
Chapter 6

Combinatorial Motion Planning

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press



Chapter 6

Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continuous
configuration space without resorting to approximations. Due to this property,
they are alternatively referred to as exact algorithms. This is in contrast to the
sampling-based motion planning algorithms from Chapter 5.

6.1 Introduction

All of the algorithms presented in this chapter are complete, which means that
for any problem instance (over the space of problems for which the algorithm is
designed), the algorithm will either find a solution or will correctly report that no
solution exists. By contrast, in the case of sampling-based planning algorithms,
weaker notions of completeness were tolerated: resolution completeness and prob-
abilistic completeness.

Representation is important When studying combinatorial motion planning
algorithms, it is important to carefully consider the definition of the input. What
is the representation used for the robot and obstacles? What set of transforma-
tions may be applied to the robot? What is the dimension of the world? Are
the robot and obstacles convex? Are they piecewise linear? The specification of
possible inputs defines a set of problem instances on which the algorithm will op-
erate. If the instances have certain convenient properties (e.g., low dimensionality,
convex models), then a combinatorial algorithm may provide an elegant, practical
solution. If the set of instances is too broad, then a requirement of both complete-
ness and practical solutions may be unreasonable. Many general formulations of
general motion planning problems are PSPACE-hard1; therefore, such a hope ap-
pears unattainable. Nevertheless, there exist general, complete motion planning
algorithms. Note that focusing on the representation is the opposite philosophy
from sampling-based planning, which hides these issues in the collision detection
module.

1This implies NP-hard. An overview of such complexity statements appears in Section 6.5.1.

249

250 S. M. LaValle: Planning Algorithms

Reasons to study combinatorial methods There are generally two good
reasons to study combinatorial approaches to motion planning:

1. In many applications, one may only be interested in a special class of plan-
ning problems. For example, the world might be 2D, and the robot might
only be capable of translation. For many special classes, elegant and ef-
ficient algorithms can be developed. These algorithms are complete, do
not depend on approximation, and can offer much better performance than
sampling-based planning methods, such as those in Chapter 5.

2. It is both interesting and satisfying to know that there are complete algo-
rithms for an extremely broad class of motion planning problems. Thus,
even if the class of interest does not have some special limiting assumptions,
there still exist general-purpose tools and algorithms that can solve it. These
algorithms also provide theoretical upper bounds on the time needed to solve
motion planning problems.

Warning: Some methods are impractical Be careful not to make the wrong
assumptions when studying the algorithms of this chapter. A few of them are ef-
ficient and easy to implement, but many might be neither. Even if an algorithm
has an amazing asymptotic running time, it might be close to impossible to im-
plement. For example, one of the most famous algorithms from computational
geometry can split a simple2 polygon into triangles in O(n) time for a polygon
with n edges [19]. This is so amazing that it was covered in the New York Times,
but the algorithm is so complicated that it is doubtful that anyone will ever imple-
ment it. Sometimes it is preferable to use an algorithm that has worse theoretical
running time but is much easier to understand and implement. In general, though,
it is valuable to understand both kinds of methods and decide on the trade-offs
for yourself. It is also an interesting intellectual pursuit to try to determine how
efficiently a problem can be solved, even if the result is mainly of theoretical in-
terest. This might motivate others to look for simpler algorithms that have the
same or similar asymptotic running times.

Roadmaps Virtually all combinatorial motion planning approaches construct a
roadmap along the way to solving queries. This notion was introduced in Section
5.6, but in this chapter stricter requirements are imposed in the roadmap definition
because any algorithm that constructs one needs to be complete. Some of the
algorithms in this chapter first construct a cell decomposition of Cfree from which
the roadmap is consequently derived. Other methods directly construct a roadmap
without the consideration of cells.

Let G be a topological graph (defined in Example 4.6) that maps into Cfree.
Furthermore, let S ⊂ Cfree be the swath, which is set of all points reached by G,

2A polygonal region that has no holes.



6.2. POLYGONAL OBSTACLE REGIONS 251

as defined in (5.40). The graph G is called a roadmap if it satisfies two important
conditions:

1. Accessibility: From any q ∈ Cfree, it is simple and efficient to compute a
path τ : [0, 1] → Cfree such that τ(0) = q and τ(1) = s, in which s may be
any point in S. Usually, s is the closest point to q, assuming C is a metric
space.

2. Connectivity-preserving: Using the first condition, it is always possible
to connect some qI and qG to some s1 and s2, respectively, in S. The second
condition requires that if there exists a path τ : [0, 1] → Cfree such that
τ(0) = qI and τ(1) = qG, then there also exists a path τ ′ : [0, 1] → S, such
that τ ′(0) = s1 and τ

′(1) = s2. Thus, solutions are not missed because G fails
to capture the connectivity of Cfree. This ensures that complete algorithms
are developed.

By satisfying these properties, a roadmap provides a discrete representation of
the continuous motion planning problem without losing any of the original con-
nectivity information needed to solve it. A query, (qI , qG), is solved by connecting
each query point to the roadmap and then performing a discrete graph search on
G. To maintain completeness, the first condition ensures that any query can be
connected to G, and the second condition ensures that the search always succeeds
if a solution exists.

6.2 Polygonal Obstacle Regions

Rather than diving into the most general forms of combinatorial motion plan-
ning, it is helpful to first see several methods explained for a case that is easy to
visualize. Several elegant, straightforward algorithms exist for the case in which
C = R2 and Cobs is polygonal. Most of these cannot be directly extended to higher
dimensions; however, some of the general principles remain the same. Therefore,
it is very instructive to see how combinatorial motion planning approaches work in
two dimensions. There are also applications where these algorithms may directly
apply. One example is planning for a small mobile robot that may be modeled as
a point moving in a building that can be modeled with a 2D polygonal floor plan.

After covering representations in Section 6.2.1, Sections 6.2.2–6.2.4 present
three different algorithms to solve the same problem. The one in Section 6.2.2
first performs cell decomposition on the way to building the roadmap, and the
ones in Sections 6.2.3 and 6.2.4 directly produce a roadmap. The algorithm in
Section 6.2.3 computes maximum clearance paths, and the one in Section 6.2.4
computes shortest paths (which consequently have no clearance).

252 S. M. LaValle: Planning Algorithms

Figure 6.1: A polygonal model specified by four oriented simple polygons.

6.2.1 Representation

Assume that W = R2; the obstacles, O, are polygonal; and the robot, A, is a
polygonal body that is only capable of translation. Under these assumptions, Cobs
will be polygonal. For the special case in which A is a point inW , O maps directly
to Cobs without any distortion. Thus, the problems considered in this section may
also be considered as planning for a point robot. If A is not a point robot, then
the Minkowski difference, (4.37), of O and A must be computed. For the case
in which both A and each component of O are convex, the algorithm in Section
4.3.2 can be applied to compute each component of Cobs. In general, both A and
O may be nonconvex. They may even contain holes, which results in a Cobs model
such as that shown in Figure 6.1. In this case, A and O may be decomposed
into convex components, and the Minkowski difference can be computed for each
pair of components. The decompositions into convex components can actually be
performed by adapting the cell decomposition algorithm that will be presented
in Section 6.2.2. Once the Minkowski differences have been computed, they need
to be merged to obtain a representation that can be specified in terms of simple
polygons, such as those in Figure 6.1. An efficient algorithm to perform this
merging is given in Section 2.4 of [28]. It can also be based on many of the same
principles as the planning algorithm in Section 6.2.2.

To implement the algorithms described in this section, it will be helpful to
have a data structure that allows convenient access to the information contained



6.2. POLYGONAL OBSTACLE REGIONS 253

in a model such as Figure 6.1. How is the outer boundary represented? How are
holes inside of obstacles represented? How do we know which holes are inside
of which obstacles? These questions can be efficiently answered by using the
doubly connected edge list data structure, which was described in Section 3.1.3
for consistent labeling of polyhedral faces. We will need to represent models, such
as the one in Figure 6.1, and any other information that planning algorithms need
to maintain during execution. There are three different records:

Vertices: Every vertex v contains a pointer to a point (x, y) ∈ C = R2 and
a pointer to some half-edge that has v as its origin.

Faces: Every face has one pointer to a half-edge on the boundary that
surrounds the face; the pointer value is nil if the face is the outermost
boundary. The face also contains a list of pointers for each connected com-
ponent (i.e., hole) that is contained inside of that face. Each pointer in the
list points to a half-edge of the component’s boundary.

Half-edges: Each half-edge is directed so that the obstacle portion is always
to its left. It contains five different pointers. There is a pointer to its origin
vertex. There is a twin half-edge pointer, which may point to a half-edge that
runs in the opposite direction (see Section 3.1.3). If the half-edge borders an
obstacle, then this pointer is nil. Half-edges are always arranged in circular
chains to form the boundary of a face. Such chains are oriented so that the
obstacle portion (or a twin half-edge) is always to its left. Each half-edge
stores a pointer to its internal face. It also contains pointers to the next and
previous half-edges in the circular chain of half-edges.

For the example in Figure 6.1, there are four circular chains of half-edges that
each bound a different face. The face record of the small triangular hole points
to the obstacle face that contains the hole. Each obstacle contains a pointer
to the face represented by the outermost boundary. By consistently assigning
orientations to the half-edges, circular chains that bound an obstacle always run
counterclockwise, and chains that bound holes run clockwise. There are no twin
half-edges because all half-edges bound part of Cobs. The doubly connected edge
list data structure is general enough to allow extra edges to be inserted that slice
through Cfree. These edges will not be on the border of Cobs, but they can be
managed using twin half-edge pointers. This will be useful for the algorithm in
Section 6.2.2.

6.2.2 Vertical Cell Decomposition

Cell decompositions will be defined formally in Section 6.3, but here we use the
notion informally. Combinatorial methods must construct a finite data structure
that exactly encodes the planning problem. Cell decomposition algorithms achieve

254 S. M. LaValle: Planning Algorithms

Figure 6.2: There are four general cases: 1) extending upward and downward, 2)
upward only, 3) downward only, and 4) no possible extension.

this partitioning of Cfree into a finite set of regions called cells. The term k-
cell refers to a k-dimensional cell. The cell decomposition should satisfy three
properties:

1. Computing a path from one point to another inside of a cell must be trivially
easy. For example, if every cell is convex, then any pair of points in a cell
can be connected by a line segment.

2. Adjacency information for the cells can be easily extracted to build the
roadmap.

3. For a given qI and qG, it should be efficient to determine which cells contain
them.

If a cell decomposition satisfies these properties, then the motion planning problem
is reduced to a graph search problem. Once again the algorithms of Section 2.2
may be applied; however, in the current setting, the entire graph, G, is usually
known in advance.3 This was not assumed for discrete planning problems.

Defining the vertical decomposition We next present an algorithm that
constructs a vertical cell decomposition [18], which partitions Cfree into a finite
collection of 2-cells and 1-cells. Each 2-cell is either a trapezoid that has vertical
sides or a triangle (which is a degenerate trapezoid). For this reason, the method
is sometimes called trapezoidal decomposition. The decomposition is defined as
follows. Let P denote the set of vertices used to define Cobs. At every p ∈ P ,
try to extend rays upward and downward through Cfree, until Cobs is hit. There
are four possible cases, as shown in Figure 6.2, depending on whether or not it is
possible to extend in each of the two directions. If Cfree is partitioned according
to these rays, then a vertical decomposition results. Extending these rays for the
example in Figure 6.3a leads to the decomposition of Cfree shown in Figure 6.3b.
Note that only trapezoids and triangles are obtained for the 2-cells in Cfree.

3Exceptions to this are some algorithms mentioned in Section 6.5.3, which obtain greater
efficiency by only maintaining one connected component of Cobs.



6.2. POLYGONAL OBSTACLE REGIONS 255

(a) (b)

Figure 6.3: The vertical cell decomposition method uses the cells to construct a
roadmap, which is searched to yield a solution to a query.

Every 1-cell is a vertical segment that serves as the border between two 2-cells.
We must ensure that the topology of Cfree is correctly represented. Recall that
Cfree was defined to be an open set. Every 2-cell is actually defined to be an
open set in R2; thus, it is the interior of a trapezoid or triangle. The 1-cells are
the interiors of segments. It is tempting to make 0-cells, which correspond to the
endpoints of segments, but these are not allowed because they lie in Cobs.

General position issues What if two points along Cobs lie on a vertical line
that slices through Cfree? What happens when one of the edges of Cobs is vertical?
These are special cases that have been ignored so far. Throughout much of com-
binatorial motion planning it is common to ignore such special cases and assume
Cobs is in general position. This usually means that if all of the data points are
perturbed by a small amount in some random direction, the probability that the
special case remains is zero. Since a vertical edge is no longer vertical after being
slightly perturbed, it is not in general position. The general position assump-
tion is usually made because it greatly simplifies the presentation of an algorithm
(and, in some cases, its asymptotic running time is even lower). In practice, how-
ever, this assumption can be very frustrating. Most of the implementation time
is often devoted to correctly handling such special cases. Performing random per-
turbations may avoid this problem, but it tends to unnecessarily complicate the
solutions. For the vertical decomposition, the problems are not too difficult to
handle without resorting to perturbations; however, in general, it is important to
be aware of this difficulty, which is not as easy to fix in most other settings.

Defining the roadmap To handle motion planning queries, a roadmap is con-
structed from the vertical cell decomposition. For each cell Ci, let qi denote a
designated sample point such that qi ∈ Ci. The sample points can be selected as
the cell centroids, but the particular choice is not too important. Let G(V,E) be

256 S. M. LaValle: Planning Algorithms

Figure 6.4: The roadmap derived from the vertical cell decomposition.

qI

qG

Figure 6.5: An example solution path.



6.2. POLYGONAL OBSTACLE REGIONS 257

a topological graph defined as follows. For every cell, Ci, define a vertex qi ∈ V .
There is a vertex for every 1-cell and every 2-cell. For each 2-cell, define an edge
from its sample point to the sample point of every 1-cell that lies along its bound-
ary. Each edge is a line-segment path between the sample points of the cells. The
resulting graph is a roadmap, as depicted in Figure 6.4. The accessibility condi-
tion is satisfied because every sample point can be reached by a straight-line path
thanks to the convexity of every cell. The connectivity condition is also satisfied
because G is derived directly from the cell decomposition, which also preserves
the connectivity of Cfree. Once the roadmap is constructed, the cell information
is no longer needed for answering planning queries.

Solving a query Once the roadmap is obtained, it is straightforward to solve
a motion planning query, (qI , qG). Let C0 and Ck denote the cells that contain qI
and qG, respectively. In the graph G, search for a path that connects the sample
point of C0 to the sample point of Ck. If no such path exists, then the planning
algorithm correctly declares that no solution exists. If one does exist, then let C1,
C2, . . ., Ck−1 denote the sequence of 1-cells and 2-cells visited along the computed
path in G from C0 to Ck.

A solution path can be formed by simply “connecting the dots.” Let q0, q1, q2,
. . ., qk−1, qk, denote the sample points along the path in G. There is one sample
point for every cell that is crossed. The solution path, τ : [0, 1] → Cfree, is formed
by setting τ(0) = qI , τ(1) = qG, and visiting each of the points in the sequence
from q0 to qk by traveling along the shortest path. For the example, this leads to
the solution shown in Figure 6.5. In selecting the sample points, it was important
to ensure that each path segment from the sample point of one cell to the sample
point of its neighboring cell is collision-free.4

Computing the decomposition The problem of efficiently computing the de-
composition has not yet been considered. Without concern for efficiency, the
problem appears simple enough that all of the required steps can be computed by
brute-force computations. If Cobs has n vertices, then this approach would take at
least O(n2) time because intersection tests have to be made between each vertical
ray and each segment. This even ignores the data structure issues involved in
finding the cells that contain the query points and in building the roadmap that
holds the connectivity information. By careful organization of the computation,
it turns out that all of this can be nicely handled, and the resulting running time
is only O(n lg n).

Plane-sweep principle The algorithm is based on the plane-sweep (or line-
sweep) principle from computational geometry [12, 28, 29], which forms the basis

4This is the reason why the approach is defined differently from Chapter 1 of [47]. In that
case, sample points were not placed in the interiors of the 2-cells, and collision could result for
some queries.

258 S. M. LaValle: Planning Algorithms

of many combinatorial motion planning algorithms and many other algorithms in
general. Much of computational geometry can be considered as the development
of data structures and algorithms that generalize the sorting problem to multiple
dimensions. In other words, the algorithms carefully “sort” geometric information.

The word “sweep” is used to refer to these algorithms because it can be imag-
ined that a line (or plane, etc.) sweeps across the space, only to stop where some
critical change occurs in the information. This gives the intuition, but the sweep-
ing line is not explicitly represented by the algorithm. To construct the vertical
decomposition, imagine that a vertical line sweeps from x = −∞ to x = ∞, using
(x, y) to denote a point in C = R2.

