xn. A monomial over a
field F is a product of the form

xd11 · xd22 · · · · xdnn , (4.47)

in which all of the exponents d1, d2, . . ., dn are positive integers. The total degree
of the monomial is d1 + · · ·+ dn.

A polynomial f in variables x1, . . . , xn with coefficients in F is a finite lin-
ear combination of monomials that have coefficients in F. A polynomial can be
expressed as

m
∑

i=1

cimi, (4.48)

in which mi is a monomial as shown in (4.47), and ci ∈ F is a coefficient. If ci 6= 0,
then each cimi is called a term. Note that the exponents di may be different
for every term of f . The total degree of f is the maximum total degree among
the monomials of the terms of f . The set of all polynomials in x1, . . . , xn with
coefficients in F is denoted by F[x1, . . . , xn].
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Example 4.17 (Polynomials) The definitions correspond exactly to our intu-
itive notion of a polynomial. For example, suppose F = Q. An example of a
polynomial in Q[x1, x2, x3] is

x41 − 1
2
x1x2x

3
3 + x21x

2
2 + 4. (4.49)

Note that 1 is a valid monomial; hence, any element of F may appear alone as a
term, such as the 4 ∈ Q in the polynomial above. The total degree of (4.49) is
5 due to the second term. An equivalent polynomial may be written using nicer
variables. Using x, y, and z as variables yields

x4 − 1
2
xyz3 + x2y2 + 4, (4.50)

which belongs to Q[x, y, z]. �

The set F[x1, . . . , xn] of polynomials is actually a group with respect to addi-
tion; however, it is not a field. Even though polynomials can be multiplied, some
polynomials do not have a multiplicative inverse. Therefore, the set F[x1, . . . , xn]
is often referred to as a commutative ring of polynomials. A commutative ring is
a set with two operations for which every axiom for fields is satisfied except the
last one, which would require a multiplicative inverse.

Varieties For a given field F and positive integer n, the n-dimensional affine
space over F is the set

Fn = {(c1, . . . , cn) | c1, . . . , cn ∈ F}. (4.51)

For our purposes in this section, an affine space can be considered as a vector
space (for an exact definition, see [225]). Thus, Fn is like a vector version of the
scalar field F. Familiar examples of this are Qn, Rn, and Cn.

A polynomial in f ∈ F[x1, . . . , xn] can be converted into a function,

f : Fn → F, (4.52)

by substituting elements of F for each variable and evaluating the expression using
the field operations. This can be written as f(a1, . . . , an) ∈ F, in which each ai
denotes an element of F that is substituted for the variable xi.

We now arrive at an interesting question. For a given f , what are the elements
of Fn such that f(a1, . . . , an) = 0? We could also ask the question for some nonzero
element, but notice that this is not necessary because the polynomial may be
redefined to formulate the question using 0. For example, what are the elements
of R2 such that x2 + y2 = 1? This familiar equation for S1 can be reformulated to
yield: What are the elements of R2 such that x2 + y2 − 1 = 0?

Let F be a field and let {f1, . . . , fk} be a set of polynomials in F[x1, . . . , xn].
The set

V (f1, . . . , fk) = {(a1, . . . , an) ∈ F | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ k} (4.53)
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is called the (affine) variety defined by f1, . . . , fk. One interesting fact is that
unions and intersections of varieties are varieties. Therefore, they behave like the
semi-algebraic sets from Section 3.1.2, but for varieties only equality constraints
are allowed. Consider the varieties V (f1, . . . , fk) and V (g1, . . . , gl). Their inter-
section is given by

V (f1, . . . , fk) ∩ V (g1, . . . , gl) = V (f1, . . . , fk, g1, . . . , gl), (4.54)

because each element of Fn must produce a 0 value for each of the polynomials in
{f1, . . . , fk, g1, . . . , gl}.

To obtain unions, the polynomials simply need to be multiplied. For example,
consider the varieties V1, V2 ⊂ F defined as

V1 = {(a1, . . . , an) ∈ F | f1(a1, . . . , an) = 0} (4.55)

and

V2 = {(a1, . . . , an) ∈ F | f2(a1, . . . , an) = 0}. (4.56)

The set V1 ∪ V2 ⊂ F is obtained by forming the polynomial f = f1f2. Note that
f(a1, . . . , an) = 0 if either f1(a1, . . . , an) = 0 or f2(a1, . . . , an) = 0. Therefore,
V1∪V2 is a variety. The varieties V1 and V2 were defined using a single polynomial,
but the same idea applies to any variety. All pairs of the form figj must appear
in the argument of V (·) if there are multiple polynomials.

4.4.2 Kinematic Chains in R2

To illustrate the concepts it will be helpful to study a simple case in detail. Let
W = R2, and suppose there is a chain of links, A1, . . ., An, as considered in
Example 3.3 for n = 3. Suppose that the first link is attached at the origin of
W by a revolute joint, and every other link, Ai is attached to Ai−1 by a revolute
joint. This yields the C-space

C = S1 × S1 × · · · × S1 = Tn, (4.57)

which is the n-dimensional torus.

Two links If there are two links, A1 and A2, then the C-space can be nicely
visualized as a square with opposite faces identified. Each coordinate, θ1 and θ2,
ranges from 0 to 2π, for which 0 ∼ 2π. Suppose that each link has length 1. This
yields a1 = 1. A point (x, y) ∈ A2 is transformed as





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1









cos θ2 − sin θ2 1
sin θ2 cos θ2 0
0 0 1









x
y
1



 . (4.58)

174 S. M. LaValle: Planning Algorithms

To obtain polynomials, the technique from Section 4.2.2 is applied to replace
the trigonometric functions using ai = cos θi and bi = sin θi, subject to the con-
straint a2i + b2i = 1. This results in





a1 −b1 0
b1 a1 0
0 0 1









a2 −b2 1
b2 a2 0
0 0 1









x
y
1



 , (4.59)

for which the constraints a2i + b2i = 1 for i = 1, 2 must be satisfied. This preserves
the torus topology of C, but now the C-space is embedded in R4. The coordinates
of each point are (a1, b1, a2, b2) ∈ R4; however, there are only two degrees of
freedom because each ai, bi pair must lie on a unit circle.

Multiplying the matrices in (4.59) yields the polynomials, f1, f2 ∈ R[a1, b1, a2, b2],

f1 = xa1a2 − ya1b2 − xb1b2 + ya2b1 + a1 (4.60)

and
f2 = −ya1a2 + xa1b2 + xa2b1 − yb1b2 + b1, (4.61)

for the x and y coordinates, respectively. Note that the polynomial variables are
configuration parameters; x and y are not polynomial variables. For a given point
(x, y) ∈ A2, all coefficients are determined.

A zero-dimensional variety Now a kinematic closure constraint will be im-
posed. Fix the point (1, 0) in the body frame of A2 at (1, 1) in W . This yields
the constraints

f1 = a1a2 − b1b2 + a1 = 1 (4.62)

and
f2 = a1b2 + a2b1 + b1 = 1, (4.63)

by substituting x = 1 and y = 0 into (4.60) and (4.61). This yields the variety

V (a1a2 − b1b2 + a1 − 1, a1b2 + a2b1 + b1 − 1, a21 + b21 − 1, a22 + b22 − 1), (4.64)

which is a subset of R4. The polynomials are slightly modified because each
constraint must be written in the form f = 0.

Although (4.64) represents the constrained configuration space for the chain
of two links, it is not very explicit. Without an explicit characterization (i.e., a
parameterization), it complicates motion planning. From Figure 4.22 it can be
seen that there are only two solutions. These occur for θ1 = 0, θ2 = π/2 and
θ1 = π/2, θ2 = −π/2. In terms of the polynomial variables, (a1, b1, a2, b2), the
two solutions are (1, 0, 0, 1) and (0, 1, 0,−1). These may be substituted into each
polynomial in (4.64) to verify that 0 is obtained. Thus, the variety represents two
points in R4. This can also be interpreted as two points on the torus, S1 × S1.

It might not be surprising that the set of solutions has dimension zero because
there are four independent constraints, shown in (4.64), and four variables. De-
pending on the choices, the variety may be empty. For example, it is physically
impossible to bring the point (1, 0) ∈ A2 to (1000, 0) ∈ W .
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A1

A2

y1

x1

p

Figure 4.22: Two configurations hold the point p at (1, 1).

A one-dimensional variety The most interesting and complicated situations
occur when there is a continuum of solutions. For example, if one of the constraints
is removed, then a one-dimensional set of solutions can be obtained. Suppose only
one variable is constrained for the example in Figure 4.22. Intuitively, this should
yield a one-dimensional variety. Set the x coordinate to 0, which yields

a1a2 − b1b2 + a1 = 0, (4.65)

and allow any possible value for y. As shown in Figure 4.23a, the point p must fol-
low the y-axis. (This is equivalent to a three-bar linkage that can be constructed
by making a third joint that is prismatic and forced to stay along the y-axis.)
Figure 4.23b shows the resulting variety V (a1a2− b1b2+ a1) but plotted in θ1− θ2
coordinates to reduce the dimension from 4 to 2 for visualization purposes. To
correctly interpret the figures in Figure 4.23, recall that the topology is S1 × S1,
which means that the top and bottom are identified, and also the sides are identi-
fied. The center of Figure 4.23b, which corresponds to (θ1, θ2) = (π, π), prevents
the variety from being a manifold. The resulting space is actually homeomorphic
to two circles that touch at a point. Thus, even with such a simple example,
the nice manifold structure may disappear. Observe that at (π, π) the links are
completely overlapped, and the point p of A2 is placed at (0, 0) in W . The hori-
zontal line in Figure 4.23b corresponds to keeping the two links overlapping and
swinging them around together by varying θ1. The diagonal lines correspond to
moving along configurations such as the one shown in Figure 4.23a. Note that the
links and the y-axis always form an isosceles triangle, which can be used to show
that the solution set is any pair of angles, θ1, θ2 for which θ2 = π − θ1. This is
the reason why the diagonal curves in Figure 4.23b are linear. Figures 4.23c and
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4.23d show the varieties for the constraints

a1a2 − b1b2 + a1 =
1
8
, (4.66)

and
a1a2 − b1b2 + a1 = 1, (4.67)

respectively. In these cases, the point (0, 1) in A2 must follow the x = 1/8 and
x = 1 axes, respectively. The varieties are manifolds, which are homeomorphic
to S1. The sequence from Figure 4.23b to 4.23d can be imagined as part of an
animation in which the variety shrinks into a small circle. Eventually, it shrinks
to a point for the case a1a2 − b1b2 + a1 = 2, because the only solution is when
θ1 = θ2 = 0. Beyond this, the variety is the empty set because there are no
solutions. Thus, by allowing one constraint to vary, four different topologies are
obtained: 1) two circles joined at a point, 2) a circle, 3) a point, and 4) the empty
set.

Three links Since visualization is still possible with one more dimension, sup-
pose there are three links, A1, A2, and A3. The C-space can be visualized as a
3D cube with opposite faces identified. Each coordinate θi ranges from 0 to 2π,
for which 0 ∼ 2π. Suppose that each link has length 1 to obtain a1 = a2 = 1. A
point (x, y) ∈ A3 is transformed as





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1









cos θ2 − sin θ2 10
sin θ2 cos θ2 0
0 0 1









cos θ3 − sin θ3 10
sin θ3 cos θ3 0
0 0 1









x
y
1



 .

(4.68)
To obtain polynomials, let ai = cos θi and bi = sin θi, which results in





a1 −b1 0
b1 a1 0
0 0 1









a2 −b2 1
b2 a2 0
0 0 1









a3 −b3 1
b3 a3 0
0 0 1









x
y
1



 , (4.69)

for which the constraints a2i + b2i = 1 for i = 1, 2, 3 must also be satisfied. This
preserves the torus topology of C, but now it is embedded in R6. Multiplying the
matrices yields the polynomials f1, f2 ∈ R[a1, b1, a2, b2, a3, b3], defined as

f1 = 2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1, (4.70)

and
f2 = 2b1a2a3 − b1b2b3 + b1a2 + 2a1b2a3 + a1a2b3, (4.71)

for the x and y coordinates, respectively.
Again, consider imposing a single constraint,

2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1 = 0, (4.72)
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Figure 4.23: A single constraint was added to the point p on A2, as shown in (a).
The curves in (b), (c), and (d) depict the variety for the cases of f1 = 0, f1 = 1/8,
and f1 = 1, respectively.
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θ3

θ1 θ2

Figure 4.24: The variety for the three-link chain with f1 = 0 is a 2D manifold.

which constrains the point (1, 0) ∈ A3 to traverse the y-axis. The resulting variety
is an interesting manifold, depicted in Figure 4.24 (remember that the sides of the
cube are identified).

Increasing the required f1 value for the constraint on the final point causes the
variety to shrink. Snapshots for f1 = 7/8 and f1 = 2 are shown in Figure 4.25. At
f1 = 1, the variety is not a manifold, but it then changes to S2. Eventually, this
sphere is reduced to a point at f1 = 3, and then for f1 > 3 the variety is empty.

Instead of the constraint f1 = 0, we could instead constrain the y coordinate
of p to obtain f2 = 0. This yields another 2D variety. If both constraints are
enforced simultaneously, then the result is the intersection of the two original
varieties. For example, suppose f1 = 1 and f2 = 0. This is equivalent to a kind of
four-bar mechanism [163], in which the fourth link, A4, is fixed along the x-axis
from 0 to 1. The resulting variety,

V (2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1 − 1,

2b1a2a3 − b1b2b3 + b1a2 + 2a1b2a3 + a1a2b3),
(4.73)

is depicted in Figure 4.26. Using the θ1, θ2, θ3 coordinates, the solution may be
easily parameterized as a collection of line segments. For all t ∈ [0, π], there exist
solution points at (0, 2t, π), (t, 2π − t, π + t), (2π − t, t, π − t), (2π − t, π, π + t),
and (t, π, π − t). Note that once again the variety is not a manifold. A family
of interesting varieties can be generated for the four-bar mechanism by selecting
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θ1

θ3

θ2

θ2

θ1

θ3

f1 = 7/8 f1 = 2

Figure 4.25: If f1 > 0, then the variety shrinks. If 1 < p < 3, the variety is a
sphere. At f1 = 0 it is a point, and for f1 > 3 it completely vanishes.

different lengths for the links. The topologies of these mechanisms have been
determined for 2D and a 3D extension that uses spherical joints (see [364]).

4.4.3 Defining the Variety for General Linkages

We now describe a general methodology for defining the variety. Keeping the
previous examples in mind will help in understanding the formulation. In the
general case, each constraint can be thought of as a statement of the form:

The ith coordinate of a point p ∈ Aj needs to be held at the value x in
the body frame of Ak.

For the variety in Figure 4.23b, the first coordinate of a point p ∈ A2 was held at
the value 0 in W in the body frame of A1. The general form must also allow a
point to be fixed with respect to the body frames of links other than A1; this did
not occur for the example in Section 4.4.2

Suppose that n links, A1,. . .,An, move in W = R2 or W = R3. One link, A1

for convenience, is designated as the root as defined in Section 3.4. Some links
are attached in pairs to form joints. A linkage graph, G(V,E), is constructed from
the links and joints. Each vertex of G represents a link in L. Each edge in G
represents a joint. This definition may seem somewhat backward, especially in
the plane because links often look like edges and joints look like vertices. This
alternative assignment is also possible, but it is not easy to generalize to the case
of a single link that has more than two joints. If more than two links are attached
at the same point, each generates an edge of G.
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θ1

θ2

θ3
θ3

θ2

θ1

Figure 4.26: If two constraints, f1 = 1 and f2 = 0, are imposed, then the varieties
are intersected to obtain a 1D set of solutions. The example is equivalent to a
well-studied four-bar mechanism.

The steps to determine the polynomial constraints that express the variety are
as follows:

1. Define the linkage graph G with one vertex per link and one edge per joint.
If a joint connects more than two bodies, then one body must be designated
as a junction. See Figures 4.27 and 4.28a. In Figure 4.28, links 4, 13, and
23 are designated as junctions in this way.

2. Designate one link as the root, A1. This link may either be fixed in W , or
transformations may be applied. In the latter case, the set of transforma-
tions could be SE(2) or SE(3), depending on the dimension of W . This
enables the entire linkage to move independently of its internal motions.

3. Eliminate the loops by constructing a spanning tree T of the linkage graph,
G. This implies that every vertex (or link) is reachable by a path from
the root). Any spanning tree may be used. Figure 4.28b shows a resulting
spanning tree after deleting the edges shown with dashed lines.

4. Apply the techniques of Section 3.4 to assign body frames and transforma-
tions to the resulting tree of links.

5. For each edge of G that does not appear in T , write a set of constraints
between the two corresponding links. In Figure 4.28b, it can be seen that
constraints are needed between four pairs of links: 14–15, 21–22, 23–24, and
19–23.
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Figure 4.27: A complicated linkage that has 29 links, several loops, links with more
than two bodies, and bodies with more than two links. Each integer i indicates
link Ai.

This is perhaps the trickiest part. For examples like the one shown in
Figure 3.27, the constraint may be formulated as in (3.81). This is equivalent
to what was done to obtain the example in Figure 4.26, which means that
there are actually two constraints, one for each of the x and y coordinates.
This will also work for the example shown in Figure 4.27 if all joints are
revolute. Suppose instead that two bodies, Aj and Ak, must be rigidly
attached. This requires adding one more constraint that prevents mutual
rotation. This could be achieved by selecting another point on Aj and
ensuring that one of its coordinates is in the correct position in the body
frame of Ak. If four equations are added, two from each point, then one of
them would be redundant because there are only three degrees of freedom
possible for Aj relative to Ak (which comes from the dimension of SE(2)).

A similar but more complicated situation occurs for W = R3. Holding a
single point fixed produces three constraints. If a single point is held fixed,
then Aj may achieve any rotation in SO(3) with respect to Ak. This implies
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Figure 4.28: (a) One way to make the linkage graph that corresponds to the
linkage in Figure 4.27. (b) A spanning tree is indicated by showing the removed
edges with dashed lines.

that Aj and Ak are attached by a spherical joint. If they are attached by a
revolute joint, then two more constraints are needed, which can be chosen
from the coordinates of a second point. If Aj and Ak are rigidly attached,
then one constraint from a third point is needed. In total, however, there can
be no more than six independent constraints because this is the dimension
of SE(3).

6. Convert the trigonometric functions to polynomials. For any 2D transfor-
mation, the familiar substitution of complex numbers may be made. If the
DH parameterization is used for the 3D case, then each of the cos θi, sin θi
expressions can be parameterized with one complex number, and each of the
cosαi, sinαi expressions can be parameterized with another. If the rotation
matrix for SO(3) is directly used in the parameterization, then the quater-
nion parameterization should be used. In all of these cases, polynomial
expressions are obtained.

7. List the constraints as polynomial equations of the form f = 0. To write
the description of the variety, all of the polynomials must be set equal to
zero, as was done for the examples in Section 4.4.2.

Is it possible to determine the dimension of the variety from the number of
independent constraints? The answer is generally no, which can be easily seen
from the chains of links in Section 4.4.2; they produced varieties of various di-
mensions, depending on the particular equations. Techniques for computing the
dimension exist but require much more machinery than is presented here (see the
literature overview at the end of the chapter). However, there is a way to provide
a simple upper bound on the number of degrees of freedom. Suppose the total
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degrees of freedom of the linkage in spanning tree form is m. Each independent
constraint can remove at most one degree of freedom. Thus, if there are l inde-
pendent constraints, then the variety can have no more than m − l dimensions.
One expression of this for a general class of mechanisms is the Kutzbach criterion;
the planar version of this is called Grübler’s formula [163].

One final concern is the obstacle region, Cobs. Once the variety has been identi-
fied, the obstacle region and motion planning definitions in (4.34) and Formulation
4.1 do not need to be changed. The configuration space C must be redefined, how-
ever, to be the set of configurations that satisfy the closure constraints.

Further Reading

Section 4.1 introduced the basic definitions and concepts of topology. Further study
of this fascinating subject can provide a much deeper understanding of configuration
spaces. There are many books on topology, some of which may be intimidating, de-
pending on your level of math training. For a heavily illustrated, gentle introduction
to topology, see [281]. Another gentle introduction appears in [256]. An excellent text
at the graduate level is available on-line: [226]. Other sources include [30, 232]. To
understand the motivation for many technical definitions in topology, [449] is helpful.
The manifold coverage in Section 4.1.2 was simpler than that found in most sources
because most sources introduce smooth manifolds, which are complicated by differentia-
bility requirements (these were not needed in this chapter); see Section 8.3.2 for smooth
manifolds. For the configuration spaces of points moving on a topological graph, see [3].

Section 4.2 provided basic C-space definitions. For further reading on matrix groups
and their topological properties, see [45], which provides a transition into more advanced
material on Lie group theory. For more about quaternions in engineering, see [113, 294].
The remainder of Section 4.2 and most of Section 4.3 were inspired by the coverage in
[304]. C-spaces are also covered in [118]. For further reading on computing represen-
tations of Cobs, see [262, 380] for bitmaps, and Chapter 6 and [435] for combinatorial
approaches.

Much of the presentation in Section 4.4 was inspired by the nice introduction to alge-
braic varieties in [138], which even includes robotics examples; methods for determining
the dimension of a variety are also covered. More algorithmic coverage appears in [369].
See [360] for detailed coverage of robots that are designed with closed kinematic chains.

Exercises

1. Consider the set X = {1, 2, 3, 4, 5}. Let X, ∅, {1, 3}, {1, 2}, {2, 3}, {1}, {2}, and
{3} be the collection of all subsets of X that are designated as open sets.

(a) Is X a topological space?

(b) Is it a topological space if {1, 2, 3} is added to the collection of open sets?
Explain.

(c) What are the closed sets (assuming {1, 2, 3} is included as an open set)?

(d) Are any subsets of X neither open nor closed?
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2. Continuous functions for the strange topology:

(a) Give an example of a continuous function, f : X → X, for the strange
topology in Example 4.4.

(b) Characterize the set of all possible continuous functions.

3. For the letters of the Russian alphabet, A, B, V, G, D, E, Ë, Ж, Z, I, I,
K, L, M, N, O, P, R, S, T, U, F, H, C, Q, X, W, Ъ, Y, Ь, З, �,
�, determine which pairs are homeomorphic. Imagine each as a 1D subset of R2

and draw them accordingly before solving the problem.

4. Prove that homeomorphisms yield an equivalence relation on the collection of all
topological spaces.

5. What is the dimension of the C-space for a cylindrical rod that can translate and
rotate in R3? If the rod is rotated about its central axis, it is assumed that the
rod’s position and orientation are not changed in any detectable way. Express
the C-space of the rod in terms of a Cartesian product of simpler spaces (such as
S1, S2, Rn, P 2, etc.). What is your reasoning?

6. Let τ1 : [0, 1] → R2 be a loop path that traverses the unit circle in the plane,
defined as τ1(s) = (cos(2πs), sin(2πs)). Let τ2 : [0, 1] → R2 be another loop
path: τ1(s) = (−2 + 3 cos(2πs), 12 sin(2πs)). This path traverses an ellipse that
is centered at (−2, 0). Show that τ1 and τ2 are homotopic (by constructing a
continuous function with an additional parameter that “morphs” τ1 into τ2).

7. Prove that homotopy yields an equivalence relation on the set of all paths from
some x1 ∈ X to some x2 ∈ X, in which x1 and x2 may be chosen arbitrarily.

8. Determine the C-space for a spacecraft that can translate and rotate in a 2D
Asteroids-style video game. The sides of the screen are identified. The top and
bottom are also identified. There are no “twists” in the identifications.

9. Repeat the derivation of HA from Section 4.3.3, but instead consider Type VE
contacts.

10. Determine the C-space for a car that drives around on a huge sphere (such as
the earth with no mountains or oceans). Assume the sphere is big enough so
that its curvature may be neglected (e.g., the car rests flatly on the earth without
wobbling). [Hint: It is not S2 × S1.]

11. Suppose that A and O are each defined as equilateral triangles, with coordinates
(0, 0), (2, 0), and (1,

√
3). Determine the C-space obstacle. Specify the coordinates

of all of its vertices and indicate the corresponding contact type for each edge.

12. Show that (4.20) is a valid rotation matrix for all unit quaternions.

13. Show that F[x1, . . . , xn], the set of polynomials over a field F with variables
x1, . . . , xn, is a group with respect to addition.

14. Quaternions:
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0 1
0

1/3

2/3

1

(a) (b)

Figure 4.29: (a) What topological space is obtained after slicing the Möbius band?
(b) Is a manifold obtained after tearing holes out of the plane?

(a) Define a unit quaternion h1 that expresses a rotation of −π
2 around the axis

given by the vector [ 1√
3

1√
3

1√
3
].

(b) Define a unit quaternion h2 that expresses a rotation of π around the axis
given by the vector [0 1 0].

(c) Suppose the rotation represented by h1 is performed, followed by the rotation
represented by h2. This combination of rotations can be represented as a
single rotation around an axis given by a vector. Find this axis and the
angle of rotation about this axis.

15. What topological space is contributed to the C-space by a spherical joint that
achieves any orientation except the identity?

16. Suppose five polyhedral bodies float freely in a 3D world. They are each capable
of rotating and translating. If these are treated as “one” composite robot, what
is the topology of the resulting C-space (assume that the bodies are not attached
to each other)? What is its dimension?

17. Suppose a goal region G ⊆ W is defined in the C-space by requiring that the
entire robot is contained in G. For example, a car may have to be parked entirely
within a space in a parking lot.

(a) Give a definition of Cgoal that is similar to (4.34) but pertains to containment
of A inside of G.

(b) For the case in which A and G are convex and polygonal, develop an algo-
rithm for efficiently computing Cgoal.

18. Figure 4.29a shows the Möbius band defined by identification of sides of the unit
square. Imagine that scissors are used to cut the band along the two dashed lines.
Describe the resulting topological space. Is it a manifold? Explain.

19. Consider Figure 4.29b, which shows the set of points in R2 that are remaining
after a closed disc of radius 1/4 with center (x, y) is removed for every value of
(x, y) such that x and y are both integers.
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(a) Is the remaining set of points a manifold? Explain.

(b) Now remove discs of radius 1/2 instead of 1/4. Is a manifold obtained?

(c) Finally, remove disks of radius 2/3. Is a manifold obtained?

20. Show that the solution curves shown in Figure 4.26 correctly illustrate the variety
given in (4.73).

21. Find the number of faces of Cobs for a cube and regular tetrahedron, assuming C
is SE(3). How many faces of each contact type are obtained?

22. Following the analysis matrix subgroups from Section 4.2, determine the dimen-
sion of SO(4), the group of 4 × 4 rotation matrices. Can you characterize this
topological space?

23. Suppose that a kinematic chain of spherical joints is given. Show how to use (4.20)
as the rotation part in each homogeneous transformation matrix, as opposed to
using the DH parameterization. Explain why using (4.20) would be preferable for
motion planning applications.

24. Suppose that the constraint that c is held to position (10, 10) is imposed on the
mechanism shown in Figure 3.29. Using complex numbers to represent rotation,
express this constraint using polynomial equations.

25. The Tangle toy is made of 18 pieces of macaroni-shaped joints that are attached
together to form a loop. Each attachment between joints forms a revolute joint.
Each link is a curved tube that extends around 1/4 of a circle. What is the
dimension of the variety that results from maintaining the loop? What is its
configuration space (accounting for internal degrees of freedom), assuming the
toy can be placed anywhere in R3?

Implementations

26. Computing C-space obstacles:

(a) Implement the algorithm from Section 4.3.2 to construct a convex, polygonal
C-space obstacle.

(b) Now allow the robot to rotate in the plane. For any convex robot and obsta-
cle, compute the orientations at which the C-space obstacle fundamentally
changes due to different Type EV and Type VE contacts becoming active.

(c) Animate the changing C-space obstacle by using the robot orientation as
the time axis in the animation.

27. Consider “straight-line” paths that start at the origin (lower left corner) of the
manifolds shown in Figure 4.5 and leave at a particular angle, which is input to
the program. The lines must respect identifications; thus, as the line hits the edge
of the square, it may continue onward. Study the conditions under which the lines
fill the entire space versus forming a finite pattern (i.e., a segment, stripes, or a
tiling).



Chapter 5

Sampling-Based Motion Planning

There are two main philosophies for addressing the motion planning problem, in
Formulation 4.1 from Section 4.3.1. This chapter presents one of the philosophies,
sampling-based motion planning, which is outlined in Figure 5.1. The main idea is
to avoid the explicit construction of Cobs, as described in Section 4.3, and instead
conduct a search that probes the C-space with a sampling scheme. This probing
is enabled by a collision detection module, which the motion planning algorithm
considers as a “black box.” This enables the development of planning algorithms
that are independent of the particular geometric models. The collision detection
module handles concerns such as whether the models are semi-algebraic sets, 3D
triangles, nonconvex polyhedra, and so on. This general philosophy has been very
successful in recent years for solving problems from robotics, manufacturing, and
biological applications that involve thousands and even millions of geometric prim-
itives. Such problems would be practically impossible to solve using techniques
that explicitly represent Cobs.

Notions of completeness It is useful to define several notions of completeness
for sampling-based algorithms. These algorithms have the drawback that they
result in weaker guarantees that the problem will be solved. An algorithm is
considered complete if for any input it correctly reports whether there is a solu-

Sampling−Based
Motion Planning AlgorithmCollision

Detection
Geometric
Models

Discrete
Searching

C−Space
Sampling

Figure 5.1: The sampling-based planning philosophy uses collision detection as
a “black box” that separates the motion planning from the particular geometric
and kinematic models. C-space sampling and discrete planning (i.e., searching)
are performed.
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tion in a finite amount of time. If a solution exists, it must return one in finite
time. The combinatorial motion planning methods of Chapter 6 will achieve this.
Unfortunately, such completeness is not achieved with sampling-based planning.
Instead, weaker notions of completeness are tolerated. The notion of denseness
becomes important, which means that the samples come arbitrarily close to any
configuration as the number of iterations tends to infinity. A deterministic ap-
proach that samples densely will be called resolution complete. This means that
if a solution exists, the algorithm will find it in finite time; however, if a solution
does not exist, the algorithm may run forever. Many sampling-based approaches
are based on random sampling, which is dense with probability one. This leads
to algorithms that are probabilistically complete, which means that with enough
points, the probability that it finds an existing solution converges to one. The
most relevant information, however, is the rate of convergence, which is usually
very difficult to establish.

Section 5.1 presents metric and measure space concepts, which are funda-
mental to nearly all sampling-based planning algorithms. Section 5.2 presents
general sampling concepts and quality criteria that are effective for analyzing the
performance of sampling-based algorithms. Section 5.3 gives a brief overview of
collision detection algorithms, to gain an understanding of the information avail-
able to a planning algorithm and the computation price that must be paid to
obtain it. Section 5.4 presents a framework that defines algorithms which solve
motion planning problems by integrating sampling and discrete planning (i.e.,
searching) techniques. These approaches can be considered single query in the
sense that a single pair, (qI , qG), is given, and the algorithm must search until it
finds a solution (or it may report early failure). Section 5.5 focuses on rapidly
exploring random trees (RRTs) and rapidly exploring dense trees (RDTs), which
are used to develop efficient single-query planning algorithms. Section 5.6 covers
multiple-query algorithms, which invest substantial preprocessing effort to build a
data structure that is later used to obtain efficient solutions for many initial-goal
pairs. In this case, it is assumed that the obstacle region O remains the same for
every query.

5.1 Distance and Volume in C-Space

Virtually all sampling-based planning algorithms require a function that measures
the distance between two points in C. In most cases, this results in a metric
space, which is introduced in Section 5.1.1. Useful examples for motion planning
are given in Section 5.1.2. It will also be important in many of these algorithms
to define the volume of a subset of C. This requires a measure space, which is
introduced in Section 5.1.3. Section 5.1.4 introduces invariant measures, which
should be used whenever possible.
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5.1.1 Metric Spaces

It is straightforward to define Euclidean distance in Rn. To define a distance
function over any C, however, certain axioms will have to be satisfied so that it
coincides with our expectations based on Euclidean distance.

The following definition and axioms are used to create a function that converts
a topological space into a metric space.1 A metric space (X, ρ) is a topological
space X equipped with a function ρ : X ×X → R such that for any a, b, c ∈ X:

1. Nonnegativity: ρ(a, b) ≥ 0.

2. Reflexivity: ρ(a, b) = 0 if and only if a = b.

3. Symmetry: ρ(a, b) = ρ(b, a).

4. Triangle inequality: ρ(a, b) + ρ(b, c) ≥ ρ(a, c).

The function ρ defines distances between points in the metric space, and each
of the four conditions on ρ agrees with our intuitions about distance. The final
condition implies that ρ is optimal in the sense that the distance from a to c will
always be less than or equal to the total distance obtained by traveling through
an intermediate point b on the way from a to c.

Lp metrics The most important family of metrics over Rn is given for any p ≥ 1
as

ρ(x, x′) =

( n
∑

i=1

|xi − x′i|p
)1/p

. (5.1)

For each value of p, (5.1) is called an Lp metric (pronounced “el pee”). The three
most common cases are

1. L2: The Euclidean metric, which is the familiar Euclidean distance in Rn.

2. L1: The Manhattan metric, which is often nicknamed this way because in
R2 it corresponds to the length of a path that is obtained by moving along
an axis-aligned grid. For example, the distance from (0, 0) to (2, 5) is 7 by
traveling “east two blocks” and then “north five blocks”.

3. L∞: The L∞ metric must actually be defined by taking the limit of (5.1) as
p tends to infinity. The result is

L∞(x, x′) = max
1≤i≤n

{|xi − x′i|}, (5.2)

which seems correct because the larger the value of p, the more the largest
term of the sum in (5.1) dominates.

1Some topological spaces are notmetrizable, which means that no function exists that satisfies
the axioms. Many metrization theorems give sufficient conditions for a topological space to be
metrizable [232], and virtually any space that has arisen in motion planning will be metrizable.
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An Lp metric can be derived from a norm on a vector space. An Lp norm over
Rn is defined as

‖x‖p =
( n
∑

i=1

|xi|p
)1/p

. (5.3)

The case of p = 2 is the familiar definition of the magnitude of a vector, which is
called the Euclidean norm. For example, assume the vector space is Rn, and let
‖ · ‖ be the standard Euclidean norm. The L2 metric is ρ(x, y) = ‖x − y‖. Any
Lp metric can be written in terms of a vector subtraction, which is notationally
convenient.

Metric subspaces By verifying the axioms, it can be shown that any subspace
Y ⊂ X of a metric space (X, ρ) itself becomes a metric space by restricting the
domain of ρ to Y ×Y . This conveniently provides metrics on any of the manifolds
and varieties from Chapter 4 by simply using any Lp metric on Rm, the space in
which the manifold or variety is embedded.

Cartesian products of metric spaces Metrics extend nicely across Cartesian
products, which is very convenient because C-spaces are often constructed from
Cartesian products, especially in the case of multiple bodies. Let (X, ρx) and
(Y, ρy) be two metric spaces. A metric space (Z, ρz) can be constructed for the
Cartesian product Z = X × Y by defining the metric ρz as

ρz(z, z
′) = ρz(x, y, x

′, y′) = c1ρx(x, x
′) + c2ρy(y, y

′), (5.4)

in which c1 > 0 and c2 > 0 are any positive real constants, and x, x′ ∈ X and
y, y′ ∈ Y . Each z ∈ Z is represented as z = (x, y).

Other combinations lead to a metric for Z; for example,

ρz(z, z
′) =

(

c1
[

ρx(x, x
′)
]p

+ c2
[

ρy(y, y
′)
]p
)1/p

, (5.5)

is a metric for any positive integer p. Once again, two positive constants must be
chosen. It is important to understand that many choices are possible, and there
may not necessarily be a “correct” one.

5.1.2 Important Metric Spaces for Motion Planning

This section presents some metric spaces that arise frequently in motion planning.

Example 5.1 (SO(2) Metric Using Complex Numbers) If SO(2) is repre-
sented by unit complex numbers, recall that the C-space is the subset of R2 given
by {(a, b) ∈ R2 | a2 + b2 = 1}. Any Lp metric from R2 may be applied. Using the
Euclidean metric,

ρ(a1, b1, a2, b2) =
√

(a1 − a2)2 + (b1 − b2)2, (5.6)
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for any pair of points (a1, b1) and (a2, b2). �

Example 5.2 (SO(2) Metric by Comparing Angles) You might have noticed
that the previous metric for SO(2) does not give the distance traveling along the
circle. It instead takes a shortcut by computing the length of the line segment in
R2 that connects the two points. This distortion may be undesirable. An alterna-
tive metric is obtained by directly comparing angles, θ1 and θ2. However, in this
case special care has to be given to the identification, because there are two ways
to reach θ2 from θ1 by traveling along the circle. This causes a min to appear in
the metric definition:

ρ(θ1, θ2) = min
{

|θ1 − θ2|, 2π − |θ1 − θ2|
}

, (5.7)

for which θ1, θ2 ∈ [0, 2π]/ ∼. This may alternatively be expressed using the com-
plex number representation a+ bi as an angle between two vectors:

ρ(a1, b1, a2, b2) = cos−1(a1a2 + b1b2), (5.8)

for two points (a1, b1) and (a2, b2). �

Example 5.3 (An SE(2) Metric) Again by using the subspace principle, a
metric can easily be obtained for SE(2). Using the complex number representa-
tion of SO(2), each element of SE(2) is a point (xt, yt, a, b) ∈ R4. The Euclidean
metric, or any other Lp metric on R4, can be immediately applied to obtain a
metric. �

Example 5.4 (SO(3) Metrics Using Quaternions) As usual, the situation be-
comes more complicated for SO(3). The unit quaternions form a subset S3 of R4.
Therefore, any Lp metric may be used to define a metric on S3, but this will not be
a metric for SO(3) because antipodal points need to be identified. Let h1, h2 ∈ R4

represent two unit quaternions (which are being interpreted here as elements of
R4 by ignoring the quaternion algebra). Taking the identifications into account,
the metric is

ρ(h1, h2) = min
{

‖h1 − h2‖, ‖h1 + h2‖
}

, (5.9)

in which the two arguments of the min correspond to the distances from h1 to h2
and −h2, respectively. The h1 + h2 appears because h2 was negated to yield its
antipodal point, −h2.

As in the case of SO(2), the metric in (5.9) may seem distorted because it
measures the length of line segments that cut through the interior of S3, as opposed
to traveling along the surface. This problem can be fixed to give a very natural
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metric for SO(3), which is based on spherical linear interpolation. This takes
the line segment that connects the points and pushes it outward onto S3. It is
easier to visualize this by dropping a dimension. Imagine computing the distance
between two points on S2. If these points lie on the equator, then spherical linear
interpolation yields a distance proportional to that obtained by traveling along
the equator, as opposed to cutting through the interior of S2 (for points not on
the equator, use the great circle through the points).

It turns out that this metric can easily be defined in terms of the inner product
between the two quaternions. Recall that for unit vectors v1 and v2 in Rn, v1 ·v2 =
cos θ, in which θ is the angle between the vectors. This angle is precisely what is
needed to give the proper distance along S3. The resulting metric is a surprisingly
simple extension of (5.8). The distance along S3 between two quaternions is

ρs(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2), (5.10)

in which each hi = (ai, bi, ci, di). Taking identification into account yields the
metric

ρ(h1, h2) = min
{

ρs(h1, h2), ρs(h1,−h2)
}

. (5.11)

�

Example 5.5 (Another SE(2) Metric) For many C-spaces, the problem of re-
lating different kinds of quantities arises. For example, any metric defined on
SE(2) must compare both distance in the plane and an angular quantity. For
example, even if c1 = c2 = 1, the range for S1 is [0, 2π) using radians but [0, 360)
using degrees. If the same constant c2 is used in either case, two very different met-
rics are obtained. The units applied to R2 and S1 are completely incompatible. �

Example 5.6 (Robot Displacement Metric) Sometimes this incompatibility
problem can be fixed by considering the robot displacement. For any two config-
urations q1, q2 ∈ C, a robot displacement metric can be defined as

ρ(q1, q2) = max
a∈A

{

‖a(q1)− a(q2)‖
}

, (5.12)

in which a(qi) is the position of the point a in the world when the robot A is at
configuration qi. Intuitively, the robot displacement metric yields the maximum
amount inW that any part of the robot is displaced when moving from configura-
tion q1 to q2. The difficulty and efficiency with which this metric can be computed
depend strongly on the particular robot geometric model and kinematics. For a
convex polyhedral robot that can translate and rotate, it is sufficient to check
only vertices. The metric may appear to be ideal, but efficient algorithms are not
known for most situations. �
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Example 5.7 (Tn Metrics) Next consider making a metric over a torus Tn.
The Cartesian product rules such as (5.4) and (5.5) can be extended over every
copy of S1 (one for each parameter θi). This leads to n arbitrary coefficients c1,
c2, . . ., cn. Robot displacement could be used to determine the coefficients. For
example, if the robot is a chain of links, it might make sense to weight changes in
the first link more heavily because the entire chain moves in this case. When the
last parameter is changed, only the last link moves; in this case, it might make
sense to give it less weight. �

Example 5.8 (SE(3) Metrics) Metrics for SE(3) can be formed by applying
the Cartesian product rules to a metric for R3 and a metric for SO(3), such as
that given in (5.11). Again, this unfortunately leaves coefficients to be specified.
These issues will arise again in Section 5.3.4, where more details appear on robot
displacement. �

Pseudometrics Many planning algorithms use functions that behave somewhat
like a distance function but may fail to satisfy all of the metric axioms. If such
distance functions are used, they will be referred to as pseudometrics. One general
principle that can be used to derive pseudometrics is to define the distance to be
the optimal cost-to-go for some criterion (recall discrete cost-to-go functions from
Section 2.3). This will become more important when differential constraints are
considered in Chapter 14.

In the continuous setting, the cost could correspond to the distance traveled
by a robot or even the amount of energy consumed. Sometimes, the resulting
pseudometric is not symmetric. For example, it requires less energy for a car to
travel downhill as opposed to uphill. Alternatively, suppose that a car is only
capable of driving forward. It might travel a short distance to go forward from
q1 to some q2, but it might have to travel a longer distance to reach q1 from q2
because it cannot drive in reverse. These issues arise for the Dubins car, which is
covered in Sections 13.1.2 and 15.3.1.

An important example of a pseudometric from robotics is a potential function,
which is an important part of the randomized potential field method, which is
discussed in Section 5.4.3. The idea is to make a scalar function that estimates
the distance to the goal; however, there may be additional terms that attempt
to repel the robot away from obstacles. This generally causes local minima to
appear in the distance function, which may cause potential functions to violate
the triangle inequality.

194 S. M. LaValle: Planning Algorithms

5.1.3 Basic Measure Theory Definitions

This section briefly indicates how to define volume in a metric space. This provides
a basis for defining concepts such as integrals or probability densities. Measure
theory is an advanced mathematical topic that is well beyond the scope of this
book; however, it is worthwhile to briefly introduce some of the basic definitions
because they sometimes arise in sampling-based planning.

Measure can be considered as a function that produces real values for subsets
of a metric space, (X, ρ). Ideally, we would like to produce a nonnegative value,
µ(A) ∈ [0,∞], for any subset A ⊆ X. Unfortunately, due to the Banach-Tarski
paradox, if X = Rn, there are some subsets for which trying to assign volume
leads to a contradiction. If X is finite, this cannot happen. Therefore, it is hard
to visualize the problem; see [420] for a construction of the bizarre nonmeasurable
sets. Due to this problem, a workaround was developed by defining a collection of
subsets that avoids the paradoxical sets. A collection B of subsets of X is called
a sigma algebra if the following axioms are satisfied:

1. The empty set is in B.

2. If B ∈ B, then X \B ∈ B.

3. For any collection of a countable number of sets in B, their union must also
be in B.

Note that the last two conditions together imply that the intersection of a count-
able number of sets in B is also in B. The sets in B are called the measurable
sets.

A nice sigma algebra, called the Borel sets, can be formed from any metric
space (X, ρ) as follows. Start with the set of all open balls in X. These are the
sets of the form

B(x, r) = {x′ ∈ X | ρ(x, x′) < r} (5.13)

for any x ∈ X and any r ∈ (0,∞). From the open balls, the Borel sets B are
the sets that can be constructed from these open balls by using the sigma algebra
axioms. For example, an open square in R2 is in B because it can be constructed
as the union of a countable number of balls (infinitely many are needed because
the curved balls must converge to covering the straight square edges). By using
Borel sets, the nastiness of nonmeasurable sets is safely avoided.

Example 5.9 (Borel Sets) A simple example of B can be constructed for R.
The open balls are just the set of all open intervals, (x1, x2) ⊂ R, for any x1, x2 ∈ R

such that x1 < x2. �

Using B, a measure µ is now defined as a function µ : B → [0,∞] such that
the measure axioms are satisfied:
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1. For the empty set, µ(∅) = 0.

2. For any collection, E1, E2, E3, . . ., of a countable (possibly finite) number of
pairwise disjoint, measurable sets, let E denote their union. The measure µ
must satisfy

µ(E) =
∑

i

µ(Ei), (5.14)

in which i counts over the whole collection.

Example 5.10 (Lebesgue Measure) The most common and important mea-
sure is the Lebesgue measure, which becomes the standard notions of length in R,
area in R2, and volume in Rn for n ≥ 3. One important concept with Lebesgue
measure is the existence of sets of measure zero. For any countable set A, the
Lebesgue measure yields µ(A) = 0. For example, what is the total length of the
point {1} ⊂ R? The length of any single point must be zero. To satisfy the mea-
sure axioms, sets such as {1, 3, 4, 5} must also have measure zero. Even infinite
subsets such as Z and Q have measure zero in R. If the dimension of a set A ⊆ Rn

is m for some integer m < n, then µ(A) = 0, according to the Lebesgue measure
on Rn. For example, the set S2 ⊂ R3 has measure zero because the sphere has
no volume. However, if the measure space is restricted to S2 and then the surface
area is defined, then nonzero measure is obtained. �

Example 5.11 (The Counting Measure) If (X, ρ) is finite, then the counting
measure can be defined. In this case, the measure can be defined over the entire
power set of X. For any A ⊂ X, the counting measure yields µ(A) = |A|, the
number of elements in A. Verify that this satisfies the measure axioms. �

Example 5.12 (Probability Measure) Measure theory even unifies discrete
and continuous probability theory. The measure µ can be defined to yield prob-
ability mass. The probability axioms (see Section 9.1.2) are consistent with the
measure axioms, which therefore yield a measure space. The integrals and sums
needed to define expectations of random variables for continuous and discrete
cases, respectively, unify into a single measure-theoretic integral. �

Measure theory can be used to define very general notions of integration that
are much more powerful than the Riemann integral that is learned in classical
calculus. One of the most important concepts is the Lebesgue integral. Instead
of being limited to partitioning the domain of integration into intervals, virtually
any partition into measurable sets can be used. Its definition requires the notion
of a measurable function to ensure that the function domain is partitioned into
measurable sets. For further study, see [178, 287, 420].
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5.1.4 Using the Correct Measure

Since many metrics and measures are possible, it may sometimes seem that there is
no “correct” choice. This can be frustrating because the performance of sampling-
based planning algorithms can depend strongly on these. Conveniently, there is a
natural measure, called the Haar measure, for some transformation groups, includ-
ing SO(N). Good metrics also follow from the Haar measure, but unfortunately,
there are still arbitrary alternatives.

The basic requirement is that the measure does not vary when the sets are
transformed using the group elements. More formally, let G represent a matrix
group with real-valued entries, and let µ denote a measure on G. If for any
measurable subset A ⊆ G, and any element g ∈ G, µ(A) = µ(gA) = µ(Ag), then
µ is called the Haar measure2 for G. The notation gA represents the set of all
matrices obtained by the product ga, for any a ∈ A. Similarly, Ag represents all
products of the form ag.

Example 5.13 (Haar Measure for SO(2)) The Haar measure for SO(2) can
be obtained by parameterizing the rotations as [0, 1]/ ∼ with 0 and 1 identified,
and letting µ be the Lebesgue measure on the unit interval. To see the invariance
property, consider the interval [1/4, 1/2], which produces a set A ⊂ SO(2) of
rotation matrices. This corresponds to the set of all rotations from θ = π/2 to
θ = π. The measure yields µ(A) = 1/4. Now consider multiplying every matrix
a ∈ A by a rotation matrix, g ∈ SO(2), to yield Ag. Suppose g is the rotation
matrix for θ = π. The set Ag is the set of all rotation matrices from θ = 3π/2
up to θ = 2π = 0. The measure µ(Ag) = 1/4 remains unchanged. Invariance
for gA may be checked similarly. The transformation g translates the intervals
in [0, 1]/ ∼. Since the measure is based on interval lengths, it is invariant with
respect to translation. Note that µ can be multiplied by a fixed constant (such as
2π) without affecting the invariance property.

An invariant metric can be defined from the Haar measure on SO(2). For any
points x1, x2 ∈ [0, 1], let ρ = µ([x1, x2]), in which [x1, x2] is the shortest length
(smallest measure) interval that contains x1 and x2 as endpoints. This metric was
already given in Example 5.2.

To obtain examples that are not the Haar measure, let µ represent probability
mass over [0, 1] and define any nonuniform probability density function (the uni-
form density yields the Haar measure). Any shifting of intervals will change the
probability mass, resulting in a different measure.

Failing to use the Haar measure weights some parts of SO(2) more heavily
than others. Sometimes imposing a bias may be desirable, but it is at least as
important to know how to eliminate bias. These ideas may appear obvious, but
in the case of SO(3) and many other groups it is more challenging to eliminate

2Such a measure is unique up to scale and exists for any locally compact topological group
[178, 420].
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this bias and obtain the Haar measure. �

Example 5.14 (Haar Measure for SO(3)) For SO(3) it turns out once again
that quaternions come to the rescue. If unit quaternions are used, recall that
SO(3) becomes parameterized in terms of S3, but opposite points are identified.
It can be shown that the surface area on S3 is the Haar measure. (Since S3 is a 3D
manifold, it may more appropriately be considered as a surface “volume.”) It will
be seen in Section 5.2.2 that uniform random sampling over SO(3) must be done
with a uniform probability density over S3. This corresponds exactly to the Haar
measure. If instead SO(3) is parameterized with Euler angles, the Haar measure
will not be obtained. An unintentional bias will be introduced; some rotations in
SO(3) will have more weight than others for no particularly good reason. �

5.2 Sampling Theory

5.2.1 Motivation and Basic Concepts

The state space for motion planning, C, is uncountably infinite, yet a sampling-
based planning algorithm can consider at most a countable number of samples.
If the algorithm runs forever, this may be countably infinite, but in practice we
expect it to terminate early after only considering a finite number of samples.
This mismatch between the cardinality of C and the set that can be probed by
an algorithm motivates careful consideration of sampling techniques. Once the
sampling component has been defined, discrete planning methods from Chapter
2 may be adapted to the current setting. Their performance, however, hinges on
the way the C-space is sampled.

Since sampling-based planning algorithms are often terminated early, the par-
ticular order in which samples are chosen becomes critical. Therefore, a distinction
is made between a sample set and a sample sequence. A unique sample set can
always be constructed from a sample sequence, but many alternative sequences
can be constructed from one sample set.

Denseness Consider constructing an infinite sample sequence over C. What
would be some desirable properties for this sequence? It would be nice if the
sequence eventually reached every point in C, but this is impossible because C is
uncountably infinite. Strangely, it is still possible for a sequence to get arbitrarily
close to every element of C (assuming C ⊆ Rm). In topology, this is the notion of
denseness. Let U and V be any subsets of a topological space. The set U is said
to be dense in V if cl(U) = V (recall the closure of a set from Section 4.1.1). This
means adding the boundary points to U produces V . A simple example is that
(0, 1) ⊂ R is dense in [0, 1] ⊂ R. A more interesting example is that the set Q of
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rational numbers is both countable and dense in R. Think about why. For any
real number, such as π ∈ R, there exists a sequence of fractions that converges to
it. This sequence of fractions must be a subset of Q. A sequence (as opposed to a
set) is called dense if its underlying set is dense. The bare minimum for sampling
methods is that they produce a dense sequence. Stronger requirements, such as
uniformity and regularity, will be explained shortly.

A random sequence is probably dense Suppose that C = [0, 1]. One of
the simplest ways conceptually to obtain a dense sequence is to pick points at
random. Suppose I ⊂ [0, 1] is an interval of length e. If k samples are chosen
independently at random,3 the probability that none of them falls into I is (1−e)k.
As k approaches infinity, this probability converges to zero. This means that the
probability that any nonzero-length interval in [0, 1] contains no points converges
to zero. One small technicality exists. The infinite sequence of independently,
randomly chosen points is only dense with probability one, which is not the same as
being guaranteed. This is one of the strange outcomes of dealing with uncountably
infinite sets in probability theory. For example, if a number between [0, 1] is
chosen at random, the probably that π/4 is chosen is zero; however, it is still
possible. (The probability is just the Lebesgue measure, which is zero for a set of
measure zero.) For motion planning purposes, this technicality has no practical
implications; however, if k is not very large, then it might be frustrating to obtain
only probabilistic assurances, as opposed to absolute guarantees of coverage. The
next sequence is guaranteed to be dense because it is deterministic.

The van der Corput sequence A beautiful yet underutilized sequence was
published in 1935 by van der Corput, a Dutch mathematician [467]. It exhibits
many ideal qualities for applications. At the same time, it is based on a simple
idea. Unfortunately, it is only defined for the unit interval. The quest to extend
many of its qualities to higher dimensional spaces motivates the formal quality
measures and sampling techniques in the remainder of this section.

To explain the van der Corput sequence, let C = [0, 1]/ ∼, in which 0 ∼ 1,
which can be interpreted as SO(2). Suppose that we want to place 16 samples in
C. An ideal choice is the set S = {i/16 | 0 ≤ i < 16}, which evenly spaces the
points at intervals of length 1/16. This means that no point in C is further than
1/32 from the nearest sample. What if we want to make S into a sequence? What
is the best ordering? What if we are not even sure that 16 points are sufficient?
Maybe 16 is too few or even too many.

The first two columns of Figure 5.2 show a naive attempt at making S into
a sequence by sorting the points by increasing value. The problem is that after
i = 8, half of C has been neglected. It would be preferable to have a nice covering
of C for any i. Van der Corput’s clever idea was to reverse the order of the bits,
when the sequence is represented with binary decimals. In the original sequence,

3See Section 9.1.2 for a review of probability theory.
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Naive Reverse Van der
i Sequence Binary Binary Corput Points in [0, 1]/ ∼
1 0 .0000 .0000 0
2 1/16 .0001 .1000 1/2
3 1/8 .0010 .0100 1/4
4 3/16 .0011 .1100 3/4
5 1/4 .0100 .0010 1/8
6 5/16 .0101 .1010 5/8
7 3/8 .0110 .0110 3/8
8 7/16 .0111 .1110 7/8
9 1/2 .1000 .0001 1/16
10 9/16 .1001 .1001 9/16
11 5/8 .1010 .0101 5/16
12 11/16 .1011 .1101 13/16
13 3/4 .1100 .0011 3/16
14 13/16 .1101 .1011 11/16
15 7/8 .1110 .0111 7/16
16 15/16 .1111 .1111 15/16

Figure 5.2: The van der Corput sequence is obtained by reversing the bits in the
binary decimal representation of the naive sequence.

the most significant bit toggles only once, whereas the least significant bit toggles
in every step. By reversing the bits, the most significant bit toggles in every step,
which means that the sequence alternates between the lower and upper halves of
C. The third and fourth columns of Figure 5.2 show the original and reversed-
order binary representations. The resulting sequence dances around [0, 1]/ ∼ in a
nice way, as shown in the last two columns of Figure 5.2. Let ν(i) denote the ith
point of the van der Corput sequence.

In contrast to the naive sequence, each ν(i) lies far away from ν(i + 1). Fur-
thermore, the first i points of the sequence, for any i, provide reasonably uniform
coverage of C. When i is a power of 2, the points are perfectly spaced. For other
i, the coverage is still good in the sense that the number of points that appear in
any interval of length l is roughly il. For example, when i = 10, every interval of
length 1/2 contains roughly 5 points.

The length, 16, of the naive sequence is actually not important. If instead
8 is used, the same ν(1), . . ., ν(8) are obtained. Observe in the reverse binary
column of Figure 5.2 that this amounts to removing the last zero from each binary
decimal representation, which does not alter their values. If 32 is used for the naive
sequence, then the same ν(1), . . ., ν(16) are obtained, and the sequence continues
nicely from ν(17) to ν(32). To obtain the van der Corput sequence from ν(33) to
ν(64), six-bit sequences are reversed (corresponding to the case in which the naive
sequence has 64 points). The process repeats to produce an infinite sequence that
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does not require a fixed number of points to be specified a priori. In addition to
the nice uniformity properties for every i, the infinite van der Corput sequence is
also dense in [0, 1]/ ∼. This implies that every open subset must contain at least
one sample.

You have now seen ways to generate nice samples in a unit interval both ran-
domly and deterministically. Sections 5.2.2–5.2.4 explain how to generate dense
samples with nice properties in the complicated spaces that arise in motion plan-
ning.

5.2.2 Random Sampling

Now imagine moving beyond [0, 1] and generating a dense sample sequence for any
bounded C-space, C ⊆ Rm. In this section the goal is to generate uniform random
samples. This means that the probability density function p(q) over C is uniform.
Wherever relevant, it also will mean that the probability density is also consistent
with the Haar measure. We will not allow any artificial bias to be introduced by
selecting a poor parameterization. For example, picking uniform random Euler
angles does not lead to uniform random samples over SO(3). However, picking
uniform random unit quaternions works perfectly because quaternions use the
same parameterization as the Haar measure; both choose points on S3.

Random sampling is the easiest of all sampling methods to apply to C-spaces.
One of the main reasons is that C-spaces are formed from Cartesian products, and
independent random samples extend easily across these products. If X = X1×X2,
and uniform random samples x1 and x2 are taken from X1 and X2, respectively,
then (x1, x2) is a uniform random sample for X. This is very convenient in im-
plementations. For example, suppose the motion planning problem involves 15
robots that each translate for any (xt, yt) ∈ [0, 1]2; this yields C = [0, 1]30. In
this case, 30 points can be chosen uniformly at random from [0, 1] and combined
into a 30-dimensional vector. Samples generated this way are uniformly randomly
distributed over C. Combining samples over Cartesian products is much more
difficult for nonrandom (deterministic) methods, which are presented in Sections
5.2.3 and 5.2.4.

Generating a random element of SO(3) One has to be very careful about
sampling uniformly over the space of rotations. The probability density must
correspond to the Haar measure, which means that a random rotation should be
obtained by picking a point at random on S3 and forming the unit quaternion. An
extremely clever way to sample SO(3) uniformly at random is given in [439] and
is reproduced here. Choose three points u1, u2, u3 ∈ [0, 1] uniformly at random.
A uniform, random quaternion is given by the simple expression

h = (
√
1− u1 sin 2πu2,

√
1− u1 cos 2πu2,

√
u1 sin 2πu3,

√
u1 cos 2πu3). (5.15)

A full explanation of the method is given in [439], and a brief intuition is given
here. First drop down a dimension and pick u1, u2 ∈ [0, 1] to generate points
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on S2. Let u1 represent the value for the third coordinate, (0, 0, u1) ∈ R3. The
slice of points on S2 for which u1 is fixed for 0 < u1 < 1 yields a circle on S2

that corresponds to some line of latitude on S2. The second parameter selects
the longitude, 2πu2. Fortunately, the points are uniformly distributed over S2.
Why? Imagine S2 as the crust on a spherical loaf of bread that is run through a
bread slicer. The slices are cut in a direction parallel to the equator and are of
equal thickness. The crusts of each slice have equal area; therefore, the points are
uniformly distributed. The method proceeds by using that fact that S3 can be
partitioned into a spherical arrangement of circles (known as the Hopf fibration);
there is an S1 copy for each point in S2. The method above is used to provide
a random point on S2 using u2 and u3, and u1 produces a random point on S1;
they are carefully combined in (5.15) to yield a random rotation. To respect
the antipodal identification for rotations, any quaternion h found in the lower
hemisphere (i.e., a < 0) can be negated to yield −h. This does not distort the
uniform random distribution of the samples.

Generating random directions Some sampling-based algorithms require choos-
ing motion directions at random.4 From a configuration q, the possible directions
of motion can be imagined as being distributed around a sphere. In an (n + 1)-
dimensional C-space, this corresponds to sampling on Sn. For example, choosing
a direction in R2 amounts to picking an element of S1; this can be parameter-
ized as θ ∈ [0, 2π]/ ∼. If n = 4, then the previously mentioned trick for SO(3)
should be used. If n = 3 or n > 4, then samples can be generated using a slightly
more expensive method that exploits spherical symmetries of the multidimensional
Gaussian density function [176]. The method is explained for Rn+1; boundaries
and identifications must be taken into account for other spaces. For each of the
n + 1 coordinates, generate a sample ui from a zero-mean Gaussian distribution
with the same variance for each coordinate. Following from the Central Limit
Theorem, ui can be approximately obtained by generating k samples at random
over [−1, 1] and adding them (k ≥ 12 is usually sufficient in practice). The vector
(u1, u2, . . . , un+1) gives a random direction in Rn+1 because each ui was obtained
independently, and the level sets of the resulting probability density function are
spheres. We did not use uniform random samples for each ui because this would
bias the directions toward the corners of a cube; instead, the Gaussian yields
spherical symmetry. The final step is to normalize the vector by taking ui/‖u‖
for each coordinate.

Pseudorandom number generation Although there are advantages to uni-
form random sampling, there are also several disadvantages. This motivates the
consideration of deterministic alternatives. Since there are trade-offs, it is impor-

4The directions will be formalized in Section 8.3.2 when smooth manifolds are introduced. In
that case, the directions correspond to the set of possible velocities that have unit magnitude.
Presently, the notion of a direction is only given informally.
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tant to understand how to use both kinds of sampling in motion planning. One
of the first issues is that computer-generated numbers are not random.5 A pseu-
dorandom number generator is usually employed, which is a deterministic method
that simulates the behavior of randomness. Since the samples are not truly ran-
dom, the advantage of extending the samples over Cartesian products does not
necessarily hold. Sometimes problems are caused by unforeseen deterministic de-
pendencies. One of the best pseudorandom number generators for avoiding such
troubles is the Mersenne twister [355], for which implementations can be found
on the Internet.

To help see the general difficulties, the classical linear congruential pseudo-
random number generator is briefly explained [317, 381]. The method uses three
integer parameters, M , a, and c, which are chosen by the user. The first two,
M and a, must be relatively prime, meaning that gcd(M,a) = 1. The third pa-
rameter, c, must be chosen to satisfy 0 ≤ c < M . Using modular arithmetic, a
sequence can be generated as

yi+1 = ayi + c mod M, (5.16)

by starting with some arbitrary seed 1 ≤ y0 ≤ M . Pseudorandom numbers in
[0, 1] are generated by the sequence

xi = yi/M. (5.17)

The sequence is periodic; therefore, M is typically very large (e.g., M = 231 − 1).
Due to periodicity, there are potential problems of regularity appearing in the
samples, especially when applied across a Cartesian product to generate points in
Rn. Particular values must be chosen for the parameters, and statistical tests are
used to evaluate the samples either experimentally or theoretically [381].

Testing for randomness Thus, it is important to realize that even the “ran-
dom” samples are deterministic. They are designed to optimize performance on
statistical tests. Many sophisticated statistical tests of uniform randomness are
used. One of the simplest, the chi-square test, is described here. This test mea-
sures how far computed statistics are from their expected value. As a simple
example, suppose C = [0, 1]2 and is partitioned into a 10 by 10 array of 100 square
boxes. If a set P of k samples is chosen at random, then intuitively each box
should receive roughly k/100 of the samples. An error function can be defined to
measure how far from true this intuition is:

e(P ) =
100
∑

i=1

(bi − k/100)2, (5.18)

in which bi is the number of samples that fall into box i. It is shown [269] that
e(P ) follows a chi-squared distribution. A surprising fact is that the goal is not to

5There are exceptions, which use physical phenomena as a random source [407].
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minimize e(P ). If the error is too small, we would declare that the samples are
too uniform to be random! Imagine k = 1, 000, 000 and exactly 10, 000 samples
appear in each of the 100 boxes. This yields e(P ) = 0, but how likely is this to
ever occur? The error must generally be larger (it appears in many statistical
tables) to account for the irregularity due to randomness.

(a) 196 pseudorandom samples (b) 196 pseudorandom samples

Figure 5.3: Irregularity in a collection of (pseudo)random samples can be nicely
observed with Voronoi diagrams.

This irregularity can be observed in terms of Voronoi diagrams, as shown in
Figure 5.3. The Voronoi diagram partitions R2 into regions based on the samples.
Each sample x has an associated Voronoi region Vor(x). For any point y ∈
Vor(x), x is the closest sample to y using Euclidean distance. The different sizes
and shapes of these regions give some indication of the required irregularity of
random sampling. This irregularity may be undesirable for sampling-based motion
planning and is somewhat repaired by the deterministic sampling methods of
Sections 5.2.3 and 5.2.4 (however, these methods also have drawbacks).

