
i

ii

PLANNING ALGORITHMS

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press

iii

For Tammy, and my sons, Alexander and Ethan

iv

Contents

Preface ix

I Introductory Material 1

1 Introduction 3
1.1 Planning to Plan . 3
1.2 Motivational Examples and Applications 5
1.3 Basic Ingredients of Planning . 17
1.4 Algorithms, Planners, and Plans . 19
1.5 Organization of the Book . 24

2 Discrete Planning 27
2.1 Introduction to Discrete Feasible Planning 28
2.2 Searching for Feasible Plans . 32
2.3 Discrete Optimal Planning . 43
2.4 Using Logic to Formulate Discrete Planning 57
2.5 Logic-Based Planning Methods . 63

II Motion Planning 77

3 Geometric Representations and Transformations 81
3.1 Geometric Modeling . 81
3.2 Rigid-Body Transformations . 92
3.3 Transforming Kinematic Chains of Bodies 100
3.4 Transforming Kinematic Trees . 112
3.5 Nonrigid Transformations . 120

4 The Configuration Space 127
4.1 Basic Topological Concepts . 127
4.2 Defining the Configuration Space 145
4.3 Configuration Space Obstacles . 155
4.4 Closed Kinematic Chains . 167

v

vi CONTENTS

5 Sampling-Based Motion Planning 185
5.1 Distance and Volume in C-Space 186
5.2 Sampling Theory . 195
5.3 Collision Detection . 209
5.4 Incremental Sampling and Searching 217
5.5 Rapidly Exploring Dense Trees . 228
5.6 Roadmap Methods for Multiple Queries 237

6 Combinatorial Motion Planning 249
6.1 Introduction . 249
6.2 Polygonal Obstacle Regions . 251
6.3 Cell Decompositions . 264
6.4 Computational Algebraic Geometry 280
6.5 Complexity of Motion Planning . 298

7 Extensions of Basic Motion Planning 311
7.1 Time-Varying Problems . 311
7.2 Multiple Robots . 318
7.3 Mixing Discrete and Continuous Spaces 327
7.4 Planning for Closed Kinematic Chains 337
7.5 Folding Problems in Robotics and Biology 347
7.6 Coverage Planning . 354
7.7 Optimal Motion Planning . 357

8 Feedback Motion Planning 369
8.1 Motivation . 369
8.2 Discrete State Spaces . 371
8.3 Vector Fields and Integral Curves 381
8.4 Complete Methods for Continuous Spaces 398
8.5 Sampling-Based Methods for Continuous Spaces 412

III Decision-Theoretic Planning 433

9 Basic Decision Theory 437
9.1 Preliminary Concepts . 438
9.2 A Game Against Nature . 446
9.3 Two-Player Zero-Sum Games . 459
9.4 Nonzero-Sum Games . 468
9.5 Decision Theory Under Scrutiny . 477

10 Sequential Decision Theory 495
10.1 Introducing Sequential Games Against Nature 496
10.2 Algorithms for Computing Feedback Plans 508

CONTENTS vii

10.3 Infinite-Horizon Problems . 522
10.4 Reinforcement Learning . 527
10.5 Sequential Game Theory . 536
10.6 Continuous State Spaces . 551

11 Sensors and Information Spaces 559
11.1 Discrete State Spaces . 561
11.2 Derived Information Spaces . 571
11.3 Examples for Discrete State Spaces 581
11.4 Continuous State Spaces . 589
11.5 Examples for Continuous State Spaces 598
11.6 Computing Probabilistic Information States 614
11.7 Information Spaces in Game Theory 619

12 Planning Under Sensing Uncertainty 633
12.1 General Methods . 634
12.2 Localization . 640
12.3 Environment Uncertainty and Mapping 655
12.4 Visibility-Based Pursuit-Evasion . 684
12.5 Manipulation Planning with Sensing Uncertainty 691

IV Planning Under Differential Constraints 711

13 Differential Models 715
13.1 Velocity Constraints on the Configuration Space 716
13.2 Phase Space Representation of Dynamical Systems 735
13.3 Basic Newton-Euler Mechanics . 745
13.4 Advanced Mechanics Concepts . 762
13.5 Multiple Decision Makers . 780

14 Sampling-Based Planning Under Differential Constraints 787
14.1 Introduction . 788
14.2 Reachability and Completeness . 798
14.3 Sampling-Based Motion Planning Revisited 810
14.4 Incremental Sampling and Searching Methods 820
14.5 Feedback Planning Under Differential Constraints 837
14.6 Decoupled Planning Approaches . 841
14.7 Gradient-Based Trajectory Optimization 855

15 System Theory and Analytical Techniques 861
15.1 Basic System Properties . 862
15.2 Continuous-Time Dynamic Programming 870
15.3 Optimal Paths for Some Wheeled Vehicles 880

viii CONTENTS

15.4 Nonholonomic System Theory . 888
15.5 Steering Methods for Nonholonomic Systems 910

Preface

What Is Meant by “Planning Algorithms”?

Due to many exciting developments in the fields of robotics, artificial intelligence,
and control theory, three topics that were once quite distinct are presently on a
collision course. In robotics, motion planning was originally concerned with prob-
lems such as how to move a piano from one room to another in a house without
hitting anything. The field has grown, however, to include complications such as
uncertainties, multiple bodies, and dynamics. In artificial intelligence, planning
originally meant a search for a sequence of logical operators or actions that trans-
form an initial world state into a desired goal state. Presently, planning extends
beyond this to include many decision-theoretic ideas such as Markov decision pro-
cesses, imperfect state information, and game-theoretic equilibria. Although con-
trol theory has traditionally been concerned with issues such as stability, feedback,
and optimality, there has been a growing interest in designing algorithms that find
feasible open-loop trajectories for nonlinear systems. In some of this work, the
term “motion planning” has been applied, with a different interpretation from its
use in robotics. Thus, even though each originally considered different problems,
the fields of robotics, artificial intelligence, and control theory have expanded their
scope to share an interesting common ground.