From Section 6.2.1, note that the set P of Cobs vertices are the only data in R2

that appear in the problem input. It therefore seems reasonable that interesting
things can only occur at these points. Sort the points in P in increasing order by
their X coordinate. Assuming general position, no two points have the same X
coordinate. The points in P will now be visited in order of increasing x value.
Each visit to a point will be referred to as an event. Before, after, and in between
every event, a list, L, of some Cobs edges will be maintained. This list must be
maintained at all times in the order that the edges appear when stabbed by the
vertical sweep line. The ordering is maintained from lower to higher.

Algorithm execution Figures 6.6 and 6.7 show how the algorithm proceeds.
Initially, L is empty, and a doubly connected edge list is used to represent Cfree.
Each connected component of Cfree yields a single face in the data structure.
Suppose inductively that after several events occur, L is correctly maintained.
For each event, one of the four cases in Figure 6.2 occurs. By maintaining L in a
balanced binary search tree [24], the edges above and below p can be determined
in O(lg n) time. This is much better than O(n) time, which would arise from
checking every segment. Depending on which of the four cases from Figure 6.2
occurs, different updates to L are made. If the first case occurs, then two different
edges are inserted, and the face of which p is on the border is split two times
by vertical line segments. For each of the two vertical line segments, two half-
edges are added, and all faces and half-edges must be updated correctly (this
operation is local in that only records adjacent to where the change occurs need
to be updated). The next two cases in Figure 6.2 are simpler; only a single face
split is made. For the final case, no splitting occurs.

Once the face splitting operations have been performed, L needs to be updated.
When the sweep line crosses p, two edges are always affected. For example, in
the first and last cases of Figure 6.2, two edges must be inserted into L (the
mirror images of these cases cause two edges to be deleted from L). If the middle
two cases occur, then one edge is replaced by another in L. These insertion and
deletion operations can be performed in O(lg n) time. Since there are n events,
the running time for the construction algorithm is O(n lg n).

The roadmap G can be computed from the face pointers of the doubly con-



6.2. POLYGONAL OBSTACLE REGIONS 259

1 2 3 4 5 6 7 8 9 10 11 12 130

a

d

f

b

i

m

n
h

g
c

e

l

j

k

Figure 6.6: There are 14 events in this example.

Event Sorted Edges in L Event Sorted Edges in L
0 {a, b} 7 {d, j, n, b}
1 {d, b} 8 {d, j, n,m, l, b}
2 {d, f, e, b} 9 {d, j, l, b}
3 {d, f, i, b} 10 {d, k, l, b}
4 {d, f, g, h, i, b} 11 {d, b}
5 {d, f, g, j, n, h, i, b} 12 {d, c}
6 {d, f, g, j, n, b} 13 {}

Figure 6.7: The status of L is shown after each of 14 events occurs. Before the
first event, L is empty.

260 S. M. LaValle: Planning Algorithms

One closest
point

Two closest
points

One closest
point

Figure 6.8: The maximum clearance roadmap keeps as far away from the Cobs as
possible. This involves traveling along points that are equidistant from two or
more points on the boundary of Cobs.

Edge-Edge Vertex-Vertex Vertex-Edge

Figure 6.9: Voronoi roadmap pieces are generated in one of three possible cases.
The third case leads to a quadratic curve.

nected edge list. A more elegant approach is to incrementally build G at each
event. In fact, all of the pointer maintenance required to obtain a consistent dou-
bly connected edge list can be ignored if desired, as long as G is correctly built
and the sample point is obtained for each cell along the way. We can even go
one step further, by forgetting about the cell decomposition and directly building
a topological graph of line-segment paths between all sample points of adjacent
cells.

6.2.3 Maximum-Clearance Roadmaps

A maximum-clearance roadmap tries to keep as far as possible from Cobs, as shown
for the corridor in Figure 6.8. The resulting solution paths are sometimes pre-
ferred in mobile robotics applications because it is difficult to measure and control
the precise position of a mobile robot. Traveling along the maximum-clearance
roadmap reduces the chances of collisions due to these uncertainties. Other names
for this roadmap are generalized Voronoi diagram and retraction method [60]. It is
considered as a generalization of the Voronoi diagram (recall from Section 5.2.2)
from the case of points to the case of polygons. Each point along a roadmap edge
is equidistant from two points on the boundary of Cobs. Each roadmap vertex



6.2. POLYGONAL OBSTACLE REGIONS 261

corresponds to the intersection of two or more roadmap edges and is therefore
equidistant from three or more points along the boundary of Cobs.

The retraction term comes from topology and provides a nice intuition about
the method. A subspace S is a deformation retract of a topological space X if the
following continuous homotopy, h : X × [0, 1] → X, can be defined as follows [35]:

1. h(x, 0) = x for all x ∈ X.

2. h(x, 1) is a continuous function that maps every element of X to some ele-
ment of S.

3. For all t ∈ [0, 1], h(s, t) = s for any s ∈ S.

The intuition is that Cfree is gradually thinned through the homotopy process,
until a skeleton, S, is obtained. An approximation to this shrinking process can
be imagined by shaving off a thin layer around the whole boundary of Cfree. If
this is repeated iteratively, the maximum-clearance roadmap is the only part that
remains (assuming that the shaving always stops when thin “slivers” are obtained).

To construct the maximum-clearance roadmap, the concept of features from
Section 5.3.3 is used again. Let the feature set refer to the set of all edges and
vertices of Cobs. Candidate paths for the roadmap are produced by every pair
of features. This leads to a naive O(n4) time algorithm as follows. For every
edge-edge feature pair, generate a line as shown in Figure 6.9a. For every vertex-
vertex pair, generate a line as shown in Figure 6.9b. The maximum-clearance
path between a point and a line is a parabola. Thus, for every edge-point pair,
generate a parabolic curve as shown in Figure 6.9c. The portions of the paths that
actually lie on the maximum-clearance roadmap are determined by intersecting
the curves. Several algorithms exist that provide better asymptotic running times
[48, 50], but they are considerably more difficult to implement. The best-known
algorithm runs in O(n lg n) time in which n is the number of roadmap curves [71].

6.2.4 Shortest-Path Roadmaps

Instead of generating paths that maximize clearance, suppose that the goal is to
find shortest paths. This leads to the shortest-path roadmap, which is also called
the reduced visibility graph in [47]. The idea was first introduced in [58] and may
perhaps be the first example of a motion planning algorithm. The shortest-path
roadmap is in direct conflict with maximum clearance because shortest paths tend
to graze the corners of Cobs. In fact, the problem is ill posed because Cfree is an
open set. For any path τ : [0, 1] → Cfree, it is always possible to find a shorter
one. For this reason, we must consider the problem of determining shortest paths
in cl(Cfree), the closure of Cfree. This means that the robot is allowed to “touch”
or “graze” the obstacles, but it is not allowed to penetrate them. To actually
use the computed paths as solutions to a motion planning problem, they need
to be slightly adjusted so that they come very close to Cobs but do not make

262 S. M. LaValle: Planning Algorithms

Figure 6.10: A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the line must extend outward past each of them
without poking into Cobs.

Figure 6.11: The shortest-path roadmap includes edges between consecutive reflex
vertices on Cobs and also bitangent edges.

contact. This slightly increases the path length, but the additional cost can be
made arbitrarily small as the path gets arbitrarily close to Cobs.

The shortest-path roadmap, G, is constructed as follows. Let a reflex vertex be a
polygon vertex for which the interior angle (in Cfree) is greater than π. All vertices
of a convex polygon (assuming that no three consecutive vertices are collinear)
are reflex vertices. The vertices of G are the reflex vertices. Edges of G are formed
from two different sources:

Consecutive reflex vertices: If two reflex vertices are the endpoints of
an edge of Cobs, then an edge between them is made in G.

Bitangent edges: If a bitangent line can be drawn through a pair of reflex
vertices, then a corresponding edge is made in G. A bitangent line, depicted
in Figure 6.10, is a line that is incident to two reflex vertices and does not
poke into the interior of Cobs at any of these vertices. Furthermore, these
vertices must be mutually visible from each other.

An example of the resulting roadmap is shown in Figure 6.11. Note that the
roadmap may have isolated vertices, such as the one at the top of the figure. To



6.2. POLYGONAL OBSTACLE REGIONS 263

qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap
vertices, and graph search is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path
between qI and qG.

solve a query, qI and qG are connected to all roadmap vertices that are visible;
this is shown in Figure 6.12. This makes an extended roadmap that is searched
for a solution. If Dijkstra’s algorithm is used, and if each edge is given a cost that
corresponds to its path length, then the resulting solution path is the shortest
path between qI and qG. The shortest path for the example in Figure 6.12 is
shown in Figure 6.13.

If the bitangent tests are performed naively, then the resulting algorithm re-
quires O(n3) time, in which n is the number of vertices of Cobs. There are O(n2)
pairs of reflex vertices that need to be checked, and each check requires O(n) time
to make certain that no other edges prevent their mutual visibility. The plane-
sweep principle from Section 6.2.2 can be adapted to obtain a better algorithm,
which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each

264 S. M. LaValle: Planning Algorithms

p1 p3

p4p6

p5

p2

Figure 6.14: Potential bitangents can be identified by checking for left turns,
which avoids the use of trigonometric functions and their associated numerical
problems.

reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n). See
Chapter 15 of [28] for more details. There exists an algorithm that can compute
the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [30]. If the obstacle region is described by a simple poly-
gon, the time complexity can be reduced to O(n); see [56] for many shortest-path
variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R

2 × R2 × R2 → {true, false}, as
fl(p1, p2, p3) = true if and only if p3 is to the left of the ray that starts at p1 and
pierces p2. A point p2 is a reflex vertex if and only if fl(p1, p2, p3) = true, in which
p1 and p3 are the points before and after, respectively, along the boundary of Cobs.
The bitangent test can be performed by assigning points as shown in Figure 6.14.
Assume that no three points are collinear and the segment that connects p2 and
p5 is not in collision. The pair, p2, p5, of vertices should receive a bitangent edge
if the following sentence is false:

(

fl(p1, p2, p5)⊕ fl(p3, p2, p5)
)

∨
(

fl(p4, p5, p2)⊕ fl(p6, p5, p2)
)

, (6.1)

in which ⊕ denotes logical “exclusive or.” The fl predicate can be implemented
without trigonometric functions by defining

M(p1, p2, p3) =





1 x1 y1
1 x2 y2
1 x3 y3



 , (6.2)

in which pi = (xi, yi). If det(M) > 0, then fl(p1, p2, p3) = true; otherwise,
fl(p1, p2, p3) = false.

6.3 Cell Decompositions

Section 6.2.2 introduced the vertical cell decomposition to solve the motion plan-
ning problem when Cobs is polygonal. It is important to understand, however, that



6.3. CELL DECOMPOSITIONS 265

this is just one choice among many for the decomposition. Some of these choices
may not be preferable in 2D; however, they might generalize better to higher
dimensions. Therefore, other cell decompositions are covered in this section, to
provide a smoother transition from vertical cell decomposition to cylindrical alge-
braic decomposition in Section 6.4, which solves the motion planning problem in
any dimension for any semi-algebraic model. Along the way, a cylindrical decom-
position will appear in Section 6.3.4 for the special case of a line-segment robot
in W = R2.

6.3.1 General Definitions

In this section, the term complex refers to a collection of cells together with their
boundaries. A partition into cells can be derived from a complex, but the complex
contains additional information that describes how the cells must fit together. The
term cell decomposition still refers to the partition of the space into cells, which
is derived from a complex.

It is tempting to define complexes and cell decompositions in a very general
manner. Imagine that any partition of Cfree could be called a cell decomposition.
A cell could be so complicated that the notion would be useless. Even Cfree itself
could be declared as one big cell. It is more useful to build decompositions out
of simpler cells, such as ones that contain no holes. Formally, this requires that
every k-dimensional cell is homeomorphic to Bk ⊂ Rk, an open k-dimensional
unit ball. From a motion planning perspective, this still yields cells that are quite
complicated, and it will be up to the particular cell decomposition method to
enforce further constraints to yield a complete planning algorithm.

Two different complexes will be introduced. The simplicial complex is ex-
plained because it is one of the easiest to understand. Although it is useful in
many applications, it is not powerful enough to represent all of the complexes that
arise in motion planning. Therefore, the singular complex is also introduced. Al-
though it is more complicated to define, it encompasses all of the cell complexes
that are of interest in this book. It also provides an elegant way to represent
topological spaces. Another important cell complex, which is not covered here, is
the CW-complex [34].

Simplicial Complex For this definition, it is assumed that X = Rn. Let p1, p2,
. . ., pk+1, be k+1 linearly independent5 points in Rn. A k-simplex, [p1, . . . , pk+1],
is formed from these points as

[p1, . . . , pk+1] =

{

k+1
∑

i=1

αipi ∈ Rn
∣

∣

∣ αi ≥ 0 for all i and
k+1
∑

i=1

αi = 1

}

, (6.3)

5Form k vectors by subtracting p1 from the other k points for some positive integer k such
that k ≤ n. Arrange the vectors into a k × n matrix. For linear independence, there must be
at least one k × k cofactor with a nonzero determinant. For example, if k = 2, then the three
points cannot be collinear.

266 S. M. LaValle: Planning Algorithms

Not a simplicial complex A simplicial complex

Figure 6.15: To become a simplicial complex, the simplex faces must fit together
nicely.

in which αipi is the scalar multiplication of αi by each of the point coordinates.
Another way to view (6.3) is as the convex hull of the k + 1 points (i.e., all ways
to linearly interpolate between them). If k = 2, a triangular region is obtained.
For k = 3, a tetrahedron is produced.

For any k-simplex and any i such that 1 ≤ i ≤ k + 1, let αi = 0. This yields
a (k − 1)-dimensional simplex that is called a face of the original simplex. A 2-
simplex has three faces, each of which is a 1-simplex that may be called an edge.
Each 1-simplex (or edge) has two faces, which are 0-simplexes called vertices.

To form a complex, the simplexes must fit together in a nice way. This yields
a high-dimensional notion of a triangulation, which in R2 is a tiling composed
of triangular regions. A simplicial complex, K, is a finite set of simplexes that
satisfies the following:

1. Any face of a simplex in K is also in K.

2. The intersection of any two simplexes in K is either a common face of both
of them or the intersection is empty.

Figure 6.15 illustrates these requirements. For k > 0, a k-cell of K is defined to
be interior, int([p1, . . . , pk+1]), of any k-simplex. For k = 0, every 0-simplex is a
0-cell. The union of all of the cells forms a partition of the point set covered by
K. This therefore provides a cell decomposition in a sense that is consistent with
Section 6.2.2.

Singular complex Simplicial complexes are useful in applications such as ge-
ometric modeling and computer graphics for computing the topology of models.
Due to the complicated topological spaces, implicit, nonlinear models, and de-
composition algorithms that arise in motion planning, they are insufficient for the
most general problems. A singular complex is a generalization of the simplicial
complex. Instead of being limited to Rn, a singular complex can be defined on
any manifold, X (it can even be defined on any Hausdorff topological space). The
main difference is that, for a simplicial complex, each simplex is a subset of Rn;



6.3. CELL DECOMPOSITIONS 267

however, for a singular complex, each singular simplex is actually a homeomor-
phism from a (simplicial) simplex in Rn to a subset of X.

To help understand the idea, first consider a 1D singular complex, which hap-
pens to be a topological graph (as introduced in Example 4.6). The interval [0, 1]
is a 1-simplex, and a continuous path τ : [0, 1] → X is a singular 1-simplex be-
cause it is a homeomorphism of [0, 1] to the image of τ in X. Suppose G(V,E) is
a topological graph. The cells are subsets of X that are defined as follows. Each
point v ∈ V is a 0-cell in X. To follow the formalism, each is considered as the
image of a function f : {0} → X, which makes it a singular 0-simplex, because
{0} is a 0-simplex. For each path τ ∈ E, the corresponding 1-cell is

{x ∈ X | τ(s) = x for some s ∈ (0, 1)}. (6.4)

Expressed differently, it is τ((0, 1)), the image of the path τ , except that the
endpoints are removed because they are already covered by the 0-cells (the cells
must form a partition).

These principles will now be generalized to higher dimensions. Since all balls
and simplexes of the same dimension are homeomorphic, balls can be used instead
of a simplex in the definition of a singular simplex. Let Bk ⊂ Rk denote a closed,
k-dimensional unit ball,

Dk = {x ∈ Rn | ‖x‖ ≤ 1}, (6.5)

in which ‖·‖ is the Euclidean norm. A singular k-simplex is a continuous mapping
σ : Dk → X. Let int(Dk) refer to the interior of Dk. For k ≥ 1, the k-cell, C,
corresponding to a singular k-simplex, σ, is the image C = σ(int(Dk)) ⊆ X.
The 0-cells are obtained directly as the images of the 0 singular simplexes. Each
singular 0-simplex maps to the 0-cell in X. If σ is restricted to int(Dk), then it
actually defines a homeomorphism between Dk and C. Note that both of these
are open sets if k > 0.

