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Chapter 12

Planning Under Sensing
Uncertainty

The main purpose of Chapter 11 was to introduce information space (I-space) con-
cepts and to provide illustrative examples that aid in understanding. This chapter
addresses planning under sensing uncertainty, which amounts to planning in an
I-space. Section 12.1 covers general-purpose algorithms, for which it will quickly
be discovered that only problems with very few states can be solved because of the
explosive growth of the I-space. In Chapter 6, it was seen that general-purpose
motion planning algorithms apply only to simple problems. Ways to avoid this
were either to develop sampling-based techniques or to focus on a narrower class
of problems. It is intriguing to apply sampling-based planning ideas to I-spaces,
but as of yet this idea remains largely unexplored. Therefore, the majority of
this chapter focuses on planning algorithms designed for narrower classes of prob-
lems. In each case, interesting algorithms have been developed that can solve
problems that are much more complicated than what could be solved by the
general-purpose algorithms. This is because they exploit some structure that is
specific to the problem.

An important philosophy when dealing with an I-space is to develop an I-map
that reduces its size and complexity as much as possible by obtaining a simpler
derived I-space. Following this, it may be possible to design a special-purpose
algorithm that efficiently solves the new problem by relying on the fact that the
I-space does have the full generality. This idea will appear repeatedly throughout
the chapter. The most common derived I-space is Z,4¢ from Section 11.2.2; 7.4,
from Section 11.2.3, will also arise.

After Section 12.1, the problems considered in the remainder of the chapter are
inspired mainly by robotics applications. Section 12.2 addresses the localization
problem, which means that a robot must use sensing information to determine
its location. This is essentially a matter of maintaining derived I-states and com-
puting plans that lead to the desired derived I-space. Section 12.3 generalizes
localization to problems in which the robot does not even know its environment.
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In this case, the state space and I-space take into account both the possible en-
vironments in which the robot might be and the possible locations of the robot
within each environment. This section is fundamental to robotics because it is
costly and difficult to build precise maps of a robot’s environment. By careful
consideration of the I-space, a complete representation may be safely avoided in
many applications.

Section 12.4 covers a kind of pursuit-evasion game that can be considered as
a formal version of the children’s game of “hide and seek.” The pursuer carries a
lantern and must illuminate an unpredictable evader that moves with unbounded
speed. The nondeterministic I-states for this problem characterize the set of pos-
sible evader locations. The problem is solved by performing a cell decomposition
of Z,,4¢¢ to obtain a finite, graph-search problem. The method is based on finding
critical curves in the I-space, much like the critical-curve method in Section 6.3.4
for moving a line-segment robot.

Section 12.5 concludes the chapter with manipulation planning under imper-
fect state information. This differs from the manipulation planning considered in
Section 7.3.2 because it was assumed there that the state is always known. Sec-
tion 12.5.1 presents the preimage planning framework, which was introduced two
decades ago to address manipulation planning problems that have bounded uncer-
tainty models for the state transitions and the sensors. Many important I-space
ideas and complexity results were obtained from this framework and the body of
literature on which it was based; therefore, it will be covered here. Section 12.5.2
addresses problems in which the robots have very limited sensing information and
rely on the information gained from the physical interaction of objects. In some
cases, these methods surprisingly do not even require sensing.

12.1 General Methods

This section presents planning methods for the problems introduced in Section
11.1. They are based mainly on general-purpose dynamic programming, without
exploiting any particular structure to the problem. Therefore, their application
is limited to small state spaces; nevertheless, they are worth covering because
of their extreme generality. The basic idea is to use either the nondeterministic
or probabilistic I-map to express the problem entirely in terms of the derived I-
space, e OF Lyrop, respectively. Once the derived information transition equation
(recall Section 11.2.1) is defined, it can be imagined that Z,e¢ or 0 is a state
space in which perfect state measurements are obtained during execution (because
the I-state is always known).

12.1.1 The Information Space as a Big State Space

Recall that any problem specified using Formulation 11.1 can be converted us-
ing derived I-states into a problem under Formulation 10.1. By building on the
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Item Notation Explanation
State Z =ng4er Derived I-state
State space X = Zaer Derived I-space
Action space U=U Original action space
Nature action space 6cCy Original observation space
State transition equation f(i", u, _’) Nature action is just y
Initial state Zr=mno  Initial I-state, 1y € Zyer
Goal set XG Subsets of original Xg
Cost functional L Derived from original L

Figure 12.1: The derived I-space can be treated as an ordinary state space on
which planning with perfect state information can be performed.

discussion from the end of Section 11.1.3, this can be achieved by treating the I-
space as a big state space in which each state is an I-state in the original problem
formulation. Some of the components were given previously, but here a complete
formulation is given.

Suppose that a problem has been specified using Formulation 11.1, resulting in
the usual components: X, U, ©, f, Y, h, 1, Xg, and L. The following concepts
will work for any sufficient I-map; however, the presentation will be limited to
two important cases: Kpger and ko, Which yield derived I-spaces Zy,4e and Zy,.qp,
respectively (recall Sections 11.2.2 and 11.2.3).

The components of Formulation 10.1 will now be specified using components of
the original problem. To avoid confusion between the two formulations, an arrow
will be placed above all components of the new formulation. Figure 12.1 sum-
marizes the coming definitions. The new state space, X , is defined as X = Laer,
and a state, ¥ € X , is a derived I-state, ¥ = n4e,-. Under nondeterministic uncer-
tainty, ¥ means Xy (n), in which 7 is the history I-state. Under probabilistic
uncertainty, ¥ means P(zy|n;). The action space remains the same: U=uU.

The strangest part of the formulation is the new nature action space, é(f, a).
The observations in Formulation 11.1 behave very much like nature actions be-
cause they are not selected by the robot, and, as will be seen shortly, they are
the only unpredictable part of the new state transition equation. Therefore,
é(f, @) C Y, the original observation space. A new nature action, b € é, is
just an observation, 6(Z, @) = y. The set O(Z, @) generally depends on & and i
because some observations may be impossible to receive from some states. For
example, if a sensor that measures a mobile robot position is never wrong by more
than 1 meter, then observations that are further than 1 meter from the true robot
position are impossible.

A derived state transition equation is defined with f{ (fk,ﬁk7§k) and yields a
new state, Zy,1. Using the original notation, this is just a function that uses x(ny),
ug, and y; to compute the next derived I-state, #(ng.1), which is allowed because
we are working with sufficient I-maps, as described in Section 11.2.1.
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Initial states and goal sets are optional and can be easily formulated in the new
representation. The initial I-state, 1y, becomes the new initial state, Z; = ny. It
is assumed that 7 is either a subset of X or a probability distribution, depending
on whether planning occurs in Zyge or Zp.. In the nondeterministic case, the
new goal set X¢ can be derived as

XG = {X(n) € Indet | X(U) c XG}7 (12'1)

which is the set of derived I-states for which it is guaranteed that the true state lies
in Xg. A probabilistic version can be made by requiring that all states assigned
nonzero probability by P(z|n) lie in Xg. Instead of being nonzero, a threshold
could be used. For example, the goal may require being only 98% certain that the
goal is reached.

The only remaining portion of Formulation 10.1 is the cost functional. We will
develop a cost model that uses only the state and action histories. A dependency
on nature would imply that the costs depend directly on the observation, y = 5,
which was not assumed in Formulation 11.1. The general K-stage cost functional
from Formulation 10.1 appears in this context as

K
L@y, i) = Y (&, i) + 1p(Er), (12.2)

with the usual cost assumptions regarding the termination action.

The cost functional L must be derived from the cost functional L of the original
problem. This is expressed in terms of states, which are unknown. First consider
the case of Z,.. The state z; at stage k follows the probability distribution
P(zk|nr), as derived in Section 11.2.3. Using &, an expected cost is assigned as

(@ i) = g, we) = D Plalme) s, w) (12.3)
rReX
and B B
Ip(Er) = lp(nr) = Y Plarlng)le(zr). (12.4)
rpeX

Ideally, we would like to make analogous expressions for the case of 7,4
however, there is one problem. Formulating the worst-case cost for each stage
is too pessimistic. For example, it may be possible to obtain high costs in two
consecutive stages, but each of these may correspond to following different paths
in X. There is nothing to constrain the worst-case analysis to the same path. In
the probabilistic case there is no problem because probabilities can be assigned
to paths. For the nondeterministic case, a cost functional can be defined, but
the stage-additive property needed for dynamic programming is destroyed in gen-
eral. Under some restrictions on allowable costs, the stage-additive property is
preserved.
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The state z, at stage k is known to lie in X (n;), as derived in Section 11.2.2.
For every history I-state, n, = @, and uy, € U, assume that [(xy, uy) is invariant
over all zp € Xy (ny). In this case,

— —

W&y, ) = U, ug) = Uy, ug), (12.5)

in which z € Xx(nx), and

—

Ip(Zr) = lr(nr) = le(zr), (12.6)

in which 2p € Xr(ngp).

A plan on the derived I-space, Z,get O Zyrop, can now also be considered as
a plan on the new state space X. Thus, state feedback is now possible, but in
a larger state space X instead of X. The outcomes of actions are still generally
unpredictable due to the observations. An interesting special case occurs when
there are no observations. In this case, the I-state is predictable because it is
derived only from actions that are chosen by the robot. In this case, the new
formulation does not need nature actions, which reduces it down to Formulation
2.3. Due to this, feedback is no longer needed if the initial I-state is given. A plan
can be expressed once again as a sequence of actions. Even though the original
states are not predictable, the future information states are! This means that the
state trajectory in the new state space is completely predictable as well.

12.1.2 Algorithms for Nondeterministic I-Spaces

Now that the problem of planning in Z,4.; has been expressed using Formulation
10.1, the methods of Section 10.2 directly apply. The main limitation of their use is
that the new state space X is exponentially larger than X. If X contains n states,
then X contains 2"—1 states. Thus, even though some methods in Section 10.2 can
solve problems in practice that involve a million states, this would only be about 20
states in the original state space. Handling substantially larger problems requires
developing application-specific methods that exploit some special structure of the
I-space, possibly by defining an I-map that leads to a smaller derived I-space.

Value iteration The value-iteration method from Section 10.2.1 can be applied
without modification. In the first step, initialize G using (12.6). Using the
notation for the new problem, the dynamic programming recurrence, (10.39),
becomes

G(Ty) = min { max {f(fk @) + G;H(@H)}}, (12.7)
urelU 0
in which fk+1 = f_"(fk, ﬁk, gk)
The main difficulty in evaluating (12.7) is to determine the set ©(Zy, @), over
which the maximization occurs. Suppose that a state-nature sensor mapping is
used, as defined in Section 11.1.1. From the I-state &y = Xg(nx), the action
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iy, = uy, is applied. This yields a forward projection Xjyi1(n, ux). The set of all
possible observations is

—

(‘)(fk, ﬁk) = {yk+1 ceY | E|$k+1 € Xk’+1(77k’uk) and 3¢k+1 cev

(12.8)
such that yry1 = h(zri1, Yrgr) }-

Without using forward projections, a longer, equivalent expression is obtained:

O(Zk, i) = {ypsr € Y | Fzy, € Xp(me), 30, € O, and Iy € U

(12.9)
such that yp1 = h(f(wr, ur, Or), Yri1) }-

Other variants can be formulated for different sensing models.

Policy iteration The policy iteration method of Section 10.2.2 can be applied
in principle, but it is unlikely to solve challenging problems. For example, if
|X| = 10, then each iteration will require solving matrices that have 1 million
entries! At least they are likely to be sparse in many applications.

Graph-search methods The methods from Section 10.2.3, which are based on
backprojections, can also be applied to this formulation. These methods must
initially set S = Xg. If S is initially nonempty, then backprojections can be
attempted using the general algorithm in Figure 10.6. Dijkstra’s algorithm, as
given in Figure 10.8, can be applied to yield a plan that is worst-case optimal.

The sensorless case If there are no sensors, then better methods can be applied
because the formulation reduces from Formulation 10.1 to Formulation 2.3. The
simpler value iterations of Section 2.3 or Dijkstra’s algorithm can be applied to
find a solution. If optimality is not required, then any of the search methods of
Section 2.2 can even be applied. For example, one can even imagine performing
a bidirectional search on X to attempt to connect Zy to some Zg.

12.1.3 Algorithms for Probabilistic I-Spaces (POMDPs)

For the probabilistic case, the methods of Section 10.2 cannot be applied because
Z,rob is a continuous space. Dynamic programming methods for continuous state
spaces, as covered in Section 10.6, are needed. The main difficulty is that the
dimension of X grows linearly with the number of states in X. If there are n
states in X, the dimension of X is n— 1. Since the methods of Section 10.6 suffer
from the curse of dimensionality, the general dynamic programming techniques
are limited to problems in which X has only a few states.
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Approximate value iteration The continuous-space methods from Section
10.6 can be directly applied to produce an approximate solution by interpolat-
ing over X to determine cost-to-go values. The initial cost-to-go value G7. over
the collection of samples is obtained by (12.6). Following (10.46), the dynamic
programming recurrence is

G5 (fﬁk) = mln{ :E'k,uk Z Gk+1 $k+1 (karlIfMﬁk)}- (1210)

upelU
Tp1€X

If (&, @) is finite, the probability mass is distributed over a finite set of points,
y = 0 € O(Z,@). This in turn implies that P(Z4|T%, @) is also distributed
over a finite subset of X. This is somewhat unusual because X is a continuous
space, which ordinarily requires the specification of a probability density function.
Since the set of future states is finite, this enables a sum to be used in (12.10) as
opposed to an integral over a probability density function. This technically yields
a probability density over X , but this density must be expressed using Dirac
functions.! An approximation is still needed, however, because the z;,; points
may not be exactly the sample points on which the cost-to-go function G}, is
represented.

Exact methods If the total number of stages is small, it is possible in practice
to compute exact representations. Some methods are based on an observation
that the cost-to-come is piecewise linear and convex [86]. A linear-programming
problem results, which can be solved using the techniques that were described
for finding randomized saddle points of zero-sum games in Section 9.3. Due to
the numerous constraints, methods have been proposed that dramatically reduce
the number that need to be considered in some circumstances (see the suggested
reading on POMDPs at the end of the chapter).

An exact, discrete representation can be computed as follows. Suppose that the
initial condition space Zy consists of one initial condition, 7o (or a finite number of
initial conditions), and that there are no more than K stages at which decisions are
made. Since O(z,u) and V(x) are assumed to be finite, there is a finite number
of possible final I-states, np = (o, ik, yr). For each of these, the distribution
P(zp|nr) can be computed, which is alternatively represented as Zr. Following
this, (12.4) is used to compute G*(Zr) for each possible Zp. The number of these
states is unfortunately exponential in the total number of stages, but at least there
are finitely many. The dynamic programming recurrence (12.10) can be applied
for k = K to roll back one stage. It is known that each possible ;. will be
a point in X at which a value was computed because values were computed for
possible all I-states. Therefore, interpolation is not necessary. Equation 12.10
can be applied repeatedly until the first stage is reached. In each iteration, no

IThese are single points that are assigned a nonzero probability mass, which is not allowed,
for example, in the construction of a continuous probability density function.
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interpolation is needed because the cost-to-go G| was computed for each possible
next I-state. Given the enormous size of Z, this method is practical only for very
small problems.

The sensorless case In the case of having no observations, the path through
Z,ro» becomes predictable. Suppose that a feasible planning problem is formulated.
For example, there are complicated constraints on the probability distributions
over X that are permitted during the execution of the plan. Since X = prob
is a continuous space, it is tempting to apply motion planning techniques from
Chapter 5 to find a successful path. The adaptation of such techniques may be
possible, but they must be formulated to use actions and state transition functions,
which was not done in Chapter 5. Such adaptations of these methods, however,
will be covered in Chapter 14. They could be applied to this problem to search
the I-space and produce a sequence of actions that traverses it while satisfying
hard constraints on the probabilities.

12.2 Localization

Localization is a fundamental problem in robotics. Using its sensors, a mobile
robot must determine its location within some map of the environment. There
are both passive and active versions of the localization problem:

Passive localization: The robot applies actions, and its position is inferred
by computing the nondeterministic or probabilistic I-state. For example, if
the Kalman filter is used, then probabilistic I-states are captured by mean
and covariance. The mean serves as an estimate of the robot position, and
the covariance indicates the amount of uncertainty.

Active localization: A plan must be designed that attempts to reduce the
localization uncertainty as much as possible. How should the robot move so
that it can figure out its location?

Both versions of localization will be considered in this section.

In many applications, localization is an incremental problem. The initial con-
figuration may be known, and the task is to maintain good estimates as motions
occur. A more extreme version is the kidnapped-robot problem, in which a robot
initially has no knowledge of its initial configuration. Either case can be mod-
eled by the appropriate initial conditions. The kidnapped-robot problem is more
difficult and is assumed by default in this section.

12.2.1 Discrete Localization

Many interesting lessons about realistic localization problems can be learned by
first studying a discrete version of localization. Problems that may or may not be
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Tk R

B!
(b)

Figure 12.2: (a) This map is given to the robot for localization purposes. (b)
The four possible actions each take one step, if possible, and reorient the robot as
shown.

solvable can be embedded in more complicated problems, which may even involve
continuous state spaces. The discrete case is often easier to understand, which
motivates its presentation here. To simplify the presentation, only the nondeter-
ministic I-space Z,4.; Will be considered; see Section 12.2.3 for the probabilistic
case.

Suppose that a robot moves on a 2D grid, which was introduced in Example
2.1. Tt has a map of the grid but does not know its initial location or orientation
within the grid. An example is shown in Figure 12.2a.

To formulate the problem, it is helpful to include in the state both the position
of the robot and its orientation. Suppose that the robot may be oriented in one of
four directions, which are labeled N, E, W, and S, for “north,” “east,” “west,” and
“south,” respectively. Although the robot is treated as a point, its orientation is
important because it does not have a compass. If it chooses to move in a particular
direction, such as straight ahead, it does not necessarily know which direction it
will be heading with respect to the four directions.