In this text, I use the term planning in a broad sense that encompasses this
common ground. This does not, however, imply that the term is meant to cover
everything important in the fields of robotics, artificial intelligence, and control
theory. The presentation focuses on algorithm issues relating to planning. Within
robotics, the focus is on designing algorithms that generate useful motions by
processing complicated geometric models. Within artificial intelligence, the focus
is on designing systems that use decision-theoretic models to compute appropriate
actions. Within control theory, the focus is on algorithms that compute feasible
trajectories for systems, with some additional coverage of feedback and optimality.
Analytical techniques, which account for the majority of control theory literature,
are not the main focus here.

The phrase “planning and control” is often used to identify complementary
issues in developing a system. Planning is often considered as a higher level pro-
cess than control. In this text, I make no such distinctions. Ignoring historical
connotations that come with the terms, “planning” and “control” can be used

ix

x PREFACE

interchangeably. Either refers to some kind of decision making in this text, with
no associated notion of “high” or “low” level. A hierarchical approach can be
developed, and either level could be called “planning” or “control” without any
difference in meaning.

Who Is the Intended Audience?

The text is written primarily for computer science and engineering students at
the advanced-undergraduate or beginning-graduate level. It is also intended as
an introduction to recent techniques for researchers and developers in robotics,
artificial intelligence, and control theory. It is expected that the presentation
here would be of interest to those working in other areas such as computational
biology (drug design, protein folding), virtual prototyping, manufacturing, video
game development, and computer graphics. Furthermore, this book is intended for
those working in industry who want to design and implement planning approaches
to solve their problems.

I have attempted to make the book as self-contained and readable as possible.
Advanced mathematical concepts (beyond concepts typically learned by under-
graduates in computer science and engineering) are introduced and explained. For
readers with deeper mathematical interests, directions for further study are given.

Where Does This Book Fit?

Here is where this book fits with respect to other well-known subjects:

Robotics: This book addresses the planning part of robotics, which includes
motion planning, trajectory planning, and planning under uncertainty. This is only
one part of the big picture in robotics, which includes issues not directly covered
here, such as mechanism design, dynamical system modeling, feedback control,
sensor design, computer vision, inverse kinematics, and humanoid robotics.

Artificial Intelligence: Machine learning is currently one of the largest and
most successful divisions of artificial intelligence. This book (perhaps along with
[382]) represents the important complement to machine learning, which can be
thought of as “machine planning.” Subjects such as reinforcement learning and
decision theory lie in the boundary between the two and are covered in this book.
Once learning is being successfully performed, what decisions should be made?
This enters into planning.

Control Theory: Historically, control theory has addressed what may be con-
sidered here as planning in continuous spaces under differential constraints. Dy-
namics, optimality, and feedback have been paramount in control theory. This
book is complementary in that most of the focus is on open-loop control laws,
feasibility as opposed to optimality, and dynamics may or may not be important.

xi

Nevertheless, feedback, optimality, and dynamics concepts appear in many places
throughout the book. However, the techniques in this book are mostly algorith-
mic, as opposed to the analytical techniques that are typically developed in control
theory.

Computer Graphics: Animation has been a hot area in computer graphics in
recent years. Many techniques in this book have either been applied or can be
applied to animate video game characters, virtual humans, or mechanical systems.
Planning algorithms allow users to specify tasks at a high level, which avoids
having to perform tedious specifications of low-level motions (e.g., key framing).

Algorithms: As the title suggests, this book may fit under algorithms, which is a
discipline within computer science. Throughout the book, typical issues from com-
binatorics and complexity arise. In some places, techniques from computational
geometry and computational real algebraic geometry, which are also divisions of
algorithms, become important. On the other hand, this is not a pure algorithms
book in that much of the material is concerned with characterizing various de-
cision processes that arise in applications. This book does not focus purely on
complexity and combinatorics.

Other Fields: At the periphery, many other fields are touched by planning al-
gorithms. For example, motion planning algorithms, which form a major part of
this book, have had a substantial impact on such diverse fields as computational
biology, virtual prototyping in manufacturing, architectural design, aerospace en-
gineering, and computational geography.

Suggested Use

The ideas should flow naturally from chapter to chapter, but at the same time,
the text has been designed to make it easy to skip chapters. The dependencies
between the four main parts are illustrated in Figure 1.

If you are only interested in robot motion planning, it is only necessary to read
Chapters 3–8, possibly with the inclusion of some discrete planning algorithms
from Chapter 2 because they arise in motion planning. Chapters 3 and 4 provide
the foundations needed to understand basic robot motion planning. Chapters 5
and 6 present algorithmic techniques to solve this problem. Chapters 7 and 8
consider extensions of the basic problem. If you are additionally interested in
nonholonomic planning and other problems that involve differential constraints,
then it is safe to jump ahead to Chapters 13–15, after completing Part II.

Chapters 11 and 12 cover problems in which there is sensing uncertainty. These
problems live in an information space, which is detailed in Chapter 11. Chapter
12 covers algorithms that plan in the information space.

xii PREFACE

PART I

Introductory Material

Chapters 1-2

PART II

Motion Planning

Chapters 3-8

(Planning in Continuous Spaces)

Planning Under
Differential Constraints

PART IV

Chapters 13-15

Planning
Decision-Theoretic

PART III

Chapters 9-12

(Planning Under Uncertainty)

Figure 1: The dependencies between the four main parts of the book.

If you are interested mainly in decision-theoretic planning, then you can read
Chapter 2 and then jump straight to Chapters 9–12. The material in these later
chapters does not depend much on Chapters 3–8, which cover motion planning.
Thus, if you are not interested in motion planning, the chapters may be easily
skipped.

There are many ways to design a semester or quarter course from the book
material. Figure 2 may help in deciding between core material and some optional
topics. For an advanced undergraduate-level course, I recommend covering one
core and some optional topics. For a graduate-level course, it may be possible
to cover a couple of cores and some optional topics, depending on the initial
background of the students. A two-semester sequence can also be developed by
drawing material from all three cores and including some optional topics. Also,
two independent courses can be made in a number of different ways. If you want to
avoid continuous spaces, a course on discrete planning can be offered from Sections
2.1–2.5, 9.1–9.5, 10.1–10.5, 11.1–11.3, 11.7, and 12.1–12.3. If you are interested
in teaching some game theory, there is roughly a chapter’s worth of material in
Sections 9.3–9.4, 10.5, 11.7, and 13.5. Material that contains the most prospects
for future research appears in Chapters 7, 8, 11, 12, and 14. In particular, research
on information spaces is still in its infancy.

xiii

Motion planning

Core: 2.1-2.2, 3.1-3.3, 4.1-4.3, 5.1-5.6, 6.1-6.3
Optional: 3.4-3.5, 4.4, 6.4-6.5, 7.1-7.7, 8.1-8.5
Planning under uncertainty

Core: 2.1-2.3, 9.1-9.2, 10.1-10.4, 11.1-11.6, 12.1-12.3
Optional: 9.3-9.5, 10.5-10.6, 11.7, 12.4-12.5
Planning under differential constraints

Core: 8.3, 13.1-13.3, 14.1-14.4, 15.1, 15.3-15.4
Optional: 13.4-13.5, 14.5-14.7, 15.2, 15.5

Figure 2: Based on Parts II, III, and IV, there are three themes of core material
and optional topics.