5.2.3 Low-Dispersion Sampling

This section describes an alternative to random sampling. Here, the goal is to
optimize a criterion called dispersion [381]. Intuitively, the idea is to place samples
in a way that makes the largest uncovered area be as small as possible. This
generalizes of the idea of grid resolution. For a grid, the resolution may be selected
by defining the step size for each axis. As the step size is decreased, the resolution
increases. If a grid-based motion planning algorithm can increase the resolution
arbitrarily, it becomes resolution complete. Using the concepts in this section,
it may instead reduce its dispersion arbitrarily to obtain a resolution complete
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(a) L2 dispersion (b) L∞ dispersion

Figure 5.4: Reducing the dispersion means reducing the radius of the largest
empty ball.

algorithm. Thus, dispersion can be considered as a powerful generalization of the
notion of “resolution.”

Dispersion definition The dispersion6 of a finite set P of samples in a metric
space (X, ρ) is7

δ(P ) = sup
x∈X

{

min
p∈P

{

ρ(x, p)
}}

. (5.19)

Figure 5.4 gives an interpretation of the definition for two different metrics.
An alternative way to consider dispersion is as the radius of the largest empty
ball (for the L∞ metric, the balls are actually cubes). Note that at the boundary
of X (if it exists), the empty ball becomes truncated because it cannot exceed
the boundary. There is also a nice interpretation in terms of Voronoi diagrams.
Figure 5.3 can be used to help explain L2 dispersion in R2. The Voronoi vertices
are the points at which three or more Voronoi regions meet. These are points in
C for which the nearest sample is far. An open, empty disc can be placed at any
Voronoi vertex, with a radius equal to the distance to the three (or more) closest
samples. The radius of the largest disc among those placed at all Voronoi vertices
is the dispersion. This interpretation also extends nicely to higher dimensions.

Making good grids Optimizing dispersion forces the points to be distributed
more uniformly over C. This causes them to fail statistical tests, but the point
distribution is often better for motion planning purposes. Consider the best way
to reduce dispersion if ρ is the L∞ metric and X = [0, 1]n. Suppose that the
number of samples, k, is given. Optimal dispersion is obtained by partitioning

6The definition is unfortunately backward from intuition. Lower dispersion means that the
points are nicely dispersed. Thus, more dispersion is bad, which is counterintuitive.

7The sup represents the supremum, which is the least upper bound. If X is closed, then the
sup becomes a max. See Section 9.1.1 for more details.
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(a) 196-point Sukharev grid (b) 196 lattice points

Figure 5.5: The Sukharev grid and a nongrid lattice.

[0, 1] into a grid of cubes and placing a point at the center of each cube, as shown
for n = 2 and k = 196 in Figure 5.5a. The number of cubes per axis must be
⌊k 1

n ⌋, in which ⌊·⌋ denotes the floor. If k 1
n is not an integer, then there are leftover

points that may be placed anywhere without affecting the dispersion. Notice that
k

1
n just gives the number of points per axis for a grid of k points in n dimensions.

The resulting grid will be referred to as a Sukharev grid [456].
The dispersion obtained by the Sukharev grid is the best possible. Therefore,

a useful lower bound can be given for any set P of k samples [456]:

δ(P ) ≥ 1

2
⌊

k
1
d

⌋ . (5.20)

This implies that keeping the dispersion fixed requires exponentially many points
in the dimension, d.

At this point you might wonder why L∞ was used instead of L2, which seems
more natural. This is because the L2 case is extremely difficult to optimize (except
in R2, where a tiling of equilateral triangles can be made, with a point in the center
of each one). Even the simple problem of determining the best way to distribute
a fixed number of points in [0, 1]3 is unsolved for most values of k. See [131] for
extensive treatment of this problem.

Suppose now that other topologies are considered instead of [0, 1]n. Let X =
[0, 1]/ ∼, in which the identification produces a torus. The situation is quite
different because X no longer has a boundary. The Sukharev grid still produces
optimal dispersion, but it can also be shifted without increasing the dispersion.
In this case, a standard grid may also be used, which has the same number of
points as the Sukharev grid but is translated to the origin. Thus, the first grid
point is (0, 0), which is actually the same as 2n − 1 other points by identification.
If X represents a cylinder and the number of points, k, is given, then it is best to
just use the Sukharev grid. It is possible, however, to shift each coordinate that
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g1

g2

(a) (b)

Figure 5.6: (a) A distorted grid can even be placed over spheres and SO(3) by
putting grids on the faces of an inscribed cube and lifting them to the surface
[482]. (b) A lattice can be considered as a grid in which the generators are not
necessarily orthogonal.

behaves like S1. If X is rectangular but not a square, a good grid can still be made
by tiling the space with cubes. In some cases this will produce optimal dispersion.
For complicated spaces such as SO(3), no grid exists in the sense defined so far.
It is possible, however, to generate grids on the faces of an inscribed Platonic solid
[139] and lift the samples to Sn with relatively little distortion [482]. For example,
to sample S2, Sukharev grids can be placed on each face of a cube. These are
lifted to obtain the warped grid shown in Figure 5.6a.

Example 5.15 (Sukharev Grid) Suppose that n = 2 and k = 9. IfX = [0, 1]2,
then the Sukharev grid yields points for the nine cases in which either coordinate
may be 1/6, 1/2, or 5/6. The L∞ dispersion is 1/6. The spacing between the points
along each axis is 1/3, which is twice the dispersion. If instead X = [0, 1]2/ ∼,
which represents a torus, then the nine points may be shifted to yield the stan-
dard grid. In this case each coordinate may be 0, 1/3, or 2/3. The dispersion and
spacing between the points remain unchanged. �

One nice property of grids is that they have a lattice structure. This means
that neighboring points can be obtained very easily be adding or subtracting
vectors. Let gj be an n-dimensional vector called a generator. A point on a lattice
can be expressed as

x =
n
∑

j=1

kjgj (5.21)

for n independent generators, as depicted in Figure 5.6b. In a 2D grid, the gen-
erators represent “up” and “right.” If X = [0, 100]2 and a standard grid with
integer spacing is used, then the neighbors of the point (50, 50) are obtained by
adding (0, 1), (0,−1), (−1, 0), or (1, 0). In a general lattice, the generators need
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not be orthogonal. An example is shown in Figure 5.5b. In Section 5.4.2, lattice
structure will become important and convenient for defining the search graph.

Infinite grid sequences Now suppose that the number, k, of samples is not
given. The task is to define an infinite sequence that has the nice properties of
the van der Corput sequence but works for any dimension. This will become the
notion of a multi-resolution grid. The resolution can be iteratively doubled. For a
multi-resolution standard grid in Rn, the sequence will first place one point at the
origin. After 2n points have been placed, there will be a grid with two points per
axis. After 4n points, there will be four points per axis. Thus, after 2ni points for
any positive integer i, a grid with 2i points per axis will be represented. If only
complete grids are allowed, then it becomes clear why they appear inappropriate
for high-dimensional problems. For example, if n = 10, then full grids appear
after 1, 210, 220, 230, and so on, samples. Each doubling in resolution multiplies
the number of points by 2n. Thus, to use grids in high dimensions, one must be
willing to accept partial grids and define an infinite sequence that places points in
a nice way.

The van der Corput sequence can be extended in a straightforward way as
follows. Suppose X = T2 = [0, 1]2/ ∼. The original van der Corput sequence
started by counting in binary. The least significant bit was used to select which
half of [0, 1] was sampled. In the current setting, the two least significant bits
can be used to select the quadrant of [0, 1]2. The next two bits can be used to
select the quadrant within the quadrant. This procedure continues recursively to
obtain a complete grid after k = 22i points, for any positive integer i. For any
k, however, there is only a partial grid. The points are distributed with optimal
L∞ dispersion. This same idea can be applied in dimension n by using n bits at
a time from the binary sequence to select the orthant (n-dimensional quadrant).
Many other orderings produce L∞-optimal dispersion. Selecting orderings that
additionally optimize other criteria, such as discrepancy or L2 dispersion, are
covered in [330, 335]. Unfortunately, it is more difficult to make a multi-resolution
Sukharev grid. The base becomes 3 instead of 2; after every 3ni points a complete
grid is obtained. For example, in one dimension, the first point appears at 1/2.
The next two points appear at 1/6 and 5/6. The next complete one-dimensional
grid appears after there are 9 points.

Dispersion bounds Since the sample sequence is infinite, it is interesting to
consider asymptotic bounds on dispersion. It is known that for X = [0, 1]n and
any Lp metric, the best possible asymptotic dispersion is O(k−1/n) for k points
and n dimensions [381]. In this expression, k is the variable in the limit and n
is treated as a constant. Therefore, any function of n may appear as a constant
(i.e., O(f(n)k−1/n) = O(k−1/n) for any positive f(n)). An important practical
consideration is the size of f(n) in the asymptotic analysis. For example, for the
van der Corput sequence from Section 5.2.1, the dispersion is bounded by 1/k,
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which means that f(n) = 1. This does not seem good because for values of k
that are powers of two, the dispersion is 1/2k. Using a multi-resolution Sukharev
grid, the constant becomes 3/2 because it takes a longer time before a full grid is
obtained. Nongrid, low-dispersion infinite sequences exist that have f(n) = 1/ ln 4
[381]; these are not even uniformly distributed, which is rather surprising.

5.2.4 Low-Discrepancy Sampling

In some applications, selecting points that align with the coordinate axis may
be undesirable. Therefore, extensive sampling theory has been developed to de-
termine methods that avoid alignments while distributing the points uniformly.
In sampling-based motion planning, grids sometimes yield unexpected behavior
because a row of points may align nicely with a corridor in Cfree. In some cases, a
solution is obtained with surprisingly few samples, and in others, too many sam-
ples are necessary. These alignment problems, when they exist, generally drive the
variance higher in computation times because it is difficult to predict when they
will help or hurt. This provides motivation for developing sampling techniques
that try to reduce this sensitivity.

Discrepancy theory and its corresponding sampling methods were developed to
avoid these problems for numerical integration [381]. Let X be a measure space,
such as [0, 1]n. Let R be a collection of subsets of X that is called a range space.
In most cases, R is chosen as the set of all axis-aligned rectangular subsets; hence,
this will be assumed from this point onward. With respect to a particular point
set, P , and range space, R, the discrepancy [472] for k samples is defined as (see
Figure 5.7)

D(P,R) = sup
R∈R

{∣

∣

∣

∣

|P ∩R|
k

− µ(R)

µ(X)

∣

∣

∣

∣

}

, (5.22)

in which |P ∩ R| denotes the number of points in P ∩ R. Each term in the
supremum considers how well P can be used to estimate the volume of R. For
example, if µ(R) is 1/5, then we would hope that about 1/5 of the points in P
fall into R. The discrepancy measures the largest volume estimation error that
can be obtained over all sets in R.

Asymptotic bounds There are many different asymptotic bounds for discrep-
ancy, depending on the particular range space and measure space [353]. The most
widely referenced bounds are based on the standard range space of axis-aligned
rectangular boxes in [0, 1]n. There are two different bounds, depending on whether
the number of points, k, is given. The best possible asymptotic discrepancy for a
single sequence is O(k−1 logn k). This implies that k is not specified. If, however,
for every k a new set of points can be chosen, then the best possible discrepancy
is O(k−1 logn−1 k). This bound is lower because it considers the best that can be
achieved by a sequence of points sets, in which every point set may be completely
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R

Figure 5.7: Discrepancy measures whether the right number of points fall into
boxes. It is related to the chi-square test but optimizes over all possible boxes.

different. In a single sequence, the next set must be extended from the current
set by adding a single sample.

Relating dispersion and discrepancy Since balls have positive volume, there
is a close relationship between discrepancy, which is measure-based, and disper-
sion, which is metric-based. For example, for any P ⊂ [0, 1]n,

δ(P,L∞) ≤ D(P,R)1/d, (5.23)

which means low-discrepancy implies low-dispersion. Note that the converse is
not true. An axis-aligned grid yields high discrepancy because of alignments with
the boundaries of sets in R, but the dispersion is very low. Even though low-
discrepancy implies low-dispersion, lower dispersion can usually be obtained by
ignoring discrepancy (this is one less constraint to worry about). Thus, a trade-off
must be carefully considered in applications.

Low-discrepancy sampling methods Due to the fundamental importance of
numerical integration and the intricate link between discrepancy and integration
error, most sampling literature has led to low-discrepancy sequences and point sets
[381, 443, 458]. Although motion planning is quite different from integration, it
is worth evaluating these carefully constructed and well-analyzed samples. Their
potential use in motion planning is no less reasonable than using pseudorandom
sequences, which were also designed with a different intention in mind (satisfying
statistical tests of randomness).

Low-discrepancy sampling methods can be divided into three categories: 1)
Halton/Hammersley sampling; 2) (t,s)-sequences and (t,m,s)-nets; and 3) lattices.
The first category represents one of the earliest methods, and is based on extending
the van der Corput sequence. The Halton sequence is an n-dimensional generaliza-
tion of the van der Corput sequence, but instead of using binary representations,
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a different basis is used for each coordinate [220]. The result is a reasonable de-
terministic replacement for random samples in many applications. The resulting
discrepancy (and dispersion) is lower than that for random samples (with high
probability). Figure 5.8a shows the first 196 Halton points in R2.

Choose n relatively prime integers p1, p2, . . . , pn (usually the first n primes,
p1 = 2, p2 = 3, . . ., are chosen). To construct the ith sample, consider the base-p
representation for i, which takes the form i = a0 + pa1 + p2a2 + p3a3 + . . .. The
following point in [0, 1] is obtained by reversing the order of the bits and moving
the decimal point (as was done in Figure 5.2):

r(i, p) =
a0
p

+
a1
p2

+
a2
p3

+
a3
p4

+ · · · . (5.24)

For p = 2, this yields the ith point in the van der Corput sequence. Starting from
i = 0, the ith sample in the Halton sequence is

(

r(i, p1), r(i, p2), . . . , r(i, pn)
)

. (5.25)

Suppose instead that k, the required number of points, is known. In this case,
a better distribution of samples can be obtained. The Hammersley point set [221]
is an adaptation of the Halton sequence. Using only d − 1 distinct primes and
starting at i = 0, the ith sample in a Hammersley point set with k elements is

(

i/k, r(i, p1), . . . , r(i, pn−1)
)

. (5.26)

Figure 5.8b shows the Hammersley set for n = 2 and k = 196.
The construction of Halton/Hammersley samples is simple and efficient, which

has led to widespread application. They both achieve asymptotically optimal
discrepancy; however, the constant in their asymptotic analysis increases more
than exponentially with dimension [381]. The constant for the dispersion also
increases exponentially, which is much worse than for the methods of Section
5.2.3.

Improved constants are obtained for sequences and finite points by using (t,s)-
sequences, and (t,m,s)-nets, respectively [381]. The key idea is to enforce zero
discrepancy over particular subsets of R known as canonical rectangles, and all
remaining ranges in R will contribute small amounts to discrepancy. The most
famous and widely used (t,s)-sequences are Sobol’ and Faure (see [381]). The
Niederreiter-Xing (t,s)-sequence has the best-known asymptotic constant, (a/n)n,
in which a is a small positive constant [382].

The third category is lattices, which can be considered as a generalization of
grids that allows nonorthogonal axes [353, 443, 469]. As an example, consider
Figure 5.5b, which shows 196 lattice points generated by the following technique.
Let α be a positive irrational number. For a fixed k, generate the ith point
according to (i/k, {iα}), in which {·} denotes the fractional part of the real value
(modulo-one arithmetic). In Figure 5.5b, α = (

√
5 + 1)/2, the golden ratio.
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(a) 196 Halton points (b) 196 Hammersley points

Figure 5.8: The Halton and Hammersley points are easy to construct and provide
a nice alternative to random sampling that achieves more regularity. Compare
the Voronoi regions to those in Figure 5.3. Beware that although these sequences
produce asymptotically optimal discrepancy, their performance degrades substan-
tially in higher dimensions (e.g., beyond 10).

This procedure can be generalized to n dimensions by picking n − 1 distinct
irrational numbers. A technique for choosing the α parameters by using the roots
of irreducible polynomials is discussed in [353]. The ith sample in the lattice is

(

i

k
, {iα1}, . . . , {iαn−1}

)

. (5.27)

Recent analysis shows that some lattice sets achieve asymptotic discrepancy
that is very close to that of the best-known nonlattice sample sets [229, 459].
Thus, restricting the points to lie on a lattice seems to entail little or no loss in
performance, but has the added benefit of a regular neighborhood structure that
is useful for path planning. Historically, lattices have required the specification
of k in advance; however, there has been increasing interest in extensible lattices,
which are infinite sequences [230, 459].

5.3 Collision Detection

Once it has been decided where the samples will be placed, the next problem is to
determine whether the configuration is in collision. Thus, collision detection is a
critical component of sampling-based planning. Even though it is often treated as
a black box, it is important to study its inner workings to understand the informa-
tion it provides and its associated computational cost. In most motion planning
applications, the majority of computation time is spent on collision checking.

212 S. M. LaValle: Planning Algorithms

A variety of collision detection algorithms exist, ranging from theoretical algo-
rithms that have excellent computational complexity to heuristic, practical algo-
rithms whose performance is tailored to a particular application. The techniques
from Section 4.3 can be used to develop a collision detection algorithm by defining
a logical predicate using the geometric model of Cobs. For the case of a 2D world
with a convex robot and obstacle, this leads to an linear-time collision detection
algorithm. In general, however, it can be determined whether a configuration is
in collision more efficiently by avoiding the full construction of Cobs.

5.3.1 Basic Concepts

As in Section 3.1.1, collision detection may be viewed as a logical predicate. In
the current setting it appears as φ : C → {true, false}, in which the domain is
C instead of W . If q ∈ Cobs, then φ(q) = true; otherwise, φ(q) = false.

Distance between two sets For the Boolean-valued function φ, there is no
information about how far the robot is from hitting the obstacles. Such informa-
tion is very important in planning algorithms. A distance function provides this
information and is defined as d : C → [0,∞), in which the real value in the range
of f indicates the distance in the world, W , between the closest pair of points
over all pairs from A(q) and O. In general, for two closed, bounded subsets, E
and F , of Rn, the distance is defined as

ρ(E,F ) = min
e∈E

{

min
f∈F

{

‖e− f‖
}}

, (5.28)

in which ‖ · ‖ is the Euclidean norm. Clearly, if E ∩ F 6= ∅, then ρ(E,F ) = 0.
The methods described in this section may be used to either compute distance
or only determine whether q ∈ Cobs. In the latter case, the computation is often
much faster because less information is required.

Two-phase collision detection Suppose that the robot is a collection of m
attached links, A1, A2, . . ., Am, and that O has k connected components. For this
complicated situation, collision detection can be viewed as a two-phase process.

1. Broad Phase: In the broad phase, the task is to avoid performing expensive
computations for bodies that are far away from each other. Simple bound-
ing boxes can be placed around each of the bodies, and simple tests can be
performed to avoid costly collision checking unless the boxes overlap. Hash-
ing schemes can be employed in some cases to greatly reduce the number
of pairs of boxes that have to be tested for overlap [368]. For a robot that
consists of multiple bodies, the pairs of bodies that should be considered for
collision must be specified in advance, as described in Section 4.3.1.
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(a) (b) (c) (d)

Figure 5.9: Four different kinds of bounding regions: (a) sphere, (b) axis-aligned
bounding box (AABB), (c) oriented bounding box (OBB), and (d) convex hull.
Each usually provides a tighter approximation than the previous one but is more
expensive to test for overlapping pairs.

2. Narrow Phase: In the narrow phase, individual pairs of bodies are each
checked carefully for collision. Approaches to this phase are described in
Sections 5.3.2 and 5.3.3.

5.3.2 Hierarchical Methods

In this section, suppose that two complicated, nonconvex bodies, E and F , are
to be checked for collision. Each body could be part of either the robot or the
obstacle region. They are subsets of R2 or R3, defined using any kind of geometric
primitives, such as triangles in R3. Hierarchical methods generally decompose
each body into a tree. Each vertex in the tree represents a bounding region that
contains some subset of the body. The bounding region of the root vertex contains
the whole body.

There are generally two opposing criteria that guide the selection of the type
of bounding region:

1. The region should fit the intended body points as tightly as possible.

2. The intersection test for two regions should be as efficient as possible.

Several popular choices are shown in Figure 5.9 for an L-shaped body.
The tree is constructed for a body, E (or alternatively, F ) recursively as fol-

lows. For each vertex, consider the set X of all points in E that are contained in
the bounding region. Two child vertices are constructed by defining two smaller
bounding regions whose union covers X. The split is made so that the portion
covered by each child is of similar size. If the geometric model consists of primi-
tives such as triangles, then a split could be made to separate the triangles into
two sets of roughly the same number of triangles. A bounding region is then
computed for each of the children. Figure 5.10 shows an example of a split for the
case of an L-shaped body. Children are generated recursively by making splits
until very simple sets are obtained. For example, in the case of triangles in space,
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Figure 5.10: The large circle shows the bounding region for a vertex that covers
an L-shaped body. After performing a split along the dashed line, two smaller
circles are used to cover the two halves of the body. Each circle corresponds to a
child vertex.

a split is made unless the vertex represents a single triangle. In this case, it is
easy to test for the intersection of two triangles.

Consider the problem of determining whether bodies E and F are in collision.
Suppose that the trees Te and Tf have been constructed for E and F , respectively.
If the bounding regions of the root vertices of Te and Tf do not intersect, then it
is known that Te and Tf are not in collision without performing any additional
computation. If the bounding regions do intersect, then the bounding regions of
the children of Te are compared to the bounding region of Tf . If either of these
intersect, then the bounding region of Tf is replaced with the bounding regions
of its children, and the process continues recursively. As long as the bounding
regions overlap, lower levels of the trees are traversed, until eventually the leaves
are reached. If triangle primitives are used for the geometric models, then at the
leaves the algorithm tests the individual triangles for collision, instead of bounding
regions. Note that as the trees are traversed, if a bounding region from the vertex
v1 of Te does not intersect the bounding region from a vertex, v2, of Tf , then no
children of v1 have to be compared to children of v1. Usually, this dramatically
reduces the number of comparisons, relative in a naive approach that tests all
pairs of triangles for intersection.

It is possible to extend the hierarchical collision detection scheme to also com-
pute distance. The closest pair of points found so far serves as an upper bound
that prunes aways some future pairs from consideration. If a pair of bounding
regions has a distance greater than the smallest distance computed so far, then
their children do not have to be considered [329]. In this case, an additional re-
quirement usually must be imposed. Every bounding region must be a proper
subset of its parent bounding region [406]. If distance information is not needed,
then this requirement can be dropped.
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Figure 5.11: The Voronoi regions alternate between being edge-based and vertex-
based. The Voronoi regions of vertices are labeled with a “V” and the Voronoi
regions of edges are labeled with an “E.”

5.3.3 Incremental Methods

This section focuses on a particular approach called incremental distance com-
putation, which assumes that between successive calls to the collision detection
algorithm, the bodies move only a small amount. Under this assumption the
algorithm achieves “almost constant time” performance for the case of convex
polyhedral bodies [327, 367]. Nonconvex bodies can be decomposed into convex
components.

These collision detection algorithms seem to offer wonderful performance, but
this comes at a price. The models must be coherent, which means that all of
the primitives must fit together nicely. For example, if a 2D model uses line
segments, all of the line segments must fit together perfectly to form polygons.
There can be no isolated segments or chains of segments. In three dimensions,
polyhedral models are required to have all faces come together perfectly to form
the boundaries of 3D shapes. The model cannot be an arbitrary collection of 3D
triangles.

The method will be explained for the case of 2D convex polygons, which are
interpreted as convex subsets of R2. Voronoi regions for a convex polygon will be
defined in terms of features. The feature set is the set of all vertices and edges
of a convex polygon. Thus, a polygon with n edges has 2n features. Any point
outside of the polygon has a closest feature in terms of Euclidean distance. For a
given feature, F , the set of all points in R2 from which F is the closest feature is
called the Voronoi region of F and is denoted Vor(F ). Figure 5.11 shows all ten
Voronoi regions for a pentagon. Each feature is considered as a point set in the
discussion below.

For any two convex polygons that do not intersect, the closest point is deter-
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mined by a pair of points, one on each polygon (the points are unique, except in
the case of parallel edges). Consider the feature for each point in the closest pair.
There are only three possible combinations:

• Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

• Edge-Vertex One point of the closest pair lies on an edge, and the other
lies on a vertex.

• Edge-Edge Each point of the closest pair lies on an edge. In this case, the
edges must be parallel.

Let P1 and P2 be two convex polygons, and let F1 and F2 represent any feature
pair, one from each polygon. Let (x1, y1) ∈ F1 and (x2, y2) ∈ F2 denote the closest
pair of points, among all pairs of points in F1 and F2, respectively. The following
condition implies that the distance between (x1, y1) and (x2, y2) is the distance
between P1 and P2:

(x1, y1) ∈ Vor(F2) and (x2, y2) ∈ Vor(F1). (5.29)

If (5.29) is satisfied for a given feature pair, then the distance between P1 and P2

equals the distance between F1 and F2. This implies that the distance between P1

and P2 can be determined in constant time. The assumption that P1 moves only
a small amount relative to P2 is made to increase the likelihood that the closest
feature pair remains the same. This is why the phrase “almost constant time” is
used to describe the performance of the algorithm. Of course, it is possible that
the closest feature pair will change. In this case, neighboring features are tested
using the condition above until the new closest pair of features is found. In this
worst case, this search could be costly, but this violates the assumption that the
bodies do not move far between successive collision detection calls.

The 2D ideas extend to 3D convex polyhedra [136, 327, 367]. The primary
difference is that three kinds of features are considered: faces, edges, and vertices.
The cases become more complicated, but the idea is the same. Once again, the
condition regarding mutual Voronoi regions holds, and the resulting incremental
collision detection algorithm has “almost constant time” performance.

5.3.4 Checking a Path Segment

Collision detection algorithms determine whether a configuration lies in Cfree, but
motion planning algorithms require that an entire path maps into Cfree. The
interface between the planner and collision detection usually involves validation
of a path segment (i.e., a path, but often a short one). This cannot be checked
point-by-point because it would require an uncountably infinite number of calls
to the collision detection algorithm.

Suppose that a path, τ : [0, 1]→ C, needs to be checked to determine whether
τ([0, 1]) ⊂ Cfree. A common approach is to sample the interval [0, 1] and call the
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Figure 5.12: The furthest point on A from the origin travels the fastest when A
is rotated. At most it can be displaced by 2πr, if xt and yt are fixed.

collision checker only on the samples. What resolution of sampling is required?
How can one ever guarantee that the places where the path is not sampled are
collision-free? There are both practical and theoretical answers to these questions.
In practice, a fixed ∆q > 0 is often chosen as the C-space step size. Points t1, t2 ∈
[0, 1] are then chosen close enough together to ensure that ρ(τ(t1), τ(t2)) ≤ ∆q, in
which ρ is the metric on C. The value of ∆q is often determined experimentally.
If ∆q is too small, then considerable time is wasted on collision checking. If ∆q
is too large, then there is a chance that the robot could jump through a thin
obstacle.

Setting ∆q empirically might not seem satisfying. Fortunately, there are sound
algorithmic ways to verify that a path is collision-free. In some applications the
methods are still not used because they are trickier to implement and they often
yield worse performance. Therefore, both methods are presented here, and you
can decide which is appropriate, depending on the context and your personal
tastes.

Ensuring that τ([0, 1]) ⊂ Cfree requires the use of both distance information
and bounds on the distance that points on A can travel in R. Such bounds can
be obtained by using the robot displacement metric from Example 5.6. Before
expressing the general case, first we will explain the concept in terms of a rigid
robot that translates and rotates in W = R2. Let xt, yt ∈ R2 and θ ∈ [0, 2π]/ ∼.
Suppose that a collision detection algorithm indicates that A(q) is at least d
units away from collision with obstacles in W . This information can be used to
determine a region in Cfree that contains q. Suppose that the next candidate
configuration to be checked along τ is q′. If no point on A travels more than
distance d when moving from q to q′ along τ , then q′ and all configurations between
q and q′ must be collision-free. This assumes that on the path from q to q′, every
visited configuration must lie between qi and q

′
i for the ith coordinate and any i

from 1 to n. If the robot can instead take any path between q and q′, then no
such guarantee can be made).
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When A undergoes a translation, all points move the same distance. For
rotation, however, the distance traveled depends on how far the point on A is
from the rotation center, (0, 0). Let ar = (xr, yr) denote the point on A that
has the largest magnitude, r =

√

x2r + y2r . Figure 5.12 shows an example. A
transformed point a ∈ A may be denoted by a(xt, yt, θ). The following bound is
obtained for any a ∈ A, if the robot is rotated from orientation θ to θ′:

‖a(xt, yt, θ)− a(xt, yt, θ′)‖ ≤ ‖ar(xt, yt, θ)− ar(xt, yt, θ′)‖ < r|θ − θ′|, (5.30)

assuming that a path in C is followed that interpolates between θ and θ′ (using
the shortest path in S1 between θ and θ′). Thus, if A(q) is at least d away from
the obstacles, then the orientation may be changed without causing collision as
long as r|θ − θ′| < d. Note that this is a loose upper bound because ar travels
along a circular arc and can be displaced by no more than 2πr.

Similarly, xt and yt may individually vary up to d, yielding |xt − x′t| < d and
|yt − y′t| < d. If all three parameters vary simultaneously, then a region in Cfree
can be defined as

{(x′t, y′t, θ′) ∈ C | |xt − x′t|+ |yt − y′t|+ r|θ − θ′| < d}. (5.31)

Such bounds can generally be used to set a step size, ∆q, for collision checking
that guarantees the intermediate points lie in Cfree. The particular value used
may vary depending on d and the direction8 of the path.

For the case of SO(3), once again the displacement of the point on A that
has the largest magnitude can be bounded. It is best in this case to express the
bounds in terms of quaternion differences, ‖h−h′‖. Euler angles may also be used
to obtain a straightforward generalization of (5.31) that has six terms, three for
translation and three for rotation. For each of the three rotation parts, a point
with the largest magnitude in the plane perpendicular to the rotation axis must
be chosen.

If there are multiple links, it becomes much more complicated to determine the
step size. Each point a ∈ Ai is transformed by some nonlinear function based on
the kinematic expressions from Sections 3.3 and 3.4. Let a : C → W denote this
transformation. In some cases, it might be possible to derive a Lipschitz condition
of the form

‖a(q)− a(q′)‖ < c‖q − q′‖, (5.32)

in which c ∈ (0,∞) is a fixed constant, a is any point on Ai, and the expression
holds for any q, q′ ∈ C. The goal is to make the Lipschitz constant, c, as small as
possible; this enables larger variations in q.

A better method is to individually bound the link displacement with respect
to each parameter,

‖a(q1, . . . , qi−1, qi, qi+1, . . . , qn)− a(q1, . . . , qi−1, q
′
i, qi+1, . . . , qn)‖ < ci|qi − q′i|,

(5.33)

8To formally talk about directions, it would be better to define a differentiable structure on
C. This will be deferred to Section 8.3, where it seems unavoidable.
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to obtain the Lipschitz constants c1, . . ., cn. The bound on robot displacement
becomes

‖a(q)− a(q′)‖ <
n
∑

i=1

ci|qi − q′i|. (5.34)

The benefit of using individual parameter bounds can be seen by considering a long
chain. Consider a 50-link chain of line segments in R2, and each link has length
10. The C-space is T50, which can be parameterized as [0, 2π]50/ ∼. Suppose that
the chain is in a straight-line configuration (θi = 0 for all 1 ≤ i ≤ 50), which
means that the last point is at (500, 0) ∈ W . Changes in θ1, the orientation of
the first link, dramatically move A50. However, changes in θ50 move A50 a smaller
amount. Therefore, it is advantageous to pick a different ∆qi for each 1 ≤ i ≤ 50.
In this example, a smaller value should be used for ∆θ1 in comparison to ∆θ50.

Unfortunately, there are more complications. Suppose the 50-link chain is
in a configuration that folds all of the links on top of each other (θi = π for
each 1 ≤ i ≤ n). In this case, A50 does not move as fast when θ1 is perturbed,
in comparison to the straight-line configuration. A larger step size for θ1 could
be used for this configuration, relative to other parts of C. The implication is
that, although Lipschitz constants can be made to hold over all of C, it might be
preferable to determine a better bound in a local region around q ∈ C. A linear
method could be obtained by analyzing the Jacobian of the transformations, such
as (3.53) and (3.57).

Another important concern when checking a path is the order in which the
samples are checked. For simplicity, suppose that ∆q is constant and that the path
is a constant-speed parameterization. Should the collision checker step along from
0 up to 1? Experimental evidence indicates that it is best to use a recursive binary
strategy [191]. This makes no difference if the path is collision-free, but it often
saves time if the path is in collision. This is a kind of sampling problem over
[0, 1], which is addressed nicely by the van der Corput sequence, ν. The last
column in Figure 5.2 indicates precisely where to check along the path in each
step. Initially, τ(1) is checked. Following this, points from the van der Corput
sequence are checked in order: τ(0), τ(1/2), τ(1/4), τ(3/4), τ(1/8), . . .. The
process terminates if a collision is found or when the dispersion falls below ∆q.
If ∆q is not constant, then it is possible to skip over some points of ν in regions
where the allowable variation in q is larger.

5.4 Incremental Sampling and Searching

5.4.1 The General Framework

The algorithms of Sections 5.4 and 5.5 follow the single-query model, which means
(qI , qG) is given only once per robot and obstacle set. This means that there are no
advantages to precomputation, and the sampling-based motion planning problem

220 S. M. LaValle: Planning Algorithms

can be considered as a kind of search. The multiple-query model, which favors
precomputation, is covered in Section 5.6.

The sampling-based planning algorithms presented in the present section are
strikingly similar to the family of search algorithms summarized in Section 2.2.4.
The main difference lies in step 3 below, in which applying an action, u, is replaced
by generating a path segment, τs. Another difference is that the search graph, G,
is undirected, with edges that represent paths, as opposed to a directed graph in
which edges represent actions. It is possible to make these look similar by defining
an action space for motion planning that consists of a collection of paths, but this
is avoided here. In the case of motion planning with differential constraints, this
will actually be required; see Chapter 14.

Most single-query, sampling-based planning algorithms follow this template:

1. Initialization: Let G(V,E) represent an undirected search graph, for which
V contains at least one vertex and E contains no edges. Typically, V con-
tains qI , qG, or both. In general, other points in Cfree may be included.

2. Vertex Selection Method (VSM): Choose a vertex qcur ∈ V for expan-
sion.

3. Local Planning Method (LPM): For some qnew ∈ Cfree that may or
may not be represented by a vertex in V , attempt to construct a path
τs : [0, 1]→ Cfree such that τ(0) = qcur and τ(1) = qnew. Using the methods
of Section 5.3.4, τs must be checked to ensure that it does not cause a
collision. If this step fails to produce a collision-free path segment, then go
to step 2.

4. Insert an Edge in the Graph: Insert τs into E, as an edge from qcur to
qnew. If qnew is not already in V , then it is inserted.

5. Check for a Solution: Determine whether G encodes a solution path.
As in the discrete case, if there is a single search tree, then this is trivial;
otherwise, it can become complicated and expensive.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied, in which case the algorithm reports failure.

In the present context, G is a topological graph, as defined in Example 4.6.
Each vertex is a configuration and each edge is a path that connects two configu-
rations. In this chapter, it will be simply referred to as a graph when there is no
chance of confusion. Some authors refer to such a graph as a roadmap; however,
we reserve the term roadmap for a graph that contains enough paths to make any
motion planning query easily solvable. This case is covered in Section 5.6 and
throughout Chapter 6.

A large family of sampling-based algorithms can be described by varying the
implementations of steps 2 and 3. Implementations of the other steps may also
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Figure 5.13: All of these depict high-dimensional obstacle regions in C-space. (a)
The search must involve some sort of multi-resolution aspect, otherwise, that al-
gorithm may explore too many points within a cavity. (b) Sometimes the problem
is like a bug trap, in which case bidirectional search can help. (c) For a double
bug trap, multi-directional search may be needed. (d) This example is hard to
solve even for multi-directional search.

vary, but this is less important and will be described where appropriate. For
convenience, step 2 will be called the vertex selection method (VSM) and step 3
will be called the local planning method (LPM). The role of the VSM is similar to
that of the priority queue, Q, in Section 2.2.1. The role of the LPM is to compute
a collision-free path segment that can be added to the graph. It is called local
because the path segment is usually simple (e.g., the shortest path) and travels a
short distance. It is not global in the sense that the LPM does not try to solve the
entire planning problem; it is expected that the LPM may often fail to construct
path segments.

It will be formalized shortly, but imagine for the time being that any of the
search algorithms from Section 2.2 may be applied to motion planning by ap-
proximating C with a high-resolution grid. The resulting problem looks like a
multi-dimensional extension of Example 2.1 (the “labyrinth” walls are formed
by Cobs). For a high-resolution grid in a high-dimensional space, most classical
discrete searching algorithms have trouble getting trapped in a local minimum.
There could be an astronomical number of configurations that fall within a con-
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cavity in Cobs that must be escaped to solve the problem, as shown in Figure
5.13a. Imagine a problem in which the C-space obstacle is a giant “bowl” that
can trap the configuration. This figure is drawn in two dimensions, but imagine
that the C has many dimensions, such as six for SE(3) or perhaps dozens for a
linkage. If the discrete planning algorithms from Section 2.2 are applied to a high-
resolution grid approximation of C, then they will all waste their time filling up
the bowl before being able to escape to qG. The number of grid points in this bowl
would typically be on the order of 100n for an n-dimensional C-space. Therefore,
sampling-based motion planning algorithms combine sampling and searching in a
way that attempts to overcome this difficulty.

As in the case of discrete search algorithms, there are several classes of algo-
rithms based on the number of search trees.

Unidirectional (single-tree) methods: In this case, the planning ap-
pears very similar to discrete forward search, which was given in Figure 2.4.
The main difference between algorithms in this category is how they imple-
ment the VSM and LPM. Figure 5.13b shows a bug trap9 example for which
forward-search algorithms would have great trouble; however, the problem
might not be difficult for backward search, if the planner incorporates some
kind of greedy, best-first behavior. This example, again in high dimensions,
can be considered as a kind of “bug trap.” To leave the trap, a path must
be found from qI into the narrow opening. Imagine a fly buzzing around
through the high-dimensional trap. The escape opening might not look too
difficult in two dimensions, but if it has a small range with respect to each
configuration parameter, it is nearly impossible to find the opening. The tip
of the “volcano” would be astronomically small compared to the rest of the
bug trap. Examples such as this provide some motivation for bidirectional
algorithms. It might be easier for a search tree that starts in qG to arrive in
the bug trap.

Bidirectional (two-tree) methods: Since it is not known whether qI or
qG might lie in a bug trap (or another challenging region), a bidirectional
approach is often preferable. This follows from an intuition that two prop-
agating wavefronts, one centered on qI and the other on qG, will meet after
covering less area in comparison to a single wavefront centered at qI that
must arrive at qG. A bidirectional search is achieved by defining the VSM
to alternate between trees when selecting vertices. The LPM sometimes
generates paths that explore new parts of Cfree, and at other times it tries
to generate a path that connects the two trees.

Multi-directional (more than two trees) methods: If the problem
is so bad that a double bug trap exists, as shown in Figure 5.13c, then it

9This principle is actually used in real life to trap flying bugs. This analogy was suggested
by James O’Brien in a discussion with James Kuffner.
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might make sense to grow trees from other places in the hopes that there are
better chances to enter the traps in the other direction. This complicates
the problem of connecting trees, however. Which pairs of trees should be
selected in each iteration for possible connection? How often should the same
pair be selected? Which vertex pairs should be selected? Many heuristic
parameters may arise in practice to answer these questions.

Of course, one can play the devil’s advocate and construct the example in Figure
5.13d, for which virtually all sampling-based planning algorithms are doomed.
Even harder versions can be made in which a sequence of several narrow corridors
must be located and traversed. We must accept the fact that some problems are
hopeless to solve using sampling-based planning methods, unless there is some
problem-specific structure that can be additionally exploited.

5.4.2 Adapting Discrete Search Algorithms

One of the most convenient and straightforward ways to make sampling-based
planning algorithms is to define a grid over C and conduct a discrete search using
the algorithms of Section 2.2. The resulting planning problem actually looks very
similar to Example 2.1. Each edge now corresponds to a path in Cfree. Some edges
may not exist because of collisions, but this will have to be revealed incrementally
during the search because an explicit representation of Cobs is too expensive to
construct (recall Section 4.3).

Assume that an n-dimensional C-space is represented as a unit cube, C =
[0, 1]n/ ∼, in which ∼ indicates that identifications of the sides of the cube are
made to reflect the C-space topology. Representing C as a unit cube usually
requires a reparameterization. For example, an angle θ ∈ [0, 2π) would be replaced
with θ/2π to make the range lie within [0, 1]. If quaternions are used for SO(3),
then the upper half of S3 must be deformed into [0, 1]3/ ∼.

Discretization Assume that C is discretized by using the resolutions k1, k2,. . .,
and kn, in which each ki is a positive integer. This allows the resolution to be
different for each C-space coordinate. Either a standard grid or a Sukharev grid
can be used. Let

∆qi = [0 · · · 0 1/ki 0 · · · 0], (5.35)

in which the first i − 1 components and the last n − i components are 0. A grid
point is a configuration q ∈ C that can be expressed in the form10

n
∑

i=1

ji∆qi, (5.36)

in which each ji ∈ {0, 1, . . . , ki}. The integers j1, . . ., jn can be imagined as array
indices for the grid. Let the term boundary grid point refer to a grid point for

10Alternatively, the general lattice definition in (5.21) could be used.
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which ji = 0 or ji = ki for some i. Due to identifications, boundary grid points
might have more than one representation using (5.36).

Neighborhoods For each grid point q we need to define the set of nearby grid
points for which an edge may be constructed. Special care must be given to
defining the neighborhood of a boundary grid point to ensure that identifications
and the C-space boundary (if it exists) are respected. If q is not a boundary grid
point, then the 1-neighborhood is defined as

N1(q) = {q +∆q1, . . . , q +∆qn, q −∆q1, . . . , q −∆qn}. (5.37)

For an n-dimensional C-space there at most 2n 1-neighbors. In two dimensions,
this yields at most four 1-neighbors, which can be thought of as “up,” “down,”
“left,” and “right.” There are at most four because some directions may be blocked
by the obstacle region.

A 2-neighborhood is defined as

N2(q) = {q ±∆qi ±∆qj | 1 ≤ i, j ≤ n, i 6= j} ∪N1(q). (5.38)

Similarly, a k-neighborhood can be defined for any positive integer k ≤ n. For
an n-neighborhood, there are at most 3n − 1 neighbors; there may be fewer due
to boundaries or collisions. The definitions can be easily extended to handle the
boundary points.

Obtaining a discrete planning problem Once the grid and neighborhoods
have been defined, a discrete planning problem is obtained. Figure 5.14 depicts
the process for a problem in which there are nine Sukharev grid points in [0, 1]2.
Using 1-neighborhoods, the potential edges in the search graph, G(V,E), appear
in Figure 5.14a. Note that G is a topological graph, as defined in Example 4.6,
because each vertex is a configuration and each edge is a path. If qI and qG do not
coincide with grid points, they need to be connected to some nearby grid points,
as shown in Figure 5.14b. What grid points should qI and qG be connected to?
As a general rule, if k-neighbors are used, then one should try connecting qI and
qG to any grid points that are at least as close as the furthest k-neighbor from a
typical grid point.

Usually, all of the vertices and edges shown in Figure 5.14b do not appear in
G because some intersect with Cobs. Figure 5.14c shows a more typical situation,
in which some of the potential vertices and edges are removed because of colli-
sions. This representation could be computed in advance by checking all potential
vertices and edges for collision. This would lead to a roadmap, which is suited
for multiple queries and is covered in Section 5.6. In this section, it is assumed
that G is revealed “on the fly” during the search. This is the same situation that
occurs for the discrete planning methods from Section 2.2. In the current setting,
the potential edges of G are validated during the search. The candidate edges to



5.4. INCREMENTAL SAMPLING AND SEARCHING 225

(a) (b)

(c) (d)

Figure 5.14: A topological graph can be constructed during the search and can
successfully solve a motion planning problem using very few samples.

evaluate are given by the definition of the k-neighborhoods. During the search,
any edge or vertex that has been checked for collision explicitly appears in a data
structure so that it does not need to be checked again. At the end of the search,
a path is found, as depicted in Figure 5.14d.

Grid resolution issues The method explained so far will nicely find the solu-
tion to many problems when provided with the correct resolution. If the number
of points per axis is too high, then the search may be too slow. This motivates
selecting fewer points per axis, but then solutions might be missed. This trade-off
is fundamental to sampling-based motion planning. In a more general setting, if
other forms of sampling and neighborhoods are used, then enough samples have
to be generated to yield a sufficiently small dispersion.

There are two general ways to avoid having to select this resolution (or more
generally, dispersion):

1. Iteratively refine the resolution until a solution is found. In this case, sam-
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pling and searching become interleaved. One important variable is how
frequently to alternate between the two processes. This will be presented
shortly.

2. An alternative is to abandon the adaptation of discrete search algorithms
and develop algorithms directly for the continuous problem. This forms the
basis of the methods in Sections 5.4.3, 5.4.4, and 5.5.

The most straightforward approach is to iteratively improve the grid resolution.
Suppose that initially a standard grid with 2n points total and 2 points per axis
is searched using one of the discrete search algorithms, such as best-first or A∗. If
the search fails, what should be done? One possibility is to double the resolution,
which yields a grid with 4n points. Many of the edges can be reused from the
first grid; however, the savings diminish rapidly in higher dimensions. Once the
resolution is doubled, the search can be applied again. If it fails again, then the
resolution can be doubled again to yield 8n points. In general, there would be a
full grid for 2ni points, for each i. The problem is that if n is large, then the rate
of growth is too large. For example, if n = 10, then there would initially be 1024
points; however, when this fails, the search is not performed again until there are
over one million points! If this also fails, then it might take a very long time to
reach the next level of resolution, which has 230 points.

A method similar to iterative deepening from Section 2.2.2 would be preferable.
Simply discard the efforts of the previous resolution and make grids that have in

points per axis for each iteration i. This yields grids of sizes 2n, 3n, 4n, and so on,
which is much better. The amount of effort involved in searching a larger grid is
insignificant compared to the time wasted on lower resolution grids. Therefore, it
seems harmless to discard previous work.

A better solution is not to require that a complete grid exists before it can
be searched. For example, the resolution can be increased for one axis at a time
before attempting to search again. Even better yet may be to tightly interleave
searching and sampling. For example, imagine that the samples appear as an
infinite, dense sequence α. The graph can be searched after every 100 points are
added, assuming that neighborhoods can be defined or constructed even though
the grid is only partially completed. If the search is performed too frequently, then
searching would dominate the running time. An easy way make this efficient is
to apply the union-find algorithm [132, 413] to iteratively keep track of connected
components in G instead of performing explicit searching. If qI and qG become part
of the same connected component, then a solution path has been found. Every
time a new point in the sequence α is added, the “search” is performed in nearly11

constant time by the union-find algorithm. This is the tightest interleaving of
the sampling and searching, and results in a nice sampling-based algorithm that

11It is not constant because the running time is proportional to the inverse Ackerman function,
which grows very, very slowly. For all practical purposes, the algorithm operates in constant
time. See Section 6.5.2.
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Figure 5.15: The randomized potential field method can be modeled as a three-
state machine.

requires no resolution parameter. It is perhaps best to select a sequence α that
contains some lattice structure to facilitate the determination of neighborhoods
in each iteration.

What if we simply declare the resolution to be outrageously high at the outset?
Imagine there are 100n points in the grid. This places all of the burden on the
search algorithm. If the search algorithm itself is good at avoiding local minima
and has built-in multi-resolution qualities, then it may perform well without the
iterative refinement of the sampling. The method of Section 5.4.3 is based on
this idea by performing best-first search on a high-resolution grid, combined with
random walks to avoid local minima. The algorithms of Section 5.5 go one step
further and search in a multi-resolution way without requiring resolutions and
neighborhoods to be explicitly determined. This can be considered as the limiting
case as the number of points per axis approaches infinity.

Although this section has focused on grids, it is also possible to use other
forms of sampling from Section 5.2. This requires defining the neighborhoods
in a suitable way that generalizes the k-neighborhoods of this section. In every
case, an infinite, dense sample sequence must be defined to obtain resolution com-
pleteness by reducing the dispersion to zero in the limit. Methods for obtaining
neighborhoods for irregular sample sets have been developed in the context of
sampling-based roadmaps; see Section 5.6. The notion of improving resolution
becomes generalized to adding samples that improve dispersion (or even discrep-
ancy).

5.4.3 Randomized Potential Fields

Adapting the discrete algorithms from Section 2.2 works well if the problem can
be solved with a small number of points. The number of points per axis must
be small or the dimension must be low, to ensure that the number of points, kn,
for k points per axis and n dimensions is small enough so that every vertex in
g can be reached in a reasonable amount of time. If, for example, the problem
requires 50 points per axis and the dimension is 10, then it is impossible to search
all of the 5010 samples. Planners that exploit best-first heuristics might find the
answer without searching most of them; however, for a simple problem such as
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that shown in Figure 5.13a, the planner will take too long exploring the vertices
in the bowl.12

The randomized potential field [48, 50, 304] approach uses random walks to
attempt to escape local minima when best-first search becomes stuck. It was
one of the first sampling-based planners that developed specialized techniques
beyond classical discrete search, in an attempt to better solve challenging motion
planning problems. In many cases, remarkable results were obtained. In its time,
the approach was able to solve problems up to 31 degrees of freedom, which was
well beyond what had been previously possible. The main drawback, however,
was that the method involved many heuristic parameters that had to be adjusted
for each problem. This frustration eventually led to the development of better
approaches, which are covered in Sections 5.4.4, 5.5, and 5.6. Nevertheless, it is
worthwhile to study the clever heuristics involved in this earlier method because
they illustrate many interesting issues, and the method was very influential in the
development of other sampling-based planning algorithms.13

The most complicated part of the algorithm is the definition of a potential
function, which can be considered as a pseudometric that tries to estimate the
distance from any configuration to the goal. In most formulations, there is an
attractive term, which is a metric on C that yields the distance to the goal, and
a repulsive term, which penalizes configurations that come too close to obstacles.
The construction of potential functions involves many heuristics and is covered
in great detail in [304]. One of the most effective methods involves constructing
cost-to-go functions over W and lifting them to C [49]. In this section, it will be
sufficient to assume that some potential function, g(q), is defined, which is the
same notation (and notion) as a cost-to-go function in Section 2.2.2. In this case,
however, there is no requirement that g(q) is optimal or even an underestimate of
the true cost to go.

When the search becomes stuck and a random walk is needed, it is executed for
some number of iterations. Using the discretization procedures of Section 5.4.2, a
high-resolution grid (e.g., 50 points per axis) is initially defined. In each iteration,
the current configuration is modified as follows. Each coordinate, qi, is increased
or decreased by ∆qi (the grid step size) based on the outcome of a fair coin toss.
Topological identifications must be respected, of course. After each iteration, the
new configuration is checked for collision, or whether it exceeds the boundary of
C (if it has a boundary). If so, then it is discarded, and another attempt is made
from the previous configuration. The failures can repeat indefinitely until a new
configuration in Cfree is obtained.

The resulting planner can be described in terms of a three-state machine,
which is shown in Figure 5.15. Each state is called a mode to avoid confusion with

12Of course, that problem does not appear to need so many points per axis; fewer may be
used instead, if the algorithm can adapt the sampling resolution or dispersion.

13The exciting results obtained by the method even helped inspire me many years ago to work
on motion planning.
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earlier state-space concepts. The VSM and LPM are defined in terms of the mode.
Initially, the planner is in the best first mode and uses qI to start a gradient
descent. While in the best first mode, the VSM selects the newest vertex,
v ∈ V . In the first iteration, this is qI . The LPM creates a new vertex, vn, in a
neighborhood of v, in a direction that minimizes g. The direction sampling may
be performed using randomly selected or deterministic samples. Using random
samples, the sphere sampling method from Section 5.2.2 can be applied. After
some number of tries (another parameter), if the LPM is unsuccessful at reducing
g, then the mode is changed to random walk because the best-first search is
stuck in a local minimum of g.

In the random walk mode, a random walk is executed from the newest
vertex. The random walk terminates if either g is lowered or a specified limit
of iterations is reached. The limit is actually sampled from a predetermined
random variable (which contains parameters that also must be selected). When
the random walk mode terminates, the mode is changed back to best first. A
counter is incremented to keep track of the number of times that the random walk
was attempted. A parameter K determines the maximum number of attempted
random walks (a reasonable value is K = 20 [49]). If best first fails after K
random walks have been attempted, then the backtrack mode is entered. The
backtrack mode selects a vertex at random from among the vertices in V that
were obtained during a random walk. Following this, the counter is reset, and the
mode is changed back to best first.

Due to the random walks, the resulting paths are often too complicated to
be useful in applications. Fortunately, it is straightforward to transform a com-
puted path into a simpler one that is still collision-free. A common approach is
to iteratively pick pairs of points at random along the domain of the path and
attempt to replace the path segment with a straight-line path (in general, the
shortest path in C). For example, suppose t1, t2 ∈ [0, 1] are chosen at random, and
τ : [0, 1] → Cfree is the computed solution path. This path is transformed into a
new path,

τ ′(t) =







τ(t) if 0 ≤ t ≤ t1
aτ(t1) + (1− a)τ(t2) if t1 ≤ t ≤ t2
τ(t) if t2 ≤ t ≤ 1,

(5.39)

in which a ∈ [0, 1] represents the fraction of the way from t1 to t2. Explicitly,
a = (t2 − t)/(t2 − t1). The new path must be checked for collision. If it passes,
then it replaces the old path; otherwise, it is discarded and a new pair t1, t2, is
chosen.

The randomized potential field approach can escape high-dimensional local
minima, which allow interesting solutions to be found for many challenging high-
dimensional problems. Unfortunately, the heavy amount of parameter tuning
caused most people to abandon the method in recent times, in favor of newer
methods.
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5.4.4 Other Methods

Several influential sampling-based methods are given here. Each of them appears
to offer advantages over the randomized potential field method. All of them use
randomization, which was perhaps inspired by the potential field method.

Ariadne’s Clew algorithm This approach grows a search tree that is biased
to explore as much new territory as possible in each iteration [358, 357]. There are
two modes, search and explore, which alternate over successive iterations. In
the explore mode, the VSM selects a vertex, ve, at random, and the LPM finds
a new configuration that can be easily connected to ve and is as far as possible
from the other vertices in G. A global optimization function that aggregates the
distances to other vertices is optimized using a genetic algorithm. In the search
mode, an attempt is made to extend the vertex added in the explore mode to
the goal configuration. The key idea from this approach, which influenced both
the next approach and the methods in Section 5.5, is that some of the time must
be spent exploring the space, as opposed to focusing on finding the solution. The
greedy behavior of the randomized potential field led to some efficiency but was
also its downfall for some problems because it was all based on escaping local
minima with respect to the goal instead of investing time on global exploration.
One disadvantage of Ariadne’s Clew algorithm is that it is very difficult to solve
the optimization problem for placing a new vertex in the explore mode. Genetic
algorithms were used in [357], which are generally avoided for motion planning
because of the required problem-specific parameter tuning.

Expansive-space planner This method [242, 424] generates samples in a way
that attempts to explore new parts of the space. In this sense, it is similar to
the explore mode of the Ariadne’s Clew algorithm. Furthermore, the planner
is made more efficient by borrowing the bidirectional search idea from discrete
search algorithms, as covered in Section 2.2.3. The VSM selects a vertex, ve,
from G with a probability that is inversely proportional to the number of other
vertices of G that lie within a predetermined neighborhood of ve. Thus, “isolated”
vertices are more likely to be chosen. The LPM generates a new vertex vn at
random within a predetermined neighborhood of ve. It will decide to insert vn
into G with a probability that is inversely proportional to the number of other
vertices of G that lie within a predetermined neighborhood of vn. For a fixed
number of iterations, the VSM repeatedly chooses the same vertex, until moving
on to another vertex. The resulting planner is able to solve many interesting
problems by using a surprisingly simple criterion for the placement of points. The
main drawbacks are that the planner requires substantial parameter tuning, which
is problem-specific (or at least specific to a similar family of problems), and the
performance tends to degrade if the query requires systematically searching a long
labyrinth. Choosing the radius of the predetermined neighborhoods essentially
amounts to determining the appropriate resolution.
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Random-walk planner A surprisingly simple and efficient algorithm can be
made entirely from random walks [96]. To avoid parameter tuning, the algorithm
adjusts its distribution of directions and magnitude in each iteration, based on the
success of the past k iterations (perhaps k is the only parameter). In each iteration,
the VSM just selects the vertex that was most recently added to G. The LPM
generates a direction and magnitude by generating samples from a multivariate
Gaussian distribution whose covariance parameters are adaptively tuned. The
main drawback of the method is similar to that of the previous method. Both
have difficulty traveling through long, winding corridors. It is possible to combine
adaptive random walks with other search algorithms, such as the potential field
planner [95].

5.5 Rapidly Exploring Dense Trees

This section introduces an incremental sampling and searching approach that
yields good performance in practice without any parameter tuning.14 The idea
is to incrementally construct a search tree that gradually improves the resolution
but does not need to explicitly set any resolution parameters. In the limit, the tree
densely covers the space. Thus, it has properties similar to space filling curves
[423], but instead of one long path, there are shorter paths that are organized
into a tree. A dense sequence of samples is used as a guide in the incremental
construction of the tree. If this sequence is random, the resulting tree is called
a rapidly exploring random tree (RRT). In general, this family of trees, whether
the sequence is random or deterministic, will be referred to as rapidly exploring
dense trees (RDTs) to indicate that a dense covering of the space is obtained. This
method was originally developed for motion planning under differential constraints
[311, 314]; that case is covered in Section 14.4.3.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let
α denote an infinite, dense sequence of samples in C. The ith sample is denoted
by α(i). This may possibly include a uniform, random sequence, which is only
dense with probability one. Random sequences that induce a nonuniform bias are
also acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the

14The original RRT [306] was introduced with a step size parameter, but this is eliminated in
the current presentation. For implementation purposes, one might still want to revert to this
older way of formulating the algorithm because the implementation is a little easier. This will
be discussed shortly.
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SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G), α(i));
5 G.add edge(qn, α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

swath, S, of the graph, which is defined as

S =
⋃

e∈E
e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially, a
vertex is made at q0. For k iterations, a tree is iteratively grown by connecting
α(i) to its nearest point in the swath, S. The connection is usually made along

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.
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45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

the shortest possible path. In every iteration, α(i) becomes a vertex. Therefore,
the resulting tree is dense. Figures 5.17–5.18 illustrate an iteration graphically.
Suppose the tree has three edges and four vertices, as shown in Figure 5.17a. If
the nearest point, qn ∈ S, to α(i) is a vertex, as shown in Figure 5.17b, then an
edge is made from qn to α(i). However, if the nearest point lies in the interior
of an edge, as shown in Figure 5.18, then the existing edge is split so that qn
appears as a new vertex, and an edge is made from qn to α(i). The edge splitting,
if required, is assumed to be handled in line 4 by the method that adds edges.
Note that the total number of edges may increase by one or two in each iteration.

The method as described here does not fit precisely under the general frame-
work from Section 5.4.1; however, with the modifications suggested in Section
5.5.2, it can be adapted to fit. In the RDT formulation, the nearest function
serves the purpose of the VSM, but in the RDT, a point may be selected from
anywhere in the swath of the graph. The VSM can be generalized to a swath-point
selection method, SSM. This generalization will be used in Section 14.3.4. The
LPM tries to connect α(i) to qn along the shortest path possible in C.

Figure 5.19 shows an execution of the algorithm in Figure 5.16 for the case
in which C = [0, 1]2 and q0 = (1/2, 1/2). It exhibits a kind of fractal behavior.15

Several main branches are first constructed as it rapidly reaches the far corners of
the space. Gradually, more and more area is filled in by smaller branches. From
the pictures, it is clear that in the limit, the tree densely fills the space. Thus,

15If α is uniform, random, then a stochastic fractal [303] is obtained. Deterministic fractals
can be constructed using sequences that have appropriate symmetries.
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qn

q0

Cobs

qs

α(i)

Figure 5.20: If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 qn ← nearest(S, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 6= qn then
6 G.add vertex(qs);
7 G.add edge(qn, qs);

Figure 5.21: The RDT with obstacles.

it can be seen that the tree gradually improves the resolution (or dispersion) as
the iterations continue. This behavior turns out to be ideal for sampling-based
motion planning.

Recall that in sampling-based motion planning, the obstacle region Cobs is not
explicitly represented. Therefore, it must be taken into account in the construction
of the tree. Figure 5.20 indicates how to modify the algorithm in Figure 5.16 so
that collision checking is taken into account. The modified algorithm appears
in Figure 5.21. The procedure stopping-configuration yields the nearest
configuration possible to the boundary of Cfree, along the direction toward α(i).
The nearest point qn ∈ S is defined to be same (obstacles are ignored); however,
the new edge might not reach to α(i). In this case, an edge is made from qn to qs,
the last point possible before hitting the obstacle. How close can the edge come to
the obstacle boundary? This depends on the method used to check for collision,
as explained in Section 5.3.4. It is sometimes possible that qn is already as close
as possible to the boundary of Cfree in the direction of α(i). In this case, no new
edge or vertex is added that for that iteration.

5.5.2 Efficiently Finding Nearest Points

There are several interesting alternatives for implementing the nearest function
in line 3 of the algorithm in Figure 5.16. There are generally two families of
methods: exact or approximate. First consider the exact case.
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Exact solutions Suppose that all edges in G are line segments in Rm for some
dimension m ≥ n. An edge that is generated early in the construction process will
be split many times in later iterations. For the purposes of finding the nearest
point in S, however, it is best to handle this as a single segment. For example, see
the three large branches that extend from the root in Figure 5.19. As the number
of points increases, the benefit of agglomerating the segments increases. Let each
of these agglomerated segments be referred to as a supersegment. To implement
nearest, a primitive is needed that computes the distance between a point and a
line segment. This can be performed in constant time with simple vector calculus.
Using this primitive, nearest is implemented by iterating over all supersegments
and taking the point with minimum distance among all of them. It may be possible
to improve performance by building hierarchical data structures that can eliminate
large sets of supersegments, but this remains to be seen experimentally.

In some cases, the edges of G may not be line segments. For example, the short-
est paths between two points in SO(3) are actually circular arcs along S3. One
possible solution is to maintain a separate parameterization of C for the purposes
of computing the nearest function. For example, SO(3) can be represented as
[0, 1]3/ ∼, by making the appropriate identifications to obtain RP3. Straight-line
segments can then be used. The problem is that the resulting metric is not con-
sistent with the Haar measure, which means that an accidental bias would result.
Another option is to tightly enclose S3 in a 4D cube. Every point on S3 can be
mapped outward onto a cube face. Due to antipodal identification, only four of
the eight cube faces need to be used to obtain a bijection between the set of all
rotation and the cube surface. Linear interpolation can be used along the cube
faces, as long as both points remain on the same face. If the points are on different
faces, then two line segments can be used by bending the shortest path around
the corner between the two faces. This scheme will result in less distortion than
mapping SO(3) to [0, 1]3/ ∼; however, some distortion will still exist.

Another approach is to avoid distortion altogether and implement primitives
that can compute the distance between a point and a curve. In the case of SO(3),
a primitive is needed that can find the distance between a circular arc in Rm

and a point in Rm. This might not be too difficult, but if the curves are more
complicated, then an exact implementation of the nearest function may be too
expensive computationally.

Approximate solutions Approximate solutions are much easier to construct,
however, a resolution parameter is introduced. Each path segment can be approx-
imated by inserting intermediate vertices along long segments, as shown in Figure
5.22. The intermediate vertices should be added each time a new sample, α(i),
is inserted into G. A parameter ∆q can be defined, and intermediate samples are
inserted to ensure that no two consecutive vertices in G are ever further than ∆q
from each other. Using intermediate vertices, the interiors of the edges in G are
ignored when finding the nearest point in S. The approximate computation of
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qn

q0 α(i)

Figure 5.22: For implementation ease, intermediate vertices can be inserted to
avoid checking for closest points along line segments. The trade-off is that the
number of vertices is increased dramatically.
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Figure 5.23: A Kd-tree can be used for efficient nearest-neighbor computations.

nearest is performed by finding the closest vertex to α(i) in G. This approach
is by far the simplest to implement. It also fits precisely under the incremental
sampling and searching framework from Section 5.4.1.