A simplicial complex requires that the simplexes fit together nicely. The same
concept is applied here, but topological concepts are used instead because they
are more general. Let K be a set of singular simplexes of varying dimensions. Let
Sk denote the union of the images of all singular i-simplexes for all i ≤ k.

A collection of singular simplexes that map into a topological space X is called
a singular complex if:

1. For each dimension k, the set Sk ⊆ X must be closed. This means that the
cells must all fit together nicely.

2. Each k-cell is an open set in the topological subspace Sk. Note that 0-cells
are open in S0, even though they are usually closed in X.

Example 6.1 (Vertical Decomposition) The vertical decomposition of Sec-
tion 6.2.2 is a nice example of a singular complex that is not a simplicial complex

268 S. M. LaValle: Planning Algorithms

because it contains trapezoids. The interior of each trapezoid and triangle forms
a 2-cell, which is an open set. For every pair of adjacent 2-cells, there is a 1-cell on
their common boundary. There are no 0-cells because the vertices lie in Cobs, not
in Cfree. The subspace S2 is formed by taking the union of all 2-cells and 1-cells
to yield S2 = Cfree. This satisfies the closure requirement because the complex
is built in Cfree only; hence, the topological space is Cfree. The set S2 = Cfree is
both open and closed. The set S1 is the union of all 1-cells. This is also closed
because the 1-cell endpoints all lie in Cobs. Each 1-cell is also an open set.

One way to avoid some of these strange conclusions from the topology re-
stricted to Cfree is to build the vertical decomposition in cl(Cfree), the closure of
Cfree. This can be obtained by starting with the previously defined vertical de-
composition and adding a new 1-cell for every edge of Cobs and a 0-cell for every
vertex of Cobs. Now S3 = cl(Cfree), which is closed in R2. Likewise, S2, S1, and S0,
are closed in the usual way. Each of the individual k-dimensional cells, however,
is open in the topological space Sk. The only strange case is that the 0-cells are
considered open, but this is true in the discrete topological space S0. �

6.3.2 2D Decompositions

The vertical decomposition method of Section 6.2.2 is just one choice of many
cell decomposition methods for solving the problem when Cobs is polygonal. It
provides a nice balance between the number of cells, computational efficiency,
and implementation ease. It is usually possible to decompose Cobs into far fewer
convex cells. This would be preferable for multiple-query applications because
the roadmap would be smaller. It is unfortunately quite difficult to optimize the
number of cells. Determining the decomposition of a polygonal Cobs with holes
that uses the smallest number of convex cells is NP-hard [44, 52]. Therefore, we
are willing to tolerate nonoptimal decompositions.

Triangulation One alternative to the vertical decomposition is to perform a
triangulation, which yields a simplicial complex over Cfree. Figure 6.16 shows an
example. Since Cfree is an open set, there are no 0-cells. Each 2-simplex (triangle)
has either one, two, or three faces, depending on how much of its boundary is
shared with Cobs. A roadmap can be made by connecting the samples for 1-cells
and 2-cells as shown in Figure 6.17. Note that there are many ways to triangulate
Cfree for a given problem. Finding good triangulations, which for example means
trying to avoid thin triangles, is given considerable attention in computational
geometry [12, 28, 29].

How can the triangulation be computed? It might seem tempting to run the
vertical decomposition algorithm of Section 6.2.2 and split each trapezoid into
two triangles. Even though this leads to triangular cells, it does not produce a
simplicial complex (two triangles could abut the same side of a triangle edge).



6.3. CELL DECOMPOSITIONS 269

Figure 6.16: A triangulation of Cfree.

Figure 6.17: A roadmap obtained from the triangulation.

270 S. M. LaValle: Planning Algorithms

A naive approach is to incrementally split faces by attempting to connect two
vertices of a face by a line segment. If this segment does not intersect other
segments, then the split can be made. This process can be iteratively performed
over all vertices of faces that have more than three vertices, until a triangulation
is eventually obtained. Unfortunately, this results in an O(n3) time algorithm
because O(n2) pairs must be checked in the worst case, and each check requires
O(n) time to determine whether an intersection occurs with other segments. This
can be easily reduced to O(n2 lg n) by performing radial sweeping. Chapter 3 of
[28] presents an algorithm that runs in O(n lg n) time by first partitioning Cfree
intomonotone polygons, and then efficiently triangulating each monotone polygon.
If Cfree is simply connected, then, surprisingly, a triangulation can be computed
in linear time [19]. Unfortunately, this algorithm is too complicated to use in
practice (there are, however, simpler algorithms for which the complexity is close
to O(n); see [10] and the end of Chapter 3 of [28] for surveys).

Cylindrical decomposition The cylindrical decomposition is very similar to
the vertical decomposition, except that when any of the cases in Figure 6.2 occurs,
then a vertical line slices through all faces, all the way from y = −∞ to y = ∞.
The result is shown in Figure 6.18, which may be considered as a singular complex.
This may appear very inefficient in comparison to the vertical decomposition;
however, it is presented here because it generalizes nicely to any dimension, any
C-space topology, and any semi-algebraic model. Therefore, it is presented here to
ease the transition to more general decompositions. The most important property
of the cylindrical decomposition is shown in Figure 6.19. Consider each vertical
strip between two events. When traversing a strip from y = −∞ to y = ∞,
the points alternate between being Cobs and Cfree. For example, between events
4 and 5, the points below edge f are in Cfree. Points between f and g lie in
Cobs. Points between g and h lie in Cfree, and so forth. The cell decomposition
can be defined so that 2D cells are also created in Cobs. Let S(x, y) denote the
logical predicate (3.6) from Section 3.1.1. When traversing a strip, the value of
S(x, y) also alternates. This behavior is the main reason to construct a cylindrical
decomposition, which will become clearer in Section 6.4.2. Each vertical strip is
actually considered to be a cylinder, hence, the name cylindrical decomposition
(i.e., there are not necessarily any cylinders in the 3D geometric sense).

6.3.3 3D Vertical Decomposition

It turns out that the vertical decomposition method of Section 6.2.2 can be ex-
tended to any dimension by recursively applying the sweeping idea. The method
requires, however, that Cobs is piecewise linear. In other words, Cobs is represented
as a semi-algebraic model for which all primitives are linear. Unfortunately, most
of the general motion planning problems involve nonlinear algebraic primitives
because of the nonlinear transformations that arise from rotations. Recall the



6.3. CELL DECOMPOSITIONS 271

1 2 3 4 5 6 7 8 9 10 11 12 130

a

b

i

h

g
c

e

l

f

j

k

n
m

d

Figure 6.18: The cylindrical decomposition differs from the vertical decomposition
in that the rays continue forever instead of stopping at the nearest edge. Compare
this figure to Figure 6.6.

1 2 3 4 5 6 7 8 9 10 11 12 130

a

b

i

h

g
c

e

l

m
n

d

k

f

j

Figure 6.19: The cylindrical decomposition produces vertical strips. Inside of a
strip, there is a stack of collision-free cells, separated by Cobs.

272 S. M. LaValle: Planning Algorithms

y y y

z z z

y

z

x

Figure 6.20: In higher dimensions, the sweeping idea can be applied recursively.

complicated algebraic Cobs model constructed in Section 4.3.3. To handle generic
algebraic models, powerful techniques from computational algebraic geometry are
needed. This will be covered in Section 6.4.

One problem for which Cobs is piecewise linear is a polyhedral robot that can
translate in R3, and the obstacles in W are polyhedra. Since the transformation
equations are linear in this case, Cobs ⊂ R3 is polyhedral. The polygonal faces of
Cobs are obtained by forming geometric primitives for each of the Type FV, Type
VF, and Type EE cases of contact between A and O, as mentioned in Section
4.3.2.

Figure 6.20 illustrates the algorithm that constructs the 3D vertical decompo-
sition. Compare this to the algorithm in Section 6.2.2. Let (x, y, z) denote a point
in C = R3. The vertical decomposition yields convex 3-cells, 2-cells, and 1-cells.
Neglecting degeneracies, a generic 3-cell is bounded by six planes. The cross sec-
tion of a 3-cell for some fixed x value yields a trapezoid or triangle, exactly as in
the 2D case, but in a plane parallel to the yz plane. Two sides of a generic 3-cell
are parallel to the yz plane, and two other sides are parallel to the xz plane. The
3-cell is bounded above and below by two polygonal faces of Cobs.



6.3. CELL DECOMPOSITIONS 273

Initially, sort the Cobs vertices by their x coordinate to obtain the events. Now
consider sweeping a plane perpendicular to the x-axis. The plane for a fixed value
of x produces a 2D polygonal slice of Cobs. Three such slices are shown at the
bottom of Figure 6.20. Each slice is parallel to the yz plane and appears to look
exactly like a problem that can be solved by the 2D vertical decomposition method.
The 2-cells in a slice are actually slices of 3-cells in the 3D decomposition. The
only places in which these 3-cells can critically change is when the sweeping plane
stops at some x value. The center slice in Figure 6.20 corresponds to the case in
which a vertex of a convex polyhedron is encountered, and all of the polyhedron
lies to right of the sweep plane (i.e., the rest of the polyhedron has not been
encountered yet). This corresponds to a place where a critical change must occur
in the slices. These are 3D versions of the cases in Figure 6.2, which indicate how
the vertical decomposition needs to be updated. The algorithm proceeds by first
building the 2D vertical decomposition at the first x event. At each event, the 2D
vertical decomposition must be updated to take into account the critical changes.
During this process, the 3D cell decomposition and roadmap can be incrementally
constructed, as in the 2D case.

The roadmap is constructed by placing a sample point in the center of each
3-cell and 2-cell. The vertices are the sample points, and edges are added to
the roadmap by connecting the sample points for each case in which a 3-cell is
adjacent to a 2-cell.

This same principle can be extended to any dimension, but the applications
to motion planning are limited because the method requires linear models (or at
least it is very challenging to adapt to nonlinear models; in some special cases, this
can be done). See [32] for a summary of the complexity of vertical decompositions
for various geometric primitives and dimensions.

6.3.4 A Decomposition for a Line-Segment Robot

This section presents one of the simplest cell decompositions that involves non-
linear models, yet it is already fairly complicated. This will help to give an
appreciation of the difficulty of combinatorial planning in general. Consider the
planning problem shown in Figure 6.21. The robot, A, is a single line segment
that can translate or rotate in W = R2. The dot on one end of A is used to illus-
trate its origin and is not part of the model. The C-space, C, is homeomorphic to
R2 × S1. Assume that the parameterization R2 × [0, 2π]/ ∼ is used in which the
identification equates θ = 0 and θ = 2π. A point in C is represented as (x, y, θ).

An approximate solution First consider making a cell decomposition for the
case in which the segment can only translate. The method from Section 4.3.2 can
be used to compute Cobs by treating the robot-obstacle interaction with Type EV
and Type VE contacts. When the interior of A touches an obstacle vertex, then
Type EV is obtained. An endpoint of A touching an object interior yields Type

274 S. M. LaValle: Planning Algorithms

Figure 6.21: Motion planning for a line segment that can translate and rotate in
a 2D world.

VE. Each case produces an edge of Cobs, which is polygonal. Once this is repre-
sented, the vertical decomposition can be used to solve the problem. This inspires
a reasonable numerical approach to the rotational case, which is to discretize θ
into K values, i∆θ, for 0 ≤ i ≤ K, and ∆θ = 2π/K [3]. The obstacle region,
Cobs, is polygonal for each case, and we can imagine having a stack of K polyg-
onal regions. A roadmap can be formed by connecting sampling points inside of
a slice in the usual way, and also by connecting samples between corresponding
cells in neighboring slices. If K is large enough, this strategy works well, but the
method is not complete because a sufficient value for K cannot be determined in
advance. The method is actually an interesting hybrid between combinatorial and
sampling-based motion planning. A resolution-complete version can be imagined.

In the limiting case, as K tends to infinity, the surfaces of Cobs become curved
along the θ direction. The conditions in Section 4.3.3 must be applied to gen-
erate the actual obstacle regions. This is possible, but it yields a semi-algebraic
representation of Cobs in terms of implicit polynomial primitives. It is no easy
task to determine an explicit representation in terms of simple cells that can be
used for motion planning. The method of Section 6.3.3 cannot be used because
Cobs is not polyhedral. Therefore, special analysis is warranted to produce a cell
decomposition.

The general idea is to construct a cell decomposition in R2 by considering only
the translation part, (x, y). Each cell in R2 is then lifted into C by considering θ as
a third axis that is “above” the xy plane. A cylindrical decomposition results in
which each cell in the xy plane produces a cylindrical stack of cells for different θ
values. Recall the cylinders in Figures 6.18 and 6.19. The vertical axis corresponds
to θ in the current setting, and the horizontal axis is replaced by two axes, x and
y.

To construct the decomposition in R2, consider the various robot-obstacle con-
tacts shown in Figure 6.22. In Figure 6.22a, the segment swings around from a
fixed (x, y). Two different kinds of contacts arise. For some orientation (value of



6.3. CELL DECOMPOSITIONS 275

v1

e3

e2

e1

v1

e3
e3

e2

(a) (b)

Figure 6.22: Fix (x, y) and swing the segment around for all values of θ ∈
[0, 2π]/ ∼. (a) Note the vertex and edge features that are hit by the segment.
(b) Record orientation intervals over which the robot is not in collision.

θ), the segment contacts v1, forming a Type EV contact. For three other orienta-
tions, the segment contacts an edge, forming Type VE contacts. Once again using
the feature concept, there are four orientations at which the segment contacts a
feature. Each feature may be either a vertex or an edge. Between the two contacts
with e2 and e3, the robot is not in collision. These configurations lie in Cfree. Also,
configurations for which the robot is between contacts e3 (the rightmost contact)
and v1 are also in Cfree. All other orientations produce configurations in Cobs. Note
that the line segment cannot get from being between e2 and e3 to being between
e3 and v1, unless the (x, y) position is changed. It therefore seems sensible that
these must correspond to different cells in whatever decomposition is made.

Radar maps Figure 6.22b illustrates which values of θ produce collision. We
will refer to this representation as a radar map. The four contact orientations are
indicated by the contact feature. The notation [e3, v1] and [e2, e3] identifies the
two intervals for which (x, y, θ) ∈ Cfree. Now imagine changing (x, y) by a small
amount, to obtain (x′, y′). How would the radar map change? The precise angles
at which the contacts occur would change, but the notation [e3, v1] and [e2, e3],
for configurations that lie in Cfree, remains unchanged. Even though the angles
change, there is no interesting change in terms of the contacts; therefore, it makes
sense to declare (x, y, θ) and (x, y, θ′) to lie in the same cell in Cfree because θ and
θ′ both place the segment between the same contacts. Imagine a column of two
3-cells above a small area around (x, y). One 3-cell is for orientations in [e3, v1],
and the other is for orientations in [e2, e3]. These appear to be 3D regions in Cfree
because each of x, y, and θ can be perturbed a small amount without leaving the
cell.

Of course, if (x, y) is changed enough, then eventually we expect a dramatic
change to occur in the radar map. For example, imagine e3 is infinitely long, and
the x value is gradually increased in Figure 6.22a. The black band between v1 and

276 S. M. LaValle: Planning Algorithms

e2

e1

e3

v1

e3
e3

(a) (b)

Figure 6.23: If x is increased enough, a critical change occurs in the radar map
because v1 can no longer be reached by the robot.

e2 in Figure 6.22b shrinks in length. Eventually, when the distance from (x′, y′)
to v1 is greater than the length of A, the black band disappears. This situation
is shown in Figure 6.23. The change is very important to notice because after
that region vanishes, any orientation θ′ between e3 and e3, traveling the long way
around the circle, produces a configuration (x′, y′, θ′) ∈ Cfree. This seems very
important because it tells us that we can travel between the original two cells by
moving the robot further way from v1, rotating the robot, and then moving back.
Now move from the position shown in Figure 6.23 into the positive y direction. The
remaining black band begins to shrink and finally disappears when the distance
to e3 is further than the robot length. This represents another critical change.

The radar map can be characterized by specifying a circular ordering

([f1, f2], [f3, f4], [f5, f6], . . . , [f2k−1, f2k]), (6.6)

when there are k orientation intervals over which the configurations lie in Cfree.
For the radar map in Figure 6.22b, this representation yields ([e3, v1], [e2, e3]).
Each fi is a feature, which may be an edge or a vertex. Some of the fi may
be identical; the representation for Figure 6.23b is ([e3, e3]). The intervals are
specified in counterclockwise order around the radar map. Since the ordering
is circular, it does not matter which interval is specified first. There are two
degenerate cases. If (x, y, θ) ∈ Cfree for all θ ∈ [0, 2π), then we write () for the
ordering. On the other hand, if (x, y, θ) ∈ Cobs for all θ ∈ [0, 2π), then we write ∅.