To facilitate teaching, there are more than 500 examples and exercises through-
out the book. The exercises in each chapter are divided into written problems and
implementation projects. For motion planning projects, students often become
bogged down with low-level implementation details. One possibility is to use the
Motion Strategy Library (MSL):

http://msl.cs.uiuc.edu/msl/

as an object-oriented software base on which to develop projects. I have had great
success with this for both graduate and undergraduate students.

For additional material, updates, and errata, see the Web page associated with
this book:

http://planning.cs.uiuc.edu/

You may also download a free electronic copy of this book for your own personal
use.

For further reading, consult the numerous references given at the end of chap-
ters and throughout the text. Most can be found with a quick search of the
Internet, but I did not give too many locations because these tend to be unstable
over time. Unfortunately, the literature surveys are shorter than I had originally
planned; thus, in some places, only a list of papers is given, which is often in-
complete. I have tried to make the survey of material in this book as impartial
as possible, but there is undoubtedly a bias in some places toward my own work.
This was difficult to avoid because my research efforts have been closely intertwined
with the development of this book.

Acknowledgments

I am very grateful to many students and colleagues who have given me extensive
feedback and advice in developing this text. It evolved over many years through the
development and teaching of courses at Stanford, Iowa State, and the University
of Illinois. These universities have been very supportive of my efforts.

xiv PREFACE

Many ideas and explanations throughout the book were inspired through nu-
merous collaborations. For this reason, I am particularly grateful to the helpful
insights and discussions that arose through collaborations with Michael Branicky,
Francesco Bullo, Jeff Erickson, Emilio Frazzoli, Rob Ghrist, Leo Guibas, Seth
Hutchinson, Lydia Kavraki, James Kuffner, Jean-Claude Latombe, Rajeev Mot-
wani, Rafael Murrieta, Rajeev Sharma, Thierry Siméon, and Giora Slutzki. Over
years of interaction, their ideas helped me to shape the perspective and presenta-
tion throughout the book.

Many valuable insights and observations were gained through collaborations
with students, especially Peng Cheng, Hamid Chitsaz, Prashanth Konkimalla, Ja-
son O’Kane, Steve Lindemann, Stjepan Rajko, Shai Sachs, Boris Simov, Benjamin
Tovar, Jeff Yakey, Libo Yang, and Anna Yershova. I am grateful for the opportu-
nities to work with them and appreciate their interaction as it helped to develop
my own understanding and perspective.

While writing the text, at many times I recalled being strongly influenced by
one or more technical discussions with colleagues. Undoubtedly, the following list
is incomplete, but, nevertheless, I would like to thank the following colleagues for
their helpful insights and stimulating discussions: Pankaj Agarwal, Srinivas Akella,
Nancy Amato, Devin Balkcom, Tamer Başar, Antonio Bicchi, Robert Bohlin, Joel
Burdick, Stefano Carpin, Howie Choset, Juan Cortés, Jerry Dejong, Bruce Donald,
Ignacy Duleba, Mike Erdmann, Roland Geraerts, Malik Ghallab, Ken Goldberg,
Pekka Isto, Vijay Kumar, Andrew Ladd, Jean-Paul Laumond, Kevin Lynch, Matt
Mason, Pascal Morin, David Mount, Dana Nau, Jean Ponce, Mark Overmars, Elon
Rimon, and Al Rizzi.

Many thanks go to Karl Bohringer, Marco Bressan, John Cassel, Stefano
Carpin, Peng Cheng, Hamid Chitsaz, Ignacy Duleba, Claudia Esteves, Brian
Gerkey, Ken Goldberg, Björn Hein, Sanjit Jhala, Marcelo Kallmann, Steve Kroon,
James Kuffner, Olivier Lefebvre, Mong Leng, Steve Lindemann, Dennis Nieuwen-
huisen, Jason O’Kane, Neil Petroff, Mihail Pivtoraiko, Stephane Redon, Gildardo
Sanchez, Wiktor Schmidt, Fabian Schöfeld, Robin Schubert, Sanketh Shetty, Mo-
han Sirchabesan, James Solberg, Domenico Spensieri, Kristian Spoerer, Tony
Stentz, Morten Strandberg, Ichiro Suzuki, Benjamin Tovar, Zbynek Winkler, Anna
Yershova, Jingjin Yu, George Zaimes, and Liangjun Zhang for pointing out numer-
ous mistakes in the on-line manuscript. I also appreciate the efforts of graduate
students in my courses who scribed class notes that served as an early draft for
some parts. These include students at Iowa State and the University of Illinois:
Peng Cheng, Brian George, Shamsi Tamara Iqbal, Xiaolei Li, Steve Lindemann,
Shai Sachs, Warren Shen, Rishi Talreja, Sherwin Tam, and Benjamin Tovar.

I sincerely thank Krzysztof Kozlowski and his staff, Joanna Gawecka, Wirginia
Król, and Marek Lawniczak, at the Politechnika Poznańska (Technical University
of Poznan) for all of their help and hospitality during my sabbatical in Poland.
I also thank Heather Hall for managing my U.S.-based professional life while I
lived in Europe. I am grateful to the National Science Foundation, the Office of

xv

Naval Research, and DARPA for research grants that helped to support some of
my sabbatical and summer time during the writing of this book. The Department
of Computer Science at the University of Illinois was also very generous in its
support of this huge effort.

I am very fortunate to have artistically talented friends. I am deeply indebted
to James Kuffner for creating the image on the front cover and to Audrey de
Malmazet de Saint Andeol for creating the art on the first page of each of the four
main parts.