Thus, a state, z € X, is written as x = (p,d), in which p is a position and d
is one of the four directions. A set of states at the same position will be denoted
with special superscripts that point in the possible directions. For example, 3 -
indicates the set of states for which p = 3 and the direction may be north (N) or
east (E), because the superscript points in the north and east directions.

The robot is given four actions,

U ={F,B,R,L}, (12.11)

which represent “forward,” “backward,” “right motion,” and “left motion,” re-
spectively. These motions occur with respect to the current orientation of the
robot, which may be unknown. See Figure 12.2b. For the F' action, the robot
moves forward one grid element and maintains its orientation. For the B action,
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Figure 12.3: (a) If a direction is blocked because of an obstacle, then the orien-
tation changes, but the position remains fixed. In this example, the R action is
applied. (b) Another map is given to the robot for localization purposes. In this
case, the robot cannot localize itself exactly.

the robot changes its orientation by 180 degrees and then moves forward one grid
element. For the R action, the robot turns right by 90 degrees and then moves
forward one grid element. The L action behaves similarly. If it is not possible to
move because of an obstacle, it is assumed that the robot changes its orientation
(in the case of B, R, or L) but does not change its position. This is depicted in
Figure 12.3a.

The robot has one simple sensor that can only detect whether it was able to
move in the direction that was attempted. The sensor space is Y = {0,1}, and
the sensor mapping is h : X x X — Y. This yields y = h(xg_1,x) = 1 if 2,1 and
xy, place the robot at different positions, and h(zg_1,zx) = 0 otherwise. Thus, the
sensor indicates whether the robot has moved after the application of an action.

Nondeterministic uncertainty will be used, and the initial I-state 1y is always
assumed to be X (this can easily be extended to allow starting with any nonempty
subset of X). A history I-state at stake k in its general form appears as

o = (X, 1,92, -, Yi)- (12.12)

One special adjustment was made in comparison to (11.14). There is no obser-
vation y; because the sensor mapping requires a previous state to report a value.
Thus, the observation history starts with ys. An example history I-state for stage
k=1>51is

7 = (X,R,R,F,L,1,0,1,1), (12.13)

in which ny = X, 44 = (R, R, F,L), and (y2,93,vs,v5) = (1,0,1,1).

The passive localization problem starts with a given map, such as the one shown
in Figure 12.2a, and a history I-state, 7, and computes the nondeterministic I-
state Xg(ne) € X. The active localization problem is to compute some k and
sequence of actions, (ui,...,uk_1), such that the nondeterministic I-state is as
small as possible. In the best case, X (n;) might become a singleton set, which
means that the robot knows its position and orientation on the map. However,
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due to symmetries, which will be presented shortly in an example, it might not
be possible.

Solving the passive localization problem The passive problem requires only
that the nondeterministic I-states are computed correctly as the robot moves. A
couple of examples of this are given.

Example 12.1 (An Easy Localization Problem) Consider the example given
in Figure 12.2a. Suppose that the robot is initially placed in position 1 facing east.
The initial condition is 19 = X, which can be represented as

mw=1Yuotustusatust (12.14)

the collection of all 20 states in X. Suppose that the action sequence (F,L,F,L)
is applied. In each case, a motion occurs, which results in the observation history
(y27 Y3, Ya, y5) = (17 L1, 1)‘

After the first action, u; = F, the history I-state is 7, = (X,F,1). The
nondeterministic I-state is

Xao(n) =17 u2Tust uatusT, (12.15)

which means that any position is still possible, but the successful forward motion
removed some orientations from consideration. For example, 1! s not possible
because the previous state would have to be directly south of 1, which is an
obstacle.

After the second action, us = L,

Xy(ps) =3' U5, (12.16)

which yields only two possible current states. This can be easily seen in Figure

12.2a by observing that there are only two states from which a forward motion

can be followed by a left motion. The initial state must have been either 1~ or
1

3
After uz = F is applied, the only possibility remaining is that x3 must have

been 3. This yields
1
Xy(na) =4, (12.17)
which exactly localizes the robot: It is at position 4 facing north. After the final
action uy = L is applied it is clear that

Xs(ns) =5, (12.18)

which means that in the final state, x5, the robot is at position 1 facing west.
Once the exact robot state is known, no new uncertainty will accumulate because
the effects of all actions are predictable. Although it was not shown, it is also pos-
sible to prune the possible states by the execution of actions that do not produce
motions. |
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Example 12.2 (A Problem that Involves Symmetries) Now extend the map
from Figure 12.2a so that it forms a loop as shown in Figure 12.2b. In this case,
it is impossible to determine the precise location of the robot. For simplicity,
consider only actions that produce motion (convince yourself that allowing the
other actions cannot fix the problem).

Suppose that the robot is initially in position 1 facing east. If the action
sequence (F,L,F,L,...) is executed, the robot will travel around in cycles. The
problem is that it is also possible to apply the same action sequence from position
3 facing north. Every action successfully moves the robot, which means that, to
the robot, the information appears identical. The other two cases in which this
sequence can be applied to travel in cycles are 1) from 5 heading west, and 2) from
7 heading south. A similar situation occurs from 2 facing east, if the sequence
(L,F,L,F,...) is applied. Can you find the other three starting states from which
this sequence moves the robot at every stage? Similar symmetries exist when
traveling in clockwise circles and making right turns instead of left turns.

The state space for this problem contains 32 states, obtained from four direc-
tions at each position. After executing some motions, the nondeterministic I-state
can be reduced down to a symmetry class of no more than four possible states.
How can this be proved? One way is to use the algorithm that is described next.
|

Solving the active localization problem From the previous two examples,
it should be clear how to compute nondeterministic I-states and therefore solve
the passive localization problem on a grid. Now consider constructing a plan that
solves the active localization problem. Imagine using a computer to help in this
task. There are two general approaches:

Precomputed Plan: In this approach, a planning algorithm running on a
computer accepts a map of the environment and computes an information-
feedback plan that immediately indicates which action to take based on
all possible I-states that could result (a derived I-space could be used).
During execution, the actions are immediately determined from the stored,
precomputed plan.

Lazy Plan: In this case the map is still given, but the appropriate action is
computed just as it is needed during each stage of execution. The computer
runs on-board of the robot and must compute which action to take based
on the current I-state.

The issues are similar to those of the sampling-based roadmap in Section 5.6. If
faster execution is desired, then the precomputed plan may be preferable. If it
would consume too much time or space, then a lazy plan may be preferable.
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Using either approach, it will be helpful to recall the formulation of Section
12.1.1, which considers Z,4; as a new state space, X , in which state feedback
can be used. Even though there are no nature sensing actions, the observations
are not predictable because the state is generally unknown. This means that )
is unknown, and future new states, Zj.1, are unpredictable once ) and u}, are
given. A plan must therefore use feedback, which means that it needs information
learned during execution to solve the problem. The state transition function f
on the new state space was illustrated for the localization problem in Examples
12.1 and 12.2. The initial state &; is the set of all original states. If there are no
symmetries, the goal set X is the set of all singleton subsets of X; otherwise, it
is the set of all smallest possible I-states that are reachable (this does not need
to be constructed in advance). If desired, cost terms can be defined to produce
an optimal planning problem. For example, f(f, @) = 2 if a motion occurs, or
I(Z,@) = 1 otherwise.

Consider the approach of precomputing a plan. The methods of Section 12.1.2
can generally be applied to compute a plan, 7 : XU , that solves the localization
problem from any initial nondeterministic I-state. The approach may be space-
intensive because an action must be stored for every state in X. 1If there are n
grid tiles, then |)Z| = 2" — 1. If the initial I-state is always X, then it may be
possible to restrict 7 to a much smaller portion of X. From any T € Xg, a search
based on backprojections can be conducted. If the initial I-state is added to S,
then the partial plan will reliably localize the robot. Parts of X for which 7 is
not specified will never be reached and can therefore be ignored.

Now consider the lazy approach. An algorithm running on the robot can
perform a kind of search by executing actions and seeing which I-states result.
This leads to a directed graph over X that is incrementally revealed through the
robot’s motions. The graph is directed because the information regarding the state
generally improves. For example, once the robot knows its state (or symmetry
class of states), it cannot return to an I-state that represents greater uncertainty.
In many cases, the robot may get lucky during execution and localize itself using
much less memory than would be required for a precomputed plan.

The robot needs to recognize that the same positions have been reached in
different ways, to ensure a systematic search. Even though the robot does not
necessarily know its position on the map, it can usually deduce whether it has been
to some location previously. One way to achieve this is to assign (¢, j) coordinates
to the positions already visited. It starts with (0, 0) assigned to the initial position.
If F is applied, then suppose that position (1,0) is reached, assuming the robot
moves to a new grid cell. If R is applied, then (0,1) is reached if the robot is not
blocked. The point (2,1) may be reachable by (F,F,R) or (R,F,F). One way to
interpret this is that a local coordinate frame in R? is attached to the robot’s initial
position. Let this be referred to as the odometric coordinates. The orientation
between this coordinate frame and the map is not known in the beginning, but a
transformation between the two can be computed if the robot is able to localize
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itself exactly.

A variety of search algorithms can now be defined by starting in the initial
state Z; and trying actions until a goal condition is satisfied (e.g., no smaller non-
deterministic I-states are reachable). There is, however, a key difference between
this search and the search conducted by the algorithms in Section 2.2.1. Previ-
ously, the search could continue from any state that has been explored previously
without any additional cost. In the current setting, there are two issues:

Reroute paths: Most search algorithms enable new states to be expanded
from any previously considered states at any time. For the lazy approach,
the robot must move to a state and apply an action to determine whether a
new state can be reached. The robot is capable of returning to any previously
considered state by using its odometric coordinates. This induces a cost that
does not exist in the previous search problem. Rather than being able to
jump from place to place in a search tree, the search is instead a long,
continuous path that is traversed by the robot. Let the jump be referred to
as a reroute path. This will become important in Section 12.3.2.

Information improvement: The robot may not even be able to return to a
previous nondeterministic I-state. For example, if the robot follows (F, F,R)
and then tries to return to the same state using (B, L, F), it will indeed know
that it returned to the same state, but the state remains unknown. It might
be the case, however, that after executing (F,F,R), it was able to narrow
down the possibilities for its current state. Upon returning using (B, L, F),
the nondeterministic I-state will be different.

The implication of these issues is that the search algorithm should take into ac-
count the cost of moving the robot and that the search graph is directed. The
second issue is really not a problem because even though the I-state may be dif-
ferent when returning to the same position, it will always be at least as good as
the previous one. This means that if n; and 7, are the original and later history
I-states from the same position, it will always be true that X (n,) € X (n;). Infor-
mation always improves in this version of the localization problem. Thus, while
trying to return to a previous I-state, the robot will find an improved I-state.

Other information models The model given so far in this section is only one
of many interesting alternatives. Suppose, for example, that the robot carries a
compass that always indicates its direction. In this case, there is no need to keep
track of the direction as part of the state. The robot can use the compass to specify
actions directly with respect to global directions. Suppose that U = {N,E, W, S},
which denote the directions, “north,” “east,” “west,” and “south,” respectively.
Examples 12.1 and 12.2 now become trivial. The first one is solved by applying the
action sequence (E,N). The symmetry problems vanish for Example 12.2, which
can also be solved by the sequence (E, N) because (1,2,3) is the only sequence of
positions that is consistent with the actions and compass readings.
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Other interesting models can be made by giving the robot less information.
In the models so far, the robot can easily infer its current position relative to its
starting position. Even though it is not necessarily known where this starting
position lies on the map, it can always be expressed in relative coordinates. This
is because the robot relies on different forms of odometry. For example, if the
direction is E and the robot executes the sequence (L, L, L), it is known that the
direction is S because three lefts make a right. Suppose that instead of a grid, the
robot must explore a graph. It moves discretely from vertex to vertex by applying
an action that traverses an edge. Let this be a planar graph that is embedded in
R? and is drawn with straight line segments. The number of available actions can
vary at each vertex. We can generally define U = S', with the behavior that the
robot only rotates without translating whenever a particular direction is blocked
(this is a generalization of the grid case). A sensor can be defined that indicates
which actions will lead to translations from the current vertex. In this case, the
model nicely generalizes the original model for the grid. If the robot knows the
angles between the edges that arrive at a vertex, then it can use angular odometry
to make a local coordinate system in R? that keeps track of its relative positions.

The situation can be made very confusing for the robot. Suppose that instead
of U = S', the action set at each vertex indicates which edges can be traversed.
The robot can traverse an edge by applying an action, but it does not know any-
thing about the direction relative to other edges. In this case, angular odometry
can no longer be used. It could not, for example, tell the difference between
traversing a rhombus, trapezoid, or a rectangle. If angular odometry is possible,
then some symmetries can be avoided by noting the angles between the edges at
each vertex. However, the new model does not allow this. All vertices that have
the same degree would appear identical.

12.2.2 Combinatorial Methods for Continuous Localiza-
tion

Now consider localization for the case in which X is a continuous region in R2.
Assume that X is bounded by a simple polygon (a closed polygonal chain; there
are no interior holes). A map of X in R? is given to the robot. The robot velocity
% is directly commanded by the action u, yielding a motion model & = wu, for
which U is a unit ball centered at the origin. This enables a plan to be specified
as a continuous path in X, as was done throughout Part II. Therefore, instead
of specifying velocities using u, a path is directly specified, which is simpler. For
models of the form # = u and the more general form & = f(z,u), see Section 8.4
and Chapter 13, respectively.
The robot uses two different sensors:

1. Compass: A perfect compass solves all orientation problems that arose in
Section 12.2.1.
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Figure 12.4: An example of the visibility cell decomposition. Inside of each cell,
the visibility polygon is composed of the same edges of 0.X.

2. Visibility: The visibility sensor, which was shown in Figure 11.15, provides
perfect distance measurements in all directions.

There are no nature sensing actions for either sensor.

As in Section 12.2.1, localization involves computing nondeterministic I-states.
In the current setting there is no need to represent the orientation as part of the
state space because of the perfect compass and known orientation of the polygon
in R2. Therefore, the nondeterministic I-states are just subsets of X. Imagine
computing the nondeterministic I-state for the example shown in Figure 11.15,
but without any history. This is H(y) C X, which was defined in (11.6). Only
the current sensor reading is given. This requires computing states from which the
distance measurements shown in Figure 11.15b could be obtained. This means
that a translation must be found that perfectly overlays the edges shown in Figure
11.15b on top of the polygon edges that are shown in Figure 11.15a. Let 0X
denote the boundary of X. The distance measurements from the visibility sensor
must correspond exactly to a subset of .X. For the example, these could only be
obtained from one state, which is shown in Figure 11.15a. Therefore, the robot
does not even have to move to localize itself for this example.

As in Section 8.4.3, let the wisibility polygon V (x) refer to the set of all points
visible from =, which is shown in Figure 11.15a. To perform the required com-
putations efficiently, the polygon must be processed to determine the different
ways in which the visibility polygon could appear from various points in X. This
involves carefully determining which edges of X could appear on OV (z). The
state space X can be decomposed into a finite number of cells, and over each
region the invariant is that same set of edges is used to describe V(x) [17, 74]. An
example is shown in Figure 12.4. Two different kinds of rays must be extended to
make the decomposition. Figure 12.5 shows the case in which a pair of vertices
is mutually visible and an outward ray extension is possible. The other case is
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Figure 12.5: Rays are extended outward, whenever possible, from each pair of
mutually visible vertices. The case on the right is a bitangent, as shown in Figure
6.10; however, here the edges extend outward instead of inward as required for
the visibility graph.

Figure 12.6: A reflex vertex: If the interior angle at a vertex is greater than m,
then two outward rays are extended from the incident edges.

shown in Figure 12.6, in which rays are extended outward at every reflex vertex
(a vertex whose interior angle is more than 7, as considered in Section 6.2.4). The
resulting decomposition generates O(n?r) cells in the worse case, in which n is the
number of edges that form JX and r is the number of reflex vertices (note that
r < n). Once the measurements are obtained from the sensor, the cell or cells in
which the edges or distance measurements match perfectly need to be computed to
determine H(y) (the set of points in X from which the current distance measure-
ments could be obtained). An algorithm based on the idea of a visibility skeleton
is given in [74], which performs these computations in time O(m + lgn + s) and
uses O(n®) space, in which n is the number of vertices in X, m is the number
of vertices in V(z), and s = |H (y)|, the size of the nondeterministic I-state. This
method assumes that the environment is preprocessed to perform rapid queries
during execution; without preprocessing, H(y) can be computed in time O(mn).

What happens if there are multiple states that match the distance data from
the visibility sensor? Since the method in [74] only computes H(y) € X, some
robot motions must be planned to further reduce the uncertainty. This provides
yet another interesting illustration of the power of I-spaces. Even though the state
space is continuous, an I-state in this case is used to disambiguate the state from
a finite collection of possibilities.
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Figure 12.7: Consider this example, in which the initial state is not known [50].

Figure 12.8: The four possible initial positions for the robot in Figure 12.7 based
on the visibility sensor.

The following example is taken from [50].

Example 12.3 (Visibility-Based Localization) Consider the environment shown
in Figure 12.7, with the initial state as shown. Based on the visibility sensor obser-
vation, the initial state could be any one of the four possibilities shown in Figure
12.8. Thus, H(y;) contains four states, in which y; is the initial sensor observa-
tion. Suppose that the motion sequence shown in Figure 12.9 is executed. After
the first step, the position of the robot is narrowed down to two possibilities, as
shown in Figure 12.10. This occurs because the corridor is longer for the remain-
ing two possibilities. After the second motion, the state is completely determined
because the short side corridor is detected. |



12.2. LOCALIZATION 651

I

Figure 12.9: These motions completely disambiguate the state.

Figure 12.10: There are now only two possible states.