Critical changes in cells Now we are prepared to explain the cell decompo-
sition in more detail. Imagine traveling along a path in R2 and producing an
animated version of the radar map in Figure 6.22b. We say that a critical change
occurs each time the circular ordering representation of (6.6) changes. Changes
occur when intervals: 1) appear, 2) disappear, 3) split apart, 4) merge into one,
or 5) when the feature of an interval changes. The first task is to partition R2 into



6.3. CELL DECOMPOSITIONS 277

e

L

v

L

(a) (b)

e
v

L

L
v1

v2

(c) (d)

Figure 6.24: Four of the five cases that produce critical curves in R2.

maximal 2-cells over which no critical changes occur. Each one of these 2-cells,
R, represents the projection of a strip of 3-cells in Cfree. Each 3-cell is defined as
follows. Let {R, [fi, fi+1]} denote the 3D region in Cfree for which (x, y) ∈ R and
θ places the segment between contacts fi and fi+1. The cylinder of cells above R
is given by {R, [fi, fi+1]} for each interval in the circular ordering representation,
(6.6). If any orientation is possible because A never contacts an obstacle while in
R, then we write {R}.

What are the positions in R2 that cause critical changes to occur? It turns
out that there are five different cases to consider, each of which produces a set of
critical curves in R2. When one of these curves is crossed, a critical change occurs.
If none of these curves is crossed, then no critical change can occur. Therefore,
these curves precisely define the boundaries of the desired 2-cells in R2. Let L
denote the length of the robot (which is the line segment).

Consider how the five cases mentioned above may occur. Two of the five cases
have already been observed in Figures 6.22 and 6.23. These appear in Figures
6.24a and Figures 6.24b, and occur if (x, y) is within L of an edge or a vertex.
The third and fourth cases are shown in Figures 6.24c and 6.24d, respectively. The
third case occurs because crossing the curve causes A to change between being
able to touch e and being able to touch v. This must be extended from any edge
at an endpoint that is a reflex vertex (interior angle is greater than π). The fourth
case is actually a return of the bitangent case from Figure 6.10, which arose for

278 S. M. LaValle: Planning Algorithms

v

e
A

L

Figure 6.25: The fifth case is the most complicated. It results in a fourth-degree
algebraic curve called the Conchoid of Nicomedes.

R1 R2 R3 R4

R6
R7

R9

R10

R11

R12

R13

A

R8

R5

e3

e2

x2

x1

e4

e1

Figure 6.26: The critical curves form the boundaries of the noncritical regions in
R2.

the shortest path graph. If the vertices are within L of each other, then a linear
critical curve is generated because A is no longer able to touch v2 when crossing it
from right to left. Bitangents always produce curves in pairs; the curve above v2
is not shown. The final case, shown in Figure 6.25, is the most complicated. It is a
fourth-degree algebraic curve called the Conchoid of Nicomedes, which arises from
A being in simultaneous contact between v and e. Inside of the teardrop-shaped
curve, A can contact e but not v. Just outside of the curve, it can touch v. If the
xy coordinate frame is placed so that v is at (0, 0), then the equation of the curve
is

(x2 − y2)(y + d)2 − y2L2 = 0, (6.7)

in which d is the distance from v to e.
Putting all of the curves together generates a cell decomposition of R2. There

are noncritical regions, over which there is no change in (6.6); these form the
2-cells. The boundaries between adjacent 2-cells are sections of the critical curves
and form 1-cells. There are also 0-cells at places where critical curves intersect.



6.3. CELL DECOMPOSITIONS 279

xy plane
R R′

θ

Figure 6.27: Connections are made between neighboring 3-cells that lie above
neighboring noncritical regions.

Figure 6.26 shows an example adapted from [47]. Note that critical curves are not
drawn if their corresponding configurations are all in Cobs. The method still works
correctly if they are included, but unnecessary cell boundaries are made. Just for
fun, they could be used to form a nice cell decomposition of Cobs, in addition to
Cfree. Since Cobs is avoided, is seems best to avoid wasting time on decomposing
it. These unnecessary cases can be detected by imagining that A is a laser with
range L. As the laser sweeps around, only features that are contacted by the laser
are relevant. Any features that are hidden from view of the laser correspond to
unnecessary boundaries.

After the cell decomposition has been constructed in R2, it needs to be lifted
into R2× [0, 2π]/ ∼. This generates a cylinder of 3-cells above each 2D noncritical
region, R. The roadmap could easily be defined to have a vertex for every 3-cell
and 2-cell, which would be consistent with previous cell decompositions; however,
vertices at 2-cells are not generated here to make the coming example easier to
understand. Each 3-cell, {R, [fi, fi+1]}, corresponds to the vertex in a roadmap.
The roadmap edges connect neighboring 3-cells that have a 2-cell as part of their
common boundary. This means that in R2 they share a one-dimensional portion
of a critical curve.

Constructing the roadmap The problem is to determine which 3-cells are
actually adjacent. Figure 6.27 depicts the cases in which connections need to be
made. The xy plane is represented as one axis (imagine looking in a direction
parallel to it). Consider two neighboring 2-cells (noncritical regions), R and R′,
in the plane. It is assumed that a 1-cell (critical curve) in R2 separates them. The
task is to connect together 3-cells in the cylinders above R and R′. If neighbor-
ing cells share the same feature pair, then they are connected. This means that
{R, [fi, fi+1]} and {R′, [fi, fi+1]} must be connected. In some cases, one feature

280 S. M. LaValle: Planning Algorithms

R7

R5

e3

e2

x2

x1

e4

e1

R10

R9

R8

R13

R11

R12

R2 R3R1 R6
R4

Figure 6.28: A depiction of the 3-cells above the noncritical regions. Sample
rod orientations are shown for each cell (however, the rod length is shortened for
clarity). Edges between cells are shown in Figure 6.29.

may change, while the interval of orientations remains unchanged. This may hap-
pen, for example, when the robot changes from contacting an edge to contacting
a vertex of the edge. In these cases, a connection must also be made. One case
illustrated in Figure 6.27 is when a splitting or merging of orientation intervals
occurs. Traveling from R to R′, the figure shows two regions merging into one. In
this case, connections must be made from each of the original two 3-cells to the
merged 3-cell. When constructing the roadmap edges, sample points of both the
3-cells and 2-cells should be used to ensure collision-free paths are obtained, as
in the case of the vertical decomposition in Section 6.2.2. Figure 6.28 depicts the
cells for the example in Figure 6.26. Each noncritical region has between one and
three cells above it. Each of the various cells is indicated by a shortened robot that
points in the general direction of the cell. The connections between the cells are
also shown. Using the noncritical region and feature names from Figure 6.26, the
resulting roadmap is depicted abstractly in Figure 6.29. Each vertex represents a
3-cell in Cfree, and each edge represents the crossing of a 2-cell between adjacent
3-cells. To make the roadmap consistent with previous roadmaps, we could insert
a vertex into every edge and force the path to travel through the sample point of
the corresponding 2-cell.

Once the roadmap has been constructed, it can be used in the same way as
other roadmaps in this chapter to solve a query. Many implementation details have
been neglected here. Due to the fifth case, some of the region boundaries in R2 are
fourth-degree algebraic curves. Ways to prevent the explicit characterization of
every noncritical region boundary, and other implementation details, are covered
in [7]. Some of these details are also summarized in [47].



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 281

{R1, [e1, e3]} {R2, [e1, e3]} {R3, [e1, e3]} {R4, [e1, e3]} {R9, [e1, e3]} {R10, [v1, e3]}

{R5, [e1, e3]}

{R8, [v1, e3]}{R6, [e1, e3]}

{R7, [e4, e3]}{R6, [e4, e2]}{R5, [e4, v1]}

{R8, [e4, e2]}

{R4, [e4, v1]} {R9, [e4, e2]} {R10, [e4, e2]} {R11, [e4, e2]} {R12, [e4, e2]} {R13, [e4, e2]}

{R1, [e3, e1]} {R2, [e3, v1]} {R3, [e3, e4]}

{R9, [e3, e4]}

{R10, [e3, e4]}{R11, [e3, e4]}{R12, [v1, e4]}{R13, [e2, e4]}

{R4, [e3, e4]}

Figure 6.29: The roadmap corresponding to the example in Figure 6.26.

Complexity How many cells can there possibly be in the worst case? First
count the number of noncritical regions in R2. There are O(n) different ways to
generate critical curves of the first three types because each corresponds to a single
feature. Unfortunately, there are O(n2) different ways to generate bitangents and
the Conchoid of Nicomedes because these are based on pairs of features. Assuming
no self-intersections, a collection of O(n2) curves in R2, may intersect to generate
at most O(n4) regions. Above each noncritical region in R2, there could be a
cylinder of O(n) 3-cells. Therefore, the size of the cell decomposition is O(n5)
in the worst case. In practice, however, it is highly unlikely that all of these
intersections will occur, and the number of cells is expected to be reasonable.
In [67], an O(n5)-time algorithm is given to construct the cell decomposition.
Algorithms that have much better running time are mentioned in Section 6.5.3,
but they are more complicated to understand and implement.

6.4 Computational Algebraic Geometry

This section presents algorithms that are so general that they solve any prob-
lem of Formulation 4.1 and even the closed-chain problems of Section 4.4. It
is amazing that such algorithms exist; however, it is also unfortunate that they
are both extremely challenging to implement and not efficient enough for most
applications. The concepts and tools of this section were mostly developed in
the context of computational real algebraic geometry [9, 25]. They are powerful

282 S. M. LaValle: Planning Algorithms

enough to conquer numerous problems in robotics, computer vision, geometric
modeling, computer-aided design, and geometric theorem proving. One of these
problems happens to be motion planning, for which the connection to computa-
tional algebraic geometry was first recognized in [68].

6.4.1 Basic Definitions and Concepts

This section builds on the semi-algebraic model definitions from Section 3.1 and
the polynomial definitions from Section 4.4.1. It will be assumed that C ⊆ Rn,
which could for example arise by representing each copy of SO(2) or SO(3) in its
2× 2 or 3× 3 matrix form. For example, in the case of a 3D rigid body, we know
that C = R3 ×RP3, which is a six-dimensional manifold, but it can be embedded
in R12, which is obtained from the Cartesian product of R3 and the set of all
3× 3 matrices. The constraints that force the matrices to lie in SO(2) or SO(3)
are polynomials, and they can therefore be added to the semi-algebraic models of
Cobs and Cfree. If the dimension of C is less than n, then the algorithm presented
below is sufficient, but there are some representation and complexity issues that
motivate using a special parameterization of C to make both dimensions the same
while altering the topology of C to become homeomorphic to Rn. This is discussed
briefly in Section 6.4.2.

Suppose that the models in Rn are all expressed using polynomials from
Q[x1, . . . , xn], the set of polynomials6 over the field of rational numbers Q. Let
f ∈ Q[x1, . . . , xn] denote a polynomial.

Tarski sentences Recall the logical predicates that were formed in Section 3.1.
They will be used again here, but now they are defined with a little more flexibility.
For any f ∈ Q[x1, . . . , xn], an atom is an expression of the form f ⊲⊳ 0, in which ⊲⊳
may be any relation in the set {=, 6=, <,>,≤,≥}. In Section 3.1, such expressions
were used to define logical predicates. Here, we assume that relations other than
≤ can be used and that the vector of polynomial variables lies in Rn.

A quantifier-free formula, φ(x1, . . . , xn), is a logical predicate composed of
atoms and logical connectives, “and,” “or,” and “not,” which are denoted by ∧,
∨, and ¬, respectively. Each atom itself is considered as a logical predicate that
yields true if and only if the relation is satisfied when the polynomial is evaluated
at the point (x1, . . . , xn) ∈ Rn.

Example 6.2 (An Example Predicate) Let φ be a predicate over R3, defined
as

φ(x1, x2, x3) = (x21x3 − x42 < 0)∨
(

¬(3x2x3 6= 0)∧ (2x23 − x1x2x3 + 2 ≥ 0)
)

. (6.8)

The precedence order of the connectives follows the laws of Boolean algebra. �

6It will be explained shortly why Q[x1, . . . , xn] is preferred over R[x1, . . . , xn].



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 283

Let a quantifier Q be either of the symbols, ∀, which means “for all,” or ∃,
which means “there exists.” A Tarski sentence Φ is a logical predicate that may
additionally involve quantifiers on some or all of the variables. In general, a Tarski
sentence takes the form

Φ(x1, . . . , xn−k) = (Qz1)(Qz2) . . . (Qzk) φ(z1, . . . , zk, x1, . . . , xn−k), (6.9)

in which the zi are the quantified variables, the xi are the free variables, and φ is
a quantifier-free formula. The quantifiers do not necessarily have to appear at the
left to be a valid Tarski sentence; however, any expression can be manipulated
into an equivalent expression that has all quantifiers in front, as shown in (6.9).
The procedure for moving quantifiers to the front is as follows [55]: 1) Eliminate
any redundant quantifiers; 2) rename some of the variables to ensure that the
same variable does not appear both free and bound; 3) move negation symbols as
far inward as possible; and 4) push the quantifiers to the left.

Example 6.3 (Several Tarski Sentences) Tarski sentences that have no free
variables are either true or false in general because there are no arguments on
which the results depend. The sentence

Φ = ∀x∃y (x2 − y < 0), (6.10)

is true because for any x ∈ R, some y ∈ R can always be chosen so that y > x2.
In the general notation of (6.9), this example becomes Qz1 = ∀x, Qz2 = ∃y, and
φ(z1, z2) = (x2 − y < 0).

Swapping the order of the quantifiers yields the Tarski sentence

Φ = ∃y∀x (x2 − y < 0), (6.11)

which is false because for any y, there is always an x such that x2 > y.
Now consider a Tarski sentence that has a free variable:

Φ(z) = ∃y∀x (x2 − zx2 − y < 0). (6.12)

This yields a function Φ : R → {true, false}, in which

Φ(z) =

{

true if z ≥ 1
false if z < 1.

(6.13)

An equivalent quantifier-free formula φ can be defined as φ(z) = (z > 1), which
takes on the same truth values as the Tarski sentence in (6.12). This might make
you wonder whether it is always possible to make a simplification that eliminates
the quantifiers. This is called the quantifier-elimination problem, which will be
explained shortly. �

284 S. M. LaValle: Planning Algorithms

The decision problem The sentences in (6.10) and (6.11) lead to an interesting
problem. Consider the set of all Tarski sentences that have no free variables. The
subset of these that are true comprise the first-order theory of the reals. Can
an algorithm be developed to determine whether such a sentence is true? This
is called the decision problem for the first-order theory of the reals. At first
it may appear hopeless because Rn is uncountably infinite, and an algorithm
must work with a finite set. This is a familiar issue faced throughout motion
planning. The sampling-based approaches in Chapter 5 provided one kind of
solution. This idea could be applied to the decision problem, but the resulting
lack of completeness would be similar. It is not possible to check all possible points
in Rn by sampling. Instead, the decision problem can be solved by constructing
a combinatorial representation that exactly represents the decision problem by
partitioning Rn into a finite collection of regions. Inside of each region, only one
point needs to be checked. This should already seem related to cell decompositions
in motion planning; it turns out that methods developed to solve the decision
problem can also conquer motion planning.

The quantifier-elimination problem Another important problem was exem-
plified in (6.12). Consider the set of all Tarski sentences of the form (6.9), which
may or may not have free variables. Can an algorithm be developed that takes
a Tarski sentence Φ and produces an equivalent quantifier-free formula φ? Let
x1, . . . , xn denote the free variables. To be equivalent, both must take on the
same true values over Rn, which is the set of all assignments (x1, . . . , xn) for the
free variables.

Given a Tarski sentence, (6.9), the quantifier-elimination problem is to find a
quantifier-free formula φ such that

Φ(x1, . . . , xn) = φ(x1, . . . , xn) (6.14)

for all (x1, . . . , xn) ∈ Rn. This is equivalent to constructing a semi-algebraic model
because φ can always be expressed in the form

φ(x1, . . . , xn) =
k
∨

i=1

mi
∧

j=1

(fi,j(x1, . . . , xn) ⊲⊳ 0) , (6.15)

in which ⊲⊳ may be either <, =, or >. This appears to be the same (3.6), except
that (6.15) uses the relations <, =, and > to allow open and closed semi-algebraic
sets, whereas (3.6) only used ≤ to construct closed semi-algebraic sets for O and
A.

Once again, the problem is defined on Rn, which is uncountably infinite, but
an algorithm must work with a finite representation. This will be achieved by the
cell decomposition technique presented in Section 6.4.2.