Finally, I thank my editor, Lauren Cowles, my copy editor, Elise Oranges, and
the rest of the people involved with Cambridge University Press for their efforts
and advice in preparing the manuscript for publication.

Steve LaValle
Urbana, Illinois, U.S.A.

xvi PREFACE

Part I

Introductory Material

1

Chapter 1

Introduction

1.1 Planning to Plan

Planning is a term that means different things to different groups of people.
Robotics addresses the automation of mechanical systems that have sensing, actu-
ation, and computation capabilities (similar terms, such as autonomous systems
are also used). A fundamental need in robotics is to have algorithms that convert
high-level specifications of tasks from humans into low-level descriptions of how to
move. The terms motion planning and trajectory planning are often used for these
kinds of problems. A classical version of motion planning is sometimes referred to
as the Piano Mover’s Problem. Imagine giving a precise computer-aided design
(CAD) model of a house and a piano as input to an algorithm. The algorithm must
determine how to move the piano from one room to another in the house without
hitting anything. Most of us have encountered similar problems when moving a
sofa or mattress up a set of stairs. Robot motion planning usually ignores dynam-
ics and other differential constraints and focuses primarily on the translations and
rotations required to move the piano. Recent work, however, does consider other
aspects, such as uncertainties, differential constraints, modeling errors, and opti-
mality. Trajectory planning usually refers to the problem of taking the solution
from a robot motion planning algorithm and determining how to move along the
solution in a way that respects the mechanical limitations of the robot.

Control theory has historically been concerned with designing inputs to phys-
ical systems described by differential equations. These could include mechanical
systems such as cars or aircraft, electrical systems such as noise filters, or even sys-
tems arising in areas as diverse as chemistry, economics, and sociology. Classically,
control theory has developed feedback policies, which enable an adaptive response
during execution, and has focused on stability, which ensures that the dynamics
do not cause the system to become wildly out of control. A large emphasis is also
placed on optimizing criteria to minimize resource consumption, such as energy
or time. In recent control theory literature, motion planning sometimes refers to
the construction of inputs to a nonlinear dynamical system that drives it from an
initial state to a specified goal state. For example, imagine trying to operate a

3

4 S. M. LaValle: Planning Algorithms

remote-controlled hovercraft that glides over the surface of a frozen pond. Suppose
we would like the hovercraft to leave its current resting location and come to rest
at another specified location. Can an algorithm be designed that computes the
desired inputs, even in an ideal simulator that neglects uncertainties that arise
from model inaccuracies? It is possible to add other considerations, such as un-
certainties, feedback, and optimality; however, the problem is already challenging
enough without these.

In artificial intelligence, the terms planning and AI planning take on a more
discrete flavor. Instead of moving a piano through a continuous space, as in the
robot motion planning problem, the task might be to solve a puzzle, such as
the Rubik’s cube or a sliding-tile puzzle, or to achieve a task that is modeled
discretely, such as building a stack of blocks. Although such problems could be
modeled with continuous spaces, it seems natural to define a finite set of actions
that can be applied to a discrete set of states and to construct a solution by giving
the appropriate sequence of actions. Historically, planning has been considered
different from problem solving; however, the distinction seems to have faded away
in recent years. In this book, we do not attempt to make a distinction between the
two. Also, substantial effort has been devoted to representation language issues
in planning. Although some of this will be covered, it is mainly outside of our
focus. Many decision-theoretic ideas have recently been incorporated into the AI
planning problem, to model uncertainties, adversarial scenarios, and optimization.
These issues are important and are considered in detail in Part III.

Given the broad range of problems to which the term planning has been applied
in the artificial intelligence, control theory, and robotics communities, you might
wonder whether it has a specific meaning. Otherwise, just about anything could
be considered as an instance of planning. Some common elements for planning
problems will be discussed shortly, but first we consider planning as a branch of
algorithms. Hence, this book is entitled Planning Algorithms. The primary focus
is on algorithmic and computational issues of planning problems that have arisen
in several disciplines. On the other hand, this does not mean that planning algo-
rithms refers to an existing community of researchers within the general algorithms
community. This book it not limited to combinatorics and asymptotic complexity
analysis, which is the main focus in pure algorithms. The focus here includes nu-
merous concepts that are not necessarily algorithmic but aid in modeling, solving,
and analyzing planning problems.

Natural questions at this point are, What is a plan? How is a plan represented?
How is it computed? What is it supposed to achieve? How is its quality evaluated?
Who or what is going to use it? This chapter provides general answers to these
questions. Regarding the user of the plan, it clearly depends on the application.
In most applications, an algorithm executes the plan; however, the user could even
be a human. Imagine, for example, that the planning algorithm provides you with
an investment strategy.

In this book, the user of the plan will frequently be referred to as a robot or a
decision maker. In artificial intelligence and related areas, it has become popular

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 5

1 2 3 4

5 6 7 8

9 11 12

13

10

14 15

(a) (b)

Figure 1.1: The Rubik’s cube (a), sliding-tile puzzle (b), and other related puzzles
are examples of discrete planning problems.

in recent years to use the term agent, possibly with adjectives to yield an intelligent
agent or software agent. Control theory usually refers to the decision maker as a
controller. The plan in this context is sometimes referred to as a policy or control
law. In a game-theoretic context, it might make sense to refer to decision makers
as players. Regardless of the terminology used in a particular discipline, this book
is concerned with planning algorithms that find a strategy for one or more decision
makers. Therefore, remember that terms such as robot, agent, and controller are
interchangeable.

1.2 Motivational Examples and Applications

Planning problems abound. This section surveys several examples and applications
to inspire you to read further.

Why study planning algorithms? There are at least two good reasons. First, it
is fun to try to get machines to solve problems for which even humans have great
difficulty. This involves exciting challenges in modeling planning problems, design-
ing efficient algorithms, and developing robust implementations. Second, planning
algorithms have achieved widespread successes in several industries and academic
disciplines, including robotics, manufacturing, drug design, and aerospace appli-
cations. The rapid growth in recent years indicates that many more fascinating
applications may be on the horizon. These are exciting times to study planning
algorithms and contribute to their development and use.