The localization problem can be solved in general by using the visibility cell
decomposition, as shown in Figure 12.4. Initially, X;(n) = H(y1) is computed
from the initial visibility polygon, which can be efficiently performed using the
visibility skeleton [74]. Suppose that X;(7;) contains k states. In this case, k
translated copies of the map are overlaid so that all of the possible states in X (7))
coincide. A motion is then executed that reduces the amount of uncertainty. This
could be performed, by example, by crossing a cell boundary in the overlay that
corresponds to one or more, but not all, of the k copies. This enables some possible
states to be eliminated from the next I-state, Xs(72). The overlay is used once
again to obtain another disambiguating motion, which results in Xj3(n3). This
process continues until the state is known. In [50], a motion plan is given that
enables the robot to localize itself by traveling no more than & times as far as the
optimal distance that would need to be traveled to verify the given state. This
particular localization problem might not seem too difficult after seeing Example
12.3, but it turns out that the problem of localizing using optimal motions is
NP-hard if any simple polygon is allowed. This was proved in [50] by showing
that every abstract decision tree can be realized as a localization problem, and
the abstract decision tree problem is already known to be NP-hard.

Many interesting variations of the localization problem in continuous spaces
can be constructed by changing the sensing model. For example, suppose that the
robot can only measure distances up to a limit; all points beyond the limit cannot
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be seen. This corresponds to many realistic sensing systems, such as infrared
sensors, sonars, and range scanners on mobile robots. This may substantially
enlarge H(y). Suppose that the robot can take distance measurements only in
a limited number of directions, as shown in Figure 11.14b. Another interesting
variant can be made by removing the compass. This introduces the orientation
confusion effects observed in Section 12.2.1. One can even consider interesting
localization problems that have little or no sensing [133, 134], which yields I-
spaces that are similar to that for the tray tilting example in Figure 11.28.

12.2.3 Probabilistic Methods for Localization

The localization problems considered so far have involved only nondeterministic
uncertainty. Furthermore, it was assumed that nature does not interfere with the
state transition equation or the sensor mapping. If nature is involved in the sen-
sor mapping, then future I-states are not predictable. For the active localization
problem, this implies that a localization plan must use information feedback. In
other words, the actions must be conditioned on I-states so that the appropriate
decisions are taken after new observations are made. The passive localization
problem involves computing probabilistic I-states from the sensing and action his-
tories. The formulation and solution of localization problems that involve nature
and nondeterministic uncertainty will be left to the reader. Only the probabilistic
case will be covered here.

Discrete problems First consider adding probabilities to the discrete grid
problem of Section 12.2.1. A state is once again expressed as x = (p,d). The
initial condition is a probability distribution, P(z;), over X. One reasonable
choice is to make P(x1) a uniform probability distribution, which makes each di-
rection and position equally likely. The robot is once again given four actions,
but now assume that nature interferes with state transitions. For example, if
ur = F', then perhaps with high probability the robot moves forward, but with
low probability it may move right, left, or possibly not move at all, even if it is
not blocked.

The sensor mapping from Section 12.2.1 indicated whether the robot moved.
In the current setting, nature can interfere with this measurement. With low
probability, it may incorrectly indicate that the robot moved, when in fact it
remained stationary. Conversely, it may also indicate that the robot remained
still, when in fact it moved. Since the sensor depends on the previous two states,
the mapping is expressed as

Y = h(xmxk—la?ﬁk)' (1219)

With a given probability model, P(¢y), this can be expressed as P(yx|vg, Tr_1)-
To solve the passive localization problem, the expressions from Section 11.2.3
for computing the derived I-states are applied. If the sensor mapping used only the
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current state, then (11.36), (11.38), and (11.39) would apply without modification.
However, since h depends on both z;, and x;_;, some modifications are needed.
Recall that the observations start with y, for this sensor. Therefore, P(z1|m) =
P(x1]y1) = P(x1), instead of applying (11.36).

After each stage, P(xgi1|nkr1) is computed from P(zg|n,) by first applying
(11.38) to take into account the action ug. Equation (11.39) takes into account
the sensor observation, Y1, but P(yrr1|Trs1, Mk, ux) is not given because the
sensor mapping also depends on x;_;. It reduces using marginalization as

Pyp|mi—1, up—1, m1) = Z Pyrlnme—1, we—1, Tp—1, Tp) P(Tp—1|Mhe—1, tpe—1, T1).

Tp_1€X
(12.20)
The first factor in the sum can be reduced to the sensor model,
P(y|mr—1, ue—1, xr—1, 7)) = P(yr|zr—1, v1), (12.21)

because the observations depend only on x;_1, 2, and the nature sensing action,
¥g. The second term in (12.20) can be computed using Bayes’ rule as

P(zg|mi—1, wp—1, Tk—1) P(@p_1|Mk—1, Up—1)
Z P(zp|nr—1, wp—1, Th—1) P(@p_1|Mk—1, We1)

zp_1€X

P(-Tk—1|77k—17 Uk—1, xk) =

(12.22)
in which P(xg|nk—1,ur_1,2x_1) simplifies to P(xg|ug_1,zx—1). This is directly
obtained from the state transition probability, which is expressed as P(xj. 1|2k, ur)
by shifting the stage index forward. The term P(xp_1|nk—_1,ur—1) is given by
(11.38). The completes the computation of the probabilistic I-states, which solves
the passive localization problem.

Solving the active localization problem is substantially harder because a search
occurs on Z,.,. The same choices exist as for the discrete localization problem.
Computing an information-feedback plan over the whole I-space Z,,,; is theoreti-
cally possible but impractical for most environments. The search-based idea that
was applied to incrementally grow a directed graph in Section 12.2.1 could also
be applied here. The success of the method depends on clever search heuristics
developed for this particular problem.

Continuous problems Localization in a continuous space using probabilistic
models has received substantial attention in recent years [37, 78, 109, 155, 166,
187]. Tt is often difficult to localize mobile robots because of noisy sensor data,
modeling errors, and high demands for robust operation over long time periods.
Probabilistic modeling and the computation of probabilistic I-states have been
quite successful in many experimental systems, both for indoor and outdoor mobile
robots. Figure 12.11 shows localization successfully being solved using sonars only.
The vast majority of work in this context involves passive localization because the
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(d)

Figure 12.11: Four frames from an animation that performs probabilistic local-
ization of an indoor mobile robot using sonars [63].

robot is often completing some other task, such as reaching a particular part of
the environment. Therefore, the focus is mainly on computing the probabilistic
I-states, rather than performing a difficult search on Z,,4.

Probabilistic localization in continuous spaces most often involves the defini-
tion of the probability densities p(xjy1|zg, ur) and p(yg|xr) (in the case of a state
sensor mapping). If the stages represent equally spaced times, then these densities
usually remain fixed for every stage. The state space is usually X = SFE(2) to
account for translation and rotation, but it may be X = R? for translation only.
The density p(xy41|zg, ux) accounts for the unpredictability that arises when con-
trolling a mobile robot over some fixed time interval. A method for estimating this
distribution for nonholonomic robots by solving stochastic differential equations
appears in [199].

The density p(yx|xr) indicates the relative likelihood of various measurements
when given the state. Most often this models distance measurements that are
obtained from a laser range scanner, an array of sonars, or even infrared sensors.
Suppose that a robot moves around in a 2D environment and takes depth mea-
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surements at various orientations. In the robot body frame, there are n angles at
which a depth measurement is taken. Ideally, the measurements should look like
those in Figure 11.15b; however, in practice, the data contain substantial noise.
The observation y € Y is an n-dimensional vector of noisy depth measurements.

One common way to define p(y|x) is to assume that the error in each distance
measurement follows a Gaussian density. The mean value of the measurement can
easily be calculated as the true distance value once x is given, and the variance
should be determined from experimental evaluation of the sensor. If it is assumed
that the vector of measurements is modeled as a set of independent, identically
distributed random variables, a simple product of Guassian densities is obtained
for p(ylz).

Once the models have been formulated, the computation of probabilistic I-
states directly follows from Sections 11.2.3 and 11.4.1. The initial condition is a
probability density function, p(z1), over X. The marginalization and Bayesian
update rules are then applied to construct a sequence of density functions of the
form p(zg|nx) for every stage, k.

In some limited applications, the models used to express p(xy1|er, ur) and
p(yk|xr) may be linear and Gaussian. In this case, the Kalman filter of Section
11.6.1 can be easily applied. In most cases, however, the densities will not have
this form. Moment-based approximations, as discussed in Section 11.4.3, can be
used to approximate the densities. If second-order moments are used, then the so-
called extended Kalman filter is obtained, in which the Kalman filter update rules
can be applied to a linear-Gaussian approximation to the original problem. In
recent years, one of the most widely accepted approaches in experimental mobile
robotics is to use sampling-based techniques to directly compute and estimate
the probabilistic I-states. The particle-filtering approach, described in general in
Section 11.6.2, appears to provide good experimental performance when applied
to localization. The application of particle filtering in this context is often referred
to as Monte Carlo localization; see the references at the end of this chapter.

12.3 Environment Uncertainty and Mapping

After reading Section 12.2, you may have already wondered what happens if the
map is not given. This leads to a fascinating set of problems that are fundamental
to robotics. If the state represents configuration, then the I-space allows tasks to
be solved without knowing the exact configuration. If, however, the state also
represents the environment, then the I-space allows tasks to be solved without
even having a complete representation of the environment! This is obviously very
powerful because building a representation of a robot’s environment is very costly
and subject to errors. Furthermore, it is likely to become quickly outdated.
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12.3.1 Grid Problems

To gain a clear understanding of the issues, it will once again be helpful to consider
discrete problems. The discussion here is a continuation of Section 12.2.1. In that
section, the state represented a position, p, and a direction, d. Now suppose that
the state is represented as (p, d, e), in which e represents the particular environ-
ment that contains the robot. This will require defining a space of environments,
which is rarely represented explicitly. It is often expressed as a constraint on
the types of environments that can exist. For example, the set of environments
could be defined as all connected 2D grid-planning problems. The set of simply
connected grid-planning problems is even further constrained.

One question immediately arises: When are two maps of an environment equiv-
alent? Recall the maps shown in Figures 12.2a and 12.3b. The map in Figure
12.3b appears the same for every 90-degree rotation; however, the map in Figure
12.2a appears to be different. Even if it appears different, it should still be the
same environment, right? Imagine mapping a remote island without having a
compass that indicates the direction to the north pole. An orientation (which
way is up?) for the map can be chosen arbitrarily without any harm. If a map
of the environment is made by “drawing” on R?, it should seem that two maps
are equivalent if a transformation in SE(2) (i.e., translation and rotation) can be
applied to overlay one perfectly on top of the other.

When defining an environment space, it is important to clearly define what it
means for two environments to be equivalent. For example, if we are required to
build a map by exploration, is it required to also provide the exact translation
and orientation? This may or may not be required, but it is important to specify
this in the problem description. Thus, we will allow any possibility: If the maps
only differ by a transformation in SFE(2), they may or may not be defined as
equivalent, depending on the application.

To consider some examples, it will be convenient to define some finite or infinite
sets of environments. Suppose that planning on a 2D grid is once again considered.
In this section, assume that each grid point p has integer coordinates (i, j) € ZxZ,
as defined in Section 2.1. Let E denote a set of environments. Once again, there
are four possible directions for the robot to face; let D denote this set. The state
space is

X=ZxZxDxE. (12.23)
Assume in general that an environment, e € F, is specified by indicating a subset
of Z x 7 that corresponds to the positions of all of the white tiles on which the robot
can be placed. All other tiles are black, which means that they are obstacles. If
any subset of Z x Z is allowed, then £ = pow(Z x Z). This includes many
useless maps, such as a checkerboard that spans the entire plane; this motivates
some restrictions on E. For example, E can be restricted to be the subset of
pow(Z x Z) that corresponds to all maps that include a white tile at the origin,
(0,0), and for which all other white tiles are reachable from it and lie within a
bounded region.
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Examples will be given shortly, but first think about the kinds of problems
that can be formulated:

1. Map building: The task is to visit every reachable tile and construct a map.
Depending on how F is defined, this may identify a particular environment
in E or a set of environments that are consistent with the exploration. This
may also be referred to as simultaneous localization and mapping, or SLAM,
because constructing a complete map usually implies that the robot position
and orientation are eventually known [81, 191]. Thus, the complete state,
x € X, as given in (12.23) is determined by the map-building process. For
the grid problem considered here, this point is trivial, but the problem be-
comes more difficult for the case of probabilistic uncertainty in a continuous
environment. See Section 12.3.5 for this case.

2. Determining the environment: Imagine that a robot is placed into a
building at random and then is switched on. The robot is told that it is
in one of a fixed (i.e., 10) number of buildings. It must move to determine
which one. As the number of possible environments is increased, the prob-
lem appears to be more like map building. In fact, map building can be
considered as a special case in which little or no constraints are initially
imposed on the set of possible environments.

3. Navigation: In this case, a goal position is to be reached, even though
the robot has no map. The location of the goal relative to the robot can
be specified through a sensor. The robot is allowed to solve this problem
without fully exploring the environment. Thus, the final nondeterministic
I-state after solving the task could contain numerous possible environments.
Only a part of the environment is needed to solve the problem.

4. Searching: In this case, a goal state can only be identified when it is reached
(or detected by a short-range sensor). There are no additional sensors to help
in the search. The environment must be systematically explored, but the
search may terminate early if the goal is found. A map does not necessarily
have to be constructed. Searching can be extended to pursuit-evasion, which
is covered in Section 12.4.

Simple examples of determining the environment and navigation will now be given.

Example 12.4 (Determining the Environment) Suppose that the robot is
told that it was placed into one of the environments shown in Figure 12.12. Let
the initial position of the robot be (0,0), which is shown as a white circle. Let the
initial direction be east and the environment be e3. These facts are unknown to the
robot. Use the same actions and state transition model as in Section 12.2.1. The
current state space includes the environment, but the environment never changes.
Only information regarding which environment the robot is in will change. The
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Figure 12.12: A set of possible 2D grid environments. In each case, the “up”
direction represents north and the white circle represents the origin, p = (0, 0).

€6

sensing model again only indicates whether the robot has changed its position
from the application of the last action.

The initial condition is X, because any position, orientation, and environ-
ment are possible. Some nondeterministic I-states will now be determined. Let
(u1,ug,u3) = (F,R,R). From this sequence of actions, the sensor observations
(y2, Y3, y4) report that the robot has not yet changed its position. The orienta-
tion was changed to west, but this is not known to the robot (it does, however,
know that it is now pointing in the opposite direction with respect to its initial
orientation). What can now be inferred? The robot has discovered that it is on
a tile that is bounded on three sides by obstacles. This means that e; and eg4
are ruled out as possible environments. In the remaining four environments, the
robot deduces that it must be on one of the end tiles: 1) the upper left of ey, 2)
the upper right of ey, 3) the bottom of e, 4) the rightmost of eg, 5) the top of ey,
6) the lower left of e5, or 7) the upper left of e5. It can also make strong inferences
regarding its orientation. It even knows that the action uy = R would cause it to
move because all four directions cannot be blocked.

Apply (u4,us) = (R,F). The robot should move two times, to arrive in the
upper left of eg facing north. In this case, any of es, e3, €4, or e5 are still possible;
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Figure 12.13: Add these environments to the set depicted in Figure 12.12. Each
is essentially equivalent to an environment already given and generally does not
affect the planning problem.

however, it now knows that its position at stage 4 could not have been in the
upper left of e5. If the robot is in es, it knows that it must be in the upper left,
but it still does not know its orientation (it could be north or west). The robot
could also be in the lower left or lower right of es.

Now let (ug, ur) = (R, F), which moves the robot twice. At this point, e, and
e5 are ruled out, and the set of possible environments is {es, 3} (one orientation
from ey is also ruled out). If ug = R is applied, then the sensor observation yo
reports that the robot does not move. This rules out e;. Finally, the robot can
deduce that it is in the upper right of e3 facing south. It can also deduce that in its
initial state it was in the lower left of e3 facing east. Thus, all of the uncertainty
has been eliminated through the construction of the nondeterministic I-states.

Now consider adding the environments shown in Figure 12.13 to the set and
starting the problem over again. Environment ey is identical to ey, except that the
origin is moved, and eg is identical to es, except that it is rotated by 180 degrees. In
these two cases, there exist no inputs that enable the robot to distinguish between
e; and ey or between e, and eg. It is reasonable to declare these environments to
be pairwise equivalent. The only distinction between them is the way that the
map is drawn.

If the robot executes the same action sequence as given previously, then it
will also not be able to distinguish e3 from eg. It is impossible for the robot to
deduce whether there is a white tile somewhere that is not reachable. A general
environment space may include such variations, and this will prevent the robot
from knowing the precise environment. However, this usually presents no addi-
tional difficulty in solving a planning problem. Therefore, it might make sense to
declare ez and eg to be equivalent. The fact that tasks can be achieved without
knowing the precise environment is very important. In a sense, the environment
is observed at some “resolution” that is sufficient for solving a problem; further
details beyond that are unimportant. Since the robot can ignore unnecessary de-
tails, cheaper and more reliable systems can often be built. |
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Example 12.5 (Reaching a Goal State) Suppose once again that the set of
environments shown in Figure 12.12 is given. This time, also assume that the po-
sition p = (0,0) and orientation east are known. The environment is ey, but it is
unknown to the robot. The task is to reach the position (2,0), which means that
the robot must move two tiles to the east. The plan (uy, uz) = (F,F) achieves the
goal without providing much information about the environment. After u; = F
is applied, it is known that the environment is not es; however, after this, no
additional information is gathered regarding the environment because it is not
relevant to solving the problem. If the goal had been to reach (2,2), then more
information would be obtained regarding the environment. For example, if the
plan is (F,L, R, L), then it is known that the environment is eg. |

Algorithms for determining the environment To determine the environ-
ment (which includes the map-building problem), it is sufficient to reach and
remember all of the tiles. If the robot must determine its environment from a
small set of possibilities, an optimal worst-case plan can be precomputed. This
can be computed on X = Tnder by using value iteration or the nondeterministic
version of Dijkstra’s algorithm from Section 10.2.3. When the robot is dropped
into the environment, it applies the optimal plan to deduce its position, orienta-
tion, and environment. If the set of possible environments is too large (possibly
infinite), then a lazy approach is most suitable. This includes the map-building
problem, for which there may be little or no assumptions about the environment.
A lazy approach to the map-building problem simply has to ensure that every
tile is visited. One additional concern may be to minimize the amount of reroute
paths, which were mentioned in Section 12.2.1. A simple algorithm that solves
the problem while avoiding excessive rerouting is depth-first search, from Section
2.2.2.