When using intermediate vertices, the trade-offs are clear. The computation
time for each evaluation of nearest is linear in the number of vertices. Increasing
the number of vertices improves the quality of the approximation, but it also
dramatically increases the running time. One way to recover some of this cost is
to insert the vertices into an efficient data structure for nearest-neighbor searching.
One of the most practical and widely used data structures is the Kd-tree [146, 183,
391]. A depiction is shown in Figure 5.23 for 14 points in R2. The Kd-tree can
be considered as a multi-dimensional generalization of a binary search tree. The
Kd-tree is constructed for points, P , in R2 as follows. Initially, sort the points
with respect to the x coordinate. Take the median point, p ∈ P , and divide
P into two sets, depending on which side of a vertical line through p the other
points fall. For each of the two sides, sort the points by the y coordinate and find
their medians. Points are divided at this level based on whether they are above
or below horizontal lines. At the next level of recursion, vertical lines are used
again, followed by horizontal again, and so on. The same idea can be applied in
Rn by cycling through the n coordinates, instead of alternating between x and y,
to form the divisions. In [38], the Kd-tree is extended to topological spaces that
arise in motion planning and is shown to yield good performance for RRTs and
sampling-based roadmaps. A Kd-tree of k points can be constructed in O(nk lg k)
time. Topological identifications must be carefully considered when traversing
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the tree. To find the nearest point in the tree to some given point, the query
algorithm descends to a leaf vertex whose associated region contains the query
point, finds all distances from the data points in this leaf to the query point, and
picks the closest one. Next, it recursively visits those surrounding leaf vertices
that are further from the query point than the closest point found so far [36, 38].
The nearest point can be found in time logarithmic in k.

Unfortunately, these bounds hide a constant that increases exponentially with
the dimension, n. In practice, the Kd-tree is useful in motion planning for prob-
lems of up to about 20 dimensions. After this, the performance usually degrades
too much. As an empirical rule, if there are more than 2n points, then the Kd-tree
should be more efficient than naive nearest neighbors. In general, the trade-offs
must be carefully considered in a particular application to determine whether ex-
act solutions, approximate solutions with naive nearest-neighbor computations,
or approximate solutions with Kd-trees will be more efficient. There is also the
issue of implementation complexity, which probably has caused most people to
prefer the approximate solution with naive nearest-neighbor computations.

5.5.3 Using the Trees for Planning

So far, the discussion has focused on exploring Cfree, but this does not solve a
planning query by itself. RRTs and RDTs can be used in many ways in plan-
ning algorithms. For example, they could be used to escape local minima in the
randomized potential field planner of Section 5.4.3.

Single-tree search A reasonably efficient planner can be made by directly using
the algorithm in Figure 5.21 to grow a tree from qI and periodically check whether
it is possible to connect the RDT to qG. An easy way to achieve this is to start
with a dense sequence α and periodically insert qG at regularly spaced intervals.
For example, every 100th sample could be qG. Each time this sample is reached,
an attempt is made to reach qG from the closest vertex in the RDT. If the sample
sequence is random, which generates an RRT, then the following modification
works well. In each iteration, toss a biased coin that has probability 99/100 of
being heads and 1/100 of being tails. If the result is heads, then set α(i), to be
the next element of the pseudorandom sequence; otherwise, set α(i) = qG. This
forces the RRT to occasionally attempt to make a connection to the goal, qG. Of
course, 1/100 is arbitrary, but it is in a range that works well experimentally. If the
bias is too strong, then the RRT becomes too greedy like the randomized potential
field. If the bias is not strong enough, then there is no incentive to connect the tree
to qG. An alternative is to consider other dense, but not necessarily nonuniform
sequences in C. For example, in the case of random sampling, the probability
density function could contain a gentle bias towards the goal. Choosing such a
bias is a difficult heuristic problem; therefore, such a technique should be used
with caution (or avoided altogether).
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RDT BALANCED BIDIRECTIONAL(qI , qG)
1 Ta.init(qI); Tb.init(qG);
2 for i = 1 to K do
3 qn ← nearest(Sa, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 6= qn then
6 Ta.add vertex(qs);
7 Ta.add edge(qn, qs);
8 q′n ← nearest(Sb, qs);
9 q′s ← stopping-configuration(q′n,qs);
10 if q′s 6= q′n then
11 Tb.add vertex(q′s);
12 Tb.add edge(q′n, q

′
s);

13 if q′s = qs then return SOLUTION;
14 if |Tb| > |Ta| then SWAP(Ta, Tb);
15 return FAILURE

Figure 5.24: A bidirectional RDT-based planner.

Balanced, bidirectional search Much better performance can usually be ob-
tained by growing two RDTs, one from qI and the other from qG. This is particu-
larly valuable for escaping one of the bug traps, as mentioned in Section 5.4.1. For
a grid search, it is straightforward to implement a bidirectional search that en-
sures that the two trees meet. For the RDT, special considerations must be made
to ensure that the two trees will connect while retaining their “rapidly exploring”
property. One additional idea is to make sure that the bidirectional search is
balanced [293], which ensures that both trees are the same size.

Figure 5.24 gives an outline of the algorithm. The graph G is decomposed
into two trees, denoted by Ta and Tb. Initially, these trees start from qI and
qG, respectively. After some iterations, Ta and Tb are swapped; therefore, keep in
mind that Ta is not always the tree that contains qI . In each iteration, Ta is grown
exactly the same way as in one iteration of the algorithm in Figure 5.16. If a new
vertex, qs, is added to Ta, then an attempt is made in lines 10–12 to extend Tb.
Rather than using α(i) to extend Tb, the new vertex qs of Ta is used. This causes
Tb to try to grow toward Ta. If the two connect, which is tested in line 13, then a
solution has been found.

Line 14 represents an important step that balances the search. This is partic-
ularly important for a problem such as the bug trap shown in Figure 5.13b or the
puzzle shown in Figure 1.2. If one of the trees is having trouble exploring, then
it makes sense to focus more energy on it. Therefore, new exploration is always
performed for the smaller tree. How is “smaller” defined? A simple criterion is to
use the total number of vertices. Another reasonable criterion is to use the total
length of all segments in the tree.
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An unbalanced bidirectional search can instead be made by forcing the trees
to be swapped in every iteration. Once the trees are swapped, then the roles are
reversed. For example, after the first swap, Tb is extended in the same way as
an integration in Figure 5.16, and if a new vertex qs is added then an attempt is
made to connect Ta to qs.

One important concern exists when α is deterministic. It might be possible
that even though α is dense, when the samples are divided among the trees, each
may not receive a dense set. If each uses its own deterministic sequence, then this
problem can be avoided. In the case of making a bidirectional RRT planner, the
same (pseudo)random sequence can be used for each tree without encountering
such troubles.

More than two trees If a dual-tree approach offers advantages over a single
tree, then it is natural to ask whether growing three or more RDTs might be
even better. This is particularly helpful for problems like the double bug trap in
Figure 5.13c. New trees can be grown from parts of C that are difficult to reach.
Controlling the number of trees and determining when to attempt connections
between them is difficult. Some interesting recent work has been done in this
direction [54, 453, 454].

These additional trees could be started at arbitrary (possibly random) configu-
rations. As more trees are considered, a complicated decision problem arises. The
computation time must be divided between attempting to explore the space and
attempting to connect trees to each other. It is also not clear which connections
should be attempted. Many research issues remain in the development of this and
other RRT-based planners. A limiting case would be to start a new tree from
every sample in α(i) and to try to connect nearby trees whenever possible. This
approach results in a graph that covers the space in a nice way that is independent
of the query. This leads to the main topic of the next section.

5.6 Roadmap Methods for Multiple Queries

Previously, it was assumed that a single initial-goal pair was given to the planning
algorithm. Suppose now that numerous initial-goal queries will be given to the
algorithm, while keeping the robot model and obstacles fixed. This leads to a
multiple-query version of the motion planning problem. In this case, it makes sense
to invest substantial time to preprocess the models so that future queries can be
answered efficiently. The goal is to construct a topological graph called a roadmap,
which efficiently solves multiple initial-goal queries. Intuitively, the paths on the
roadmap should be easy to reach from each of qI and qG, and the graph can
be quickly searched for a solution. The general framework presented here was
mainly introduced in [265] under the name probabilistic roadmaps (PRMs). The
probabilistic aspect, however, is not important to the method. Therefore, we call
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BUILD ROADMAP
1 G.init(); i← 0;
2 while i < N
3 if α(i) ∈ Cfree then
4 G.add vertex(α(i)); i← i+ 1;
5 for each q ∈ neighborhood(α(i),G)
6 if ((not G.same component(α(i), q)) and connect(α(i), q)) then
7 G.add edge(α(i), q);

Figure 5.25: The basic construction algorithm for sampling-based roadmaps. Note
that i is not incremented if α(i) is in collision. This forces i to correctly count the
number of vertices in the roadmap.

this family of methods sampling-based roadmaps. This distinguishes them from
combinatorial roadmaps, which will appear in Chapter 6.

5.6.1 The Basic Method

Once again, let G(V,E) represent a topological graph in which V is a set of vertices
and E is the set of paths that map into Cfree. Under the multiple-query philosophy,
motion planning is divided into two phases of computation:

Preprocessing Phase: During the preprocessing phase, substantial effort
is invested to build G in a way that is useful for quickly answering future
queries. For this reason, it is called a roadmap, which in some sense should
be accessible from every part of Cfree.

Query Phase: During the query phase, a pair, qI and qG, is given. Each
configuration must be connected easily to G using a local planner. Following
this, a discrete search is performed using any of the algorithms in Section
2.2 to obtain a sequence of edges that forms a path from qI to qG.

Generic preprocessing phase Figure 5.25 presents an outline of the basic
preprocessing phase, and Figure 5.26 illustrates the algorithm. As seen throughout
this chapter, the algorithm utilizes a uniform, dense sequence α. In each iteration,
the algorithm must check whether α(i) ∈ Cfree. If α(i) ∈ Cobs, then it must
continue to iterate until a collision-free sample is obtained. Once α(i) ∈ Cfree,
then in line 4 it is inserted as a vertex of G. The next step is to try to connect α(i)
to some nearby vertices, q, of G. Each connection is attempted by the connect

function, which is a typical LPM (local planning method) from Section 5.4.1.
In most implementations, this simply tests the shortest path between α(i) and
q. Experimentally, it seems most efficient to use the multi-resolution, van der
Corput–based method described at the end of Section 5.3.4 [191]. Instead of the
shortest path, it is possible to use more sophisticated connection methods, such
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α(i)

Cobs

Cobs

Figure 5.26: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, α(i), to nearby vertices in the roadmap.

as the bidirectional algorithm in Figure 5.24. If the path is collision-free, then
connect returns true.

The same component condition in line 6 checks to make sure α(i) and q are
in different components of G before wasting time on collision checking. This
ensures that every time a connection is made, the number of connected compo-
nents of G is decreased. This can be implemented very efficiently (near constant
time) using the previously mentioned union-find algorithm [132, 413]. In some
implementations this step may be ignored, especially if it is important to gener-
ate multiple, alternative solutions. For example, it may be desirable to generate
solution paths from different homotopy classes. In this case the condition (not
G.same component(α(i), q)) is replaced with G.vertex degree(q) < K, for some
fixed K (e.g., K = 15).

Selecting neighboring samples Several possible implementations of line 5 can
be made. In all of these, it seems best to sort the vertices that will be considered
for connection in order of increasing distance from α(i). This makes sense because
shorter paths are usually less costly to check for collision, and they also have a
higher likelihood of being collision-free. If a connection is made, this avoids costly
collision checking of longer paths to configurations that would eventually belong
to the same connected component.

Several useful implementations of neighborhood are

1. Nearest K: The K closest points to α(i) are considered. This requires
setting the parameter K (a typical value is 15). If you are unsure which
implementation to use, try this one.

2. Component K: Try to obtain up to K nearest samples from each con-
nected component of G. A reasonable value is K = 1; otherwise, too many
connections would be tried.
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3. Radius: Take all points within a ball of radius r centered at α(i). An
upper limit, K, may be set to prevent too many connections from being
attempted. Typically, K = 20. A radius can be determined adaptively by
shrinking the ball as the number of points increases. This reduction can
be based on dispersion or discrepancy, if either of these is available for α.
Note that if the samples are highly regular (e.g., a grid), then choosing the
nearest K and taking points within a ball become essentially equivalent.
If the point set is highly irregular, as in the case of random samples, then
taking the nearest K seems preferable.

4. Visibility: In Section 5.6.2, a variant will be described for which it is
worthwhile to try connecting α to all vertices in G.

Note that all of these require C to be a metric space. One variation that has not yet
been given much attention is to ensure that the directions of the neighborhood
points relative to α(i) are distributed uniformly. For example, if the 20 closest
points are all clumped together in the same direction, then it may be preferable
to try connecting to a further point because it is in the opposite direction.

Query phase In the query phase, it is assumed that G is sufficiently complete
to answer many queries, each of which gives an initial configuration, qI , and a goal
configuration, qG. First, the query phase pretends as if qI and qG were chosen from
α for connection to G. This requires running two more iterations of the algorithm
in Figure 5.25. If qI and qG are successfully connected to other vertices in G, then
a search is performed for a path that connects the vertex qI to the vertex qG. The
path in the graph corresponds directly to a path in Cfree, which is a solution to the
query. Unfortunately, if this method fails, it cannot be determined conclusively
whether a solution exists. If the dispersion is known for a sample sequence, α,
then it is at least possible to conclude that no solution exists for the resolution of
the planner. In other words, if a solution does exist, it would require the path to
travel through a corridor no wider than the radius of the largest empty ball [307].

Some analysis There have been many works that analyze the performance of
sampling-based roadmaps. The basic idea from one of them [47] is briefly pre-
sented here. Consider problems such as the one in Figure 5.27, in which the con-
nect method will mostly likely fail in the thin tube, even though a connection
exists. The higher dimensional versions of these problems are even more difficult.
Many planning problems involve moving a robot through an area with tight clear-
ance. This generally causes narrow channels to form in Cfree, which leads to a
challenging planning problem for the sampling-based roadmap algorithm. Finding
the escape of a bug trap is also challenging, but for the roadmap methods, even
traveling through a single corridor is hard (unless more sophisticated LPMs are
used [249]).
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qGqI

Figure 5.27: An example such as this is difficult for sampling-based roadmaps (in
higher dimensional C-spaces) because some samples must fall along many points
in the curved tube. Other methods, however, may be able to easily solve it.

V (q)

q

(a) Visibility definition (b) Visibility roadmap

Figure 5.28: (a) V (q) is the set of points reachable by the LPM from q. (b) A
visibility roadmap has two kinds of vertices: guards, which are shown in black,
and connectors, shown in white. Guards are not allowed to see other guards.
Connectors must see at least two guards.
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Let V (q) denote the set of all configurations that can be connected to q using
the connectmethod. Intuitively, this is considered as the set of all configurations
that can be “seen” using line-of-sight visibility, as shown in Figure 5.28a

The ǫ-goodness of Cfree is defined as

ǫ(Cfree) = min
q∈Cfree

{

µ(V (q))

µ(Cfree)

}

, (5.41)

in which µ represents the measure. Intuitively, ǫ(Cfree) represents the small frac-
tion of Cfree that is visible from any point. In terms of ǫ and the number of vertices
in G, bounds can be established that yield the probability that a solution will be
found [47]. The main difficulties are that the ǫ-goodness concept is very conserva-
tive (it uses worst-case analysis over all configurations), and ǫ-goodness is defined
in terms of the structure of Cfree, which cannot be computed efficiently. This
result and other related results help to gain a better understanding of sampling-
based planning, but such bounds are difficult to apply to particular problems to
determine whether an algorithm will perform well.

5.6.2 Visibility Roadmap

One of the most useful variations of sampling-based roadmaps is the visibility
roadmap [440]. The approach works very hard to ensure that the roadmap rep-
resentation is small yet covers Cfree well. The running time is often greater than
the basic algorithm in Figure 5.25, but the extra expense is usually worthwhile if
the multiple-query philosophy is followed to its fullest extent.

The idea is to define two different kinds of vertices in G:
Guards: To become a guard, a vertex, q must not be able to see other
guards. Thus, the visibility region, V (q), must be empty of other guards.

Connectors: To become a connector, a vertex, q, must see at least two
guards. Thus, there exist guards q1 and q2, such that q ∈ V (q1) ∩ V (q2).

The roadmap construction phase proceeds similarly to the algorithm in Figure
5.25. The neighborhood function returns all vertices in G. Therefore, for each new
sample α(i), an attempt is made to connect it to every other vertex in G.

The main novelty of the visibility roadmap is using a strong criterion to deter-
mine whether to keep α(i) and its associated edges in G. There are three possible
cases for each α(i):

1. The new sample, α(i), is not able to connect to any guards. In this case,
α(i) earns the privilege of becoming a guard itself and is inserted into G.

2. The new sample can connect to guards from at least two different connected
components of G. In this case, it becomes a connector that is inserted into
G along with its associated edges, which connect it to these guards from
different components.
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3. Neither of the previous two conditions were satisfied. This means that the
sample could only connect to guards in the same connected component. In
this case, α(i) is discarded.

The final condition causes a dramatic reduction in the number of roadmap vertices.
One problem with this method is that it does not allow guards to be deleted in

favor of better guards that might appear later. The placement of guards depends
strongly on the order in which samples appear in α. The method may perform
poorly if guards are not positioned well early in the sequence. It would be better
to have an adaptive scheme in which guards could be reassigned in later iterations
as better positions become available. Accomplishing this efficiently remains an
open problem. Note the algorithm is still probabilistically complete using random
sampling or resolution complete if α is dense, even though many samples are
rejected.

5.6.3 Heuristics for Improving Roadmaps

The quest to design a good roadmap through sampling has spawned many heuris-
tic approaches to sampling and making connections in roadmaps. Most of these
exploit properties that are specific to the shape of the C-space and/or the partic-
ular geometry and kinematics of the robot and obstacles. The emphasis is usually
on finding ways to dramatically reduce the number or required samples. Several
of these methods are briefly described here.

Vertex enhancement [265] This heuristic strategy focuses effort on vertices
that were difficult to connect to other vertices in the roadmap construction algo-
rithm in Figure 5.25. A probability distribution, P (v), is defined over the vertices
v ∈ V . A number of iterations are then performed in which a vertex is sampled
from V according to P (v), and then some random motions are performed from v
to try to reach new configurations. These new configurations are added as ver-
tices, and attempts are made to connect them to other vertices, as selected by
the neighborhood function in an ordinary iteration of the algorithm in Figure
5.25. A recommended heuristic [265] for defining P (v) is to define a statistic for
each v as nf/(nt + 1), in which nt is the total number of connections attempted
for v, and nf is the number of times these attempts failed. The probability P (v)
is assigned as nf/(nt +1)m, in which m is the sum of the statistics over all v ∈ V
(this normalizes the statistics to obtain a valid probability distribution).

Sampling on the Cfree boundary [16, 20] This scheme is based on the intu-
ition that it is sometimes better to sample along the boundary, ∂Cfree, rather than
waste samples on large areas of Cfree that might be free of obstacles. Figure 5.29a
shows one way in which this can be implemented. For each sample of α(i) that
falls into Cobs, a number of random directions are chosen in C; these directions can
be sampled using the Sn sampling method from Section 5.2.2. For each direction,
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Figure 5.29: (a) To obtain samples along the boundary, binary search is used
along random directions from a sample in Cobs. (b) The bridge test finds narrow
corridors by examining a triple of nearby samples along a line.

a binary search is performed to get a sample in Cfree that is as close as possible
to Cobs. The order of point evaluation in the binary search is shown in Figure
5.29a. Let τ : [0, 1] denote the path for which τ(0) ∈ Cobs and τ(1) ∈ Cfree. In the
first step, test the midpoint, τ(1/2). If τ(1/2) ∈ Cfree, this means that ∂Cfree lies
between τ(0) and τ(1/2); otherwise, it lies between τ(1/2) and τ(1). The next
iteration selects the midpoint of the path segment that contains ∂Cfree. This will
be either τ(1/4) or τ(3/4). The process continues recursively until the desired
resolution is obtained.

Gaussian sampling [72] The Gaussian sampling strategy follows some of the
same motivation for sampling on the boundary. In this case, the goal is to obtain
points near ∂Cfree by using a Gaussian distribution that biases the samples to be
closer to ∂Cfree, but the bias is gentler, as prescribed by the variance parameter
of the Gaussian. The samples are generated as follows. Generate one sample,
q1 ∈ C, uniformly at random. Following this, generate another sample, q2 ∈ C,
according to a Gaussian with mean q1; the distribution must be adapted for any
topological identifications and/or boundaries of C. If one of q1 or q2 lies in Cfree
and the other lies in Cobs, then the one that lies in Cfree is kept as a vertex in the
roadmap. For some examples, this dramatically prunes the number of required
vertices.

Bridge-test sampling [241] The Gaussian sampling strategy decides to keep a
point based in part on testing a pair of samples. This idea can be carried one step
further to obtain a bridge test, which uses three samples along a line segment.
If the samples are arranged as shown in Figure 5.29b, then the middle sample
becomes a roadmap vertex. This is based on the intuition that narrow corridors
are thin in at least one direction. The bridge test indicates that a point lies in a
thin corridor, which is often an important place to locate a vertex.
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Figure 5.30: The medial axis is traced out by the centers of the largest inscribed
balls. The five line segments inside of the rectangle correspond to the medial axis.

Medial-axis sampling [235, 326, 474] Rather than trying to sample close
to the boundary, another strategy is to force the samples to be as far from the
boundary as possible. Let (X, ρ) be a metric space. Let a maximal ball be a ball
B(x, r) ⊆ X such that no other ball can be a proper subset. The centers of all
maximal balls trace out a one-dimensional set of points referred to as the medial
axis. A simple example of a medial axis is shown for a rectangular subset of R2

in Figure 5.30. The medial axis in Cfree is based on the largest balls that can be
inscribed in cl(Cfree). Sampling on the medial axis is generally difficult, especially
because the representation of Cfree is implicit. Distance information from collision
checking can be used to start with a sample, α(i), and iteratively perturb it to
increase its distance from ∂Cfree [326, 474]. Sampling on the medial axis of W \O
has also been proposed [235]. In this case, the medial axis in W \ O is easier to
compute, and it can be used to heuristically guide the placement of good roadmap
vertices in Cfree.

Further Reading

Unlike the last two chapters, the material of Chapter 5 is a synthesis of very recent
research results. Some aspects of sampling-based motion planning are still evolving.
Early approaches include [48, 77, 107, 152, 153, 171, 172, 345, 392]. The Gilbert-
Johnson-Keerthi algorithm [199] is an early collision detection approach that helped
inspire sampling-based motion planning; see [245] and [304] for many early references.
In much of the early work, randomization appeared to be the main selling point; however,
more recently it has been understood that deterministic sampling can work at least as
well while obtaining resolution completeness. For a more recent survey of sampling-
based motion planning, see [331].

Section 5.1 is based on material from basic mathematics books. For a summary
of basic theorems and numerous examples of metric spaces, see [362]. More material
appears in basic point-set topology books (e.g., [232, 256]) and analysis books (e.g.,
[178]). Metric issues in the context of sampling-based motion planning are discussed
in [15, 312]. Measure theory is most often introduced in the context of real analysis

248 S. M. LaValle: Planning Algorithms

[178, 215, 287, 420, 421]. More material on Haar measure appears in [215].

Section 5.2 is mainly inspired by literature on Monte Carlo and quasi–Monte Carlo
methods for numerical integration and optimization. An excellent source of material is
[381]. Other important references for further reading include [105, 283, 353, 458, 459].
Sampling issues in the context of motion planning are considered in [192, 292, 307, 330,
482]. Comprehensive introductions to pure Monte Carlo algorithms appear in [176, 259].
The original source for the Monte Carlo method is [361]. For a survey on algorithms
that compute Voronoi diagrams, see [40].

For further reading on collision detection (beyond Section 5.3), see the surveys in
[252, 328, 329, 368]. Hierarchical collision detection is covered in [207, 329, 367]. The
incremental collision detection ideas in Section 5.3.3 were inspired by the algorithm
[327] and V-Clip [136, 367]. Distance computation is covered in [87, 161, 198, 207, 212,
367, 406]. A method suited for detecting self-collisions of linkages appears in [341].
A combinatorial approach to collision detection for motion planning appears in [431].
Numerous collision detection packages are available for use in motion planning research.
One of the most widely used is PQP because it works well for any mess of 3D triangles
[463].

The incremental sampling and searching framework was synthesized by unifying
ideas from many planning methods. Some of these include grid-based search [49, 289,
318] and probabilistic roadmaps (PRMs) [265]. Although the PRM was developed for
multiple queries, the single-query version developed in [69] helped shed light on the
connection to earlier planning methods. This even led to grid-based variants of PRMs
[67, 307]. Another single-query variant is presented in [425].

RDTs were developed in the literature mainly as RRTs, and were introduced in
[306, 313]. RRTs have been used in several applications, and many variants have been
developed [54, 75, 78, 109, 120, 133, 147, 181, 202, 255, 258, 257, 275, 324, 332, 333,
453, 454, 464, 479, 481]. Originally, they were developed for planning under differen-
tial constraints, but most of their applications to date have been for ordinary motion
planning. For more information on efficient nearest-neighbor searching, see the recent
survey [247], and [35, 36, 37, 38, 61, 123, 183, 248, 282, 391, 448, 483].

Section 5.6 is based mainly on the PRM framework [265]. The “probabilistic” part
is not critical to the method; thus, it was referred to here as a sampling-based roadmap.
A related precursor to the PRM was proposed in [200, 201]. The PRM has been widely
used in practice, and many variants have been proposed [1, 17, 43, 44, 69, 82, 98, 133,
249, 286, 307, 321, 322, 383, 398, 400, 440, 444, 465, 474, 479, 486]. An experimental
comparison of many of these variants appears in [192]. Some analysis of PRMs appears
in [47, 242, 299]. In some works, the term PRM has been applied to virtually any
sampling-based planning algorithm (e.g., [242]); however, in recent years the term has
been used more consistently with its original meaning in [265].

Many other methods and issues fall outside of the scope of this chapter. Several
interesting methods based on approximate cell decomposition [77, 170, 337, 345] can be
considered as a form of sampling-based motion planning. A sampling-based method of
developing global potential functions appears in [68]. Other sampling-based planning
algorithms appear in [108, 179, 213, 214, 240]. The algorithms of this chapter are gen-
erally unable to guarantee that a solution does not exist for a motion planning problem.
It is possible, however, to use sampling-based techniques to establish in finite time that
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no solution exists [51]. Such a result is called a disconnection proof. Parallelization
issues have also been investigated in the context of sampling-based motion planning
[54, 94, 99, 143, 401].

Exercises

1. Prove that the Cartesian product of a metric space is a metric space by taking a
linear combination as in (5.4).

2. Prove or disprove: If ρ is a metric, then ρ2 is a metric.

3. Determine whether the following function is a metric on any topological space:
X: ρ(x, x′) = 1 is x 6= x′; otherwise, ρ(x, x′) = 0.

4. State and prove whether or not (5.28) yields a metric space on C = SE(3),
assuming that the two sets are rigid bodies.

5. The dispersion definition given in (5.19) is based on the worst case. Consider
defining the average dispersion:

δ̄(P ) =
1

µ(X)

∫

X
min
p∈P
{ρ(x, p)}dx. (5.42)

Describe a Monte Carlo (randomized) method to approximately evaluate (5.42).

6. Determine the average dispersion (as a function of i) for the van der Corput
sequence (base 2) on [0, 1]/ ∼.

7. Show that using the Lebesgue measure on S3 (spreading mass around uniformly
on S3) yields the Haar measure for SO(3).

8. Is the Haar measure useful in selecting an appropriate C-space metric? Explain.

9. Determine an expression for the (worst-case) dispersion of the ith sample in the
base-p (Figure 5.2 shows base-2) van der Corput sequence in [0, 1]/ ∼, in which 0
and 1 are identified.

10. Determine the dispersion of the following sequence on [0, 1]. The first point is
α(1) = 1. For each i > 1, let ci = ln(2i − 3)/ ln 4 and α(i) = ci − ⌊ci⌋. It turns
out that this sequence achieves the best asymptotic dispersion possible, even in
terms of the preceding constant. Also, the points are not uniformly distributed.
Can you explain why this happens? [It may be helpful to plot the points in the
sequence.]

11. Prove that (5.20) holds.

12. Prove that (5.23) holds.

13. Show that for any given set of points in [0, 1]n, a range space R can be designed
so that the discrepancy is as close as desired to 1.
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14. Suppose A is a rigid body in R3 with a fixed orientation specified by a quaternion,
h. Suppose that h is perturbed a small amount to obtain another quaternion, h′

(no translation occurs). Construct a good upper bound on distance traveled by
points on A, expressed in terms of the change in the quaternion.

15. Design combinations of robots and obstacles in W that lead to C-space obstacles
resembling bug traps.

16. How many k-neighbors can there be at most in an n-dimensional grid with 1 ≤
k ≤ n?

17. In a high-dimensional grid, it becomes too costly to consider all 3n−1 n-neighbors.
It might not be enough to consider only 2n 1-neighbors. Determine a scheme for
selecting neighbors that are spatially distributed in a good way, but without
requiring too many. For example, what is a good way to select 50 neighbors for
a grid in R10?

18. Explain the difference between searching an implicit, high-resolution grid and
growing search trees directly on the C-space without a grid.

19. Improve the bound in (5.31) by considering the fact that rotating points trace
out a circle, instead of a straight line.

20. (Open problem) Prove there are n+1 main branches for an RRT starting from the
center of an “infinite” n-dimensional ball in Rn. The directions of the branches
align with the vertices of a regular simplex centered at the initial configuration.

Implementations

21. Implement 2D incremental collision checking for convex polygons to obtain “near
constant time” performance.

22. Implement the sampling-based roadmap approach. Select an appropriate family
of motion planning problems: 2D rigid bodies, 2D chains of bodies, 3D rigid
bodies, etc.

(a) Compare the roadmaps obtained using visibility-based sampling to those
obtained for the ordinary sampling method.

(b) Study the sensitivity of the method with respect to the particular neigh-

borhood method.

(c) Compare random and deterministic sampling methods.

(d) Use the bridge test to attempt to produce better samples.

23. Implement the balanced, bidirectional RRT planning algorithm.

(a) Study the effect of varying the amount of intermediate vertices created along
edges.
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(b) Try connecting to the random sample using more powerful descent functions.

(c) Explore the performance gains from using Kd-trees to select nearest neigh-
bors.

24. Make an RRT-based planning algorithm that uses more than two trees. Carefully
resolve issues such as the maximum number of allowable trees, when to start a
tree, and when to attempt connections between trees.

25. Implement both the expansive-space planner and the RRT, and conduct compar-
ative experiments on planning problems. For the full set of problems, keep the
algorithm parameters fixed.

26. Implement a sampling-based algorithm that computes collision-free paths for a
rigid robot that can translate or rotate on any of the flat 2D manifolds shown in
Figure 4.5.
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Chapter 6

Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continuous
configuration space without resorting to approximations. Due to this property,
they are alternatively referred to as exact algorithms. This is in contrast to the
sampling-based motion planning algorithms from Chapter 5.

6.1 Introduction

All of the algorithms presented in this chapter are complete, which means that
for any problem instance (over the space of problems for which the algorithm is
designed), the algorithm will either find a solution or will correctly report that no
solution exists. By contrast, in the case of sampling-based planning algorithms,
weaker notions of completeness were tolerated: resolution completeness and prob-
abilistic completeness.

Representation is important When studying combinatorial motion planning
algorithms, it is important to carefully consider the definition of the input. What
is the representation used for the robot and obstacles? What set of transforma-
tions may be applied to the robot? What is the dimension of the world? Are
the robot and obstacles convex? Are they piecewise linear? The specification of
possible inputs defines a set of problem instances on which the algorithm will op-
erate. If the instances have certain convenient properties (e.g., low dimensionality,
convex models), then a combinatorial algorithm may provide an elegant, practical
solution. If the set of instances is too broad, then a requirement of both complete-
ness and practical solutions may be unreasonable. Many general formulations of
general motion planning problems are PSPACE-hard1; therefore, such a hope ap-
pears unattainable. Nevertheless, there exist general, complete motion planning
algorithms. Note that focusing on the representation is the opposite philosophy
from sampling-based planning, which hides these issues in the collision detection
module.

1This implies NP-hard. An overview of such complexity statements appears in Section 6.5.1.
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Reasons to study combinatorial methods There are generally two good
reasons to study combinatorial approaches to motion planning:

1. In many applications, one may only be interested in a special class of plan-
ning problems. For example, the world might be 2D, and the robot might
only be capable of translation. For many special classes, elegant and ef-
ficient algorithms can be developed. These algorithms are complete, do
not depend on approximation, and can offer much better performance than
sampling-based planning methods, such as those in Chapter 5.

2. It is both interesting and satisfying to know that there are complete algo-
rithms for an extremely broad class of motion planning problems. Thus,
even if the class of interest does not have some special limiting assumptions,
there still exist general-purpose tools and algorithms that can solve it. These
algorithms also provide theoretical upper bounds on the time needed to solve
motion planning problems.

Warning: Some methods are impractical Be careful not to make the wrong
assumptions when studying the algorithms of this chapter. A few of them are ef-
ficient and easy to implement, but many might be neither. Even if an algorithm
has an amazing asymptotic running time, it might be close to impossible to im-
plement. For example, one of the most famous algorithms from computational
geometry can split a simple2 polygon into triangles in O(n) time for a polygon
with n edges [104]. This is so amazing that it was covered in the New York
Times, but the algorithm is so complicated that it is doubtful that anyone will
ever implement it. Sometimes it is preferable to use an algorithm that has worse
theoretical running time but is much easier to understand and implement. In
general, though, it is valuable to understand both kinds of methods and decide
on the trade-offs for yourself. It is also an interesting intellectual pursuit to try
to determine how efficiently a problem can be solved, even if the result is mainly
of theoretical interest. This might motivate others to look for simpler algorithms
that have the same or similar asymptotic running times.

Roadmaps Virtually all combinatorial motion planning approaches construct a
roadmap along the way to solving queries. This notion was introduced in Section
5.6, but in this chapter stricter requirements are imposed in the roadmap definition
because any algorithm that constructs one needs to be complete. Some of the
algorithms in this chapter first construct a cell decomposition of Cfree from which
the roadmap is consequently derived. Other methods directly construct a roadmap
without the consideration of cells.

Let G be a topological graph (defined in Example 4.6) that maps into Cfree.
Furthermore, let S ⊂ Cfree be the swath, which is set of all points reached by G,

2A polygonal region that has no holes.
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as defined in (5.40). The graph G is called a roadmap if it satisfies two important
conditions:

1. Accessibility: From any q ∈ Cfree, it is simple and efficient to compute a
path τ : [0, 1] → Cfree such that τ(0) = q and τ(1) = s, in which s may be
any point in S. Usually, s is the closest point to q, assuming C is a metric
space.

2. Connectivity-preserving: Using the first condition, it is always possible
to connect some qI and qG to some s1 and s2, respectively, in S. The second
condition requires that if there exists a path τ : [0, 1] → Cfree such that
τ(0) = qI and τ(1) = qG, then there also exists a path τ ′ : [0, 1] → S, such
that τ ′(0) = s1 and τ

′(1) = s2. Thus, solutions are not missed because G fails
to capture the connectivity of Cfree. This ensures that complete algorithms
are developed.

By satisfying these properties, a roadmap provides a discrete representation of
the continuous motion planning problem without losing any of the original con-
nectivity information needed to solve it. A query, (qI , qG), is solved by connecting
each query point to the roadmap and then performing a discrete graph search on
G. To maintain completeness, the first condition ensures that any query can be
connected to G, and the second condition ensures that the search always succeeds
if a solution exists.

6.2 Polygonal Obstacle Regions

Rather than diving into the most general forms of combinatorial motion plan-
ning, it is helpful to first see several methods explained for a case that is easy to
visualize. Several elegant, straightforward algorithms exist for the case in which
C = R2 and Cobs is polygonal. Most of these cannot be directly extended to higher
dimensions; however, some of the general principles remain the same. Therefore,
it is very instructive to see how combinatorial motion planning approaches work in
two dimensions. There are also applications where these algorithms may directly
apply. One example is planning for a small mobile robot that may be modeled as
a point moving in a building that can be modeled with a 2D polygonal floor plan.

After covering representations in Section 6.2.1, Sections 6.2.2–6.2.4 present
three different algorithms to solve the same problem. The one in Section 6.2.2
first performs cell decomposition on the way to building the roadmap, and the
ones in Sections 6.2.3 and 6.2.4 directly produce a roadmap. The algorithm in
Section 6.2.3 computes maximum clearance paths, and the one in Section 6.2.4
computes shortest paths (which consequently have no clearance).
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Figure 6.1: A polygonal model specified by four oriented simple polygons.

6.2.1 Representation

Assume that W = R2; the obstacles, O, are polygonal; and the robot, A, is a
polygonal body that is only capable of translation. Under these assumptions, Cobs
will be polygonal. For the special case in which A is a point inW , O maps directly
to Cobs without any distortion. Thus, the problems considered in this section may
also be considered as planning for a point robot. If A is not a point robot, then
the Minkowski difference, (4.37), of O and A must be computed. For the case
in which both A and each component of O are convex, the algorithm in Section
4.3.2 can be applied to compute each component of Cobs. In general, both A and
O may be nonconvex. They may even contain holes, which results in a Cobs model
such as that shown in Figure 6.1. In this case, A and O may be decomposed
into convex components, and the Minkowski difference can be computed for each
pair of components. The decompositions into convex components can actually be
performed by adapting the cell decomposition algorithm that will be presented
in Section 6.2.2. Once the Minkowski differences have been computed, they need
to be merged to obtain a representation that can be specified in terms of simple
polygons, such as those in Figure 6.1. An efficient algorithm to perform this
merging is given in Section 2.4 of [146]. It can also be based on many of the same
principles as the planning algorithm in Section 6.2.2.

To implement the algorithms described in this section, it will be helpful to
have a data structure that allows convenient access to the information contained
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in a model such as Figure 6.1. How is the outer boundary represented? How are
holes inside of obstacles represented? How do we know which holes are inside
of which obstacles? These questions can be efficiently answered by using the
doubly connected edge list data structure, which was described in Section 3.1.3
for consistent labeling of polyhedral faces. We will need to represent models, such
as the one in Figure 6.1, and any other information that planning algorithms need
to maintain during execution. There are three different records:

Vertices: Every vertex v contains a pointer to a point (x, y) ∈ C = R2 and
a pointer to some half-edge that has v as its origin.

Faces: Every face has one pointer to a half-edge on the boundary that
surrounds the face; the pointer value is nil if the face is the outermost
boundary. The face also contains a list of pointers for each connected com-
ponent (i.e., hole) that is contained inside of that face. Each pointer in the
list points to a half-edge of the component’s boundary.

Half-edges: Each half-edge is directed so that the obstacle portion is always
to its left. It contains five different pointers. There is a pointer to its origin
vertex. There is a twin half-edge pointer, which may point to a half-edge that
runs in the opposite direction (see Section 3.1.3). If the half-edge borders an
obstacle, then this pointer is nil. Half-edges are always arranged in circular
chains to form the boundary of a face. Such chains are oriented so that the
obstacle portion (or a twin half-edge) is always to its left. Each half-edge
stores a pointer to its internal face. It also contains pointers to the next and
previous half-edges in the circular chain of half-edges.

For the example in Figure 6.1, there are four circular chains of half-edges that
each bound a different face. The face record of the small triangular hole points
to the obstacle face that contains the hole. Each obstacle contains a pointer
to the face represented by the outermost boundary. By consistently assigning
orientations to the half-edges, circular chains that bound an obstacle always run
counterclockwise, and chains that bound holes run clockwise. There are no twin
half-edges because all half-edges bound part of Cobs. The doubly connected edge
list data structure is general enough to allow extra edges to be inserted that slice
through Cfree. These edges will not be on the border of Cobs, but they can be
managed using twin half-edge pointers. This will be useful for the algorithm in
Section 6.2.2.

6.2.2 Vertical Cell Decomposition

Cell decompositions will be defined formally in Section 6.3, but here we use the
notion informally. Combinatorial methods must construct a finite data structure
that exactly encodes the planning problem. Cell decomposition algorithms achieve
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Figure 6.2: There are four general cases: 1) extending upward and downward, 2)
upward only, 3) downward only, and 4) no possible extension.

this partitioning of Cfree into a finite set of regions called cells. The term k-
cell refers to a k-dimensional cell. The cell decomposition should satisfy three
properties:

1. Computing a path from one point to another inside of a cell must be trivially
easy. For example, if every cell is convex, then any pair of points in a cell
can be connected by a line segment.

2. Adjacency information for the cells can be easily extracted to build the
roadmap.

3. For a given qI and qG, it should be efficient to determine which cells contain
them.

If a cell decomposition satisfies these properties, then the motion planning problem
is reduced to a graph search problem. Once again the algorithms of Section 2.2
may be applied; however, in the current setting, the entire graph, G, is usually
known in advance.3 This was not assumed for discrete planning problems.

Defining the vertical decomposition We next present an algorithm that
constructs a vertical cell decomposition [103], which partitions Cfree into a finite
collection of 2-cells and 1-cells. Each 2-cell is either a trapezoid that has vertical
sides or a triangle (which is a degenerate trapezoid). For this reason, the method
is sometimes called trapezoidal decomposition. The decomposition is defined as
follows. Let P denote the set of vertices used to define Cobs. At every p ∈ P ,
try to extend rays upward and downward through Cfree, until Cobs is hit. There
are four possible cases, as shown in Figure 6.2, depending on whether or not it is
possible to extend in each of the two directions. If Cfree is partitioned according
to these rays, then a vertical decomposition results. Extending these rays for the
example in Figure 6.3a leads to the decomposition of Cfree shown in Figure 6.3b.
Note that only trapezoids and triangles are obtained for the 2-cells in Cfree.

3Exceptions to this are some algorithms mentioned in Section 6.5.3, which obtain greater
efficiency by only maintaining one connected component of Cobs.
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(a) (b)

Figure 6.3: The vertical cell decomposition method uses the cells to construct a
roadmap, which is searched to yield a solution to a query.

Every 1-cell is a vertical segment that serves as the border between two 2-cells.
We must ensure that the topology of Cfree is correctly represented. Recall that
Cfree was defined to be an open set. Every 2-cell is actually defined to be an
open set in R2; thus, it is the interior of a trapezoid or triangle. The 1-cells are
the interiors of segments. It is tempting to make 0-cells, which correspond to the
endpoints of segments, but these are not allowed because they lie in Cobs.

General position issues What if two points along Cobs lie on a vertical line
that slices through Cfree? What happens when one of the edges of Cobs is vertical?
These are special cases that have been ignored so far. Throughout much of com-
binatorial motion planning it is common to ignore such special cases and assume
Cobs is in general position. This usually means that if all of the data points are
perturbed by a small amount in some random direction, the probability that the
special case remains is zero. Since a vertical edge is no longer vertical after being
slightly perturbed, it is not in general position. The general position assump-
tion is usually made because it greatly simplifies the presentation of an algorithm
(and, in some cases, its asymptotic running time is even lower). In practice, how-
ever, this assumption can be very frustrating. Most of the implementation time
is often devoted to correctly handling such special cases. Performing random per-
turbations may avoid this problem, but it tends to unnecessarily complicate the
solutions. For the vertical decomposition, the problems are not too difficult to
handle without resorting to perturbations; however, in general, it is important to
be aware of this difficulty, which is not as easy to fix in most other settings.

Defining the roadmap To handle motion planning queries, a roadmap is con-
structed from the vertical cell decomposition. For each cell Ci, let qi denote a
designated sample point such that qi ∈ Ci. The sample points can be selected as
the cell centroids, but the particular choice is not too important. Let G(V,E) be
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Figure 6.4: The roadmap derived from the vertical cell decomposition.

qI

qG

Figure 6.5: An example solution path.
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a topological graph defined as follows. For every cell, Ci, define a vertex qi ∈ V .
There is a vertex for every 1-cell and every 2-cell. For each 2-cell, define an edge
from its sample point to the sample point of every 1-cell that lies along its bound-
ary. Each edge is a line-segment path between the sample points of the cells. The
resulting graph is a roadmap, as depicted in Figure 6.4. The accessibility condi-
tion is satisfied because every sample point can be reached by a straight-line path
thanks to the convexity of every cell. The connectivity condition is also satisfied
because G is derived directly from the cell decomposition, which also preserves
the connectivity of Cfree. Once the roadmap is constructed, the cell information
is no longer needed for answering planning queries.

Solving a query Once the roadmap is obtained, it is straightforward to solve
a motion planning query, (qI , qG). Let C0 and Ck denote the cells that contain qI
and qG, respectively. In the graph G, search for a path that connects the sample
point of C0 to the sample point of Ck. If no such path exists, then the planning
algorithm correctly declares that no solution exists. If one does exist, then let C1,
C2, . . ., Ck−1 denote the sequence of 1-cells and 2-cells visited along the computed
path in G from C0 to Ck.

A solution path can be formed by simply “connecting the dots.” Let q0, q1, q2,
. . ., qk−1, qk, denote the sample points along the path in G. There is one sample
point for every cell that is crossed. The solution path, τ : [0, 1]→ Cfree, is formed
by setting τ(0) = qI , τ(1) = qG, and visiting each of the points in the sequence
from q0 to qk by traveling along the shortest path. For the example, this leads to
the solution shown in Figure 6.5. In selecting the sample points, it was important
to ensure that each path segment from the sample point of one cell to the sample
point of its neighboring cell is collision-free.4

Computing the decomposition The problem of efficiently computing the de-
composition has not yet been considered. Without concern for efficiency, the
problem appears simple enough that all of the required steps can be computed by
brute-force computations. If Cobs has n vertices, then this approach would take at
least O(n2) time because intersection tests have to be made between each vertical
ray and each segment. This even ignores the data structure issues involved in
finding the cells that contain the query points and in building the roadmap that
holds the connectivity information. By careful organization of the computation,
it turns out that all of this can be nicely handled, and the resulting running time
is only O(n lg n).

Plane-sweep principle The algorithm is based on the plane-sweep (or line-
sweep) principle from computational geometry [71, 146, 158], which forms the basis

4This is the reason why the approach is defined differently from Chapter 1 of [304]. In that
case, sample points were not placed in the interiors of the 2-cells, and collision could result for
some queries.
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of many combinatorial motion planning algorithms and many other algorithms in
general. Much of computational geometry can be considered as the development
of data structures and algorithms that generalize the sorting problem to multiple
dimensions. In other words, the algorithms carefully “sort” geometric information.

The word “sweep” is used to refer to these algorithms because it can be imag-
ined that a line (or plane, etc.) sweeps across the space, only to stop where some
critical change occurs in the information. This gives the intuition, but the sweep-
ing line is not explicitly represented by the algorithm. To construct the vertical
decomposition, imagine that a vertical line sweeps from x = −∞ to x =∞, using
(x, y) to denote a point in C = R2.

From Section 6.2.1, note that the set P of Cobs vertices are the only data in R2

that appear in the problem input. It therefore seems reasonable that interesting
things can only occur at these points. Sort the points in P in increasing order by
their X coordinate. Assuming general position, no two points have the same X
coordinate. The points in P will now be visited in order of increasing x value.
Each visit to a point will be referred to as an event. Before, after, and in between
every event, a list, L, of some Cobs edges will be maintained. This list must be
maintained at all times in the order that the edges appear when stabbed by the
vertical sweep line. The ordering is maintained from lower to higher.

Algorithm execution Figures 6.6 and 6.7 show how the algorithm proceeds.
Initially, L is empty, and a doubly connected edge list is used to represent Cfree.
Each connected component of Cfree yields a single face in the data structure.
Suppose inductively that after several events occur, L is correctly maintained.
For each event, one of the four cases in Figure 6.2 occurs. By maintaining L in a
balanced binary search tree [132], the edges above and below p can be determined
in O(lg n) time. This is much better than O(n) time, which would arise from
checking every segment. Depending on which of the four cases from Figure 6.2
occurs, different updates to L are made. If the first case occurs, then two different
edges are inserted, and the face of which p is on the border is split two times
by vertical line segments. For each of the two vertical line segments, two half-
edges are added, and all faces and half-edges must be updated correctly (this
operation is local in that only records adjacent to where the change occurs need
to be updated). The next two cases in Figure 6.2 are simpler; only a single face
split is made. For the final case, no splitting occurs.

Once the face splitting operations have been performed, L needs to be updated.
When the sweep line crosses p, two edges are always affected. For example, in
the first and last cases of Figure 6.2, two edges must be inserted into L (the
mirror images of these cases cause two edges to be deleted from L). If the middle
two cases occur, then one edge is replaced by another in L. These insertion and
deletion operations can be performed in O(lg n) time. Since there are n events,
the running time for the construction algorithm is O(n lg n).

The roadmap G can be computed from the face pointers of the doubly con-
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Figure 6.6: There are 14 events in this example.

Event Sorted Edges in L Event Sorted Edges in L
0 {a, b} 7 {d, j, n, b}
1 {d, b} 8 {d, j, n,m, l, b}
2 {d, f, e, b} 9 {d, j, l, b}
3 {d, f, i, b} 10 {d, k, l, b}
4 {d, f, g, h, i, b} 11 {d, b}
5 {d, f, g, j, n, h, i, b} 12 {d, c}
6 {d, f, g, j, n, b} 13 {}

Figure 6.7: The status of L is shown after each of 14 events occurs. Before the
first event, L is empty.
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One closest
point

Two closest
points

One closest
point

Figure 6.8: The maximum clearance roadmap keeps as far away from the Cobs as
possible. This involves traveling along points that are equidistant from two or
more points on the boundary of Cobs.

Edge-Edge Vertex-Vertex Vertex-Edge

Figure 6.9: Voronoi roadmap pieces are generated in one of three possible cases.
The third case leads to a quadratic curve.

nected edge list. A more elegant approach is to incrementally build G at each
event. In fact, all of the pointer maintenance required to obtain a consistent dou-
bly connected edge list can be ignored if desired, as long as G is correctly built
and the sample point is obtained for each cell along the way. We can even go
one step further, by forgetting about the cell decomposition and directly building
a topological graph of line-segment paths between all sample points of adjacent
cells.

6.2.3 Maximum-Clearance Roadmaps

A maximum-clearance roadmap tries to keep as far as possible from Cobs, as shown
for the corridor in Figure 6.8. The resulting solution paths are sometimes pre-
ferred in mobile robotics applications because it is difficult to measure and control
the precise position of a mobile robot. Traveling along the maximum-clearance
roadmap reduces the chances of collisions due to these uncertainties. Other names
for this roadmap are generalized Voronoi diagram and retraction method [387]. It
is considered as a generalization of the Voronoi diagram (recall from Section 5.2.2)
from the case of points to the case of polygons. Each point along a roadmap edge
is equidistant from two points on the boundary of Cobs. Each roadmap vertex
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corresponds to the intersection of two or more roadmap edges and is therefore
equidistant from three or more points along the boundary of Cobs.

The retraction term comes from topology and provides a nice intuition about
the method. A subspace S is a deformation retract of a topological space X if
the following continuous homotopy, h : X × [0, 1]→ X, can be defined as follows
[232]:

1. h(x, 0) = x for all x ∈ X.

2. h(x, 1) is a continuous function that maps every element of X to some ele-
ment of S.

3. For all t ∈ [0, 1], h(s, t) = s for any s ∈ S.

The intuition is that Cfree is gradually thinned through the homotopy process,
until a skeleton, S, is obtained. An approximation to this shrinking process can
be imagined by shaving off a thin layer around the whole boundary of Cfree. If
this is repeated iteratively, the maximum-clearance roadmap is the only part that
remains (assuming that the shaving always stops when thin “slivers” are obtained).

To construct the maximum-clearance roadmap, the concept of features from
Section 5.3.3 is used again. Let the feature set refer to the set of all edges and
vertices of Cobs. Candidate paths for the roadmap are produced by every pair
of features. This leads to a naive O(n4) time algorithm as follows. For every
edge-edge feature pair, generate a line as shown in Figure 6.9a. For every vertex-
vertex pair, generate a line as shown in Figure 6.9b. The maximum-clearance path
between a point and a line is a parabola. Thus, for every edge-point pair, generate
a parabolic curve as shown in Figure 6.9c. The portions of the paths that actually
lie on the maximum-clearance roadmap are determined by intersecting the curves.
Several algorithms exist that provide better asymptotic running times [316, 320],
but they are considerably more difficult to implement. The best-known algorithm
runs in O(n lg n) time in which n is the number of roadmap curves [435].

6.2.4 Shortest-Path Roadmaps

Instead of generating paths that maximize clearance, suppose that the goal is to
find shortest paths. This leads to the shortest-path roadmap, which is also called
the reduced visibility graph in [304]. The idea was first introduced in [384] and may
perhaps be the first example of a motion planning algorithm. The shortest-path
roadmap is in direct conflict with maximum clearance because shortest paths tend
to graze the corners of Cobs. In fact, the problem is ill posed because Cfree is an
open set. For any path τ : [0, 1] → Cfree, it is always possible to find a shorter
one. For this reason, we must consider the problem of determining shortest paths
in cl(Cfree), the closure of Cfree. This means that the robot is allowed to “touch”
or “graze” the obstacles, but it is not allowed to penetrate them. To actually
use the computed paths as solutions to a motion planning problem, they need
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Figure 6.10: A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the line must extend outward past each of them
without poking into Cobs.

Figure 6.11: The shortest-path roadmap includes edges between consecutive reflex
vertices on Cobs and also bitangent edges.

to be slightly adjusted so that they come very close to Cobs but do not make
contact. This slightly increases the path length, but the additional cost can be
made arbitrarily small as the path gets arbitrarily close to Cobs.

The shortest-path roadmap, G, is constructed as follows. Let a reflex vertex be a
polygon vertex for which the interior angle (in Cfree) is greater than π. All vertices
of a convex polygon (assuming that no three consecutive vertices are collinear)
are reflex vertices. The vertices of G are the reflex vertices. Edges of G are formed
from two different sources:

Consecutive reflex vertices: If two reflex vertices are the endpoints of
an edge of Cobs, then an edge between them is made in G.

Bitangent edges: If a bitangent line can be drawn through a pair of reflex
vertices, then a corresponding edge is made in G. A bitangent line, depicted
in Figure 6.10, is a line that is incident to two reflex vertices and does not
poke into the interior of Cobs at any of these vertices. Furthermore, these
vertices must be mutually visible from each other.

An example of the resulting roadmap is shown in Figure 6.11. Note that the
roadmap may have isolated vertices, such as the one at the top of the figure. To
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qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap
vertices, and graph search is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path
between qI and qG.

solve a query, qI and qG are connected to all roadmap vertices that are visible;
this is shown in Figure 6.12. This makes an extended roadmap that is searched
for a solution. If Dijkstra’s algorithm is used, and if each edge is given a cost that
corresponds to its path length, then the resulting solution path is the shortest
path between qI and qG. The shortest path for the example in Figure 6.12 is
shown in Figure 6.13.

If the bitangent tests are performed naively, then the resulting algorithm re-
quires O(n3) time, in which n is the number of vertices of Cobs. There are O(n2)
pairs of reflex vertices that need to be checked, and each check requires O(n) time
to make certain that no other edges prevent their mutual visibility. The plane-
sweep principle from Section 6.2.2 can be adapted to obtain a better algorithm,
which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each
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p1 p3

p4p6

p5

p2

Figure 6.14: Potential bitangents can be identified by checking for left turns,
which avoids the use of trigonometric functions and their associated numerical
problems.

reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n).
See Chapter 15 of [146] for more details. There exists an algorithm that can com-
pute the shortest-path roadmap in time O(n lg n + m), in which m is the total
number of edges in the roadmap [195]. If the obstacle region is described by a
simple polygon, the time complexity can be reduced to O(n); see [372] for many
shortest-path variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R

2 × R2 × R2 → {true, false}, as
fl(p1, p2, p3) = true if and only if p3 is to the left of the ray that starts at p1 and
pierces p2. A point p2 is a reflex vertex if and only if fl(p1, p2, p3) = true, in which
p1 and p3 are the points before and after, respectively, along the boundary of Cobs.
The bitangent test can be performed by assigning points as shown in Figure 6.14.
Assume that no three points are collinear and the segment that connects p2 and
p5 is not in collision. The pair, p2, p5, of vertices should receive a bitangent edge
if the following sentence is false:

(

fl(p1, p2, p5)⊕ fl(p3, p2, p5)
)

∨
(

fl(p4, p5, p2)⊕ fl(p6, p5, p2)
)

, (6.1)

in which ⊕ denotes logical “exclusive or.” The fl predicate can be implemented
without trigonometric functions by defining

M(p1, p2, p3) =





1 x1 y1
1 x2 y2
1 x3 y3



 , (6.2)

in which pi = (xi, yi). If det(M) > 0, then fl(p1, p2, p3) = true; otherwise,
fl(p1, p2, p3) = false.

6.3 Cell Decompositions

Section 6.2.2 introduced the vertical cell decomposition to solve the motion plan-
ning problem when Cobs is polygonal. It is important to understand, however, that
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this is just one choice among many for the decomposition. Some of these choices
may not be preferable in 2D; however, they might generalize better to higher
dimensions. Therefore, other cell decompositions are covered in this section, to
provide a smoother transition from vertical cell decomposition to cylindrical alge-
braic decomposition in Section 6.4, which solves the motion planning problem in
any dimension for any semi-algebraic model. Along the way, a cylindrical decom-
position will appear in Section 6.3.4 for the special case of a line-segment robot
in W = R2.

6.3.1 General Definitions

In this section, the term complex refers to a collection of cells together with their
boundaries. A partition into cells can be derived from a complex, but the complex
contains additional information that describes how the cells must fit together. The
term cell decomposition still refers to the partition of the space into cells, which
is derived from a complex.

It is tempting to define complexes and cell decompositions in a very general
manner. Imagine that any partition of Cfree could be called a cell decomposition.
A cell could be so complicated that the notion would be useless. Even Cfree itself
could be declared as one big cell. It is more useful to build decompositions out
of simpler cells, such as ones that contain no holes. Formally, this requires that
every k-dimensional cell is homeomorphic to Bk ⊂ Rk, an open k-dimensional
unit ball. From a motion planning perspective, this still yields cells that are quite
complicated, and it will be up to the particular cell decomposition method to
enforce further constraints to yield a complete planning algorithm.

Two different complexes will be introduced. The simplicial complex is ex-
plained because it is one of the easiest to understand. Although it is useful in
many applications, it is not powerful enough to represent all of the complexes that
arise in motion planning. Therefore, the singular complex is also introduced. Al-
though it is more complicated to define, it encompasses all of the cell complexes
that are of interest in this book. It also provides an elegant way to represent
topological spaces. Another important cell complex, which is not covered here, is
the CW-complex [226].

Simplicial Complex For this definition, it is assumed that X = Rn. Let p1, p2,
. . ., pk+1, be k+1 linearly independent5 points in Rn. A k-simplex, [p1, . . . , pk+1],
is formed from these points as

[p1, . . . , pk+1] =

{

k+1
∑

i=1

αipi ∈ Rn
∣

∣

∣ αi ≥ 0 for all i and
k+1
∑

i=1

αi = 1

}

, (6.3)

5Form k vectors by subtracting p1 from the other k points for some positive integer k such
that k ≤ n. Arrange the vectors into a k × n matrix. For linear independence, there must be
at least one k × k cofactor with a nonzero determinant. For example, if k = 2, then the three
points cannot be collinear.
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Not a simplicial complex A simplicial complex

Figure 6.15: To become a simplicial complex, the simplex faces must fit together
nicely.

in which αipi is the scalar multiplication of αi by each of the point coordinates.
Another way to view (6.3) is as the convex hull of the k + 1 points (i.e., all ways
to linearly interpolate between them). If k = 2, a triangular region is obtained.
For k = 3, a tetrahedron is produced.

For any k-simplex and any i such that 1 ≤ i ≤ k + 1, let αi = 0. This yields
a (k − 1)-dimensional simplex that is called a face of the original simplex. A 2-
simplex has three faces, each of which is a 1-simplex that may be called an edge.
Each 1-simplex (or edge) has two faces, which are 0-simplexes called vertices.

To form a complex, the simplexes must fit together in a nice way. This yields
a high-dimensional notion of a triangulation, which in R2 is a tiling composed
of triangular regions. A simplicial complex, K, is a finite set of simplexes that
satisfies the following:

1. Any face of a simplex in K is also in K.

2. The intersection of any two simplexes in K is either a common face of both
of them or the intersection is empty.

Figure 6.15 illustrates these requirements. For k > 0, a k-cell of K is defined to
be interior, int([p1, . . . , pk+1]), of any k-simplex. For k = 0, every 0-simplex is a
0-cell. The union of all of the cells forms a partition of the point set covered by
K. This therefore provides a cell decomposition in a sense that is consistent with
Section 6.2.2.

Singular complex Simplicial complexes are useful in applications such as ge-
ometric modeling and computer graphics for computing the topology of models.
Due to the complicated topological spaces, implicit, nonlinear models, and de-
composition algorithms that arise in motion planning, they are insufficient for the
most general problems. A singular complex is a generalization of the simplicial
complex. Instead of being limited to Rn, a singular complex can be defined on
any manifold, X (it can even be defined on any Hausdorff topological space). The
main difference is that, for a simplicial complex, each simplex is a subset of Rn;
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however, for a singular complex, each singular simplex is actually a homeomor-
phism from a (simplicial) simplex in Rn to a subset of X.

To help understand the idea, first consider a 1D singular complex, which hap-
pens to be a topological graph (as introduced in Example 4.6). The interval [0, 1]
is a 1-simplex, and a continuous path τ : [0, 1] → X is a singular 1-simplex be-
cause it is a homeomorphism of [0, 1] to the image of τ in X. Suppose G(V,E) is
a topological graph. The cells are subsets of X that are defined as follows. Each
point v ∈ V is a 0-cell in X. To follow the formalism, each is considered as the
image of a function f : {0} → X, which makes it a singular 0-simplex, because
{0} is a 0-simplex. For each path τ ∈ E, the corresponding 1-cell is

{x ∈ X | τ(s) = x for some s ∈ (0, 1)}. (6.4)

Expressed differently, it is τ((0, 1)), the image of the path τ , except that the
endpoints are removed because they are already covered by the 0-cells (the cells
must form a partition).

These principles will now be generalized to higher dimensions. Since all balls
and simplexes of the same dimension are homeomorphic, balls can be used instead
of a simplex in the definition of a singular simplex. Let Bk ⊂ Rk denote a closed,
k-dimensional unit ball,

Dk = {x ∈ Rn | ‖x‖ ≤ 1}, (6.5)

in which ‖·‖ is the Euclidean norm. A singular k-simplex is a continuous mapping
σ : Dk → X. Let int(Dk) refer to the interior of Dk. For k ≥ 1, the k-cell, C,
corresponding to a singular k-simplex, σ, is the image C = σ(int(Dk)) ⊆ X.
The 0-cells are obtained directly as the images of the 0 singular simplexes. Each
singular 0-simplex maps to the 0-cell in X. If σ is restricted to int(Dk), then it
actually defines a homeomorphism between Dk and C. Note that both of these
are open sets if k > 0.

A simplicial complex requires that the simplexes fit together nicely. The same
concept is applied here, but topological concepts are used instead because they
are more general. Let K be a set of singular simplexes of varying dimensions. Let
Sk denote the union of the images of all singular i-simplexes for all i ≤ k.

A collection of singular simplexes that map into a topological space X is called
a singular complex if:

1. For each dimension k, the set Sk ⊆ X must be closed. This means that the
cells must all fit together nicely.

2. Each k-cell is an open set in the topological subspace Sk. Note that 0-cells
are open in S0, even though they are usually closed in X.

Example 6.1 (Vertical Decomposition) The vertical decomposition of Sec-
tion 6.2.2 is a nice example of a singular complex that is not a simplicial complex
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because it contains trapezoids. The interior of each trapezoid and triangle forms
a 2-cell, which is an open set. For every pair of adjacent 2-cells, there is a 1-cell on
their common boundary. There are no 0-cells because the vertices lie in Cobs, not
in Cfree. The subspace S2 is formed by taking the union of all 2-cells and 1-cells
to yield S2 = Cfree. This satisfies the closure requirement because the complex
is built in Cfree only; hence, the topological space is Cfree. The set S2 = Cfree is
both open and closed. The set S1 is the union of all 1-cells. This is also closed
because the 1-cell endpoints all lie in Cobs. Each 1-cell is also an open set.

One way to avoid some of these strange conclusions from the topology re-
stricted to Cfree is to build the vertical decomposition in cl(Cfree), the closure of
Cfree. This can be obtained by starting with the previously defined vertical de-
composition and adding a new 1-cell for every edge of Cobs and a 0-cell for every
vertex of Cobs. Now S3 = cl(Cfree), which is closed in R2. Likewise, S2, S1, and S0,
are closed in the usual way. Each of the individual k-dimensional cells, however,
is open in the topological space Sk. The only strange case is that the 0-cells are
considered open, but this is true in the discrete topological space S0. �

6.3.2 2D Decompositions

The vertical decomposition method of Section 6.2.2 is just one choice of many
cell decomposition methods for solving the problem when Cobs is polygonal. It
provides a nice balance between the number of cells, computational efficiency,
and implementation ease. It is usually possible to decompose Cobs into far fewer
convex cells. This would be preferable for multiple-query applications because
the roadmap would be smaller. It is unfortunately quite difficult to optimize the
number of cells. Determining the decomposition of a polygonal Cobs with holes
that uses the smallest number of convex cells is NP-hard [268, 336]. Therefore,
we are willing to tolerate nonoptimal decompositions.