Discrete puzzles, operations, and scheduling Chapter 2 covers discrete
planning, which can be applied to solve familiar puzzles, such as those shown in
Figure 1.1. They are also good at games such as chess or bridge [898]. Discrete
planning techniques have been used in space applications, including a rover that
traveled on Mars and the Earth Observing One satellite [207, 382, 896]. When

6 S. M. LaValle: Planning Algorithms

3 54

2

1

Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an
algorithm. The goal is to pull the two bars apart. This example is called the Alpha
1.0 Puzzle. It was created by Boris Yamrom and posted as a research benchmark
by Nancy Amato at Texas A&M University. This solution and animation were
made by James Kuffner (see [558] for the full movie).

combined with methods for planning in continuous spaces, they can solve compli-
cated tasks such as determining how to bend sheet metal into complicated objects
[419]; see Section 7.5 for the related problem of folding cartons.

A motion planning puzzle The puzzles in Figure 1.1 can be easily discretized
because of the regularity and symmetries involved in moving the parts. Figure 1.2
shows a problem that lacks these properties and requires planning in a continuous
space. Such problems are solved by using the motion planning techniques of Part
II. This puzzle was designed to frustrate both humans and motion planning algo-
rithms. It can be solved in a few minutes on a standard personal computer (PC)
using the techniques in Section 5.5. Many other puzzles have been developed as
benchmarks for evaluating planning algorithms.

An automotive assembly puzzle Although the problem in Figure 1.2 may
appear to be pure fun and games, similar problems arise in important applications.
For example, Figure 1.3 shows an automotive assembly problem for which software
is needed to determine whether a wiper motor can be inserted (and removed)
from the car body cavity. Traditionally, such a problem is solved by constructing
physical models. This costly and time-consuming part of the design process can
be virtually eliminated in software by directly manipulating the CAD models.

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 7

Figure 1.3: An automotive assembly task that involves inserting or removing a
windshield wiper motor from a car body cavity. This problem was solved for clients
using the motion planning software of Kineo CAM (courtesy of Kineo CAM).

The wiper example is just one of many. The most widespread impact on
industry comes from motion planning software developed at Kineo CAM. It has
been integrated into Robcad (eM-Workplace) from Tecnomatix, which is a leading
tool for designing robotic workcells in numerous factories around the world. Their
software has also been applied to assembly problems by Renault, Ford, Airbus,
Optivus, and many other major corporations. Other companies and institutions
are also heavily involved in developing and delivering motion planning tools for
industry (many are secret projects, which unfortunately cannot be described here).
One of the first instances of motion planning applied to real assembly problems is
documented in [186].

Sealing cracks in automotive assembly Figure 1.4 shows a simulation of
robots performing sealing at the Volvo Cars assembly plant in Torslanda, Sweden.
Sealing is the process of using robots to spray a sticky substance along the seams
of a car body to prevent dirt and water from entering and causing corrosion. The
entire robot workcell is designed using CAD tools, which automatically provide
the necessary geometric models for motion planning software. The solution shown
in Figure 1.4 is one of many problems solved for Volvo Cars and others using
motion planning software developed by the Fraunhofer Chalmers Centre (FCC).
Using motion planning software, engineers need only specify the high-level task of
performing the sealing, and the robot motions are computed automatically. This
saves enormous time and expense in the manufacturing process.

Moving furniture Returning to pure entertainment, the problem shown in Fig-
ure 1.5 involves moving a grand piano across a room using three mobile robots
with manipulation arms mounted on them. The problem is humorously inspired

8 S. M. LaValle: Planning Algorithms

Figure 1.4: An application of motion planning to the sealing process in automotive
manufacturing. Planning software developed by the Fraunhofer Chalmers Centre
(FCC) is used at the Volvo Cars plant in Sweden (courtesy of Volvo Cars and
FCC).

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 9

Figure 1.5: Using mobile robots to move a piano [244].

by the phrase Piano Mover’s Problem. Collisions between robots and with other
pieces of furniture must be avoided. The problem is further complicated because
the robots, piano, and floor form closed kinematic chains, which are covered in
Sections 4.4 and 7.4.

Navigating mobile robots Amore common task for mobile robots is to request
them to navigate in an indoor environment, as shown in Figure 1.6a. A robot might
be asked to perform tasks such as building a map of the environment, determining
its precise location within a map, or arriving at a particular place. Acquiring
and manipulating information from sensors is quite challenging and is covered in
Chapters 11 and 12. Most robots operate in spite of large uncertainties. At one
extreme, it may appear that having many sensors is beneficial because it could
allow precise estimation of the environment and the robot position and orientation.
This is the premise of many existing systems, as shown for the robot system in
Figure 1.7, which constructs a map of its environment. It may alternatively be
preferable to develop low-cost and reliable robots that achieve specific tasks with
little or no sensing. These trade-offs are carefully considered in Chapters 11 and

10 S. M. LaValle: Planning Algorithms

5

4

1

3

2

(a) (b)

Figure 1.6: (a) Several mobile robots attempt to successfully navigate in an indoor
environment while avoiding collisions with the walls and each other. (b) Imagine
using a lantern to search a cave for missing people.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: A mobile robot can reliably construct a good map of its environ-
ment (here, the Intel Research Lab) while simultaneously localizing itself. This
is accomplished using laser scanning sensors and performing efficient Bayesian
computations on the information space [351].

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 11

12. Planning under uncertainty is the focus of Part III.
If there are multiple robots, then many additional issues arise. How can the

robots communicate? How can their information be integrated? Should their
coordination be centralized or distributed? How can collisions between them be
avoided? Do they each achieve independent tasks, or are they required to collab-
orate in some way? If they are competing in some way, then concepts from game
theory may apply. Therefore, some game theory appears in Sections 9.3, 9.4, 10.5,
11.7, and 13.5.

Playing hide and seek One important task for a mobile robot is playing the
game of hide and seek. Imagine entering a cave in complete darkness. You are
given a lantern and asked to search for any people who might be moving about, as
shown in Figure 1.6b. Several questions might come to mind. Does a strategy even
exist that guarantees I will find everyone? If not, then how many other searchers
are needed before this task can be completed? Where should I move next? Can I
keep from exploring the same places multiple times? This scenario arises in many
robotics applications. The robots can be embedded in surveillance systems that
use mobile robots with various types of sensors (motion, thermal, cameras, etc.). In
scenarios that involve multiple robots with little or no communication, the strategy
could help one robot locate others. One robot could even try to locate another
that is malfunctioning. Outside of robotics, software tools can be developed that
assist people in systematically searching or covering complicated environments,
for applications such as law enforcement, search and rescue, toxic cleanup, and
in the architectural design of secure buildings. The problem is extremely difficult
because the status of the pursuit must be carefully computed to avoid unnecessarily
allowing the evader to sneak back to places already searched. The information-
space concepts of Chapter 11 become critical in solving the problem. For an
algorithmic solution to the hide-and-seek game, see Section 12.4.