Algorithms for navigation The navigation task is to reach a prescribed goal,
even though no environment map is given. It is assumed that the goal is expressed
in coordinates relative to the robot’s initial position and orientation (these are odo-
metric coordinates). If the goal can only be identified when the robot is on the
goal tile, then searching is required, which is covered next. As seen in Example
12.5, the robot is not required to learn the whole environment to solve a naviga-
tion problem. The search algorithms of Section 2.2 may be applied. For example,
the A* method will find the optimal route to the goal, and a reasonable heuris-
tic underestimate of the cost-to-go can be defined by assuming that all tiles are
empty. Although such a method will work, the reroute costs are not being taken
into account. Thus, the optimal path eventually computed by A* may be mean-
ingless unless other robots will later use this information to reach the same goal
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in the same environment. For the unfortunate robot that went first, a substantial
amount of exploration steps might have been wasted because A* is not designed
for exploration during execution. Even though the search algorithms in Section
2.2 assumed that the search graph was gradually revealed during execution, as op-
posed to being given in advance, they allow the current state in the search to jump
around arbitrarily. In the current setting, this would require teleporting the robot
to different parts of the environment. Section 12.3.2 covers a navigation algorithm
that extends Dijkstra’s algorithm to work correctly when the costs are discovered
during execution. It can be nicely applied to the grid-based navigation problem
presented in this section, even when the environment is initially unknown.

Algorithms for maze searching A fascinating example of using an I-map to
dramatically reduce the I-space was given a long time ago by Blum and Kozen
[14]. Map building requires space that is linear in the number of tiles; however,
it is possible to ensure that the environment has been systematically searched
using much less space. For 2D grid environments, the searching problem can be
solved without maintaining a complete map. It must systematically visit every
tile; however, this does not imply that it must remember all of the places that
it has visited. It is important only to ensure that the robot does not become
trapped in an infinite loop before covering all tiles. It was shown in [14] that any
maze can be searched using space that is only logarithmic in the number of tiles.
This implies that many different environments have the same representation in
the machine. Essentially, an I-map was developed that severely collapses Z,ge
down to a smaller derived I-space.

Assume that the robot motion model is the same as has been given so far in this
section; however, no map of the environment is initially given. Whatever direction
the robot is facing initially can be declared to be north without any harm. It is
assumed that any planar 2D grid is possible; therefore, there are identical maps
for each of the four orientations. The north direction of one of these maps might
be mislabeled by arbitrarily declaring the initial direction to be north, but this
is not critical for the coming approach. It is assumed that the robot is a finite
automaton that carries a binary counter. The counter will be needed because it
can store values that are arbitrarily large, which is not possible for the automaton
alone.

To keep the robot from wandering around in circles forever, two important
pieces of information need to be maintained:

1. The latitude, which is the number of tiles in the north direction from the
robot’s initial position.

2. When a loop path is executed, it needs to know its orientation, which means
whether the loop travels clockwise or counterclockwise.

Both of these can be computed from the history I-state, which takes the same form
as in (12.12), except in the current setting, X is given by (12.23) and E is the set
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of all bounded environments (bounded means that the white tiles can be contained
in a large rectangle). From the history I-state, let @) denote the subsequence of
the action history that corresponds to actions that produce motions. The latitude,
[(@),), can be computed by counting the number of actions that produce motions
in the north direction and subtracting those that produce motions in the south
direction. The loop orientation can be determined by angular odometry (which
is equivalent to having a compass in this problem [46]). Let the value r(a},) give
the number of right turns in @) minus the number of left turns in @),. Note that
making four rights yields a clockwise loop and r(u},) = 4. Making four lefts yields
a counterclockwise loop and r(u}) = —4. In general, it can be shown that for
any loop path that does not intersect itself, either r(a)) = 4, which means that it
travels clockwise, or r(u},) = —4, which means that it travels counterclockwise.

It was stated that a finite automaton and a binary counter are needed. The
counter is used to keep track of {(@),) as the robot moves. It turns out that an
additional counter is not needed to measure the angular odometry because the
robot can instead perform mod-3 arithmetic when counting right and left turns.
If the result is r(a},) = 1 mod 3 after forming a loop, then the robot traveled
counterclockwise. If the result is 7(@),) = 2 mod 3, then the robot traveled clock-
wise. This observation avoids using an unlimited number of bits, contrary to the
case of maintaining latitude. The construction so far can be viewed as part of an
I-map that maps the history I-states into a much smaller derived I-space.

The plan will be described in terms of the example shown in Figure 12.14.
For any environment, there are obstacles in the interior (this example has six),
and there is an outer boundary. Using the latitude and orientation information,
a unique point can be determined on the boundary of each obstacle and on the
outer boundary. The unique point is defined as the westernmost vertex among the
southernmost vertices of the obstacle. These are shown by small discs in Figure
12.15. By using the latitude and orientation information, the unique point can
always be found (see Exercise 4).

To solve the problem, the robot moves to a boundary and traverses it by
performing wall following. The robot can use its sensing information to move
in a way that keeps the wall to its left. Assuming that the robot can always
detect a unique point along the boundary, it can imagine that the obstacles are
connected as shown in Figure 12.15. There is a fictitious thin obstacle that extends
southward from each unique point. This connects the obstacles together in a way
that appears to be an extension of the outer boundary. In other words, imagine
that the obstacles are protruding from the walls, as opposed to “floating” in the
interior. By refusing to cross these fictitious obstacles, the robot moves around
the boundary of all obstacles in a single closed-loop path. The strategy so far
does not ensure that every cell will be visited. Therefore, the modification shown
in Figure 12.16 is needed to ensure that every tile is visited by zig-zag motions.
It is interesting to compare the solution to the spanning-tree coverage planning
approach in Section 7.6, which assumed a complete map was given and the goal
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Figure 12.14: An example that has six obstacles.

Figure 12.15: The obstacles are connected together by extending a thin obstacle
downward from their unique points.

was to optimize the distance traveled.

If there is some special object in the environment that can be detected when
reached by the robot, then the given strategy is always guaranteed to find it, even
though at the end, it does not even have a map!

The resulting approach can be considered as an information-feedback plan on
the I-space. In this sense, Blum and Kozen were the “planner” that found a plan
that solves any problem. Alternative plans do not need to be computed from
the problem data because the plan can handle all possible environments without
modification. This is the power of working directly with an I-space over the set
of environments, as opposed to requiring state estimation.

12.3.2 Stentz’s Algorithm (D)

Imagine exploring an unknown planet using a robotic vehicle. The robot moves
along the rugged terrain while using a range scanner to make precise measurements
of the ground in its vicinity. As the robot moves, it may discover that some parts
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(a)

Figure 12.16: (a) A clockwise loop produced by wall following. (b) An alternative
loop that visits all of the tiles in the interior.

!

Figure 12.17: The Automated Cross-Country Unmanned Vehicle (XUV) is
equipped with laser radar and other sensors, and uses Stentz’s algorithm to navi-
gate (courtesy of General Dynamics Robotic Systems).

were easier to traverse than it originally thought. In other cases, it might realize
that some direction it was intending to go is impassable due to a large bolder or
a ravine. If the goal is to arrive at some specified coordinates, this problem can
be viewed as a navigation problem in an unknown environment. The resulting
solution is a lazy approach, as discussed in Section 12.2.1.

This section presents Stentz’s algorithm [174], which has been used in many
outdoor vehicle navigation applications, such as the vehicle shown in Figure 12.17.
The algorithm can be considered as a dynamic version of the backward variant of
Dijkstra’s algorithm. Thus, it maintains cost-to-go values, and the search grows
outward from the goal, as opposed to cost-to-come values from x; in the version of
Dijkstra’s algorithm in Section 2.3.3. The method applies to any optimal planning
problem. In terms of the state transition graph, it is assumed that the costs of
edge transitions are unknown (equivalently, each cost I(z, u) is unknown). In the
navigation problem, a positive cost indicates the difficulty of traveling from state
x to state @’ = f(x,u).

To work with a concrete problem, imagine that a planet surface is partitioned
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into a high-resolution grid. The state space is simply a bounded set of grid tiles;
hence, X C Z x Z. Each grid tile is assigned a positive, real value, ¢(x), that
indicates the difficulty of its traversal. The actions U(x) at each grid point can
be chosen using standard grid neighbors (e.g., four-neighbors or eight-neighbors).
This now defines a state transition graph over X. From any 2’ € X and «’ € U(a')
such that = f(2/,4), the cost term is assigned using ¢ as l(2',u’) = ¢(z). This
model is a generalization of the grid in Section 12.3.1, in which the tiles were
either empty or occupied; here any positive real value is allowed. In the coming
explanation, the costs may be more general than what is permitted by starting
from ¢(z), and the state transition graph does not need to be derived from a
grid. Some initial values are assigned arbitrarily for all I(z,u). For example, in
the planetary exploration application, the cost of traversing a level, unobstructed
surface may be uniformly assumed.

The task is to navigate to some goal state, . The method works by initially
constructing a feedback plan, 7, on a subset of X that includes both z; and zg.
The plan, m, is computed by iteratively applying the procedure in Figure 12.18
until the optimal cost-to-go is known at x;. A priority queue, @, is maintained as
in Dijkstra’s algorithm; however, Stentz’s algorithm allows the costs of elements in
@ to be modified due to information sensed during execution. Let Gpesi () denote
the lowest cost-to-go associated with x during the time it spends in Q. Assume
that @ is sorted according to Gpes;. Let Geur(2) denote its current cost-to-go
value, which may actually be more than Gp.q () if some cost updates caused it to
increase. Suppose that some u € U(z) can be applied to reach a state ' = f(z, u).
Let Gyio(z, 2') denote the cost-to-go from x by traveling via 2/,

Gvia(wa l',) = chr(fl'/) + l(l7 u) (1224)

If Guia(x,2") < Gewr(z), then it indicates that G.-(z) could be reduced. If
Geur (') < Gpese(x), then it is furthermore known that G.,.(2) is optimal. If
both of these conditions are met, then G, (z) is updated to Gy, (z, 2').

After the iterations of Figure 12.18 finish, the robot executes 7, which gener-
ates a sequence of visited states. Let x; denote the current state during execution.
If it is discovered that if 7(xg) = ux would be applied, the received cost would
not match the cost [(xy,ux) in the current model, then the costs need to be up-
dated. More generally, the robot may have to be able to update costs within a
region around xy that corresponds to the sensor field of view. For the description
below, assume that an update, [(xy, ux), is obtained for z; only (the more gen-
eral case is handled similarly). First, {(xy, uy) is updated to the newly measured
value. If z;, happened to be dead (visited, but no longer in @), then it is inserted
again into @, with cost Ge,-(rx). The steps in Figure 12.18 are performed until
Geuwr(2r) < Gpest(2) for all 2 € Q. Following this, the plan execution continues un-
til either the goal is reached or another cost mismatch is discovered. At any time
during execution, the robot motions are optimal given the current information
about the costs [174].
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STENTZ’S ALGORITHM
1. Remove z from @, which is the state with the lowest Gpesi () value.

2. If Gpest(x) < Geyr(z), then o has increased its value while on Q. If z can
improve its cost by traveling via a neighboring state for which the optimal
cost-to-go is known, it should do so. Thus, for every u € U(x), test for
' = f(z,u) whether G i,(z,2") < Gepr(x) and Gy (2') < Ghest(z). 1If so,
then update Gy () := Guio(z,2') and w(x) = u.

3. This and the remaining steps are repeated for each 2’ such that there exists
u' € U(a') for which x = f(2/,). If 2’ is unvisited, then assign m(z’) := o/,
and place 2’ onto @ with cost Gy (2, ).

4. If the cost-to-go from z’ appears incorrect because 7(z') = «' but
Guia(@',2) # Geu(2'), then an update is needed. Place 2’ onto @ with
cost Guia(2', ).

5. If w(2’) # W but Guiu(2',2) < Geur(2'), then from 2’ it is better to travel
via z than to use 7(2'). If Geyr(x) = Gpest(x), then w(a’) := v and 2’ is
inserted into @@ because the optimal cost-to-go for x is known. Otherwise,
(instead of 2') is inserted into @ with its current value, G, (z).

6. One final condition is needed to avoid generating cycles in 7. If 2’ is dead
(visited, but no longer in @), it may need to be inserted back into @) with
cost Geyr(2’). This must be done if m(a’) # v, Gyia(x,2") < Geur(x), and
chr(‘r) > Gbest(z)

Figure 12.18: Stentz’s algorithm, often called D* (pronounced “dee star”), is a
variant of Dijkstra’s algorithm that dynamically updates cost values as the cost
terms are learned during execution. The steps here are only one iteration of
updating the costs after a removal of a state from Q.

Figure 12.19 illustrates the execution of the algorithm. Figure 12.19a shows a
synthetic terrain that was generated by a stochastic fractal. Darker gray values
indicate higher cost. In the center, very costly terrain acts as a barrier, for which
an escape route exists in the downward direction. The initial state is the middle
of the left edge of the environment, and the goal state is the right edge. The
robot initially plans a straight-line path and then incrementally updates the path
in each step as it moves. In Figure 12.19b, the robot has encountered the costly
center and begins to search for a way around. Finally, the goal is reached, as
shown in Figure 12.19c. The executed path is actually the result of executing a
series of optimal paths, each of which is based on the known information at the
time a single action is applied.
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Figure 12.19: An example of executing Stentz’s algorithm (courtesy of Tony
Stentz).

Interpretation in terms of I-spaces An alternative formulation will now be
given to help understand the connection to I-spaces of a set of environments.
The state space, as defined previously, could instead be defined as a configuration
space, C = 7 x Z. Let q € C denote a configuration. Suppose that each possible
environment corresponds to one way to assign costs to all of the edges in a config-
uration transition graph. The set E of all possible environments for this problem
seems to be all possible ways to assign costs, I(¢g,u). The state space can now
be defined as C x E, and for each state, = (¢,e) € X, the configuration and
complete set of costs are specified. Initially, it is guessed that the robot is in some
particular e € E. If a cost mismatch is discovered, this means that a different en-
vironment model is now assumed because a transition cost is different from what
was expected. The costs should actually be written as I(z,u) = l(q, e, u), which
indicates the dependency of the costs on the particular environment is assumed.

A nondeterministic I-state corresponds to a set of possible cost assignments,
along with their corresponding configurations. Since the method requires assigning
costs that have not yet been observed, it takes a guess and assumes that one
particular environment in the nondeterministic I-state is the correct one. As cost
mismatches are discovered, it is realized that the previous guess lies outside of the
updated nondeterministic I-state. Therefore, the guess is changed to incorporate
the new cost information. As this process evolves, the nondeterministic I-state
continues to shrink. Note, however, that in the end, the robot may solve the
problem while being incorrect about the precise e € E. Some tiles are never
visited, and their true costs are therefore unknown. A default assumption about
their costs was made to solve the problem; however, the true e € E can only be
known if all tiles are visited. It is only true that the final assumed default values
lie within the final nondeterministic I-state.
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12.3.3 Planning in Unknown Continuous Environments

We now move from discrete to continuous environments but continue to use non-
deterministic uncertainty. First, several bug algorithms [88, 115, 89] are presented,
which represent a family of motion plans that solve planning problems using ideas
that are related in many ways to the maze exploration ideas of Section 12.3.1.
In addition to bug algorithms, the concept of competitive ratios is also briefly
covered.

The following model will be used for bug algorithms. Suppose that a point
robot is placed into an unknown 2D environment that may contain any finite
number of bounded obstacles. It is assumed that the boundary of each obsta-
cle and the outer boundary (if it exists) are piecewise-analytic (here, analytic
implies that each piece is smooth and switches its curvature sign only a finite
number of times). Thus, the obstacles could be polygons, smooth curves, or some
combination of curved and linear parts. The set E of possible environments is
overwhelming, but it will be managed by avoiding its explicit construction. The
robot configuration is characterized by its position and orientation.

There are two main sensors:?

1. A goal sensor indicates the current Euclidean distance to the goal and the
direction to the goal, expressed with respect to an absolute “north.”

2. A local visibility sensor provides the exact shape of the boundary within a
small distance from the robot. The robot must be in contact or almost in
contact to observe part of the boundary; otherwise, the sensor provides no
useful information.

The goal sensor essentially encodes the robot’s position in polar coordinates (the
goal is the origin). Therefore, unique (z,y) coordinates can be assigned to any
position visited by the robot. This enables it to incrementally trace out obstacle
boundaries that it has already traversed. The local visibility sensor provides just
enough information to allow wall-following motions; the range of the sensor is
very short so that the robot cannot learn anything more about the structure of
the environment.

Some strategies will now be considered for the robot. Each of these can be
considered as an information-feedback plan on a nondeterministic I-space.

The Bugl strategy A strategy called Bugl was developed in [115] and is il-
lustrated in Figure 12.20. The execution is as follows:

1. Move toward the goal until an obstacle or the goal is encountered. If the
goal is reached, then stop.

2This is just one possible sensing model. Alternative combinations of sensors may be used,
provided that they enable the required motions and decisions to be executed in the coming
motion strategies.
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Figure 12.20: An illustration of the Bugl strategy.

WG

Figure 12.21: A bad example for Bugl. The perimeter of each obstacle is spanned
one and a half times.

2. Turn left and follow the entire perimeter of the contacted obstacle. Once
the full perimeter has been visited, then return to the point at which the
goal was closest, and go to Step 1.