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 285

(−1,−1, 1, 1) (−1, 1,−1, 1)

(−1, 1, 1, 0)

(−1, 1, 0, 1)(−1, 0, 1, 1)

(1, 1, 1, 1)

(0, 1, 1, 1)
(−1, 1, 1,−1)

(−1, 1, 1, 1)

Figure 6.30: A semi-algebraic decomposition of the gingerbread face yields 9 sign-
invariant regions.

Semi-algebraic decomposition As stated in Section 6.3.1, motion planning
inside of each cell in a complex should be trivial. To solve the decision and
quantifier-elimination problems, a cell decomposition was developed for which
these problems become trivial in each cell. The decomposition is designed so that
only a single point in each cell needs to be checked to solve the decision problem.

The semi-algebraic set Y ⊆ Rn that is expressed with (6.15) is

Y =
k
⋃

i=1

mi
⋂

j=1

{(x1, . . . , xn) ∈ Rn | sgn(fi,j(x1, . . . , xn)) = si,j} , (6.16)

in which sgn is the sign function, and each si,j ∈ {−1, 0, 1}, which is the range
of sgn. Once again the nice relationship between set-theory and logic, which was
described in Section 3.1, appears here. We convert from a set-theoretic description
to a logical predicate by changing ∪ and ∩ to ∨ and ∧, respectively.

Let F denote the set ofm =
∑k

i=1mi polynomials that appear in (6.16). A sign
assignment with respect to F is a vector-valued function, sgnF : Rn → {−1, 0, 1}m.
Each f ∈ F has a corresponding position in the sign assignment vector. At
this position, the sign, sgn(f(x1, . . . , xn)) ∈ {−1, 0, 1}, appears. A semi-algebraic
decomposition is a partition of Rn into a finite set of connected regions that are each
sign invariant. This means that inside of each region, sgnF must remain constant.
The regions will not be called cells because a semi-algebraic decomposition is not
necessarily a singular complex as defined in Section 6.3.1; the regions here may
contain holes.

Example 6.4 (Sign assignment) Recall Example 3.1 and Figure 3.4 from Sec-
tion 3.1.2. Figure 3.4a shows a sign assignment for a case in which there is only

286 S. M. LaValle: Planning Algorithms

one polynomial, F = {x2 + y2 − 4}. The sign assignment is defined as

sgnF(x, y) =







−1 if x2 + y2 − 4 < 0
0 if x2 + y2 − 4 = 0
1 if x2 + y2 − 4 > 0.

(6.17)

Now consider the sign assignment sgnF , shown in Figure 6.30 for the gin-
gerbread face of Figure 3.4b. The polynomials of the semi-algebraic model are
F = {f1, f2, f3, f4}, as defined in Example 3.1. In order, these are the “head,” “left
eye,” “right eye,” and “mouth.” The sign assignment produces a four-dimensional
vector of signs. Note that if (x, y) lies on one of the zeros of a polynomial in F ,
then a 0 appears in the sign assignment. If the curves of two or more of the
polynomials had intersected, then the sign assignment would produce more than
one 0 at the intersection points.

For the semi-algebraic decomposition for the gingerbread face in Figure 6.30,
there are nine regions. Five 2D regions correspond to: 1) being outside of the
face, 2)inside of the left eye, 3) inside of the right eye, 4) inside of the mouth,
and 5) inside of the face but outside of the mouth and eyes. There are four 1D
regions, each of which corresponds to points that lie on one of the zero sets of a
polynomial. The resulting decomposition is not a singular complex because the
(−1, 1, 1, 1) region contains three holes. �

A decomposition such as the one in Figure 6.30 would not be very useful
for motion planning because of the holes in the regions. Further refinement is
needed for motion planning, which is fortunately produced by cylindrical algebraic
decomposition. On the other hand, any semi-algebraic decomposition is quite
useful for solving the decision problem. Only one point needs to be checked inside
of each region to determine whether some Tarski sentence that has no free variables
is true. Why? If the polynomial signs cannot change over some region, then
the true/false value of the corresponding logical predicate, Φ, cannot change.
Therefore, it sufficient only to check one point per sign-invariant region.

6.4.2 Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition is a general method that produces a cylin-
drical decomposition in the same sense considered in Section 6.3.2 for polygons
in R2 and also the decomposition in Section 6.3.4 for the line-segment robot. It
is also referred to as Collins decomposition after its original developer [4, 22, 23].
The decomposition in Figure 6.19 can even be considered as a cylindrical alge-
braic decomposition for a semi-algebraic set in which every geometric primitive is
a linear polynomial. In this section, such a decomposition is generalized to any
semi-algebraic set in Rn.

The idea is to develop a sequence of projections that drops the dimension
of the semi-algebraic set by one each time. Initially, the set is defined over Rn,



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 287

and after one projection, a semi-algebraic set is obtained in Rn−1. Eventually,
the projection reaches R, and a univariate polynomial is obtained for which the
zeros are at the critical places where cell boundaries need to be formed. A cell
decomposition of 1-cells (intervals) and 0-cells is formed by partitioning R. The
sequence is then reversed, and decompositions are formed from R2 up to Rn. Each
iteration starts with a cell decomposition in Ri and lifts it to obtain a cylinder of
cells in Ri+1. Figure 6.35 shows how the decomposition looks for the gingerbread
example; since n = 2, it only involves one projection and one lifting.

Semi-algebraic projections are semi-algebraic The following is implied by
the Tarski-Seidenberg Theorem [9]:

A projection of a semi-algebraic set from dimension n to dimension
n− 1 is a semi-algebraic set.

This gives a kind of closure of semi-algebraic sets under projection, which is re-
quired to ensure that every projection of a semi-algebraic set in Ri leads to a
semi-algebraic set in Ri−1. This property is actually not true for (real) algebraic
varieties, which were introduced in Section 4.4.1. Varieties are defined using only
the = relation and are not closed under the projection operation. Therefore, it is
a good thing (not just a coincidence!) that we are using semi-algebraic sets.

Real algebraic numbers As stated previously, the sequence of projections ends
with a univariate polynomial over R. The sides of the cells will be defined based
on the precise location of the roots of this polynomial. Furthermore, representing
a sample point for a cell of dimension k in a complex in Rn for k < n requires
perfect precision. If the coordinates are slightly off, the point will lie in a different
cell. This raises the complicated issue of how these roots are represented and
manipulated in a computer.

For univariate polynomials of degree 4 or less, formulas exist to compute all
of the roots in terms of functions of square roots and higher order roots. From
Galois theory [39, 62], it is known that such formulas and nice expressions for
roots do not exist for most higher degree polynomials, which can certainly arise
in the complicated semi-algebraic models that are derived in motion planning.
The roots in R could be any real number, and many real numbers require infinite
representations.

One way of avoiding this mess is to assume that only polynomials inQ[x1, . . . , xn]
are used, instead of the more general R[x1, . . . , xn]. The field Q is not alge-
braically closed because zeros of the polynomials lie outside of Qn. For example, if
f(x1) = x21 − 2, then f = 0 for x1 = ±

√
2, and

√
2 6∈ Q. However, some elements

of R can never be roots of a polynomial in Q[x1, . . . , xn].
The set A of all real roots to all polynomials in Q[x] is called the set of real

algebraic numbers. The set A ⊂ R actually represents a field (recall from Section
4.4.1). Several nice algorithmic properties of the numbers in A are 1) they all have

288 S. M. LaValle: Planning Algorithms

finite representations, 2) addition and multiplication operations on elements of A
can be computed in polynomial time, and 3) conversions between different repre-
sentations of real algebraic numbers can be performed in polynomial time. This
means that all operations can be computed efficiently without resorting to some
kind of numerical approximation. In some applications, such approximations are
fine; however, for algebraic decompositions, they destroy critical information by
potentially confusing roots (e.g., how can we know for sure whether a polynomial
has a double root or just two roots that are very close together?).

The details are not presented here, but there are several methods for rep-
resenting real algebraic numbers and the corresponding algorithms for manipu-
lating them efficiently. The running time of cylindrical algebraic decomposition
ultimately depends on this representation. In practice, a numerical root-finding
method that has a precision parameter, ǫ, can be used by choosing ǫ small enough
to ensure that roots will not be confused. A sufficiently small value can be de-
termined by applying gap theorems, which give lower bounds on the amount of
real root separation, expressed in terms of the polynomial coefficients [16]. Some
methods avoid requiring a precision parameter. One well-known example is the
derivation of a Sturm sequence of polynomials based on the given polynomial.
The polynomials in the Sturm sequence are then used to find isolating intervals
for each of the roots [9]. The polynomial, together with its isolating interval, can
be considered as an exact root representation. Algebraic operations can even be
performed using this representation in time O(d lg2 d), in which d is the degree
of the polynomial [68]. See [9, 16, 68] for detailed presentations on the exact
representation and calculation with real algebraic numbers.

One-dimensional decomposition To explain the cylindrical algebraic decom-
position method, we first perform a semi-algebraic decomposition of R, which is
the final step in the projection sequence. Once this is explained, then the multi-
dimensional case follows more easily.

Let F be a set of m univariate polynomials,

F = {fi ∈ Q[x] | i = 1, . . . ,m}, (6.18)

which are used to define some semi-algebraic set in R. The polynomials in F could
come directly from a quantifier-free formula φ (which could even appear inside of
a Tarski sentence, as in (6.9)).

Define a single polynomial as f =
∏m

i=1 fi. Suppose that f has k distinct, real
roots, which are sorted in increasing order:

−∞ < β1 < β2 < · · · < βi−1 < βi < βi+1 < · · · < βk < ∞. (6.19)

The one-dimensional semi-algebraic decomposition is given by the following
sequence of alternating 1-cells and 0-cells:

(−∞, β1), [β1, β1], (β1, β2), . . . , (βi−1, βi), [βi, βi],

(βi, βi+1), . . . , [βk, βk], (βk,∞).
(6.20)



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 289

f1(x) = x2 − 2x f2(x) = x2 − 4x + 3

2 310
R

−1

Figure 6.31: Two parabolas are used to define the semi-algebraic set [1, 2].

R
0

[3, 3](2, 3)(1, 2)[1, 1] [2, 2](0, 1)[0, 0](−∞, 0) (3,∞)

2 31

Figure 6.32: A semi-algebraic decomposition for the polynomials in Figure 6.31.

Any semi-algebraic set that can be expressed using the polynomials in F can
also be expressed as the union of some of the 0-cells and 1-cells given in (6.20).
This can also be considered as a singular complex (it can even be considered as a
simplicial complex, but this does not extend to higher dimensions).

Sample points can be generated for each of the cells as follows. For the un-
bounded cells [−∞, β1) and (βk,∞], valid samples are β1 − 1 and βk + 1, respec-
tively. For each finite 1-cell, (βi, βi+1), the midpoint (βi + βi+1)/2 produces a
sample point. For each 0-cell, [βi, βi], the only choice is to use βi as the sample
point.

Example 6.5 (One-Dimensional Decomposition) Figure 6.31 shows a semi-
algebraic subset of R that is defined by two polynomials, f1(x) = x2 − 2x and
f2(x) = x2 − 4x+ 3. Here, F = {f1, f2}. Consider the quantifier-free formula

φ(x) = (x2 − 2x ≥ 0) ∧ (x2 − 4x+ 3 ≥ 0). (6.21)

The semi-algebraic decomposition into five 1-cells and four 0-cells is shown in
Figure 6.32. Each cell is sign invariant. The sample points for the 1-cells are −1,
1/2, 3/2, 5/2, and 4, respectively. The sample points for the 0-cells are 0, 1, 2,
and 3, respectively.

A decision problem can be nicely solved using the decomposition. Suppose
a Tarski sentence that uses the polynomials in F has been given. Here is one
possibility:

Φ = ∃x[(x2 − 2x ≥ 0) ∧ (x2 − 4x+ 3 ≥ 0)] (6.22)

The sample points alone are sufficient to determine whether Φ is true or false.
Once x = 1 is attempted, it is discovered that Φ is true. The quantifier-
elimination problem cannot yet be considered because more dimensions are needed.

290 S. M. LaValle: Planning Algorithms

Folding over Intersection

Figure 6.33: Critical points occur either when the surface folds over in the vertical
direction or when surfaces intersect.

�

The inductive step to higher dimensions Now consider constructing a cylin-
drical algebraic decomposition for Rn (note the decomposition is actually semi-
algebraic). Figure 6.35 shows an example for R2. First consider how to iteratively
project the polynomials down to R to ensure that when the decomposition of Rn

is constructed, the sign-invariant property is maintained. The resulting decompo-
sition corresponds to a singular complex.

There are two cases that cause cell boundaries to be formed, as shown in Figure
6.33. Let Fn denote the original set of polynomials inQ[x1, . . . , xn] that are used to
define the semi-algebraic set (or Tarski sentence) in Rn. Form a single polynomial
f =

∏m

i=1 fi. Let f ′ = ∂f/∂xn, which is also a polynomial. Let g = GCD(f, f ′),
which is the greatest common divisor of f and f ′. The set of zeros of g is the set of
all points that are zeros of both f and f ′. Being a zero of f ′ means that the surface
given by f = 0 does not vary locally when perturbing xn. These are places where
a cell boundary needs to be formed because the surface may fold over itself in
the xn direction, which is not permitted for a cylindrical decomposition. Another
place where a cell boundary needs to be formed is at the intersection of two or
more polynomials in Fn. The projection technique from Rn to Rn−1 generates
a set, Fn−1, of polynomials in Q[x1, . . . , xn−1] that satisfies these requirements.
The polynomials Fn−1 have the property that at least one contains a zero point
below every point in x ∈ Rn for which f(x) = 0 and f ′(x) = 0, or polynomials
in Fn intersect. The projection method that constructs Fn−1 involves computing
principle subresultant coefficients, which are covered in [9, 69]. Resultants, of
which the subresultants are an extension, are covered in [25].

The polynomials in Fn−1 are then projected to Rn−2 to obtain Fn−2. This
process continues until F1 is obtained, which is a set of polynomials in Q[x1]. A
one-dimensional decomposition is formed, as defined earlier. From F1, a single
polynomial is formed by taking the product, and R is partitioned into 0-cells and
1-cells. We next describe the process of lifting a decomposition over Ri−1 up to
Ri. This technique is applied iteratively until Rn is reached.



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 291

Assume inductively that a cylindrical algebraic decomposition has been com-
puted for a set of polynomials Fi−1 in Q[x1, . . . , xi−1]. The decomposition consists
of k-cells for which 0 ≤ k ≤ i. Let p = (x1, . . . , xi−1) ∈ Ri−1. For each one of the
k-cells Ci−1, a cylinder over Ci−1 is defined as the (k + 1)-dimensional set

{(p, xi) ∈ Ri | p ∈ Ci−1}. (6.23)

The cylinder is sliced into a strip of k-dimensional and k+ 1-dimensional cells by
using polynomials in Fi. Let fj denote one of the ℓ slicing polynomials in the
cylinder, sorted in increasing xi order as f1, f2, . . ., fj, fj+1, . . ., fℓ. The following
kinds of cells are produced (see Figure 6.34):

1. Lower unbounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and xi < f1(p) }. (6.24)

2. Section:
{(p, xi) ∈ Ri | p ∈ Ci−1 and xi = fj(p) }. (6.25)

3. Bounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and fj(p) < xi < fj+1(p) }. (6.26)

4. Upper unbounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and fℓ(p) < xi }. (6.27)

There is one degenerate possibility in which there are no slicing polynomials and
the cylinder over Ci−1 can be extended into one unbounded cell. In general, the
sample points are computed by picking a point in p ∈ Ci−1 and making a vertical
column of samples of the form (p, xi). A polynomial in Q[xi] can be generated,
and the samples are placed using the same assignment technique that was used
for the one-dimensional decomposition.

Example 6.6 (Mutilating the Gingerbread Face) Figure 6.35 shows a cylin-
drical algebraic decomposition of the gingerbread face. Observe that the resulting
complex is very similar to that obtained in Figure 6.19. �

Note that the cells do not necessarily project onto a rectangular set, as in the
case of a higher dimensional vertical decomposition. For example, a generic n-cell
Cn for a decomposition of Rn is described as the open set of (x1, . . . , xn) ∈ Rn

such that

• C0 < xn < C ′

0 for some 0-cells C0, C
′

0 ∈ R, which are roots of some f, f ′ ∈ F1.

292 S. M. LaValle: Planning Algorithms

f1

fj

Ci−1

fj+1

fℓ

Figure 6.34: A cylinder over every k-cell Ci−1 is formed. A sequence of poly-
nomials, f1, . . ., fℓ, slices the cylinder into k-dimensional sections and (k + 1)-
dimensional sectors.

• (xn−1, xn) lies between C1 and C ′

1 for some 1-cells C1, C
′

1, which are zeros
of some f, f ′ ∈ F2.

...