Making smart video game characters The problem in Figure 1.6b might
remind you of a video game. In the arcade classic Pacman, the ghosts are pro-
grammed to seek the player. Modern video games involve human-like characters
that exhibit much more sophisticated behavior. Planning algorithms can enable
game developers to program character behaviors at a higher level, with the expec-
tation that the character can determine on its own how to move in an intelligent
way.

At present there is a large separation between the planning-algorithm and
video-game communities. Some developers of planning algorithms are recently
considering more of the particular concerns that are important in video games.
Video-game developers have to invest too much energy at present to adapt existing
techniques to their problems. For recent books that are geared for game developers,
see [152, 371].

12 S. M. LaValle: Planning Algorithms

Figure 1.8: Across the top, a motion computed by a planning algorithm, for a
digital actor to reach into a refrigerator [498]. In the lower left, a digital actor
plays chess with a virtual robot [544]. In the lower right, a planning algorithm
computes the motions of 100 digital actors moving across terrain with obstacles
[591].

Virtual humans and humanoid robots Beyond video games, there is broader
interest in developing virtual humans. See Figure 1.8. In the field of computer
graphics, computer-generated animations are a primary focus. Animators would
like to develop digital actors that maintain many elusive style characteristics of
human actors while at the same time being able to design motions for them from
high-level descriptions. It is extremely tedious and time consuming to specify all
motions frame-by-frame. The development of planning algorithms in this context
is rapidly expanding.

Why stop at virtual humans? The Japanese robotics community has inspired
the world with its development of advanced humanoid robots. In 1997, Honda
shocked the world by unveiling an impressive humanoid that could walk up stairs
and recover from lost balance. Since that time, numerous corporations and in-
stitutions have improved humanoid designs. Although most of the mechanical
issues have been worked out, two principle difficulties that remain are sensing and
planning. What good is a humanoid robot if it cannot be programmed to accept
high-level commands and execute them autonomously? Figure 1.9 shows work
from the University of Tokyo for which a plan computed in simulation for a hu-

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 13

(a) (b)

Figure 1.9: (a) This is a picture of the H7 humanoid robot and one of its developers,
S. Kagami. It was developed in the JSK Laboratory at the University of Tokyo.
(b) Bringing virtual reality and physical reality together. A planning algorithm
computes stable motions for a humanoid to grab an obstructed object on the floor
[561].

manoid robot is actually applied on a real humanoid. Figure 1.10 shows humanoid
projects from the Japanese automotive industry.

Parking cars and trailers The planning problems discussed so far have not
involved differential constraints, which are the main focus in Part IV. Consider
the problem of parking slow-moving vehicles, as shown in Figure 1.11. Most peo-
ple have a little difficulty with parallel parking a car and much greater difficulty
parking a truck with a trailer. Imagine the difficulty of parallel parking an airport
baggage train! See Chapter 13 for many related examples. What makes these
problems so challenging? A car is constrained to move in the direction that the
rear wheels are pointing. Maneuvering the car around obstacles therefore becomes
challenging. If all four wheels could turn to any orientation, this problem would
vanish. The term nonholonomic planning encompasses parking problems and many
others. Figure 1.12a shows a humorous driving problem. Figure 1.12b shows an
extremely complicated vehicle for which nonholonomic planning algorithms were
developed and applied in industry.

“Wreckless” driving Now consider driving the car at high speeds. As the speed
increases, the car must be treated as a dynamical system due to momentum. The
car is no longer able to instantaneously start and stop, which was reasonable for
parking problems. Although there exist planning algorithms that address such
issues, there are still many unsolved research problems. The impact on industry

14 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 1.10: Humanoid robots from the Japanese automotive industry: (a) The
latest Asimo robot from Honda can run at 3 km/hr (courtesy of Honda); (b)
planning is incorporated with vision in the Toyota humanoid so that it plans to
grasp objects [448].

has not yet reached the level achieved by ordinary motion planning, as shown in
Figures 1.3 and 1.4. By considering dynamics in the design process, performance
and safety evaluations can be performed before constructing the vehicle. Figure
1.13 shows a solution computed by a planning algorithm that determines how to
steer a car at high speeds through a town while avoiding collisions with build-
ings. A planning algorithm could even be used to assess whether a sports utility
vehicle tumbles sideways when stopping too quickly. Tremendous time and costs
can be spared by determining design flaws early in the development process via
simulations and planning. One related problem is verification, in which a me-
chanical system design must be thoroughly tested to make sure that it performs
as expected in spite of all possible problems that could go wrong during its use.
Planning algorithms can also help in this process. For example, the algorithm can
try to violently crash a vehicle, thereby establishing that a better design is needed.

Aside from aiding in the design process, planning algorithms that consider dy-
namics can be directly embedded into robotic systems. Figure 1.13b shows an
application that involves a difficult combination of most of the issues mentioned
so far. Driving across rugged, unknown terrain at high speeds involves dynam-
ics, uncertainties, and obstacle avoidance. Numerous unsolved research problems
remain in this context.

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 15

(a) (b)

Figure 1.11: Some parking illustrations from government manuals for driver test-
ing: (a) parking a car (from the 2005Missouri Driver Guide); (b) parking a tractor
trailer (published by the Pennsylvania Division of Motor Vehicles). Both humans
and planning algorithms can solve these problems.

Flying Through the Air or in Space Driving naturally leads to flying. Plan-
ning algorithms can help to navigate autonomous helicopters through obstacles.
They can also compute thrusts for a spacecraft so that collisions are avoided around
a complicated structure, such as a space station. In Section 14.1.3, the problem of
designing entry trajectories for a reusable spacecraft is described. Mission plan-
ning for interplanetary spacecraft, including solar sails, can even be performed
using planning algorithms [436].