Determining that the entire perimeter has been traversed may seem to require a
pebble or marker; however, this can be inferred by finding the point at which the
goal sensor reading repeats.

The worst case is conceptually simple to understand. The total distance trav-
eled by the robot is no greater than

1+ 35 (12.25)
2 — pl7 N

670 S. M. LaValle: Planning Algorithms

xTr Tra

Figure 12.22: An illustration of the Bug2 strategy.

in which d is the Euclidean distance from the initial position to the goal position,
p; is the perimeter of the ith obstacle, and M is the number of obstacles. This
means that the boundary of each obstacle is followed no more than 3/2 times.
Figure 12.21 shows an example in which each obstacle is traversed 3/2 times. This
bound relies on the fact that the robot can always recall the shortest path along
the boundary to the point from which it needs to leave. This seems reasonable
because the robot can infer its distance traveled along the boundary from the
goal sensor. If this was not possible, then the 3/2 would have to be replaced by 2
because the robot could nearly traverse the full boundary twice in the worst case.

The Bug2 strategy An alternative to Bugl is the Bug2 strategy, which is
illustrated in Figure 12.22. The robot always attempts to move along a line that
connects the initial and goal positions. When the robot is on this line, the goal
direction will be either the same as from the initial state or it will differ by 7
radians (if the robot is on the other side of the goal). The first step is the same as
for Bugl. In the second step, the robot follows the perimeter only until the line is
reached and it is able to move in the direction toward the goal. From there, it goes
to Step 1. As expressed so far, it is possible that infinite cycles occur. Therefore, a
small modification is needed. The robot remembers the distance to the goal from
the last point at which it departed from the boundary, and only departs from the
boundary again if the candidate point that is closer to the goal. This is applied
iteratively until the goal is reached or it is deemed to be impossible.
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Figure 12.23: A bad case for Bug2. Only part of the resulting path is shown.
Points from which the robot can leave the boundary are indicated.

j\G

Figure 12.24: An illustration of the VisBug strategy with unlimited radius.

For the Bug?2 strategy, the total distance traveled is no more than
1M
d+ 5;nlpi, (12.26)

in which n; is the number of times the ith obstacle crosses the line segment between
the initial position and the goal position. An example that illustrates the trouble
caused by the crossings is shown in Figure 12.23.

Using range data The VisBug [114] and TangentBug [89, 100] strategies in-
corporate distance measurements made by a range or visibility sensor to improve
the efficiency. The TangentBug strategy will be described here and is illustrated
in Figure 12.24. Suppose that in addition to the sensors described previously, it

672 S. M. LaValle: Planning Algorithms

p—

L

o

Figure 12.25: The candidate motions with respect to the range sensor are the
directions in which there is a discontinuity in the depth map. The distances from
the robot to the small circles are used to select the desired motion.

is also equipped with a sensor that produces measurements as shown in Figure
12.25. The strategy is as follows:

1. Move toward the goal, either through the interior of the space or by wall
following, until it is realized that the robot is trapped in a local minimum
or the goal is reached. This is similar to the gradient-descent motion of the
potential-field planner of Section 5.4.3. If the goal is reached, then stop;
otherwise, go to the next step.

2. Execute motions along the boundary. First, pick a direction by comparing
the previous heading to the goal direction. While moving along the bound-
ary, keep track of two distances: dy and d,. The distance dy is the minimal
distance from the goal, observed while traveling along the boundary. The
distance d,. is the length of the shortest path from the current position to
the goal, assuming that the only obstacles are those visible by the range sen-
sor. The robot stops following the boundary if d, < dy. In this case, go to
Step 1. If the robot loops around the entire obstacle without this condition
occurring, then the algorithm reports that the goal is not reachable.

A one-parameter family of TangentBug algorithms can be made by setting a depth
limit for the range sensor. As the maximum depth is decreased, the robot becomes
more short-sighted and performance degrades. It is shown in [89] that the distance
traveled is no greater than

M M
d+ Zpi + Zpimh (12.27)
=1 i—1
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in which m; is the number of local minima for the ith obstacle and d is the initial
distance to the goal. The bound is taken over M obstacles, which are assumed
to intersect a disc of radius d, centered at the goal (all others can be ignored). A
variant of the TangentBug, called WedgeBug, was developed in [100] for planetary
rovers that have a limited field of view.

Competitive ratios A popular way to evaluate algorithms that utilize different
information has emerged from the algorithms community. The idea is to compute
a competitive ratio, which places an on-line algorithm in competition with an
algorithm that receives more information [119, 171]. The idea can generally be
applied to plans. First a cost is formulated, such as the total distance that the
robot travels to solve a navigation task. A competitive ratio can then be defined
as
Cost of executing the plan that does not know e in advance.

ma . 12.28
ceb Cost of executing the plan that knows e in advance ( )

The maximum is taken over all e € E, which is usually an infinite set, as in the case
of the bug algorithms. A competitive ratio for a navigation problem can be made
by comparing the optimal distance to the total distance traveled by the robot
during the execution of the on-line algorithm. Since F is infinite, many plans fail
to produce a finite competitive ratio. The bug algorithms, while elegant, represent
such an example. Imagine a goal that is very close, but a large obstacle boundary
needs to be explored. An obstacle boundary can be made arbitrarily large while
making the optimal distance to the goal very small. When evaluated in (12.28),
the result over all environments is unbounded. In some contexts, the ratio may
still be useful if expressed as a function of the representation. For example, if E
is a polygon with n edges, then an O(y/n) competitive ratio means that (12.28)
is bounded over all n by ¢y/n for some ¢ € R. For competitive ratio analysis in
the context of bug algorithms, see [65].

Figure 12.26: (a) A lost cow must find its way to the gate, but it does not know
in which direction the gate lies. (b) If there is no bound on the distance to the
gate, then a doubling spiral strategy works well, producing a competitive ratio of
9.

A nice illustration of competitive ratio analysis and issues is provided by the
lost-cow problem [5]. As shown in Figure 12.26a, a short-sighted cow is following
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along an infinite fence and wants to find the gate. This makes a convenient one-
dimensional planning problem. If the location of the gate is given, then the cow
can reach it by traveling directly. If the cow is told that the gate is exactly distance
1 away, then it can move one unit in one direction and return to try the other
direction if the gate has not been found. The competitive ratio in this case (the
set of environments corresponds to all gate placements) is 3. What if the cow is
told only that the gate is at least distance 1 away? In this case, the best strategy
is a spiral search, which is to zig-zag back and forth while iteratively doubling the
distance traveled in each direction, as shown in Figure 12.26b. In other words:
left one unit, right one unit, left two units, right two units, left four units, and so
on. The competitive ratio for this strategy turns out to be 9, which is optimal.
This approach resembles iterative deepening, which was covered in Section 2.2.2.

12.3.4 Optimal Navigation Without a Geometric Model

This section presents gap navigation trees (GNTs) [184, 186], which are a data
structure and associated planning algorithm for performing optimal navigation in
the continuous environments that were considered in Section 12.3.3. It is assumed
in this section that the robot is equipped with a gap sensor, as depicted in Figure
11.16 of Section 11.5.1. At every instant in time, the robot has available one action
for each gap that is visible in the gap sensor. If an action is applied, then the
robot moves toward the corresponding gap. This can be applied over continuous
time, which enables the robot to “chase” a particular gap. The robot has no
other sensing information: It has no compass and no ability to measure distances.
Therefore, it is impossible to construct a map of the environment that contains
metric information.

Assume that the robot is placed into an unknown but simply connected planar
environment, X. The GNT can be extended to the case of multiply connected
environments; however, in this case there are subtle issues with distinguishability,
and it is only possible to guarantee optimality within a homotopy class of paths
[185]. By analyzing the way that critical events occur in the gap sensor, a tree
representation can be built that indicates how to move optimally in the environ-
ment, even though precise measurements cannot be taken. Since a gap sensor
cannot even measure distances, it may seem unusual that the robot can move
along shortest paths without receiving any distance (or metric) information. This
will once again illustrate the power of I-spaces.

The appearance of the environment relative to the position of the robot is en-
coded as a tree that indicates how the gaps change as the robot moves. It provides
the robot with sufficient information to move to any part of the environment while
traveling along the shortest path. It is important to understand that the tree does
not correspond to some static map of the environment. It expresses how the en-
vironment appears relative to the robot and may therefore change as the robot
moves in the environment.
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Robot position

Gap chasing action
Point of boundary contact

Figure 12.27: A gap-chasing action is applied, which moves the robot straight in
the direction of the gap until the boundary is contacted. Once this occurs, a new
part of the environment becomes visible.

The root of the tree represents the gap sensor. For each gap that currently
appears in the sensor, an edge is connected to the root. Let these edges be called
root edges. Each root edge corresponds to an action that can be applied by the
robot. By selecting a root edge, the action moves the robot along a straight line
toward that gap. Thus, there is a simple control model that enables the robot
to move precisely toward a particular point along the boundary, 0.X, as shown in
Figure 12.27.

Let V(z) be the wisibility region, which is the set of all points in X that are
visible from z. Let X \ V(x) be called the shadow region, which is the set of all
points not visible from z. Let each connected component of the shadow region
be called a shadow component. Every gap in the gap sensor corresponds to a line
segment in X that touches 0X in two places (for example, see Figure 11.15a).
Each of these segments forms a boundary between the visibility region and a
shadow component. If the robot would like to travel to this shadow component,
the shortest way is to move directly to the gap. When moving toward a gap, the
robot eventually reaches 90X, at which point a new action must be selected.

Critical gap events As the robot moves, several important events can occur
in the gap sensor:

1. Disappear: A gap disappears because the robot crosses an inflection ray as
shown in Figure 12.28. This means that some previous shadow component
is now visible.

2. Appear: A gap appears because the robot crosses an inflection ray in the
opposite direction. This means that a new shadow component exists, which
represents a freshly hidden portion of the environment.

3. Split: A gap splits into two gaps because the robot crosses a bitangent ray,
as shown in Figure 12.29 (this was also shown in Figure 12.5). This means
that one shadow component splits into two shadow components.
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Figure 12.28: (a) The robot crosses a ray that extends from an inflectional tangent.
(b) A gap appears or disappears from the gap sensor, depending on the direction.

(a)

Figure 12.29: (a) The robot crosses a ray that extends from a bitangent. (b) Gaps
split or merge, depending on the direction.

4. Merge: Two gaps merge into one because the robot crosses a bitangent ray
in the oppose direction. In this case, two shadow components merge into
one.

This is a complete list of possible events, under a general position assumption that
precludes environments that cause degeneracies, such as three gaps that merge into
one or the appearance of a gap precisely where two other gaps split.

As each of these gap events occurs, it needs to be reflected in the tree. If a
gap disappears, as shown in Figure 12.30, then the corresponding edge and vertex
are simply removed. If a merge event occurs, then an intermediate vertex is
inserted as shown in Figure 12.31. This indicates that if that gap is chased, it will
split into the two original gaps. If a split occurs, as shown in Figure 12.32, then
the intermediate vertex is removed. The appearance of a gap is an important
case, which generates a primitive vertex in the tree, as shown in Figure 12.33.
Note that a primitive vertex can never split because chasing it will result in its
disappearance.
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Figure 12.30: If a gap disappears, it is simply removed from the GNT.

Figure 12.31: If two gaps merge, an intermediate vertex is inserted into the tree.
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Figure 12.32: If two gaps split, the intermediate vertex is removed.
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Figure 12.33: The appearance of a gap results in a primitive vertex, which is
denoted by a square.

A simple example will now be considered.

Example 12.6 (Gap Navigation Tree) Suppose that the robot does not know
the environment in Figure 12.34. It moves from cells 1 to 7 in order and then re-
turns to cell 1. The following sequence of trees occurs: T, ..., Ty, T, ..., T}, as
shown in Figure 12.35. The root vertex is shown as a solid black disc. Vertices
that are not known to be primitive are shown as circles; primitive vertices are
squares. Note that if any leaf vertex is a circle, then it means that the shadow
region of R that is hidden by that gap has not been completely explored. Note
that once the robot reaches cell 5, it has seen the whole environment. This occurs
precisely when all leaf vertices are primitive. When the robot returns to the first
region, the tree is larger because it knows that the region on the right is composed
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Figure 12.34: A simple environment for illustrating the gap navigation tree.

of two smaller regions to the right. If all leaves are squares, this means that the
environment has been completely explored. |

In the example, all of the interesting parts of the environment were explored.
From this point onward, all leaf vertices will be primitive vertices because all
possible splits have been discovered. In a sense, the environment has been com-
pletely learned, at the level of resolution possible with the gap sensor. A simple
strategy for exploring the environment is to chase any gaps that themselves are
nonprimitive leaf vertices or that have children that are nonprimitive leaf vertices.
A leaf vertex in the tree can be chased by repeatedly applying actions that chase
its corresponding gap in the gap sensor. This may cause the tree to incrementally
change; however, there is no problem if the action is selected to chase whichever
gap hides the desired leaf vertex, as shown in Figure 12.36. Every nonprimitive
leaf vertex will either split or disappear. After all nonprimitive leaf vertices have
been chased, all possible splits have been performed and only primitive leaves
remain. In this case, the environment has been completely learned.

Using the GNTs for optimal navigation Since there is no precise map of
the environment, it is impossible to express a goal state using coordinates in R2.
However, a goal can be expressed in terms of the vertex that must be chased to
make the state visible. For example, imagine showing the robot an object while it
explores. At first, the object is visible, but a gap may appear that hides the object.
After several merges, a vertex deep in the tree may correspond to the location from
which the object is visible. The robot can navigate back to the object optimally
by chasing the vertex that first hid the object by its appearance. Once this vertex
and its corresponding gap disappear, the object becomes visible. At this time
the robot can move straight toward the object (assuming an additional sensor
that indicates the direction of the object). It was argued in [186] that when the
robot chases a vertex in the GNT, it precisely follows the paths of the shortest-
path roadmap, which was introduced in Section 6.2.4. Each pair of successive gap
events corresponds to the traversal of a bitangent edge.
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Figure 12.35: Building a representation of the environment in Figure 12.34 us-
ing the gap navigation tree. The sequence is followed from left to right. For
convenience, the “R” or “L” inside of each vertex indicates whether the shadow
component is to the right or left of the gap, respectively. This information is not
needed by the algorithm, but it helps in understanding the representation.

I-space interpretation In terms of an I-space over the set of environments,
the GNT considers large sets of environments to be equivalent. This means that
an I-map was constructed on which the derived I-space is the set of possible
GNTs. Under this I-map, many environments correspond to the same GNT. Due
to this, the robot can accomplish interesting tasks without requesting further
information. For example, if two environments differ only by rotation or scale,
the GNT representations are identical. Surprisingly, the robot does not even
need to be concerned about whether the environment boundary is polygonal or
curved. The only important concern is how the gaps events occur. For example,
the environments in Figure 12.37 all produce the same GNTs and are therefore
indistinguishable to the robot. In the same way that the maze exploring algorithm
of Section 12.3.1 did not need a complete map to locate an object, the GNT does
not need one to perform optimal navigation.
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e

gap h disappeared

Figure 12.36: Optimal navigation to a specified part of the environment is achieved
by “chasing” the desired vertex in the GNT until it disappears. This will make a
portion of the environment visible. In the example, the gap labeled “h” is chased.
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Figure 12.37: These environments yield the same GNTs and are therefore equiva-
lent at the resolution of the derived I-space. The robot cannot measure distances
and does not even care whether walls are straight or curved; it is not relevant
to the navigation task. Nevertheless, it executes optimal motions in terms of the
Fuclidean distance traveled.

12.3.5 Probabilistic Localization and Mapping

The problems considered so far in Section 12.3 have avoided probabilistic mod-
eling. Suppose here that probabilistic models exist for the state transitions and
the observations. Many problems can be formulated by replacing the nondeter-
ministic models in Section 12.3.1 by probabilistic models. This would lead to
probabilistic I-states that represent distributions over a set of possible grids and
a configuration within each grid. If the problem is left in its full generality, the
I-space is enormous to the point that is seems hopeless to approach problems in
the manner used to far. If optimality is not required, then in some special cases
progress may be possible.

The current problem is to construct a map of the environment while simul-
taneously localizing the robot with the respect to the map. Recall Figure 1.7
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from Section 1.2. The section covers a general framework that has been popular
in mobile robotics in recent years (see the literature suggested at the end of the
chapter). The discussion presented here can be considered as a generalization of
the discussion from Section 12.2.3, which was only concerned with the localization
portion of the current problem. Now the environment is not even known. The
current problem can be interpreted as localization in a state space defined as

X =CxE, (12.29)

in which C is a configuration space and F is the environment space. A state, xy, is
represented as x = (g, €); there is no k subscript for e because the environment is
assumed to be static). The history I-state provides the data to use in the process
of determining the state. As for localization in Section 12.2, there are both passive
and active versions of the problem. An incremental version of the active problem
is sometimes called the next-best-view problem [6, 35, 147]. The difficulty is that
the robot has opposing goals of: 1) trying to turn on the sensor at places that will
gain as much new data as possible, and 2) this minimization of redundancy can
make it difficult to fuse all of the measurements into a global map. The passive
problem will be described here; the methods can be used to provide information
for solving the active problem.

Suppose that the robot is a point that translates and rotates in R?. According
to Section 4.2, this yields C = R?x S*, which represents SE(2). Let ¢ € C denote a
configuration, which yields the position and orientation of the robot. Assume that
configuration transitions are modeled probabilistically, which requires specifying
a probability density, p(qxr1|gx, ux). This can be lifted to the state space to obtain
p(zra1|zr, up) by assuming that the configuration transitions are independent of
the environment (assuming no collisions ever occur). This replaces ¢ and g1
by zp and zy.1, respectively, in which x, = (qx,¢) and zx11 = (ggy1,¢) for any
ec k.