Triangulation One alternative to the vertical decomposition is to perform a
triangulation, which yields a simplicial complex over Cfree. Figure 6.16 shows an
example. Since Cfree is an open set, there are no 0-cells. Each 2-simplex (triangle)
has either one, two, or three faces, depending on how much of its boundary is
shared with Cobs. A roadmap can be made by connecting the samples for 1-cells
and 2-cells as shown in Figure 6.17. Note that there are many ways to triangulate
Cfree for a given problem. Finding good triangulations, which for example means
trying to avoid thin triangles, is given considerable attention in computational
geometry [71, 146, 158].

How can the triangulation be computed? It might seem tempting to run the
vertical decomposition algorithm of Section 6.2.2 and split each trapezoid into
two triangles. Even though this leads to triangular cells, it does not produce a
simplicial complex (two triangles could abut the same side of a triangle edge).
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Figure 6.16: A triangulation of Cfree.

Figure 6.17: A roadmap obtained from the triangulation.
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A naive approach is to incrementally split faces by attempting to connect two
vertices of a face by a line segment. If this segment does not intersect other
segments, then the split can be made. This process can be iteratively performed
over all vertices of faces that have more than three vertices, until a triangulation
is eventually obtained. Unfortunately, this results in an O(n3) time algorithm
because O(n2) pairs must be checked in the worst case, and each check requires
O(n) time to determine whether an intersection occurs with other segments. This
can be easily reduced to O(n2 lg n) by performing radial sweeping. Chapter 3
of [146] presents an algorithm that runs in O(n lg n) time by first partitioning
Cfree into monotone polygons, and then efficiently triangulating each monotone
polygon. If Cfree is simply connected, then, surprisingly, a triangulation can be
computed in linear time [104]. Unfortunately, this algorithm is too complicated to
use in practice (there are, however, simpler algorithms for which the complexity
is close to O(n); see [57] and the end of Chapter 3 of [146] for surveys).

Cylindrical decomposition The cylindrical decomposition is very similar to
the vertical decomposition, except that when any of the cases in Figure 6.2 occurs,
then a vertical line slices through all faces, all the way from y = −∞ to y = ∞.
The result is shown in Figure 6.18, which may be considered as a singular complex.
This may appear very inefficient in comparison to the vertical decomposition;
however, it is presented here because it generalizes nicely to any dimension, any
C-space topology, and any semi-algebraic model. Therefore, it is presented here to
ease the transition to more general decompositions. The most important property
of the cylindrical decomposition is shown in Figure 6.19. Consider each vertical
strip between two events. When traversing a strip from y = −∞ to y = ∞,
the points alternate between being Cobs and Cfree. For example, between events
4 and 5, the points below edge f are in Cfree. Points between f and g lie in
Cobs. Points between g and h lie in Cfree, and so forth. The cell decomposition
can be defined so that 2D cells are also created in Cobs. Let S(x, y) denote the
logical predicate (3.6) from Section 3.1.1. When traversing a strip, the value of
S(x, y) also alternates. This behavior is the main reason to construct a cylindrical
decomposition, which will become clearer in Section 6.4.2. Each vertical strip is
actually considered to be a cylinder, hence, the name cylindrical decomposition
(i.e., there are not necessarily any cylinders in the 3D geometric sense).

6.3.3 3D Vertical Decomposition

It turns out that the vertical decomposition method of Section 6.2.2 can be ex-
tended to any dimension by recursively applying the sweeping idea. The method
requires, however, that Cobs is piecewise linear. In other words, Cobs is represented
as a semi-algebraic model for which all primitives are linear. Unfortunately, most
of the general motion planning problems involve nonlinear algebraic primitives
because of the nonlinear transformations that arise from rotations. Recall the
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Figure 6.18: The cylindrical decomposition differs from the vertical decomposition
in that the rays continue forever instead of stopping at the nearest edge. Compare
this figure to Figure 6.6.
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Figure 6.19: The cylindrical decomposition produces vertical strips. Inside of a
strip, there is a stack of collision-free cells, separated by Cobs.
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Figure 6.20: In higher dimensions, the sweeping idea can be applied recursively.

complicated algebraic Cobs model constructed in Section 4.3.3. To handle generic
algebraic models, powerful techniques from computational algebraic geometry are
needed. This will be covered in Section 6.4.

One problem for which Cobs is piecewise linear is a polyhedral robot that can
translate in R3, and the obstacles in W are polyhedra. Since the transformation
equations are linear in this case, Cobs ⊂ R3 is polyhedral. The polygonal faces of
Cobs are obtained by forming geometric primitives for each of the Type FV, Type
VF, and Type EE cases of contact between A and O, as mentioned in Section
4.3.2.

Figure 6.20 illustrates the algorithm that constructs the 3D vertical decompo-
sition. Compare this to the algorithm in Section 6.2.2. Let (x, y, z) denote a point
in C = R3. The vertical decomposition yields convex 3-cells, 2-cells, and 1-cells.
Neglecting degeneracies, a generic 3-cell is bounded by six planes. The cross sec-
tion of a 3-cell for some fixed x value yields a trapezoid or triangle, exactly as in
the 2D case, but in a plane parallel to the yz plane. Two sides of a generic 3-cell
are parallel to the yz plane, and two other sides are parallel to the xz plane. The
3-cell is bounded above and below by two polygonal faces of Cobs.
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Initially, sort the Cobs vertices by their x coordinate to obtain the events. Now
consider sweeping a plane perpendicular to the x-axis. The plane for a fixed value
of x produces a 2D polygonal slice of Cobs. Three such slices are shown at the
bottom of Figure 6.20. Each slice is parallel to the yz plane and appears to look
exactly like a problem that can be solved by the 2D vertical decomposition method.
The 2-cells in a slice are actually slices of 3-cells in the 3D decomposition. The
only places in which these 3-cells can critically change is when the sweeping plane
stops at some x value. The center slice in Figure 6.20 corresponds to the case in
which a vertex of a convex polyhedron is encountered, and all of the polyhedron
lies to right of the sweep plane (i.e., the rest of the polyhedron has not been
encountered yet). This corresponds to a place where a critical change must occur
in the slices. These are 3D versions of the cases in Figure 6.2, which indicate how
the vertical decomposition needs to be updated. The algorithm proceeds by first
building the 2D vertical decomposition at the first x event. At each event, the 2D
vertical decomposition must be updated to take into account the critical changes.
During this process, the 3D cell decomposition and roadmap can be incrementally
constructed, as in the 2D case.

The roadmap is constructed by placing a sample point in the center of each
3-cell and 2-cell. The vertices are the sample points, and edges are added to
the roadmap by connecting the sample points for each case in which a 3-cell is
adjacent to a 2-cell.

This same principle can be extended to any dimension, but the applications to
motion planning are limited because the method requires linear models (or at least
it is very challenging to adapt to nonlinear models; in some special cases, this can
be done). See [216] for a summary of the complexity of vertical decompositions
for various geometric primitives and dimensions.

6.3.4 A Decomposition for a Line-Segment Robot

This section presents one of the simplest cell decompositions that involves non-
linear models, yet it is already fairly complicated. This will help to give an
appreciation of the difficulty of combinatorial planning in general. Consider the
planning problem shown in Figure 6.21. The robot, A, is a single line segment
that can translate or rotate in W = R2. The dot on one end of A is used to illus-
trate its origin and is not part of the model. The C-space, C, is homeomorphic to
R2 × S1. Assume that the parameterization R2 × [0, 2π]/ ∼ is used in which the
identification equates θ = 0 and θ = 2π. A point in C is represented as (x, y, θ).

An approximate solution First consider making a cell decomposition for the
case in which the segment can only translate. The method from Section 4.3.2 can
be used to compute Cobs by treating the robot-obstacle interaction with Type EV
and Type VE contacts. When the interior of A touches an obstacle vertex, then
Type EV is obtained. An endpoint of A touching an object interior yields Type
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Figure 6.21: Motion planning for a line segment that can translate and rotate in
a 2D world.

VE. Each case produces an edge of Cobs, which is polygonal. Once this is repre-
sented, the vertical decomposition can be used to solve the problem. This inspires
a reasonable numerical approach to the rotational case, which is to discretize θ
into K values, i∆θ, for 0 ≤ i ≤ K, and ∆θ = 2π/K [14]. The obstacle region,
Cobs, is polygonal for each case, and we can imagine having a stack of K polyg-
onal regions. A roadmap can be formed by connecting sampling points inside of
a slice in the usual way, and also by connecting samples between corresponding
cells in neighboring slices. If K is large enough, this strategy works well, but the
method is not complete because a sufficient value for K cannot be determined in
advance. The method is actually an interesting hybrid between combinatorial and
sampling-based motion planning. A resolution-complete version can be imagined.

In the limiting case, as K tends to infinity, the surfaces of Cobs become curved
along the θ direction. The conditions in Section 4.3.3 must be applied to gen-
erate the actual obstacle regions. This is possible, but it yields a semi-algebraic
representation of Cobs in terms of implicit polynomial primitives. It is no easy
task to determine an explicit representation in terms of simple cells that can be
used for motion planning. The method of Section 6.3.3 cannot be used because
Cobs is not polyhedral. Therefore, special analysis is warranted to produce a cell
decomposition.

The general idea is to construct a cell decomposition in R2 by considering only
the translation part, (x, y). Each cell in R2 is then lifted into C by considering θ as
a third axis that is “above” the xy plane. A cylindrical decomposition results in
which each cell in the xy plane produces a cylindrical stack of cells for different θ
values. Recall the cylinders in Figures 6.18 and 6.19. The vertical axis corresponds
to θ in the current setting, and the horizontal axis is replaced by two axes, x and
y.

To construct the decomposition in R2, consider the various robot-obstacle con-
tacts shown in Figure 6.22. In Figure 6.22a, the segment swings around from a
fixed (x, y). Two different kinds of contacts arise. For some orientation (value of
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Figure 6.22: Fix (x, y) and swing the segment around for all values of θ ∈
[0, 2π]/ ∼. (a) Note the vertex and edge features that are hit by the segment.
(b) Record orientation intervals over which the robot is not in collision.

θ), the segment contacts v1, forming a Type EV contact. For three other orienta-
tions, the segment contacts an edge, forming Type VE contacts. Once again using
the feature concept, there are four orientations at which the segment contacts a
feature. Each feature may be either a vertex or an edge. Between the two contacts
with e2 and e3, the robot is not in collision. These configurations lie in Cfree. Also,
configurations for which the robot is between contacts e3 (the rightmost contact)
and v1 are also in Cfree. All other orientations produce configurations in Cobs. Note
that the line segment cannot get from being between e2 and e3 to being between
e3 and v1, unless the (x, y) position is changed. It therefore seems sensible that
these must correspond to different cells in whatever decomposition is made.

Radar maps Figure 6.22b illustrates which values of θ produce collision. We
will refer to this representation as a radar map. The four contact orientations are
indicated by the contact feature. The notation [e3, v1] and [e2, e3] identifies the
two intervals for which (x, y, θ) ∈ Cfree. Now imagine changing (x, y) by a small
amount, to obtain (x′, y′). How would the radar map change? The precise angles
at which the contacts occur would change, but the notation [e3, v1] and [e2, e3],
for configurations that lie in Cfree, remains unchanged. Even though the angles
change, there is no interesting change in terms of the contacts; therefore, it makes
sense to declare (x, y, θ) and (x, y, θ′) to lie in the same cell in Cfree because θ and
θ′ both place the segment between the same contacts. Imagine a column of two
3-cells above a small area around (x, y). One 3-cell is for orientations in [e3, v1],
and the other is for orientations in [e2, e3]. These appear to be 3D regions in Cfree
because each of x, y, and θ can be perturbed a small amount without leaving the
cell.

Of course, if (x, y) is changed enough, then eventually we expect a dramatic
change to occur in the radar map. For example, imagine e3 is infinitely long, and
the x value is gradually increased in Figure 6.22a. The black band between v1 and
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Figure 6.23: If x is increased enough, a critical change occurs in the radar map
because v1 can no longer be reached by the robot.

e2 in Figure 6.22b shrinks in length. Eventually, when the distance from (x′, y′)
to v1 is greater than the length of A, the black band disappears. This situation
is shown in Figure 6.23. The change is very important to notice because after
that region vanishes, any orientation θ′ between e3 and e3, traveling the long way
around the circle, produces a configuration (x′, y′, θ′) ∈ Cfree. This seems very
important because it tells us that we can travel between the original two cells by
moving the robot further way from v1, rotating the robot, and then moving back.
Now move from the position shown in Figure 6.23 into the positive y direction. The
remaining black band begins to shrink and finally disappears when the distance
to e3 is further than the robot length. This represents another critical change.

The radar map can be characterized by specifying a circular ordering

([f1, f2], [f3, f4], [f5, f6], . . . , [f2k−1, f2k]), (6.6)

when there are k orientation intervals over which the configurations lie in Cfree.
For the radar map in Figure 6.22b, this representation yields ([e3, v1], [e2, e3]).
Each fi is a feature, which may be an edge or a vertex. Some of the fi may
be identical; the representation for Figure 6.23b is ([e3, e3]). The intervals are
specified in counterclockwise order around the radar map. Since the ordering
is circular, it does not matter which interval is specified first. There are two
degenerate cases. If (x, y, θ) ∈ Cfree for all θ ∈ [0, 2π), then we write () for the
ordering. On the other hand, if (x, y, θ) ∈ Cobs for all θ ∈ [0, 2π), then we write ∅.

Critical changes in cells Now we are prepared to explain the cell decompo-
sition in more detail. Imagine traveling along a path in R2 and producing an
animated version of the radar map in Figure 6.22b. We say that a critical change
occurs each time the circular ordering representation of (6.6) changes. Changes
occur when intervals: 1) appear, 2) disappear, 3) split apart, 4) merge into one,
or 5) when the feature of an interval changes. The first task is to partition R2 into
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Figure 6.24: Four of the five cases that produce critical curves in R2.

maximal 2-cells over which no critical changes occur. Each one of these 2-cells,
R, represents the projection of a strip of 3-cells in Cfree. Each 3-cell is defined as
follows. Let {R, [fi, fi+1]} denote the 3D region in Cfree for which (x, y) ∈ R and
θ places the segment between contacts fi and fi+1. The cylinder of cells above R
is given by {R, [fi, fi+1]} for each interval in the circular ordering representation,
(6.6). If any orientation is possible because A never contacts an obstacle while in
R, then we write {R}.

What are the positions in R2 that cause critical changes to occur? It turns
out that there are five different cases to consider, each of which produces a set of
critical curves in R2. When one of these curves is crossed, a critical change occurs.
If none of these curves is crossed, then no critical change can occur. Therefore,
these curves precisely define the boundaries of the desired 2-cells in R2. Let L
denote the length of the robot (which is the line segment).

Consider how the five cases mentioned above may occur. Two of the five cases
have already been observed in Figures 6.22 and 6.23. These appear in Figures
6.24a and Figures 6.24b, and occur if (x, y) is within L of an edge or a vertex.
The third and fourth cases are shown in Figures 6.24c and 6.24d, respectively. The
third case occurs because crossing the curve causes A to change between being
able to touch e and being able to touch v. This must be extended from any edge
at an endpoint that is a reflex vertex (interior angle is greater than π). The fourth
case is actually a return of the bitangent case from Figure 6.10, which arose for
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Figure 6.25: The fifth case is the most complicated. It results in a fourth-degree
algebraic curve called the Conchoid of Nicomedes.
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Figure 6.26: The critical curves form the boundaries of the noncritical regions in
R2.

the shortest path graph. If the vertices are within L of each other, then a linear
critical curve is generated because A is no longer able to touch v2 when crossing it
from right to left. Bitangents always produce curves in pairs; the curve above v2
is not shown. The final case, shown in Figure 6.25, is the most complicated. It is a
fourth-degree algebraic curve called the Conchoid of Nicomedes, which arises from
A being in simultaneous contact between v and e. Inside of the teardrop-shaped
curve, A can contact e but not v. Just outside of the curve, it can touch v. If the
xy coordinate frame is placed so that v is at (0, 0), then the equation of the curve
is

(x2 − y2)(y + d)2 − y2L2 = 0, (6.7)

in which d is the distance from v to e.
Putting all of the curves together generates a cell decomposition of R2. There

are noncritical regions, over which there is no change in (6.6); these form the
2-cells. The boundaries between adjacent 2-cells are sections of the critical curves
and form 1-cells. There are also 0-cells at places where critical curves intersect.
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Figure 6.27: Connections are made between neighboring 3-cells that lie above
neighboring noncritical regions.

Figure 6.26 shows an example adapted from [304]. Note that critical curves are not
drawn if their corresponding configurations are all in Cobs. The method still works
correctly if they are included, but unnecessary cell boundaries are made. Just for
fun, they could be used to form a nice cell decomposition of Cobs, in addition to
Cfree. Since Cobs is avoided, is seems best to avoid wasting time on decomposing
it. These unnecessary cases can be detected by imagining that A is a laser with
range L. As the laser sweeps around, only features that are contacted by the laser
are relevant. Any features that are hidden from view of the laser correspond to
unnecessary boundaries.

After the cell decomposition has been constructed in R2, it needs to be lifted
into R2× [0, 2π]/ ∼. This generates a cylinder of 3-cells above each 2D noncritical
region, R. The roadmap could easily be defined to have a vertex for every 3-cell
and 2-cell, which would be consistent with previous cell decompositions; however,
vertices at 2-cells are not generated here to make the coming example easier to
understand. Each 3-cell, {R, [fi, fi+1]}, corresponds to the vertex in a roadmap.
The roadmap edges connect neighboring 3-cells that have a 2-cell as part of their
common boundary. This means that in R2 they share a one-dimensional portion
of a critical curve.

Constructing the roadmap The problem is to determine which 3-cells are
actually adjacent. Figure 6.27 depicts the cases in which connections need to be
made. The xy plane is represented as one axis (imagine looking in a direction
parallel to it). Consider two neighboring 2-cells (noncritical regions), R and R′,
in the plane. It is assumed that a 1-cell (critical curve) in R2 separates them. The
task is to connect together 3-cells in the cylinders above R and R′. If neighbor-
ing cells share the same feature pair, then they are connected. This means that
{R, [fi, fi+1]} and {R′, [fi, fi+1]} must be connected. In some cases, one feature
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Figure 6.28: A depiction of the 3-cells above the noncritical regions. Sample
rod orientations are shown for each cell (however, the rod length is shortened for
clarity). Edges between cells are shown in Figure 6.29.

may change, while the interval of orientations remains unchanged. This may hap-
pen, for example, when the robot changes from contacting an edge to contacting
a vertex of the edge. In these cases, a connection must also be made. One case
illustrated in Figure 6.27 is when a splitting or merging of orientation intervals
occurs. Traveling from R to R′, the figure shows two regions merging into one. In
this case, connections must be made from each of the original two 3-cells to the
merged 3-cell. When constructing the roadmap edges, sample points of both the
3-cells and 2-cells should be used to ensure collision-free paths are obtained, as
in the case of the vertical decomposition in Section 6.2.2. Figure 6.28 depicts the
cells for the example in Figure 6.26. Each noncritical region has between one and
three cells above it. Each of the various cells is indicated by a shortened robot that
points in the general direction of the cell. The connections between the cells are
also shown. Using the noncritical region and feature names from Figure 6.26, the
resulting roadmap is depicted abstractly in Figure 6.29. Each vertex represents a
3-cell in Cfree, and each edge represents the crossing of a 2-cell between adjacent
3-cells. To make the roadmap consistent with previous roadmaps, we could insert
a vertex into every edge and force the path to travel through the sample point of
the corresponding 2-cell.

Once the roadmap has been constructed, it can be used in the same way as
other roadmaps in this chapter to solve a query. Many implementation details have
been neglected here. Due to the fifth case, some of the region boundaries in R2 are
fourth-degree algebraic curves. Ways to prevent the explicit characterization of
every noncritical region boundary, and other implementation details, are covered
in [42]. Some of these details are also summarized in [304].
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Figure 6.29: The roadmap corresponding to the example in Figure 6.26.

Complexity How many cells can there possibly be in the worst case? First
count the number of noncritical regions in R2. There are O(n) different ways to
generate critical curves of the first three types because each corresponds to a single
feature. Unfortunately, there are O(n2) different ways to generate bitangents and
the Conchoid of Nicomedes because these are based on pairs of features. Assuming
no self-intersections, a collection of O(n2) curves in R2, may intersect to generate
at most O(n4) regions. Above each noncritical region in R2, there could be a
cylinder of O(n) 3-cells. Therefore, the size of the cell decomposition is O(n5)
in the worst case. In practice, however, it is highly unlikely that all of these
intersections will occur, and the number of cells is expected to be reasonable.
In [427], an O(n5)-time algorithm is given to construct the cell decomposition.
Algorithms that have much better running time are mentioned in Section 6.5.3,
but they are more complicated to understand and implement.

6.4 Computational Algebraic Geometry

This section presents algorithms that are so general that they solve any prob-
lem of Formulation 4.1 and even the closed-chain problems of Section 4.4. It is
amazing that such algorithms exist; however, it is also unfortunate that they are
both extremely challenging to implement and not efficient enough for most ap-
plications. The concepts and tools of this section were mostly developed in the
context of computational real algebraic geometry [53, 138]. They are powerful
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enough to conquer numerous problems in robotics, computer vision, geometric
modeling, computer-aided design, and geometric theorem proving. One of these
problems happens to be motion planning, for which the connection to computa-
tional algebraic geometry was first recognized in [428].

6.4.1 Basic Definitions and Concepts

This section builds on the semi-algebraic model definitions from Section 3.1 and
the polynomial definitions from Section 4.4.1. It will be assumed that C ⊆ Rn,
which could for example arise by representing each copy of SO(2) or SO(3) in its
2× 2 or 3× 3 matrix form. For example, in the case of a 3D rigid body, we know
that C = R3 ×RP3, which is a six-dimensional manifold, but it can be embedded
in R12, which is obtained from the Cartesian product of R3 and the set of all
3× 3 matrices. The constraints that force the matrices to lie in SO(2) or SO(3)
are polynomials, and they can therefore be added to the semi-algebraic models of
Cobs and Cfree. If the dimension of C is less than n, then the algorithm presented
below is sufficient, but there are some representation and complexity issues that
motivate using a special parameterization of C to make both dimensions the same
while altering the topology of C to become homeomorphic to Rn. This is discussed
briefly in Section 6.4.2.

Suppose that the models in Rn are all expressed using polynomials from
Q[x1, . . . , xn], the set of polynomials6 over the field of rational numbers Q. Let
f ∈ Q[x1, . . . , xn] denote a polynomial.

Tarski sentences Recall the logical predicates that were formed in Section 3.1.
They will be used again here, but now they are defined with a little more flexibility.
For any f ∈ Q[x1, . . . , xn], an atom is an expression of the form f ⊲⊳ 0, in which ⊲⊳
may be any relation in the set {=, 6=, <,>,≤,≥}. In Section 3.1, such expressions
were used to define logical predicates. Here, we assume that relations other than
≤ can be used and that the vector of polynomial variables lies in Rn.

A quantifier-free formula, φ(x1, . . . , xn), is a logical predicate composed of
atoms and logical connectives, “and,” “or,” and “not,” which are denoted by ∧,
∨, and ¬, respectively. Each atom itself is considered as a logical predicate that
yields true if and only if the relation is satisfied when the polynomial is evaluated
at the point (x1, . . . , xn) ∈ Rn.

Example 6.2 (An Example Predicate) Let φ be a predicate over R3, defined
as

φ(x1, x2, x3) = (x21x3 − x42 < 0)∨
(

¬(3x2x3 6= 0)∧ (2x23 − x1x2x3 + 2 ≥ 0)
)

. (6.8)

The precedence order of the connectives follows the laws of Boolean algebra. �

6It will be explained shortly why Q[x1, . . . , xn] is preferred over R[x1, . . . , xn].
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Let a quantifier Q be either of the symbols, ∀, which means “for all,” or ∃,
which means “there exists.” A Tarski sentence Φ is a logical predicate that may
additionally involve quantifiers on some or all of the variables. In general, a Tarski
sentence takes the form

Φ(x1, . . . , xn−k) = (Qz1)(Qz2) . . . (Qzk) φ(z1, . . . , zk, x1, . . . , xn−k), (6.9)

in which the zi are the quantified variables, the xi are the free variables, and φ is
a quantifier-free formula. The quantifiers do not necessarily have to appear at the
left to be a valid Tarski sentence; however, any expression can be manipulated
into an equivalent expression that has all quantifiers in front, as shown in (6.9).
The procedure for moving quantifiers to the front is as follows [370]: 1) Eliminate
any redundant quantifiers; 2) rename some of the variables to ensure that the
same variable does not appear both free and bound; 3) move negation symbols as
far inward as possible; and 4) push the quantifiers to the left.

Example 6.3 (Several Tarski Sentences) Tarski sentences that have no free
variables are either true or false in general because there are no arguments on
which the results depend. The sentence

Φ = ∀x∃y (x2 − y < 0), (6.10)

is true because for any x ∈ R, some y ∈ R can always be chosen so that y > x2.
In the general notation of (6.9), this example becomes Qz1 = ∀x, Qz2 = ∃y, and
φ(z1, z2) = (x2 − y < 0).

Swapping the order of the quantifiers yields the Tarski sentence

Φ = ∃y∀x (x2 − y < 0), (6.11)

which is false because for any y, there is always an x such that x2 > y.
Now consider a Tarski sentence that has a free variable:

Φ(z) = ∃y∀x (x2 − zx2 − y < 0). (6.12)

This yields a function Φ : R→ {true, false}, in which

Φ(z) =

{

true if z ≥ 1
false if z < 1.

(6.13)

An equivalent quantifier-free formula φ can be defined as φ(z) = (z > 1), which
takes on the same truth values as the Tarski sentence in (6.12). This might make
you wonder whether it is always possible to make a simplification that eliminates
the quantifiers. This is called the quantifier-elimination problem, which will be
explained shortly. �
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The decision problem The sentences in (6.10) and (6.11) lead to an interesting
problem. Consider the set of all Tarski sentences that have no free variables. The
subset of these that are true comprise the first-order theory of the reals. Can
an algorithm be developed to determine whether such a sentence is true? This
is called the decision problem for the first-order theory of the reals. At first
it may appear hopeless because Rn is uncountably infinite, and an algorithm
must work with a finite set. This is a familiar issue faced throughout motion
planning. The sampling-based approaches in Chapter 5 provided one kind of
solution. This idea could be applied to the decision problem, but the resulting
lack of completeness would be similar. It is not possible to check all possible points
in Rn by sampling. Instead, the decision problem can be solved by constructing
a combinatorial representation that exactly represents the decision problem by
partitioning Rn into a finite collection of regions. Inside of each region, only one
point needs to be checked. This should already seem related to cell decompositions
in motion planning; it turns out that methods developed to solve the decision
problem can also conquer motion planning.

The quantifier-elimination problem Another important problem was exem-
plified in (6.12). Consider the set of all Tarski sentences of the form (6.9), which
may or may not have free variables. Can an algorithm be developed that takes
a Tarski sentence Φ and produces an equivalent quantifier-free formula φ? Let
x1, . . . , xn denote the free variables. To be equivalent, both must take on the
same true values over Rn, which is the set of all assignments (x1, . . . , xn) for the
free variables.

Given a Tarski sentence, (6.9), the quantifier-elimination problem is to find a
quantifier-free formula φ such that

Φ(x1, . . . , xn) = φ(x1, . . . , xn) (6.14)

for all (x1, . . . , xn) ∈ Rn. This is equivalent to constructing a semi-algebraic model
because φ can always be expressed in the form

φ(x1, . . . , xn) =
k
∨

i=1

mi
∧

j=1

(fi,j(x1, . . . , xn) ⊲⊳ 0) , (6.15)

in which ⊲⊳ may be either <, =, or >. This appears to be the same (3.6), except
that (6.15) uses the relations <, =, and > to allow open and closed semi-algebraic
sets, whereas (3.6) only used ≤ to construct closed semi-algebraic sets for O and
A.

Once again, the problem is defined on Rn, which is uncountably infinite, but
an algorithm must work with a finite representation. This will be achieved by the
cell decomposition technique presented in Section 6.4.2.
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(−1,−1, 1, 1) (−1, 1,−1, 1)

(−1, 1, 1, 0)

(−1, 1, 0, 1)(−1, 0, 1, 1)

(1, 1, 1, 1)

(0, 1, 1, 1)
(−1, 1, 1,−1)

(−1, 1, 1, 1)

Figure 6.30: A semi-algebraic decomposition of the gingerbread face yields 9 sign-
invariant regions.

Semi-algebraic decomposition As stated in Section 6.3.1, motion planning
inside of each cell in a complex should be trivial. To solve the decision and
quantifier-elimination problems, a cell decomposition was developed for which
these problems become trivial in each cell. The decomposition is designed so that
only a single point in each cell needs to be checked to solve the decision problem.

The semi-algebraic set Y ⊆ Rn that is expressed with (6.15) is

Y =
k
⋃

i=1

mi
⋂

j=1

{(x1, . . . , xn) ∈ Rn | sgn(fi,j(x1, . . . , xn)) = si,j} , (6.16)

in which sgn is the sign function, and each si,j ∈ {−1, 0, 1}, which is the range
of sgn. Once again the nice relationship between set-theory and logic, which was
described in Section 3.1, appears here. We convert from a set-theoretic description
to a logical predicate by changing ∪ and ∩ to ∨ and ∧, respectively.

Let F denote the set ofm =
∑k

i=1mi polynomials that appear in (6.16). A sign
assignment with respect to F is a vector-valued function, sgnF : Rn → {−1, 0, 1}m.
Each f ∈ F has a corresponding position in the sign assignment vector. At
this position, the sign, sgn(f(x1, . . . , xn)) ∈ {−1, 0, 1}, appears. A semi-algebraic
decomposition is a partition of Rn into a finite set of connected regions that are each
sign invariant. This means that inside of each region, sgnF must remain constant.
The regions will not be called cells because a semi-algebraic decomposition is not
necessarily a singular complex as defined in Section 6.3.1; the regions here may
contain holes.

Example 6.4 (Sign assignment) Recall Example 3.1 and Figure 3.4 from Sec-
tion 3.1.2. Figure 3.4a shows a sign assignment for a case in which there is only
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one polynomial, F = {x2 + y2 − 4}. The sign assignment is defined as

sgnF(x, y) =







−1 if x2 + y2 − 4 < 0
0 if x2 + y2 − 4 = 0
1 if x2 + y2 − 4 > 0.

(6.17)

Now consider the sign assignment sgnF , shown in Figure 6.30 for the gin-
gerbread face of Figure 3.4b. The polynomials of the semi-algebraic model are
F = {f1, f2, f3, f4}, as defined in Example 3.1. In order, these are the “head,” “left
eye,” “right eye,” and “mouth.” The sign assignment produces a four-dimensional
vector of signs. Note that if (x, y) lies on one of the zeros of a polynomial in F ,
then a 0 appears in the sign assignment. If the curves of two or more of the
polynomials had intersected, then the sign assignment would produce more than
one 0 at the intersection points.

For the semi-algebraic decomposition for the gingerbread face in Figure 6.30,
there are nine regions. Five 2D regions correspond to: 1) being outside of the
face, 2)inside of the left eye, 3) inside of the right eye, 4) inside of the mouth,
and 5) inside of the face but outside of the mouth and eyes. There are four 1D
regions, each of which corresponds to points that lie on one of the zero sets of a
polynomial. The resulting decomposition is not a singular complex because the
(−1, 1, 1, 1) region contains three holes. �

A decomposition such as the one in Figure 6.30 would not be very useful
for motion planning because of the holes in the regions. Further refinement is
needed for motion planning, which is fortunately produced by cylindrical algebraic
decomposition. On the other hand, any semi-algebraic decomposition is quite
useful for solving the decision problem. Only one point needs to be checked inside
of each region to determine whether some Tarski sentence that has no free variables
is true. Why? If the polynomial signs cannot change over some region, then
the true/false value of the corresponding logical predicate, Φ, cannot change.
Therefore, it sufficient only to check one point per sign-invariant region.

6.4.2 Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition is a general method that produces a cylindri-
cal decomposition in the same sense considered in Section 6.3.2 for polygons in
R2 and also the decomposition in Section 6.3.4 for the line-segment robot. It is
also referred to as Collins decomposition after its original developer [31, 124, 125].
The decomposition in Figure 6.19 can even be considered as a cylindrical alge-
braic decomposition for a semi-algebraic set in which every geometric primitive is
a linear polynomial. In this section, such a decomposition is generalized to any
semi-algebraic set in Rn.

The idea is to develop a sequence of projections that drops the dimension
of the semi-algebraic set by one each time. Initially, the set is defined over Rn,
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and after one projection, a semi-algebraic set is obtained in Rn−1. Eventually,
the projection reaches R, and a univariate polynomial is obtained for which the
zeros are at the critical places where cell boundaries need to be formed. A cell
decomposition of 1-cells (intervals) and 0-cells is formed by partitioning R. The
sequence is then reversed, and decompositions are formed from R2 up to Rn. Each
iteration starts with a cell decomposition in Ri and lifts it to obtain a cylinder of
cells in Ri+1. Figure 6.35 shows how the decomposition looks for the gingerbread
example; since n = 2, it only involves one projection and one lifting.

Semi-algebraic projections are semi-algebraic The following is implied by
the Tarski-Seidenberg Theorem [53]:

A projection of a semi-algebraic set from dimension n to dimension
n− 1 is a semi-algebraic set.

This gives a kind of closure of semi-algebraic sets under projection, which is re-
quired to ensure that every projection of a semi-algebraic set in Ri leads to a
semi-algebraic set in Ri−1. This property is actually not true for (real) algebraic
varieties, which were introduced in Section 4.4.1. Varieties are defined using only
the = relation and are not closed under the projection operation. Therefore, it is
a good thing (not just a coincidence!) that we are using semi-algebraic sets.

Real algebraic numbers As stated previously, the sequence of projections ends
with a univariate polynomial over R. The sides of the cells will be defined based
on the precise location of the roots of this polynomial. Furthermore, representing
a sample point for a cell of dimension k in a complex in Rn for k < n requires
perfect precision. If the coordinates are slightly off, the point will lie in a different
cell. This raises the complicated issue of how these roots are represented and
manipulated in a computer.

For univariate polynomials of degree 4 or less, formulas exist to compute all
of the roots in terms of functions of square roots and higher order roots. From
Galois theory [244, 394], it is known that such formulas and nice expressions for
roots do not exist for most higher degree polynomials, which can certainly arise
in the complicated semi-algebraic models that are derived in motion planning.
The roots in R could be any real number, and many real numbers require infinite
representations.

One way of avoiding this mess is to assume that only polynomials inQ[x1, . . . , xn]
are used, instead of the more general R[x1, . . . , xn]. The field Q is not alge-
braically closed because zeros of the polynomials lie outside of Qn. For example, if
f(x1) = x21 − 2, then f = 0 for x1 = ±

√
2, and

√
2 6∈ Q. However, some elements

of R can never be roots of a polynomial in Q[x1, . . . , xn].
The set A of all real roots to all polynomials in Q[x] is called the set of real

algebraic numbers. The set A ⊂ R actually represents a field (recall from Section
4.4.1). Several nice algorithmic properties of the numbers in A are 1) they all have
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finite representations, 2) addition and multiplication operations on elements of A
can be computed in polynomial time, and 3) conversions between different repre-
sentations of real algebraic numbers can be performed in polynomial time. This
means that all operations can be computed efficiently without resorting to some
kind of numerical approximation. In some applications, such approximations are
fine; however, for algebraic decompositions, they destroy critical information by
potentially confusing roots (e.g., how can we know for sure whether a polynomial
has a double root or just two roots that are very close together?).

The details are not presented here, but there are several methods for rep-
resenting real algebraic numbers and the corresponding algorithms for manipu-
lating them efficiently. The running time of cylindrical algebraic decomposition
ultimately depends on this representation. In practice, a numerical root-finding
method that has a precision parameter, ǫ, can be used by choosing ǫ small enough
to ensure that roots will not be confused. A sufficiently small value can be de-
termined by applying gap theorems, which give lower bounds on the amount of
real root separation, expressed in terms of the polynomial coefficients [92]. Some
methods avoid requiring a precision parameter. One well-known example is the
derivation of a Sturm sequence of polynomials based on the given polynomial.
The polynomials in the Sturm sequence are then used to find isolating intervals
for each of the roots [53]. The polynomial, together with its isolating interval, can
be considered as an exact root representation. Algebraic operations can even be
performed using this representation in time O(d lg2 d), in which d is the degree
of the polynomial [428]. See [53, 92, 428] for detailed presentations on the exact
representation and calculation with real algebraic numbers.

One-dimensional decomposition To explain the cylindrical algebraic decom-
position method, we first perform a semi-algebraic decomposition of R, which is
the final step in the projection sequence. Once this is explained, then the multi-
dimensional case follows more easily.

Let F be a set of m univariate polynomials,

F = {fi ∈ Q[x] | i = 1, . . . ,m}, (6.18)

which are used to define some semi-algebraic set in R. The polynomials in F could
come directly from a quantifier-free formula φ (which could even appear inside of
a Tarski sentence, as in (6.9)).

Define a single polynomial as f =
∏m

i=1 fi. Suppose that f has k distinct, real
roots, which are sorted in increasing order:

−∞ < β1 < β2 < · · · < βi−1 < βi < βi+1 < · · · < βk < ∞. (6.19)

The one-dimensional semi-algebraic decomposition is given by the following
sequence of alternating 1-cells and 0-cells:

(−∞, β1), [β1, β1], (β1, β2), . . . , (βi−1, βi), [βi, βi],

(βi, βi+1), . . . , [βk, βk], (βk,∞).
(6.20)
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f1(x) = x2 − 2x f2(x) = x2 − 4x + 3

2 310
R

−1

Figure 6.31: Two parabolas are used to define the semi-algebraic set [1, 2].

R
0

[3, 3](2, 3)(1, 2)[1, 1] [2, 2](0, 1)[0, 0](−∞, 0) (3,∞)

2 31

Figure 6.32: A semi-algebraic decomposition for the polynomials in Figure 6.31.

Any semi-algebraic set that can be expressed using the polynomials in F can
also be expressed as the union of some of the 0-cells and 1-cells given in (6.20).
This can also be considered as a singular complex (it can even be considered as a
simplicial complex, but this does not extend to higher dimensions).

Sample points can be generated for each of the cells as follows. For the un-
bounded cells [−∞, β1) and (βk,∞], valid samples are β1 − 1 and βk + 1, respec-
tively. For each finite 1-cell, (βi, βi+1), the midpoint (βi + βi+1)/2 produces a
sample point. For each 0-cell, [βi, βi], the only choice is to use βi as the sample
point.

Example 6.5 (One-Dimensional Decomposition) Figure 6.31 shows a semi-
algebraic subset of R that is defined by two polynomials, f1(x) = x2 − 2x and
f2(x) = x2 − 4x+ 3. Here, F = {f1, f2}. Consider the quantifier-free formula

φ(x) = (x2 − 2x ≥ 0) ∧ (x2 − 4x+ 3 ≥ 0). (6.21)

The semi-algebraic decomposition into five 1-cells and four 0-cells is shown in
Figure 6.32. Each cell is sign invariant. The sample points for the 1-cells are −1,
1/2, 3/2, 5/2, and 4, respectively. The sample points for the 0-cells are 0, 1, 2,
and 3, respectively.

A decision problem can be nicely solved using the decomposition. Suppose
a Tarski sentence that uses the polynomials in F has been given. Here is one
possibility:

Φ = ∃x[(x2 − 2x ≥ 0) ∧ (x2 − 4x+ 3 ≥ 0)] (6.22)

The sample points alone are sufficient to determine whether Φ is true or false.
Once x = 1 is attempted, it is discovered that Φ is true. The quantifier-
elimination problem cannot yet be considered because more dimensions are needed.
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Folding over Intersection

Figure 6.33: Critical points occur either when the surface folds over in the vertical
direction or when surfaces intersect.

�

The inductive step to higher dimensions Now consider constructing a cylin-
drical algebraic decomposition for Rn (note the decomposition is actually semi-
algebraic). Figure 6.35 shows an example for R2. First consider how to iteratively
project the polynomials down to R to ensure that when the decomposition of Rn

is constructed, the sign-invariant property is maintained. The resulting decompo-
sition corresponds to a singular complex.

There are two cases that cause cell boundaries to be formed, as shown in Figure
6.33. Let Fn denote the original set of polynomials inQ[x1, . . . , xn] that are used to
define the semi-algebraic set (or Tarski sentence) in Rn. Form a single polynomial
f =

∏m
i=1 fi. Let f ′ = ∂f/∂xn, which is also a polynomial. Let g = GCD(f, f ′),

which is the greatest common divisor of f and f ′. The set of zeros of g is the set of
all points that are zeros of both f and f ′. Being a zero of f ′ means that the surface
given by f = 0 does not vary locally when perturbing xn. These are places where
a cell boundary needs to be formed because the surface may fold over itself in
the xn direction, which is not permitted for a cylindrical decomposition. Another
place where a cell boundary needs to be formed is at the intersection of two or
more polynomials in Fn. The projection technique from Rn to Rn−1 generates
a set, Fn−1, of polynomials in Q[x1, . . . , xn−1] that satisfies these requirements.
The polynomials Fn−1 have the property that at least one contains a zero point
below every point in x ∈ Rn for which f(x) = 0 and f ′(x) = 0, or polynomials
in Fn intersect. The projection method that constructs Fn−1 involves computing
principle subresultant coefficients, which are covered in [53, 429]. Resultants, of
which the subresultants are an extension, are covered in [138].

The polynomials in Fn−1 are then projected to Rn−2 to obtain Fn−2. This
process continues until F1 is obtained, which is a set of polynomials in Q[x1]. A
one-dimensional decomposition is formed, as defined earlier. From F1, a single
polynomial is formed by taking the product, and R is partitioned into 0-cells and
1-cells. We next describe the process of lifting a decomposition over Ri−1 up to
Ri. This technique is applied iteratively until Rn is reached.



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 295

Assume inductively that a cylindrical algebraic decomposition has been com-
puted for a set of polynomials Fi−1 in Q[x1, . . . , xi−1]. The decomposition consists
of k-cells for which 0 ≤ k ≤ i. Let p = (x1, . . . , xi−1) ∈ Ri−1. For each one of the
k-cells Ci−1, a cylinder over Ci−1 is defined as the (k + 1)-dimensional set

{(p, xi) ∈ Ri | p ∈ Ci−1}. (6.23)

The cylinder is sliced into a strip of k-dimensional and k+ 1-dimensional cells by
using polynomials in Fi. Let fj denote one of the ℓ slicing polynomials in the
cylinder, sorted in increasing xi order as f1, f2, . . ., fj, fj+1, . . ., fℓ. The following
kinds of cells are produced (see Figure 6.34):

1. Lower unbounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and xi < f1(p) }. (6.24)

2. Section:
{(p, xi) ∈ Ri | p ∈ Ci−1 and xi = fj(p) }. (6.25)

3. Bounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and fj(p) < xi < fj+1(p) }. (6.26)

4. Upper unbounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and fℓ(p) < xi }. (6.27)

There is one degenerate possibility in which there are no slicing polynomials and
the cylinder over Ci−1 can be extended into one unbounded cell. In general, the
sample points are computed by picking a point in p ∈ Ci−1 and making a vertical
column of samples of the form (p, xi). A polynomial in Q[xi] can be generated,
and the samples are placed using the same assignment technique that was used
for the one-dimensional decomposition.

Example 6.6 (Mutilating the Gingerbread Face) Figure 6.35 shows a cylin-
drical algebraic decomposition of the gingerbread face. Observe that the resulting
complex is very similar to that obtained in Figure 6.19. �

Note that the cells do not necessarily project onto a rectangular set, as in the
case of a higher dimensional vertical decomposition. For example, a generic n-cell
Cn for a decomposition of Rn is described as the open set of (x1, . . . , xn) ∈ Rn

such that

• C0 < xn < C ′
0 for some 0-cells C0, C

′
0 ∈ R, which are roots of some f, f ′ ∈ F1.
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f1

fj

Ci−1

fj+1

fℓ

Figure 6.34: A cylinder over every k-cell Ci−1 is formed. A sequence of poly-
nomials, f1, . . ., fℓ, slices the cylinder into k-dimensional sections and (k + 1)-
dimensional sectors.

• (xn−1, xn) lies between C1 and C ′
1 for some 1-cells C1, C

′
1, which are zeros

of some f, f ′ ∈ F2.

...

• (xn−i+1, . . . , xn) lies between Ci−1 and C
′
i−1 for some i-cells Ci−1, C

′
i−1, which

are zeros of some f, f ′ ∈ Fi.

...

• (x1, . . . , xn) lies between Cn−1 and C ′
n−1 for some (n − 1)-cells Cn−1, C

′
n−1,

which are zeros of some f, f ′ ∈ Fn.

The resulting decomposition is sign invariant, which allows the decision and
quantifier-elimination problems to be solved in finite time. To solve a decision
problem, the polynomials in Fn are evaluated at every sample point to deter-
mine whether one of them satisfies the Tarski sentence. To solve the quantifier-
elimination problem, note that any semi-algebraic sets that can be constructed
from Fn can be defined as a union of some cells in the decomposition. For the
given Tarski sentence, Fn is formed from all polynomials that are mentioned in
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Figure 6.35: A cylindrical algebraic decomposition of the gingerbread face. There
are 37 2-cells, 64 1-cells, and 28 0-cells. The straight 1-cells are intervals of the
vertical lines, and the curved ones are portions of the zero set of a polynomial in
F . The decomposition of R is also shown.

the sentence, and the cell decomposition is performed. Once obtained, the sign
information is used to determine which cells need to be included in the union.
The resulting union of cells is designed to include only the points in Rn at which
the Tarski sentence is true.

Solving a motion planning problem Cylindrical algebraic decomposition
is also capable of solving any of the motion planning problems formulated in
Chapter 4. First assume that C = Rn. As for other decompositions, a roadmap is
formed in which every vertex is an n-cell and edges connect every pair of adjacent
n-cells by traveling through an (n − 1)-cell. It is straightforward to determine
adjacencies inside of a cylinder, but there are several technical details associated
with determining adjacencies of cells from different cylinders (pages 152–154 of
[53] present an example that illustrates the problem). The cells of dimension less
than n− 1 are not needed for motion planning purposes (just as vertices were not
needed for the vertical decomposition in Section 6.2.2). The query points qI and
qG are connected to the roadmap depending on the cell in which they lie, and a
discrete search is performed.
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If C ⊂ Rn and its dimension is k for k < n, then all of the interesting cells are of
lower dimension. This occurs, for example, due to the constraints on the matrices
to force them to lie in SO(2) or SO(3). This may also occur for problems from
Section 4.4, in which closed chains reduce the degrees of freedom. The cylindrical
algebraic decomposition method can still solve such problems; however, the exact
root representation problem becomes more complicated when determining the cell
adjacencies. A discussion of these issues appears in [428]. For the case of SO(2)
and SO(3), this complication can be avoided by using stereographic projection to
map S1 or S3 to R or R3, respectively. This mapping removes a single point from
each, but the connectivity of Cfree remains unharmed. The antipodal identification
problem for unit quaternions represented by S3 also does not present a problem;
there is a redundant copy of C, which does not affect the connectivity.

The running time for cylindrical algebraic decomposition depends on many
factors, but in general it is polynomial in the number of polynomials in Fn, poly-
nomial in the maximum algebraic degree of the polynomials, and doubly expo-
nential in the dimension. Complexity issues are covered in more detail in Section
6.5.3.

6.4.3 Canny’s Roadmap Algorithm

The doubly exponential running time of cylindrical algebraic decomposition in-
spired researchers to do better. It has been shown that quantifier elimination
requires doubly exponential time [144]; however, motion planning is a different
problem. Canny introduced a method that produces a roadmap directly from the
semi-algebraic set, rather than constructing a cell decomposition along the way.
Since there are doubly exponentially many cells in the cylindrical algebraic de-
composition, avoiding this construction pays off. The resulting roadmap method
of Canny solves the motion planning problem in time that is again polynomial in
the number of polynomials and polynomial in the algebraic degree, but it is only
singly exponential in dimension [90, 92]; see also [53].

Much like the other combinatorial motion planning approaches, it is based on
finding critical curves and critical points. The main idea is to construct linear
mappings from Rn to R2 that produce silhouette curves of the semi-algebraic
sets. Performing one such mapping on the original semi-algebraic set yields a
roadmap, but it might not preserve the original connectivity. Therefore, linear
mappings from Rn−1 to R2 are performed on some (n−1)-dimensional slices of the
original semi-algebraic set to yield more roadmap curves. This process is applied
recursively until the slices are already one-dimensional. The resulting roadmap
is formed from the union of all of the pieces obtained in the recursive calls. The
resulting roadmap has the same connectivity as the original semi-algebraic set
[92].

Suppose that C = Rn. Let F = {f1, . . . , fm} denote the set of polynomials
that define the semi-algebraic set, which is assumed to be a disjoint union of
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manifolds. Assume that each fi ∈ Q[x1, . . . , xn]. First, a small perturbation to
the input polynomials F is performed to ensure that every sign-invariant set of Rn

is a manifold. This forces the polynomials into a kind of general position, which
can be achieved with probability one using random perturbations; there are also
deterministic methods to solve this problem. The general position requirements
on the input polynomials and the 2D projection directions are fairly strong, which
has stimulated more recent work that eliminates many of the problems [53]. From
this point onward, it will be assumed that the polynomials are in general position.

Recall the sign-assignment function from Section 6.4.1. Each sign-invariant
set is a manifold because of the general position assumption. Canny’s method
computes a roadmap for any k-dimensional manifold for k < n. Such a manifold
has precisely n − k signs that are 0 (which means that points lie precisely on
the zero sets of n − k polynomials in F). At least one of the signs must be 0,
which means that Canny’s roadmap actually lies in ∂Cfree (this technically is not
permitted, but the algorithm nevertheless correctly decides whether a solution
path exists through Cfree).

Recall that each fi is a function, fi : R
n → R. Let x denote (x1, . . . , xn) ∈ Rn.

The k polynomials that have zero signs can be put together sequentially to produce
a mapping ψ : Rn → Rk. The ith component of the vector ψ(x) is ψi(x) = fi(x).
This is closely related to the sign assignment function of Section 6.4.1, except that
now the real value from each polynomial is directly used, rather than taking its
sign.

Now introduce a function g : Rn → Rj, in which either j = 1 or j = 2 (the
general concepts presented below work for other values of j, but 1 and 2 are the
only values needed for Canny’s method). The function g serves the same purpose
as a projection in cylindrical algebraic decomposition, but note that g immediately
drops from dimension n to dimension 2 or 1, instead of dropping to n − 1 as in
the case of cylindrical projections.

Let h : Rn → Rk+j denote a mapping constructed directly from ψ and g as
follows. For the ith component, if i ≤ k, then hi(x) = ψi(x) = fi(x). Assume
that k + j ≤ n. If i > k, then hi(x) = gi−k(x). Let Jx(h) denote the Jacobian of
h and be defined at x as

Jx(h) =













∂h1(x)

∂x1
· · · ∂h1(x)

∂xn
...

...
∂hm+k(x)

∂x1
· · · ∂hm+k(x)

∂xn













=





































∂f1(x)

∂x1
· · · ∂f1(x)

∂xn
...

...
∂fk(x)

∂x1
· · · ∂fk(x)

∂xn

∂g1(x)

∂x1
· · · ∂g1(x)

∂xn
...

...
∂gj(x)

∂x1
· · · ∂gj(x)

∂xn





































. (6.28)

300 S. M. LaValle: Planning Algorithms

A point x ∈ Rn at which Jx(h) is singular is called a critical point. The matrix is
defined to be singular if every (m+k)×(m+k) subdeterminant is zero. Each of the
first k rows of Jx(h) calculates the surface normal to fi(x) = 0. If these normals
are not linearly independent of the directions given by the last j rows, then the
matrix becomes singular. The following example from [89] nicely illustrates this
principle.

Example 6.7 (Canny’s Roadmap Algorithm) Let n = 3, k = 1, and j = 1.
The zeros of a single polynomial f1 define a 2D subset of R3. Let f1 be the unit
sphere, S2, defined as the zeros of the polynomial

f1(x1, x2, x3) = x21 + x22 + x23 − 1. (6.29)

Suppose that g : R3 → R is defined as g(x1, x2, x3) = x1. The Jacobian, (6.28),
becomes

(

2x1 2x2 2x3
1 0 0

)

(6.30)

and is singular when all three of the possible 2 × 2 subdeterminants are zero.
This occurs if and only if x2 = x3 = 0. This yields the critical points (−1, 0, 0)
and (1, 0, 0) on S2. Note that this is precisely when the surface normals of S2 are
parallel to the vector [1 0 0].

Now suppose that j = 2 to obtain g : R3 → R2, and suppose g(x1, x2, x3) =
(x1, x2). In this case, (6.28) becomes





2x1 2x2 2x3
1 0 0
0 1 0



 , (6.31)

which is singular if and only if x3 = 0. The critical points are therefore the x1x2
plane intersected with S3, which yields the equator points (all (x1, x2) ∈ R2 such
that x21 + x22 = 1). In this case, more points are generated because the matrix
becomes degenerate for any surface normal of S2 that is parallel to [1 0 0], [0 1 0]
or any linear combination of these. �

The first mapping in Example 6.7 yielded two isolated critical points, and the
second mapping yielded a one-dimensional set of critical points, which is referred
to as a silhouette. The union of the silhouette and the isolated critical points
yields a roadmap for S2. Now consider generalizing this example to obtain the
full algorithm for general n and k. A linear mapping g : Rn → R2 is constructed
that might not be axis-aligned as in Example 6.7 because it must be chosen in
general position (otherwise degeneracies might arise in the roadmap). Define ψ to
be the set of polynomials that become zero on the desired manifold on which to
construct a roadmap. Form the matrix (6.28) and determine the silhouette. This
is accomplished in general using subresultant techniques that were also needed
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for cylindrical algebraic decomposition; see [53, 92] for details. Let g1 denote the
first component of g, which yields a mapping g1 : R

n → R. Forming (6.28) using
g1 yields a finite set of critical points. Taking the union of the critical points and
the silhouette produces part of the roadmap.

So far, however, there are no guarantees that the connectivity is preserved.
To handle this problem, Canny’s algorithm proceeds recursively. For each of the
critical points x ∈ Rn, an n − 1-dimensional hyperplane through x is chosen for
which the g1 row of (6.28) is the normal (hence it is perpendicular in some sense to
the flow of g1). Inside of this hyperplane, a new g mapping is formed. This time
a new direction is chosen, and the mapping takes the form g : Rn−1 → R2. Once
again, the silhouettes and critical points are found and added to the roadmap.
This process is repeated recursively until the base case in which the silhouettes
and critical points are directly obtained without forming g.

It is helpful to consider an example. Since the method involves a sequence of
2D projections, it is difficult to visualize. Problems in R4 and higher involve two
or more 2D projections and would therefore be more interesting. An example over
R3 is presented here, even though it unfortunately has only one projection; see
[92] for another example over R3.

Example 6.8 (Canny’s Algorithm on a Torus) Consider the 3D algebraic set
shown in Figure 6.36. After defining the mapping g(x1, x2, x3) = (x1, x2), the
roadmap shown in Figure 6.37 is obtained. The silhouettes are obtained from g,
and the critical points are obtained from g1 (this is the first component of g).
Note that the original connectivity of the solid torus is not preserved because the
inner ring does not connect to the outer ring. This illustrates the need to also
compute the roadmap for lower dimensional slices. For each of the four critical
points, the critical curves are computed for a plane that is parallel to the x2x3
plane and for which the x1 position is determined by the critical point. The slice
for one of the inner critical points is shown in Figure 6.38. In this case, the slice
already has two dimensions. New silhouette curves are added to the roadmap to
obtain the final result shown in Figure 6.39. �

To solve a planning problem, the query points qI and qG are artificially declared
to be critical points in the top level of recursion. This forces the algorithm to
generate curves that connect them to the rest of the roadmap.

The completeness of the method requires very careful analysis, which is thor-
oughly covered in [53, 92]. The main elements of the analysis are showing that:
1) the polynomials can be perturbed and g can be chosen to ensure general po-
sition, 2) the singularity conditions on (6.28) lead to algebraic sets (varieties),
and 3) the resulting roadmap has the required properties mentioned in Section
6.1 of being accessible and connectivity-preserving for Cfree (actually it is shown
for ∂Cfree). The method explained above computes the roadmap for each sign-
invariant set, but to obtain a roadmap for the planning problem, the roadmaps
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x1

x3

x2

Figure 6.36: Suppose that the semi-algebraic set is a solid torus in R3.

Figure 6.37: The projection into the x1x2 plane yields silhouettes for the inner
and outer rings and also four critical points.

Figure 6.38: A slice taken for the inner critical points is parallel to the x2x3 plane.
The roadmap for the slice connects to the silhouettes from Figure 6.37, thereby
preserving the connectivity of the original set in Figure 6.36.

Figure 6.39: All of the silhouettes and critical points are merged to obtain the
roadmap.
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from each sign-invariant set must be connected together correctly; fortunately, this
has been solved via the Linking Lemma of [89]. A major problem, however, is that
even after knowing the connectivity of the roadmap, it is a considerable challenge
to obtain a parameterization of each curve on the roadmap. For this and many
other technical reasons, no general implementation of Canny’s algorithm appears
to exist at present. Another problem is the requirement of a Whitney stratifica-
tion (which can be fixed by perturbation of the input). The Basu-Pollack-Roy
roadmap algorithm overcomes this problem [53].

6.5 Complexity of Motion Planning

This section summarizes theoretical work that characterizes the complexity of
motion planning problems. Note that this is not equivalent to characterizing the
running time of particular algorithms. The existence of an algorithm serves as
an upper bound on the problem’s difficulty because it is a proof by example that
solving the problem requires no more time than what is needed by the algorithm.
On the other hand, lower bounds are also very useful because they give an indica-
tion of the difficulty of the problem itself. Suppose, for example, you are given an
algorithm that solves a problem in time O(n2). Does it make sense to try to find
a more efficient algorithm? Does it make sense to try to find a general-purpose
motion planning algorithm that runs in time that is polynomial in the dimension?
Lower bounds provide answers to questions such as this. Usually lower bounds
are obtained by concocting bizarre, complicated examples that are allowed by the
problem definition but were usually not considered by the person who first for-
mulated the problem. In this line of research, progress is made by either raising
the lower bound (unless it is already tight) or by showing that a narrower version
of the problem still allows such bizarre examples. The latter case occurs often in
motion planning.

6.5.1 Lower Bounds

Lower bounds have been established for a variety of motion planning problems
and also a wide variety of planning problems in general. To interpret these bounds
a basic understanding of the theory of computation is required [239, 442]. This
fascinating subject will be unjustly summarized in a few paragraphs. A problem
is a set of instances that are each carefully encoded as a binary string. An algo-
rithm is formally considered as a Turing machine, which is a finite-state machine
that can read and write bits to an unbounded piece of tape. Other models of
computation also exist, such as integer RAM and real RAM (see [65]); there are
debates as to which model is most appropriate, especially when performing ge-
ometric computations with real numbers. The standard Turing machine model
will be assumed from here onward. Algorithms are usually formulated to make
a binary output, which involves accepting or rejecting a problem instance that is
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P NP PSPACE EXPTIME

Figure 6.40: It is known that P ⊂ EXPTIME is a strict subset; however, it is not
known precisely how large NP and PSPACE are.

initially written to the tape and given to the algorithm. In motion planning, this
amounts to deciding whether a solution path exists for a given problem instance.

Languages A language is a set of binary strings associated with a problem. It
represents the complete set of instances of a problem. An algorithm is said to
decide a language if in finite time it correctly accepts all strings that belong to
it and rejects all others. The interesting question is: How much time or space is
required to decide a language? This question is asked of the problem, under the
assumption that the best possible algorithm would be used to decide it. (We can
easily think of inefficient algorithms that waste resources.)

A complexity class is a set of languages that can all be decided within some
specified resource bound. The class P is the set of all languages (and hence
problems) for which a polynomial-time algorithm exists (i.e., the algorithm runs
in time O(nk) for some integer k). By definition, an algorithm is called efficient
if it decides its associated language in polynomial time.7 If no efficient algorithm
exists, then the problem is called intractable. The relationship between several
other classes that often emerge in theoretical motion planning is shown in Figure
6.40. The class NP is the set of languages that can be solved in polynomial
time by a nondeterministic Turing machine. Some discussion of nondeterministic
machines appears in Section 11.3.2. Intuitively, it means that solutions can be
verified in polynomial time because the machine magically knows which choices
to make while trying to make the decision. The class PSPACE is the set of
languages that can be decided with no more than a polynomial amount of storage
space during the execution of the algorithm (NPSPACE=PSPACE, so there is
no nondeterministic version). The class EXPTIME is the set of languages that
can be decided in time O(2n

k

) for some integer k. It is known that EXPTIME
is larger than P, but it is not known precisely where the boundaries of NP and
PSPACE lie. It might be the case that P = NP = PSPACE (although hardly
anyone believes this), or it could be that NP = PSPACE = EXPTIME.

7Note that this definition may be absurd in practice; an algorithm that runs in time O(n90125)
would probably not be too efficient for most purposes.
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Figure 6.41: Even motion planning for a bunch of translating rectangles inside of
a rectangular box in R2 is PSPACE-hard (and hence, NP-hard).

Hardness and completeness Since an easier class is included as a subset of
a harder one, it is helpful to have a notion of a language (i.e., problem) being
among the hardest possible within a class. Let X refer to either P, NP, PSPACE,
or EXPTIME. A language A is called X-hard if every language B in class X is
polynomial-time reducible to A. In short, this means that in polynomial time,
any language in B can be translated into instances for language A, and then the
decisions for A can be correctly translated back in polynomial time to correctly
decide B. Thus, if A can be decided, then within a polynomial-time factor, every
language in X can be decided. The hardness concept can even be applied to
a language (problem) that does not belong to the class. For example, we can
declare that a language A is NP-hard even if A 6∈NP (it could be harder and lie in
EXPTIME, for example). If it is known that the language is both hard for some
class X and is also a member of X, then it is called X-complete (i.e., NP-complete,
PSPACE-complete, etc.).8 Note that because of this uncertainty regarding P, NP,
and PSPACE, one cannot say that a problem is intractable if it is NP-hard or
PSPACE-hard, but one can, however, if the problem is EXPTIME-hard. One
additional remark: it is useful to remember that PSPACE-hard implies NP-hard.

Lower bounds for motion planning The general motion planning problem,
Formulation 4.1, was shown in 1979 to be PSPACE-hard by Reif [409]. In fact, the

8If you remember hearing that a planning problem is NP-something, but cannot remember
whether it was NP-hard or NP-complete, then it is safe to say NP-hard because NP-complete
implies NP-hard. This can similarly be said for other classes, such as PSPACE-complete vs.
PSPACE-hard.
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problem was restricted to polyhedral obstacles and a finite number of polyhedral
robot bodies attached by spherical joints. The coordinates of all polyhedra are
assumed to be in Q (this enables a finite-length string encoding of the problem
instance). The proof introduces a fascinating motion planning instance that in-
volves many attached, dangling robot parts that must work their way through a
complicated system of tunnels, which together simulates the operation of a sym-
metric Turing machine. Canny later established that the problem in Formulation
4.1 (expressed using polynomials that have rational coefficients) lies in PSPACE
[92]. Therefore, the general motion planning problem is PSPACE-complete.

Many other lower bounds have been shown for a variety of planning problems.
One famous example is the Warehouseman’s problem shown in Figure 6.41. This
problem involves a finite number of translating, axis-aligned rectangles in a rect-
angular world. It was shown in [238] to be PSPACE-hard. This example is a
beautiful illustration of how such a deceptively simple problem formulation can
lead to such a high lower bound. More recently, it was even shown that planning
for Sokoban, which is a warehouseman’s problem on a discrete 2D grid, is also
PSPACE-hard [141]. Other general motion planning problems that were shown
to be PSPACE-hard include motion planning for a chain of bodies in the plane
[237, 254] and motion planning for a chain of bodies among polyhedral obsta-
cles in R3. Many lower bounds have been established for a variety of extensions
and variations of the general motion planning problem. For example, in [91] it
was established that a certain form of planning under uncertainty for a robot in
a 3D polyhedral environment is NEXPTIME-hard, which is harder than any of
the classes shown in Figure 6.40; the hardest problems in this NEXPTIME are
believed to require doubly exponential time to solve.