Designing better drugs Planning algorithms are even impacting fields as far
away from robotics as computational biology. Two major problems are protein
folding and drug design. In both cases, scientists attempt to explain behaviors
in organisms by the way large organic molecules interact. Such molecules are
generally flexible. Drug molecules are small (see Figure 1.14), and proteins usually
have thousands of atoms. The docking problem involves determining whether a
flexible molecule can insert itself into a protein cavity, as shown in Figure 1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric
models are applied to molecules, the problem looks very similar to the assembly
problem in Figure 1.3 and can be solved by motion planning algorithms. See
Section 7.5 and the literature at the end of Chapter 7.

Perspective Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progressed from modeling, to
theoretical algorithms, to practical software that is used in industry. In other cases,
substantial research remains to bring planning methods to their full potential. The
future holds tremendous excitement for those who participate in the development
and application of planning algorithms.

16 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 1.12: (a) Having a little fun with differential constraints. An obstacle-
avoiding path is shown for a car that must move forward and can only turn left.
Could you have found such a solution on your own? This is an easy problem for
several planning algorithms. (b) This gigantic truck was designed to transport
portions of the Airbus A380 across France. Kineo CAM developed nonholonomic
planning software that plans routes through villages that avoid obstacles and sat-
isfy differential constraints imposed by 20 steering axles. Jean-Paul Laumond, a
pioneer of nonholonomic planning, is also pictured.

(a) (b)

Figure 1.13: Reckless driving: (a) Using a planning algorithm to drive a car quickly
through an obstacle course [199]. (b) A contender developed by the Red Team
from Carnegie Mellon University in the DARPA Grand Challenge for autonomous
vehicles driving at high speeds over rugged terrain (courtesy of the Red Team).

1.3. BASIC INGREDIENTS OF PLANNING 17

Caffeine Ibuprofen AutoDock

Nicotine THC AutoDock

Figure 1.14: On the left, several familiar drugs are pictured as ball-and-stick
models (courtesy of the New York University MathMol Library [734]). On the
right, 3D models of protein-ligand docking are shown from the AutoDock software
package (courtesy of the Scripps Research Institute).

1.3 Basic Ingredients of Planning

Although the subject of this book spans a broad class of models and problems,
there are several basic ingredients that arise throughout virtually all of the topics
covered as part of planning.

State Planning problems involve a state space that captures all possible situa-
tions that could arise. The state could, for example, represent the position and
orientation of a robot, the locations of tiles in a puzzle, or the position and ve-
locity of a helicopter. Both discrete (finite, or countably infinite) and continuous
(uncountably infinite) state spaces will be allowed. One recurring theme is that
the state space is usually represented implicitly by a planning algorithm. In most
applications, the size of the state space (in terms of number of states or combi-
natorial complexity) is much too large to be explicitly represented. Nevertheless,
the definition of the state space is an important component in the formulation of
a planning problem and in the design and analysis of algorithms that solve it.

Time All planning problems involve a sequence of decisions that must be applied
over time. Time might be explicitly modeled, as in a problem such as driving a
car as quickly as possible through an obstacle course. Alternatively, time may be
implicit, by simply reflecting the fact that actions must follow in succession, as
in the case of solving the Rubik’s cube. The particular time is unimportant, but
the proper sequence must be maintained. Another example of implicit time is a

18 S. M. LaValle: Planning Algorithms

solution to the Piano Mover’s Problem; the solution to moving the piano may be
converted into an animation over time, but the particular speed is not specified in
the plan. As in the case of state spaces, time may be either discrete or continuous.
In the latter case, imagine that a continuum of decisions is being made by a plan.

Actions A plan generates actions that manipulate the state. The terms actions
and operators are common in artificial intelligence; in control theory and robotics,
the related terms are inputs and controls. Somewhere in the planning formulation,
it must be specified how the state changes when actions are applied. This may be
expressed as a state-valued function for the case of discrete time or as an ordinary
differential equation for continuous time. For most motion planning problems,
explicit reference to time is avoided by directly specifying a path through a con-
tinuous state space. Such paths could be obtained as the integral of differential
equations, but this is not necessary. For some problems, actions could be chosen
by nature, which interfere with the outcome and are not under the control of the
decision maker. This enables uncertainty in predictability to be introduced into
the planning problem; see Chapter 10.

Initial and goal states A planning problem usually involves starting in some
initial state and trying to arrive at a specified goal state or any state in a set of
goal states. The actions are selected in a way that tries to make this happen.

A criterion This encodes the desired outcome of a plan in terms of the state
and actions that are executed. There are generally two different kinds of planning
concerns based on the type of criterion:

1. Feasibility: Find a plan that causes arrival at a goal state, regardless of its
efficiency.

2. Optimality: Find a feasible plan that optimizes performance in some care-
fully specified manner, in addition to arriving in a goal state.

For most of the problems considered in this book, feasibility is already challenging
enough; achieving optimality is considerably harder for most problems. There-
fore, much of the focus is on finding feasible solutions to problems, as opposed
to optimal solutions. The majority of literature in robotics, control theory, and
related fields focuses on optimality, but this is not necessarily important for many
problems of interest. In many applications, it is difficult to even formulate the
right criterion to optimize. Even if a desirable criterion can be formulated, it may
be impossible to obtain a practical algorithm that computes optimal plans. In
such cases, feasible solutions are certainly preferable to having no solutions at all.
Fortunately, for many algorithms the solutions produced are not too far from opti-
mal in practice. This reduces some of the motivation for finding optimal solutions.
For problems that involve probabilistic uncertainty, however, optimization arises

1.4. ALGORITHMS, PLANNERS, AND PLANS 19

more frequently. The probabilities are often utilized to obtain the best perfor-
mance in terms of expected costs. Feasibility is often associated with performing
a worst-case analysis of uncertainties.

A plan In general, a plan imposes a specific strategy or behavior on a decision
maker. A plan may simply specify a sequence of actions to be taken; however, it
could be more complicated. If it is impossible to predict future states, then the
plan can specify actions as a function of state. In this case, regardless of the future
states, the appropriate action is determined. Using terminology from other fields,
this enables feedback or reactive plans. It might even be the case that the state
cannot be measured. In this case, the appropriate action must be determined from
whatever information is available up to the current time. This will generally be
referred to as an information state, on which the actions of a plan are conditioned.