• (xn−i+1, . . . , xn) lies between Ci−1 and C
′

i−1 for some i-cells Ci−1, C
′

i−1, which
are zeros of some f, f ′ ∈ Fi.

...

• (x1, . . . , xn) lies between Cn−1 and C ′

n−1 for some (n − 1)-cells Cn−1, C
′

n−1,
which are zeros of some f, f ′ ∈ Fn.

The resulting decomposition is sign invariant, which allows the decision and
quantifier-elimination problems to be solved in finite time. To solve a decision
problem, the polynomials in Fn are evaluated at every sample point to deter-
mine whether one of them satisfies the Tarski sentence. To solve the quantifier-
elimination problem, note that any semi-algebraic sets that can be constructed
from Fn can be defined as a union of some cells in the decomposition. For the
given Tarski sentence, Fn is formed from all polynomials that are mentioned in



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 293

3

5

6

7

9

10

11

12

1 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

328

33

34
2

35

30

364

37

31

R

Figure 6.35: A cylindrical algebraic decomposition of the gingerbread face. There
are 37 2-cells, 64 1-cells, and 28 0-cells. The straight 1-cells are intervals of the
vertical lines, and the curved ones are portions of the zero set of a polynomial in
F . The decomposition of R is also shown.

the sentence, and the cell decomposition is performed. Once obtained, the sign
information is used to determine which cells need to be included in the union.
The resulting union of cells is designed to include only the points in Rn at which
the Tarski sentence is true.

Solving a motion planning problem Cylindrical algebraic decomposition
is also capable of solving any of the motion planning problems formulated in
Chapter 4. First assume that C = Rn. As for other decompositions, a roadmap is
formed in which every vertex is an n-cell and edges connect every pair of adjacent
n-cells by traveling through an (n − 1)-cell. It is straightforward to determine
adjacencies inside of a cylinder, but there are several technical details associated
with determining adjacencies of cells from different cylinders (pages 152–154 of
[9] present an example that illustrates the problem). The cells of dimension less
than n− 1 are not needed for motion planning purposes (just as vertices were not
needed for the vertical decomposition in Section 6.2.2). The query points qI and
qG are connected to the roadmap depending on the cell in which they lie, and a
discrete search is performed.

294 S. M. LaValle: Planning Algorithms

If C ⊂ Rn and its dimension is k for k < n, then all of the interesting cells are of
lower dimension. This occurs, for example, due to the constraints on the matrices
to force them to lie in SO(2) or SO(3). This may also occur for problems from
Section 4.4, in which closed chains reduce the degrees of freedom. The cylindrical
algebraic decomposition method can still solve such problems; however, the exact
root representation problem becomes more complicated when determining the cell
adjacencies. A discussion of these issues appears in [68]. For the case of SO(2)
and SO(3), this complication can be avoided by using stereographic projection to
map S1 or S3 to R or R3, respectively. This mapping removes a single point from
each, but the connectivity of Cfree remains unharmed. The antipodal identification
problem for unit quaternions represented by S3 also does not present a problem;
there is a redundant copy of C, which does not affect the connectivity.

The running time for cylindrical algebraic decomposition depends on many
factors, but in general it is polynomial in the number of polynomials in Fn, poly-
nomial in the maximum algebraic degree of the polynomials, and doubly expo-
nential in the dimension. Complexity issues are covered in more detail in Section
6.5.3.

6.4.3 Canny’s Roadmap Algorithm

The doubly exponential running time of cylindrical algebraic decomposition in-
spired researchers to do better. It has been shown that quantifier elimination
requires doubly exponential time [27]; however, motion planning is a different
problem. Canny introduced a method that produces a roadmap directly from the
semi-algebraic set, rather than constructing a cell decomposition along the way.
Since there are doubly exponentially many cells in the cylindrical algebraic de-
composition, avoiding this construction pays off. The resulting roadmap method
of Canny solves the motion planning problem in time that is again polynomial in
the number of polynomials and polynomial in the algebraic degree, but it is only
singly exponential in dimension [14, 16]; see also [9].

Much like the other combinatorial motion planning approaches, it is based on
finding critical curves and critical points. The main idea is to construct linear
mappings from Rn to R2 that produce silhouette curves of the semi-algebraic
sets. Performing one such mapping on the original semi-algebraic set yields a
roadmap, but it might not preserve the original connectivity. Therefore, linear
mappings from Rn−1 to R2 are performed on some (n−1)-dimensional slices of the
original semi-algebraic set to yield more roadmap curves. This process is applied
recursively until the slices are already one-dimensional. The resulting roadmap
is formed from the union of all of the pieces obtained in the recursive calls. The
resulting roadmap has the same connectivity as the original semi-algebraic set
[16].

Suppose that C = Rn. Let F = {f1, . . . , fm} denote the set of polynomials
that define the semi-algebraic set, which is assumed to be a disjoint union of



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 295

manifolds. Assume that each fi ∈ Q[x1, . . . , xn]. First, a small perturbation to
the input polynomials F is performed to ensure that every sign-invariant set of Rn

is a manifold. This forces the polynomials into a kind of general position, which
can be achieved with probability one using random perturbations; there are also
deterministic methods to solve this problem. The general position requirements
on the input polynomials and the 2D projection directions are fairly strong, which
has stimulated more recent work that eliminates many of the problems [9]. From
this point onward, it will be assumed that the polynomials are in general position.

Recall the sign-assignment function from Section 6.4.1. Each sign-invariant
set is a manifold because of the general position assumption. Canny’s method
computes a roadmap for any k-dimensional manifold for k < n. Such a manifold
has precisely n − k signs that are 0 (which means that points lie precisely on
the zero sets of n − k polynomials in F). At least one of the signs must be 0,
which means that Canny’s roadmap actually lies in ∂Cfree (this technically is not
permitted, but the algorithm nevertheless correctly decides whether a solution
path exists through Cfree).

Recall that each fi is a function, fi : R
n → R. Let x denote (x1, . . . , xn) ∈ Rn.

The k polynomials that have zero signs can be put together sequentially to produce
a mapping ψ : Rn → Rk. The ith component of the vector ψ(x) is ψi(x) = fi(x).
This is closely related to the sign assignment function of Section 6.4.1, except that
now the real value from each polynomial is directly used, rather than taking its
sign.

Now introduce a function g : Rn → Rj, in which either j = 1 or j = 2 (the
general concepts presented below work for other values of j, but 1 and 2 are the
only values needed for Canny’s method). The function g serves the same purpose
as a projection in cylindrical algebraic decomposition, but note that g immediately
drops from dimension n to dimension 2 or 1, instead of dropping to n − 1 as in
the case of cylindrical projections.

Let h : Rn → Rk+j denote a mapping constructed directly from ψ and g as
follows. For the ith component, if i ≤ k, then hi(x) = ψi(x) = fi(x). Assume
that k + j ≤ n. If i > k, then hi(x) = gi−k(x). Let Jx(h) denote the Jacobian of
h and be defined at x as

Jx(h) =













∂h1(x)

∂x1
· · · ∂h1(x)

∂xn
...

...
∂hm+k(x)

∂x1
· · · ∂hm+k(x)

∂xn













=





































∂f1(x)

∂x1
· · · ∂f1(x)

∂xn
...

...
∂fk(x)

∂x1
· · · ∂fk(x)

∂xn

∂g1(x)

∂x1
· · · ∂g1(x)

∂xn
...

...
∂gj(x)

∂x1
· · · ∂gj(x)

∂xn





































. (6.28)

296 S. M. LaValle: Planning Algorithms

A point x ∈ Rn at which Jx(h) is singular is called a critical point. The matrix is
defined to be singular if every (m+k)×(m+k) subdeterminant is zero. Each of the
first k rows of Jx(h) calculates the surface normal to fi(x) = 0. If these normals
are not linearly independent of the directions given by the last j rows, then the
matrix becomes singular. The following example from [13] nicely illustrates this
principle.

Example 6.7 (Canny’s Roadmap Algorithm) Let n = 3, k = 1, and j = 1.
The zeros of a single polynomial f1 define a 2D subset of R3. Let f1 be the unit
sphere, S2, defined as the zeros of the polynomial

f1(x1, x2, x3) = x21 + x22 + x23 − 1. (6.29)

Suppose that g : R3 → R is defined as g(x1, x2, x3) = x1. The Jacobian, (6.28),
becomes

(

2x1 2x2 2x3
1 0 0

)

(6.30)

and is singular when all three of the possible 2 × 2 subdeterminants are zero.
This occurs if and only if x2 = x3 = 0. This yields the critical points (−1, 0, 0)
and (1, 0, 0) on S2. Note that this is precisely when the surface normals of S2 are
parallel to the vector [1 0 0].

Now suppose that j = 2 to obtain g : R3 → R2, and suppose g(x1, x2, x3) =
(x1, x2). In this case, (6.28) becomes





2x1 2x2 2x3
1 0 0
0 1 0



 , (6.31)

which is singular if and only if x3 = 0. The critical points are therefore the x1x2
plane intersected with S3, which yields the equator points (all (x1, x2) ∈ R2 such
that x21 + x22 = 1). In this case, more points are generated because the matrix
becomes degenerate for any surface normal of S2 that is parallel to [1 0 0], [0 1 0]
or any linear combination of these. �

The first mapping in Example 6.7 yielded two isolated critical points, and the
second mapping yielded a one-dimensional set of critical points, which is referred
to as a silhouette. The union of the silhouette and the isolated critical points
yields a roadmap for S2. Now consider generalizing this example to obtain the
full algorithm for general n and k. A linear mapping g : Rn → R2 is constructed
that might not be axis-aligned as in Example 6.7 because it must be chosen in
general position (otherwise degeneracies might arise in the roadmap). Define ψ to
be the set of polynomials that become zero on the desired manifold on which to
construct a roadmap. Form the matrix (6.28) and determine the silhouette. This
is accomplished in general using subresultant techniques that were also needed for



6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 297

cylindrical algebraic decomposition; see [9, 16] for details. Let g1 denote the first
component of g, which yields a mapping g1 : Rn → R. Forming (6.28) using g1
yields a finite set of critical points. Taking the union of the critical points and the
silhouette produces part of the roadmap.

So far, however, there are no guarantees that the connectivity is preserved.
To handle this problem, Canny’s algorithm proceeds recursively. For each of the
critical points x ∈ Rn, an n − 1-dimensional hyperplane through x is chosen for
which the g1 row of (6.28) is the normal (hence it is perpendicular in some sense to
the flow of g1). Inside of this hyperplane, a new g mapping is formed. This time
a new direction is chosen, and the mapping takes the form g : Rn−1 → R2. Once
again, the silhouettes and critical points are found and added to the roadmap.
This process is repeated recursively until the base case in which the silhouettes
and critical points are directly obtained without forming g.

It is helpful to consider an example. Since the method involves a sequence of
2D projections, it is difficult to visualize. Problems in R4 and higher involve two
or more 2D projections and would therefore be more interesting. An example over
R3 is presented here, even though it unfortunately has only one projection; see
[16] for another example over R3.

Example 6.8 (Canny’s Algorithm on a Torus) Consider the 3D algebraic set
shown in Figure 6.36. After defining the mapping g(x1, x2, x3) = (x1, x2), the
roadmap shown in Figure 6.37 is obtained. The silhouettes are obtained from g,
and the critical points are obtained from g1 (this is the first component of g).
Note that the original connectivity of the solid torus is not preserved because the
inner ring does not connect to the outer ring. This illustrates the need to also
compute the roadmap for lower dimensional slices. For each of the four critical
points, the critical curves are computed for a plane that is parallel to the x2x3
plane and for which the x1 position is determined by the critical point. The slice
for one of the inner critical points is shown in Figure 6.38. In this case, the slice
already has two dimensions. New silhouette curves are added to the roadmap to
obtain the final result shown in Figure 6.39. �

To solve a planning problem, the query points qI and qG are artificially declared
to be critical points in the top level of recursion. This forces the algorithm to
generate curves that connect them to the rest of the roadmap.

The completeness of the method requires very careful analysis, which is thor-
oughly covered in [9, 16]. The main elements of the analysis are showing that:
1) the polynomials can be perturbed and g can be chosen to ensure general po-
sition, 2) the singularity conditions on (6.28) lead to algebraic sets (varieties),
and 3) the resulting roadmap has the required properties mentioned in Section
6.1 of being accessible and connectivity-preserving for Cfree (actually it is shown
for ∂Cfree). The method explained above computes the roadmap for each sign-
invariant set, but to obtain a roadmap for the planning problem, the roadmaps

298 S. M. LaValle: Planning Algorithms

x1

x3

x2

Figure 6.36: Suppose that the semi-algebraic set is a solid torus in R3.

Figure 6.37: The projection into the x1x2 plane yields silhouettes for the inner
and outer rings and also four critical points.

Figure 6.38: A slice taken for the inner critical points is parallel to the x2x3 plane.
The roadmap for the slice connects to the silhouettes from Figure 6.37, thereby
preserving the connectivity of the original set in Figure 6.36.

Figure 6.39: All of the silhouettes and critical points are merged to obtain the
roadmap.



6.5. COMPLEXITY OF MOTION PLANNING 299

from each sign-invariant set must be connected together correctly; fortunately, this
has been solved via the Linking Lemma of [13]. A major problem, however, is that
even after knowing the connectivity of the roadmap, it is a considerable challenge
to obtain a parameterization of each curve on the roadmap. For this and many
other technical reasons, no general implementation of Canny’s algorithm appears
to exist at present. Another problem is the requirement of a Whitney stratifica-
tion (which can be fixed by perturbation of the input). The Basu-Pollack-Roy
roadmap algorithm overcomes this problem [9].

6.5 Complexity of Motion Planning

This section summarizes theoretical work that characterizes the complexity of
motion planning problems. Note that this is not equivalent to characterizing the
running time of particular algorithms. The existence of an algorithm serves as
an upper bound on the problem’s difficulty because it is a proof by example that
solving the problem requires no more time than what is needed by the algorithm.
On the other hand, lower bounds are also very useful because they give an indica-
tion of the difficulty of the problem itself. Suppose, for example, you are given an
algorithm that solves a problem in time O(n2). Does it make sense to try to find
a more efficient algorithm? Does it make sense to try to find a general-purpose
motion planning algorithm that runs in time that is polynomial in the dimension?
Lower bounds provide answers to questions such as this. Usually lower bounds
are obtained by concocting bizarre, complicated examples that are allowed by the
problem definition but were usually not considered by the person who first for-
mulated the problem. In this line of research, progress is made by either raising
the lower bound (unless it is already tight) or by showing that a narrower version
of the problem still allows such bizarre examples. The latter case occurs often in
motion planning.

6.5.1 Lower Bounds

Lower bounds have been established for a variety of motion planning problems
and also a wide variety of planning problems in general. To interpret these bounds
a basic understanding of the theory of computation is required [38, 73]. This fas-
cinating subject will be unjustly summarized in a few paragraphs. A problem is a
set of instances that are each carefully encoded as a binary string. An algorithm is
formally considered as a Turing machine, which is a finite-state machine that can
read and write bits to an unbounded piece of tape. Other models of computation
also exist, such as integer RAM and real RAM (see [11]); there are debates as to
which model is most appropriate, especially when performing geometric compu-
tations with real numbers. The standard Turing machine model will be assumed
from here onward. Algorithms are usually formulated to make a binary output,
which involves accepting or rejecting a problem instance that is initially written to

300 S. M. LaValle: Planning Algorithms

P NP PSPACE EXPTIME

Figure 6.40: It is known that P ⊂ EXPTIME is a strict subset; however, it is not
known precisely how large NP and PSPACE are.

the tape and given to the algorithm. In motion planning, this amounts to deciding
whether a solution path exists for a given problem instance.

Languages A language is a set of binary strings associated with a problem. It
represents the complete set of instances of a problem. An algorithm is said to
decide a language if in finite time it correctly accepts all strings that belong to
it and rejects all others. The interesting question is: How much time or space is
required to decide a language? This question is asked of the problem, under the
assumption that the best possible algorithm would be used to decide it. (We can
easily think of inefficient algorithms that waste resources.)

A complexity class is a set of languages that can all be decided within some
specified resource bound. The class P is the set of all languages (and hence
problems) for which a polynomial-time algorithm exists (i.e., the algorithm runs
in time O(nk) for some integer k). By definition, an algorithm is called efficient
if it decides its associated language in polynomial time.7 If no efficient algorithm
exists, then the problem is called intractable. The relationship between several
other classes that often emerge in theoretical motion planning is shown in Figure
6.40. The class NP is the set of languages that can be solved in polynomial
time by a nondeterministic Turing machine. Some discussion of nondeterministic
machines appears in Section 11.3.2. Intuitively, it means that solutions can be
verified in polynomial time because the machine magically knows which choices
to make while trying to make the decision. The class PSPACE is the set of
languages that can be decided with no more than a polynomial amount of storage
space during the execution of the algorithm (NPSPACE=PSPACE, so there is
no nondeterministic version). The class EXPTIME is the set of languages that
can be decided in time O(2n

k

) for some integer k. It is known that EXPTIME
is larger than P, but it is not known precisely where the boundaries of NP and
PSPACE lie. It might be the case that P = NP = PSPACE (although hardly
anyone believes this), or it could be that NP = PSPACE = EXPTIME.