The lower bound or hardness results depend significantly on the precise repre-
sentation of the problem. For example, it is possible to make problems look easier
by making instance encodings that are exponentially longer than they should be.
The running time or space required is expressed in terms of n, the input size. If
the motion planning problem instances are encoded with exponentially more bits
than necessary, then a language that belongs to P is obtained. As long as the
instance encoding is within a polynomial factor of the optimal encoding (this can
be made precise using Kolmogorov complexity [323]), then this bizarre behavior
is avoided. Another important part of the representation is to pay attention to
how parameters in the problem formulation can vary. We can redefine motion
planning to be all instances for which the dimension of C is never greater than
21000. The number of dimensions is sufficiently large for virtually any application.
The resulting language for this problem belongs to P because cylindrical algebraic
decomposition and Canny’s algorithm can solve any motion planning problem in
polynomial time. Why? This is because now the dimension parameter in the
time-complexity expressions can be replaced by 21000, which is a constant. This
formally implies that an efficient algorithm is already known for any motion plan-
ning problem that we would ever care about. This implication has no practical
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X

f4(x)

f5(x)

f3(x)

f2(x)

f1(x)

Figure 6.42: The lower envelope of a collection of functions.

value, however. Thus, be very careful when interpreting theoretical bounds.

The lower bounds may appear discouraging. There are two general directions
to go from here. One is to weaken the requirements and tolerate algorithms
that yield some kind of resolution completeness or probabilistic completeness.
This approach was taken in Chapter 5 and leads to many efficient algorithms.
Another direction is to define narrower problems that do not include the bizarre
constructions that lead to bad lower bounds. For the narrower problems, it may
be possible to design interesting, efficient algorithms. This approach was taken
for the methods in Sections 6.2 and 6.3. In Section 6.5.3, upper bounds for some
algorithms that address these narrower problems will be presented, along with
bounds for the general motion planning algorithms. Several of the upper bounds
involve Davenport-Schinzel sequences, which are therefore covered next.

6.5.2 Davenport-Schinzel Sequences

Davenport-Schinzel sequences provide a powerful characterization of the structure
that arises from the lower or upper envelope of a collection of functions. The lower
envelope of five functions is depicted in Figure 6.42. Such envelopes arise in many
problems throughout computational geometry, including many motion planning
problems. They are an important part of the design and analysis of many modern
algorithms, and the resulting algorithm’s time complexity usually involves terms
that follow directly from the sequences. Therefore, it is worthwhile to understand
some of the basics before interpreting some of the results of Section 6.5.3. Much
more information on Davenport-Schinzel sequences and their applications appears
in [436]. The brief introduction presented here is based on [435].

For positive integers n and s, an (n, s) Davenport-Schinzel sequence is a se-
quence (u1, . . . , um) composed from a set of n symbols such that:
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1. The same symbol may not appear consecutively in the sequence. In other
words, ui 6= ui+1 for any i such that 1 ≤ i < m.

2. The sequence does not contain any alternating subsequence that uses two
symbols and has length s+2. A subsequence can be formed by deleting any
elements in the original sequence. The condition can be expressed as: There
do not exist s+ 2 indices i1 < i2 < · · · < is+2 for which ui1 = ui3 = ui5 = a
and ui2 = ui4 = ui6 = b, for some symbols a and b.

As an example, an (n, 3) sequence cannot appear as (a · · · b · · · a · · · b · · · a), in
which each · · · is filled in with any sequence of symbols. Let λs(n) denote the
maximum possible length of an (n, s) Davenport-Schinzel sequence.

The connection between Figure 6.42 and these sequences can now be explained.
Consider the sequence of function indices that visit the lower envelope. In the
example, this sequence is (5, 2, 3, 4, 1). Suppose it is known that each pair of
functions intersects in at most s places. If there are n real-valued continuous
functions, then the sequence of function indices must be an (n, s) Davenport-
Schinzel sequence. It is amazing that such sequences cannot be very long. For a
fixed s, they are close to being linear.

The standard bounds for Davenport-Schinzel sequences are [435]9

λ1(n) = n (6.32)

λ2(n) = 2n− 1 (6.33)

λ3(n) = Θ(nα(n)) (6.34)

λ4(n) = Θ(n · 2α(n)) (6.35)

λ2s(n) ≤ n · 2α(n)s−1+C2s(n) (6.36)

λ2s+1(n) ≤ n · 2α(n)s−1 lgα(n)+C′

2s+1(n) (6.37)

λ2s(n) = Ω(n · 2 1
(s−1)!

α(n)s−1+C′

2s(n)). (6.38)

In the expressions above Cr(n) and C ′
r(n) are terms that are smaller than their

leading exponents. The α(n) term is the inverse Ackerman function, which is
an extremely slow-growing function that appears frequently in algorithms. The
Ackerman function is defined as follows. Let A1(m) = 2m and An+1(m) rep-
resent m applications of An. Thus, A1(m) performs doubling, A2(m) performs
exponentiation, and A3(m) performs tower exponentiation, which makes a stack
of 2’s,

22
...

22

, (6.39)

that has height m. The Ackerman function is defined as A(n) = An(n). This
function grows so fast that A(4) is already an exponential tower of 2’s that has

9The following asymptotic notion is used: O(f(n)) denotes an upper bound, Ω(f(n)) denotes
a lower bound, and Θ(f(n)) means that the bound is tight (both upper and lower). This notation
is used in most books on algorithms [132].
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height 65536. Thus, the inverse Ackerman function, α, grows very slowly. If n is
less than or equal to an exponential tower of 65536 2’s, then α(n) ≤ 4. Even when
it appears in exponents of the Davenport-Schinzel bounds, it does not represent
a significant growth rate.

Example 6.9 (Lower Envelope of Line Segments) One interesting applica-
tion of Davenport-Schinzel applications is to the lower envelope of a set of line
segments in R2. Since segments in general position may appear multiple times
along the lower envelope, the total number of edges is Θ(λ3(n)) = Θ(nα(n)),
which is higher than one would obtain from infinite lines. There are actually ar-
rangements of segments in R2 that reach this bound; see [436]. �

6.5.3 Upper Bounds

The upper bounds for motion planning problems arise from the existence of com-
plete algorithms that solve them. This section proceeds by starting with the most
general bounds, which are based on the methods of Section 6.4, and concludes
with bounds for simpler motion planning problems.

General algorithms The first upper bound for the general motion planning
problem of Formulation 4.1 came from the application of cylindrical algebraic
decomposition [428]. Let n be the dimension of C. Let m be the number of
polynomials in F , which are used to define Cobs. Recall from Section 4.3.3 how
quickly this grows for simple examples. Let d be the maximum degree among the
polynomials in F . The maximum degree of the resulting polynomials is bounded
by O(d2

n−1
), and the total number of polynomials is bounded by O((md)3

n−1
). The

total running time required to use cylindrical algebraic decomposition for motion
planning is bounded by (md)O(1)n .10 Note that the algorithm is doubly exponential
in dimension n but polynomial in m and d. It can theoretically be declared to be
efficient on a space of motion planning problems of bounded dimension (although,
it certainly is not efficient for motion planning in any practical sense).

Since the general problem is PSPACE-complete, it appears unavoidable that
a complete, general motion planning algorithm will require a running time that
is exponential in dimension. Since cylindrical algebraic decomposition is dou-
bly exponential, it led many in the 1980s to wonder whether this upper bound
could be lowered. This was achieved by Canny’s roadmap algorithm, for which
the running time is bounded by mn(lgm)dO(n4). Hence, it is singly exponential,
which appears very close to optimal because it is up against the lower bound
that seems to be implied by PSPACE-hardness (and the fact that problems exist

10It may seem odd for O(·) to appear in the middle of an expression. In this context, it means
that there exists some c ∈ [0,∞) such that the running time is bounded by (md)c

n

. Note that
another O is not necessary in front of the whole formula.
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that require a roadmap with (md)n connected components [53]). Much of the
algorithm’s complexity is due to finding a suitable deterministic perturbation to
put the input polynomials into general position. A randomized algorithm can al-
ternatively be used, for which the randomized expected running time is bounded
by mn(lgm)dO(n2). For a randomized algorithm [375], the randomized expected
running time is still a worst-case upper bound, but averaged over random “coin
tosses” that are introduced internally in the algorithm; it does not reflect any kind
of average over the expected input distribution. Thus, these two bounds represent
the best-known upper bounds for the general motion planning problem. Canny’s
algorithm may also be applied to solve the kinematic closure problems of Section
4.4, but the complexity does not reflect the fact that the dimension, k, of the
algebraic variety is less than n, the dimension of C. A roadmap algorithm that
is particularly suited for this problem is introduced in [52], and its running time
is bounded by mk+1dO(n2). This serves as the best-known upper bound for the
problems of Section 4.4.

Specialized algorithms Now upper bounds are summarized for some narrower
problems, which can be solved more efficiently than the general problem. All of
the problems involve either two or three degrees of freedom. Therefore, we expect
that the bounds are much lower than those for the general problem. In many
cases, the Davenport-Schinzel sequences of Section 6.5.2 arise. Most of the bounds
presented here are based on algorithms that are not practical to implement; they
mainly serve to indicate the best asymptotic performance that can be obtained
for a problem. Most of the bounds mentioned here are included in [435].

Consider the problem from Section 6.2, in which the robot translates in W =
R2 and Cobs is polygonal. Suppose that A is a convex polygon that has k edges and
O is the union ofm disjoint, convex polygons with disjoint interiors, and their total
number of edges is n. In this case, the boundary of Cfree (computed by Minkowski
difference; see Section 4.3.2) has at most 6m−12 nonreflex vertices (interior angles
less than π) and n+ km reflex vertices (interior angles greater than π). The free
space, Cfree, can be decomposed and searched in time O((n + km) lg2 n) [267,
435]. Using randomized algorithms, the bound reduces to O((n+ km) · 2α(n) lg n)
randomized expected time. Now suppose that A is a single nonconvex polygonal
region described by k edges and that O is a similar polygonal region described by
n edges. The Minkowski difference could yield as many as Ω(k2n2) edges for Cobs.
This can be avoided if the search is performed within a single connected component
of Cfree. Based on analysis that uses Davenport-Schinzel sequences, it can be
shown that the worst connected component may have complexity Θ(knα(k)), and
the planning problem can be solved in time O(kn lg2 n) deterministically or for
a randomized algorithm, O(kn · 2α(n) lg n) randomized expected time is needed.
More generally, if Cobs consists of n algebraic curves in R2, each with degree
no more than d, then the motion planning problem for translation only can be
solved deterministically in time O(λs+2(n) lg

2 n), or with a randomized algorithm
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in O(λs+2(n) lg n) randomized expected time. In these expressions, λs+2(n) is
the bound (6.37) obtained from the (n, s + 2) Davenport-Schinzel sequence, and
s ≤ d2.

For the case of the line-segment robot of Section 6.3.4 in an obstacle region
described with n edges, an O(n5)-time algorithm was given. This is not the best
possible running time for solving the line-segment problem, but the method is
easier to understand than others that are more efficient. In [386], a roadmap
algorithm based on retraction is given that solves the problem in O(n2 lg n lg∗ n)
time, in which lg∗ n is the number of times that lg has to be iterated on n to
yield a result less than or equal to 1 (i.e., it is a very small, insignificant term;
for practical purposes, you can imagine that the running time is O(n2 lg n)). The
tightest known upper bound is O(n2 lg n) [319]. It is established in [266] that
there exist examples for which the solution path requires Ω(n2) length to encode.
For the case of a line segment moving in R3 among polyhedral obstacles with a
total of n vertices, a complete algorithm that runs in time O(n4+ ǫ) for any ǫ > 0
was given in [288]. In [266] it was established that solution paths of complexity
Ω(n4) exist.

Now consider the case for which C = SE(2), A is a convex polygon with k
edges, and O is a polygonal region described by n edges. The boundary of Cfree
has no more than O(knλ6(kn)) edges and can be computed to solve the motion
planning problem in time O(knλ6(kn) lg kn) [8, 9]. An algorithm that runs in time
O(k4nλ3(n) lg n) and provides better clearance between the robot and obstacles is
given in [110]. In [41] (some details also appear in [304]), an algorithm is presented,
and even implemented, that solves the more general case in which A is nonconvex
in time O(k3n3 lg(kn)). The number of faces of Cobs could be as high as Ω(k3n3)
for this problem. By explicitly representing and searching only one connected
component, the best-known upper bound for the problem is O((kn)2+ǫ), in which
ǫ > 0 may be chosen arbitrarily small [218].

In the final case, suppose that A translates in W = R3 to yield C = R3.
For a polyhedron or polyhedral region, let its complexity be the total number of
faces, edges, and vertices. If A is a polyhedron with complexity k, and O is a
polyhedral region with complexity n, then the boundary of Cfree is a polyhedral
surface of complexity Θ(k3n3). As for other problems, if the search is restricted
to a single component, then the complexity is reduced. The motion planning
problem in this case can be solved in time O((kn)2+ǫ) [33]. If A is convex and
there are m convex obstacles, then the best-known bound is O(kmn lg2m) time.
More generally, if Cobs is bounded by n algebraic patches of constant maximum
degree, then a vertical decomposition method solves the motion planning problem
within a single connected component of Cfree in time O(n2+ǫ).

Further Reading

Most of the literature on combinatorial planning is considerably older than the sampling-
based planning literature. A nice collection of early papers appears in [430]; this includes
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[237, 386, 387, 409, 427, 428, 429]. The classic motion planning textbook of Latombe
[304] covers most of the methods presented in this chapter. The coverage here does
not follow [304], which makes separate categories for cell decomposition methods and
roadmap methods. A cell decomposition is constructed to produce a roadmap; hence,
they are unified in this chapter. An excellent reference for material in combinatorial
algorithms, computational geometry, and complete algorithms for motion planning is
the collection of survey papers in [206].

Section 6.2 follows the spirit of basic algorithms from computational geometry. For a
gentle introduction to computational geometry, including a nice explanation of vertical
composition, see [146]. Other sources for computational geometry include [71, 158, 405].
To understand the difficulties in computing optimal decompositions of polygons, see
[390]. See [338, 372, 418] for further reading on computing shortest paths.

Cell decompositions and cell complexes are very important in computational geom-
etry and algebraic topology. Section 6.3 provided a brief perspective that was tailored
to motion planning. For simplicial complexes in algebraic topology, see [256, 281, 419];
for singular complexes, see [419]. In computational geometry, various kinds of cell de-
compositions arise. Some of the most widely studied decompositions are triangulations

[57] and arrangements [216], which are regions generated by a collection of primitives,
such as lines or circles in the plane. For early cell decomposition methods in motion
planning, see [430]. A survey of computational topology appears in [468].

The most modern and complete reference for the material in Section 6.4 is [53]. A
gentle introduction to computational algebraic geometry is given in [138]. For details
regarding algebraic computations with polynomials, see [369]. A survey of computa-
tional algebraic geometry appears in [370]. In addition to [53], other general references
to cylindrical algebraic decomposition are [31, 124]. For its use in motion planning,
see [304, 428]. The main reference for Canny’s roadmap algorithm is [92]. Alternative
high-level overviews to the one presented in Section 6.4.3 appear in [118, 304]. Varia-
tions and improvements to the algorithm are covered in [53]. A potential function-based
extension of Canny’s roadmap algorithm is developed in [93].

For further reading on the complexity of motion planning, consult the numerous
references given in Section 6.5.

Exercises

1. Extend the vertical decomposition algorithm to correctly handle the case in which
Cobs has two or more points that lie on the same vertical line. This includes the
case of vertical segments. Random perturbations are not allowed.

2. Fully describe and prove the correctness of the bitangent computation method
shown in Figure 6.14, which avoids trigonometric functions. Make certain that
all types of bitangents (in general position) are considered.

3. Develop an algorithm that uses the plane-sweep principle to efficiently compute
a representation of the union of two nonconvex polygons.

4. Extend the vertical cell decomposition algorithm of Section 6.2.2 to work for
obstacle boundaries that are described as chains of circular arcs and line segments.
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Figure 6.43: Determine the cylindrical algebraic decomposition obtained by pro-
jecting onto the x-axis.

5. Extend the shortest-path roadmap algorithm of Section 6.2.4 to work for obstacle
boundaries that are described as chains of circular arcs and line segments.

6. Derive the equation for the Conchoid of Nicomedes, shown in Figure 6.24, for the
case of a line-segment robot contacting an obstacle vertex and edge simultane-
ously.

7. Propose a resolution-complete algorithm for motion planning of the line-segment
robot in a polygonal obstacle region. The algorithm should compute exact C-
space obstacle slices for any fixed orientation, θ; however, the algorithm should
use van der Corput sampling over the set [0, 2π) of orientations.

8. Determine the result of cylindrical algebraic decomposition for unit spheres S1,
S2, S3, S4, . . .. Each Sn is expressed as a unit sphere in Rn+1. Graphically depict
the cases of S1 and S2. Also, attempt to develop an expression for the number of
cells as a function of n.

9. Determine the cylindrical algebraic decomposition for the three intersecting circles
shown in Figure 6.43. How many cells are obtained?

10. Using the matrix in (6.28), show that the result of Canny’s roadmap for the torus,
shown in Figure 6.39, is correct. Use the torus equation

(x21 + x22 + x23 − (r21 + r22))
2 − 4r21(r

2
2 − x23) = 0, (6.40)

in which r1 is the major circle, r2 is the minor circle, and r1 > r2.

11. Propose a vertical decomposition algorithm for a polygonal robot that can trans-
late in the plane and even continuously vary its scale. How would the algorithm
be modified to instead work for a robot that can translate or be sheared?

12. Develop a shortest-path roadmap algorithm for a flat torus, defined by identifying
opposite edges of a square. Use Euclidean distance but respect the identifications
when determining the shortest path. Assume the robot is a point and the obstacles
are polygonal.
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Implementations

13. Implement the vertical cell decomposition planning algorithm of Section 6.2.2.

14. Implement the maximum-clearance roadmap planning algorithm of Section 6.2.3.

15. Implement a planning algorithm for a point robot that moves in W = R3 among
polyhedral obstacles. Use vertical decomposition.

16. Implement an algorithm that performs a cylindrical decomposition of a polygonal
obstacle region.

17. Implement an algorithm that computes the cell decomposition of Section 6.3.4 for
the line-segment robot.

18. Experiment with cylindrical algebraic decomposition. The project can be greatly
facilitated by utilizing existing packages for performing basic operations in com-
putational algebraic geometry.

19. Implement the algorithm proposed in Exercise 7.



Chapter 7

Extensions of Basic Motion
Planning

This chapter presents many extensions and variations of the motion planning
problem considered in Chapters 3 to 6. Each one of these can be considered
as a “spin-off” that is fairly straightforward to describe using the mathematical
concepts and algorithms introduced so far. Unlike the previous chapters, there
is not much continuity in Chapter 7. Each problem is treated independently;
therefore, it is safe to jump to whatever sections in the chapter you find interesting
without fear of missing important details.

In many places throughout the chapter, a state space X will arise. This is con-
sistent with the general planning notation used throughout the book. In Chapter
4, the C-space, C, was introduced, which can be considered as a special state
space: It encodes the set of transformations that can be applied to a collection
of bodies. Hence, Chapters 5 and 6 addressed planning in X = C. The C-space
alone is insufficient for many of the problems in this chapter; therefore, X will
be used because it appears to be more general. For most cases in this chapter,
however, X is derived from one or more C-spaces. Thus, C-space and state space
terminology will be used in combination.

7.1 Time-Varying Problems

This section brings time into the motion planning formulation. Although the
robot has been allowed to move, it has been assumed so far that the obstacle
region O and the goal configuration, qG ∈ Cfree, are stationary for all time. It
is now assumed that these entities may vary over time, although their motions
are predictable. If the motions are not predictable, then some form of feedback is
needed to respond to observations that are made during execution. Such problems
are much more difficult and will be handled in Chapters 8 and throughout Part
IV.
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7.1.1 Problem Formulation

The formulation is designed to allow the tools and concepts learned so far to be
applied directly. Let T ⊂ R denote the time interval, which may be bounded or
unbounded. If T is bounded, then T = [0, tf ], in which 0 is the initial time and tf
is the final time. If T is unbounded, then T = [0,∞). An initial time other than
0 could alternatively be defined without difficulty, but this will not be done here.

Let the state space X be defined as X = C × T , in which C is the usual C-
space of the robot, as defined in Chapter 4. A state x is represented as x = (q, t),
to indicate the configuration q and time t components of the state vector. The
planning will occur directly in X, and in many ways it can be treated as any
C-space seen to far, but there is one critical difference: Time marches forward.
Imagine a path that travels through X. If it first reaches a state (q1, 5), and then
later some state (q2, 3), some traveling backward through time is required! There
is no mathematical problem with allowing such time travel, but it is not realistic
for most applications. Therefore, paths in X are forced to follow a constraint that
they must move forward in time.

Now consider making the following time-varying versions of the items used in
Formulation 4.1 for motion planning.

Formulation 7.1 (The Time-Varying Motion Planning Problem)

1. A world W in which either W = R2 or W = R3. This is the same as in
Formulation 4.1.

2. A time interval T ⊂ R that is either bounded to yield T = [0, tf ] for some
final time, tf > 0, or unbounded to yield T = [0,∞).

3. A semi-algebraic, time-varying obstacle region O(t) ⊂ W for every t ∈ T . It
is assumed that the obstacle region is a finite collection of rigid bodies that
undergoes continuous, time-dependent rigid-body transformations.

4. The robot A (or A1, . . ., Am for a linkage) and configuration space C defini-
tions are the same as in Formulation 4.1.

5. The state space X is the Cartesian product X = C ×T and a state x ∈ X is
denoted as x = (q, t) to denote the configuration q and time t components.
See Figure 7.1. The obstacle region, Xobs, in the state space is defined as

Xobs = {(q, t) ∈ X | A(q) ∩ O(t) 6= ∅}, (7.1)

and Xfree = X \ Xobs. For a given t ∈ T , slices of Xobs and Xfree are
obtained. These are denoted as Cobs(t) and Cfree(t), respectively, in which
(assuming A is one body)

Cobs(t) = {q ∈ C | A(q) ∩ O(t) 6= ∅} (7.2)

and Cfree = C \ Cobs.
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Figure 7.1: A time-varying example with piecewise-linear obstacle motion.

6. A state xI ∈ Xfree is designated as the initial state, with the constraint that
xI = (qI , 0) for some qI ∈ Cfree(0). In other words, at the initial time the
robot cannot be in collision.

7. A subset XG ⊂ Xfree is designated as the goal region. A typical definition
is to pick some qG ∈ C and let XG = {(qG, t) ∈ Xfree | t ∈ T}, which means
that the goal is stationary for all time.

8. A complete algorithm must compute a continuous, time-monotonic path,
τ [0, 1] → Xfree, such that τ(0) = xI and τ(1) ∈ XG, or correctly report
that such a path does not exist. To be time-monotonic implies that for any
s1, s2 ∈ [0, 1] such that s1 < s2, we have t1 < t2, in which (q1, t1) = τ(s1)
and (q2, t2) = τ(s2).

Example 7.1 (Piecewise-Linear Obstacle Motion) Figure 7.1 shows an ex-
ample of a convex, polygonal robot A that translates in W = R2. There is a
single, convex, polygonal obstacle O. The two of these together yield a convex,
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polygonal C-space obstacle, Cobs(t), which is shown for times t1, t2, and t3. The
obstacle moves with a piecewise-linear motion model, which means that transfor-
mations applied to O are a piecewise-linear function of time. For example, let
(x, y) be a fixed point on the obstacle. To be a linear motion model, this point
must transform as (x+c1t, y+c2t) for some constants c1, c2 ∈ R. To be piecewise-
linear, it may change to a different linear motion at a finite number of critical
times. Between these critical times, the motion must remain linear. There are
two critical times in the example. If Cobs(t) is polygonal, and a piecewise-linear
motion model is used, then Xobs is polyhedral, as depicted in Figure 7.1. A sta-
tionary goal is also shown, which appears as a line that is parallel to the T -axis.
�

In the general formulation, there are no additional constraints on the path,
τ , which means that the robot motion model allows infinite acceleration and
unbounded speed. The robot velocity may change instantaneously, but the path
through C must always be continuous. These issues did not arise in Chapter 4
because there was no need to mention time. Now it becomes necessary.1

7.1.2 Direct Solutions

Sampling-based methods Many sampling-based methods can be adapted from
C to X without much difficulty. The time dependency of obstacle models must
be taken into account when verifying that path segments are collision-free; the
techniques from Section 5.3.4 can be extended to handle this. One important
concern is the metric for X. For some algorithms, it may be important to permit
the use of a pseudometric because symmetry is broken by time (going backward
in time is not as easy as going forward).

For example, suppose that the C-space C is a metric space, (C, ρ). The metric
can be extended across time to obtain a pseudometric, ρX , as follows. For a pair
of states, x = (q, t) and x′ = (q′, t′), let

ρX(x, x
′) =







0 if q = q′

∞ if q 6= q′ and t′ ≤ t
ρ(q, q′) otherwise.

(7.3)

Using ρX , several sampling-based methods naturally work. For example, RDTs
from Section 5.5 can be adapted to X. Using ρX for a single-tree approach ensures
that all path segments travel forward in time. Using bidirectional approaches

1The infinite acceleration and unbounded speed assumptions may annoy those with mechanics
and control backgrounds. In this case, assume that the present models approximate the case in
which every body moves slowly, and the dynamics can be consequently neglected. If this is still
not satisfying, then jump ahead to Part IV, where general nonlinear systems are considered. It
is still helpful to consider the implications derived from the concepts in this chapter because the
issues remain for more complicated problems that involve dynamics.
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is more difficult for time-varying problems because XG is usually not a single
point. It is not clear which (q, t) should be the starting vertex for the tree from
the goal; one possibility is to initialize the goal tree to an entire time-invariant
segment. The sampling-based roadmap methods of Section 5.6 are perhaps the
most straightforward to adapt. The notion of a directed roadmap is needed, in
which every edge must be directed to yield a time-monotonic path. For each pair
of states, (q, t) and (q′, t′), such that t 6= t′, exactly one valid direction exists for
making a potential edge. If t = t′, then no edge can be attempted because it would
require the robot to instantaneously “teleport” from one part of W to another.
Since forward time progress is already taken into account by the directed edges,
a symmetric metric may be preferable instead of (7.3) for the sampling-based
roadmap approach.

Combinatorial methods In some cases, combinatorial methods can be used
to solve time-varying problems. If the motion model is algebraic (i.e., expressed
with polynomials), then Xobs is semi-algebraic. This enables the application of
general planners from Section 6.4, which are based on computational real alge-
braic geometry. The key issue once again is that the resulting roadmap must be
directed with all edges being time-monotonic. For Canny’s roadmap algorithm,
this requirement seems difficult to ensure. Cylindrical algebraic decomposition is
straightforward to adapt, provided that time is chosen as the last variable to be
considered in the sequence of projections. This yields polynomials in Q[t], and R

is nicely partitioned into time intervals and time instances. Connections can then
be made for a cell of one cylinder to an adjacent cell of a cylinder that occurs
later in time.

If Xobs is polyhedral as depicted in Figure 7.1, then vertical decomposition can
be used. It is best to first sweep the plane along the time axis, stopping at the
critical times when the linear motion changes. This yields nice sections, which are
further decomposed recursively, as explained in Section 6.3.3, and also facilitates
the connection of adjacent cells to obtain time-monotonic path segments. It is not
too difficult to imagine the approach working for a four-dimensional state space,
X, for which Cobs(t) is polyhedral as in Section 6.3.3, and time adds the fourth
dimension. Again, performing the first sweep with respect to the time axis is
preferable.

If X is not decomposed into cylindrical slices over each noncritical time inter-
val, then cell decompositions may still be used, but be careful to correctly connect
the cells. Figure 7.2 illustrates the problem, for which transitivity among adjacent
cells is broken. This complicates sample point selection for the cells.

Bounded speed There has been no consideration so far of the speed at which
the robot must move to avoid obstacles. It is obviously impractical in many
applications if the solution requires the robot to move arbitrarily fast. One step
toward making a realistic model is to enforce a bound on the speed of the robot.
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Figure 7.2: Transitivity is broken if the cells are not formed in cylinders over T .
A time-monotonic path exists from C1 to C2, and from C2 to C3, but this does
not imply that one exists from C1 to C3.

(More steps towards realism are taken in Chapter 13.) For simplicity, suppose
C = R2, which corresponds to a translating rigid robot, A, that moves inW = R2.
A configuration, q ∈ C, is represented as q = (y, z) (since x already refers to the
whole state vector). The robot velocity is expressed as v = (ẏ, ż) ∈ R2, in which
ẏ = dy/dt and ż = dz/dt. The robot speed is ‖v‖ =

√

ẏ2 + ż2. A speed bound, b,
is a positive constant, b ∈ (0,∞), for which ‖v‖ ≤ b.

In terms of Figure 7.1, this means that the slope of a solution path τ is
bounded. Suppose that the domain of τ is T = [0, tf ] instead of [0, 1]. This
yields τ : T → X and τ(t) = (y, z, t). Using this representation, dτ1/dt = ẏ and
dτ2/dt = ż, in which τi denotes the ith component of τ (because it is a vector-
valued function). Thus, it can seen that b constrains the slope of τ(t) in X. To
visualize this, imagine that only motion in the y direction occurs, and suppose
b = 1. If τ holds the robot fixed, then the speed is zero, which satisfies any
bound. If the robot moves at speed 1, then dτ1/dt = 1 and dτ2/dt = 0, which
satisfies the speed bound. In Figure 7.1 this generates a path that has slope 1 in
the yt plane and is horizontal in the zt plane. If dτ1/dt = dτ2/dt = 1, then the
bound is exceeded because the speed is

√
2. In general, the velocity vector at any

state (y, z, t) points into a cone that starts at (y, z) and is aligned in the positive
t direction; this is depicted in Figure 7.3. At time t + ∆t, the state must stay
within the cone, which means that

(

y(t+∆t)− y(t)
)2

+
(

z(t+∆t)− z(t)
)2 ≤ b2(∆t)2. (7.4)

This constraint makes it considerably more difficult to adapt the algorithms of
Chapters 5 and 6. Even for piecewise-linear motions of the obstacles, the problem
has been established to be PSPACE-hard [410, 411, 457]. A complete algorithm
is presented in [411] that is similar to the shortest-path roadmap algorithm of
Section 6.2.4. The sampling-based roadmap of Section 5.6 is perhaps one of the
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Figure 7.3: A projection of the cone constraint for the bounded-speed problem.

easiest of the sampling-based algorithms to adapt for this problem. The neighbors
of point q, which are determined for attempted connections, must lie within the
cone that represents the speed bound. If this constraint is enforced, a resolution
complete or probabilistically complete planning algorithm results.

7.1.3 The Velocity-Tuning Method

An alternative to defining the problem in C × T is to decouple it into a path
planning part and a motion timing part [260]. Algorithms based on this method
are not complete, but velocity tuning is an important idea that can be applied
elsewhere. Suppose there are both stationary obstacles and moving obstacles.
For the stationary obstacles, suppose that some path τ : [0, 1] → Cfree has been
computed using any of the techniques described in Chapters 5 and 6.

The timing part is then handled in a second phase. Design a timing function
(or time scaling), σ : T → [0, 1], that indicates for time, t, the location of the
robot along the path, τ . This is achieved by defining the composition φ = τ ◦ σ,
which maps from T to Cfree via [0, 1]. Thus, φ : T → Cfree. The configuration at
time t ∈ T is expressed as φ(t) = τ(σ(t)).

A 2D state space can be defined as shown in Figure 7.4. The purpose is to
convert the design of σ (and consequently φ) into a familiar planning problem.
The robot must move along its path from τ(0) to τ(1) while an obstacle, O(t),
moves along its path over the time interval T . Let S = [0, 1] denote the domain
of τ . A state space, X = T ×S, is shown in Figure 7.4b, in which each point (t, s)
indicates the time t ∈ T and the position along the path, s ∈ [0, 1]. The obstacle
region in X is defined as

Xobs = {(t, s) ∈ X | A(τ(s)) ∩ O(t) 6= ∅}. (7.5)

Once again, Xfree is defined as Xfree = X \Xobs. The task is to find a continuous
path g : [0, 1] → Xfree. If g is time-monotonic, then a position s ∈ S is assigned
for every time, t ∈ T . These assignments can be nicely organized into the timing
function, σ : T → S, from which φ is obtained by φ = τ ◦ σ to determine where

322 S. M. LaValle: Planning Algorithms

O(t)

A

t

1

0

s

(a) (b)

Figure 7.4: An illustration of path tuning. (a) If the robot follows its computed
path, it may collide with the moving obstacle. (b) The resulting state space.

the robot will be at each time. Being time-monotonic in this context means that
the path must always progress from left to right in Figure 7.4b. It can, however,
be nonmonotonic in the positive s direction. This corresponds to moving back
and forth along τ , causing some configurations to be revisited.

Any of the methods described in Formulation 7.1 can be applied here. The
dimension of X in this case is always 2. Note that Xobs is polygonal if A and O
are both polygonal regions and their paths are piecewise-linear. In this case, the
vertical decomposition method of Section 6.2.2 can be applied by sweeping along
the time axis to yield a complete algorithm (it is complete after having committed
to τ , but it is not complete for Formulation 7.1). The result is shown in Figure
7.5. The cells are connected only if it is possible to reach one from the other
by traveling in the forward time direction. As an example of a sampling-based
approach that may be preferable when Xobs is not polygonal, place a grid over X
and apply one of the classical search algorithms described in Section 5.4.2. Once
again, only path segments in X that move forward in time are allowed.

7.2 Multiple Robots

Suppose that multiple robots share the same world,W . A path must be computed
for each robot that avoids collisions with obstacles and with other robots. In
Chapter 4, each robot could be a rigid body, A, or it could be made of k attached
bodies, A1, . . ., Ak. To avoid confusion, superscripts will be used in this section
to denote different robots. The ith robot will be denoted by Ai. Suppose there
are m robots, A1, A2, . . ., Am. Each robot, Ai, has its associated C-space, Ci,
and its initial and goal configurations, qiinit and q

i
goal, respectively.
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Figure 7.5: Vertical cell decomposition can solve the path tuning problem. Note
that this example is not in general position because vertical edges exist. The goal
is to reach the horizontal line at the top, which can be accomplished from any
adjacent 2-cell. For this example, it may even be accomplished from the first 2-cell
if the robot is able to move quickly enough.

7.2.1 Problem Formulation

A state space is defined that considers the configurations of all robots simultane-
ously,

X = C1 × C2 × · · · × Cm. (7.6)

A state x ∈ X specifies all robot configurations and may be expressed as x =
(q1, q2, . . . , qm). The dimension of X is N , which is N =

∑m
i=1 dim(Ci).

There are two sources of obstacle regions in the state space: 1) robot-obstacle
collisions, and 2) robot-robot collisions. For each i such that 1 ≤ i ≤ m, the subset
of X that corresponds to robot Ai in collision with the obstacle region, O, is

X i
obs = {x ∈ X | Ai(qi) ∩ O 6= ∅}. (7.7)

This only models the robot-obstacle collisions.
For each pair, Ai and Aj, of robots, the subset of X that corresponds to Ai

in collision with Aj is

X ij
obs = {x ∈ X | Ai(qi) ∩ Aj(qj) 6= ∅}. (7.8)

Both (7.7) and (7.8) will be combined in (7.10) later to yield Xobs.

Formulation 7.2 (Multiple-Robot Motion Planning)

1. The world W and obstacle region O are the same as in Formulation 4.1.
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2. There are m robots, A1, . . ., Am, each of which may consist of one or more
bodies.

3. Each robot Ai, for i from 1 to m, has an associated configuration space, Ci.

4. The state space X is defined as the Cartesian product

X = C1 × C2 × · · · × Cm. (7.9)

The obstacle region in X is

Xobs =

(

m
⋃

i=1

X i
obs

)

⋃

(

⋃

ij, i 6=j

X ij
obs

)

, (7.10)

in whichX i
obs andX

ij
obs are the robot-obstacle and robot-robot collision states

from (7.7) and (7.8), respectively.

5. A state xI ∈ Xfree is designated as the initial state, in which xI = (q1I , . . . , q
m
I ).

For each i such that 1 ≤ i ≤ m, qiI specifies the initial configuration of Ai.

6. A state xG ∈ Xfree is designated as the goal state, in which xG = (q1G, . . . , q
m
G ).

7. The task is to compute a continuous path τ : [0, 1] → Xfree such that
τ(0) = xinit and τ(1) ∈ xgoal.

An ordinary motion planning problem? On the surface it may appear that
there is nothing unusual about the multiple-robot problem because the formu-
lations used in Chapter 4 already cover the case in which the robot consists of
multiple bodies. They do not have to be attached; therefore, X can be considered
as an ordinary C-space. The planning algorithms of Chapters 5 and 6 may be
applied without adaptation. The main concern, however, is that the dimension
of X grows linearly with respect to the number of robots. For example, if there
are 12 rigid bodies for which each has Ci = SE(3), then the dimension of X is
6 · 12 = 72. Complete algorithms require time that is at least exponential in
dimension, which makes them unlikely candidates for such problems. Sampling-
based algorithms are more likely to scale well in practice when there many robots,
but the dimension of X might still be too high.

Reasons to study multi-robot motion planning Even though multiple-
robot motion planning can be handled like any other motion planning problem,
there are several reasons to study it separately:

1. The motions of the robots can be decoupled in many interesting ways. This
leads to several interesting methods that first develop some kind of partial
plan for the robots independently, and then consider the plan interactions
to produce a solution. This idea is referred to as decoupled planning.
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X
X iXj X ijobs

Figure 7.6: The set X ij
obs and its cylindrical structure on X.

2. The part of Xobs due to robot-robot collisions has a cylindrical structure,
depicted in Figure 7.6, which can be exploited to make more efficient plan-
ning algorithms. Each X ij

obs defined by (7.8) depends only on two robots. A
point, x = (q1, . . . , qm), is in Xobs if there exists i, j such that 1 ≤ i, j ≤ m
and Ai(qi) ∩Aj(qj) 6= ∅, regardless of the configurations of the other m− 2
robots. For some decoupled methods, this even implies that Xobs can be
completely characterized by 2D projections, as depicted in Figure 7.9.

3. If optimality is important, then a unique set of issues arises for the case
of multiple robots. It is not a standard optimization problem because the
performance of each robot has to be optimized. There is no clear way to
combine these objectives into a single optimization problem without los-
ing some critical information. It will be explained in Section 7.7.2 that
Pareto optimality naturally arises as the appropriate notion of optimality
for multiple-robot motion planning.

Assembly planning One important variant of multiple-robot motion planning
is called assembly planning; recall from Section 1.2 its importance in applications.
In automated manufacturing, many complicated objects are assembled step-by-
step from individual parts. It is convenient for robots to manipulate the parts
one-by-one to insert them into the proper locations (see Section 7.3.2). Imagine
a collection of parts, each of which is interpreted as a robot, as shown in Figure
7.7a. The goal is to assemble the parts into one coherent object, such as that
shown in Figure 7.7b. The problem is generally approached by starting with
the goal configuration, which is tightly constrained, and working outward. The
problem formulation may allow that the parts touch, but their interiors cannot
overlap. In general, the assembly planning problem with arbitrarily many parts
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Figure 7.7: (a) A collection of pieces used to define an assembly planning problem;
(b) assembly planning involves determining a sequence of motions that assembles
the parts. The object shown here is assembled from the parts.

is NP-hard. Polynomial-time algorithms have been developed in several special
cases. For the case in which parts can be removed by a sequence of straight-line
paths, a polynomial-time algorithm is given in [476, 477].

7.2.2 Decoupled planning

Decoupled approaches first design motions for the robots while ignoring robot-
robot interactions. Once these interactions are considered, the choices available
to each robot are already constrained by the designed motions. If a problem arises,
these approaches are typically unable to reverse their commitments. Therefore,
completeness is lost. Nevertheless, decoupled approaches are quite practical, and
in some cases completeness can be recovered.

Prioritized planning A straightforward approach to decoupled planning is to
sort the robots by priority and plan for higher priority robots first [166, 466]. Lower
priority robots plan by viewing the higher priority robots as moving obstacles.
Suppose the robots are sorted as A1, . . ., Am, in which A1 has the highest priority.

Assume that collision-free paths, τi : [0, 1] → Cifree, have been computed for i
from 1 to n. The prioritized planning approach proceeds inductively as follows:

Base case: Use any motion planning algorithm from Chapters 5 and 6 to
compute a collision-free path, τ1 : [0, 1] → C1free for A1. Compute a timing
function, σ1, for τ1, to yield φ1 = τ1 ◦ σ1 : T → C1free.

Inductive step: Suppose that φ1, . . ., φi−1 have been designed for A1, . . .,
Ai−1, and that these functions avoid robot-robot collisions between any of
the first i − 1 robots. Formulate the first i − 1 robots as moving obstacles
in W . For each t ∈ T and j ∈ {1, . . . , i − 1}, the configuration qj of each
Aj is φj(t). This yields Aj(φj(t)) ⊂ W , which can be considered as a subset
of the obstacle O(t). Design a path, τi, and timing function, σi, using any
of the time-varying motion planning methods from Section 7.1 and form
φi = τi ◦ σi.
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A2 A1

Figure 7.8: If A1 neglects the query for A2, then completeness is lost when using
the prioritized planning approach. This example has a solution in general, but
prioritized planning fails to find it.

Although practical in many circumstances, Figure 7.8 illustrates how completeness
is lost.

A special case of prioritized planning is to design all of the paths, τ1, τ2, . . .,
τm, in the first phase and then formulate each inductive step as a velocity tuning
problem. This yields a sequence of 2D planning problems that can be solved
easily. This comes at a greater expense, however, because the choices are even
more constrained. The idea of preplanned paths, and even roadmaps, for all robots
independently can lead to a powerful method if the coordination of the robots is
approached more carefully. This is the next topic.

Fixed-path coordination Suppose that each robot Ai is constrained to follow
a path τi : [0, 1]→ Cifree, which can be computed using any ordinary motion plan-
ning technique. For m robots, an m-dimensional state space called a coordination
space is defined that schedules the motions of the robots along their paths so that
they will not collide [385]. One important feature is that time will only be implic-
itly represented in the coordination space. An algorithm must compute a path in
the coordination space, from which explicit timings can be easily extracted.

For m robots, the coordination space X is defined as the m-dimensional unit
cube X = [0, 1]m. Figure 7.9 depicts an example for which m = 3. The ith
coordinate of X represents the domain, Si = [0, 1], of the path τi. Let si denote
a point in Si (it is also the ith component of x). A state, x ∈ X, indicates the
configuration of every robot. For each i, the configuration qi ∈ Ci is given by
qi = τi(si). At state (0, . . . , 0) ∈ X, every robot is in its initial configuration,
qiI = τi(0), and at state (1, . . . , 1) ∈ X, every robot is in its goal configuration,
qiG = τi(1). Any continuous path, h : [0, 1] → X, for which h(0) = (0, . . . , 0) and
h(1) = (1, . . . , 1), moves the robots to their goal configurations. The path h does
not even need to be monotonic, in contrast to prioritized planning.

One important concern has been neglected so far. What prevents us from
designing h as a straight-line path between the opposite corners of [0, 1]m? We
have not yet taken into account the collisions between the robots. This forms
an obstacle region Xobs that must be avoided when designing a path through X.
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Figure 7.9: The obstacles that arise from coordinating m robots are always cylin-
drical. The set of all 1

2
m(m − 1) axis-aligned 2D projections completely charac-

terizes Xobs.

Thus, the task is to design h : [0, 1]→ Xfree, in which Xfree = X \Xobs.
The definition of Xobs is very similar to (7.8) and (7.10), except that here the

state-space dimension is much smaller. Each qi is replaced by a single parameter.
The cylindrical structure, however, is still retained, as shown in Figure 7.9. Each
cylinder of Xobs is

X ij
obs = {(s1, . . . , sm) ∈ X | Ai(τi(si)) ∩ Aj(τj(sj)) 6= ∅}, (7.11)

which are combined to yield

Xobs =
⋃

ij, i 6=j

X ij
obs. (7.12)

Standard motion planning algorithms can be applied to the coordination space
because there is no monotonicity requirement on h. If 1) W = R2, 2) m = 2
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(two robots), 3) the obstacles and robots are polygonal, and 4) the paths, τi, are
piecewise-linear, then Xobs is a polygonal region in X. This enables the methods
of Section 6.2, for a polygonal Cobs, to directly apply after the representation of
Xobs is explicitly constructed. Form > 2, the multi-dimensional version of vertical
cell decomposition given for m = 3 in Section 6.3.3 can be applied. For general
coordination problems, cylindrical algebraic decomposition or Canny’s roadmap
algorithm can be applied. For the problem of robots in W = R2 that either
translate or move along circular paths, a resolution complete planning method
based on the exact determination of Xobs using special collision detection methods
is given in [441].

For very challenging coordination problems, sampling-based solutions may
yield practical solutions. Perhaps one of the simplest solutions is to place a
grid over X and adapt the classical search algorithms, as described in Section
5.4.2 [309, 385]. Other possibilities include using the RDTs of Section 5.5 or, if
the multiple-query framework is appropriate, then the sampling-based roadmap
methods of 5.6 are suitable. Methods for validating the path segments, which
were covered in Section 5.3.4, can be adapted without trouble to the case of co-
ordination spaces.

Thus far, the particular speeds of the robots have been neglected. For expla-
nation purposes, consider the case of m = 2. Moving vertically or horizontally in
X holds one robot fixed while the other moves at some maximum speed. Moving
diagonally in X moves both robots, and their relative speeds depend on the slope
of the path. To carefully regulate these speeds, it may be necessary to reparam-
eterize the paths by distance. In this case each axis of X represents the distance
traveled, instead of [0, 1].

Fixed-roadmap coordination The fixed-path coordination approach still may
not solve the problem in Figure 7.8 if the paths are designed independently. For-
tunately, fixed-path coordination can be extended to enable each robot to move
over a roadmap or topological graph. This still yields a coordination space that
has only one dimension per robot, and the resulting planning methods are much
closer to being complete, assuming each robot utilizes a roadmap that has many
alternative paths. There is also motivation to study this problem by itself because
of automated guided vehicles (AGVs), which often move in factories on a network
of predetermined paths. In this case, coordinating the robots is the planning
problem, as opposed to being a simplification of Formulation 7.2.

One way to obtain completeness for Formulation 7.2 is to design the indepen-
dent roadmaps so that each robot has its own garage configuration. The conditions
for a configuration, qi, to be a garage for Ai are 1) while at configuration qi, it is
impossible for any other robots to collide with it (i.e., in all coordination states for
which the ith coordinate is qi, no collision occurs); and 2) qi is always reachable
by Ai from xI . If each robot has a roadmap and a garage, and if the planning
method for X is complete, then the overall planning algorithm is complete. If the

330 S. M. LaValle: Planning Algorithms

planning method in X uses some weaker notion of completeness, then this is also
maintained. For example, a resolution complete planner for X yields a resolution
complete approach to the problem in Formulation 7.2.

Cube complex How is the coordination space represented when there are mul-
tiple paths for each robot? It turns out that a cube complex is obtained, which is
a special kind of singular complex (recall from Section 6.3.1). The coordination
space for m fixed paths can be considered as a singular m-simplex. For example,
the problem in Figure 7.9 can be considered as a singular 3-simplex, [0, 1]3 → X.
In Section 6.3.1, the domain of a k-simplex was defined using Bk, a k-dimensional
ball; however, a cube, [0, 1]k, also works because Bk and [0, 1]k are homeomorphic.

For a topological space, X, let a k-cube (which is also a singular k-simplex),
�k, be a continuous mapping σ : [0, 1]k → X. A cube complex is obtained by
connecting together k-cubes of different dimensions. Every k-cube for k ≥ 1 has
2k faces, which are (k − 1)-cubes that are obtained as follows. Let (s1, . . . , sk)
denote a point in [0, 1]k. For each i ∈ {1, . . . , k}, one face is obtained by setting
si = 0 and another is obtained by setting si = 1.

The cubes must fit together nicely, much in the same way that the simplexes
of a simplicial complex were required to fit together. To be a cube complex, K
must be a collection of simplexes that satisfy the following requirements:

1. Any face, �k−1, of a cube �k ∈ K is also in K.

2. The intersection of the images of any two k-cubes �k,�
′
k ∈ K, is either

empty or there exists some cube, �i ∈ K for i < k, which is a common face
of both �k and �

′
k.

Let Gi denote a topological graph (which may also be a roadmap) for robot
Ai. The graph edges are paths of the form τ : [0, 1] → Cifree. Before covering
formal definitions of the resulting complex, consider Figure 7.10a, in which A1

moves along three paths connected in a “T” junction and A2 moves along one
path. In this case, three 2D fixed-path coordination spaces are attached together
along one common edge, as shown in Figure 7.10b. The resulting cube complex is
defined by three 2-cubes (i.e., squares), one 1-cube (i.e., line segment), and eight
0-cubes (i.e., corner points).

Now suppose more generally that there are two robots, A1 and A2, with asso-
ciated topological graphs, G1(V1, E1) and G2(V2, E2), respectively. Suppose that G
and G2 have n1 and n2 edges, respectively. A 2D cube complex, K, is obtained as
follows. Let τi denote the ith path of G1, and let σj denote the jth path of G2. A
2-cube (square) exists in K for every way to select an edge from each graph. Thus,
there are n1n2 2-cubes, one for each pair (τi, σj), such that τi ∈ E1 and σj ∈ E2.
The 1-cubes are generated for pairs of the form (vi, σj) for vi ∈ V1 and σj ∈ E2,
or (τi, vj) for τi ∈ E1 and vj ∈ V2. The 0-cubes (corner points) are reached for
each pair (vi, vj) such that vi ∈ V1 and vj ∈ V2.
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Figure 7.10: (a) An example in which A1 moves along three paths, and A2 moves
along one. (b) The corresponding coordination space.

If there are m robots, then an m-dimensional cube complex arises. Every
m-cube corresponds to a unique combination of paths, one for each robot. The
(m − 1)-cubes are the faces of the m-cubes. This continues iteratively until the
0-cubes are reached.

Planning on the cube complex Once again, any of the planning methods
described in Chapters 5 and 6 can be adapted here, but the methods are slightly
complicated by the fact that X is a complex. To use sampling-based methods,
a dense sequence should be generated over X. For example, if random sampling
is used, then an m-cube can be chosen at random, followed by a random point
in the cube. The local planning method (LPM) must take into account the con-
nectivity of the cube complex, which requires recognizing when branches occur in
the topological graph. Combinatorial methods must also take into account this
connectivity. For example, a sweeping technique can be applied to produce a ver-
tical cell decomposition, but the sweep-line (or sweep-plane) must sweep across
the various m-cells of the complex.

7.3 Mixing Discrete and Continuous Spaces

Many important applications involve a mixture of discrete and continuous vari-
ables. This results in a state space that is a Cartesian product of the C-space
and a finite set called the mode space. The resulting space can be visualized as
having layers of C-spaces that are indexed by the modes, as depicted in Figure
7.11. The main application given in this section is manipulation planning; many
others exist, especially when other complications such as dynamics and uncertain-
ties are added to the problem. The framework of this section is inspired mainly
from hybrid systems in the control theory community [210], which usually model
mode-dependent dynamics. The main concern in this section is that the allowable
robot configurations and/or the obstacles depend on the mode.
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Figure 7.11: A hybrid state space can be imagined as having layers of C-spaces
that are indexed by modes.

7.3.1 Hybrid Systems Framework

As illustrated in Figure 7.11, a hybrid system involves interaction between dis-
crete and continuous spaces. The formal model will first be given, followed by
some explanation. This formulation can be considered as a combination of the
components from discrete feasible planning, Formulation 2.1, and basic motion
planning, Formulation 4.1.

Formulation 7.3 (Hybrid-System Motion Planning)

1. The W and C components from Formulation 4.1 are included.

2. A nonempty mode space,M that is a finite or countably infinite set of modes.

3. A semi-algebraic obstacle region O(m) for each m ∈M .

4. A semi-algebraic robot A(m), for each m ∈ M . It may be a rigid robot or
a collection of links. It is assumed that the C-space is not mode-dependent;
only the geometry of the robot can depend on the mode. The robot, trans-
formed to configuration q, is denoted as A(q,m).

5. A state space X is defined as the Cartesian product X = C ×M . A state is
represented as x = (q,m), in which q ∈ C and m ∈M . Let

Xobs = {(q,m) ∈ X | A(q,m) ∩ O(m) 6= ∅}, (7.13)

and Xfree = X \Xobs.

6. For each state, x ∈ X, there is a finite action space, U(x). Let U denote the
set of all possible actions (the union of U(x) over all x ∈ X).
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7. There is a mode transition function fm that produces a mode, fm(x, u) ∈M ,
for every x ∈ X and u ∈ U(x). It is assumed that fm is defined in a way that
does not produce race conditions (oscillations of modes within an instant of
time). This means that if q is fixed, the mode can change at most once. It
then remains constant and can change only if q is changed.

8. There is a state transition function, f , that is derived from fm by changing
the mode and holding the configuration fixed. Thus, f(x, u) = (q, fm(x, u)).

9. A configuration xI ∈ Xfree is designated as the initial state.

10. A set XG ∈ Xfree is designated as the goal region. A region is defined instead
of a point to facilitate the specification of a goal configuration that does not
depend on the final mode.

11. An algorithm must compute a (continuous) path τ : [0, 1] → Xfree and an
action trajectory σ : [0, 1] → U such that τ(0) = xI and τ(1) ∈ XG, or the
algorithm correctly reports that such a combination of a path and an action
trajectory does not exist.

The obstacle region and robot may or may not be mode-dependent, depending
on the problem. Examples of each will be given shortly. Changes in the mode
depend on the action taken by the robot. From most states, it is usually assumed
that a “do nothing” action exists, which leaves the mode unchanged. From certain
states, the robot may select an action that changes the mode as desired. An
interesting degenerate case exists in which there is only a single action available.
This means that the robot has no control over the mode from that state. If the
robot arrives in such a state, a mode change could unavoidably occur.

The solution requirement is somewhat more complicated because both a path
and an action trajectory need to be specified. It is insufficient to specify a path
because it is important to know what action was applied to induce the correct
mode transitions. Therefore, σ indicates when these occur. Note that τ and σ
are closely coupled; one cannot simply associate any σ with a path τ ; it must
correspond to the actions required to generate τ .

Example 7.2 (The Power of the Portiernia) In this example, a robot, A, is
modeled as a square that translates in W = R2. Therefore, C = R2. The obstacle
region in W is mode-dependent because of two doors, which are numbered “1”
and “2” in Figure 7.12a. In the upper left sits the portiernia,2 which is able to
give a key to the robot, if the robot is in a configuration as shown in Figure 7.12b.
The portiernia only trusts the robot with one key at a time, which may be either
for Door 1 or Door 2. The robot can return a key by revisiting the portiernia. As
shown in Figures 7.12c and 7.12d, the robot can open a door by making contact
with it, as long as it holds the correct key.

2This is a place where people guard the keys at some public facilities in Poland.

334 S. M. LaValle: Planning Algorithms

1

2A

1

2

A

(a) (b)

1

2

A

2

A

(c) (d)

Figure 7.12: In the upper left (at the portiernia), the robot can pick up and drop
off keys that open one of two doors. If the robot contacts a door while holding
the correct key, then it opens.

The set, M , of modes needs to encode which key, if any, the robot holds, and
it must also encode the status of the doors. The robot may have: 1) the key to
Door 1; 2) the key to Door 2; or 3) no keys. The doors may have the status: 1)
both open; 2) Door 1 open, Door 2 closed; 3) Door 1 closed, Door 2 open; or 4)
both closed. Considering keys and doors in combination yields 12 possible modes.

If the robot is at a portiernia configuration as shown in Figure 7.12b, then its
available actions correspond to different ways to pick up and drop off keys. For
example, if the robot is holding the key to Door 1, it can drop it off and pick
up the key to Door 2. This changes the mode, but the door status and robot
configuration must remain unchanged when f is applied. The other locations in
which the robot may change the mode are when it comes in contact with Door 1
or Door 2. The mode changes only if the robot is holding the proper key. In all
other configurations, the robot only has a single action (i.e., no choice), which
keeps the mode fixed.

The task is to reach the configuration shown in the lower right with dashed
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lines. The problem is solved by: 1) picking up the key for Door 1 at the portiernia;
2) opening Door 1; 3) swapping the key at the portiernia to obtain the key for
Door 2; or 4) entering the innermost room to reach the goal configuration. As a
final condition, we might want to require that the robot returns the key to the
portiernia. �

A

A

Elongated

Compressed

Figure 7.13: An example in which the robot must reconfigure itself to solve the
problem. There are two modes: elongated and compressed.

A A

Elongated mode Compressed mode

Figure 7.14: When the robot reconfigures itself, Cfree(m) changes, enabling the
problem to be solved.

Example 7.2 allows the robot to change the obstacles in O. The next example
involves a robot that can change its shape. This is an illustrative example of
a reconfigurable robot. The study of such robots has become a popular topic of
research [112, 196, 290, 484]; the reconfiguration possibilities in that research area
are much more complicated than the simple example considered here.

Example 7.3 (Reconfigurable Robot) To solve the problem shown in Figure
7.13, the robot must change its shape. There are two possible shapes, which
correspond directly to the modes: elongated and compressed. Examples of each
are shown in the figure. Figure 7.14 shows how Cfree(m) appears for each of the
two modes. Suppose the robot starts initially from the left while in the elongated
mode and must travel to the last room on the right. This problem must be solved
by 1) reconfiguring the robot into the compressed mode; 2) passing through the
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corridor into the center; 3) reconfiguring the robot into the elongated mode; and
4) passing through the corridor to the rightmost room. The robot has actions
that directly change the mode by reconfiguring itself. To make the problem more
interesting, we could require the robot to reconfigure itself in specific locations
(e.g., where there is enough clearance, or possibly at a location where another
robot can assist it).

The examples presented so far barely scratch the surface on the possible hybrid
motion planning problems that can be defined. Many such problems can arise, for
example, in the context making automated video game characters or digital actors.
To solve these problems, standard motion planning algorithms can be adapted if
they are given information about how to change the modes. Locations in X
from which the mode can be changed may be expressed as subgoals. Much of the
planning effort should then be focused on attempting to change modes, in addition
to trying to directly reach the goal. Applying sampling-based methods requires
the definition of a metric on X that accounts for both changes in the mode and the
configuration. A wide variety of hybrid problems can be formulated, ranging from
those that are impossible to solve in practice to those that are straightforward
extensions of standard motion planning. In general, the hybrid motion planning
model is useful for formulating a hierarchical approach, as described in Section
1.4. One particularly interesting class of problems that fit this model, for which
successful algorithms have been developed, will be covered next.

7.3.2 Manipulation Planning

This section presents an overview of manipulation planning; the concepts ex-
plained here are mainly due to [11, 12]. Returning to Example 7.2, imagine that
the robot must carry a key that is so large that it changes the connectivity of
Cfree. For the manipulation planning problem, the robot is called a manipula-
tor, which interacts with a part. In some configurations it is able to grasp the
part and move it to other locations in the environment. The manipulation task
usually requires moving the part to a specified location in W , without particular
regard as to how the manipulator can accomplish the task. The model considered
here greatly simplifies the problems of grasping, stability, friction, mechanics, and
uncertainties and instead focuses on the geometric aspects (some of these issues
will be addressed in Section 12.5). For a thorough introduction to these other
important aspects of manipulation planning, see [352]; see also Sections 13.1.3
and 12.5.

Admissible configurations Assume that W , O, and A from Formulation 4.1
are used. For manipulation planning, A is called the manipulator, and let Ca
refer to the manipulator configuration space. Let P denote a part, which is a
rigid body modeled in terms of geometric primitives, as described in Section 3.1.
It is assumed that P is allowed to undergo rigid-body transformations and will
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therefore have its own part configuration space, Cp = SE(2) or Cp = SE(3). Let
qp ∈ Cp denote a part configuration. The transformed part model is denoted as
P(qp).

O

A(qa)

O

P(qp) P(qp)

A(qa)

q ∈ Caobs q ∈ Cpobs q ∈ Capobs

P(q p
)

A(q a
)

P(qp) P(qp)

A(qa)

q ∈ Cgr q ∈ Csta q ∈ Ctra

Figure 7.15: Examples of several important subsets of C for manipulation plan-
ning.

The combined configuration space, C, is defined as the Cartesian product

C = Ca × Cp, (7.14)

in which each configuration q ∈ C is of the form q = (qa, qp). The first step is
to remove all configurations that must be avoided. Parts of Figure 7.15 show
examples of these sets. Configurations for which the manipulator collides with
obstacles are

Caobs = {(qa, qp) ∈ C | A(qa) ∩ O 6= ∅}. (7.15)

The next logical step is to remove configurations for which the part collides with
obstacles. It will make sense to allow the part to “touch” the obstacles. For
example, this could model a part sitting on a table. Therefore, let

Cpobs = {(qa, qp) ∈ C | int(P(qp)) ∩ O 6= ∅} (7.16)

denote the open set for which the interior of the part intersects O. Certainly, if
the part penetrates O, then the configuration should be avoided.
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Consider C \(Caobs∪Cpobs). The configurations that remain ensure that the robot
and part do not inappropriately collide with O. Next consider the interaction
between A and P . The manipulator must be allowed to touch the part, but
penetration is once again not allowed. Therefore, let

Capobs = {(qa, qp) ∈ C | A(qa) ∩ int(P(qp)) 6= ∅}. (7.17)

Removing all of these bad configurations yields

Cadm = C \ (Caobs ∪ Cpobs ∪ Capobs), (7.18)

which is called the set of admissible configurations.

Stable and grasped configurations Two important subsets of Cadm are used
in the manipulation planning problem. See Figure 7.15. Let Cpsta denote the set of
stable part configurations, which are configurations at which the part can safely
rest without any forces being applied by the manipulator. This means that a part
cannot, for example, float in the air. It also cannot be in a configuration from
which it might fall. The particular stable configurations depend on properties
such as the part geometry, friction, mass distribution, and so on. These issues
are not considered here. From this, let Csta ⊆ Cadm be the corresponding stable
configurations, defined as

Csta = {(qa, qp) ∈ Cadm | qp ∈ Cpsta}. (7.19)

The other important subset of Cadm is the set of all configurations in which the
robot is grasping the part (and is capable of carrying it, if necessary). Let
this denote the grasped configurations, denoted by Cgr ⊆ Cadm. For every con-
figuration, (qa, qp) ∈ Cgr, the manipulator touches the part. This means that
A(qa) ∩ P(qp) 6= ∅ (penetration is still not allowed because Cgr ⊆ Cadm). In gen-
eral, many configurations at which A(qa) contacts P(qp) will not necessarily be
in Cgr. The conditions for a point to lie in Cgr depend on the particular charac-
teristics of the manipulator, the part, and the contact surface between them. For
example, a typical manipulator would not be able to pick up a block by making
contact with only one corner of it. This level of detail is not defined here; see [352]
for more information about grasping.

We must always ensure that either x ∈ Csta or x ∈ Cgr. Therefore, let
Cfree = Csta ∪ Cgr, to reflect the subset of Cadm that is permissible for manip-
ulation planning.

The mode space, M , contains two modes, which are named the transit mode
and the transfer mode. In the transit mode, the manipulator is not carrying the
part, which requires that q ∈ Csta. In the transfer mode, the manipulator carries
the part, which requires that q ∈ Cgr. Based on these simple conditions, the only
way the mode can change is if q ∈ Csta ∩ Cgr. Therefore, the manipulator has two
available actions only when it is in these configurations. In all other configurations



7.3. MIXING DISCRETE AND CONTINUOUS SPACES 339

the mode remains unchanged. For convenience, let Ctra = Csta∩Cgr denote the set
of transition configurations, which are the places in which the mode may change.

Using the framework of Section 7.3.1, the mode space, M , and C-space, C, are
combined to yield the state space, X = C ×M . Since there are only two modes,
there are only two copies of C, one for each mode. State-based sets, Xfree, Xtra,
Xsta, and Xgr, are directly obtained from Cfree, Ctra, Csta, and Cgr by ignoring the
mode. For example,

Xtra = {(q,m) ∈ X | q ∈ Ctra}. (7.20)

The sets Xfree, Xsta, and Xgr are similarly defined.
The task can now be defined. An initial part configuration, qpinit ∈ Csta, and

a goal part configuration, qpgoal ∈ Csta, are specified. Compute a path τ : [0, 1] →
Xfree such that τ(0) = qpinit and τ(1) = qpgoal. Furthermore, the action trajectory σ :
[0, 1] → U must be specified to indicate the appropriate mode changes whenever
τ(s) ∈ Xtra. A solution can be considered as an alternating sequence of transit
paths and transfer paths, whose names follow from the mode. This is depicted in
Figure 7.16.

Transfer

Transit

C

C

Figure 7.16: The solution to a manipulation planning problem alternates between
the two layers of X. The transitions can only occur when x ∈ Xtra.

Manipulation graph The manipulation planning problem generally can be
solved by forming a manipulation graph, Gm [11, 12]. Let a connected component
of Xtra refer to any connected component of Ctra that is lifted into the state space
by ignoring the mode. There are two copies of the connected component of Ctra,
one for each mode. For each connected component of Xtra, a vertex exists in
Gm. An edge is defined for each transfer path or transit path that connects two
connected components of Xtra. The general approach to manipulation planning
then is as follows:

1. Compute the connected components of Xtra to yield the vertices of Gm.

2. Compute the edges of Gm by applying ordinary motion planning methods
to each pair of vertices of Gm.

3. Apply motion planning methods to connect the initial and goal states to
every possible vertex of Xtra that can be reached without a mode transition.
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4. Search Gm for a path that connects the initial and goal states. If one exists,
then extract the corresponding solution as a sequence of transit and transfer
paths (this yields σ, the actions that cause the required mode changes).