Suppose that observations are obtained from a depth sensor, which ideally
would produce measurements like those shown in Figure 11.15b; however, the
data are assumed to be noisy. The probabilistic model discussed in Section 12.2.3
can be used to define p(y|z). Now imagine that the robot moves to several parts
of the environment, such as those shown in Figure 11.15a, and performs a sensor
sweep in each place. If the configuration ¢ is not known from which each sweep
yr. was performed, how can the data sets be sewn together to build a correct,
global map of the environment? This is trivial after considering the knowledge of
the configurations, but without it the problem is like putting together pieces of a
jigsaw puzzle. Thus, the important data in each stage form a vector, (yk, gr). If
the sensor observations, yi, are not tagged with a configuration, g, from which
they are taken, then the jigsaw problem arises. If information is used to tightly
constrain the possibilities for g, then it becomes easier to put the pieces together.
This intuition leads to the following approach.
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The EM algorithm The problem is often solved in practice by applying the
expectation-mazimization (EM) algorithm [11]. In the general framework, there
are three different spaces:

1. A set of parameters, which are to be determined through some measurement
and estimation process. In our problem, this represents F, because the main
goal is to determine the environment.

2. A set of data, which provide information that can be used to estimate the
parameter. In the localization and mapping problem, this corresponds to the
history I-space Zr. Each history I-state nx € Zx is ng = (p(x), tx_1,Jx),
in which p(x) is a prior probability density over X.

3. A set of hidden variables, which are unknown but need to be estimated to
complete the process of determining the parameters. In the localization and
mapping problem, this is the configuration space C.

Since both the parameters and the hidden variables are unknown, the choice
between the two may seem arbitrary. It will turn out that expressions can be
derived to nicely express the probability density for the hidden variables, but the
parameters are much more complicated.

The EM algorithm involves an expectation step followed by a maximization
step. The two steps are repeated as necessary until a solution with the desired
accuracy is obtained. The method is guaranteed to converge under general con-
ditions [39, 192, 193]. In practice, it appears to work well even under cases that
are not theoretically guaranteed to converge [181].

From this point onward, let E, Ty, and C denote the three spaces for the EM
algorithm because they pertain directly to the problem. Suppose that a robot has
moved in the environment for K — 1 stages, resulting in a final stage, K. At each
stage, k € {1,..., K}, an observation, v, is made using its sensor. This could,
for example, represent a set of distance measurements made by sonars or a range
scanner. Furthermore, an action, wuy, is applied for £k = 1 to k = K. A prior
probability density function, p(x), is initially assumed over X. This leads to the
history I-state, 7, as defined in (11.14).

Now imagine that K stages have been executed, and the task is to estimate
e. From each ¢, a measurement, v, of part of the environment is taken. The
EM algorithm generates a sequence of improved estimates of e. In each execution
of the two EM steps, a new estimate of e € F is produced. Let é; denote this
estimate after the ith iteration. Let §x denote the configuration history from
stage 1 to stage K. The expectation step computes the expected likelihood of 7y
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given é;. This can be expressed as®

Q(e.éi—1) =E [p(nk, x| €)| nx, éi-1]
5 _ ~ B (12.30)
:/p(nK7QK| e)p(Gx| i, €i—1)ddx,
c

in which the expectation is taken over the configuration histories. Since 7 is
given and the expectation removes G, (12.30) is a function only of e and é&; ;.
The term p(ng, Gx| €) can be expressed as

Pk, x| €) = p(dx| nxc, e)p(ncle), (12.31)

in which p(nk) is a prior density over the I-space, given nothing but the environ-
ment e. The factor p(Gx| nx,e) differs from the second factor of the integrand in
(12.30) only by using e or é;_;. The main difficulty in evaluating (12.30) is to eval-
uate p(gk| Nr, éi—1) (or the version that uses e). This is essentially a localization
problem with a given map, as considered in Section 12.2.3. The information up to
stage k can be applied to yield the probabilistic I-state p(qx| ng, €;—1) for each gy;
however, this neglects the information from the remaining stages. This new in-
formation can be used to make inferences about old configurations. For example,
based on current measurements and memory of the actions that were applied, we
have better information regarding the configuration several stages ago. In [182]
a method of computing p(qx| 7k, €;_1) is given that computes two terms: One is
p(qr|nk), and the other is a backward probabilistic I-state that starts at stage K
and runs down to k + 1.

Note that once determined, (12.30) is a function only of e and é;_,. The
maximization step involves selecting an é; that minimizes (12.30):

é; = argmax Q(e, é;_1). (12.32)
eck

This optimization is often too difficult, and convergence conditions exist if é;
is chosen such that Q(é;,é;1) > Q(é;_1,6;_1). Repeated iterations of the EM
algorithm result in a kind of gradient descent that arrives at a local minimum in
E.

One important factor in the success of the method is in the representation of E.
In the EM computations, one common approach is to use a set of landmarks, which
were mentioned in Section 11.5.1. These are special places in the environment that
can be identified by sensors, and if correctly classified, they dramatically improve
localization. In [182], the landmarks are indicated by a user as the robot travels.
Classification and positioning errors can both be modeled probabilistically and
incorporated into the EM approach. Another idea that dramatically simplifies

3In practice, a logarithm is applied to p(nx, gx| €) because densities that contain exponentials
usually arise. Taking the logarithm makes the expressions simpler without affecting the result
of the optimization. The log is not applied here because this level of detail is not covered.
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the representation of E is to approximate environments with a fine-resolution
grid. Probabilities are associated with grid cells, which leads to a data structure
called an occupancy grid [52, 124, 160]. In any case, E must be carefully defined
to ensure that reasonable prior distributions can be made for p(e) to initialize the
EM algorithm as the robot first moves.

12.4 Visibility-Based Pursuit-Evasion

This section considers wvisibility-based pursuit-evasion [105, 177], which was de-
scribed in Section 1.2 as a game of hide-and-seek. The topic provides an excellent
illustration of the power of I-space concepts.

12.4.1 Problem Formulation

The problem considered in this section is formulated as follows.

Formulation 12.1 (Visibility-Based Pursuit-Evasion)

1. A given, continuous environment region R C R?, which is an open set that
is bounded by a simple closed curve. The boundary dR is often a polygon,
but it may be any piecewise-analytic closed curve.

2. An unbounded time interval T = [0, 00).

3. An evader, which is a moving point in R. The evader position e(t) at time
t € T is determined by a continuous position function, ¢ : [0,1] — R.

4. A pursuer, which is a moving point in R. The evader position function € is
unknown to the pursuer.

5. A wisibility sensor, which defines a set V(r) C R for each r € R.

The task is to find a path, p : [0,1] — R, for the pursuer for which the evader
is guaranteed to be detected, regardless of its position function. This means that
Jt € T such that e(t) € V(p(t)). The speed of the pursuer is not important;
therefore, the time domain may be lengthened as desired, if the pursuer is slow.
It will be convenient to solve the problem by verifying that there is no evader.
In other words, find a path for the pursuer that upon completion guarantees that
there are no remaining places where the evader could be hiding. This ensures
that during execution of the plan, the pursuer will encounter any evader. In fact,
there can be any number of evaders, and the pursuer will find all of them. The
approach systematically eliminates any possible places where evaders could hide.

1Following from standard function notation, it is better to use &(t) instead of e(t) to denote
the position at time ¢; however, this will not be followed.
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The state yields the positions of the pursuer and the evader, x = (p, €), which
results in the state space X = R x R C R*. Since the evader position is unknown,
the current state is unknown, and I-spaces arise. The observation space Y is a
collection of subsets of R. For each p € R, the sensor yields a visibility poly-
gon, V(p) C R (this is denoted by y = h(p, e) using notation of Section 11.1.1).
Consider the history I-state at time ¢. The initial pursuer position p(0) is given
(any position can be chosen arbitrarily, if it is not given), and the evader may lie
anywhere in R. The input history i, can be expressed as the pursuer history p;.?
Thus, the history I-state is

m = ((p(0), R), pr, Gt), (12.33)

in which (p(0), R) C X reflects the initial condition in which p(0) is known, and
the evader position e(0) may lie anywhere in R.

Consider the nondeterministic I-space, Z, 4. Since the pursuer position is al-
ways known, the interesting part of R is the subset in which the evader may lie.
Thus, the nondeterministic I-state can be expressed as X;(n;) = (p(t), E(n:)), in
which E(7,) is the set of possible evader positions given 7;,. As usual for non-
deterministic I-states, E(n;) is the smallest set that is consistent with all of the
information in 7.

Consider how E(n,) varies over time. After the first instant of time, V' (p(0)) is
observed, and it is known that the evader lies in R\ V' (p(0)), which is the shadow
region (defined in Section 12.3.4) from p(0). As the pursuer moves, E(n;) varies.
Suppose you are told that the pursuer is now at position p(t), but you are not
vet told 7;. What options seem possible for E(n;)? These depend on the history,
but the only interesting possibilities are that each shadow component may or may
not contain the evader. For some of these components, we may be certain that it
does not. For example, consider Figure 12.38. Suppose that the pursuer initially
believes that the end of the corridor may contain the evader. If it moves along
the smaller closed-loop path, the nondeterministic I-state gradually varies but
returns to the same value when the loop is completed. However, if the pursuer
traverses the larger loop, it becomes certain upon completing the loop that the
corridor does not contain the evader. The dashed line that was crossed in this
example may inspire you to think about cell decompositions based on critical
boundaries, as in the algorithm in Section 6.3.4. This idea will be pursued shortly
to develop a complete algorithm for solving this problem. Before presenting a
complete algorithm, however, first consider some interesting examples.

Example 12.7 (When Is a Problem Solvable?) Figure 12.39 shows four sim-
ilar problems. The evader position is never shown because the problem is solved

5To follow the notation of Section 11.4 more closely, the motion model p = u can be used, in
which u represents the velocity of the pursuer. Nature actions can be used to model the velocity
of the evader to obtain é. By integrating p over time, p(¢) can be obtained for any ¢. This means
that p; can be used as a simpler representation of the input history, instead of directly referring
to velocities.
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(a) (b) (c)

Figure 12.38: (a) Suppose the pursuer comes near the end of a contaminated
corridor. (b) If the pursuer moves in a loop path, the nondeterministic I-state
gradually changes, but returns to its original value. (c) However, if a critical
boundary is crossed, then the nondeterministic I-state fundamentally changes.

by ensuring that no evader could be left hiding. Note that the speed of the pur-
suer is not relevant to the nondeterministic I-states. Therefore, a solution can
be defined by simply showing the pursuer path. The first three examples are
straightforward to solve. However, the fourth example does not have a solution
because there are at least three distinct hiding places (can you find them?). Let
V(V(p)) denote the set of all points visible from at least one point in V' (p). The
condition that prevents the problem from being solved is that there exist three
positions, p1, pa, ps, such that V(V(p;)) N V(V(p;)) = 0 for each 4,5 € {1,2,3}
with 7 # j. As one hiding place is reached, the evader can sneak between the
other two. In the worst case, this could result in an endless chase with the evader
always eluding discovery. We would like an algorithm that systematically searches
Tnaer and determines whether a solution exists. ]

Since one pursuer is incapable of solving some problems, it is tempting to
wonder whether two pursuers can solve any problem. The next example gives an
interesting sequence of environments that implies that for any positive integer k,
there is an environment that requires exactly k pursuers to solve.

Example 12.8 (A Sequence of Hard Problems) Each environment in the se-
quence shown in Figure 12.40 requires one more pursuer than the previous one
[73]. The construction is based on recursively ensuring there are three isolated
hiding places, as in the last problem of Figure 12.39. Each time this occurs, an-
other pursuer is needed. The sequence recursively appends three environments
that require k pursuers, to obtain a problem that requires £+ 1. An extra pursuer
is always needed to guard the junction where the three environments are attached
together. The construction is based on the notion of 3-separability, from pursuit-
evasion on a graph, which was developed in [143]. |

The problem can be made more challenging by considering multiply connected
environments (environments with holes). A single pursuer cannot solve any of the

688 S. M. LaValle: Planning Algorithms

EJE3
EJ|E3

Figure 12.39: Three problems that can be easily solved with one pursuer, and a
minor variant for which no solution exists.

Figure 12.40: Each collection of corridors requires one more pursuer than the one
before it because a new pursuer must guard the junction.

these problems. Determining the minimum number of pursuers required to solve
such a problem is NP-hard [73].

12.4.2 A Complete Algorithm

Now consider designing a complete algorithm that solves the problem in the case of
a single pursuer. To be complete, it must find a solution if one exists; otherwise,
it correctly reports that no solution is possible. Recall from Figure 12.38 that
the nondeterministic I-state changed in an interesting way only after a critical
boundary was crossed. The pursuit-evasion problem can be solved by carefully
analyzing all of the cases in which these critical changes can occur. It turns out
that these are exactly the same cases as considered in Section 12.3.4: crossing
inflection rays and bitangent rays. Figure 12.38 is an example of crossing an
inflection ray. Figure 12.41 indicates the connection between the gaps of Section
12.3.4 and the parts of the environment that may contain the evader.
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Figure 12.41: Recall Figure 11.15. Beyond each gap is a portion of the environ-
ment that may or may not contain the evader.

Recall that the shadow region is the set of all points not visible from some
p(t); this is expressed as R\ V(p(t)). Every critical event changes the number
of shadow components. If an inflection ray is crossed, then a shadow component
either appears or disappears, depending on the direction. If a bitangent ray is
crossed, then either two components merge into one or one component splits into
two. To keep track of the nondeterministic I-state, it must be determined whether
each component of the shadow region is cleared, which means it certainly does not
contain the evader, or contaminated, which means that it might contain the evader.
Initially, all components are labeled as contaminated, and as the pursuer moves,
cleared components can emerge. Solving the pursuit-evasion problem amounts to
moving the pursuer until all shadow components are cleared. At this point, it is
known that there are no places left where the evader could be hiding.

If the pursuer crosses an inflection ray and a new shadow component appears,
it must always be labeled as cleared because this is a portion of the environ-
ment that was just visible. If the pursuer crosses a bitangent ray and a split
occurs, then the labels are distributed across the two components: A contami-
nated shadow component splits into two contaminated components, and a cleared
component splits into two cleared components. If the bitangent ray is crossed
in the other direction, resulting in a merge of components, then the situation is
more complicated. If one component is cleared and the other is contaminated,
then the merged component is contaminated. The merged component may only
be labeled as cleared if both of the original components are already cleared. Note
that among the four critical cases, only the merge has the potential to undo the
work of the pursuer. In other words, it may lead to recontamination.

Consider decomposing R into cells based on inflection rays and bitangent rays,
as shown in Figure 12.42. These cells have the following information-conservative
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Figure 12.42: The environment is decomposed into cells based on inflections and
bitangents, which are the only critical visibility events.

property: If the pursuer travels along any loop path that stays within a 2D cell,
then the I-state remains the same upon returning to the start. This implies
that the particular path taken by the pursuer through a cell is not important. A
solution to the pursuit-evasion problem can be described as a sequence of adjacent
2D cells that must be visited. Due to the information-conservative property, the
particular path through a sequence of cells can be chosen arbitrarily.

Searching the cells for a solution is more complicated than searching for paths
in Chapter 6 because the search must be conducted in the I-space. The pursuer
may visit the same cell in R on different occasions but with different knowledge
about which components are cleared and contaminated. A directed graph, Gy,
can be constructed as follows. For each 2D cell in R and each possible labeling of
shadow components, a vertex is defined in G;. For example, if the shadow region
of a cell has three components, then there are 23 = 8 corresponding vertices in
Gr. An edge exists in G; between two vertices if: 1) their corresponding cells are
adjacent, and 2) the labels of the components are consistent with the changes
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induced by crossing the boundary between the two cells. The second condition
means that the labeling rules for an appear, disappear, split, or merge must be
followed. For example, if crossing the boundary causes a split of a contaminated
shadow component, then the new components must be labeled contaminated and
all other components must retain the same label. Note that Gy is directed because
many motions in the Z,4; are not reversible. For example, if a contaminated
region disappears, it cannot reappear as contaminated by reversing the path.
Note that the information in this directed graph does not improve monotonically
as in the case of lazy discrete localization from Section 12.2.1. In the current
setting, information is potentially worse when shadow components merge because
contamination can spread.

To search Gy, start with any vertex for which all shadow region components
are labeled as contaminated. The particular starting cell is not important. Any of
the search algorithms from Section 2.2 may be applied to find a goal vertex, which
is any vertex of G; for which all shadow components are labeled as cleared. If no
such vertices are reachable from the initial state, then the algorithm can correctly
declare that no solution exists. If a goal vertex is found, then the path in G;
gives the sequence of cells that must be visited to solve the problem. The actual
path through R is then constructed from the sequence of cells. Some of the cells
may not be convex; however, their shape is simple enough that a sophisticated
motion planning algorithm is not needed to construct a path that traverses the
cell sequence.

The algorithm presented here is conceptually straightforward and performs
well in practice; however, its worst-case running time is exponential in the number
of inflection rays. Consider a polygonal environment that is expressed with n
edges. There can be as many as O(n) inflections and O(n?) bitangents. The
number of cells is bounded by O(n?) [72]. Unfortunately, G; has an exponential
number of vertices because there can be as many as O(n) shadow components,
and there are 2" possible labelings if there are n components. Note that G; does
not need to be computed prior to the search. It can be revealed incrementally
during the planning process. The most efficient complete algorithm, which is more
complicated, solves the pursuit-evasion problem in time O(n?) and was derived by
first proving that any problem that can be solved by a pursuer using the visibility
polygon can be solved by a pursuer that uses only two beams of light [140]. This
simplifies V' (p(t)) from a 2D region in R to two rotatable rays that emanate from
p(t) and dramatically reduces the complexity of the I-space.