7Note that this definition may be absurd in practice; an algorithm that runs in time O(n90125)
would probably not be too efficient for most purposes.



6.5. COMPLEXITY OF MOTION PLANNING 301

Figure 6.41: Even motion planning for a bunch of translating rectangles inside of
a rectangular box in R2 is PSPACE-hard (and hence, NP-hard).

Hardness and completeness Since an easier class is included as a subset of
a harder one, it is helpful to have a notion of a language (i.e., problem) being
among the hardest possible within a class. Let X refer to either P, NP, PSPACE,
or EXPTIME. A language A is called X-hard if every language B in class X is
polynomial-time reducible to A. In short, this means that in polynomial time,
any language in B can be translated into instances for language A, and then the
decisions for A can be correctly translated back in polynomial time to correctly
decide B. Thus, if A can be decided, then within a polynomial-time factor, every
language in X can be decided. The hardness concept can even be applied to
a language (problem) that does not belong to the class. For example, we can
declare that a language A is NP-hard even if A 6∈NP (it could be harder and lie in
EXPTIME, for example). If it is known that the language is both hard for some
class X and is also a member of X, then it is called X-complete (i.e., NP-complete,
PSPACE-complete, etc.).8 Note that because of this uncertainty regarding P, NP,
and PSPACE, one cannot say that a problem is intractable if it is NP-hard or
PSPACE-hard, but one can, however, if the problem is EXPTIME-hard. One
additional remark: it is useful to remember that PSPACE-hard implies NP-hard.

Lower bounds for motion planning The general motion planning problem,
Formulation 4.1, was shown in 1979 to be PSPACE-hard by Reif [64]. In fact, the

8If you remember hearing that a planning problem is NP-something, but cannot remember
whether it was NP-hard or NP-complete, then it is safe to say NP-hard because NP-complete
implies NP-hard. This can similarly be said for other classes, such as PSPACE-complete vs.
PSPACE-hard.

302 S. M. LaValle: Planning Algorithms

problem was restricted to polyhedral obstacles and a finite number of polyhedral
robot bodies attached by spherical joints. The coordinates of all polyhedra are
assumed to be in Q (this enables a finite-length string encoding of the problem
instance). The proof introduces a fascinating motion planning instance that in-
volves many attached, dangling robot parts that must work their way through a
complicated system of tunnels, which together simulates the operation of a sym-
metric Turing machine. Canny later established that the problem in Formulation
4.1 (expressed using polynomials that have rational coefficients) lies in PSPACE
[16]. Therefore, the general motion planning problem is PSPACE-complete.

Many other lower bounds have been shown for a variety of planning prob-
lems. One famous example is the Warehouseman’s problem shown in Figure 6.41.
This problem involves a finite number of translating, axis-aligned rectangles in
a rectangular world. It was shown in [37] to be PSPACE-hard. This example
is a beautiful illustration of how such a deceptively simple problem formulation
can lead to such a high lower bound. More recently, it was even shown that
planning for Sokoban, which is a warehouseman’s problem on a discrete 2D grid,
is also PSPACE-hard [26]. Other general motion planning problems that were
shown to be PSPACE-hard include motion planning for a chain of bodies in the
plane [36, 40] and motion planning for a chain of bodies among polyhedral obsta-
cles in R3. Many lower bounds have been established for a variety of extensions
and variations of the general motion planning problem. For example, in [15] it
was established that a certain form of planning under uncertainty for a robot in
a 3D polyhedral environment is NEXPTIME-hard, which is harder than any of
the classes shown in Figure 6.40; the hardest problems in this NEXPTIME are
believed to require doubly exponential time to solve.

The lower bound or hardness results depend significantly on the precise repre-
sentation of the problem. For example, it is possible to make problems look easier
by making instance encodings that are exponentially longer than they should be.
The running time or space required is expressed in terms of n, the input size. If
the motion planning problem instances are encoded with exponentially more bits
than necessary, then a language that belongs to P is obtained. As long as the
instance encoding is within a polynomial factor of the optimal encoding (this can
be made precise using Kolmogorov complexity [51]), then this bizarre behavior
is avoided. Another important part of the representation is to pay attention to
how parameters in the problem formulation can vary. We can redefine motion
planning to be all instances for which the dimension of C is never greater than
21000. The number of dimensions is sufficiently large for virtually any application.
The resulting language for this problem belongs to P because cylindrical algebraic
decomposition and Canny’s algorithm can solve any motion planning problem in
polynomial time. Why? This is because now the dimension parameter in the
time-complexity expressions can be replaced by 21000, which is a constant. This
formally implies that an efficient algorithm is already known for any motion plan-
ning problem that we would ever care about. This implication has no practical



6.5. COMPLEXITY OF MOTION PLANNING 303

X

f4(x)

f5(x)

f3(x)

f2(x)

f1(x)

Figure 6.42: The lower envelope of a collection of functions.

value, however. Thus, be very careful when interpreting theoretical bounds.

The lower bounds may appear discouraging. There are two general directions
to go from here. One is to weaken the requirements and tolerate algorithms
that yield some kind of resolution completeness or probabilistic completeness.
This approach was taken in Chapter 5 and leads to many efficient algorithms.
Another direction is to define narrower problems that do not include the bizarre
constructions that lead to bad lower bounds. For the narrower problems, it may
be possible to design interesting, efficient algorithms. This approach was taken
for the methods in Sections 6.2 and 6.3. In Section 6.5.3, upper bounds for some
algorithms that address these narrower problems will be presented, along with
bounds for the general motion planning algorithms. Several of the upper bounds
involve Davenport-Schinzel sequences, which are therefore covered next.

6.5.2 Davenport-Schinzel Sequences

Davenport-Schinzel sequences provide a powerful characterization of the structure
that arises from the lower or upper envelope of a collection of functions. The lower
envelope of five functions is depicted in Figure 6.42. Such envelopes arise in many
problems throughout computational geometry, including many motion planning
problems. They are an important part of the design and analysis of many modern
algorithms, and the resulting algorithm’s time complexity usually involves terms
that follow directly from the sequences. Therefore, it is worthwhile to understand
some of the basics before interpreting some of the results of Section 6.5.3. Much
more information on Davenport-Schinzel sequences and their applications appears
in [72]. The brief introduction presented here is based on [71].

For positive integers n and s, an (n, s) Davenport-Schinzel sequence is a se-
quence (u1, . . . , um) composed from a set of n symbols such that:

304 S. M. LaValle: Planning Algorithms

1. The same symbol may not appear consecutively in the sequence. In other
words, ui 6= ui+1 for any i such that 1 ≤ i < m.

2. The sequence does not contain any alternating subsequence that uses two
symbols and has length s+2. A subsequence can be formed by deleting any
elements in the original sequence. The condition can be expressed as: There
do not exist s+ 2 indices i1 < i2 < · · · < is+2 for which ui1 = ui3 = ui5 = a
and ui2 = ui4 = ui6 = b, for some symbols a and b.

As an example, an (n, 3) sequence cannot appear as (a · · · b · · · a · · · b · · · a), in
which each · · · is filled in with any sequence of symbols. Let λs(n) denote the
maximum possible length of an (n, s) Davenport-Schinzel sequence.

The connection between Figure 6.42 and these sequences can now be explained.
Consider the sequence of function indices that visit the lower envelope. In the
example, this sequence is (5, 2, 3, 4, 1). Suppose it is known that each pair of
functions intersects in at most s places. If there are n real-valued continuous
functions, then the sequence of function indices must be an (n, s) Davenport-
Schinzel sequence. It is amazing that such sequences cannot be very long. For a
fixed s, they are close to being linear.

The standard bounds for Davenport-Schinzel sequences are [71]9

λ1(n) = n (6.32)

λ2(n) = 2n− 1 (6.33)

λ3(n) = Θ(nα(n)) (6.34)

λ4(n) = Θ(n · 2α(n)) (6.35)

λ2s(n) ≤ n · 2α(n)s−1+C2s(n) (6.36)

λ2s+1(n) ≤ n · 2α(n)s−1 lgα(n)+C′

2s+1(n) (6.37)

λ2s(n) = Ω(n · 2 1
(s−1)!

α(n)s−1+C′

2s(n)). (6.38)

In the expressions above Cr(n) and C ′

r(n) are terms that are smaller than their
leading exponents. The α(n) term is the inverse Ackerman function, which is
an extremely slow-growing function that appears frequently in algorithms. The
Ackerman function is defined as follows. Let A1(m) = 2m and An+1(m) rep-
resent m applications of An. Thus, A1(m) performs doubling, A2(m) performs
exponentiation, and A3(m) performs tower exponentiation, which makes a stack
of 2’s,

22
...

22

, (6.39)

that has height m. The Ackerman function is defined as A(n) = An(n). This
function grows so fast that A(4) is already an exponential tower of 2’s that has

9The following asymptotic notion is used: O(f(n)) denotes an upper bound, Ω(f(n)) denotes
a lower bound, and Θ(f(n)) means that the bound is tight (both upper and lower). This notation
is used in most books on algorithms [24].



6.5. COMPLEXITY OF MOTION PLANNING 305

height 65536. Thus, the inverse Ackerman function, α, grows very slowly. If n is
less than or equal to an exponential tower of 65536 2’s, then α(n) ≤ 4. Even when
it appears in exponents of the Davenport-Schinzel bounds, it does not represent
a significant growth rate.

Example 6.9 (Lower Envelope of Line Segments) One interesting applica-
tion of Davenport-Schinzel applications is to the lower envelope of a set of line
segments in R2. Since segments in general position may appear multiple times
along the lower envelope, the total number of edges is Θ(λ3(n)) = Θ(nα(n)),
which is higher than one would obtain from infinite lines. There are actually ar-
rangements of segments in R2 that reach this bound; see [72]. �

6.5.3 Upper Bounds

The upper bounds for motion planning problems arise from the existence of com-
plete algorithms that solve them. This section proceeds by starting with the most
general bounds, which are based on the methods of Section 6.4, and concludes
with bounds for simpler motion planning problems.

General algorithms The first upper bound for the general motion planning
problem of Formulation 4.1 came from the application of cylindrical algebraic
decomposition [68]. Let n be the dimension of C. Let m be the number of
polynomials in F , which are used to define Cobs. Recall from Section 4.3.3 how
quickly this grows for simple examples. Let d be the maximum degree among the
polynomials in F . The maximum degree of the resulting polynomials is bounded
by O(d2

n−1
), and the total number of polynomials is bounded by O((md)3

n−1
). The

total running time required to use cylindrical algebraic decomposition for motion
planning is bounded by (md)O(1)n .10 Note that the algorithm is doubly exponential
in dimension n but polynomial in m and d. It can theoretically be declared to be
efficient on a space of motion planning problems of bounded dimension (although,
it certainly is not efficient for motion planning in any practical sense).

Since the general problem is PSPACE-complete, it appears unavoidable that
a complete, general motion planning algorithm will require a running time that
is exponential in dimension. Since cylindrical algebraic decomposition is dou-
bly exponential, it led many in the 1980s to wonder whether this upper bound
could be lowered. This was achieved by Canny’s roadmap algorithm, for which
the running time is bounded by mn(lgm)dO(n4). Hence, it is singly exponential,
which appears very close to optimal because it is up against the lower bound
that seems to be implied by PSPACE-hardness (and the fact that problems exist

10It may seem odd for O(·) to appear in the middle of an expression. In this context, it means
that there exists some c ∈ [0,∞) such that the running time is bounded by (md)c

n

. Note that
another O is not necessary in front of the whole formula.

306 S. M. LaValle: Planning Algorithms

that require a roadmap with (md)n connected components [9]). Much of the algo-
rithm’s complexity is due to finding a suitable deterministic perturbation to put
the input polynomials into general position. A randomized algorithm can alter-
natively be used, for which the randomized expected running time is bounded by
mn(lgm)dO(n2). For a randomized algorithm [57], the randomized expected running
time is still a worst-case upper bound, but averaged over random “coin tosses”
that are introduced internally in the algorithm; it does not reflect any kind of
average over the expected input distribution. Thus, these two bounds represent
the best-known upper bounds for the general motion planning problem. Canny’s
algorithm may also be applied to solve the kinematic closure problems of Section
4.4, but the complexity does not reflect the fact that the dimension, k, of the
algebraic variety is less than n, the dimension of C. A roadmap algorithm that
is particularly suited for this problem is introduced in [8], and its running time
is bounded by mk+1dO(n2). This serves as the best-known upper bound for the
problems of Section 4.4.

Specialized algorithms Now upper bounds are summarized for some narrower
problems, which can be solved more efficiently than the general problem. All of
the problems involve either two or three degrees of freedom. Therefore, we expect
that the bounds are much lower than those for the general problem. In many
cases, the Davenport-Schinzel sequences of Section 6.5.2 arise. Most of the bounds
presented here are based on algorithms that are not practical to implement; they
mainly serve to indicate the best asymptotic performance that can be obtained
for a problem. Most of the bounds mentioned here are included in [71].

Consider the problem from Section 6.2, in which the robot translates in W =
R2 and Cobs is polygonal. Suppose that A is a convex polygon that has k edges and
O is the union ofm disjoint, convex polygons with disjoint interiors, and their total
number of edges is n. In this case, the boundary of Cfree (computed by Minkowski
difference; see Section 4.3.2) has at most 6m − 12 nonreflex vertices (interior
angles less than π) and n + km reflex vertices (interior angles greater than π).
The free space, Cfree, can be decomposed and searched in time O((n+ km) lg2 n)
[43, 71]. Using randomized algorithms, the bound reduces to O((n+km)·2α(n) lg n)
randomized expected time. Now suppose that A is a single nonconvex polygonal
region described by k edges and that O is a similar polygonal region described by
n edges. The Minkowski difference could yield as many as Ω(k2n2) edges for Cobs.
This can be avoided if the search is performed within a single connected component
of Cfree. Based on analysis that uses Davenport-Schinzel sequences, it can be
shown that the worst connected component may have complexity Θ(knα(k)), and
the planning problem can be solved in time O(kn lg2 n) deterministically or for
a randomized algorithm, O(kn · 2α(n) lg n) randomized expected time is needed.
More generally, if Cobs consists of n algebraic curves in R2, each with degree
no more than d, then the motion planning problem for translation only can be
solved deterministically in time O(λs+2(n) lg

2 n), or with a randomized algorithm



6.5. COMPLEXITY OF MOTION PLANNING 307

in O(λs+2(n) lg n) randomized expected time. In these expressions, λs+2(n) is
the bound (6.37) obtained from the (n, s + 2) Davenport-Schinzel sequence, and
s ≤ d2.

For the case of the line-segment robot of Section 6.3.4 in an obstacle region
described with n edges, an O(n5)-time algorithm was given. This is not the
best possible running time for solving the line-segment problem, but the method
is easier to understand than others that are more efficient. In [59], a roadmap
algorithm based on retraction is given that solves the problem in O(n2 lg n lg∗ n)
time, in which lg∗ n is the number of times that lg has to be iterated on n to
yield a result less than or equal to 1 (i.e., it is a very small, insignificant term;
for practical purposes, you can imagine that the running time is O(n2 lg n)). The
tightest known upper bound is O(n2 lg n) [49]. It is established in [42] that there
exist examples for which the solution path requires Ω(n2) length to encode. For
the case of a line segment moving in R3 among polyhedral obstacles with a total
of n vertices, a complete algorithm that runs in time O(n4 + ǫ) for any ǫ > 0 was
given in [46]. In [42] it was established that solution paths of complexity Ω(n4)
exist.

Now consider the case for which C = SE(2), A is a convex polygon with k
edges, and O is a polygonal region described by n edges. The boundary of Cfree
has no more than O(knλ6(kn)) edges and can be computed to solve the motion
planning problem in time O(knλ6(kn) lg kn) [1, 2]. An algorithm that runs in time
O(k4nλ3(n) lg n) and provides better clearance between the robot and obstacles is
given in [20]. In [6] (some details also appear in [47]), an algorithm is presented,
and even implemented, that solves the more general case in which A is nonconvex
in time O(k3n3 lg(kn)). The number of faces of Cobs could be as high as Ω(k3n3)
for this problem. By explicitly representing and searching only one connected
component, the best-known upper bound for the problem is O((kn)2+ǫ), in which
ǫ > 0 may be chosen arbitrarily small [33].