This can be considered as an example of hierarchical planning, as described in
Section 1.4.

Figure 7.17: This example was solved in [133] using the manipulation planning
framework and the visibility-based roadmap planner. It is very challenging be-
cause the same part must be regrasped in many places.

Multiple parts The manipulation planning framework nicely generalizes to
multiple parts, P1, . . ., Pk. Each part has its own C-space, and C is formed
by taking the Cartesian product of all part C-spaces with the manipulator C-
space. The set Cadm is defined in a similar way, but now part-part collisions also
have to be removed, in addition to part-manipulator, manipulator-obstacle, and
part-obstacle collisions. The definition of Csta requires that all parts be in stable
configurations; the parts may even be allowed to stack on top of each other. The
definition of Cgr requires that one part is grasped and all other parts are stable.
There are still two modes, depending on whether the manipulator is grasping a
part. Once again, transitions occur only when the robot is in Ctra = Csta ∩ Cgr.
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Figure 7.18: This manipulation planning example was solved in [452] and involves
90 movable pieces of furniture. Some of them must be dragged out of the way to
solve the problem. Paths for two different queries are shown.

The task involves moving each part from one configuration to another. This is
achieved once again by defining a manipulation graph and obtaining a sequence
of transit paths (in which no parts move) and transfer paths (in which one part is
carried and all other parts are fixed). Challenging manipulation problems solved
by motion planning algorithms are shown in Figures 7.17 and 7.18.

Other generalizations are possible. A generalization to k robots would lead to
2k modes, in which each mode indicates whether each robot is grasping the part.
Multiple robots could even grasp the same object. Another generalization could
allow a single robot to grasp more than one object.

7.4 Planning for Closed Kinematic Chains

This section continues where Section 4.4 left off. The subspace of C that results
from maintaining kinematic closure was defined and illustrated through some ex-
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amples. Planning in this context requires that paths remain on a lower dimensional
variety for which a parameterization is not available. Many important applica-
tions require motion planning while maintaining these constraints. For example,
consider a manipulation problem that involves multiple manipulators grasping
the same object, which forms a closed loop as shown in Figure 7.19. A loop
exists because both manipulators are attached to the ground, which may itself
be considered as a link. The development of virtual actors for movies and video
games also involves related manipulation problems. Loops also arise in this con-
text when more than one human limb is touching a fixed surface (e.g., two feet on
the ground). A class of robots called parallel manipulators are intentionally de-
signed with internal closed loops [360]. For example, consider the Stewart-Gough
platform [208, 451] illustrated in Figure 7.20. The lengths of each of the six arms,
A1, . . ., A6, can be independently varied while they remain attached via spherical
joints to the ground and to the platform, which is A7. Each arm can actually be
imagined as two links that are connected by a prismatic joint. Due to the total
of 6 degrees of freedom introduced by the variable lengths, the platform actu-
ally achieves the full 6 degrees of freedom (hence, some six-dimensional region in
SE(3) is obtained for A7). Planning the motion of the Stewart-Gough platform,
or robots that are based on the platform (the robot shown in Figure 7.27 uses a
stack of several of these mechanisms), requires handling many closure constraints
that must be maintained simultaneously. Another application is computational
biology, in which the C-space of molecules is searched, many of which are derived
from molecules that have closed, flexible chains of bonds [134].

7.4.1 Adaptation of Motion Planning Algorithms

All of the components from the general motion planning problem of Formulation
4.1 are included: W , O, A1, . . ., Am, C, qI , and qG. It is assumed that the robot
is a collection of r links that are possibly attached in loops.

It is assumed in this section that C = Rn. If this is not satisfactory, there are
two ways to overcome the assumption. The first is to represent SO(2) and SO(3)
as S1 and S3, respectively, and include the circle or sphere equation as part of the
constraints considered here. This avoids the topology problems. The other option
is to abandon the restriction of using Rn and instead use a parameterization of C
that is of the appropriate dimension. To perform calculus on such manifolds, a
smooth structure is required, which is introduced in Section 8.3.2. In the presenta-
tion here, however, vector calculus on Rn is sufficient, which intentionally avoids
these extra technicalities.

Closure constraints The closure constraints introduced in Section 4.4 can be
summarized as follows. There is a set, P , of polynomials f1, . . ., fk that belong
to Q[q1, . . . , qn] and express the constraints for particular points on the links of
the robot. The determination of these is detailed in Section 4.4.3. As mentioned
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Figure 7.19: Two or more manipulators manipulating the same object causes
closed kinematic chains. Each black disc corresponds to a revolute joint.

previously, polynomials that force points to lie on a circle or sphere in the case of
rotations may also be included in P .

Let n denote the dimension of C. The closure space is defined as

Cclo = {q ∈ C | ∀fi ∈ P , fi(q1, . . . , qn) = 0}, (7.21)

which is an m-dimensional subspace of C that corresponds to all configurations
that satisfy the closure constants. The obstacle set must also be taken into ac-
count. Once again, Cobs and Cfree are defined using (4.34). The feasible space is
defined as Cfea = Cclo ∩ Cfree, which are the configurations that satisfy closure
constraints and avoid collisions.

The motion planning problem is to find a path τ : [0, 1]→ Cfea such that τ(0) =
qI and τ(1) = qG. The new challenge is that there is no explicit parameterization
of Cfea, which is further complicated by the fact that m < n (recall that m is the
dimension of Cclo).

Combinatorial methods Since the constraints are expressed with polynomi-
als, it may not be surprising that the computational algebraic geometry methods
of Section 6.4 can solve the general motion planning problem with closed kinematic
chains. Either cylindrical algebraic decomposition or Canny’s roadmap algorithm
may be applied. As mentioned in Section 6.5.3, an adaptation of the roadmap
algorithm that is optimized for problems in which m < n is given in [52].
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Figure 7.20: An illustration of the Stewart-Gough platform (adapted from a figure
made by Frank Sottile).

Sampling-based methods Most of the methods of Chapter 5 are not easy to
adapt because they require sampling in Cfea, for which a parameterization does
not exist. If points in a bounded region of Rn are chosen at random, the proba-
bility is zero that a point on Cfea will be obtained. Some incremental sampling
and searching methods can, however, be adapted by the construction of a local
planning method (LPM) that is suited for problems with closure constraints. The
sampling-based roadmap methods require many samples to be generated directly
on Cfea. Section 7.4.2 presents some techniques that can be used to generate
such samples for certain classes of problems, enabling the development of efficient
sampling-based planners and also improving the efficiency of incremental search
planners. Before covering these techniques, we first present a method that leads
to a more general sampling-based planner and is easier to implement. However, if
designed well, planners based on the techniques of Section 7.4.2 are more efficient.

Now consider adapting the RDT of Section 5.5 to work for problems with
closure constraints. Similar adaptations may be possible for other incremental
sampling and searching methods covered in Section 5.4, such as the randomized
potential field planner. A dense sampling sequence, α, is generated over a bounded
n-dimensional subset of Rn, such as a rectangle or sphere, as shown in Figure 7.21.



7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 345C = Rn
C
lo

Figure 7.21: For the RDT, the samples can be drawn from a region in Rn, the
space in which Cclo is embedded.

The samples are not actually required to lie on Cclo because they do not necessarily
become part of the topological graph, G. They mainly serve to pull the search
tree in different directions. One concern in choosing the bounding region is that it
must include Cclo (at least the connected component that includes qI) but it must
not be unnecessarily large. Such bounds are obtained by analyzing the motion
limits for a particular linkage.

Stepping along Cclo The RDT algorithm given Figure 5.21 can be applied
directly; however, the stopping-configuration function in line 4 must be
changed to account for both obstacles and the constraints that define Cclo. Figure
7.22 shows one general approach that is based on numerical continuation [13]. An
alternative is to use inverse kinematics, which is part of the approach described
in Section 7.4.2. The nearest RDT vertex, q ∈ C, to the sample α(i) is first com-
puted. Let v = α(i) − q, which indicates the direction in which an edge would
be made from q if there were no constraints. A local motion is then computed
by projecting v into the tangent plane3 of Cclo at the point q. Since Cclo is gen-
erally nonlinear, the local motion produces a point that is not precisely on Cclo.
Some numerical tolerance is generally accepted, and a small enough step is taken
to ensure that the tolerance is maintained. The process iterates by computing
v with respect to the new point and moving in the direction of v projected into
the new tangent plane. If the error threshold is surpassed, then motions must
be executed in the normal direction to return to Cclo. This process of executing
tangent and normal motions terminates when progress can no longer be made,
due either to the alignment of the tangent plane (nearly perpendicular to v) or
to an obstacle. This finally yields qs, the stopping configuration. The new path
followed in Cfea is no longer a “straight line” as was possible for some problems in
Section 5.5; therefore, the approximate methods in Section 5.5.2 should be used

3Tangent planes are defined rigorously in Section 8.3.
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α(i)

Cclo

Cq

Figure 7.22: For each sample α(i) the nearest point, qn ∈ C, is found, and then
the local planner generates a motion that lies in the local tangent plane. The
motion is the project of the vector from qn to α(i) onto the tangent plane.

to create intermediate vertices along the path.
In each iteration, the tangent plane computation is computed at some q ∈ Cclo

as follows. The differential configuration vector dq lies in the tangent space of a
constraint fi(q) = 0 if

∂fi(q)

∂q1
dq1 +

∂fi(q)

∂q2
dq2 + · · ·+

∂fi(q)

∂qn
dqn = 0. (7.22)

This leads to the following homogeneous system for all of the k polynomials in P
that define the closure constraints
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= 0. (7.23)

If the rank of the matrix is m ≤ n, then m configuration displacements can be
chosen independently, and the remaining n −m parameters must satisfy (7.23).
This can be solved using linear algebra techniques, such as singular value decom-
position (SVD) [204, 471], to compute an orthonormal basis for the tangent space
at q. Let e1, . . ., em, denote these n-dimensional basis vectors. The components
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of the motion direction are obtained from v = α(i)−qn. First, construct the inner
products, a1 = v · e1, a2 = v · e2, . . ., am = v · em. Using these, the projection of v
in the tangent plane is the n-dimensional vector w given by

w =
m
∑

i

aiei, (7.24)

which is used as the direction of motion. The magnitude must be appropriately
scaled to take sufficiently small steps. Since Cclo is generally curved, a linear
motion leaves Cclo. A motion in the inward normal direction is then required to
move back onto Cclo.

Since the dimension m of Cclo is less than n, the procedure just described can
only produce numerical approximations to paths in Cclo. This problem also arises
in implicit curve tracing in graphics and geometric modeling [234]. Therefore, each
constraint fi(q1, . . . , qn) = 0 is actually slightly weakened to |fi(q1, . . . , qn)| < ǫ for
some fixed tolerance ǫ > 0. This essentially “thickens” Cclo so that its dimension
is n. As an alternative to computing the tangent plane, motion directions can
be sampled directly inside of this thickened region without computing tangent
planes. This results in an easier implementation, but it is less efficient [479].

7.4.2 Active-Passive Link Decompositions

An alternative sampling-based approach is to perform an active-passive decom-
position, which is used to generate samples in Cclo by directly sampling active
variables, and computing the closure values for passive variables using inverse
kinematics methods. This method was introduced in [222] and subsequently im-
proved through the development of the random loop generator in [133, 135]. The
method serves as a general framework that can adapt virtually any of the meth-
ods of Chapter 5 to handle closed kinematic chains, and experimental evidence
suggests that the performance is better than the method of Section 7.4.1. One
drawback is that the method requires some careful analysis of the linkage to de-
termine the best decomposition and also bounds on its mobility. Such analysis
exists for very general classes of linkages [133].

Active and passive variables In this section, let C denote the C-space ob-
tained from all joint variables, instead of requiring C = Rn, as in Section 7.4.1.
This means that P includes only polynomials that encode closure constraints, as
opposed to allowing constraints that represent rotations. Using the tree repre-
sentation from Section 4.4.3, this means that C is of dimension n, arising from
assigning one variable for each revolute joint of the linkage in the absence of any
constraints. Let q ∈ C denote this vector of configuration variables. The active-
passive decomposition partitions the variables of q to form two vectors, qa, called
the active variables and qp, called the passive variables. The values of passive
variables are always determined from the active variables by enforcing the closure
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constraints and using inverse kinematics techniques. If m is the dimension of Cclo,
then there are always m active variables and n−m passive variables.

θ2

θ4

θ5 θ6

θ1 θ7

θ3

Figure 7.23: A chain of links in the plane. There are seven links and seven joints,
which are constrained to form a loop. The dimension of C is seven, but the
dimension of Cclo is four.

Temporarily, suppose that the linkage forms a single loop as shown in Figure
7.23. One possible decomposition into active qa and passive qp variables is given in
Figure 7.24. If constrained to form a loop, the linkage has four degrees of freedom,
assuming the bottom link is rigidly attached to the ground. This means that values
can be chosen for four active joint angles qa and the remaining three qp can be
derived from solving the inverse kinematics. To determine qp, there are three
equations and three unknowns. Unfortunately, these equations are nonlinear and
fairly complicated. Nevertheless, efficient solutions exist for this case, and the 3D
generalization [350]. For a 3D loop formed of revolute joints, there are six passive
variables. The number, 3, of passive links in R2 and the number 6 for R3 arise
from the dimensions of SE(2) and SE(3), respectively. This is the freedom that
is stripped away from the system by enforcing the closure constraints. Methods
for efficiently computing inverse kinematics in two and three dimensions are given
in [24]. These can also be applied to the RDT stepping method in Section 7.4.1,
instead of using continuation.

If the maximal number of passive variables is used, there is at most a finite
number of solutions to the inverse kinematics problem; this implies that there are
often several choices for the passive variable values. It could be the case that
for some assignments of active variables, there are no solutions to the inverse
kinematics. An example is depicted in Figure 7.25. Suppose that we want to
generate samples in Cclo by selecting random values for qa and then using inverse
kinematics for qp. What is the probability that a solution to the inverse kinematics
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qp2

qa1
qa2 qa3

qa7
qp3

Passive joints qp1

Figure 7.24: Three of the joint variables can be determined automatically by
inverse kinematics. Therefore, four of the joints be designated as active, and the
remaining three will be passive.

exists? For the example shown, it appears that solutions would not exist in most
trials.

Loop generator The random loop generator greatly improves the chance of
obtaining closure by iteratively restricting the range on each of the active variables.
The method requires that the active variables appear sequentially along the chain
(i.e., there is no interleaving of active and passive variables). Them coordinates of
qa are obtained sequentially as follows. First, compute an interval, I1, of allowable
values for qa1 . The interval serves as a loose bound in the sense that, for any value
qa1 6∈ I1, it is known for certain that closure cannot be obtained. This is ensured
by performing a careful geometric analysis of the linkage, which will be explained
shortly. The next step is to generate a sample in qa1 ∈ I1, which is accomplished
in [133] by picking a random point in I1. Using the value qa1 , a bounding interval
I2 is computed for allowable values of qa2 . The value qa2 is obtained by sampling
in I2. This process continues iteratively until Im and qam are obtained, unless it
terminates early because some Ii = ∅ for i < m. If successful termination occurs,
then the active variables qa are used to find values qp for the passive variables.
This step still might fail, but the probability of success is now much higher. The
method can also be applied to linkages in which there are multiple, common loops,
as in the Stewart-Gough platform, by breaking the linkage into a tree and closing
loops one at a time using the loop generator. The performance depends on how
the linkage is decomposed [133].
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Figure 7.25: In this case, the active variables are chosen in a way that makes it
impossible to assign passive variables that close the loop.

Computing bounds on joint angles The main requirement for successful
application of the method is the ability to compute bounds on how far a chain of
links can travel inW over some range of joint variables. For example, for a planar
chain that has revolute joints with no limits, the chain can sweep out a circle as
shown in Figure 7.26a. Suppose it is known that the angle between links must
remain between −π/6 and π/6. A tighter bounding region can be obtained, as
shown in Figure 7.26b. Three-dimensional versions of these bounds, along with
many necessary details, are included in [133]. These bounds are then used to
compute Ii in each iteration of the sampling algorithm.

Now that there is an efficient method that generates samples directly in Cclo,
it is straightforward to adapt any of the sampling-based planning methods of
Chapter 5. In [133] many impressive results are obtained for challenging problems
that have the dimension of C up to 97 and the dimension of Cclo up to 25; see Figure
7.27. These methods are based on applying the new sampling techniques to the
RDTs of Section 5.5 and the visibility sampling-based roadmap of Section 5.6.2.
For these algorithms, the local planning method is applied to the active variables,
and inverse kinematics algorithms are used for the passive variables in the path
validation step. This means that inverse kinematics and collision checking are
performed together, instead of only collision checking, as described in Section
5.3.4.

One important issue that has been neglected in this section is the existence of
kinematic singularities, which cause the dimension of Cclo to drop in the vicinity of
certain points. The methods presented here have assumed that solving the motion
planning problem does not require passing through a singularity. This assump-
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(a) (b)

Figure 7.26: (a) If any joint angle is possible, then the links sweep out a circle in
the limit. (b) If there are limits on the joint angles, then a tighter bound can be
obtained for the reachability of the linkage.

tion is reasonable for robot systems that have many extra degrees of freedom,
but it is important to understand that completeness is lost in general because
the sampling-based methods do not explicitly handle these degeneracies. In a
sense, they occur below the level of sampling resolution. For more information on
kinematic singularities and related issues, see [360].

7.5 Folding Problems in Robotics and Biology

A growing number of motion planning applications involve some form of folding.
Examples include automated carton folding, computer-aided drug design, protein
folding, modular reconfigurable robots, and even robotic origami. These problems
are generally modeled as a linkage in which all bodies are connected by revolute
joints. In robotics, self-collision between pairs of bodies usually must be avoided.
In biological applications, energy functions replace obstacles. Instead of crisp
obstacle boundaries, energy functions can be imagined as “soft” obstacles, in which
a real value is defined for every q ∈ C, instead of defining a set Cobs ⊂ C. For a given
threshold value, such energy functions can be converted into an obstacle region
by defining Cobs to be the configurations that have energy above the threshold.
However, the energy function contains more information because such thresholds
are arbitrary. This section briefly shows some examples of folding problems and
techniques from the recent motion planning literature.

Carton folding An interesting application of motion planning to the automated
folding of boxes is presented in [348]. Figure 7.28 shows a carton in its original
flat form and in its folded form. As shown in Figure 7.29, the problem can be
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Figure 7.27: Planning for the Logabex LX4 robot [101]. This solution was com-
puted in less than a minute by applying active-passive decomposition to an RDT-
based planner [133]. In this example, the dimension of C is 97 and the dimension
of Cclo is 25.

modeled as a tree of bodies connected by revolute joints. Once this model has been
formulated, many methods from Chapters 5 and 6 can be adapted for this problem.
In [348], a planning algorithm optimized particularly for box folding is presented.
It is an adaptation of an approximate cell decomposition algorithm developed for
kinematic chains in [345]. Its complexity is exponential in the degrees of freedom
of the carton, but it gives good performance on practical examples. One such
solution that was found by motion planning is shown in Figure 7.30. To use these
solutions in a factory, the manipulation problem has to be additionally considered.
For example, as demonstrated in [348], a manipulator arm robot can be used in
combination with a well-designed set of fixtures. The fixtures help hold the carton

Figure 7.28: An important packaging problem is to automate the folding of a
perforated sheet of cardboard into a carton.
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Figure 7.29: The carton can be cleverly modeled as a tree of bodies that are
attached by revolute joints.

Figure 7.30: A folding sequence that was computed using the algorithm in [348].
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in place while the manipulator applies pressure in the right places, which yields
the required folds. Since the feasibility with fixtures depends on the particular
folding path, the planning algorithm generates all possible distinct paths from the
initial configuration (at which the box is completely unfolded).

Simplifying knots A knot is a closed curve that does not intersect itself, is
embedded in R3, and cannot be untangled to produce a simple loop (such as a
circular path). If the knot is allowed to intersect itself, then any knot can be
untangled; therefore, a careful definition of what it means to untangle a knot is
needed. For a closed curve, τ : [0, 1] → R3, embedded in R3 (it cannot intersect
itself), let the set R3 \ τ([0, 1]) of points not reached by the curve be called the
ambient space of τ . In knot theory, an ambient isotopy between two closed curves,
τ1 and τ2, embedded in R3 is a homeomorphism between their ambient spaces.
Intuitively, this means that τ1 can be warped into τ2 without allowing any self-
intersections. Therefore, determining whether two loops are equivalent seems
closely related to motion planning. Such equivalence gives rise to groups that
characterize the space of knots and are closely related to the fundamental group
described in Section 4.1.3. For more information on knot theory, see [6, 232, 261].

A motion planning approach was developed in [297] to determine whether a
closed curve is equivalent to the unknot, which is completely untangled. This
can be expressed as a curve that maps onto S1, embedded in R3. The algorithm
takes as input a knot expressed as a circular chain of line segments embedded in
R3. In this case, the unknot can be expressed as a triangle in R3. One of the
most challenging examples solved by the planner is shown in Figure 7.31. The
planner is sampling-based and shares many similarities with the RDT algorithm
of Section 5.5 and the Ariadne’s clew and expansive space planners described in
Section 5.4.4. Since the task is not to produce a collision-free path, there are
several unique aspects in comparison to motion planning. An energy function is
defined over the collection of segments to try to guide the search toward simpler
configurations. There are two kinds of local operations that are made by the
planner: 1) Try to move a vertex toward a selected subgoal in the ambient space.
This is obtained by using random sampling to grow a search tree. 2) Try to delete
a vertex, and connect the neighboring vertices by a straight line. If no collision
occurs along the intermediate configurations, then the knot has been simplified.
The algorithm terminates when it is unable to further simplify the knot.

Drug design A sampling-based motion planning approach to pharmaceutical
drug design is taken in [308]. The development of a drug is a long, incremental
process, typically requiring years of research and experimentation. The goal is
to find a relatively small molecule called a ligand, typically comprising a few
dozen atoms, that docks with a receptor cavity in a specific protein [315]; Figure
1.14 (Section 1.2) illustrated this. Examples of drug molecules were also given
in Figure 1.14. Protein-ligand docking can stimulate or inhibit some biological
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Figure 7.31: The planner in [297] untangles the famous Ochiai unknot benchmark
in a few minutes on a standard PC.

activity, ultimately leading to the desired pharmacological effect. The problem
of finding suitable ligands is complicated due to both energy considerations and
the flexibility of the ligand. In addition to satisfying structural considerations,
factors such as synthetic accessibility, drug pharmacology and toxicology greatly
complicate and lengthen the search for the most effective drug molecules.

One popular model used by chemists in the context of drug design is a pharma-
cophore, which serves as a template for the desired ligand [122, 175, 194, 433]. The
pharmacophore is expressed as a set of features that an effective ligand should pos-
sess and a set of spatial constraints among the features. Examples of features are
specific atoms, centers of benzene rings, positive or negative charges, hydrophobic
or hydrophilic centers, and hydrogen bond donors or acceptors. Features gener-
ally require that parts of the molecule must remain fixed in R3, which induces
kinematic closure constraints. These features are developed by chemists to en-
capsulate the assumption that ligand binding is due primarily to the interaction
of some features of the ligand to “complementary” features of the receptor. The
interacting features are included in the pharmacophore, which is a template for
screening candidate drugs, and the rest of the ligand atoms merely provide a scaf-
fold for holding the pharmacophore features in their spatial positions. Figure 7.32
illustrates the pharmacophore concept.
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(x2, y2, z2)

(x1, y1, z1)
(x3, y3, z3)

(0, 0, 0)

Figure 7.32: A pharmacophore is a model used by chemists to simplify the in-
teraction process between a ligand (candidate drug molecule) and a protein. It
often amounts to holding certain features of the molecule fixed in R3. In this
example, the positions of three atoms must be fixed relative to the body frame
of an arbitrarily designated root atom. It is assumed that these features interact
with some complementary features in the cavity of the protein.

Candidate drug molecules (ligands), such as the ones shown in Figure 1.14,
can be modeled as a tree of bodies as shown in Figure 7.33. Some bonds can
rotate, yielding revolute joints in the model; other bonds must remain fixed. The
drug design problem amounts to searching the space of configurations (called
conformations) to try to find a low-energy configuration that also places certain
atoms in specified locations in R3. This additional constraint arises from the
pharmacophore and causes the planning to occur on Cclo from Section 7.4 because
the pharmacophores can be expressed as closure constraints.

An energy function serves a purpose similar to that of a collision detector. The
evaluation of a ligand for drug design requires determining whether it can achieve
low-energy conformations that satisfy the pharmacophore constraints. Thus, the
task is different from standard motion planning in that there is no predetermined
goal configuration. One of the greatest difficulties is that the energy functions are
extremely complicated, nonlinear, and empirical. Here is typical example (used
in [308]):

e(q)=
∑

bonds
1
2
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ang
1
2
Ka(α− α′)2+

∑

torsionsKd[1 + cos(pθ − θ′)] +

∑

i,j

{

4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

+
cicj
ǫrij

}

.

(7.25)
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Figure 7.33: The modeling of a flexible molecule is similar to that of a robot. One
atom is designated as the root, and the remaining bodies are arranged in a tree.
If there are cyclic chains in the molecules, then constraints as described in Section
4.4 must be enforced. Typically, only some bonds are capable of rotation, whereas
others must remain rigid.

The energy accounts for torsion-angle deformations, van der Waals potential, and
Coulomb potentials. In (7.25), the first sum is taken over all bonds, the second
over all bond angles, the third over all rotatable bonds, and the last is taken
over all pairs of atoms. The variables are the force constants, Kb, Ka, and Kd;
the dielectric constant, ǫ; a periodicity constant, p; the Lennard-Jones radii, σij ;
well depth, ǫij; partial charge, ci; measured bond length, R; equilibrium bond
length, R′; measured bond angle, α; equilibrium bond angle, α′; measured tor-
sional angle, θ; equilibrium torsional angle, θ′; and distance between atom centers,
rij. Although the energy expression is very complicated, it only depends on the
configuration variables; all others are constants that are estimated in advance.

Protein folding In computational biology, the problem of protein folding shares
many similarities with drug design in that the molecules have rotatable bonds and
energy functions are used to express good configurations. The problems are much
more complicated, however, because the protein molecules are generally much
larger than drug molecules. Instead of a dozen degrees of freedom, which is typi-
cal for a drug molecule, proteins have hundreds or thousands of degrees of freedom.
When proteins appear in nature, they are usually in a folded, low-energy config-
uration. The structure problem involves determining precisely how the protein is
folded so that its biological activity can be completely understood. In some stud-
ies, biologists are even interested in the pathway that a protein takes to arrive in
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its folded state [18, 19]. This leads directly to an extension of motion planning
that involves arriving at a goal state in which the molecule is folded. In [18, 19],
sampling-based planning algorithms were applied to compute folding pathways
for proteins. The protein starts in an unfolded configuration and must arrive in a
specified folded configuration without violating energy constraints along the way.
Figure 7.34 shows an example from [19]. That work also draws interesting con-
nections between protein folding and box folding, which was covered previously.

Figure 7.34: Protein folding for a polypeptide, computed by a sampling-based
roadmap planning algorithm [18]

7.6 Coverage Planning

Imagine automating the motion of a lawnmower for an estate that has many obsta-
cles, such as a house, trees, garage, and a complicated property boundary. What
are the best zig-zag motions for the lawnmower? Can the amount of redundant
traversals be minimized? Can the number of times the lawnmower needs to be
stopped and rotated be minimized? This is one example of coverage planning,
which is motivated by applications such as lawn mowing, automated farming,
painting, vacuum cleaning, and mine sweeping. A survey of this area appears in
[117]. Even for a region inW = R2, finding an optimal-length solution to coverage
planning is NP-hard, by reduction to the closely related Traveling Salesman Prob-
lem [28, 372]. Therefore, we are willing to tolerate approximate or even heuristic
solutions to the general coverage problem, even in R2.

Boustrophedon decomposition One approach to the coverage problem is to
decompose Cfree into cells and perform boustrophedon (from the Greek “ox turn-
ing”) motions in each cell as shown in Figure 7.35 [119]. It is assumed that the
robot is a point in W = R2, but it carries a tool of thickness ǫ that hangs evenly
over the sides of the robot. This enables it to paint or mow part of Cfree up to
distance ǫ/2 from either side of the robot as it moves forward. Such motions are
often used in printers to reduce the number of carriage returns.
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Figure 7.35: An example of the ox plowing motions.

(a) (b)

Figure 7.36: (a) Only the first case from Figure 6.2 is needed: extend upward
and downward. All other cases are neglected. (b) The resulting decomposition
is shown, which has fewer cells than that of the vertical decomposition in Figure
6.3.

If Cobs is polygonal, a reasonable decomposition can be obtained by adapting
the vertical decomposition method of Section 6.2.2. In that algorithm, critical
events were defined for several cases, some of which are not relevant for the bous-
trophedon motions. The only events that need to be handled are shown in Figure
7.36a [116]. This produces a decomposition that has fewer cells, as shown in Fig-
ure 7.36b. Even though the cells are nonconvex, they can always be sliced nicely
into vertical strips, which makes them suitable for boustrophedon motions. The
original vertical decomposition could also be used, but the extra cell boundaries
would cause unnecessary repositioning of the robot. A similar method, which
furthermore optimizes the number of robot turns, is presented in [243].

Spanning tree covering An interesting approximate method was developed
by Gabriely and Rimon; it places a tiling of squares inside of Cfree and computes
the spanning tree of the resulting connectivity graph [187, 188]. Suppose again
that Cfree is polygonal. Consider the example shown in Figure 7.37a. The first
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(a) (b)

(c) (d)

Figure 7.37: (a) An example used for spanning tree covering. (b) The first step is
to tile the interior with squares. (c) The spanning tree of a roadmap formed from
grid adjacencies. (d) The resulting coverage path.
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Figure 7.38: A circular path is made by doubling the resolution and following the
perimeter of the spanning tree.

step is to tile the interior of Cfree with squares, as shown in Figure 7.37b. Each
square should be of width ǫ, for some constant ǫ > 0. Next, construct a roadmap
G by placing a vertex in the center of each square and by defining an edge that
connects the centers of each pair of adjacent cubes. The next step is to compute
a spanning tree of G. This is a connected subgraph that has no cycles and touches
every vertex of G; it can be computed in O(n) time, if G has n edges [354]. There
are many possible spanning trees, and a criterion can be defined and optimized
to induce preferences. One possible spanning tree is shown Figure 7.37c.

Once the spanning tree is made, the robot path is obtained by starting at a
point near the spanning tree and following along its perimeter. This path can be
precisely specified as shown in Figure 7.38. Double the resolution of the tiling,
and form the corresponding roadmap. Part of the roadmap corresponds to the
spanning tree, but also included is a loop path that surrounds the spanning tree.
This path visits the centers of the new squares. The resulting path for the example
of Figure 7.37a is shown in Figure 7.37d. In general, the method yields an optimal
route, once the approximation is given. A bound on the uncovered area due to
approximation is given in [187]. Versions of the method that do not require an
initial map are also given in [187, 188]; this involves reasoning about information
spaces, which are covered in Chapter 11.

7.7 Optimal Motion Planning

This section can be considered transitional in many ways. The main concern so far
with motion planning has been feasibility as opposed to optimality. This placed
the focus on finding any solution, rather than further requiring that a solution be
optimal. In later parts of the book, especially as uncertainty is introduced, opti-
mality will receive more attention. Even the most basic forms of decision theory
(the topic of Chapter 9) center on making optimal choices. The requirement of
optimality in very general settings usually requires an exhaustive search over the
state space, which amounts to computing continuous cost-to-go functions. Once
such functions are known, a feedback plan is obtained, which is much more power-
ful than having only a path. Thus, optimality also appears frequently in the design
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Figure 7.39: For a polyhedral environment, the shortest paths do not have to
cross vertices. Therefore, the shortest-path roadmap method from Section 6.2.4
does not extend to three dimensions.

of feedback plans because it sometimes comes at no additional cost. This will be-
come clearer in Chapter 8. The quest for optimal solutions also raises interesting
issues about how to approximate a continuous problem as a discrete problem.
The interplay between time discretization and space discretization becomes very
important in relating continuous and discrete planning problems.

7.7.1 Optimality for One Robot

Euclidean shortest paths One of the most straightforward notions of opti-
mality is the Euclidean shortest path in R2 or R3. Suppose that A is a rigid body
that translates only in either W = R2 or W = R3, which contains an obstacle
region O ⊂ W . Recall that, ordinarily, Cfree is an open set, which means that any
path, τ : [0, 1] → Cfree, can be shortened. Therefore, shortest paths for motion
planning must be defined on the closure cl(Cfree), which allows the robot to make
contact with the obstacles; however, their interiors must not intersect.

For the case in which Cobs is a polygonal region, the shortest-path roadmap
method of Section 6.2.4 has already been given. This can be considered as a
kind of multiple-query approach because the roadmap completely captures the
structure needed to construct the shortest path for any query. It is possible to
make a single-query algorithm using the continuous Dijkstra paradigm [227, 371].
This method propagates a wavefront from qI and keeps track of critical events
in maintaining the wavefront. As events occur, the wavefront becomes composed
of wavelets, which are arcs of circles centered on obstacle vertices. The possible
events that can occur are 1) a wavelet disappears, 2) a wavelet collides with an
obstacle vertex, 3) a wavelet collides with another wavelet, or 4) a wavelet collides
with a point in the interior of an obstacle edge. The method can be made to run
in time O(n lg n) and uses O(n lg n) space. A roadmap is constructed that uses
O(n) space. See Section 8.4.3 for a related method.

Such elegant methods leave the impression that finding shortest paths is not
very difficult, but unfortunately they do not generalize nicely to R3 and a polyhe-
dral Cobs. Figure 7.39 shows a simple example in which the shortest path does not
have to cross a vertex of Cobs. It may cross anywhere in the interior of an edge;
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therefore, it is not clear where to draw the bitangent lines that would form the
shortest-path roadmap. The lower bounds for this problem are also discouraging.
It was shown in [91] that the 3D shortest-path problem in a polyhedral environ-
ment is NP-hard. Most of the difficulty arises because of the precision required to
represent 3D shortest paths. Therefore, efficient polynomial-time approximation
algorithms exist [115, 393].

General optimality criteria It is difficult to even define optimality for more
general C-spaces. What does it mean to have a shortest path in SE(2) or SE(3)?
Consider the case of a planar, rigid robot that can translate and rotate. One
path could minimize the amount of rotation whereas another tries to minimize
the amount of translation. Without more information, there is no clear preference.
Ulam’s distance is one possibility, which is to minimize the distance traveled by
k fixed points [246]. In Chapter 13, differential models will be introduced, which
lead to meaningful definitions of optimality. For example, the shortest paths for a
slow-moving car are shown in Section 15.3; these require a precise specification of
the constraints on the motion of the car (it is more costly to move a car sideways
than forward).

This section formulates some optimal motion planning problems, to provide
a smooth transition into the later concepts. Up until now, actions were used in
Chapter 2 for discrete planning problems, but they were successfully avoided for
basic motion planning by directly describing paths that map into Cfree. It will be
convenient to use them once again. Recall that they were convenient for defining
costs and optimal planning in Section 2.3.

To avoid for now the complications of differential equations, consider making
an approximate model of motion planning in which every path must be composed
of a sequence of shortest-path segments in Cfree. Most often these are line seg-
ments; however, for the case of SO(3), circular arcs obtained by spherical linear
interpolation may be preferable. Consider extending Formulation 2.3 from Section
2.3.2 to the problem of motion planning.

Let the C-space C be embedded in Rm (i.e., C ⊂ Rm). An action will be defined
shortly as anm-dimensional vector. Given a scaling constant ǫ and a configuration
q, an action u produces a new configuration, q′ = q + ǫu. This can be considered
as a configuration transition equation, q′ = f(q, u). The path segment represented
by the action u is the shortest path (usually a line segment) between q and q′.
Following Section 2.3, let πK denote a K-step plan, which is a sequence (u1, u2,
. . ., uK) of K actions. Note that if πK and qI are given, then a sequence of states,
q1, q2, . . ., qK+1, can be derived using f . Initially, q1 = qI , and each following
state is obtained by qk+1 = f(qk, uk). From this a path, τ : [0, 1] → C, can be
derived.

An approximate optimal planning problem is formalized as follows:

Formulation 7.4 (Approximate Optimal Motion Planning)
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1. The following components are defined the same as in Formulation 4.1: W , O,
A, C, Cobs, Cfree, and qI . It is assumed that C is an n-dimensional manifold.

2. For each q ∈ C, a possibly infinite action space, U(q). Each u ∈ U is an
n-dimensional vector.

3. A positive constant ǫ > 0 called the step size.

4. A set of stages, each denoted by k, which begins at k = 1 and continues
indefinitely. Each stage is indicated by a subscript, to obtain qk and uk.

5. A configuration transition function f(q, u) = q + ǫu in which q + ǫu is com-
puted by vector addition on Rm.

6. Instead of a goal state, a goal region XG is defined.

7. Let L denote a real-valued cost functional, which is applied to a K-step
plan, πK . This means that the sequence (u1, . . . , uK) of actions and the
sequence (q1, . . . , qK+1) of configurations may appear in an expression of L.
Let F = K + 1. The cost functional is

L(πK) =
K
∑

k=1

l(qk, uk) + lF (qF ). (7.26)

The final term lF (qF ) is outside of the sum and is defined as lF (qF ) = 0
if qF ∈ XG and lF (qF ) = ∞ otherwise. As in Formulation 2.3, K is not
necessarily a constant.

8. Each U(q) contains the special termination action uT , which behaves the
same way as in Formulation 2.3. If uT is applied to qk at stage k, then the
action is repeatedly applied forever, the configuration remains in qk forever,
and no more cost accumulates.

The task is to compute a sequence of actions that optimizes (7.26). Formu-
lation 7.4 can be used to define a variety of optimal planning problems. The
parameter ǫ can be considered as the resolution of the approximation. In many
formulations it can be interpreted as a time step, ǫ = ∆t; however, note that no
explicit time reference is necessary because the problem only requires constructing
a path through Cfree. As ǫ approaches zero, the formulation approaches an exact
optimal planning problem. To properly express the exact problem, differential
equations are needed. This is deferred until Part IV.

Example 7.4 (Manhattan Motion Model) Suppose that in addition to uT ,
the action set U(q) contains 2n vectors in which only one component is nonzero
and must take the value 1 or −1. For example, if C = R2, then

U(q) = {(1, 0), (−1, 0), (0,−1), (0, 1), uT}. (7.27)
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Figure 7.40: Under the Manhattan (L1) motion model, all monotonic paths that
follow the grid directions have equivalent length.

Independent
Joint

EuclideanManhattan

Figure 7.41: Depictions of the action sets, U(q), for Examples 7.4, 7.5, and 7.6.

When used in the configuration transition equation, this set of actions produces
“up,” “down,” “left,” and “right” motions and a “terminate” command. This pro-
duces a topological graph according to the 1-neighborhood model, (5.37), which
was given in Section 5.4.2. The action set for this example and the following
two examples are shown in Figure 7.41 for comparison. The cost term l(qk, uk) is
defined to be 1 for all qk ∈ Cfree and uk. If qk ∈ Cobs, then l(qk, uk) = ∞. Note
that the set of configurations reachable by these actions lies on a grid, in which
the spacing between 1-neighbors is ǫ. This corresponds to a convenient special
case in which time discretization (implemented by ǫ) leads to a regular space dis-
cretization. Consider Figure 7.40. It is impossible to take a shorter path along
a diagonal because the actions do not allow it. Therefore, all monotonic paths
along the grid produce the same costs.

Optimal paths can be obtained by simply applying the dynamic programming
algorithms of Chapter 2. This example provides a nice unification of concepts from
Section 2.2, which introduced grid search, and Section 5.4.2, which explained how
to adapt search methods to motion planning. In the current setting, only algo-
rithms that produce optimal solutions on the corresponding graph are acceptable.

This form of optimization might not seem relevant because it does not represent
the Euclidean shortest-path problem for R2. The next model adds more actions,
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and does correspond to an important class of optimization problems in robotics.
�

Example 7.5 (Independent-Joint Motion Model) Now suppose that U(q)
includes uT and the set of all 3n vectors for which every element is either −1, 0,
or 1. Under this model, a path can be taken along any diagonal. This still does
not change the fact that all reachable configurations lie on a grid. Therefore, the
standard grid algorithms can be applied once again. The difference is that now
there are 3n− 1 edges emanating from every vertex, as opposed to 2n in Example
7.4. This model is appropriate for robots that are constructed from a collection
of links attached by revolute joints. If each joint is operated independently, then
it makes sense that each joint could be moved either forward, backward, or held
stationary. This corresponds exactly to the actions. However, this model cannot
nicely approximate Euclidean shortest paths; this motivates the next example. �

Example 7.6 (Euclidean Motion Model) To approximate Euclidean short-
est paths, let U(q) = Sn−1∪{uT}, in which Sn−1 is the m-dimensional unit sphere
centered at the origin of Rn. This means that in k stages, any piecewise-linear
path in which each segment has length ǫ can be formed by a sequence of inputs.
Therefore, the set of reachable states is no longer confined to a grid. Consider
taking ǫ = 1, and pick any point, such as (π, π) ∈ R2. How close can you come to
this point? It turns out that the set of points reachable with this model is dense
in Rn if obstacles are neglected. This means that we can come arbitrarily close to
any point in Rn. Therefore, a finite grid cannot be used to represent the problem.
Approximate solutions can still be obtained by numerically computing an optimal
cost-to-go function over C. This approach is presented in Section 8.5.2.

One additional issue for this problem is the precision defined for the goal. If
the goal region is very small relative to ǫ, then complicated paths may have to be
selected to arrive precisely at the goal. �

Example 7.7 (Weighted-Region Problem) In outdoor and planetary navi-
gation applications, it does not make sense to define obstacles in the crisp way
that has been used so far. For each patch of terrain, it is more convenient to
associate a cost that indicates the estimated difficulty of its traversal. This is
sometimes considered as a “grayscale” model of obstacles. The model can be
easily captured in the cost term l(qk, uk). The action spaces can be borrowed
from Examples 7.4 or 7.5. Stentz’s algorithm [450], which is introduced in Section
12.3.2, generates optimal navigation plans for this problem, even assuming that
the terrain is initially unknown. Theoretical bounds for optimal weighted-region
planning problems are given in [372, 373]. An approximation algorithm appears
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A2A1

Figure 7.42: There are two Pareto-optimal coordination plans for this problem,
depending on which robot has to wait.

in [412]. �

7.7.2 Multiple-Robot Optimality

Suppose that there are two robots as shown in Figure 7.42. There is just enough
room to enable the robots to translate along the corridors. Each would like to
arrive at the bottom, as indicated by arrows; however, only one can pass at a
time through the horizontal corridor. Suppose that at any instant each robot can
either be on or off. When it is on, it moves at its maximum speed, and when it
is off, it is stopped.4 Now suppose that each robot would like to reach its goal as
quickly as possible. This means each would like to minimize the total amount of
time that it is off. In this example, there appears to be only two sensible choices:
1) A1 stays on and moves straight to its goal while A2 is off just long enough
to let A1 pass, and then moves to its goal. 2) The opposite situation occurs, in
which A2 stays on and A1 must wait. Note that when a robot waits, there are
multiple locations at which it can wait and still yield the same time to reach the
goal. The only important information is how long the robot was off.

Thus, the two interesting plans are that either A2 is off for some amount of
time, toff > 0, or A1 is off for time toff . Consider a vector of costs of the form
(L1, L2), in which each component represents the cost for each robot. The costs
of the plans could be measured in terms of time wasted by waiting. This yields

4This model allows infinite acceleration. Imagine that the speeds are slow enough to allow
this approximation. If this is still not satisfactory, then jump ahead to Chapter 13.
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(0, toff ) and (toff , 0) for the cost vectors associated with the two plans (we could
equivalently define cost to be the total time traveled by each robot; the time
on is the same for both robots and can be subtracted from each for this simple
example). The two plans are better than or equivalent to any others. Plans with
this property are called Pareto optimal (or nondominated). For example, if A2

waits 1 second too long for A1 to pass, then the resulting costs are (0, toff + 1),
which is clearly worse than (0, toff ). The resulting plan is not Pareto optimal.
More details on Pareto optimality appear in Section 9.1.1.

Another way to solve the problem is to scalarize the costs by mapping them
to a single value. For example, we could find plans that optimize the average
wasted time. In this case, one of the two best plans would be obtained, yield-
ing toff average wasted time. However, no information is retained about which
robot had to make the sacrifice. Scalarizing the costs usually imposes some kind
of artificial preference or prioritization among the robots. Ultimately, only one
plan can be chosen, which might make it seem inappropriate to maintain multiple
solutions. However, finding and presenting the alternative Pareto-optimal solu-
tions could provide valuable information if, for example, these robots are involved
in a complicated application that involves many other time-dependent processes.
Presenting the Pareto-optimal solutions is equivalent to discarding all of the worse
plans and showing the best alternatives. In some applications, priorities between
robots may change, and if a scheduler of robots has access to the Pareto-optimal
solutions, it is easy to change priorities by switching between Pareto-optimal plans
without having to generate new plans each time.

Now the Pareto-optimality concept will be made more precise and general.
Suppose there are m robots, A1, . . ., Am. Let γ refer to a motion plan that
gives the paths and timing functions for all robots. For each Ai, let Li denote
its cost functional, which yields a value Li(γ) ∈ [0,∞] for a given plan, γ. An
m-dimensional vector, L(γ), is defined as

L(γ) = (L1(γ), L2(γ), . . . , Lm(γ)). (7.28)

Two plans, γ and γ′, are called equivalent if L(γ) = L(γ′). A plan γ is said
to dominate a plan γ′ if they are not equivalent and Li(γ) ≤ Li(γ

′) for all i
such that 1 ≤ i ≤ m. A plan is called Pareto optimal if it is not dominated
by any others. Since many Pareto-optimal plans may be equivalent, the task is
to determine one representative from each equivalence class. This will be called
finding the unique Pareto-optimal plans. For the example in Figure 7.42, there
are two unique Pareto-optimal plans, which were already given.

Scalarization For the motion planning problem, a Pareto-optimal solution is
also optimal for a scalar cost functional that is constructed as a linear combination
of the individual costs. Let α1, . . ., αm be positive real constants, and let

l(γ) =
m
∑

i=1

αiLi(γ). (7.29)
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It is easy to show that any plan that is optimal with respect to (7.29) is also a
Pareto-optimal solution [309]. If a Pareto optimal solution is generated in this
way, however, there is no easy way to determine what alternatives exist.

Computing Pareto-optimal plans Since optimization for one robot is already
very difficult, it may not be surprising that computing Pareto-optimal plans is even
harder. For some problems, it is even possible that a continuum of Pareto-optimal
solutions exist (see Example 9.3), which is very discouraging. Fortunately, for the
problem of coordinating robots on topological graphs, as considered in Section
7.2.2, there is only a finite number of solutions [197]. A grid-based algorithm,
which is based on dynamic programming and computes all unique Pareto-optimal
coordination plans, is presented in [309]. For the special case of two polygonal
robots moving on a tree of piecewise-linear paths, a complete algorithm is pre-
sented in [114].

Further Reading

This chapter covered some of the most direct extensions of the basic motion planning
problem. Extensions that involve uncertainties are covered throughout Part III, and
the introduction of differential constraints to motion planning is the main focus of Part
IV. Numerous other extensions can be found by searching through robotics research
publications or the Internet.

The treatment of time-varying motion planning in Section 7.1 assumes that all
motions are predictable. Most of the coverage is based on early work [80, 260, 410, 411];
other related work includes [185, 186, 278, 408, 438, 445]. To introduce uncertainties into
this scenario, see Chapter 10. The logic-based representations of Section 2.4 have been
extended to temporal logics to allow time-varying aspects of discrete planning problems
(see Part IV of [193]).

For more on multiple-robot motion planning, see [10, 27, 32, 165, 166, 177, 182, 209,
309, 396, 441]. Closely related is the problem of planning for modular reconfigurable
robots [97, 112, 196, 290, 484]. In both contexts, nonpositive curvature (NPC) is an
important condition that greatly simplifies the structure of optimal paths [76, 196, 197].
For points moving on a topological graph, the topology of Cfree is described in [3]. Over
the last few years there has also been a strong interest in the coordination of a team or
swarm of robots [85, 121, 149, 157, 160, 173, 180, 349].

The complexity of assembly planning is studied in [203, 264, 379, 475]. The problem
is generally NP-hard; however, for some special cases, polynomial-time algorithms have
been developed [7, 219, 476, 477]. Other works include [100, 217, 233, 236, 285].

Hybrid systems have attracted widespread interest over the past decade. Most of
this work considers how to design control laws for piecewise-smooth systems [74, 325].
Early sources of hybrid control literature appear in [210]. The manipulation planning
framework of Section 7.3.2 is based on [11, 12, 86]. The manipulation planning frame-
work presented in this chapter ignores grasping issues. For analyses and algorithms for
grasping, see [142, 251, 352, 397, 402, 403, 414, 415, 455]. Manipulation on a microscopic
scale is considered in [70].
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A1

A2

Figure 7.43: Two translating robots moving along piecewise-linear paths.

To read beyond Section 7.4 on sampling-based planning for closed kinematic chains,
see [133, 135, 222, 479]. A complete planner for some closed chains is presented in [363].
For related work on inverse kinematics, see [162, 360]. The power of redundant degrees
of freedom in robot systems was shown in [81].

Section 7.5 is a synthesis of several applications. The application of motion planning
techniques to problems in computational biology is a booming area; see [18, 19, 26, 134,
263, 305, 308, 342, 488] for some representative papers. The knot-planning coverage is
based on [298]. The box-folding presentation is based on [348]. A robotic system and
planning technique for creating origami is presented in [46].

The coverage planning methods presented in Section 7.6 are based on [119] and
[187, 188]. A survey of coverage planning appears in [117]. Other references include
[4, 5, 84, 189, 228, 243, 478]. For discrete environments, approximation algorithms for
the problem of optimally visiting all states in a goal set (the orienteering problem) are
presented and analyzed in [64, 102].

Beyond two dimensions, optimal motion planning is extremely difficult. See Section
8.5.2 for dynamic programming-based approximations. See [115, 393] for approximate
shortest paths in R3. The weighted region problem is considered in [372, 373]. Pareto-
optimal coordination is considered in [114, 197, 309].

Exercises

1. Consider the obstacle region, (7.1), in the state space for time-varying motion
planning.

(a) To ensure that Xobs is polyhedral, what kind of paths should be allowed?
Show how the model primitives Hi that define O are expressed in general,
using t as a parameter.

(b) Repeat the exercise, but for ensuring that Xobs is semi-algebraic.

2. Propose a way to adapt the sampling-based roadmap algorithm of Section 5.6 to
solve the problem of time-varying motion planning with bounded speed.

3. Develop an efficient algorithm for computing the obstacle region for two translat-
ing polygonal robots that each follow a linear path.

4. Sketch the coordination space for the two robots moving along the fixed paths
shown in Figure 7.43.
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5. Suppose there are two robots, and each moves on its own roadmap of three paths.
The paths in each roadmap are arranged end-to-end in a triangle.

(a) Characterize the fixed-roadmap coordination space that results, including a
description of its topology.

(b) Now suppose there are n robots, each on a triangular roadmap, and charac-
terize the fixed-roadmap coordination space.

6. Consider the state space obtained as the Cartesian product of the C-spaces of n
identical robots. Suppose that each robot is labeled with a unique integer. Show
that X can be partitioned nicely into n! regions in which Xobs appears identical
and the only difference is the labels (which indicate the particular robots that are
in collision).

7. Suppose there are two robots, and each moves on its own roadmap of three paths.
The paths in one roadmap are arranged end-to-end in a triangle, and the paths
in the other are arranged as a Y. Characterize the fixed-roadmap coordination
space that results, including a description of its topology.

8. Design an efficient algorithm that takes as input a graph representation of the
connectivity of a linkage and computes an active-passive decomposition. Assume
that all links are revolute. The algorithm should work for either 2D or 3D linkages
(the dimension is also an input). Determine the asymptotic running time of your
algorithm.

9. Consider the problem of coordinating the motion of two robots that move along
precomputed paths but in the presence of predictable moving obstacles. Develop
a planning algorithm for this problem.

10. Consider a manipulator in W = R2 made of four links connected in a chain by
revolute joints. There is unit distance between the joints, and the first joint is
attached at (0, 0) in W = R2. Suppose that the end of the last link, which is
position (1, 0) in its body frame, is held at (0, 2) ∈ W.

(a) Use kinematics expressions to express the closure constraints for a configu-
ration q ∈ C.

(b) Convert the closure constraints into polynomial form.

(c) Use differentiation to determine the constraints on the allowable velocities
that maintain closure at a configuration q ∈ C.

Implementations

11. Implement the vertical decomposition algorithm to solve the path-tuning problem,
as shown in Figure 7.5.

12. Use grid-based sampling and a search algorithm to compute collision-free motions
of three robots moving along predetermined paths.
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13. Under the conditions of Exercise 12, compute Pareto-optimal coordination strate-
gies that optimize the time (number of stages) that each robot takes to reach its
goal. Design a wavefront propagation algorithm that keeps track of the com-
plete (ignoring equivalent strategies) set of minimal Pareto-optimal coordination
strategies at each reached state. Avoid storing entire plans at each discretized
state.

14. To gain an appreciation of the difficulties of planning for closed kinematic chains,
try motion planning for a point on a torus among obstacles using only the implicit
torus constraint given by (6.40). To simplify collision detection, the obstacles can
be a collection of balls in R3 that intersect the torus. Adapt a sampling-based
planning technique, such as the bidirectional RRT, to traverse the torus and solve
planning problems.

15. Implement the spanning-tree coverage planning algorithm of Section 7.6.

16. Develop an RRT-based planning algorithm that causes the robot to chase an
unpredictable moving target in a planar environment that contains obstacles.
The algorithm should run quickly enough so that replanning can occur during
execution. The robot should execute the first part of the most recently computed
path while simultaneously computing a better plan for the next time increment.

17. Modify Exercise 16 so that the robot assumes the target follows a predictable,
constant-velocity trajectory until some deviation is observed.

18. Show how to handle unexpected obstacles by using a fast enough planning algo-
rithm. For simplicity, suppose the robot is a point moving in a polygonal obstacle
region. The robot first computes a path and then starts to execute it. If the
obstacle region changes, then a new path is computed from the robot’s current
position. Use vertical decomposition or another algorithm of your choice (pro-
vided it is fast enough). The user should be able to interactively place or move
obstacles during plan execution.

19. Use the manipulation planning framework of Section 7.3.2 to develop an algorithm
that solves the famous Towers of Hanoi problem by a robot that carries the rings
[86]. For simplicity, suppose a polygonal robot moves polygonal parts in W = R2

and rotation is not allowed. Make three pegs, and initially place all parts on
one peg, sorted from largest to smallest. The goal is to move all of the parts to
another peg while preserving the sorting.

20. Use grid-based approximation to solve optimal planning problems for a point
robot in the plane. Experiment with using different neighborhoods and metrics.
Characterize the combinations under which good and bad approximations are
obtained.



Chapter 8

Feedback Motion Planning

So far in Part II it has been assumed that a continuous path sufficiently solves
a motion planning problem. In many applications, such as computer-generated
animation and virtual prototyping, there is no need to challenge this assumption
because models in a virtual environment usually behave as designed. In applica-
tions that involve interaction with the physical world, future configurations may
not be predictable. A traditional way to account for this in robotics is to use the
refinement scheme that was shown in Figure 1.19 to design a feedback control law
that attempts to follow the computed path as closely as possible. Sometimes this
is satisfactory, but it is important to recognize that this approach is highly de-
coupled. Feedback and dynamics are neglected in the construction of the original
path; the computed path may therefore not even be usable.

Section 8.1 motivates the consideration of feedback in the context of motion
planning. Section 8.2 presents the main concepts of this chapter, but only for the
case of a discrete state space. This requires less mathematical concepts than the
continuous case, making it easier to present feedback concepts. Section 8.3 then
provides the mathematical background needed to extend the feedback concepts
to continuous state spaces (which includes C-spaces). Feedback motion planning
methods are divided into complete methods, covered in Section 8.4, and sampling-
based methods, covered in Section 8.5.

8.1 Motivation

For most problems involving the physical world, some form of feedback is needed.
This means the actions of a plan should depend in some way on information
gathered during execution. The need for feedback arises from the unpredictability
of future states. In this chapter, every state space will be either discrete, orX = C,
which is a configuration space as considered in Chapter 4.

Two general ways to model uncertainty in the predictability of future states
are

1. Explicitly: Develop models that explicitly account for the possible ways
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Open Loop Feedback
Free motions Traditional motion planning Chapter 8

Dynamics Chapters 14 and 15 Traditional control theory

Figure 8.1: By separating the issue of dynamics from feedback, two less-
investigated topics emerge.

that the actual future state can drift away from the planned future state. A
planning algorithm must take this uncertainty directly into account. Such
explicit models of uncertainty are introduced and incorporated into the plan-
ning model in Part III.

2. Implicitly: The model of state transitions indicates that no uncertainty is
possible; however, a feedback plan is constructed to ensure that it knows
which action to apply, just in case it happens to be in some unexpected
state during execution. This approach is taken in this chapter.

The implicit way to handle this uncertainty may seem strange at first; therefore,
some explanation is required. It will be seen in Part III that explicitly mod-
eling uncertainty is extremely challenging and complicated. The requirements
for expressing reliable models are much stronger; the complexity of the problem
increases, making algorithm design more difficult and leading to greater opportu-
nities to make modeling errors. The implicit way of handling uncertainty in pre-
dictability arose in control theory [63, 66, 356]. It is well known that a feedback
control law is needed to obtain reliable performance, yet it is peculiar that the for-
mulation of dynamics used in most contexts does not explicitly account for this.
Classical control theory has always assumed that feedback is crucial; however,
only in modern branches of the field, such as stochastic control and robust control,
does this uncertainty get explicitly modeled. Thus, there is a widely accepted and
successful practice of designing feedback control laws that use state feedback to
implicitly account for the fact that future states may be unpredictable. Given the
widespread success of this control approach across numerous applications over the
past century, it seems valuable to utilize this philosophy in the context of motion
planning as well (if you still do not like it, then jump to Chapter 10).

Due to historical reasons in the development of feedback control, it often seems
that feedback and dynamics are inseparable. This is mainly because control theory
was developed to reliably alter the behavior of dynamical systems. In traditional
motion planning, neither feedback nor dynamics is considered. A solution path
is considered open loop, which means there is no feedback of information during
execution to close the loop. Dynamics are also not handled because the additional
complications of differential constraints and higher dimensional phase spaces arise
(see Part IV).

By casting history aside and separating feedback from dynamics, four separate
topics can be made, as shown in Figure 8.1. The topic of open-loop planning that
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involves dynamics has received increasing attention in recent years. This is the
focus throughout most of Part IV. Those fond of classical control theory may
criticize it for failing to account for feedback; however, such open-loop trajectories
(paths in a phase space) are quite useful in applications that involve simulations.
Furthermore, a trajectory that accounts for dynamics is more worthwhile in a
decoupled approach than using a path that ignores dynamics, which has been an
acceptable practice for decades. These issues will be elaborated upon further in
Part IV.

The other interesting topic that emerges in Figure 8.1 is to develop feedback
plans for problems in which there are no explicit models of dynamics or other
differential constraints. If it was reasonable to solve problems in classical motion
planning by ignoring differential constraints, one should certainly feel no less guilty
designing feedback motion plans that still neglect differential constraints.1 This
uses the implicit model of uncertainty in predictability without altering any of the
other assumptions previously applied in traditional motion planning.

Even if there are no unpredictability issues, another important use of feedback
plans is for problems in which the initial state is not known. A feedback plan
indicates what action to take from every state. Therefore, the specification of
an initial condition is not important. The analog of this in graph algorithms is
the single-destination shortest-path problem, which indicates how to arrive at a
particular vertex optimally from any other vertex. Due to this connection, the
next section presents feedback concepts for discrete state spaces, before extending
the ideas to continuous spaces, which are needed for motion planning.

For these reasons, feedback motion planning is considered in this chapter. As
a module in a decoupled approach used in robotics, feedback motion plans are at
least as useful as a path computed by the previous techniques. We expect feedback
solutions to be more reliable in general, when used in the place of open-loop paths
computed by traditional motion planning algorithms.

8.2 Discrete State Spaces

This section is provided mainly to help to explain similar concepts that are coming
in later sections. The presentation is limited to discrete spaces, which are much
simpler to formulate and understand. Following this, an extension to configuration
spaces and other continuous state spaces can be made. The discussion here is also
relevant background for the feedback planning concepts that will be introduced in
Section 8.4.1. In that case, uncertainty will be explicitly modeled. The resulting
formulation and concepts can be considered as an extension of this section.

1Section 8.4.4 will actually consider some simple differential constraints, such as acceleration
bounds; the full treatment of differential constraints is deferred until Part IV.
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8.2.1 Defining a Feedback Plan

Consider a discrete planning problem similar to the ones defined in Formulations
2.1 and 2.3, except that the initial state is not given. Due to this, the cost
functional cannot be expressed only as a function of a plan. It is instead defined
in terms of the state history and action history. At stage k, these are defined as

x̃k = (x1, x2, . . . , xk) (8.1)

and
ũk = (u1, u2, . . . , uk), (8.2)

respectively. Sometimes, it will be convenient to alternatively refer to x̃k as the
state trajectory.

The resulting formulation is

Formulation 8.1 (Discrete Optimal Feedback Planning)

1. A finite, nonempty state space X.

2. For each state, x ∈ X, a finite action space U(x).

3. A state transition function f that produces a state, f(x, u) ∈ X, for every
x ∈ X and u ∈ U(x). Let U denote the union of U(x) for all x ∈ X.

4. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely.

5. A goal set, XG ⊂ X.

6. Let L denote a stage-additive cost functional,

L(x̃F , ũK) =
K
∑

k=1

l(xk, uk) + lF (xF ), (8.3)

in which F = K + 1.

There is one other difference in comparison to the formulations of Chapter 2. The
state space is assumed here to be finite. This facilitates the construction of a
feedback plan, but it is not necessary in general.

Consider defining a plan that solves Formulation 8.1. If the initial condition
is given, then a sequence of actions could be specified, as in Chapter 2. Without
having the initial condition, one possible approach is to determine a sequence of
actions for each possible initial state, x1 ∈ X. Once the initial state is given, the
appropriate action sequence is known. This approach, however, wastes memory.
Suppose some x is given as the initial state and the first action is applied, leading
to the next state x′. What action should be applied from x′? The second action
in the sequence at x can be used; however, we can also imagine that x′ is now the
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initial state and use its first action. This implies that keeping an action sequence
for every state is highly redundant. It is sufficient at each state to keep only the
first action in the sequence. The application of that action produces the next
state, at which the next appropriate action is stored. An execution sequence can
be imagined from an initial state as follows. Start at some state, apply the action
stored there, arrive at another state, apply its action, arrive at the next state, and
so on, until the goal is reached.

It therefore seems appropriate to represent a feedback plan as a function that
maps every state to an action. Therefore, a feedback plan π is defined as a function
π : X → U . From every state, x ∈ X, the plan indicates which action to apply.
If the goal is reached, then the termination action should be applied. This is
specified as part of the plan: π(x) = uT , if x ∈ XG. A feedback plan is called a
solution to the problem if it causes the goal to be reached from every state that
is reachable from the goal.

If an initial state x1 and a feedback plan π are given, then the state and action
histories can be determined. This implies that the execution cost, (8.3), also can
be determined. It can therefore be alternatively expressed as L(π, x1), instead of
L(x̃F , ũK). This relies on future states always being predictable. In Chapter 10,
it will not be possible to make this direct correspondence due to uncertainties (see
Section 10.1.3).

Feasibility and optimality The notions of feasible and optimal plans need to
be reconsidered in the context of feedback planning because the initial condition
is not given. A plan π is called a solution to the feasible planning problem if
from every x ∈ X from which XG is reachable the goal set is indeed reached by
executing π from x. This means that the cost functional is ignored (an alternative
to Formulation 8.1 can be defined in which the cost functional is removed). For
convenience, π will be called a feasible feedback plan.

Now consider optimality. From a given state x, it is clear that an optimal plan
exists using the concepts of Section 2.3. Is it possible that a different optimal plan
needs to be associated with every x ∈ X that can reach XG? It turns out that
only one plan is needed to encode optimal paths from every initial state to XG.
Why is this true? Suppose that the optimal cost-to-go is computed over X using
Dijkstra’s algorithm or value iteration, as covered in Section 2.3. Every cost-to-
go value at some x ∈ X indicates the cost received under the implementation
of the optimal open-loop plan from x. The first step in this optimal plan can
be determined by (2.19), which yields a new state x′ = f(x, u). From x′, (2.19)
can be applied once again to determine the next optimal action. The cost at x′

represents both the optimal cost-to-go if x′ is the initial condition and also the
optimal cost-to-go when continuing on the optimal path from x. The two must
be equivalent because of the dynamic programming principle. Since all such costs
must coincide, a single feedback plan can be used to obtain the optimal cost-to-go
from every initial condition.
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xG uT

(a) (b)

Figure 8.2: a) A 2D grid-planning problem. b) A solution feedback plan.