12.4.3 Other Variations

Numerous variations of the pursuit-evasion problem presented in this section can
be considered. The problem becomes much more difficult if there are multiple pur-
suers. A cell decomposition can be made based on changing shadow components;
however, some of the cell boundaries are algebraic surfaces due to complicated

692 S. M. LaValle: Planning Algorithms
x i
- ) - X
=
/ X -

(a) ® © (@ (©)

Figure 12.43: Several evader detection models: (a) omnidirectional sensing with
unlimited distance; (b) visibility with a limited field of view; (¢) a single visibility
ray that is capable of rotating; (d) limited distance and a rotating viewing cone,
which corresponds closely to a camera model; and (e) three visibility rays that
are capable of rotating.

interactions between the visibility polygons of different pursuers. Thus, it is dif-
ficult to implement a complete algorithm. On the other hand, straightforward
heuristics can be used to guide multiple pursuers. A single pursuer can use the
complete algorithm described in this section. When this pursuer fails, it can move
to some part of the environment and then wait while a second pursuer applies the
complete single-pursuer algorithm on each shadow component. This idea can be
applied recursively for any number of robots.

The problem can be made more complicated by placing a velocity bound on
the evader. Even though this makes the pursuer more powerful, it is more difficult
to design a complete algorithm that correctly exploits this additional information.
No complete algorithms currently exist for this case.

Figure 12.43 shows several alternative detection models that yield different
definitions of V'(p(t)). Each requires different pursuit-evasion algorithms because
the structure of the I-space varies dramatically across different sensing models.
For example, using the model in Figure 12.43c, a single pursuer is required to
move along the JX. Once it moves into the interior, the shadow region always
becomes a single connected component. This model is sometimes referred to as
a flashlight. If there are two flashlights, then one flashlight may move into the
interior while the other protects previous work. The case of limited depth, as
shown in Figure 12.43, is very realistic in practice, but unfortunately it is the
most challenging. The number of required pursuers generally depends on metric
properties of the environment, such as its minimum “thickness.” The method
presented in this section was extended to the case of a limited field of view in
[66]; critical curves are obtained that are similar to those in Section 6.3.4. See the
literature overview at the end of the chapter for more related material.
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12.5 Manipulation Planning with Sensing Un-
certainty

One of the richest sources of interesting I-spaces is manipulation planning. As
robots interact with obstacles or objects in the world, the burden of estimating
the state becomes greater. The classical way to address this problem is to highly
restrict the way in which the robot can interact with obstacles. Within the manip-
ulation planning framework of Section 7.3.2, this means that a robot must grasp
and carry objects to their desired destinations. Any object must be lying in a sta-
ble configuration upon grasping, and it must be returned to a stable configuration
after grasping.

As the assumptions on the classical manipulation planning framework are
lifted, it becomes more difficult to predict how the robot and other bodies will
behave. This immediately leads to the challenges of uncertainty in predictability,
which was the basis of Chapter 10. The next problem is to design sensors that
enable plans to be achieved in spite of this uncertainty. For each sensing model,
an I-space arises.

Section 12.5.1 covers the preimage planning framework [53, 113], under which
many interesting issues covered in Chapters 10 and 11 are addressed for a specific
manipulation planning problem. I-states, forward projections, backprojections,
and termination actions were characterized in this context. Furthermore, several
algorithmic complexity results regarding planning under uncertainty have been
proved within this framework.

Section 12.5.2 covers methods that clearly illustrate the power of reasoning
directly in terms of the I-space. The philosophy is to allow nonprehensile forms
of manipulation (e.g., pushing, squeezing, throwing) and to design simple sensors,
or even to avoid sensing altogether. This dramatically reduces the I-space while
still allowing feasible plans to exist. This contradicts the intuition that more
information is better. Using less information leads to greater uncertainty in the
state, but this is not important in some problems. It is only important is that the
I-space becomes simpler.

12.5.1 Preimage Planning

The preimage planning framework (or LMT framework, named after its developers,
Lozano-Pérez, Mason, and Taylor) was developed as a general way to perform
manipulation planning under uncertainty [53, 113]. Although the concepts apply
to general configuration spaces, they will be covered here for the case in which
C = R? and C,, is polygonal. This is a common assumption throughout most
of the work done within this framework. This could correspond to a simplified
model of a robot hand that translates in YW = R2, while possibly carrying a
part. A popular illustrative task is the peg-in-hole problem, in which the part is
a peg that must be inserted into a hole that is slightly larger. This operation
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is frequently performed as manufacturing robots assemble products. Using the
configuration space representation of Section 4.3.2, the robot becomes a point
moving in R? among polygonal obstacles.

The distinctive features of the models used in preimage planning are as follows:

1. The robot can execute compliant motions, which means that it can slide
along the boundary of C,,s. This differs from the usual requirement in Part
II that the robot must avoid obstacles.

2. There is nondeterministic uncertainty in prediction. An action determines
a motion direction, but nature determines how much error will occur during
execution. A bounded error model is assumed.

3. There is nondeterministic uncertainty in sensing, and the true state cannot
be reliably estimated.

4. The goal region is usually an edge of C,s, but it may more generally be any
subset of cl(Cpyee), the closure of Cyye.

5. A hierarchical planning model is used, in which the robot is issued a sequence
of motion commands, each of which is terminated by applying ur based on
the I-state.

Each of these will now be explained in more detail.

Compliant motions It will be seen shortly that the possibility of executing
compliant motions is crucial for reducing uncertainty in the robot position. Let
Ceon denote the obstacle boundary, 0Cops (also, Ceon = Cjree). A model of robot
motion while ¢ € C,,, needs to be formulated. In general, this is complicated
by friction. A simple Coulomb friction model is assumed here; see [123] for more
details on modeling friction in the context of manipulation planning. Suppose
that the net force F' is applied by a robot at some g € C.y,. The force could be
maintained by using the generalized damper model of robot control [188].

The resulting motion is characterized using a friction cone, as shown in Figure
12.44a. A basic principle of Newtonian mechanics is that the obstacle applies a
reaction force (it may be helpful to look ahead to Section 13.3, which introduces
mechanics). If F points into the surface and is normal to it, then the reaction
force provided by the obstacle will cancel F', and there will be no motion. If F
is not perpendicular to the surface, then sliding may occur. At one extreme, F'
may be parallel to the surface. In this case, it must slide along the boundary. In
general, F' can be decomposed into parallel and perpendicular components. If the
parallel component is too small relative to the perpendicular component, then the
robot becomes stuck. The friction cone shown in Figure 12.44a indicates precisely
the conditions under which motion occurs. The parameter a captures the amount
of friction (more friction leads to larger «). Figure 12.44b indicates the behaviors
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Figure 12.44: The compliant motion model. If a force F' is applied by the robot
at ¢ € Ceon, then it moves along the boundary only if —F points outside of the
friction cone.

that occur for various directions of F'. The diagram is obtained by inverting the
friction cone. If F' points into the bottom region, then sticking occurs, which
means that the robot cannot move. If I’ points away from the obstacle boundary,
then contact is broken (this is reasonable, unless the boundary is sticky). For the
remaining two cases, the robot slides along the boundary.

Sources of uncertainty Nature interferes with both the configuration transi-
tions and with the sensor. Let U = [0,2), which indicates the direction in R?
that the robot is commanded to head. Nature interferes with this command, and
the actual direction lies within an interval of S'. As shown in Figure 12.45a, the
forward projection (recall from Section 10.1.2) for a fixed action v € U yields
a cone of possible future configurations. (A precise specification of the motion
model is given using differential equations in Example 13.15.) The sensing model,
shown in Figure 12.45b, was already given in Section 11.5.1. The nature sensing
actions form a disc given by (11.67), and y = ¢ + ¢, in which ¢ is the true con-
figuration, v is the nature sensing action, and y is the observation. The result
appears in Figure 11.11.

Goal region Since contact with the obstacle is allowed, the goal region can be
defined to include edges of Cy, in addition to points in Cy.. Most often, a single
edge of Cups is chosen as the goal region.

Motion commands The planning problem can now be described. It may be
tempting to express the model using continuous time, as opposed to discrete
stages. This is a viable approach, but leads to planning under differential con-
straints, which is the topic of Part IV and is considerably more complicated. In
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Figure 12.45: Nature interferes with both the configuration transitions and the
sensor observations.

the preimage-planning framework, a hierarchical approach is taken. A restricted
kind of plan called a motion command, p, will be defined, and the goal is achieved
by constructing a sequence of motion commands. This has the effect of convert-
ing the continuous-time decision-making problem into a planning problem that
involves discrete stages. Each time a motion command is applied, the robot must
apply a termination action to end it. At that point another motion command can
be issued. Thus, imagine that a high-level module issues motion commands, and
a low-level module executes each until a termination condition is met.

For some action v € U, let M, = {u,ur}, in which ur is the termination
action. A motion command is a feedback plan, p : Zp;s¢ — M, in which Zp; is
the standard history I-space, based on initial conditions, the action history, and
the sensing history. The motion command is executed over continuous time. At
t =0, u(no) = u. Using a history I-state n gathered during execution, the motion
command will eventually yield u(n) = up, which terminates it. If the goal was
not achieved, then the high-level module can apply another motion command.

Preimages Now consider how to construct motion commands. Using the hier-
archical approach, the main task of terminating in the goal region can be decom-
posed into achieving intermediate subgoals. The preimage P(p, G) of a motion
command p and subgoal G C cl(Cpye) is the set of all history I-states from which p
is guaranteed to be achieved in spite of all interference from nature. Each motion
command must recognize that the subgoal has been achieved so that it can apply
its termination action. Once a subgoal is achieved, the resulting history I-state
must lie within the required set of history I-states for the next motion command
in the plan. Let M denote the set of all allowable motion commands that can
be defined. This can actually be considered as an action space for the high-level
module.
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Planning with motion commands A high-level open-loop plan.®

™= (/’617/1/%'“7“16)7 (1234)

can be constructed, which is a sequence of k£ motion commands. Although the
precise path executed by the robot is unpredictable, the sequence of motion com-
mands is assumed to be predictable. Each motion command p; for 1 <4 < k must
terminate with an I-state n € P(u;41, Giy1). The preimage of 1y must include 7y,
the initial I-state. The goal is achieved by the last motion command, py.

More generally, the particular motion command chosen need not be predictable,
and may depend on the I-state during execution. In this case, the high-level feed-
back plan 7 : Zp;ss — M can be developed, in which a motion command p = 7(n)
is chosen based on the history I-state n that results after the previous motion
command terminates. Such variations are covered in [42, 53, 98].

The high-level planning problem can be solved using discrete planning algo-
rithms from Chapters 2 and 10. The most popular method within the preimage
planning framework is to perform a backward search from the goal. Although this
sounds simple enough, the set of possible motion commands is infinite, and it is
difficult to sample p in a way that leads to completeness. Another complication
is that termination is based on the history I-state. Planning is therefore quite
challenging. It was even shown in [53], by a reduction from the Turing machine
halting problem [170], that the preimage in general is uncomputable by any algo-
rithm. It was shown in [130] that the 3D version of preimage planning, in which
the obstacles are polyhedral, is PSPACE-hard. It was then shown in [26] that it
is even NEXPTIME-hard.”

Backprojections FErdmann proposed a practical way to compute effective mo-
tion commands by separating the reachability and recognizability issues [53, 54].
Reachability refers to characterizing the set of points that are guaranteed to be
reachable. Recognizability refers to knowing that the subgoal has been reached
based on the history I-state. Another way to interpret the separation is that the
effects of nature on the configuration transitions is separated from the effects of
nature on sensing.

For reachability analysis, the sensing uncertainty is neglected. The notions
of forward projections and backprojections from Section 10.1.2 can then be used.
The only difference here is that they are applied to continuous spaces and mo-
tion commands (instead of w). Let S denote a subset of cl(Cfree). Both weak
backprojections, WB(S, i), and strong backprojections, SB(S, i), can be defined.
Furthermore, nondirectional backprojections [43], WB(S) and SB(S), can be de-
fined, which are analogous to (10.25) and (10.26), respectively.

6Note that this open-loop plan is composed of closed-loop motion commands. This is perfectly
acceptable using hierarchical modeling,.

"NEXPTIME is the complexity class of all problems that can be solved in nondeterministic
exponential time. This is beyond the complexity classes shown in Figure 6.40.

698 S. M. LaValle: Planning Algorithms

Goal edge

Figure 12.46: A simple example that resembles the peg-in-hole problem.

Figure 12.46 shows a simple problem in which the task is to reach a goal edge
with a motion command that points downward. This is inspired by the peg-in-hole
problem. Figure 12.47 illustrates several backprojections from the goal region for
the problem in Figure 12.46. The action is u = 37w /2; however, the actual motion
lies within the shown cone due to nature. First suppose that contact with the
obstacle is not allowed, except at the goal region. The strong backprojection
is given in Figure 12.47a. Starting from any point in the triangular region, the
goal is guaranteed to be reached in spite of nature. The weak backprojection
is the unbounded region shown in Figure 12.47b. This indicates configurations
from which it is possible to reach the goal. The weak backprojection will not
be considered further because it is important here to guarantee that the goal is
reached. This is accomplished by the strong backprojection. From here onward,
it will be assumed that backprojection by default means a strong backprojection.
Using weak backprojections, it is possible to develop an alternative framework of
error detection and recovery (EDR), which was introduced by Donald in [42].

Now assume that compliant motions are possible along the obstacle boundary.
This has the effect of enlarging the backprojections. Suppose for simplicity that
there is no friction (v = 0 in Figure 12.44a). The backprojection is shown in Figure
12.47c. As the robot comes into contact with the side walls, it slides down until
the goal is reached. It is not important to keep track of the exact configuration
while this occurs. This illustrates the power of compliant motions in reducing
uncertainty. This point will be pursued further in Section 12.5.2. Figure 12.47d
shows the backprojection for a different motion command.

Now consider computing backprojections in a more general setting. The back-
projection can be defined from any subset of cl(Cye.) and may allow a friction
cone with parameter a. To be included in a backprojection, points from which
sticking is possible must be avoided. Note that sticking is possible even if o = 0.
For example, in Figure 12.46, nature may allow the motion to be exactly perpen-
dicular to the obstacle boundary. In this case, sticking occurs on horizontal edges
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Figure 12.47: Several backprojections are shown for the peg-in-hole problem.

because there is no tangential motion. In general, it must be determined whether
sticking is possible at each edge and vertex of C,s. Possible sticking from an edge
depends on u, o, and the maximum directional error contributed by nature. The
robot can become stuck at a vertex if it is possible to become stuck at either
incident edge.

Computing backprojections Many algorithms have been developed to com-
pute backprojections. The first algorithm was given in [53, 54]. Assume that the
goal region is one or more segments contained in edges of C.,,. The algorithm
proceeds for a fixed motion command, j, which is based on a direction u € U as
follows:

1. Mark every obstacle vertex at which sticking is possible. Also mark any
point on the boundary of the goal region if it is possible to slide away from
the goal.

2. For every marked vertex, extend two rays with directions based on the max-
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Figure 12.48: Erdmann’s backprojection algorithm traces out the boundary after
constructing cones based on friction.

imum possible deviations allowed by nature when executing u. This inverts
the cone shown in Figure 12.45a. The extended rays are shown in Figure
12.48 for the frictionless case (o = 0).

3. Starting at every goal edge, trace out the boundary of the backprojection
region. Every edge encountered defines a half-plane of configurations from
which the robot is guaranteed to move into. In Figure 12.48, this corresponds
to being below a ray. When tracing out the backprojection boundary, the
direction at each intersection vertex is determined based on including the
points in the half-plane.

The resulting backprojection is shown in Figure 12.49. A more general algorithm
that applies to goal regions that include polygonal regions in Cy... was given in
[43] (some details are also covered in [98]). It uses the plane-sweep principle (pre-
sented in Section 6.2.2) to yield an algorithm that computes the backprojection
in time O(nlgn), in which n is the number of edges used to define Cps. The
backprojection itself has no more than O(n) edges. Algorithms for computing
nondirectional backprojections are given in [18, 43]. One difficulty in this case
is that the backprojection boundary may be quite complicated. An incremental
algorithm for computing a nondirectional backprojection of size O(n?) in time
O(n?*1gn) is given in [18].

Once an algorithm that computes backprojections has been obtained, it needs
to be adapted to compute preimages. Using the sensing model shown in Figure
12.45b, a preimage can be obtained by shrinking the subgoal region G. Let €
denote the radius of the ball in Figure 12.45b. Let G’ C G denote a subset of the
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Figure 12.49: The computed backprojection. Sliding is guaranteed from the
steeper edge of the triangle; hence, it is included in the backprojection. From
the other top edge, sticking is possible.

subgoal in which a strip of thickness € has been removed. If the sensor returns
y € G, then it is guaranteed that ¢ € G. This yields a method of obtaining
preimages by shrinking the subgoals. If € is too large, however, this may fail to
yield a successful plan, even though one exists.

The high-level plan can be found by performing a backward search that com-
putes backprojections from the goal region (reduced by ¢€). There is still the
difficulty of M being too large, which controls the branching factor in the search.
One possibility is to compute nondirectional backprojections. Another possibil-
ity is to discretize M. For example, in [98, 99], M is reduced to four principle
directions, and plans are computed for complicated environments by using stick-
ing edges as subgoals. Using discretization, however, it becomes more difficult to
ensure the completeness of the planning algorithm.

The preimage planning framework may seem to apply only to a very specific
model, but it can be extended and adapted to a much more general setting. It
was extended to semi-algebraic obstacle models in [27], which gives a planning
method that runs in time doubly exponential in the C-space dimension (based on
cylindrical algebraic decomposition, which was covered in Section 6.4.2). In [22],
probabilistic backprojections were introduced by assigning a uniform probability
density function to the nature action spaces considered in this section. This was
in turn generalized further to define backprojections and preimages as the level
sets of optimal cost-to-go functions in [101, 104]. Dynamic programming methods
can then be applied to compute plans.

12.5.2 Nonprehensile Manipulation

Manipulation by grasping is very restrictive. People manipulate objects in many
interesting ways that do not involve grasping. Objects may be pushed, flipped,
thrown, squeezed, twirled, smacked, blown, and so on. A classic example from the
kitchen is flipping a pancake over by a flick of the wrist while holding the skillet.
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These are all examples of nonprehensile manipulation, which means manipulation
without grasping.