In the final case, suppose that A translates in W = R3 to yield C = R3.
For a polyhedron or polyhedral region, let its complexity be the total number of
faces, edges, and vertices. If A is a polyhedron with complexity k, and O is a
polyhedral region with complexity n, then the boundary of Cfree is a polyhedral
surface of complexity Θ(k3n3). As for other problems, if the search is restricted
to a single component, then the complexity is reduced. The motion planning
problem in this case can be solved in time O((kn)2+ǫ) [5]. If A is convex and
there are m convex obstacles, then the best-known bound is O(kmn lg2m) time.
More generally, if Cobs is bounded by n algebraic patches of constant maximum
degree, then a vertical decomposition method solves the motion planning problem
within a single connected component of Cfree in time O(n2+ǫ).

Further Reading

Most of the literature on combinatorial planning is considerably older than the sampling-
based planning literature. A nice collection of early papers appears in [70]; this includes

308 S. M. LaValle: Planning Algorithms

[36, 59, 60, 64, 67, 68, 69]. The classic motion planning textbook of Latombe [47] covers
most of the methods presented in this chapter. The coverage here does not follow [47],
which makes separate categories for cell decomposition methods and roadmap methods.
A cell decomposition is constructed to produce a roadmap; hence, they are unified in this
chapter. An excellent reference for material in combinatorial algorithms, computational
geometry, and complete algorithms for motion planning is the collection of survey papers
in [31].

Section 6.2 follows the spirit of basic algorithms from computational geometry. For a
gentle introduction to computational geometry, including a nice explanation of vertical
composition, see [28]. Other sources for computational geometry include [12, 29, 63]. To
understand the difficulties in computing optimal decompositions of polygons, see [61].
See [53, 56, 65] for further reading on computing shortest paths.

Cell decompositions and cell complexes are very important in computational geom-
etry and algebraic topology. Section 6.3 provided a brief perspective that was tailored
to motion planning. For simplicial complexes in algebraic topology, see [41, 45, 66]; for
singular complexes, see [66]. In computational geometry, various kinds of cell decom-
positions arise. Some of the most widely studied decompositions are triangulations [10]
and arrangements [32], which are regions generated by a collection of primitives, such as
lines or circles in the plane. For early cell decomposition methods in motion planning,
see [70]. A survey of computational topology appears in [74].

The most modern and complete reference for the material in Section 6.4 is [9]. A
gentle introduction to computational algebraic geometry is given in [25]. For details
regarding algebraic computations with polynomials, see [54]. A survey of computa-
tional algebraic geometry appears in [55]. In addition to [9], other general references
to cylindrical algebraic decomposition are [4, 22]. For its use in motion planning, see
[47, 68]. The main reference for Canny’s roadmap algorithm is [16]. Alternative high-
level overviews to the one presented in Section 6.4.3 appear in [21, 47]. Variations and
improvements to the algorithm are covered in [9]. A potential function-based extension
of Canny’s roadmap algorithm is developed in [17].

For further reading on the complexity of motion planning, consult the numerous
references given in Section 6.5.

Exercises

1. Extend the vertical decomposition algorithm to correctly handle the case in which
Cobs has two or more points that lie on the same vertical line. This includes the
case of vertical segments. Random perturbations are not allowed.

2. Fully describe and prove the correctness of the bitangent computation method
shown in Figure 6.14, which avoids trigonometric functions. Make certain that
all types of bitangents (in general position) are considered.

3. Develop an algorithm that uses the plane-sweep principle to efficiently compute
a representation of the union of two nonconvex polygons.

4. Extend the vertical cell decomposition algorithm of Section 6.2.2 to work for
obstacle boundaries that are described as chains of circular arcs and line segments.



6.5. COMPLEXITY OF MOTION PLANNING 309

y

x

Figure 6.43: Determine the cylindrical algebraic decomposition obtained by pro-
jecting onto the x-axis.

5. Extend the shortest-path roadmap algorithm of Section 6.2.4 to work for obstacle
boundaries that are described as chains of circular arcs and line segments.

6. Derive the equation for the Conchoid of Nicomedes, shown in Figure 6.24, for the
case of a line-segment robot contacting an obstacle vertex and edge simultane-
ously.

7. Propose a resolution-complete algorithm for motion planning of the line-segment
robot in a polygonal obstacle region. The algorithm should compute exact C-
space obstacle slices for any fixed orientation, θ; however, the algorithm should
use van der Corput sampling over the set [0, 2π) of orientations.

8. Determine the result of cylindrical algebraic decomposition for unit spheres S1,
S2, S3, S4, . . .. Each Sn is expressed as a unit sphere in Rn+1. Graphically depict
the cases of S1 and S2. Also, attempt to develop an expression for the number of
cells as a function of n.

9. Determine the cylindrical algebraic decomposition for the three intersecting circles
shown in Figure 6.43. How many cells are obtained?

10. Using the matrix in (6.28), show that the result of Canny’s roadmap for the torus,
shown in Figure 6.39, is correct. Use the torus equation

(x21 + x22 + x23 − (r21 + r22))
2 − 4r21(r

2
2 − x23) = 0, (6.40)

in which r1 is the major circle, r2 is the minor circle, and r1 > r2.

11. Propose a vertical decomposition algorithm for a polygonal robot that can trans-
late in the plane and even continuously vary its scale. How would the algorithm
be modified to instead work for a robot that can translate or be sheared?

12. Develop a shortest-path roadmap algorithm for a flat torus, defined by identifying
opposite edges of a square. Use Euclidean distance but respect the identifications
when determining the shortest path. Assume the robot is a point and the obstacles
are polygonal.

6.5. COMPLEXITY OF MOTION PLANNING i

Implementations

13. Implement the vertical cell decomposition planning algorithm of Section 6.2.2.

14. Implement the maximum-clearance roadmap planning algorithm of Section 6.2.3.

15. Implement a planning algorithm for a point robot that moves in W = R3 among
polyhedral obstacles. Use vertical decomposition.

16. Implement an algorithm that performs a cylindrical decomposition of a polygonal
obstacle region.

17. Implement an algorithm that computes the cell decomposition of Section 6.3.4 for
the line-segment robot.

18. Experiment with cylindrical algebraic decomposition. The project can be greatly
facilitated by utilizing existing packages for performing basic operations in com-
putational algebraic geometry.

19. Implement the algorithm proposed in Exercise 7.



ii S. M. LaValle: Planning Algorithms

Bibliography

[1] P. K. Agarwal, N. Amenta, B. Aronov, and M. Sharir. Largest placements and
motion planning of a convex polygon. In J.-P. Laumond and M. Overmars,
editors, Robotics: The Algorithmic Perspective. A.K. Peters, Wellesley, MA,
1996.

[2] P. K. Agarwal, B. Aronov, and M. Sharir. Motion planning for a convex
polygon in a polygonal environment. Discrete and Computational Geometry,
22:201–221, 1999.

[3] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and
C. Uhrig. Approximate motion planning and the complexity of the boundary
of the union of simple geometric figures. In Proceedings ACM Symposium on
Computational Geometry, pages 281–289, 1990.

[4] D. S. Arnon. Geometric reasoning with logic and algebra. Artificial Intelli-
gence Journal, 37(1-3):37–60, 1988.

[5] B. Aronov and M. Sharir. On translational motion planning of a convex poly-
hedron in 3-space. SIAM Journal on Computing, 26(6):1875–1803, December
1997.

[6] F. Avnaim, J.-D. Boissonnat, and B. Faverjon. A practical exact planning
algorithm for polygonal objects amidst polygonal obstacles. In Proceedings
IEEE International Conference on Robotics & Automation, pages 1656–1660,
1988.

[7] J. Bañon. Implementation and extension of the ladder algorithm. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
1548–1553, 1990.

[8] S. Basu, R. Pollack, and M. F. Roy. Computing roadmaps of semi-algebraic
sets on a variety. Journal of the American Society of Mathematics, 3(1):55–
82, 1999.

[9] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, Berlin, 2003.

iii



iv BIBLIOGRAPHY

[10] M. Bern. Triangulations and mesh generation. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
2nd Ed., pages 563–582. Chapman and Hall/CRC Press, New York, 2004.

[11] L. Blum, F. Cucker, and M. Schub abd S. Smale. Complexity and Real
Computation. Springer-Verlag, Berlin, 1998.

[12] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge Univer-
sity Press, Cambridge, U.K., 1998.

[13] J. Canny. Constructing roadmaps of semi-algebraic sets I. Artificial Intelli-
gence Journal, 37:203–222, 1988.

[14] J. Canny. Computing roadmaps of general semi-algebraic sets. The Computer
Journal, 36(5):504–514, 1993.

[15] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. In Proceedings IEEE Symposium on Foundations of Computer
Science, pages 49–60, 1987.

[16] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cam-
bridge, MA, 1988.

[17] J. F. Canny and M. Lin. An opportunistic global path planner. Algorithmica,
10:102–120, 1993.

[18] B. Chazelle. Approximation and decomposition of shapes. In J. T. Schwartz
and C. K. Yap, editors, Algorithmic and Geometric Aspects of Robotics, pages
145–185. Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

[19] B. Chazelle. Triangulating a simple polygon in linear time. Discrete and
Computational Geometry, 6(5):485–524, 1991.

[20] L. P. Chew and K. Kedem. A convex polygon among polygonal obstacles:
Placement and high-clearance motion. Computational Geometry: Theory and
Applications, 3:59–89, 1993.

[21] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Cambridge, MA, 2005.

[22] G. E. Collins. Quantifier elimination for real closed fields by cylindrical al-
gebraic decomposition. In Proceedings Second GI Conference on Automata
Theory and Formal Languages, pages 134–183, Berlin, 1975. Springer-Verlag.
Lecture Notes in Computer Science, 33.

BIBLIOGRAPHY v

[23] G. E. Collins. Quantifier elimination by cylindrical algebraic decomposition–
twenty years of progress. In B. F. Caviness and J. R. Johnson, editors,
Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 8–23.
Springer-Verlag, Berlin, 1998.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (2nd Ed.). MIT Press, Cambridge, MA, 2001.

[25] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-
Verlag, Berlin, 1992.

[26] J. C. Culberson. Sokoban is PSPACE-complete. In Proceedings Interna-
tional Conference on Fun with Algorithms (FUN98), pages 65–76, Waterloo,
Ontario, Canada, June 1998. Carleton Scientific.

[27] J. Davenport and J. Heintz. Real quantifier elimination is doubly exponential.
Journal of Symbolic Computation, 5:29–35, 1988.

[28] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications, 2nd Ed. Springer-Verlag,
Berlin, 2000.

[29] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
Berlin, 1987.

[30] S. K. Ghosh and D. M. Mount. An output sensitive algorithm for computing
visibility graphs. SIAM Journal on Computing, 20:888–910, 1991.

[31] J. E. Goodman and J. O’Rourke (eds). Handbook of Discrete and Computa-
tional Geometry, 2nd Ed. Chapman and Hall/CRC Press, New York, 2004.

[32] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, 2nd Ed., pages 529–562.
Chapman and Hall/CRC Press, New York, 2004.

[33] D. Halperin and M. Sharir. A near-quadratic algorithm for planning the
motion of a polygon in a polygonal environment. Discrete and Computational
Geometry, 16:121–134, 1996.

[34] A. Hatcher. Algebraic Topology. Cambridge Uni-
versity Press, Cambridge, U.K., 2002. Available at
http://www.math.cornell.edu/∼hatcher/AT/ATpage.html.

[35] J. G. Hocking and G. S. Young. Topology. Dover, New York, 1988.

[36] J. Hopcroft, D. Joseph, and S. Whitesides. Movement problems for 2-
dimensional linkages. In J .T .Schwartz, M. Sharir, and J. Hopcroft, editors,
Planning, Geometry, and Complexity of Robot Motion, pages 282–329. Ablex,
Norwood, NJ, 1987.



vi BIBLIOGRAPHY

[37] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion
planning for multiple independent objects: PSPACE-hardness of the “ware-
houseman’s problem”. International Journal of Robotics Research, 3(4):76–
88, 1984.

[38] J. E. Hopcroft, J. D. Ullman, and R. Motwani. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading, MA, 2000.

[39] T. W. Hungerford. Algebra. Springer-Verlag, Berlin, 1984.

[40] D. A. Joseph and W. H. Plantiga. On the complexity of reachability and mo-
tion planning questions. In Proceedings ACM Symposium on Computational
Geometry, pages 62–66, 1985.

[41] D. W. Kahn. Topology: An Introduction to the Point-Set and Algebraic Areas.
Dover, New York, 1995.

[42] Y. Ke and J. O’Rourke. Lower bounds on moving a ladder in two and three
dimensions. Discrete and Computational Geometry, 3:197–217, 1988.

[43] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete
and Computational Geometry, 1:59–71, 1986.

[44] J. M. Keil. Polygon decomposition. In J. R. Sack and J. Urrutia, editors,
Handbook on Computational Geometry. Elsevier, New York, 2000.

[45] C. L. Kinsey. Topology of Surfaces. Springer-Verlag, Berlin, 1993.

[46] V. Koltun. Pianos are not flat: Rigid motion planning in three dimensions.
In Proceedings ACM-SIAM Symposium on Discrete Algorithms, 2005.

[47] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

[48] D. T. Lee and R. L. Drysdale. Generalization of Voronoi diagrams in the
plane. SIAM Journal on Computing, 10:73–87, 1981.

[49] D. Leven and M. Sharir. An efficient and simple motion planning algorithm
for a ladder moving in a 2-dimensional space amidst polygonal barriers. Jour-
nal of Algorithms, 8:192–215, 1987.

[50] D. Leven and M. Sharir. Planning a purely translational motion for a convex
object in two-dimensional space using generalized Voronoi diagrams. Discrete
and Computational Geometry, 2:9–31, 1987.

[51] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer-Verlag, Berlin, 1997.

BIBLIOGRAPHY vii

[52] A. Lingas. The power of non-rectilinear holes. In Proceedings 9th Interna-
tional Colloquium on Automata, Languange, and Programming, pages 369–
383. Springer-Verlag, 1982. Lecture Notes in Computer Science, 140.

[53] Y. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles. International Journal of Robotics
Research, 11(4):376–382, 1992.

[54] B. Mishra. Algorithmic Algebra. Springer-Verlag, New York, 1993.

[55] B. Mishra. Computational real algebraic geometry. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
pages 537–556. CRC Press, New York, 1997.

[56] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
2nd Ed., pages 607–641. Chapman and Hall/CRC Press, New York, 2004.

[57] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge, U.K., 1995.

[58] N. J. Nilsson. A mobile automaton: An application of artificial intelligence
techniques. In 1st International Conference on Artificial Intelligence, pages
509–520, 1969.

[59] C. O’Dunlaing, M. Sharir, and C. K. Yap. Retraction: A new approach
to motion planning. In J .T .Schwartz, M. Sharir, and J. Hopcroft, editors,
Planning, Geometry, and Complexity of Robot Motion, pages 193–213. Ablex,
Norwood, NJ, 1987.

[60] C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion
of a disc. Journal of Algorithms, 6:104–111, 1982.

[61] J. O’Rourke and S. Suri. Polygons. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, 2nd Ed., pages
583–606. Chapman and Hall/CRC Press, New York, 2004.

[62] A. Papantonopoulou. Algebra: Pure and Applied. Prentice Hall, Englewood
Cliffs, NJ, 2002.

[63] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
Berlin, 1985.

[64] J. H. Reif. Complexity of the mover’s problem and generalizations. In Pro-
ceedings IEEE Symposium on Foundations of Computer Science, pages 421–
427, 1979.



viii BIBLIOGRAPHY

[65] H. Rohnert. Shortest paths in the plane with convex polygonal obstacles.
Information Processing Letters, 23:71–76, 1986.

[66] J. J. Rotman. Introduction to Algebraic Topology. Springer-Verlag, Berlin,
1988.

[67] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: I. The case
of a two-dimensional rigid polygonal body moving amidst polygonal barriers.
Communications on Pure and Applied Mathematics, 36:345–398, 1983.

[68] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: II. Gen-
eral techniques for computing topological properties of algebraic manifolds.
Communications on Pure and Applied Mathematics, 36:345–398, 1983.

[69] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: III. Coor-
dinating the motion of several independent bodies. International Journal of
Robotics Research, 2(3):97–140, 1983.

[70] J. T. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry, and Com-
plexity of Robot Motion. Ablex, Norwood, NJ, 1987.

[71] M. Sharir. Algorithmic motion planning. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, 2nd Ed., pages
1037–1064. Chapman and Hall/CRC Press, New York, 2004.

[72] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geo-
metric Applications. Cambridge University Press, Cambridge, U.K., 1995.

[73] M. Sipser. Introduction to the Theory of Computation. PWS, Boston, MA,
1997.

[74] G. Vegter. Computational topology. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, 2nd Ed., pages
719–742. Chapman and Hall/CRC Press, New York, 2004.