A feedback plan π is therefore defined as optimal if from every x ∈ X, the total
cost, L(π, x), obtained by executing π is the lowest among all possible plans. The
requirement that this holds for every initial condition is important for feedback
planning.

Example 8.1 (Feedback Plan on a 2D Grid) This example uses the 2D grid
model explained in Example 2.1. A robot moves on a grid, and the possible actions
are up (↑), down (↓), left (←), right (→), and terminate (uT ); some directions
are not available from some states. A solution feedback plan is depicted in Figure
8.2. Many other possible solutions plans exist. The one shown here happens to
be optimal in terms of the number of steps to the goal. Some alternative feedback
plans are also optimal (figure out which arrows can be changed). To apply the
plan from any initial state, simply follow the arrows to the goal. In each stage,
the application of the action represented by the arrow leads to the next state. The
process terminates when uT is applied at the goal. �

8.2.2 Feedback Plans as Navigation Functions

It conveniently turns out that tools for computing a feedback plan were already
given in Chapter 2. Methods such as Dijkstra’s algorithm and value iteration
produce information as a side effect that can be used to represent a feedback
plan. This section explains how this information is converted into a feedback
plan. To achieve this, a feedback plan will be alternatively expressed as a potential
function over the state space (recall potential functions from Section 5.4.3). The
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potential values are computed by planning algorithms and can be used to recover
the appropriate actions during execution. In some cases, an optimal feedback plan
can even be represented using potential functions.

Navigation functions Consider a (discrete) potential function, defined as φ :
X → [0,∞]. The potential function can be used to define a feedback plan through
the use of a local operator, which is a function that selects the action that reduces
the potential as much as possible. First, consider the case of a feasible planning
problem. The potential function, φ, defines a feedback plan by selecting u through
the local operator,

u∗ = argmin
u∈U(x)

{

φ(f(x, u))
}

, (8.4)

which means that u∗ ∈ U(x) is chosen to reduce φ as much as possible. The local
operator yields a kind of greedy descent of the potential. Note that the action
u∗ may not be unique. In the continuous-space analog to this, the corresponding
local operator performs a descent along the negative gradient (often referred to
as gradient descent).

In the case of optimal planning, the local operator is defined as

u∗ = argmin
u∈U(x)

{

l(x, u) + φ(f(x, u))
}

, (8.5)

which looks similar to the dynamic programming condition, (2.19). It becomes
identical to (2.19) if φ is interpreted as the optimal cost-to-go. A simplification of
(8.5) can be made if the planning problem is isotropic, which means that the cost
is the same in every direction: l(x, u) = l(x, u′) for all u, u′ ∈ U(x) \ {uT}. In this
case, the cost term l(x, u) does not affect the minimization in (8.5). A common
example in which this assumption applies is if the cost functional counts the
number of stages required to reach the goal. The costs of particular actions chosen
along the way are not important. Using the isotropic property, (8.5) simplifies
back to (8.4).

When is a potential function useful? Many useless potential functions can be
defined that fail to reach the goal, or cause states to cycle indefinitely, and so
on. The most desirable potential function is one that for any initial state causes
arrival in XG, if it is reachable. This requires only a few simple properties. A
potential function that satisfies these will be called a navigation function.2

Suppose that the cost functional is isotropic. Let x′ = f(x, u∗), which is the
state reached after applying the action u∗ ∈ U(x) that was selected by (8.4). A
potential function, φ, is called a (feasible) navigation function if

1. φ(x) = 0 for all x ∈ XG.

2This term was developed for continuous configuration spaces in [284, 416]; it will be used
more broadly in this book but still retains the basic idea.

380 S. M. LaValle: Planning Algorithms

1

1

1

1

2 2

22

2 2

3 3

3 3 4 5 6 7

7 8

8

8

9

9

9

10

10

10

11

11

11

0

12

12

12

12

13

13

13

1314

14

14

14

15

15

15

15 16

16

16

1617

17

17 17

18

18

18

19

19

19

20

20

2021

21 212222

Figure 8.3: The cost-to-go values serve as a navigation function.

2. φ(x) =∞ if and only if no point in XG is reachable from x.

3. For every reachable state, x ∈ X \XG, the local operator produces a state
x′ for which φ(x′) < φ(x).

The first condition requires the goal to have zero potential (this condition is actu-
ally not necessary but is included for convenience). The second condition requires
that∞ serves as a special indicator that the goal is not reachable from some state.
The third condition means that the potential function has no local minima except
at the goal. This means that the execution of the resulting feedback plan will
progress without cycling and the goal region will eventually be reached.

An optimal navigation function is defined as the optimal cost-to-go, G∗. This
means that in addition to the three properties above, the navigation function must
also satisfy the principle of optimality:

φ(x) = min
u∈U(x)

{

l(x, u) + φ(f(x, u))
}

, (8.6)

which is just (2.18) with G∗ replaced by φ. See Section 15.2.1 for more on this
connection.

Example 8.2 (Navigation Function on a 2D Grid) Return to the planning
problem in Example 8.1. Assume that an isotropic cost model is used: l(x, u) = 1
if u 6= uT . Figure 8.3 shows a navigation function. The numbers shown in the
tiles represent φ. Verify that φ satisfies the three requirements for a navigation
function.

At any state, an action is applied that reduces the potential value. This
corresponds to selecting the action using (8.4). The process may be repeated from
any state until XG is reached. This example clearly illustrates how a navigation
function can be used as an alternative definition of a feedback plan. �
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Example 8.3 (Airport Terminal) You may have found yourself using a nav-
igation function to find the exit after arriving in an unfamiliar airport terminal.
Many terminals are tree-structured, with increasing gate numbers as the distance
to the terminal exit increases. If you wish to leave the terminal, you should nor-
mally walk toward the lower numbered gates. �

Computing navigation functions There are many ways to compute naviga-
tion functions. The cost-to-go function determined by Dijkstra’s algorithm work-
ing backward from XG yields an optimal navigation function. The third condition
of a navigation function under the anisotropic case is exactly the stationary dy-
namic programming equation, (2.18), if the navigation function φ is defined as the
optimal cost-to-go G∗. It was mentioned previously that the optimal actions can
be recovered using only the cost-to-go. This was actually an example of using a
navigation function, and the resulting procedure could have been considered as a
feedback plan.

If optimality is not important, then virtually any backward search algorithm
from Section 2.2 can be used, provided that it records the distance to the goal
from every reached state. The distance does not have to be optimal. It merely
corresponds to the cost obtained if the current vertex in the search tree is traced
back to the root vertex (or back to any vertex in XG, if there are multiple goal
states).

If the planning problem does not even include a cost functional, as in Formu-
lation 2.1, then a cost functional can be invented for the purposes of constructing
a navigation function. At each x ∈ X from which XG is reachable, the number
of edges in the search graph that would be traversed from x to XG can be stored
as the cost. If Dijkstra’s algorithm is used to construct the navigation function,
then the resulting feedback plan yields executions that are shortest in terms of
the number of stages required to reach the goal.

The navigation function itself serves as the representation of the feedback
plan, by recovering the actions from the local operator. Thus, a function, π :
X → U , can be recovered from a navigation function, φ : X → [0,∞]. Likewise,
a navigation function, φ, can be constructed from π. Therefore, the π and φ can
be considered as interchangeable representations of feedback plans.

8.2.3 Grid-Based Navigation Functions for Motion Plan-
ning

To consider feedback plans for continuous spaces, vector fields and other basic
definitions from differential geometry will be needed. These will be covered in
Section 8.3; however, before handling such complications, we first will describe
how to use the ideas presented so far in Section 8.2 as a discrete approximation
to feedback motion planning.
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WAVEFRONT PROPAGATION ALGORITHM

1. Initialize W0 = XG; i = 0.

2. Initialize Wi+1 = ∅.

3. For every x ∈ Wi, assign φ(x) = i and insert all unexplored neighbors of x
into Wi+1.

4. If Wi+1 = ∅, then terminate; otherwise, let i := i+ 1 and go to Step 2.

Figure 8.4: The wavefront propagation algorithm is a specialized version of Dijk-
stra’s algorithm that optimizes the number of stages to reach the goal.

Examples 8.1 and 8.2 have already defined feedback plans and navigation func-
tions for 2D grids that contain obstacles. Imagine that this model is used to ap-
proximate a motion planning problem for which C ⊂ R2. Section 5.4.2 showed
how to make a topological graph that approximates the motion planning prob-
lem with a grid of samples. The motions used in Example 8.1 correspond to the
1-neighborhood definition, (5.37). This idea was further refined in Section 7.7.1
to model approximate optimal motion planning by moving on a grid; see Formu-
lation 7.4. By choosing the Manhattan motion model, as defined in Example 7.4,
a grid with the same motions considered in Example 8.1 is produced.

To construct a navigation function that may be useful in mobile robotics, a
high-resolution (e.g., 50 to 100 points per axis) grid is usually required. In Section
5.4.2, only a few points per axis were needed because feedback was not assumed.
It was possible in some instances to find a collision-free path by investigating only
a few points per axis. During the execution of a feedback plan, it is assumed
that the future states of the robot are not necessarily predictable. Wherever the
robot may end up, the navigation function in combination with the local operator
must produce the appropriate action. If the current state (or configuration) is
approximated by a grid, then it is important to reduce the approximation error
as much as possible. This is accomplished by setting the grid resolution high. In
the feedback case, the grid can be viewed as “covering” the whole configuration
space, whereas in Section 5.4.2 the grid only represented a topological graph of
paths that cut across the space.3

Wavefront propagation algorithms Once the approximation has been made,
any of the methods discussed in Section 8.2.2 can be used to compute a navigation
function. An optimal navigation function can be easily computed using Dijkstra’s

3Difficulty in distinguishing between these two caused researchers for many years to believe
that grids yield terrible performance for the open-loop path planning problems of Chapter 5.
This was mainly because it was assumed that a high-resolution grid was necessary. For many
problems, however, they could terminate early after only considering a few points per axis.
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algorithm from the goal. If each motion has unit cost, then a useful simplification
can be made. Figure 8.4 describes a wavefront propagation algorithm that com-
putes an optimal navigation function. It can be considered as a special case of
Dijkstra’s algorithm that avoids explicit construction of the priority queue. In Di-
jkstra’s algorithm, the cost of the smallest element in the queue is monotonically
nondecreasing during the execution of the algorithm. In the case of each motion
having unit cost, there will be many states in the queue that have the same cost.
Dijkstra’s algorithm could remove in parallel all elements that have the same,
smallest cost. Suppose the common, smallest cost value is i. These states are
organized into a wavefront, Wi. The initial wavefront is W0, which represents the
states in XG. The algorithm can immediately assign an optimal cost-to-go value
of 1 to every state that can be reached in one stage from any state in W0. These
must be optimal because no other cost value is optimal. The states that receive
cost 1 can be organized into the wavefront W1. The unexplored neighbors of W1

are assigned cost 2, which also must be optimal. This process repeats inductively
from i to i+1 until all reachable states have been reached. In the end, the optimal
cost-to-go is computed in O(n) time, in which n is the number of reachable grid
states. For any states that were not reached, the value φ(x) =∞ can be assigned.
The navigation function shown in Figure 8.3 can actually be computed using the
wavefront propagation algorithm.

Maximum clearance One problem that typically arises in mobile robotics is
that optimal motion plans bring robots too close to obstacles. Recall from Section
6.2.4 that the shortest Euclidean paths for motion planning in a polygonal envi-
ronment must be allowed to touch obstacle vertices. This motivated the maximum
clearance roadmap, which was covered in Section 6.2.3. A grid-based approximate
version of the maximum clearance roadmap can be made. Furthermore, a naviga-
tion function can be defined that guides the robot onto the roadmap, then travels
along the roadmap, and finally deposits the robot at a specified goal. In [304], the
resulting navigation function is called NF2.

Assume that there is a single goal state, xG ∈ X. The computation of a
maximum clearance navigation function proceeds as follows:

1. Instead of XG, assign W0 to be the set of all states from which motion in at
least one direction is blocked. These are the states on the boundary of the
discretized collision-free space.

2. Perform wavefront iterations that propagate costs in waves outward from
the obstacle boundaries.

3. As the wavefronts propagate, they will meet approximately at the location of
the maximum clearance roadmap for the original, continuous problem. Mark
any state at which two wavefront points arrive from opposing directions as
a skeleton state. It may be the case that the wavefronts simply touch each
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other, rather than arriving at a common state; in this case, one of the two
touching states is chosen as the skeleton state. Let S denote the set of all
skeleton states.

4. After the wavefront propagation ends, connect xG to the skeleton by insert-
ing xG and all states along the path to the skeleton into S. This path can
be found using any search algorithm.

5. Compute a navigation function φ1 over S by treating all other states as if
they were obstacles and using the wavefront propagation algorithm. This
navigation function guides any point in S to the goal.

6. Treat S as a goal region and compute a navigation function φ2 using the
wavefront propagation algorithm. This navigation function guides the state
to the nearest point on the skeleton.

7. Combine φ1 and φ2 as follows to obtain φ. For every x ∈ S, let φ(x) = φ1(x).
For every remaining state, the value φ(x) = φ1(x

′) + φ2(x) is assigned, in
which x′ is the nearest state to x such that x′ ∈ S. The state x′ can easily
be recorded while φ2 is computed.

If Cfree is multiply connected, then there may be multiple ways to each xG by
traveling around different obstacles (the paths are not homotopic). The method
described above does not take into account the problem that one route may have
a tighter clearance than another. The given approach only optimizes the distance
traveled along the skeleton; it does not, however, maximize the nearest approach
to an obstacle, if there are multiple routes.

Dial’s algorithm Now consider generalizing the wavefront propagation idea.
Wavefront propagation can be applied to any discrete planning problem if l(x, u) =
1 for any x ∈ X and u ∈ U(x) (except u = uT ). It is most useful when the
transition graph is sparse (imagine representing the transition graph using an
adjacency matrix). The grid problem is a perfect example where this becomes
important. More generally, if the cost terms assume integer values, then Dial’s
algorithm [148] results, which is a generalization of wavefront propagation, and
a specialization of Dijkstra’s algorithm. The idea is that the priority queue can
be avoided by assigning the alive vertices to buckets that correspond to different
possible cost-to-go values. In the wavefront propagation case, there are never
more than two buckets needed at a time. Dial’s algorithm allows all states in the
smallest cost bucket to be processed in parallel. The scheme was enhanced in
[460] to yield a linear-time algorithm.

Other extensions Several ideas from this section can be generalized to produce
other navigation functions. One disadvantage of the methods discussed so far is
that undesirable staircase motions (as shown in Figure 7.40) are produced. If the
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2-neighborhood, as defined in (5.38), is used to define the action spaces, then the
motions will generally be shorter. Dial’s algorithm can be applied to efficiently
compute an optimal navigation function in this case.

A grid approximation can be made to higher dimensional configuration spaces.
Since a high resolution is needed, however, it is practical only for a few dimensions
(e.g., 3 or 4). If the 1-neighborhood is used, then wavefront propagation can be
easily applied to compute navigation functions. Dial’s algorithm can be adapted
for general k-neighborhoods.

Constructing navigation functions over grids may provide a practical solution
in many applications. In other cases it may be unacceptable that staircase motions
occur. In many cases, it may not even be possible to compute the navigation
function quickly enough. Factors that influence this problem are 1) very high
accuracy, and a hence high-resolution grid may be necessary; 2) the dimension of
the configuration space may be high; and 3) the environment may be frequently
changing, and a real-time response is required. To address these issues, it is
appealing to abandon grid approximations. This will require defining potential
functions and velocities directly on the configuration space. Section 8.3 presents
the background mathematical concepts to make this transition.

8.3 Vector Fields and Integral Curves

To consider feedback motion plans over continuous state spaces, including con-
figuration spaces, we will need to define a vector field and the trajectory that is
obtained by integrating the vector field from an initial point. A vector field is
ideal for characterizing a feedback plan over a continuous state space. It can be
viewed as providing the continuous-space analog to the feedback plans on grids,
as shown in Figure 8.2b.

This section presents two alternative presentations of the background mathe-
matical concepts. Section 8.3.1 assumes that X = Rn, which leads to definitions
that appear very similar to those you may have learned in basic calculus and dif-
ferential equations courses. Section 8.3.2 covers the more general case of vector
fields on manifolds. This requires significantly more technical concepts and builds
on the manifold definitions of Section 4.1.2.

Some readers may have already had some background in differentiable man-
ifolds. If, however, you are seeing it for the first time, then it may be difficult
to comprehend on the first reading. In addition to rereading, here are two other
suggestions. First, try studying background material on this subject, which is
suggested at the end of the chapter. Second, disregard the manifold technicalities
in the subsequent sections and pretend that X = C = Rn. Nearly everything will
make sense without the additional technicalities. Imagine that a manifold is de-
fined as a cube, [0, 1]n, with some sides identified, as in Section 4.1.2. The concepts
that were presented for Rn can be applied everywhere except at the boundary of
the cube. For example, if S1 is defined as [0, 1]/ ∼, and a function f is defined on
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S1, how can we define the derivative at f(0)? The technical definitions of Section
8.3.2 fix this problem. Sometimes, the technicalities can be avoided in practice by
cleverly handling the identification points.

8.3.1 Vector Fields on Rn

This section revisits some basic concepts from introductory courses such as calcu-
lus, linear algebra, and differential equations. You may have learned most of these
for R2 and R3. We eventually want to describe velocities in Rn and on manifolds,
and then use the notion of a vector field to express a feedback plan in Section
8.4.1.

Vector spaces Before defining a vector field, it is helpful to be precise about
what is meant by a vector. A vector space (or linear space) is defined as a set,
V , that is closed under two algebraic operations called vector addition and scalar
multiplication and satisfies several axioms, which will be given shortly. The vector
space used in this section is Rn, in which the scalars are real numbers, and a vector
is represented as a sequence of n real numbers. Scalar multiplication multiplies
each component of the vector by the scalar value. Vector addition forms a new
vector by adding each component of two vectors.

A vector space V can be defined over any field F (recall the definition from
Section 4.4.1). The field F represents the scalars, and V represents the vectors.
The concepts presented below generalize the familiar case of the vector space Rn.
In this case, V = Rn and F = R. In the definitions that follow, you may make
these substitutions, if desired. We will not develop vector spaces that are more
general than this; the definitions are nevertheless given in terms of V and F to
clearly separate scalars from vectors. The vector addition is denoted by +, and the
scalar multiplication is denoted by ·. These operations must satisfy the following
axioms (a good exercise is to verify these for the case of Rn treated as a vector
space over the field R):

1. (Commutative Group Under Vector Addition) The set V is a com-
mutative group with respect to vector addition, +.

2. (Associativity of Scalar Multiplication) For any v ∈ V and any α, β ∈
F, α(βv) = (αβ)v.

3. (Distributivity of Scalar Sums) For any v ∈ V and any α, β ∈ F, (α +
β)v = αv + βv.

4. (Distributivity of Vector Sums) For any v, w ∈ V and any α ∈ F,
α(v + w) = αv + αw.

5. (Scalar Multiplication Identity) For any v ∈ V , 1v = v for the multi-
plicative identity 1 ∈ F.
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The first axiom allows vectors to be added in any order. The rest of the axioms
require that the scalar multiplication interacts with vectors in the way that we
would expect from the familiar vector space Rn over R.

A basis of a vector space V is defined as a set, v1,. . .,vn, of vectors for which
every v ∈ V can be uniquely written as a linear combination:

v = α1v1 + α2v2 + · · ·+ αnvn, (8.7)

for some α1, . . . , αn ∈ F. This means that every vector has a unique representation
as a linear combination of basis elements. In the case of R3, a familiar basis is
[0 0 1], [0 1 0], and [1 0 0]. All vectors can be expressed as a linear combination
of these three. Remember that a basis is not necessarily unique. From linear
algebra, recall that any three linearly independent vectors can be used as a basis
for R3. In general, the basis must only include linearly independent vectors. Even
though a basis is not necessarily unique, the number of vectors in a basis is the
same for any possible basis over the same vector space. This number, n, is called
the dimension of the vector space. Thus, we can call Rn an n-dimensional vector
space over R.

Example 8.4 (The Vector Space Rn Over R) As indicated already, Rn can
be considered as a vector space. A natural basis is the set of n vectors in which,
for each i ∈ {1, . . . , n}, a unit vector is constructed as follows. Let xi = 1 and
xj = 0 for all j 6= i. Since there are n basis vectors, Rn is an n-dimensional vector
space. The basis is not unique. Any set of n linearly independent vectors may be
used, which is familiar from linear algebra, in which nonsingular n × n matrices
are used to transform between them. �

To illustrate the power of these general vector space definitions, consider the
following example.

Example 8.5 (A Vector Space of Functions) The set of all continuous, real-
valued functions f : [0, 1]→ R, for which

∫ 1

0

f(x)dx (8.8)

is finite, forms a vector space over R. It is straightforward to verify that the vector
space axioms are satisfied. For example, if two functions f1 and f2 are added, the
integral remains finite. Furthermore, f1+f2 = f2+f1, and all of the group axioms
are satisfied with respect to addition. Any function f that satisfies (8.8) can be
multiplied by a scalar in R, and the integral remains finite. The axioms that
involve scalar multiplication can also be verified.

It turns out that this vector space is infinite-dimensional. One way to see this is
to restrict the functions to the set of all those for which the Taylor series exists and
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converges to the function (these are called analytic functions). Each function can
be expressed via a Taylor series as a polynomial that may have an infinite number
of terms. The set of all monomials, x, x2, x3, and so on, represents a basis. Every
continuous function can be considered as an infinite vector of coefficients; each
coefficient is multiplied by one of the monomials to produce the function. This
provides a simple example of a function space; with some additional definitions,
this leads to a Hilbert space, which is crucial in functional analysis, a subject that
characterizes spaces of functions [420, 422]. �

The remainder of this chapter considers only finite-dimensional vector spaces
over R. It is important, however, to keep in mind the basic properties of vector
spaces that have been provided.

Vector fields A vector field looks like a “needle diagram” over Rn, as depicted
in Figure 8.5. The idea is to specify a direction at each point p ∈ Rn. When used
to represent a feedback plan, it indicates the direction that the robot needs to
move if it finds itself at p.

For every p ∈ Rn, associate an n-dimensional vector space called the tangent
space at p, which is denoted as Tp(R

n). Why not just call it a vector space at
p? The use of the word “tangent” here might seem odd; it is motivated by the
generalization to manifolds, for which the tangent spaces will be “tangent” to
points on the manifold.

A vector field4 ~V on Rn is a function that assigns a vector v ∈ Tp(Rn) to every

p ∈ Rn. What is the range of this function? The vector ~V (p) at each p ∈ Rn

actually belongs to a different tangent space. The range of the function is therefore
the union

T (Rn) =
⋃

p∈Rn

Tp(R
n), (8.9)

which is called the tangent bundle on Rn. Even though the way we describe vectors
from Tp(R

n) may appear the same for any p ∈ Rn, each tangent space is assumed to
produce distinct vectors. To maintain distinctness, a point in the tangent bundle
can be expressed with 2n coordinates, by specifying p and v together. This will
become important for defining phase space concepts in Part IV. In the present
setting, it is sufficient to think of the range of ~V as Rn because Tp(R

n) = Rn for
every p ∈ Rn.

A vector field can therefore be expressed using n real-valued functions on Rn.
Let fi(x1, . . . , xn) for i from 1 to n denote such functions. Using these, a vector
field is specified as

f(x) = [f1(x1, . . . , xn) f2(x1, . . . , xn) · · · fn(x1, . . . , xn)]. (8.10)

4Unfortunately, the term field appears in two unrelated places: in the definition of a vector
space and in the term vector field. Keep in mind that this is an accidental collision of terms.
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Figure 8.5: (a) A constant vector field, f(x, y) = [1 1]. (b) A vector field,
f(x, y) = [−x − y] in which all vectors point to the origin.

In this case, it appears that a vector field is a function f from Rn into Rn. There-
fore, standard function notation will be used from this point onward to denote a
vector field.

Now consider some examples of vector fields over R2. Let a point in R2 be
represented as p = (x, y). In standard vector calculus, a vector field is often
specified as [f1(x, y) f2(x, y)], in which f1 and f2 are functions on R2

Example 8.6 (Constant Vector Field) Figure 8.5a shows a constant vector
field, which assigns the vector [1 2] to every (x, y) ∈ R2. �

Example 8.7 (Inward Flow) Figure 8.5b depicts a vector field that assigns
[−x − y] to every (x, y) ∈ R2. This causes all vectors to point to the ori-
gin. �

Example 8.8 (Swirl) The vector field in Figure 8.6 assigns [(y − x) (−x− y)]
to every (x, y) ∈ R2. �

Due to obstacles that arise in planning problems, it will be convenient to
sometimes restrict the domain of a vector field to an open subset of Rn. Thus, for
any open subset O ⊂ Rn, a vector field f : O → Rn can be defined.
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Figure 8.6: A swirling vector field, f(x, y) = [(y − x) (−x− y)].

Smoothness A function fi from a subset of Rn into R is called a smooth function
if derivatives of any order can be taken with respect to any variables, at any point
in the domain of fi. A vector field is said to be smooth if every one of its n defining
functions, f1, . . ., fn, is smooth. An alternative name for a smooth function is
a C∞ function. The superscript represents the order of differentiation that can
be taken. For a Ck function, its derivatives can be taken at least up to order k.
A C0 function is an alternative name for a continuous function. The notion of a
homeomorphism can be extended to a diffeomorphism, which is a homeomorphism
that is a smooth function. Two topological spaces are called diffeomorphic if there
exists a diffeomorphism between them.

Vector fields as velocity fields We now give a particular interpretation to
vector fields. A vector field expressed using (8.10) can be used to define a set of
first-order differential equations as

dx1
dt

= f1(x1, . . . , xn)

dx2
dt

= f2(x1, . . . , xn)

...

dxn
dt

= fn(x1, . . . , xn).

(8.11)
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Each equation represents the derivative of one coordinate with respect to time.
For any point x ∈ Rn, a velocity vector is defined as

dx

dt
=

[

dx1
dt

dx2
dt
· · · dxn

dt

]

. (8.12)

This enables f to be interpreted as a velocity field.
It is customary to use the short notation ẋ = dx/dt. Each velocity component

can be shortened to ẋi = dxi/dt. Using f to denote the vector of functions f1,
. . ., fn, (8.11) can be shorted to

ẋ = f(x). (8.13)

The use of f here is an intentional coincidence with the use of f for the state
transition equation. In Part IV, we will allow vector fields to be parameterized by
actions. This leads to a continuous-time state transition equation that looks like
ẋ = f(x, u) and is very similar to the transition equations defined over discrete
stages in Chapter 2.

The differential equations expressed in (8.11) are often referred to as au-
tonomous or stationary because f does not depend on time. A time-varying
vector field could alternatively be defined, which yields ẋ = f(x(t), t). This will
not be covered, however, in this chapter.

An integral curve If a vector field f is given, then a velocity vector is defined at
each point using (8.10). Imagine a point that starts at some x0 ∈ Rn at time t = 0
and then moves according to the velocities expressed in f . Where should it travel?
Its trajectory starting from x0 can be expressed as a function τ : [0,∞)→ Rn, in
which the domain is a time interval, [0,∞). A trajectory represents an integral
curve (or solution trajectory) of the differential equations with initial condition
τ(0) = x0 if

dτ

dt
(t) = f(τ(t)) (8.14)

for every time t ∈ [0,∞). This is sometimes expressed in integral form as

τ(t) = x0 +

∫ t

0

f(τ(s))ds (8.15)

and is called a solution to the differential equations in the sense of Caratheodory.
Intuitively, the integral curve starts at x0 and flows along the directions indicated
by the velocity vectors. This can be considered as the continuous-space analog of
following the arrows in the discrete case, as depicted in Figure 8.2b.

Example 8.9 (Integral Curve for a Constant Velocity Field) The simplest
case is a constant vector field. Suppose that a constant field x1 = 1 and x2 = 2
is defined on R2. The integral curve from (0, 0) is τ(t) = (t, 2t). It can be easily
seen that (8.14) holds for all t ≥ 0. �
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Example 8.10 (Integral Curve for a Linear Velocity Field) Consider a ve-
locity field on R2. Let ẋ1 = −2x1 and ẋ2 = −x2. The function τ(t) = (e−2t, e−t)
represents the integral curve from (1, 1). At t = 0, τ(0) = (1, 1), which is the
initial state. If can be verified that for all t > 0, (8.14) holds. This is a simple
example of a linear velocity field. In general, if each fi is a linear function of
the coordinate variables x1, . . ., xn, then a linear velocity field is obtained. The
integral curve is generally found by determining the eigenvalues of the matrix A
when the velocity field is expressed as ẋ = Ax. See [106] for numerous examples.
�

A basic result from differential equations is that a unique integral curve exists
to ẋ = f(x) if f is smooth. An alternative condition is that a unique solution exists
if f satisfies a Lipschitz condition. This means that there exists some constant
c ∈ (0,∞) such that

‖f(x)− f(x′)‖ ≤ c‖x− x′‖ (8.16)

for all x, x′ ∈ X, and ‖ · ‖ denotes the Euclidean norm (vector magnitude). The
constant c is often called a Lipschitz constant. Note that if f satisfies the Lipschitz
condition, then it is continuous. Also, if all partial derivatives of f over all of X
can be bounded by a constant, then f is Lipschitz. The expression in (8.16) is
preferred, however, because it is more general (it does not even imply that f is
differentiable everywhere).

Piecewise-smooth vector fields It will be important to allow vector fields
that are smooth only over a finite number of patches. At a switching boundary
between two patches, a discontinuous jump may occur. For example, suppose that
an (n− 1)-dimensional switching boundary, S ⊂ Rn, is defined as

S = {x ∈ Rn| s(x) = 0}, (8.17)

in which s is a function s : Rn → R. If Rn has dimension n and s is not singular,
then S has dimension n− 1. Define

S+ = {x ∈ Rn| s(x) > 0} (8.18)

and
S− = {x ∈ Rn| s(x) < 0}. (8.19)

The definitions are similar to the construction of implicit models using geometric
primitives in Section 3.1.2. Suppose that f(x) is smooth over S+ and S− but
experiences a discontinuous jump at S. Such differential equations model hybrid
systems in control theory [74, 210, 325]. The task there is to design a hybrid control
system. Can we still determine a solution trajectory in this case? Under special
conditions, we can obtain what is called a solution to the differential equations in
the sense of Filipov [174, 426].
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Let B(x, δ) denote an open ball of radius δ centered at x. Let f(B(x, δ))
denote the set

f(B(x, δ)) = {x′ ∈ X | ∃x′′ ∈ B(x, δ) for which x′ = f(x′′)}. (8.20)

Let X0 denote any subset of Rn that has measure zero (i.e., µ(X0) = 0). Let
hull(A) denote the convex hull of a set, A, of points in Rn. A path τ : [0, tf ]→ Rn

is called a solution in the sense of Filipov if for almost all t ∈ [0, tf ],

dτ

dt
(t) ∈

⋂

δ>0

{

⋂

X0

hull(f(B(τ(t), δ) \X0))

}

, (8.21)

in which the intersections are taken over all possible δ > 0 and sets, X0, of measure
zero. The expression (8.21) is actually called a differential inclusion [39] because
a set of choices is possible for ẋ. The “for almost all” requirement means that the
condition can even fail to hold on a set of measure zero in [0, tf ]. Intuitively, it
says that almost all of the velocity vectors produced by τ must point “between”
the velocity vectors given by f in the vicinity of τ(x(t)). The “between” part
comes from using the convex hull. Filipov’s sense of solution is an incredible
generalization of the solution concept in the sense of Caratheodory. In that case,
every velocity vector produced by τ must agree with f(x(t)), as given in (8.14).
The condition in (8.21) allows all sorts of sloppiness to appear in the solution,
even permitting f to be discontinuous.

Many bizarre vector fields can yield solutions in the sense of Filipov. The
switching boundary model is relatively simple among those permitted by Fil-
ipov’s condition. Figure 8.7 shows various cases that can occur at the switching
boundary S. For the case of consistent flow, solutions occur as you may intu-
itively expect. Filipov’s condition, (8.21), requires that at S the velocity vector
of τ points between vectors before and after crossing S (for example, it can point
down, which is the average of the two directions). The magnitude must also be
between the two magnitudes. For the inward flow case, the integral curve moves
along S, assuming the vectors inside of S point in the same direction (within
the convex hull) as the vectors on either side of the boundary. In applications
that involve physical systems, this may lead to oscillations around S. This can
be alleviated by regularization, which thickens the boundary [426] (the subject of
sliding-mode control addresses this issue [159]). The outward flow case can lead to
nonuniqueness if the initial state lies in S. However, trajectories that start outside
of S will not cross S, and there will be no such troubles. If the flow is tangent
on both sides of a boundary, then other forms of nonuniqueness may occur. The
tangent-flow case will be avoided in this chapter.

8.3.2 Smooth Manifolds

The manifold definition given in Section 4.1.2 is often called a topological manifold.
A manifold defined in this way does not necessarily have enough axioms to ensure
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Figure 8.7: Different kinds of flows around a switching boundary.

that calculus operations, such as differentiation and integration, can be performed.
We would like to talk about velocities on the configuration space C or in general for
a continuous state space X. As seen in Chapter 4, the configuration space could
be a manifold such as RP3. Therefore, we need to define some more qualities that
a manifold should possess to enable calculus. This leads to the notion of a smooth
manifold.

Assume that M is a topological manifold, as defined in Section 4.1.2. For
example, M could represent SO(3), the set of all rotation matrices for R3. A
simpler example that will be helpful to keep in mind is M = S2, which is a sphere
in R3. We want to extend the concepts of Section 8.3.1 from Rn to manifolds.
One of the first definitions will be the tangent space Tp(M) at a point p ∈ M .
As you might imagine intuitively, the tangent vectors are tangent to a surface,
as shown in Figure 8.8. These will indicate possible velocities with which we can
move along the manifold from p. This is more difficult to define for a manifold
than for Rn because it is easy to express any point in Rn using n coordinates, and
all local coordinate frames for the tangent spaces at every p ∈ Rn are perfectly
aligned with each other. For a manifold such as S2, we must define tangent spaces
in a way that is not sensitive to coordinates and handles the fact that the tangent
plane rotates as we move around on S2.

First think carefully about what it means to assign coordinates to a manifold.
Suppose M has dimension n and is embedded in Rm. For M = SO(3), n = 3 and
m = 9. For M = S2, n = 2 and m = 3. The number of coordinates should be n,
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M

Tp(M)

Figure 8.8: Intuitively, the tangent space is a linear approximation to the manifold
in a neighborhood around p.

the dimension of M ; however, manifolds embedded in Rm are often expressed as
a subset of Rm for which some equality constraints must be obeyed. We would
like to express some part of M in terms of coordinates in Rn.

Coordinates and parameterizations For any open set U ⊆M and function
φ : U → Rn such that φ is a homeomorphism onto a subset of Rn, the pair (U, φ)
is called a coordinate neighborhood (or chart in some literature). The values φ(p)
for some p ∈ U are called the coordinates of p.

Example 8.11 (Coordinate Neighborhoods on S1) A simple example can be
obtained for the circle M = S1. Suppose M is expressed as the unit circle embed-
ded in R2 (the set of solutions to x2+y2 = 1). Let (x, y) denote a point in R2. Let
U be the subset of S1 for which x > 0. A coordinate function φ : U → (−π/2, π/2),
can be defined as φ(x, y) = tan−1(y/x).

LetW = φ(U) (the range of φ) for some coordinate neighborhood (U, φ). Since
U and W are homeomorphic via φ, the inverse function φ−1 can also be defined.
It turns out that the inverse is the familiar idea of a parameterization. Continuing
Example 8.11, φ−1 yields the mapping θ 7→ (cos θ, sin θ), which is the familiar
parameterization of the circle but restricted to θ ∈ (−π/2, π/2). �

To make differentiation work at a point p ∈M , it will be important to have a
coordinate neighborhood defined over an open subset of M that contains p. This
is mainly because defining derivatives of a function at a point requires that an
open set exists around the point. If the coordinates appear to have no boundary,
then this will be possible. It is unfortunately not possible to cover all ofM with a
single coordinate neighborhood, unless M = Rn (or M is at least homeomorphic
to Rn). We must therefore define multiple neighborhoods for which the domains
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Figure 8.9: An illustration of a change of coordinates.

cover all of M . Since every domain is an open set, some of these domains must
overlap. What happens in this case? We may have two or more alternative
coordinates for the same point. Moving from one set of coordinates to another is
the familiar operation used in calculus called a change of coordinates. This will
now be formalized.

Suppose that (U, φ) and (V, ψ) are coordinate neighborhoods on some manifold
M , and U ∩ V 6= ∅. Figure 8.9 indicates how to change coordinates from φ to ψ.
This change of coordinates is expressed using function composition as ψ ◦ φ−1 :
Rn → Rn (φ−1 maps from Rn into M , and ψ maps from a subset of M to Rn).

Example 8.12 (Change of Coordinates) Consider changing from Euler an-
gles to quaternions for M = SO(3). Since SO(3) is a 3D manifold, n = 3. This
means that any coordinate neighborhood must map a point in SO(3) to a point in
R3. We can construct a coordinate function φ : SO(3)→ R3 by computing Euler
angles from a given rotation matrix. The functions are actually defined in (3.47),
(3.48), and (3.49). To make this a coordinate neighborhood, an open subset U of
M must be specified.

We can construct another coordinate function ψ : SO(3) → R3 by using
quaternions. This may appear to be a problem because quaternions have four
components; however, the fourth component can be determined from the other
three. Using (4.24) to (4.26), the a, b, and c coordinates can be determined.

Now suppose that we would like to change from Euler angles to quaternions
in the overlap region U ∩ V , in which V is an open set on which the coordinate
neighborhood for quaternions is defined. The task is to construct a change of
coordinates, ψ ◦ φ−1. We first have to invert φ over U . This means that we
instead need a parameterization of M in terms of Euler angles. This is given
by (3.42), which yields a rotation matrix, φ−1(α, β, γ) ∈ SO(3) for α, β, and γ.
Once this matrix is determined, then ψ can be applied to it to determine the
quaternion parameters, a, b, and c. This means that we have constructed three
real-valued functions, f1, f2, and f3, which yield a = f1(α, β, γ), b = f2(α, β, γ),
and c = f3(α, β, γ). Together, these define ψ ◦ φ−1. �
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There are several reasons for performing coordinate changes in various con-
texts. Example 8.12 is motivated by a change that frequently occurs in motion
planning. Imagine, for example, that a graphics package displays objects using
quaternions, but a collision-detection algorithm uses Euler angles. It may be nec-
essary in such cases to frequently change coordinates. From studies of calculus,
you may recall changing coordinates to simplify an integral. In the definition of a
smooth manifold, another motivation arises. Since coordinate neighborhoods are
based on homeomorphisms of open sets, several may be required just to cover all
ofM . For example, even if we decide to use quaternions for SO(3), several coordi-
nate neighborhoods that map to quaternions may be needed. On the intersections
of their domains, a change of coordinates is necessary.

Now we are ready to define a smooth manifold. Changes of coordinates will
appear in the manifold definition, and they must satisfy a smoothness condition.
A smooth structure5 on a (topological) manifold M is a family6 U = {Uα, φα} of
coordinate neighborhoods such that:

1. The union of all Uα contains M . Thus, it is possible to obtain coordinates
in Rn for any point in M .

2. For any (U, φ) and (V, ψ) in U , if U∩V 6= ∅, then the changes of coordinates,
ψ ◦ φ−1 and φ ◦ ψ−1, are smooth functions on U ∩ V . The changes of
coordinates must produce diffeomorphisms on the intersections. In this case,
the coordinate neighborhoods are called compatible.

3. The family U is maximal in the sense that if some (U, φ) is compatible with
every coordinate neighborhood in U , then (U, φ) must be included in U .

A well-known theorem (see [73], p. 54) states that if a set of compatible neighbor-
hoods covers all ofM , then a unique smooth structure exists that contains them.7

This means that a differential structure can often be specified by a small number
of neighborhoods, and the remaining ones are implied.

A manifold, as defined in Section 4.1.2, together with a smooth structure is
called a smooth manifold.8

Example 8.13 (Rn as a Smooth Manifold) We should expect that the con-
cepts presented so far apply to Rn, which is the most straightforward family of
manifolds. A single coordinate neighborhood Rn → Rn can be used, which is the
identity map. For all integers n ∈ {1, 2, 3} and n > 4, this is the only possible
smooth structure on Rn. It is truly amazing that for R4, there are uncountably

5Alternative names are differentiable structure and C∞ structure.
6In literature in which the coordinate neighborhoods are called charts, this family is called

an atlas.
7This is under the assumption that M is Hausdorff and has a countable basis of open sets,

which applies to the manifolds considered here.
8Alternative names are differentiable manifold and C∞ manifold.
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many incompatible smooth structures, called exotic R4 [155]. There is no need to
worry, however; just use the one given by the identity map for R4. �

Example 8.14 (Sn as a Smooth Manifold) One way to define Sn as a smooth
manifold uses 2(n+1) coordinate neighborhoods and results in simple expressions.
Let Sn be defined as

Sn = {(x1, . . . , xn+1) ∈ Rn+1| x21 + · · ·+ x2n+1 = 1}. (8.22)

The domain of each coordinate neighborhood is defined as follows. For each i
from 1 to n+ 1, there are two neighborhoods:

U+
i = {(x1, . . . , xn+1) ∈ Rn+1| xi > 0} (8.23)

and
U−
i = {(x1, . . . , xn+1) ∈ Rn+1| xi < 0}. (8.24)

Each neighborhood is an open set that covers half of Sn but misses the great circle
at xi = 0. The coordinate functions can be defined by projection down to the
(n− 1)-dimensional hyperplane that contains the great circle. For each i,

φ+
i (x1, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn) (8.25)

over U+
i . Each φ

−
i is defined the same way, but over U−

i . Each coordinate function
is a homeomorphism from an open subset of Sn to an open subset of Rn, as
required. On the subsets in which the neighborhoods overlap, the changes of
coordinate functions are smooth. For example, consider changing from φ+

i to φ−
j

for some i 6= j. The change of coordinates is a function φ−
j ◦ (φ+

i )
−1. The inverse

of φ+
i is expressed as

(φ+
i )

−1(x1, . . . , xi−1, xi+1, . . . , xn) =

(x1, . . . , xi−1, 1−
√

1− x21 − · · · − x2i−1 − x2i+1 − · · · − x2n, xi+1, . . . , xn+1).
(8.26)

When composed with φ−
j , the jth coordinate is dropped. This yields

φ−
k ◦ (φ+

i )
−1(x1, . . . , xi−1, xi+1, . . . , xn) =

(x1, . . . , xi−1, 1−
√

1− x21 − · · · − x2i−1 − x2i+1 − · · · − x2n,
xi+1, . . . , xj−1, xj+1, . . . , xn),

(8.27)

which is a smooth function over the domain U+
i . Try visualizing the changes of

coordinates for the circle S1 and sphere S2.
The smooth structure can alternatively be defined using only two coordinate

neighborhoods by using stereographic projection. For S2, one coordinate function
maps almost every point x ∈ S2 to R2 by drawing a ray from the north pole to
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x and mapping to the point in the x3 = 0 plane that is crossed by the ray. The
only excluded point is the north pole itself. A similar mapping can be constructed
from the south pole. �

Example 8.15 (RPn as a Smooth Manifold) This example is particularly im-
portant because RP3 is the same manifold as SO(3), as established in Section 4.2.2.
Recall from Section 4.1.2 that RPn is defined as the set of all lines in Rn+1 that
pass through the origin. This means that for any α ∈ R such that α 6= 0, and
any x ∈ Rn+1, both x and αx are identified. In projective space, scale does not
matter.

A smooth structure can be specified by only n+ 1 coordinate neighborhoods.
For each i from 1 to n+ 1, let

φi(x1, . . . , xn+1) = (x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi), (8.28)

over the open set of all points in Rn+1 for which xi 6= 0. The inverse coordinate
function is given by

φ−1
i (z1, . . . , zn) = (z1, . . . , zi−1, 1, zi, . . . , zn+1). (8.29)

It is not hard to verify that these simple transformations are smooth on overlap-
ping neighborhoods.

A smooth structure over SO(3) can be derived as a special case because SO(3)
is topologically equivalent to RP3. Suppose elements of SO(3) are expressed using
unit quaternions. Each (a, b, c, d) is considered as a point on S3. There are four
coordinate neighborhoods. For example, one of them is

φb(a, b, c, d) = (a/b, c/b, d/b), (8.30)

which is defined over the subset of R4 for which b 6= 0. The inverse of φb(a, b, c, d)
needs to be defined so that a point on SO(3) maps to a point in R4 that has unit
magnitude. �

Tangent spaces on manifolds Now consider defining tangent spaces on man-
ifolds. Intuitively, the tangent space Tp(M) at a point p on an n-dimensional
manifold M is an n-dimensional hyperplane in Rm that best approximates M
around p, when the hyperplane origin is translated to p. This is depicted in Fig-
ure 8.8. The notion of a tangent was actually used in Section 7.4.1 to describe
local motions for motion planning of closed kinematic chains (see Figure 7.22).

To define a tangent space on a manifold, we first consider a more complicated
definition of the tangent space at a point in Rn, in comparison to what was given in
Section 8.3.1. Suppose that M = R2, and consider taking directional derivatives
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of a smooth function f : R2 → R at a point p ∈ R2. For some (unnormalized)
direction vector, v ∈ R2, the directional derivative of f at p can be defined as

∇v(f)
∣

∣

∣

p
= v1

∂f

∂x1

∣

∣

∣

p
+ v2

∂f

∂x2

∣

∣

∣

p
. (8.31)

The directional derivative used here does not normalize the direction vector (con-
trary to basic calculus). Hence, ∇v(f) = ∇(f) · v, in which “·” denotes the inner
product or dot product, and∇(f) denotes the gradient of f . The set of all possible
direction vectors that can be used in this construction forms a two-dimensional
vector space that happens to be the tangent space Tp(R

2), as defined previously.
This can be generalized to n dimensions to obtain

∇v(f)
∣

∣

∣

p
=

n
∑

i=1

vi
∂f

∂xi

∣

∣

∣

p
, (8.32)

for which all possible direction vectors represent the tangent space Tp(R
n). The

set of all directions can be interpreted for our purposes as the set of possible
velocity vectors.

Now consider taking (unnormalized) directional derivatives of a smooth func-
tion, f :M → R, on a manifold. For an n-dimensional manifold, the tangent space
Tp(M) at a point p ∈ M can be considered once again as the set of all unnor-
malized directions. These directions must intuitively be tangent to the manifold,
as depicted in Figure 8.8. There exists a clever way to define them without even
referring to specific coordinate neighborhoods. This leads to a definition of Tp(M)
that is intrinsic to the manifold.

At this point, you may accept that Tp(M) is an n-dimensional vector space
that is affixed to M at p and oriented as shown in Figure 8.8. For the sake of
completeness, however, a technical definition of Tp(M) from differential geometry
will be given; more details appear in [73, 437]. The construction is based on
characterizing the set of all possible directional derivative operators. Let C∞(p)
denote the set of all smooth functions that have domains that include p. Now
make the following identification. Any two functions f, g ∈ C∞(p) are defined
to be equivalent if there exists an open set U ⊂ M such that for any p ∈ U ,
f(p) = g(p). There is no need to distinguish equivalent functions because their
derivatives must be the same at p. Let C̃∞(p) denote C∞ under this identification.
A directional derivative operator at p can be considered as a function that maps
from C̃∞(p) to R for some direction. In the case of Rn, the operator appears as
∇v for each direction v. Think about the set of all directional derivative operators
that can be made. Each one must assign a real value to every function in C̃∞(p),
and it must obey two axioms from calculus regarding directional derivatives. Let
∇v denote a directional derivative operator at some p ∈ M (be careful, however,
because here v is not explicitly represented since there are no coordinates). The
directional derivative operator must satisfy two axioms:
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1. Linearity: For any α, β ∈ R and f, g ∈ C̃∞(p),

∇v(αf + βg) = α∇vf + β∇vg. (8.33)

2. Leibniz Rule (or Derivation): For any f, g ∈ C̃∞(p),

∇v(fg) = ∇vf g(p) + f(p)∇vg. (8.34)

You may recall these axioms from standard vector calculus as properties of the
directional derivative. It can be shown that the set of all possible operators that
satisfy these axioms forms an n-dimensional vector space [73]. This vector space
is called the tangent space, Tp(M), at p. This completes the definition of the
tangent space without referring to coordinates.

It is helpful, however, to have an explicit way to express vectors in Tp(M). A
basis for the tangent space can be obtained by using coordinate neighborhoods.
An important theorem from differential geometry states that if F : M → N
is a diffeomorphism onto an open set U ⊂ N , then the tangent space, Tp(M), is
isomorphic to TF (p)(N). This means that by using a parameterization (the inverse
of a coordinate neighborhood), there is a bijection between velocity vectors in
Tp(M) and velocity vectors in TF (p)(N). Small perturbations in the parameters
cause motions in the tangent directions on the manifold N . Imagine, for example,
making a small perturbation to three quaternion parameters that are used to
represent SO(3). If the perturbation is small enough, motions that are tangent to
SO(3) occur. In other words, the perturbed matrices will lie very close to SO(3)
(they will not lie in SO(3) because SO(3) is defined by nonlinear constraints on
R9, as discussed in Section 4.1.2).

Example 8.16 (The Tangent Space for S2) The discussion can be made more
concrete by developing the tangent space for S2, which is embedded in R3 as the set
of all points (x, y, z) ∈ R3 for which x2 + y2 + z2 = 1. A coordinate neighborhood
can be defined that covers most of S2 by using standard spherical coordinates. Let
f denote the coordinate function, which maps from (x, y, z) to angles (θ, φ). The
domain of f is the open set defined by θ ∈ (0, 2π) and φ ∈ (0, π) (this excludes
the poles). The standard formulas are θ = atan2(y, x) and φ = cos−1 z. The
inverse, f−1, yields a parameterization, which is x = cos θ sinφ, y = sin θ sinφ,
and z = cosφ.

Now consider different ways to express the tangent space at some point p ∈ S2,
other than the poles (a change of coordinates is needed to cover these). Using
the coordinates (θ, φ), velocities can be defined as vectors in R2. We can imagine
moving in the plane defined by θ and φ, provided that the limits θ ∈ (0, 2π) and
φ ∈ (0, π) are respected.

We can also use the parameterization to derive basis vectors for the tangent
space as vectors in R3. Since the tangent space has only two dimensions, we must
obtain a plane that is “tangent” to the sphere at p. These can be found by taking
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derivatives. Let f−1 be denoted as x(θ, φ), y(θ, φ), and z(θ, φ). Two basis vectors
for the tangent plane at p are

[

dx(θ, φ)

dθ

dy(θ, φ)

dθ

dz(θ, φ)

dθ

]

(8.35)

and
[

dx(θ, φ)

dφ

dy(θ, φ)

dφ

dz(θ, φ)

dφ

]

. (8.36)

Computing these derivatives and normalizing yields the vectors [− sin θ cos θ 0]
and [cos θ cosφ sin θ cosφ − sinφ]. These can be imagined as the result of
making small perturbations of θ and φ at p. The vector space obtained by taking
all linear combinations of these vectors is the tangent space at R2. Note that the
direction of the basis vectors depends on p ∈ S2, as expected.

The tangent vectors can now be imagined as lying in a plane that is tangent
to the surface, as shown in Figure 8.8. The normal vector to a surface specified
as g(x, y, z) = 0 is ∇g, which yields [x y z] after normalizing. This could
alternatively be obtained by taking the cross product of the two vectors above
and using the parameterization f−1 to express it in terms of x, y, and z. For a
point p = (x0, y0, z0), the plane equation is

x0(x− x0) + y0(y − y0) + z0(z − z0) = 0. (8.37)

�

Vector fields and velocity fields on manifolds The notation for a tangent
space on a manifold looks the same as for Rn. This enables the vector field
definition and notation to extend naturally from Rn to smooth manifolds. A
vector field on a manifold M assigns a vector in Tp(M) for every p ∈ M . It can
once again be imagined as a needle diagram, but now the needle diagram is spread
over the manifold, rather than lying in Rn.

The velocity field interpretation of a vector field can also be extended to smooth
manifolds. This means that ẋ = f(x) now defines a set of n differential equations
over M and is usually expressed using a coordinate neighborhood of the smooth
structure. If f is a smooth vector field, then a solution trajectory, τ : [0,∞)→M ,
can be defined from any x0 ∈M . Solution trajectories in the sense of Filipov can
also be defined, for the case of piecewise-smooth vector fields.

8.4 Complete Methods for Continuous Spaces

A complete feedback planning algorithm must compute a feedback solution if
one exists; otherwise, it must report failure. Section 8.4.1 parallels Section 8.2 by
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defining feedback plans and navigation functions for the case of a continuous state
space. Section 8.4.2 indicates how to define a feasible feedback plan from a cell
complex that was computed using cell decomposition techniques. Section 8.4.3
presents a combinatorial approach to computing an optimal navigation function
and corresponding feedback plan in R2. Sections 8.4.2 and 8.4.3 allow the feedback
plan to be a discontinuous vector field. In many applications, especially those in
which dynamics dominate, some conditions need to be enforced on the naviga-
tion functions and their resulting vector fields. Section 8.4.4 therefore considers
constraints on the allowable vector fields and navigation functions. This coverage
includes navigation functions in the sense of Rimon-Koditschek [416], from which
the term navigation function was introduced.

8.4.1 Feedback Motion Planning Definitions

Using the concepts from Section 8.3, we are now ready to define feedback mo-
tion planning over configuration spaces or other continuous state spaces. Recall
Formulation 4.1, which defined the basic motion planning problem in terms of
configuration space. The differences in the current setting are that there is no
initial condition, and the requirement of a solution path is replaced by a solu-
tion vector field. The formulation here can be considered as a continuous-time
adaptation to Formulation 8.1.

Formulation 8.2 (Feedback Motion Planning)

1. A state space, X, which is a smooth manifold. The state space will most
often be Cfree, as defined in Section 4.3.1.9

2. For each state, x ∈ X, an action space, U(x) = Tx(X). The zero velocity,
0 ∈ Tx(X), is designated as the termination action, uT . Using this model,
the robot is capable of selecting its velocity at any state.10

3. An unbounded time interval, T = [0,∞).

4. A state transition (differential) equation,

ẋ = u, (8.38)

which is expressed using a coordinate neighborhood and yields the velocity,
ẋ, directly assigned by the action u. The velocity produced by uT is 0 ∈
Tx(X) (which means “stop”).

9Note that X already excludes the obstacle region. For some problems in Part IV, the state
space will be X = C, which includes the obstacle region.

10This allows discontinuous changes in velocity, which is unrealistic in many applications.
Additional constraints, such as imposing acceleration bounds, will also be discussed. For a
complete treatment of differential constraints, see Part IV.
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5. A goal set, XG ⊂ X.

A feedback plan, π, for Formulation 8.2 is defined as a function π, which pro-
duces an action u ∈ U(x) for each x ∈ X. A feedback plan can equivalently be
considered as a vector field on X because each u ∈ U(x) specifies a velocity vector
(uT specifies zero velocity). Since the initial state is not fixed, it becomes slightly
more complicated to define what it means for a plan to be a solution to the prob-
lem. Let Xr ⊂ X denote the set of all states from which XG is reachable. More
precisely, a state xI belongs to Xr if and only if a continuous path τ : [0, 1]→ X
exists for which τ(0) = xI and τ(1) = xG for some xG ∈ XG. This means that a
solution path exists from xI for the “open-loop” motion planning problem, which
was considered in Chapter 4.

Solution concepts

A feedback plan, π, is called a solution to the problem in Formulation 8.2 if from
all xI ∈ Xr, the integral curves of π (considered as a vector field) arrive in XG,
at which point the termination action is applied. Some words of caution must be
given about what it means to “arrive” in XG. Notions of stability from control
theory [271, 426] are useful for distinguishing different cases; see Section 15.1. If
XG is a small ball centered on xG, then the ball will be reached after finite time
using the inward vector field shown in Figure 8.5b. Now suppose that XG is a
single point, xG. The inward vector field produces velocities that bring the state
closer and closer to the origin, but when is it actually reached? It turns out that
convergence to the origin in this case is only asymptotic; the origin is reached in the
limit as the time approaches infinity. Such stability often arises in control theory
from smooth vector fields. We may allow such asymptotic convergence to the goal
(if the vector field is smooth and the goal is a point, then this is unavoidable).
If any integral curves result in only asymptotic convergence to the goal, then a
solution plan is called an asymptotic solution plan. Note that in general it may
be impossible to require that π is a smooth (or even continuous) nonzero vector
field. For example, due to the hairy ball theorem [419], it is known that no such
vector field exists for Sn for any even integer n. Therefore, the strongest possible
requirement is that π is smooth except on a set of measure zero; see Section 8.4.4.
We may also allow solutions π for which almost all integral curves arrive in XG.

However, it will be assumed by default in this chapter that a solution plan
converges to xG in finite time. For example, if the inward field is normalized to
produce unit speed everywhere except the origin, then the origin will be reached in
finite time. A constraint can be placed on the set of allowable vector fields without
affecting the existence of a solution plan. As in the basic motion planning problem,
the speed along the path is not important. Let a normalized vector field be any
vector field for which either ‖f(x)‖ = 1 or f(x) = 0, for all x ∈ X. This means
that all velocity vectors are either unit vectors or the zero vector, and the speed is
no longer a factor. A normalized vector field provides either a direction of motion
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or no motion. Note that any vector field f can be converted into a normalized
vector field by dividing the velocity vector f(x) by its magnitude (unless the
magnitude is zero), for each x ∈ X.

In many cases, unit speed does not necessarily imply a constant speed in some
true physical sense. For example, if the robot is a floating rigid body, there are
many ways to parameterize position and orientation. The speed of the body is
sensitive to this parameterization. Therefore, other constraints may be preferable
instead of ‖f(x)‖ = 1; however, it is important to keep in mind that the constraint
is imposed so that f(x) provides a direction at x. The particular magnitude is
assumed unimportant.

So far, consideration has been given only to a feasible feedback motion plan-
ning problem. An optimal feedback motion planning problem can be defined by
introducing a cost functional. Let x̃t denote the function x̃t : [0, t] → X, which
is called the state trajectory (or state history). This is a continuous-time ver-
sion of the state history, which was defined previously for problems that have
discrete stages. Similarly, let ũt denote the action trajectory (or action history),
ũt : [0, t]→ U . Let L denote a cost functional, which may be applied from any xI
to yield

L(x̃tF , ũtF ) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF )), (8.39)

in which tF is the time at which the termination action is applied. The term
l(x(t), u(t)) can alternatively be expressed as l(x(t), ẋ(t)) by using the state tran-
sition equation (8.38). A normalized vector field that optimizes (8.39) from all
initial states that can reach the goal is considered as an optimal feedback motion
plan.

Note that the state trajectory can be determined from an action history and
initial state. In fact, we could have used action trajectories to define a solution
path to the motion planning problem of Chapter 4. Instead, a solution was defined
there as a path τ : [0, 1] → Cfree to avoid having to introduce velocity fields on
smooth manifolds. That was the only place in the book in which the action
space seemed to disappear, and now you can see that it was only hiding to avoid
inessential notation.

Navigation functions

As in Section 8.2.2, potential functions can be used to represent feedback plans,
assuming that a local operator is developed that works for continuous state spaces.
In the discrete case, the local operator selects an action that reduces the poten-
tial value. In the continuous case, the local operator must convert the potential
function into a vector field. In other words, a velocity vector must be defined at
each state. By default, it will be assumed here that the vector fields derived from
the navigation function are not necessarily normalized.

Assume that π(x) = uT is defined for all x ∈ XG, regardless of the potential
function. Suppose that a potential function φ : X → R has been defined for which
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the gradient

∇φ =

[

∂φ

∂x1

∂φ

∂x2
· · · ∂φ

∂xn

]

(8.40)

exists over all of X \ XG. The corresponding feedback plan can then be defined
as π(x) = −∇φ|x. This defines the local operator, which means that the velocity
is taken in the direction of the steepest descent of φ. The idea of using potential
functions in this way was proposed for robotics by Khatib [273, 274] and can be
considered as a form of gradient descent, which is a general optimization technique.

It is also possible to work with potential functions for which the gradient does
not exist everywhere. In these cases, a continuous-space version of (8.4) can be
defined for a small, fixed ∆t as

u∗ = argmin
u∈U(x)

{

φ(x′)
}

, (8.41)

in which x′ is the state obtained by integrating velocity u from x for time ∆t.
One problem is that ∆t should be chosen to use the smallest possible neighbor-
hood around φ. It is best to allow only potential functions for which ∆t can be
made arbitrarily small at every x without affecting the decision in (8.41). To be
precise, this means that an infinite sequence of u∗ values can be determined from
a sequence of ∆t values that converges to 0. A potential function should then
be chosen to ensure after some point in the sequence, u∗, exists and the same u∗

can be chosen to satisfy (8.41) as ∆t approaches 0. A special case of this is if the
gradient of φ exists; the infinite sequence in this case converges to the negative
gradient.

A potential function, φ, is called a navigation function if the vector field that
is derived from it is a solution plan. The optimal cost-to-go serves as an optimal
navigation function. If multiple vector fields can be derived from the same φ,
then every possible derived vector field must yield a solution feedback plan. If
designed appropriately, the potential function can be viewed as a kind of “ski
slope” that guides the state to XG. If there are extra local minima that cause
the state to become trapped, then XG will not be reached. To be a navigation
function, such local minima outside of XG are not allowed. Furthermore, there
may be additional requirements to ensure that the derived vector field satisfies
additional constraints, such as bounded acceleration.

Example 8.17 (Quadratic Potential Function) As a simple example, sup-
pose X = R2, there are no obstacles, and qgoal = (0, 0). A quadratic function
φ(x, y) = 1

2
x21 +

1
2
x22 serves as a good potential function to guide the state to the

goal. The feedback motion strategy is defined as f = −∇φ = [−x1 − x2], which
is the inward vector field shown in Figure 8.5b.

If the goal is instead at some (x′1, x
′
2) ∈ R2, then a potential function that

guides the state to the goal is φ(x1, x2) = (x1 − x′1)2 + (x2 − x′2)2. �
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Suppose the state space represents a configuration space that contains point
obstacles. The previous function φ can be considered as an attractive potential
because the configuration is attracted to the goal. One can also construct a repul-
sive potential that repels the configuration from the obstacles to avoid collision.
Let φa denote the attractive component and φr denote a repulsive potential that is
summed over all obstacle points. A potential function of the form φ = φa+φr can
be defined to combine both effects. The robot should be guided to the goal while
avoiding obstacles. The problem is that it is difficult in general to ensure that
the potential function will not contain multiple local minima. The configuration
could become trapped at a local minimum that is not in the goal region. This
was an issue with the planner from Section 5.4.3.

8.4.2 Vector Fields Over Cell Complexes

This section describes how to construct a piecewise-smooth vector field over a
cell complex. Only normalized vector fields will be considered. It is assumed
that each cell in the complex has a simple shape over which it is easy to define a
patch of the vector field. In many cases, the cell decomposition techniques that
were introduced in Chapter 6 for motion planning can be applied to construct a
feedback plan.

Suppose that an n-dimensional state space X has been decomposed into a cell
complex, such as a simplicial complex or singular complex, as defined in Section
6.3.1. Assume that the goal set is a single point, xG. Defining a feedback plan π
over X requires placing a vector field on X for which all integral curves lead to
xG (if xG is reachable). This is accomplished by defining a smooth vector field for
each n-cell. Each (n − 1)-cell is a switching boundary, as considered in Section
8.3.1. This leads directly to solution trajectories in the sense of Filipov. If π is
allowed to be discontinuous, then it is actually not important to specify values on
any of the cells of dimension n− 1 or less.

A hierarchical approach is taken to the construction of π:

1. Define a discrete planning problem over the n-cells. The cell that contains
xG is designated as the goal, and a discrete navigation function is defined
over the cells.

2. Define a vector field over each n-cell. The field should cause all states in
the cell to flow into the next cell as prescribed by the discrete navigation
function.

One additional consideration that is important in applications is to try to reduce
the effect of the discontinuity across the boundary as much as possible. It may
be possible to eliminate the discontinuity, or even construct a smooth transition
between n-cells. This issue will not be considered here, but it is nevertheless quite
important [127, 334].
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The approach will now be formalized. Suppose that a cell complex has been
defined over a continuous state space, X. Let X̌ denote the set of n-cells, which
can be interpreted as a finite state space. A discrete planning problem will be
defined over X̌. To avoid confusion with the original continuous problem, the
prefix super will be applied to the discrete planning components. Each superstate
x̌ ∈ X̌ corresponds to an n-cell. From each x̌, a superaction, ǔ ∈ Ǔ(x̌) exists for
each neighboring n-cell (to be neighboring, the two cells must share an (n − 1)-
dimensional boundary). Let the goal superstate x̌g be the n-cell that contains xG.
Assume that the cost functional is defined for the discrete problem so that every
action (other than uT ) produces a unit cost. Now the concepts from Section 8.2
can be applied to the discrete problem. A discrete navigation function, φ̌ : X̌ → R,
can be computed using Dijkstra’s algorithm (or another algorithm, particularly if
optimality is not important). Using the discrete local operator from Section 8.2.2,
this results in a discrete feedback plan, π̌ : X̌ → Ǔ .