The temptation to make robots grasp objects arises from the obsession with
estimating and controlling the state. This task is more daunting for nonprehensile
manipulation because there are times at which the object appears to be out of
direct control. This leads to greater uncertainty in predictability and a larger
sensing burden. By planning in the I-space, however, it may be possible to avoid
all of these problems. Several works have emerged which show that manipulation
goals can be achieved with little or no sensing at all. This leads to a form of
minimalism [28, 57, 123], in which the sensors are designed in a way that simpli-
fies the I-space, as opposed to worrying about accurate estimation. The search
for minimalist robotic systems is completely aligned with trying to find derived
I-spaces that are as small as possible, as mentioned in Section 11.2.1. Sensing
systems should be simple, yet still able to achieve the task. Preferably, com-
pleteness should not be lost. Most work in this area is concerned primarily with
finding feasible solutions, as opposed to optimal solutions. This enables further
simplifications of the I-space.

This section gives an example that represents an extreme version of this min-
imalism. A sensorless manipulation system is developed. At first this may seem
absurd. From the forward projections in Section 10.1.2; it may seem that uncer-
tainty can only grow if nature causes uncertainty in the configuration transitions
and there are no sensors. To counter the intuition, compliant motions have the
ability to reduce uncertainty. This is consistent with the discussion in Section
11.5.4. Simply knowing that some motion commands have been successfully ap-
plied may reduce the amount of uncertainty. In an early demonstration of sensor-
less manipulation, it was shown that an Allen wrench (L-shaped wrench) resting
in a tray can be placed into a known orientation by simply tilting the tray in a
few directions [57]. The same orientation is achieved in the end, regardless of the
initial wrench configuration. Also, no sensors are needed. This can be considered
as a more complicated extension of the ball rolling in a tray that was shown in
Figure 11.29. This is also an example of compliant motions, as shown in Figure
12.44; however, in the present setting F' is caused by gravity.

Squeezing parts Another example of sensorless manipulation will now be de-
scribed, which was developed by Goldberg and Mason in [67, 68, 69]; see also
[123]. A Java implementation of the algorithm appears in [15]. Suppose that con-
vex, polygonal parts arrive individually along a conveyor belt in a factory. They
are to be used in an assembly operation and need to be placed into a given ori-
entation. Figure 12.50 shows a top view of a parallel-jaw gripper. The robot can
perform a squeeze operation by bringing the jaws together. Figure 12.50a shows
the part before squeezing, and Figure 12.50b shows it afterward. A simple model
is assumed for the mechanics. The jaws move at constant velocity toward each
other, and it is assumed that they move slowly enough so that dynamics can be
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Figure 12.50: A parallel-jaw gripper can orient a part without using sensors.

neglected. To help slide the part into place, one of the jaws may be considered
as a frictionless contact (this is a real device; see [28]). The robot can perform
a squeeze operation at any orientation in [0,27) (actually, only [0,7) is needed
due to symmetry). Let U = [0, 27) denote the set of all squeezing actions. Each
squeezing action terminates on its own after the part can be squeezed no further
(without crushing the part).

The planning problem can be modeled as a game against nature. The initial
orientation, x € [0, 27), of the part is chosen by nature and is unknown. The state
space is S!. For a given part, the task is to design a sequence,

T = (ug, U, ..., Up), (12.35)

of squeeze operations that leads to a known orientation for the part, regardless
of its initial state. Note that there is no specific requirement on the final state.
After ¢ motion commands have terminated, the history I-state is the sequence

n= (u17u27---7ui) (1236)

of squeezes applied so far. The nondeterministic I-space Z,4.; will now be used.
The requirement can be stated as obtaining a singleton, nondeterministic I-state
(includes only one possible orientation). If the part has symmetries, then the
task is instead to determine a single symmetry class (which includes only a finite
number of orientations)

Consider how a part in an unknown orientation behaves. Due to rotational
symmetry, it will be convenient to describe the effect of a squeeze operation based
on the relative angle between the part and the robot. Therefore, let o = v — z,
assuming arithmetic modulo 27. Initially, o may assume any value in [0, 27). It
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Figure 12.51: The diameter function for a rectangle.

SV

1 2

w

4 1

|
?;7r/2 o

|
0 /2

o =l

Figure 12.52: There are four regions of attraction, each of which represents an
interval of orientations.

turns out that after one squeeze, « is always forced into one of a finite number of
values. This can be explained by representing the diameter function d(«), which
indicates the maximum thickness that can be obtained by taking a slice of the part
at orientation «. Figure 12.51 shows the slice for a rectangle. The local minima
of the distance function indicate orientations at which the part will stabilize as
shown in Figure 12.50b. As the part changes its orientation during the squeeze
operation, the a value changes in a way that gradually decreases d(«). Thus,
[0,27) can be divided into regions of attraction, as shown in Figure 12.52. These
behave much like the funnels in Section 8.5.1.

The critical observation to solve the problem without sensors is that with each
squeeze the uncertainty can grow no worse, and is usually reduced. Assume u is
fixed. For the state transition equation 2’ = f(z,u), the same 2’ will be produced
for an interval of values for . Due to rotational symmetry, it is best to express
this in terms of «. Let s(«) denote relative orientation obtained after a squeeze.

Since « is a function of x and u, this can be expressed as a squeeze function,
s5: St — S!. defined as

s(a) = f(x,u) — u. (12.37)

The forward projection with respect to an interval, A, of « values can also be
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defined:
S(A) = s(a). (12.38)
acA

Any interval A C [0,27) can be interpreted as a nondeterministic I-state,
based on the history of squeezes that have been performed. It is defined, however,
with respect to relative orientations, instead of the original states. The algorithms
discussed in Section 12.1.2 can be applied to Z,4e;. A backward search algorithm
is given in [68] that starts with a singleton, nondeterministic I-state. The planning
proceeds by performing a backward search on Z,,4.;. In each iteration, the interval,
A, of possible relative orientations increases until eventually all of S* is reached
(or the period of symmetry, if symmetries exist).

The algorithm is greedy in the sense that it attempts to force A to be as large
as possible in every step. Note from Figure 12.52 that the regions of attraction
are maximal at the minima of the diameter function. Therefore, only the minima
values are worth considering as choices for . Let B denote the preimage of
the function s. In the first step, the algorithm finds the « for which B(«a) is
largest (in terms of length in S'). Let o denote this relative orientation, and let
Ap = B(ay). For each subsequent iteration, let A; denote the largest interval in
[0,27) that satisfies

1S(Ai-1)] < |Ail, (12.39)

in which | - | denotes interval length. This implies that there exists a squeeze
operation for which any relative orientation in S(A;_1) can be forced into A; by a
single squeeze. This iteration is repeated, generating A_;, A_,, and so on, until
the condition in (12.39) can no longer be satisfied. It was shown in [68] that
for any polygonal part, the A; intervals increase until all of S* (or the period of
symmetry) is obtained.

Suppose that the sequence (A_y, ..., Ag) has been computed. This must be
transformed into a plan that is expressed in terms of a fixed coordinate frame for
the robot. The k-step action sequence (u1,...,uy) is recovered from

U; = S(ﬁifl) — a; — %(‘Al,kl — |S(AZ,]¢,1)|) + Ui—1 (1240)

and u_ = 0 [68]. Each a; in (12.40) is the left endpoint of A;. There is some
freedom of choice in the alignment, and the third term in (12.40) selects actions in
the middle to improve robustness with respect to orientation errors. By exploiting
a proof in [30] that no more than O(n) squeeze operations are needed for a part
with n edges, the complete algorithm runs in time O(n?).

Example 12.9 (Squeezing a Rectangle) Figure 12.53 shows a simple exam-
ple of a plan that requires two squeezes to orient the rectangular part when placed
in any initial orientation. Four different executions of the plan are shown, one in
each column. After the first squeeze, the part orientation is a multiple of 7/2.
After the second squeeze, the orientation is known. Even though the execution
looks different every time, no feedback is necessary because the I-state contains
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Figure 12.53: A two-step squeeze plan [68].

no sensor information. [ |

Further Reading

The material from this chapter could easily be expanded into an entire book on planning
under sensing uncertainty. Several key topics were covered, but numerous others remain.
An incomplete set of suggestions for further reading is given here.

Since Section 12.1 involved converting the I-space into an ordinary state space, many
methods and references in Chapter 10 are applicable. For POMDPs, a substantial
body of work has been developed in operations research and stochastic control theory
[94, 112, 125, 173] and more recently in artificial intelligence [86, 110, 111, 131, 142,
146, 149, 150, 157, 197, 198]. Many of these algorithms compress or approximate Z;qp,
possibly yielding nonoptimal solutions, but handling problems that involve dozens of
states.

Localization, the subject of Section 12.2, is one of the most fundamental problems in
robotics; therefore, there are hundreds of related references. Localization in a graph has
been considered [49, 61]. The combinatorial localization presentation was based on [50,
74]. Ambiguities due to symmetry also appeared in [7]. Combinatorial localization with
very little sensing is presented in [134]. For further reading on probabilistic localization,
see [3, 37, 76, 78, 83, 85, 93, 108, 109, 135, 155, 166, 167, 187]. In [179, 180], localization
uncertainty is expressed in terms of a sensor-uncertainty field, which is a derived I-space.

Section 12.3 was synthesized from many sources. For more on the maze searching
method from Section 12.3.1 and its extension to exploring a graph, see [14]. The issue
of distinguishability and pebbles arises again in [9, 46, 47, 116, 159, 185]. For more on
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competitive ratios and combinatorial approaches to on-line navigation, see [13, 38, 40,
60, 65, 90, 91, 119, 139, 153].

For more on Stentz’s algorithm and related work, see [92, 174]. A multi-resolution
approach to terrain exploration appears in [138]. For material on bug algorithms, see [89,
95, 100, 114, 115, 151, 164]. Related sensor-based planning work based on generalized
Voronoi diagrams appears in [32, 33]; also related is [156]. Gap navigation trees were
introduced in [184, 185, 186]. For other work on minimal mapping, see [82, 154, 162].
Landmark-based navigation is considered in [64, 99, 165].

There is a vast body of literature on probabilistic methods for mapping and local-
ization, much of which is referred to as SLAM [183]; see also [29, 34, 41, 127, 141, 195].
One of the earliest works is [172]. An early application of dynamic programming in this
context appears in [97]. A well-known demonstration of SLAM techniques is described
in [25]. For an introduction to the EM algorithm, see [11]; its convergence is addressed
in [39, 192, 193]. For more on mobile robotics in general, see [16, 48].

The presentation of Section 12.4 was based mainly on [73, 105]. Pursuit-evasion
problems in general were first studied in differential game theory [4, 77, 80]. Pursuit-
evasion in a graph was introduced in [143], and related theoretical analysis appears in
[10, 96, 126]. Visibility-based pursuit-evasion was introduced in [177], and the first com-
plete algorithm appeared in [105]. An algorithm that runs in O(n?) for a single pursuer
in a simple polygon was given in [140]. Variations that consider curved environments,
beams of light, and other considerations appear in [31, 36, 51, 103, 107, 132, 168, 169,
176, 178, 194]. Pursuit-evasion in three dimensions is discussed in [106]. For versions
that involve minimal sensing and no prior given map, see [75, 87, 151, 159, 196]. The
problem of visually tracking a moving target both with [8, 70, 71, 102, 128, 129] and
without [59, 79, 161] obstacles is closely related to pursuit-evasion. For a survey of
combinatorial algorithms for computing visibility information, see [137]. Art gallery
and sensor placement problems are also related [19, 136, 163]. The bitangent events
also arise in the visibility complex [148] and in aspect graphs [145], which are related
visibility-based data structures.

Section 12.5 was inspired mostly by the works in [43, 53, 57, 69, 113, 189]. Many
works are surveyed in [123]. A probabilistic version of preimage planning was considered
in [23, 24, 104]. Visual preimages are considered in [62]. Careful analysis of manipulation
uncertainty appears in [20, 21]. For more on preimage planning, see [98, 99]. The error
detection and recovery (EDR) framework uses many preimage planning ideas but allows
more problems to be solved by permitting fixable errors to occur during execution
[42, 44, 45]. Compliant motions are also considered in [18, 43, 84, 120, 122, 144].
The effects of friction in the C-space are studied in [55]. For more work on orienting
parts, see [28, 58, 67, 68, 152, 190]. For more forms of nonprehensile manipulation, see
[1, 2, 12, 56, 117, 118, 175]. A humorous paper, which introduces the concept of the
“principle of virtual dirt,” is [121]; the idea later appears in [158] and in the Roomba
autonomous vacuum cleaner from the iRobot Corporation.

Exercises

1. For the environment in Figure 12.1a, give the nondeterministic I-states for the
action sequence (L,L,F,B,F,R,F,F), if the initial state is the robot in position
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Figure 12.54: An environment for grid-based localization.

3 facing north and the initial I-state is 790 = X.

Describe how to apply the algorithm from Figure 10.6 to design an information-
feedback plan that takes a map of a grid and performs localization.

Suppose that a robot operates in the environment shown in Figure 12.54 using
the same motion and sensing model as in Example 12.1. Design an information-
feedback plan that is as simple as possible and successfully localizes the robot,
regardless of its initial state. Assume the initial condition 7y = X.

. Prove that the robot can use the latitude and orientation information to detect

the unique point of each obstacle boundary in the maze searching algorithm of
Section 12.3.1.

Suppose once again that a robot is placed into one of the six environments shown
in Figure 12.12. It is initially in the upper right cell facing north; however,
the initial condition is 7y = X. Determine the sequence of sensor observa-
tions and nondeterministic I-states as the robot executes the action sequence
(F,R,B,F,L,L, F).

Prove that the counter in the maze searching algorithm of Section 12.3.1 can be
replaced by two pebbles, and the robot can still solve the problem by simulating
the counter. The robot can place either pebble on a tile, detect them when the
robot is on the same tile, and can pick them up to move them to other tiles.

Continue the trajectory shown in Figure 12.23 until the goal is reached using the
Bug?2 strategy.

. Show that the competitive ratio for the doubling spiral motion applied to the

lost-cow problem of Figure 12.26 is 9.

Generalize the lost-cow problem so that there are n fences that emanate from the
current cow location (n = 2 for the original problem).

(a) If the cow is told that the gate is along only one unknown fence and is no
more than one unit away, what is the competitive ratio of the best plan that
you can think of?

(b) Suppose the cow does not know the maximum distance to the gate. Propose
a plan that solves the problem and establish its competitive ratio.
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ps, for which V(V(p1)), V(V(p2)), and V(V(p3)) are pairwise-disjoint, then the
problem requires more than one pursuer.

15. Prove that the diameter function for the squeezing algorithm in Section 12.5.2
has no more than O(n?) vertices. Give a sequence of polygons that achieves this
bound. What happens for a regular polygon?

16. Develop versions of (12.8) and (12.9) for state-nature sensor mappings.

Vemmmmmmm====f=

17. Develop versions of (12.8) and (12.9) for history-based sensor mappings.

18. Describe in detail the I-map used for maze searching in Section 12.3.1. Indicate
how this is an example of dramatically reducing the size of the I-space, as described

. . . ) o
Figure 12.55: A path followed by the robot in an initially unknown environment. in Section 11.2. Is a sufficient I-map obtained?

The robot finishes in the lower right. 19. Describe in detail the I-map used in the Bugl algorithm. Is a sufficient I-map
obtained?

m f 20. Suppose that several teams of point robots move around in a simple polygon.

e Each robot has an omnidirectional visibility sensor and would like to keep track

of information for each shadow region. For each team and shadow region, it would

like to record one of three possibilities: 1) There are definitely no team members
in the region; 2) there may possibly be one or more; 3) there is definitely at least
one.

d

U

(a) Define a nondeterministic I-space based on labeling gaps that captures the
appropriate information. The I-space should be defined with respect to one
robot (each will have its own).

C

Figure 12.56: Two pursuit-evasion problems that involve recontamination.

(b) Design an algorithm that keeps track of the nondeterministic I-state as the
robot moves through the environments and observes others.

21. Recall the sequence of connected corridors shown in Figure 12.40. Try to adapt
the polygons so that the same number of pursuers is needed, but there are fewer

10. Suppose a point robot is dropped into the environment shown in Figure 12.42. polygon edges. Try to use as few edges as possible.

Indicate the gap navigation trees that are obtained as the robot moves along the
path shown in Figure 12.55.

Implementations

11. Construct an example for which the worst case bound, (12.25), for Bugl is ob-

tained. 22. Solve the probabilistic passive localization problem of Section 12.2.3 for 2D grids.
12. Some environments are so complicated that in the pursuit-evasion problem they Implement your solution and demonstrate it on several interesting examples.

require the same region to be visited multiple times. Find a solution for a single

pursuer with omnidirectional visibility to the problem in Figure 12.56a. 23. Implement the exact value-iteration method described in Section 12.1.3 to com-

pute optimal cost-to-go functions. Test the implementation on several small ex-

13. Find a pursuit-evasion solution for a single pursuer with omnidirectional visibility amples. How large can you make K, ©, and W?

to the problem in Figure 12.56b, in which any number of pairs of “feet” may

appear on the bottom of the polygon. 24. Develop and implement a graph search algorithm that searches on Z,,4.; to per-

form robot localization on a 2D grid. Test the algorithm on several interesting
14. Prove that for a polygonal environment, if there are three points, pi, ps, and examples. Try developing search heuristics that improve the performance.
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25. Implement the Bugl, Bug2, and VisBug (with unlimited radius) algorithms. De-
sign a good set of examples for illustrating their relative strengths and weaknesses.

26. Implement software that computes probabilistic I-states for localization as the
robot moves in a grid.

27. Implement the method of Section 12.3.4 for simply connected environments and
demonstrate it in simulation for polygonal environments.

28. Implement the pursuit-evasion algorithm for a single pursuer in a simple polygon.

29. Implement the part-squeezing algorithm presented in Section 12.5.2.
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