Based on the discrete feedback plan, there are two kinds of n-cells. The first
is the goal cell, x̌g, for which a vector field needs to be defined so that all integral
curves lead to Xg in finite time.11 A termination action can be applied when xG
is actually reached. The remaining n-cells are of the second kind. For each cell
x̌, the boundary that is shared with the cell reached by applying ǔ = π̌(x̌) is
called the exit face. The vector field over the n-cell x̌ must be defined so that all
integral curves lead to the exit face. When the exit face is reached, a transition will
occur into the next n-cell. If the n-cells are convex, then defining this transition
is straightforward (unless there are additional requirements on the field, such as
smoothness at the boundary). For more complicated cells, one possibility is to
define a vector field that retracts all points onto a single curve in the cell.

A simple example of the approach is illustrated for the case of X = Cfree ⊂ R2,
in which the boundary of Cfree is polygonal. This motion planning problem was
considered in Section 6.2, but without feedback. Suppose that a triangulation of
X has been computed, as described in Section 6.3.2. An example was shown in
Figure 6.16. A discrete feedback plan is shown for a particular goal state in Figure
8.10. Each 2-cell (triangle) is labeled with an arrow that points to the next cell.

For the cell that contains xG, a normalized version of the inward vector field
shown in Figure 8.5b can be formed by dividing each nonzero vector by its magni-
tude. It can then be translated to move its origin to xG. For each remaining 2-cell,
a vector field must be constructed that flows into the appropriate neighboring cell.
Figure 8.11 illustrates a simple way to achieve this. An outward vector field can
be made by negating the field shown in Figure 8.5b to obtain f = [x y]. This
field can be normalized and translated to move the origin to the triangle vertex
that is not incident to the exit edge. This is called the repulsive vertex in Figure
8.11. This generates a vector field that pushes all points in the triangle to the ext
edge. If the fields are constructed in this way for each triangle, then the global

11This is possible in finite time, even if Xg is a single point, because the vector field is not
continuous. Otherwise, only asymptotic convergence may be possible.
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xG

Figure 8.10: A triangulation is used to define a vector field over X. All solution
trajectories lead to the goal.

Repulsive vertex

Exit edge

Figure 8.11: A vector field can be defined for each triangle by repelling from a
vertex that opposes the exit edge.

vector field represents a solution feedback plan for the problem. Integral curves
(in the sense of Filipov) lead to xG in finite time.

8.4.3 Optimal Navigation Functions

The vector fields developed in the last section yield feasible trajectories, but not
necessarily optimal trajectories unless the initial and goal states are in the same
convex n-cell. If X = R2, then it is possible to make a continuous version of
Dijkstra’s algorithm [371]. This results in an exact cost-to-go function over X
based on the Euclidean shortest path to a goal, xG. The cost-to-go function
serves as the navigation function, from which the feedback plan is defined by
using a local steepest descent.

Suppose that X is bounded by a simple polygon (no holes). Assume that
only normalized vector fields are allowed. The cost functional is assumed to be
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V (x)

way points
x

(a) (b)

Figure 8.12: (a) A point, x, in a simple polygon. (b) The visibility polygon, V (x).

(a) (b) (c) (d)

Figure 8.13: The optimal navigation function is computed in four iterations. In
each iteration, the navigation function is extended from a new way point.

the Euclidean distance traveled along a state trajectory. Recall from Section
6.2.4 that for optimal path planning, X = cl(Cfree) must be used. Assume that
Cfree and cl(Cfree) have the same connectivity.12 This technically interferes with
the definition of tangent spaces from Section 8.3 because each point of X must
be contained in an open neighborhood. Nevertheless, we allow vectors along the
boundary, provided that they “point” in a direction tangent to the boundary. This
can be formally defined by considering boundary regions as separate manifolds.

Consider computing the optimal cost-to-go to a point xG for a problem such
as that shown in Figure 8.12a. For any x ∈ X, let the visibility polygon V (x)
refer to the set of all points visible from x, which is illustrated in Figure 8.12b. A
point x′ lies in V (x) if and only if the line segment from x′ to x is contained in X.
This implies that the cost-to-go from x′ to x is just the Euclidean distance from

12This precludes a choice of Cfree for which adding the boundary point enables a homotopically
distinct path to be made through the boundary point. An example of this is when two square
obstacles in R2 contact each other only at a pair of corners.
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x′ to x. The optimal navigation function can therefore be immediately defined
over V (xG) as

φ(x) = ‖x− xG‖. (8.42)

Level sets at regularly spaced values of this navigation function are shown in
Figure 8.13a.

How do we compute the optimal cost-to-go values for the points in X \V (xG)?
For the segments on the boundary of V (x) for any x ∈ X, some edges are contained
in the boundary ofX, and others cross the interior ofX. For the example in Figure
8.12b, there are two edges that cross the interior. For each segment that crosses
the interior, let the closer of the two vertices to x be referred to as a way point.
Two way points are indicated in Figure 8.12b. The way points of V (xG) are places
through which some optimal paths must cross. Let W (x) for any x ∈ X denote
the set of way points of V (x).

A straightforward algorithm proceeds as follows. Let Zi denote the set of
points over which φ has been defined, in the ith iteration of the algorithm. In the
first iteration, Z1 = V (xG), which is the case shown in Figure 8.13a. The way
points of V (xG) are placed in a queue, Q. In each following iteration, a way point
x is removed from Q. Let Zi denote the domain over which φ is defined so far.
The domain of φ is extended to include all new points visible from x. These new
points are V (x) \ Zi. This yields Zi+1 = Zi ∪ V (x), the extended domain of φ.
The values of φ(x′) for x′ ∈ Zi+1 \ Zi are defined by

φ(x′) = φ(x) + ‖x′ − x‖, (8.43)

in which x is the way point that was removed from Q (the optimal cost-to-go
value of x was already computed). The way points of V (x) that do not lie in Zi+1

are added to Q. Each of these will yield new portions of X that have not yet been
seen. The algorithm terminates when Q is empty, which implies that Zk = X for
some k. The execution of the algorithm is illustrated in Figure 8.13.

The visibility polygon can be computed in time O(n lg n) if X is described
by n edges. This is accomplished by performing a radial sweep, which is an
adaptation of the method applied in Section 6.2.2 for vertical cell decomposition.
The difference for computing V (x) is that a ray anchored at x is swept radially
(like a radar sweep). The segments that intersect the ray are sorted by their
distance from x. For the algorithm that constructs the navigation function, no
more than O(n) visibility polygons are computed because each one is computed
from a unique way point. This implies O(n2 lg n) running time for the whole
algorithm. Unfortunately, there is no extension to higher dimensions; recall from
Section 7.7.1 that computing shortest paths in a 3D environment is NP-hard [91].

The algorithm given here is easy to describe, but it is not the most general,
nor the most efficient. If X has holes, then the level set curves can collide by
arriving from different directions when traveling around an obstacle. The queue,
Q, described above can be sorted as in Dijkstra’s algorithm, and special data
structures are needed to identify when critical events occur as the cost-to-go is
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propagated outward. It was shown in [227] that this can be done in time O(n lg n)
and space O(n lg n).

8.4.4 A Step Toward Considering Dynamics

If dynamics is an important factor, then the discontinuous vector fields considered
so far are undesirable. Due to momentum, a mechanical system cannot instanta-
neously change its velocity (see Section 13.3). In this context, vector fields should
be required to satisfy additional constraints, such as smoothness or bounded ac-
celeration. This represents only a step toward considering dynamics. Full consid-
eration is given in Part IV, in which precise equations of motions of dynamical
systems are expressed as part of the model. The approach in this section is to
make vector fields that are “dynamics-ready” rather than carefully considering
particular equations of motion.

A framework has been developed by defining a navigation function that satis-
fies some desired constraints over a simple region, such as a disc [416]. A set of
transformations is then designed that are proved to preserve the constraints while
adapting the navigation function to more complicated environments. For a given
problem, a complete algorithm for constructing navigation functions is obtained
by applying the appropriate series of transformations from some starting shape.

This section mostly focuses on constraints that are maintained under this
transformation-based framework. Sections 8.4.2 and 8.4.3 worked with normalized
vector fields. Under this constraint, virtually any vector field could be defined,
provided that the resulting algorithm constructs fields for which integral curves
exist in the sense of Filipov. In this section, we remove the constraint that vector
fields must be normalized, and then consider other constraints. The velocity
given by the vector field is now assumed to represent the true speed that must be
executed when the vector field is applied as a feedback plan.

One implication of adding constraints to the vector field is that optimal so-
lutions may not satisfy them. For example, the optimal navigation functions of
Section 8.4.3 lead to discontinuous vector fields, which violate the constraints to
be considered in this section. The required constraints restrict the set of allowable
vector fields. Optimality must therefore be defined over the restricted set of vector
fields. In some cases, an optimal solution may not even exist (see the discussion
of open sets and optimality in Section 9.1.1). Therefore, this section focuses only
on feasible solutions.

An acceleration-based control model

To motivate the introduction of constraints, consider a control model proposed
in [127, 417]. The action space, defined as U(x) = Tx(X) in Formulation 8.2,
produces a velocity for each action u ∈ U(x). Therefore, ẋ = u. Suppose instead
that each action produces an acceleration. This can be expressed as ẍ = u, in
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which ẍ is an acceleration vector,

ẍ =
dẋ

dt
=

[

d2x1
dt2

d2x2
dt2

· · · d2xn
dt2

]

. (8.44)

The velocity ẋ is obtained by integration over time. The state trajectory, x̃ : T →
X, is obtained by integrating (8.44) twice.

Suppose that a vector field is given in the form ẋ = f(x). How can a feedback
plan be derived? Consider how the velocity vectors specified by f(x) change as x
varies. Assume that f(x) is smooth (or at least C1), and let

∇ẋf(x) = [∇ẋf1(x) ∇ẋf2(x) · · · ∇ẋfn(x)] , (8.45)

in which ∇ẋ denotes the unnormalized directional derivative in the direction of ẋ:
∇fi · ẋ. Suppose that an initial state xI is given, and that the initial velocity is
ẋ = f(xI). The feedback plan can now be defined as

u = ∇ẋf(x). (8.46)

This is equivalent to the previous definition of a feedback plan from Section 8.4.1;
the only difference is that now two integrations are needed (which requires both
x and ẋ = f(xI) as initial conditions) and a differentiability condition must be
satisfied for the vector field.

Now the relationship between ẋ and f(x) will be redefined. Suppose that ẋ
is the true measured velocity during execution and that f(x) is the prescribed
velocity, obtained from the vector field f . During execution, it is assumed that ẋ
and f(x) are not necessarily the same, but the task is to keep them as close to each
other as possible. A discrepancy between them may occur due to dynamics that
have not been modeled. For example, if the field f(x) requests that the velocity
must suddenly change, a mobile robot may not be able to make a sharp turn due
to its momentum.

Using the new interpretation, the difference, f(x) − ẋ, can be considered as
a discrepancy or error. Suppose that a vector field f has been computed. A
feedback plan becomes the acceleration-based control model

u = K(f(x)− ẋ) +∇ẋf(x), (8.47)

in which K is a scalar gain constant. A larger value of K will make the control
system more aggressively attempt to reduce the error. If K is too large, then
acceleration or energy constraints may be violated. Note that if ẋ = f(x), then
u = ∇ẋf(x), which becomes equivalent to the earlier formulation.

Velocity and acceleration constraints

Considering the acceleration-based control model, some constraints can be placed
on the set of allowable vector fields. A bounded-velocity model means that ‖ẋ‖ <
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vmax, for some positive real value vmax called the maximum speed. This could
indicate, for example, that the robot has a maximum speed for safety reasons.
It is also possible to bound individual components of the velocity vector. For
example, there may be separate bounds for the maximum angular and linear
velocities of an aircraft. Intuitively, velocity bounds imply that the functions fi,
which define the vector field, cannot take on large values.

A bounded-acceleration model means that ‖ẍ‖ ≤ amax, in which amax is a pos-
itive real value called the maximum acceleration. Intuitively, acceleration bounds
imply that the velocity cannot change too quickly while traveling along an integral
curve. Using the control model ẍ = u, this implies that ‖u‖ ≤ amax. It also im-
poses the constraint that vector fields must satisfy ‖∇ẋf(x)‖ ≤ amax for all ẋ and
x ∈ X. The condition ‖u‖ ≤ amax is very important in practice because higher
accelerations are generally more expensive (bigger motors are required, more fuel
is consumed, etc.). The action u may correspond directly to the torques that are
applied to motors. In this case, each motor usually has an upper limit.

As has already been seen, setting an upper bound on velocity generally does
not affect the existence of a solution. Imagine that a robot can always decide to
travel more slowly. If there is also an upper bound on acceleration, then the robot
can attempt to travel more slowly to satisfy the bound. Imagine slowing down in
a car to make a sharp turn. If you would like to go faster, then it may be more
difficult to satisfy acceleration constraints. Nevertheless, in most situations, it is
preferable to go faster.

A discontinuous vector field fails to satisfy any acceleration bound because it
essentially requires infinite acceleration at the discontinuity to cause a discontinu-
ous jump in the velocity vector. If the vector field satisfies the Lipschitz condition
(8.16) for some constant C, then it satisfies the acceleration bound if C < amax.

In Chapter 13, we will precisely specify U(x) at every x ∈ X, which is more
general than imposing simple velocity and acceleration bounds. This enables
virtually any physical system to be modeled.

Navigation function in the sense of Rimon-Koditschek

Now consider constructing a navigation function from which a vector field can
be derived that satisfies constraints motivated by the acceleration-based control
model, (8.47). As usual, the definition of a navigation function begins with the
consideration of a potential function, φ : X → R. What properties does a poten-
tial function need to have so that it may be considered as a navigation function as
defined in Section 8.4.1 and also yield a vector field that satisfies an acceleration
bound? Sufficient conditions will be given that imply that a potential function
will be a navigation function that satisfies the bound.

To give the conditions, it will first be important to characterize extrema of
multivariate functions. Recall from basic calculus that a function f : R→ R has
a critical point when the first derivative is zero. At such points, the sign of the
second derivative indicates whether the critical point is a minimum or maximum.
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These ideas can be generalized to higher dimensions. A critical point of φ is one
for which ∇φ = 0. The Hessian of φ is defined as the matrix

H(φ) =
















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. (8.48)

At each critical point, the Hessian gives some information about the extremum.
If the rank of H(φ) at x is n, then the Hessian indicates the kind of extremum. If
(8.48) is positive definite,13 then the φ achieves a local minimum at x. If (8.48) is
negative definite,14 then the φ achieves a local maximum at x. In all other cases,
x is a saddle point. If the rank of H(φ) at x is less than n, then the Hessian is
degenerate. In this case the Hessian cannot classify the type of extremum. An
example of this occurs when x lies in a plateau (there is no direction in which
φ increases or decreases. Such behavior is obviously bad for a potential function
because the local operator would not be able to select a direction.

Suppose that the navigation function is required to be smooth, to ensure the
existence of a gradient at every point. This enables gradient descent to be per-
formed. If X is not contractible, then it turns out there must exist some critical
points other than xG at which ∇φ(x) = 0. The critical points can even be used
to infer the topology of X, which is the basic idea in the subject of Morse theory
[366, 126]. Unfortunately, this implies that there does not exist a solution naviga-
tion function for such spaces because the definition in Section 8.4.1 required that
the integral curve from any state that can reach xG must reach it using the vector
field derived from the navigation function. If the initial state is a critical point,
the integral curve is constant (the state remains at the critical point). Therefore,
under the smoothness constraint, the definition of a navigation function should be
modified to allow critical points at a small number of places (only on a set that
has measure zero). It is furthermore required that the set of states from which
the integral curves arrive at each critical point (i.e., the domain of attraction of
each critical point) has measure zero. From all possible initial states, except from
a set of measure zero, the integral curves must reach xG, if it is reachable. This
is ensured in the following definition.

13Positive definite for an n × n matrix A means that for all x ∈ Rn, xTAx > 0. If A is
symmetric (which applies to H(φ)), then this is equivalent to A having all positive eigenvalues.

14Negative definite means that for all x ∈ Rn, xTAx < 0. If A is symmetric, then this is
equivalent to A having all negative eigenvalues.
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A function φ : X → R is called a navigation function in the sense of Rimon-
Koditschek if [416]:

1. It is smooth (or at least C2).

2. Among all values on the connected component of Cfree that contains xG,
there is only one local minimum, which is at xG.

15

3. It is maximal and constant on ∂Cfree, the boundary of Cfree.

4. It is a Morse function [366], which means that at each critical point x (i.e.,
∇φ|x = 0), the Hessian of φ is not degenerate.16 Such functions are known
to exist on any smooth manifold.

If φ is smooth in the C∞ sense, then by Sard’s Theorem [126] the set of critical
points has measure zero.

Methods for constructing navigation functions are outlined in [416] for a gen-
eral family of problems in which Cfree has a semi-algebraic description. The basic
idea is to start with simple shapes over which a navigation function can be easily
defined. One example of this is a spherical subset of Rn, which contains spherical
obstacles. A set of distorting transformations is then developed to adapt the nav-
igation functions to other shapes while ensuring that the four properties above
are maintained. One such transformation extends a ball into any visibility region
(in the sense defined in Section 8.4.3). This is achieved by smoothly stretching
out the ball into the shape of the visibility region. (Such regions are sometimes
called star-shaped.) The transformations given in [416] can be combined to define
navigation functions for a large family of configuration spaces. The main problem
is that the configuration space obstacles and the connectivity of Cfree are repre-
sented only implicitly, which makes it difficult to correctly apply the method to
complicated high-dimensional problems. One of the advantages of the approach
is that proving convergence to the goal is simplified. In many cases, Lyapunov
stability analysis can be performed (see Section 15.1.1).

Harmonic potential functions

Another important family of navigation functions is constructed from harmonic
functions [128, 129, 130, 250, 276]. A function φ is called a harmonic function if
it satisfies the differential equation

∇2φ =
n
∑

i=1

∂2φ

∂x2i
= 0. (8.49)

15Some authors do not include the global minimum as a local minimum. In this case, one
would say that there are no local minima.

16Technically, to be Morse, the values of the function must also be distinct at each critical
point.
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There are many possible solutions to the equation, depending on the conditions
along the boundary of the domain over which φ is defined. A simple disc-based
example is given in [127] for which an analytical solution exists. Complicated
navigation functions are generally defined by imposing constraints on φ along the
boundary of Cfree. A Dirichlet boundary condition means that the boundary must
be held to a constant value. Using this condition, a harmonic navigation function
can be developed that guides the state into a goal region from anywhere in a simply
connected state space. If there are interior obstacles, then a Neumann boundary
condition forces the velocity vectors to be tangent to the obstacle boundary. By
solving (8.49) under a combination of both boundary conditions, a harmonic nav-
igation function can be constructed that avoids obstacles by moving parallel to
their boundaries and eventually landing in the goal. It has been shown under
general conditions that navigation functions can be produced [130, 129]; however,
the main problems are that the boundary of Cfree is usually not constructed ex-
plicitly (recall why this was avoided in Chapter 5) and that a numerical solution
to (8.49) is expensive to compute. This can be achieved, for example, by using
Gauss-Seidel iterations (as indicated in [130]), which are related to value iteration
(see [59] for the distinction). A sampling-based approach to constructing naviga-
tion functions via harmonic functions is presented in [68]. Value iteration will be
used to produce approximate, optimal navigation functions in Section 8.5.2.

8.5 Sampling-Based Methods for Continuous Spaces

The methods in Section 8.4 can be considered as the feedback-case analogs to
the combinatorial methods of Chapter 6. Although such methods provide elegant
solutions to the problem, the issue arises once again that they are either limited to
lower dimensional problems or problems that exhibit some special structure. This
motivates the introduction of sampling-based methods. This section presents the
feedback-case analog to Chapter 5.

8.5.1 Computing a Composition of Funnels

Mason introduced the concept of a funnel as a metaphor for motions that converge
to the same small region of the state space, regardless of the initial position [351].
As grains of sand in a funnel, they follow the slope of the funnel until they reach
the opening at the bottom. A navigation function can be imagined as a funnel
that guides the state into the goal. For example, the cost-to-go function depicted
in Figure 8.13d can be considered as a complicated funnel that sends each piece
of sand along an optimal path to the goal.

Rather than designing a single funnel, consider decomposing the state space
into a collection of simple, overlapping regions. Over each region, a funnel can be
designed that leads the state into another funnel; see Figure 8.14. As an example,
the approach in [83] places a Lyapunov function (such functions are covered in

418 S. M. LaValle: Planning Algorithms

1 2 3

1

3

2

Figure 8.14: A navigation function and corresponding vector field can be designed
as a composition of funnels.

X

X̂

Figure 8.15: An approximate cover is shown. Every point of X̃ is contained in at
least one neighborhood, and X̃ is a subset of X.

Section 15.1.2) over each funnel to ensure convergence to the next funnel. A
feedback plan can be constructed by composing several funnels. Starting from
some initial state in X, a sequence of funnels is visited until the goal is reached.
Each funnel essentially solves the subgoal of reaching the next funnel. Eventually,
a funnel is reached that contains the goal, and a navigation function on this funnel
causes the goal to be reached. In the context of sensing uncertainty, for which the
funnel metaphor was developed, the composition of funnels becomes the preimage
planning framework [346], which is covered in Section 12.5.1. In this section,
however, it is assumed that the current state is always known.

An approximate cover

Figure 8.15 illustrates the notion of an approximate cover, which will be used to
represent the funnel domains. Let X̃ denote a subset of a state space X. A cover
of X̃ is a collection O of sets for which
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1. O ⊆ X for each O ∈ O.

2. X̃ is a subset of the union of all sets in the cover:

X̃ ⊆
⋃

O∈O
O. (8.50)

Let each O ∈ O be called a neighborhood. The notion of a cover was actually
used in Section 8.3.2 to define a smooth manifold using a cover of coordinate
neighborhoods.

In general, a cover allows the following:

1. Any number of neighborhoods may overlap (have nonempty intersection).

2. Any neighborhood may contain points that lie outside of X̃.

A cell decomposition, which was introduced in Section 6.3.1, is a special kind
of cover for which the neighborhoods form a partition of X̃, and they must fit
together nicely (recall Figure 6.15).

So far, no constraints have been placed on the neighborhoods. They should
be chosen in practice to greatly simplify the design of a navigation function over
each one. For the original motion planning problem, cell decompositions were
designed to make the determination of a collision-free path trivial in each cell.
The same idea applies here, except that we now want to construct a feedback
plan. Therefore, it is usually assumed that the cells have a simple shape.

A cover is called approximate if X̃ is a strict subset of X. Ideally, we would
like to develop an exact cover, which implies that X̃ = X and each neighborhood
has some nice property, such as being convex. Developing such covers is possible
in practice for state spaces that are either low-dimensional or exhibit some special
structure. This was observed for the cell decomposition methods of Chapter 6.

Consider constructing an approximate cover for X. The goal should be to
cover as much of X as possible. This means that µ(X \ X̃) should be made as
small as possible, in which µ denotes Lebesgue measure, as defined in Section
5.1.3. It is also desirable to ensure that X̃ preserves the connectivity of X. In
other words, if a path between two points exists in X, then it should also exist in
X̃.

Defining a feedback plan over a cover

The ideas from Section 8.4.2 can be adapted to define a feedback plan over X̃
using a cover. Let X̌ denote a discrete state space in which each superstate
is a neighborhood. Most of the components of the associated discrete planning
problems are the same as in Section 8.4.2. The only difference is in the definition of
superactions because neighborhoods can overlap in a cover. For each neighborhood
O ∈ O, a superaction exists for each other neighborhood, O′ ∈ O such that
O ∩O′ 6= ∅ (usually, their interiors overlap to yield int(O) ∩ int(O′) 6= ∅).
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O′O

Figure 8.16: A transition from O to O′ is caused by a vector field on O for which
all integral curves lead into O ∩O′.

Note that in the case of a cell decomposition, this produces no superactions
because it is a partition. To follow the metaphor of composing funnels, the do-
mains of some funnels should overlap, as shown in Figure 8.14. A transition from
one neighborhood, O, to another, O′, is obtained by defining a vector field on O
that sends all states from O \O′ into O∩O′; see Figure 8.16. Once O′ is reached,
the vector field of O is no longer followed; instead, the vector field of O′ is used.
Using the vector field of O′, a transition may be applied to reach another neigh-
borhood. Note that the jump from the vector field of O to that of O′ may cause
the feedback plan to be a discontinuous vector field on X̃. If the cover is designed
so that O∩O′ is large (if they intersect), then gradual transitions may be possible
by blending the vector fields from O and O′.

Once the discrete problem has been defined, a discrete feedback plan can be
computed over X̌, as defined in Section 8.2. This is converted into a feedback
plan over X by defining a vector field on each neighborhood that causes the
appropriate transitions. Each x̌ ∈ X̌ can be interpreted both as a superstate and
a neighborhood. For each x̌, the discrete feedback plan produces a superaction
ǔ = π(x̌), which yields a new neighborhood x̌′. The vector field over x̌ = O is
then designed to send all states into x̌′ = O′.

If desired, a navigation function φ overX can even be derived from a navigation
function, φ̌, over X̌. Suppose that φ̌ is constructed so that every φ̌(x̌) is distinct
for every x̌ ∈ X̌. Any navigation function can be easily transformed to satisfy this
constraint (because X̌ is finite). Let φO denote a navigation function over some
O ∈ O. Assume that XG is a point, xG (extensions can be made to more general
cases). For every neighborhood O ∈ O such that xG 6∈ O, φO is defined so that
performing gradient descent leads into the overlapping neighborhood for which
φ̌(x̌) is smallest. If O contains xG, the navigation function φO simply guides the
state to xG.

The navigation functions over each O ∈ O can be easily pieced together to
yield a navigation function over all of X. In places where multiple neighborhoods
overlap, φ is defined to be the navigation function associated with the neighbor-
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hood for which φ̌(x̌) is smallest. This can be achieved by adding a large constant
to each φO. Let c denote a constant for which φO(x) < c over all O ∈ O and x ∈ O
(it is assumed that each φO is bounded). Suppose that φ̌ assumes only integer
values. Let O(x) denote the set of all O ∈ O such that x ∈ O. The navigation
function over X is defined as

φ(x) = min
O∈O(x)

{

φO(x) + c φ̌(O)
}

. (8.51)

A sampling-based approach

There are numerous alternative ways to construct a cover. To illustrate the ideas,
an approach called the sampling-based neighborhood graph is presented here [480].
Suppose that X = Cfree, which is a subset of some configuration space. As intro-
duced in Section 5.4, let α be a dense, infinite sequence of samples in X. Assume
that a collision detection algorithm is available that returns the distance, (5.28),
between the robot and obstacles in the world. Such algorithms were described in
Section 5.3.

An incremental algorithm is given in Figure 8.17. Initially, O is empty. In each
iteration, if α(i) ∈ Cfree and it is not already contained in some neighborhood,
then a new neighborhood is added to O. The two main concerns are 1) how to
define a new neighborhood, O, such that O ⊂ Cfree, and 2) when to terminate. At
any given time, the cover is approximate. The union of all neighborhoods is X̃,
which is a strict subset of X. In comparison to Figure 8.15, the cover is a special
case in which the neighborhoods do not extend beyond X̃.

Defining new neighborhoods For defining new neighborhoods, it is important
to keep them simple because during execution, the neighborhoods that contain
the state x must be determined quickly. Suppose that all neighborhoods are open
balls:

B(x, r) = {x′ ∈ X | ρ(x, x′) < r}, (8.52)

in which ρ is the metric on C. There are efficient algorithms for determining
whether x ∈ O for some O ∈ O, assuming all of the neighborhoods are balls [365].
In practice, methods based on Kd-trees yield good performance [36, 38] (recall
Section 5.5.2). A new ball, B(x, r), can be constructed in Step 3 for x = α(i),
but what radius can be assigned? For a point robot that translates in R2 or R3,
the Hausdorff distance d between the robot and obstacles in W is precisely the
distance to Cobs from α(i). This implies that we can set r = d, and B(x, r) is
guaranteed to be collision-free.

In a general configuration space, it is possible to find a value of r such that
B(x, r) ⊆ Cfree, but in general r < d. This issue arose in Section 5.3.4 for checking
path segments. The transformations of Sections 3.2 and 3.3 become important
in the determination of r. For illustrative purposes, suppose that C = R2 × S1,
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INCREMENTAL COVER CONSTRUCTION

1. Initialize O = ∅ and i = 1.

2. Let x = α(i), and let d be the distance returned by the collision detection
algorithm applied at x.

3. If d > 0 (which implies that x ∈ Cfree) and x 6∈ O for all O ∈ O, then
insert a new neighborhood, On, into O. The neighborhood size and shape
are determined from x and d.

4. If the termination condition is not satisfied, then let i := i + 1, and go to
Step 1.

5. Remove any neighborhoods from O that are contained entirely inside of
another neighborhood.

Figure 8.17: The cover is incrementally extended by adding new neighborhoods
that are guaranteed to be collision-free.

which corresponds to a rigid robot, A, that can translate and rotate in W = R2.
Each point a ∈ A is transformed using (3.35). Now imagine starting with some
configuration q = (x, y, θ) and perturbing each coordinate by some ∆x, ∆y, and
∆θ. What is the maximum distance that a point on A could travel? Translation
affects all points on A the same way, but rotation affects points differently. Recall
Figure 5.12 from Section 5.3.4. Let ar ∈ A denote the point that is furthest from
the origin (0, 0). Let r denote the distance from ar to the origin. If the rotation
is perturbed by some small amount, ∆θ, then the displacement of any a ∈ A is
no more than r∆θ. If all three configuration parameters are perturbed, then

(∆x)2 + (∆y)2 + (r∆θ)2 < d2 (8.53)

is the constraint that must be satisfied to ensure that the resulting ball is contained
in Cfree. This is actually the equation of a solid ellipsoid, which becomes a ball if
r = 1. This can be made into a ball by reparameterizing SE(2) so that ∆θ has
the same affect as ∆x and ∆y. A transformation h : θ 7→ rθ maps θ into a new
domain Z = [0, 2πr). In this new space, the equation of the ball is

(∆x)2 + (∆y)2 + (∆z)2 < d2, (8.54)

in which ∆z represents the change in z ∈ Z. The reparameterized version of
(3.35) is

T =





cos(θ/r) − sin(θ/r) xt
sin(θ/r) cos(θ/r) yt

0 0 1



 . (8.55)
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For a 3D rigid body, similar reparameterizations can be made to Euler angles or
quaternions to generate six-dimensional balls. Extensions can be made to chains
of bodies [480]. One of the main difficulties, however, is that the balls are not
the largest possible. In higher dimensions the problem becomes worse because
numerous balls are needed, and the radii constructed as described above tend to
be much smaller than what is possible. The number of balls can be reduced by
also allowing axis-aligned cylinders, but it still remains difficult to construct a
cover over a large fraction of Cfree in more than six dimensions.

Termination The sampling-based planning algorithms in Chapter 5 were de-
signed to terminate upon finding a solution path. In the current setting, ter-
mination is complicated by the fact that we are interested in solutions from all
initial configurations. Since α is dense, the volume of uncovered points in Cfree
tends to zero. After some finite number of iterations, it would be nice to measure
the quality of the approximation and then terminate when the desired quality is
achieved. This was also possible with the visibility sampling-based roadmap in
Section 5.6.2. Using random samples, an estimate of the fraction of Cfree can be
obtained by recording the percentage of failures in obtaining a sample in Cfree
that is outside of the cover. For example, if a new neighborhood is created only
once in 1000 iterations, then it can be estimated that 99.9 percent of Cfree is cov-
ered. High-probability bounds can also be determined. Termination conditions
are given in [480] that ensure with probability greater than Pc that at least a
fraction α ∈ (0, 1) of Cfree has been covered. The constants Pc and α are given as
parameters to the algorithm, and it will terminate when the condition has been
satisfied using rigorous statistical tests. If deterministic sampling is used, then
termination can be made to occur based on the dispersion, which indicates the
largest ball in Cfree that does not contain the center of another neighborhood. One
problem with volume-based criteria, such as those suggested here, is that there is
no way to ensure that the cover preserves the connectivity of Cfree. If two portions
of Cfree are connected by a narrow passage, the cover may miss a neighborhood
that has very small volume yet is needed to connect the two portions.

Example 8.18 (2D Example of Computed Funnels) Figure 8.18 shows a 2D
example that was computed using random samples and the algorithm in Figure
8.17. Note that once a cover is computed, it can be used to rapidly compute
different navigation functions and vector fields for various goals. This example is
mainly for illustrative purposes. For the case of a polygonal environment, con-
structing covers based on convex polygons would be more efficient. �
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(a) (b)

Figure 8.18: (a) A approximate cover for a 2D configuration space. (b) Level sets
of a navigation function
.

8.5.2 Dynamic Programming with Interpolation

This section concludes Part II by solving the motion planning problem with value
iteration, which was introduced in Section 2.3. It has already been applied to
obtain discrete feedback plans in Section 8.2. It will now be adapted to continuous
spaces by allowing interpolation first over a continuous state space and then by
additionally allowing interpolation over a continuous action space. This yields
a numerical approach to computing optimal navigation functions and feedback
plans for motion planning. The focus will remain on backward value iteration;
however, the interpolation concepts may also be applied in the forward direction.
The approach here views optimal feedback motion planning as a discrete-time
optimal control problem [22, 55, 79, 302].

Using interpolation for continuous state spaces

Consider a problem formulation that is identical to Formulation 8.1 except that
X is allowed to be continuous. Assume that X is bounded, and assume for now
that the action space, U(x), it finite for all x ∈ X. Backward value iteration can
be applied. The dynamic programming arguments and derivation are identical to
those in Section 2.3. The resulting recurrence is identical to (2.11) and is repeated
here for convenience:

G∗
k(xk) = min

uk∈U(xk)

{

l(xk, uk) +G∗
k+1(xk+1)

}

. (8.56)
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xk

Stage k + 1

Stage k

Possible next states

Figure 8.19: Even though xk is a sample point, the next state, xk+1, may land
between sample points. For each uk ∈ U(xk), interpolation may be needed for the
resulting next state, xk+1 = f(xk, uk).

The only difficulty is that G∗
k(xk) cannot be stored for every xk ∈ X because X is

continuous. There are two general approaches. One is to approximate G∗
k using

a parametric family of surfaces, such as polynomials or nonlinear basis functions
derived from neural networks [60]. The other is to store G∗

k only over a finite
set of sample points and use interpolation to obtain its value at all other points
[301, 302].

Suppose that a finite set S ⊂ X of samples is used to represent cost-to-go
functions overX. The evaluation of (8.56) using interpolation is depicted in Figure
8.19. In general, the samples should be chosen to reduce the dispersion (defined
in Section 5.2.3) as much as possible. This prevents attempts to approximate
the cost-to-go function on large areas that contain no sample points. The rate
of convergence ultimately depends on the dispersion [58] (in combination with
Lipschitz conditions on the state transition equation and the cost functional).
To simplify notation and some other issues, assume that S is a grid of regularly
spaced points in Rn.

First, consider the case in which X = [0, 1] ⊂ R. Let S = {s0, s1, . . . , sr},
in which si = i/r. For example, if r = 3, then S = {0, 1/3, 2/3, 1}. Note that
this always yields points on the boundary of X, which ensures that for any point
in (0, 1) there are samples both above and below it. Let i be the largest integer
such that si < x. This implies that si+1 > x. The samples si and si+1 are called
interpolation neighbors of x.

The value of G∗
k+1 in (8.56) at any x ∈ [0, 1] can be obtained via linear inter-

polation as
G∗

k+1(x) ≈ αG∗
k+1(si) + (1− α)G∗

k+1(si+1), (8.57)

in which the coefficient α ∈ [0, 1] is computed as

α = 1− x− si
r

. (8.58)

If x = si, then α = 1, and (8.57) reduces to G∗
k+1(si), as expected. If x = si+1,

then α = 0, and (8.57) reduces to G∗
k+1(si+1). At all points in between, (8.57)

blends the cost-to-go values at si and si+1 using α to provide the appropriate
weights.

The interpolation idea can be naturally extended to multiple dimensions. Let
X be a bounded subset of Rn. Let S represent an n-dimensional grid of points

426 S. M. LaValle: Planning Algorithms

n = 2 n = 3

Figure 8.20: Barycentric subdivision can be used to partition each cube into
simplexes, which allows interpolation to be performed in O(n lg n) time, instead
of O(2n).

in Rn. Each sample in S is denoted by s(i1, i2, . . . , in). For some x ∈ X, there
are 2n interpolation neighbors that “surround” it. These are the corners of an
n-dimensional cube that contains x. Let x = (x1, . . . , xn). Let ij denote the
largest integer for which the jth coordinate of s(i1, i2, . . . , in) is less than xj. The
2n samples are all those for which either ij or ij + 1 appears in the expression
s(·, ·, . . . , ·), for each j ∈ {1, . . . , n}. This requires that samples exist in S for all
of these cases. Note that X may be a complicated subset of Rn, provided that for
any x ∈ X, all of the required 2n interpolation neighbors are in S. Using the 2n

interpolation neighbors, the value of G∗
k+1 in (8.56) on any x ∈ X can be obtained

via multi-linear interpolation. In the case of n = 2, this is expressed as

G∗
k+1(x) ≈ α1α2 G

∗
k+1(s(i1, i2))+

α1(1− α2) G
∗
k+1(s(i1, i2 + 1))+

(1− α1)α2 G
∗
k+1(s(i1 + 1, i2))+

(1− α1)(1− α2) G
∗
k+1(s(i1 + 1, i2 + 1)),

(8.59)

in which α1 and α2 are defined similarly to α in (8.58) but are based on distances
along the x1 and x2 directions, respectively. The expressions for multi-linear in-
terpolation in higher dimensions are similar but are more cumbersome to express.
Higher order interpolation, such a quadratic interpolation may alternatively be
used [302].

Unfortunately, the number of interpolation neighbors grows exponentially with
the dimension, n. Instead of using all 2n interpolation neighbors, one improvement
is to decompose the cube defined by the 2n samples into simplexes. Each simplex
has only n+1 samples as its vertices. Only the vertices of the simplex that contains
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Cobs

∂Cfree

xg

(a) (b) (c)

Figure 8.21: (a) An interpolation region, R(S), is shown for a set of sample points,
S. (b) The interpolation region that arises due to obstacles. (c) The interpolation
region for goal points must not be empty.

x are declared to be the interpolation neighbors of x; this reduces the cost of
evaluating G∗

k+1(x) to O(n) time. The problem, however, is that determining the
simplex that contains x may be a challenging point-location problem (a common
problem in computational geometry [146]). If barycentric subdivision is used
to decompose the cube using the midpoints of all faces, then the point-location
problem can be solved in O(n lg n) time [145, 310, 376], which is an improvement
over the O(2n) scheme described above. Examples of this decomposition are
shown for two and three dimensions in Figure 8.20. This is sometimes called the
Coxeter-Freudenthal-Kuhn triangulation. Even though n is not too large due to
practical performance considerations (typically, n ≤ 6), substantial savings occur
in implementations, even for n = 3.

It will be convenient to refer directly to the set of all points in X for which
all required interpolation neighbors exist. For any finite set S ⊆ X of sample
points, let the interpolation region R(S) be the set of all x ∈ X \ S for which
G∗(x) can be computed by interpolation. This means that x ∈ R(S) if and only
if all interpolation neighbors of x lie in S. Figure 8.21a shows an example. Note
that some sample points may not contribute any points to R. If a grid of samples
is used to approximate G∗, then the volume of X \ R(S) approaches zero as the
sampling resolution increases.

Continuous action spaces Now suppose that U(x) is continuous, in addition
to X. Assume that U(x) is both a closed and bounded subset of Rn. Once again,
the dynamic programming recurrence, (8.56), remains the same. The trouble now
is that the min represents an optimization problem over an uncountably infinite
number of choices. One possibility is to employ nonlinear optimization techniques
to select the optimal u ∈ U(x). The effectiveness of this depends heavily on U(x),
X, and the cost functional.

Another approach is to evaluate (8.56) over a finite set of samples drawn from
U(x). Again, it is best to choose samples that reduce the dispersion as much as
possible. In some contexts, it may be possible to eliminate some actions from
consideration by carefully utilizing the properties of the cost-to-go function and
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its representation via interpolation.

The connection to feedback motion planning

The tools have now been provided to solve motion planning problems using value
iteration. The configuration space is a continuous state space; let X = Cfree. The
action space is also continuous, U(x) = Tx(X). For motion planning problems,
0 ∈ Tx(X) is only obtained only when uT is applied. Therefore, it does not need
to be represented separately. To compute optimal cost-to-go functions for motion
planning, the main concerns are as follows:

1. The action space must be bounded.

2. A discrete-time approximation must be made to derive a state transition
equation that works over stages.

3. The cost functional must be discretized.

4. The obstacle region, Cobs, must be taken into account.

5. At least some interpolation region must yield G∗(x) = 0, which represents
the goal region.

We now discuss each of these.

Bounding the action space Recall that using normalized vector fields does
not alter the existence of solutions. This is convenient because U(x) needs to be
bounded to approximate it with a finite set of samples. It is useful to restrict the
action set to obtain

U(x) = {u ∈ Rn | ‖u‖ ≤ 1}. (8.60)

To improve performance, it is sometimes possible to use only those u for which
‖u‖ = 1 or u = 0; however, numerical instability problems may arise. A finite
sample set for U(x) should have low dispersion and always include u = 0.

Obtaining a state transition equation Value iterations occur over discrete
stages; however, the integral curves of feedback plans occur over continuous time.
Therefore, the time interval T needs to be sampled. Let ∆t denote a small positive
constant that represents a fixed interval of time. Let the stage index k refer to
time (k−1)∆t. Now consider representing a velocity field ẋ over Rn. By definition,

dx

dt
= lim

∆t→0

x(t+∆t)− x(t)
∆t

. (8.61)

In Section 8.3.1, a velocity field was defined by assigning some u ∈ U(x) to each
x ∈ X. If the velocity vector u is integrated from x(t) over a small ∆t, then a
new state, x(t+∆t), results. If u remains constant, then

x(t+∆t) = x(t) + ∆t u, (8.62)
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which is called an Euler approximation. If a feedback plan is executed, then u is
determined from x via u = π(x(t)). In general, this means that u could vary as
the state is integrated forward. In this case, (8.62) is only approximate,

x(t+∆t) ≈ x(t) + ∆t π(x(t)). (8.63)

The expression in (8.62) can be considered as a state transition equation that
works over stages. Let xk+1 = x(t +∆t) and xk = x(t). The transitions can now
be expressed as

xk+1 = f(xk, u) = xk +∆t u. (8.64)

The quality of the approximation improves as ∆t decreases. Better approxi-
mations can be made by using more sample points along time. The most widely
known approximations are the Runge-Kutta family. For optimal motion planning,
it turns out that the direction vector almost always remains constant along the in-
tegral curve. For example, in Figure 8.13d, observe that piecewise-linear paths are
obtained by performing gradient descent of the optimal navigation function. The
direction vector is constant over most of the resulting integral curve (it changes
only as obstacles are contacted). Therefore, approximation problems tend not
to arise in motion planning problems. When approximating dynamical systems,
such as those presented in Chapter 13, then better approximations are needed;
see Section 14.3.2. One important concern is that ∆t is chosen in a way that
is compatible with the grid resolution. If ∆t is so small that the actions do not
change the state enough to yield new interpolation neighbors, then the interpo-
lated cost-to-go values will remain constant. This implies that ∆t must be chosen
to ensure that x(t+∆t) has a different set of interpolation neighbors than x(t).

An interesting connection can be made to the approximate motion planning
problem that was developed in Section 7.7. Formulation 7.4 corresponds pre-
cisely to the approximation defined here, except that ǫ was used instead of ∆t
because velocities were not yet considered (also, the initial condition was speci-
fied because there was no feedback). Recall the different possible action spaces
shown in Figure 7.41. As stated in Section 7.7, if the Manhattan or independent-
joint models are used, then the configurations remain on a grid of points. This
enables discrete value iterations to be performed. A discrete feedback plan and
navigation function, as considered in Section 8.2.3, can even be computed. If the
Euclidean motion model is used, which is more natural, then the transitions allow
a continuum of possible configurations. This case can finally be handled by using
interpolation over the configuration space, as described in this section.

Approximating the cost functional A discrete cost functional must be de-
rived from the continuous cost functional, (8.39). The final term is just assigned
as lF (xF ) = lF (x(tf )). The cost at each stage is

ld(xk, uk) =

∫ ∆t

0

l(x(t), u(t))dt, (8.65)
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and ld(xk, uk) is used in the place of l(xk, uk) in (8.56). For many problems, the
integral does not need to be computed repeatedly. To obtain Euclidean shortest
paths, ld(xk, uk) = ‖uk‖ can be safely assigned for all xk ∈ X and uk ∈ U(xk). A
reasonable approximation to (8.65) if ∆t is small is l(x(t), u(t))∆t.

Handling obstacles A simple way to handle obstacles is to determine for each
x ∈ S whether x ∈ Cobs. This can be computed and stored in an array before the
value iterations are performed. For rigid robots, this can be efficiently computed
using fast Fourier transforms [262]. For each x ∈ Cobs, G∗(x) = ∞. No value
iterations are performed on these states; their values must remain at infinity.
During the evaluation of (8.59) (or a higher dimensional version), different actions
are attempted. For each action, it is required that all of the interpolation neighbors
of xk+1 lie in Cfree. If one of them lies in Cobs, then that action produces infinite
cost. This has the effect of automatically reducing the interpolation region, R(S),
to all cubes whose vertices all lie in Cfree, as shown in Figure 8.21b. All samples in
Cobs are assumed to be deleted from S in the remainder of this section; however,
the full grid is still used for interpolation so that infinite values represent the
obstacle region.

Note that as expressed so far, it is possible that points in Cobs may lie in R(S)
because collision detection is performed only on the samples. In practice, either
the grid resolution must be made fine enough to minimize the chance of this error
occurring or distance information from a collision detection algorithm must be
used to infer that a sufficiently large ball around each sample is collision free. If
an interpolation region cannot be assured to lie in Cfree, then the resolution may
have to be increased, at least locally.

Handling the goal region Recall that backward value iterations start with
the final cost-to-go function and iterate backward. Initially, the final cost-to-go
is assigned as infinity at all states except those in the goal. To properly initialize
the final cost-to-go function, there must exist some subset of X over which the
zero value can be obtained by interpolation. Let G = S ∩XG. The requirement
is that the interpolation region R(G) must be nonempty. If this is not satisfied,
then the grid resolution needs to be increased or the goal set needs to be enlarged.
If Xg is a single point, then it needs to be enlarged, regardless of the resolution
(unless an alternative way to interpolate near a goal point is developed). In the
interpolation region shown in Figure 8.21c, all states in the vicinity of xG yield an
interpolated cost-to-go value of zero. If such a region did not exist, then all costs
would remain at infinity during the evaluation of (8.59) from any state. Note that
∆t must be chosen large enough to ensure that new samples can reach G.

Using G∗ as a navigation function After the cost-to-go values stabilize, the
resulting cost-to-go function, G∗ can be used as a navigation function. Even
though G∗ is defined only over S ⊂ X, the value of the navigation function can
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be obtained using interpolation over any point in R(S). The optimal action is
selected as the one that satisfies the min in (8.6). This means that the state
trajectory does not have to visit the grid points as in the Manhattan model. A
trajectory can visit any point in R(S), which enables trajectories to converge to
the true optimal solution as ∆t and the grid spacing tend to zero.

Topological considerations So far there has been no explicit consideration of
the topology of C. Assuming that C is a manifold, the concepts discussed so far can
be applied to any open set on which coordinates are defined. In practice, it is often
convenient to use the manifold representations of Section 4.1.2. The manifold can
be expressed as a cube, [0, 1]n, with some faces identified to obtain [0, 1]n/ ∼. Over
the interior of the cube, all of the concepts explained in this section work without
modification. At the boundary, the samples used for interpolation must take the
identification into account. Furthermore, actions, uk, and next states, xk+1, must
function correctly on the boundary. One must be careful, however, in declaring
that some solution is optimal, because Euclidean shortest paths depend on the
manifold parameterization. This ambiguity is usually resolved by formulating the
cost in terms of some physical quantity, such as time or energy. This often requires
modeling dynamics, which will be covered in Part IV.

Value iteration with interpolation is extremely general. It is a generic al-
gorithm for approximating the solution to optimal control problems. It can be
applied to solve many of the problems in Part IV by restricting U(x) to take into
account complicated differential constraints. The method can also be extended to
problems that involve explicit uncertainty in predictability. This version of value
iteration is covered in Section 10.6.

Obtaining Dijkstra-like algorithms

For motion planning problems, it is expected that x(t + ∆t), as computed from
(8.62), is always close to x(t) relative to the size of X. This suggests the use
of a Dijkstra-like algorithm to compute optimal feedback plans more efficiently.
As discussed for the finite case in Section 2.3.3, many values remain unchanged
during the value iterations, as indicated in Example 2.5. Dijkstra’s algorithm
maintains a data structure that focuses the computation on the part of the state
space where values are changing. The same can be done for the continuous case
by carefully considering the sample points [310].

During the value iterations, there are three kinds of sample points, just as in
the discrete case (recall from Section 2.3.3):

1. Dead: The cost-to-go has stabilized to its optimal value.

2. Alive: The current cost-to-go is finite, but it is not yet known whether the
value is optimal.
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3. Unvisited: The cost-to-go value remains at infinity because the sample has
not been reached.

The sets are somewhat harder to maintain for the case of continuous state spaces
because of the interaction between the sample set S and the interpolated region
R(S).

Imagine the first value iteration. Initially, all points in G are set to zero values.
Among the collection of samples S, how many can reach R(G) in a single stage?
We expect that samples very far from G will not be able to reach R(G); this keeps
their values are infinity. The samples that are close to G should reach it. It would
be convenient to prune away from consideration all samples that are too far from
G to lower their value. In every iteration, we eliminate iterating over samples that
are too far away from those already reached. It is also unnecessary to iterate over
the dead samples because their values no longer change.

To keep track of reachable samples, it will be convenient to introduce the
notion of a backprojection, which will be studied further in Section 10.1. For a
single state, x ∈ X, its backprojection is defined as

B(x) = {x′ ∈ X | ∃u′ ∈ U(x′) such that x = f(x′, u′)}. (8.66)

The backprojection of a set, X ′ ⊆ X, of points is just the union of backprojections
for each point:

B(X ′) =
⋃

x∈X′

B(x). (8.67)

Now consider a version of value iteration that uses backprojections to elimi-
nate some states from consideration because it is known that their values cannot
change. Let i refer to the number of stages considered by the current value itera-
tion. During the first iteration, i = 1, which means that all one-stage trajectories
are considered. Let S be the set of samples (assuming already that none lie in
Cobs). Let Di and Ai refer to the dead and alive samples, respectively. Initially,
D1 = G, the set of samples in the goal set. The first set, A1, of alive samples is
assigned by using the concept of a frontier. The frontier of a set S ′ ⊆ S of sample
points is

Front(S ′) = (B(R(S ′)) \ S ′) ∩ S. (8.68)

This is the set of sample points that can reach R(S ′) in one stage, excluding those
already in S ′. Figure 8.22 illustrates the frontier. Using (8.68), A1 is defined as
A1 = Front(D1).

Now the approach is described for iteration i. The cost-to-go update (8.56) is
computed at all points inAi. IfG

∗
k+1(s) = G∗

k(s) for some s ∈ Ai, then s is declared
dead and moved to Di+1. Samples are never removed from the dead set; therefore,
all points in Di are also added to Di+1. The next active set, Ai+1, includes all
samples in Ai, excluding those that were moved to the dead set. Furthermore,
all samples in Front(Ai) are added to Ai+1 because these will produce a finite
cost-to-go value in the next iteration. The iterations continue as usual until some



8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 433

s

(a) (b)

Figure 8.22: An illustration of the frontier concept: (a) the shaded disc indicates
the set of all reachable points in one stage, from the sample on the left. The
sample cannot reach in one stage the shaded region on the right, which represents
R(S ′). (b) The frontier is the set of samples that can reach R(S ′). The inclusion
of the frontier increases the interpolation region beyond R(S ′).

stage, m, is reached for which Am is empty, and Dm includes all samples from
which the goal can be reached (under the approximation assumptions made in
this section).

For efficiency purposes, an approximation to Front may be used, provided that
the true frontier is a proper subset of the approximate frontier. For example, the
frontier might add all new samples within a specified radius of points in S ′. In
this case, the updated cost-to-go value for some s ∈ Ai may remain infinite. If
this occurs, it is of course not added to Di+1. Furthermore, it is deleted from Ai

in the computation of the next frontier (the frontier should only be computed for
samples that have finite cost-to-go values).

The approach considered so far can be expected to reduce the amount of
computations in each value iteration by eliminating the evaluation of (8.56) on
unnecessary samples. The same cost-to-go values are obtained in each iteration
because only samples for which the value cannot change are eliminated in each
iteration. The resulting algorithm still does not, however, resemble Dijkstra’s
algorithm because value iterations are performed over all of Ai in each stage.

To make a version that behaves like Dijkstra’s algorithm, a queue Q will be
introduced. The algorithm removes the smallest element of Q in each iteration.
The interpolation version first assigns G∗(s) = 0 for each s ∈ G. It also maintains
a set D of dead samples, which is initialized to D = G. For each s ∈ Front(G), the
cost-to-go update (8.56) is computed. The priority Q is initialized to Front(G),
and elements are sorted by their current cost-to-go values (which may not be
optimal). The algorithm iteratively removes the smallest element from Q (because
its optimal cost-to-go is known to be the current value) and terminates when Q
is empty. Each time the smallest element, ss ∈ Q, is removed, it is inserted into
D. Two procedures are then performed: 1) Some elements in the queue need to
have their cost-to-go values recomputed using (8.56) because the value G∗(ss) is
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known to be optimal, and their values may depend on it. These are the samples
in Q that lie in Front(D) (in which D just got extended to include ss). 2) Any
samples in B(R(D)) that are not in Q are inserted into Q after computing their
cost-to-go values using (8.56). This enables the active set of samples to grow as
the set of dead samples grows. Dijkstra’s algorithm with interpolation does not
compute values that are identical to those produced by value iterations because
G∗

k+1 is not explicitly stored when G∗
k is computed. Each computed value is some

cost-to-go, but it is only known to be the optimal when the sample is placed into
D. It can be shown, however, that the method converges because computed values
are no higher than what would have been computed in a value iteration. This is
also the basis of dynamic programming using Gauss-Seidel iterations [59].

A specialized, wavefront-propagation version of the algorithm can be made for
the special case of finding solutions that reach the goal in the smallest number of
stages. The algorithm is similar to the one shown in Figure 8.4. It starts with an
initial wavefront W0 = G in which G∗(s) = 0 for each s ∈ G. In each iteration,
the optimal cost-to-go value i is increased by one, and the wavefront, Wi+1, is
computed from Wi as Wi+1 = Front(Wi). The algorithm terminates at the first
iteration in which the wavefront is empty.

Further Reading

There is much less related literature for this chapter in comparison to previous chap-
ters. As explained in Section 8.1, there are historical reasons why feedback is usually
separated from motion planning. Navigation functions [284, 416] were one of the most
influential ideas in bringing feedback into motion planning; therefore, navigation func-
tions were a common theme throughout the chapter. For other works that use or
develop navigation functions, see [111, 149, 388]. The ideas of progress measures [164],
Lyapunov functions (covered in Section 15.1.1), and cost-to-go functions are all closely
related. For Lyapunov-based design of feedback control laws, see [150]. In the context
of motion planning, the Error Detection and Recovery (EDR) framework also contains
feedback ideas [154].

In [167], the topological complexity of C-spaces is studied by characterizing the min-
imum number of regions needed to cover C × C by defining a continuous path function
over each region. This indicates limits on navigation functions that can be constructed,
assuming that both qI and qG are variables (throughout this chapter, qG was instead
fixed). Further work in this direction includes [168, 169].

To gain better intuitions about properties of vector fields, [34] is a helpful reference,
filled with numerous insightful illustrations. A good introduction to smooth manifolds
that is particularly suited for control-theory concepts is [73]. Basic intuitions for 2D and
3D curves and surfaces can be obtained from [389]. Other sources for smooth manifolds
and differential geometry include [2, 62, 126, 151, 437, 446, 470]. For discussions of
piecewise-smooth vector fields, see [21, 325, 426, 487].

Sections 8.4.2 and 8.4.3 were inspired by [127, 334] and [371], respectively. Many
difficulties were avoided because discontinuous vector fields were allowed in these ap-
proaches. By requiring continuity or smoothness, the subject of Section 8.4.4 was ob-
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tained. The material is based mainly on [416, 417]. Other work on navigation functions
includes [137, 339, 340].

Section 8.5.1 was inspired mainly by [83, 351], and the approach based on neighbor-
hood graphs is drawn from [480].

Value iteration with interpolation, the subject of Section 8.5.2, is sometimes for-
gotten in motion planning because computers were not powerful enough at the time it
was developed [55, 56, 301, 302]. Presently, however, solutions can be computed for
challenging problems with several dimensions (e.g., 3 or 4). Convergence of discretized
value iteration to solving the optimal continuous problem was first established in [58],
based on Lipschitz conditions on the state transition equation and cost functional. Anal-
yses that take interpolation into account, and general discretization issues, appear in
[88, 156, 205, 295, 296]. A multi-resolution variant of value iteration was proposed in
[377]. The discussion of Dijkstra-like versions of value iteration was based on [310, 461].
The level-set method is also closely related [278, 280, 279, 434].

Exercises

1. Suppose that a very fast path planning algorithm runs on board of a mobile robot
(for example, it may find an answer in a few milliseconds, which is reasonable
using trapezoidal decomposition in R2). Explain how this method can be used to
simulate having a feedback plan on the robot. Explain the issues and trade-offs
between having a fast on-line algorithm that computes open-loop plans vs. a
better off-line algorithm that computes a feedback plan.

2. Use Dijkstra’s algorithm to construct navigation functions on a 2D grid with
obstacles. Experiment with adding a penalty to the cost functional for getting
too close to obstacles.

3. If there are alternative routes, the NF2 algorithm does not necessarily send the
state along the route that has the largest maximum clearance. Fix the NF2
algorithm so that it addresses this problem.

4. Tangent space problems:

(a) For the manifold of unit quaternions, find basis vectors for the tangent space
in R4 at any point.

(b) Find basis vectors for the tangent space in R9, assuming that matrices in
SO(3) are parameterized with quaternions, as shown in (4.20).

5. Extend the algorithm described in Section 8.4.3 to make it work for polygons that
have holes. See Example 8.16 for a similar problem.

6. Give a complete algorithm that uses the vertical cell decomposition for a polygonal
obstacle region in R2 to construct a vector field that serves as a feedback plan.
The vector field may be discontinuous.

7. Figure 8.23 depicts a 2D example for which Xfree is an open annulus. Consider
designing a vector field for which all integral curves flow into XG and the vector
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XG

Figure 8.23: Consider designing a continuous vector field that flows into XG.

field is continuous outside of XG. Either give a vector field that achieves this or
explain why it is not possible.

8. Use the maximum-clearance roadmap idea from Section 6.2.3 to define a cell
decomposition and feedback motion plan (vector field) that maximizes clearance.
The vector field may be discontinuous.

9. Develop an algorithm that computes an exact cover for a polygonal configuration
space and ensures that if two neighborhoods intersect, then their intersection
always contains an open set (i.e., the overlap region is two-dimensional). The
neighborhoods in the cover should be polygonal.

10. Using a distance measurement and Euler angles, determine the expression for a
collision-free ball that can be inferred (make the ball as large as possible). This
should generalize (8.54).

11. Using a distance measurement and quaternions, determine the expression for a
collision-free ball (once again, make it as large as possible).

12. Generalize the multi-linear interpolation scheme in (8.59) from 2 to n dimensions.

13. Explain the convergence problems for value iteration that can result if ‖u‖ = 1 is
used to constraint the set of allowable actions, instead of ‖u‖ ≤ 1.

Implementations

14. Experiment with numerical methods for solving the function (8.49) in two dimen-
sions under various boundary conditions. Report on the efficiency and accuracy
of the methods. How well can they be applied in higher dimensions?

15. Implement value iteration with interpolation (it is not necessary to use the method
in Figure 8.20) for a polygonal robot that translates and rotates among polygonal
obstacles in W = R2. Define the cost functional so that the distance traveled is
obtained with respect to a weighted Euclidean metric (the weights that compare
rotation to translation can be set arbitrarily).
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16. Evaluate the efficiency of the interpolation method shown in Figure 8.20 applied
to multi-linear interpolation given by generalizing (8.59) as in Exercise 12. You
do not need to implement the full value iteration approach (alternatively, this
could be done, which provides a better comparison of the overall performance).

17. Implement the method of Section 8.4.2 of computing vector fields on a triangula-
tion. For given input polygons, have your program draw a needle diagram of the
computed vector field. Determine how fast the vector field can be recomputed as
the goal changes.

18. Optimal navigation function problems:

(a) Implement the algorithm illustrated in Figure 8.13. Show the level sets of
the optimal cost-to-go function.

(b) Extend the algorithm and implementation to the case in which there are
polygonal holes in Xfree.

19. Adapt value iteration with interpolation so that a point robot moving in the plane
can keep track of a predictable moving point called a target. The cost functional
should cause a small penalty to be added if the target is not visible. Optimizing
this should minimize the amount of time that the target is not visible. Assume
that the initial configuration of the robot is given. Compute optimal feedback
plans for the robot.

20. Try to experimentally construct navigation functions by adding potential func-
tions that repel the state away from obstacles and attract the state toward xG.
For simplicity, you may assume that X = R2 and the obstacles are discs. Start
with a single disc and then gradually construct more complicated obstacle re-
gions. How difficult is it to ensure that the resulting potential function has no
local minima outside of xG?

ii S. M. LaValle: Planning Algorithms
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algorithms. In J.-P. Laumond and M. Overmars, editors, Algorithms for
Robotic Motion and Manipulation. A.K. Peters, Wellesley, MA, 1997.

[12] R. Alami, T. Siméon, and J.-P. Laumond. A geometrical approach to
planning manipulation tasks. In Proceedings International Symposium on
Robotics Research, pages 113–119, 1989.

[13] G. Allgower and K. Georg. Numerical Continuation Methods. Springer-
Verlag, Berlin, 1990.

[14] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and
C. Uhrig. Approximate motion planning and the complexity of the boundary
of the union of simple geometric figures. In Proceedings ACM Symposium
on Computational Geometry, pages 281–289, 1990.

[15] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods.
In Proceedings IEEE International Conference on Robotics & Automation,
pages 630–637, 1998.

[16] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM:
An obstacle-based PRM for 3D workspaces. In Proceedings Workshop on
Algorithmic Foundations of Robotics, pages 155–168, 1998.

[17] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods.
IEEE Transactions on Robotics & Automation, 16(4):442–447, Aug 2000.

[18] N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map pro-
tein folding landscapes and analyze folding kinetics of known native struc-
tures. In Proceedings 6th ACM International Conference on Computational
Molecular Biology (RECOMB), pages 2–11, 2002.

[19] N. M. Amato and G. Song. Using motion planning to study protein folding
pathways. Journal of Computational Biology, 9(2):149–168, 2002.

[20] N. M. Amato and Y. Wu. A randomized roadmap method for path and
manipulation planning. In Proceedings IEEE International Conference on
Robotics & Automation, pages 113–120, 1996.

[21] F. Ancona and A. Bressan. Patchy vector fields and asymptotic stabilization.
ESAIM-Control, Optimisation and Calculus of Variations, 4:445–471, 1999.

[22] B. D. Anderson and J. B. Moore. Optimal Control: Linear-Quadratic Meth-
ods. Prentice-Hall, Englewood Cliffs, NJ, 1990.



BIBLIOGRAPHY v

[23] J. Angeles. Spatial Kinematic Chains. Analysis, Synthesis, and Optimisa-
tion. Springer-Verlag, Berlin, 1982.

[24] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods,
and Algorithms. Springer-Verlag, Berlin, 2003.

[25] E. Anshelevich, S. Owens, F. Lamiraux, and L. E. Kavraki. Deformable
volumes in path planning applications. In Proceedings IEEE International
Conference on Robotics & Automation, pages 2290–2295, 2000.

[26] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu J.-C. Latombe, and C. Varm.
Stochastic roadmap simulation: An efficient representation and algorithm
for analyzing molecular motion. Journal of Computational Biology, 10:257–
281, 2003.

[27] M. D. Ardema and J. M. Skowronski. Dynamic game applied to coordination
control of two arm robotic system. In R. P. Hämäläinen and H. K. Ehtamo,
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