1.4 Algorithms, Planners, and Plans

Machine
State

1 10 1 0 1 10

Infinite Tape

Figure 1.15: According to the Church-Turing thesis, the notion of an algorithm is
equivalent to the notion of a Turing machine.

1.4.1 Algorithms

What is a planning algorithm? This is a difficult question, and a precise math-
ematical definition will not be given in this book. Instead, the general idea will
be explained, along with many examples of planning algorithms. A more basic
question is, What is an algorithm? One answer is the classical Turing machine
model, which is used to define an algorithm in theoretical computer science. A
Turing machine is a finite state machine with a special head that can read and
write along an infinite piece of tape, as depicted in Figure 1.15. The Church-
Turing thesis states that an algorithm is a Turing machine (see [462, 891] for more
details). The input to the algorithm is encoded as a string of symbols (usually
a binary string) and then is written to the tape. The Turing machine reads the
string, performs computations, and then decides whether to accept or reject the
string. This version of the Turing machine only solves decision problems; however,
there are straightforward extensions that can yield other desired outputs, such as
a plan.

20 S. M. LaValle: Planning Algorithms

Environment

Machine

Sensing

Actuation

M E

(a) (b)

Figure 1.16: (a) The boundary between machine and environment is considered as
an arbitrary line that may be drawn in many ways depending on the context. (b)
Once the boundary has been drawn, it is assumed that the machine, M , interacts
with the environment, E, through sensing and actuation.

The Turing model is reasonable for many of the algorithms in this book; how-
ever, others may not exactly fit. The trouble with using the Turing machine in
some situations is that plans often interact with the physical world. As indicated
in Figure 1.16, the boundary between the machine and the environment is an ar-
bitrary line that varies from problem to problem. Once drawn, sensors provide
information about the environment; this provides input to the machine during
execution. The machine then executes actions, which provides actuation to the
environment. The actuation may alter the environment in some way that is later
measured by sensors. Therefore, the machine and its environment are closely cou-
pled during execution. This is fundamental to robotics and many other fields in
which planning is used.

Using the Turing machine as a foundation for algorithms usually implies that
the physical world must be first carefully modeled and written on the tape before
the algorithm can make decisions. If changes occur in the world during execution
of the algorithm, then it is not clear what should happen. For example, a mobile
robot could be moving in a cluttered environment in which people are walking
around. As another example, a robot might throw an object onto a table without
being able to precisely predict how the object will come to rest. It can take
measurements of the results with sensors, but it again becomes a difficult task to
determine how much information should be explicitly modeled and written on the
tape. The on-line algorithm model is more appropriate for these kinds of problems
[510, 768, 892]; however, it still does not capture a notion of algorithms that is
broad enough for all of the topics of this book.

Processes that occur in a physical world are more complicated than the inter-
action between a state machine and a piece of tape filled with symbols. It is even
possible to simulate the tape by imagining a robot that interacts with a long row
of switches as depicted in Figure 1.17. The switches serve the same purpose as the
tape, and the robot carries a computer that can simulate the finite state machine.1

1Of course, having infinitely long tape seems impossible in the physical world. Other versions

1.4. ALGORITHMS, PLANNERS, AND PLANS 21

Infinite Row of Switches

Turing
Robot

Figure 1.17: A robot and an infinite sequence of switches could be used to simulate
a Turing machine. Through manipulation, however, many other kinds of behavior
could be obtained that fall outside of the Turing model.

The complicated interaction allowed between a robot and its environment could
give rise to many other models of computation.2 Thus, the term algorithm will be
used somewhat less formally than in the theory of computation. Both planners
and plans are considered as algorithms in this book.

1.4.2 Planners

A planner simply constructs a plan and may be a machine or a human. If the
planner is a machine, it will generally be considered as a planning algorithm. In
many circumstances it is an algorithm in the strict Turing sense; however, this
is not necessary. In some cases, humans become planners by developing a plan
that works in all situations. For example, it is perfectly acceptable for a human to
design a state machine that is connected to the environment (see Section 12.3.1).
There are no additional inputs in this case because the human fulfills the role of
the algorithm. The planning model is given as input to the human, and the human
“computes” a plan.

1.4.3 Plans

Once a plan is determined, there are three ways to use it:

1. Execution: Execute it either in simulation or in a mechanical device (robot)
connected to the physical world.

2. Refinement: Refine it into a better plan.

3. Hierarchical Inclusion: Package it as an action in a higher level plan.

Each of these will be explained in succession.

of Turing machines exist in which the tape is finite but as long as necessary to process the given
input. This may be more appropriate for the discussion.

2Performing computations with mechanical systems is discussed in [815]. Computation models
over the reals are covered in [118].

22 S. M. LaValle: Planning Algorithms

Sensing

Actuation

E

Planner

Plan

M Sensing

Actuation

E

Planner

Machine/
Plan

(a) (b)

Figure 1.18: (a) A planner produces a plan that may be executed by the machine.
The planner may either be a machine itself or even a human. (b) Alternatively,
the planner may design the entire machine.

Execution A plan is usually executed by a machine. A human could alterna-
tively execute it; however, the case of machine execution is the primary focus of
this book. There are two general types of machine execution. The first is depicted
in Figure 1.18a, in which the planner produces a plan, which is encoded in some
way and given as input to the machine. In this case, the machine is considered
programmable and can accept possible plans from a planner before execution. It
will generally be assumed that once the plan is given, the machine becomes au-
tonomous and can no longer interact with the planner. Of course, this model could
be extended to allow machines to be improved over time by receiving better plans;
however, we want a strict notion of autonomy for the discussion of planning in this
book. This approach does not prohibit the updating of plans in practice; however,
this is not preferred because plans should already be designed to take into account
new information during execution.

The second type of machine execution of a plan is depicted in Figure 1.18b.
In this case, the plan produced by the planner encodes an entire machine. The
plan is a special-purpose machine that is designed to solve the specific tasks given
originally to the planner. Under this interpretation, one may be a minimalist and
design the simplest machine possible that sufficiently solves the desired tasks. If
the plan is encoded as a finite state machine, then it can sometimes be considered
as an algorithm in the Turing sense (depending on whether connecting the machine
to a tape preserves its operation).

Refinement If a plan is used for refinement, then a planner accepts it as input
and determines a new plan that is hopefully an improvement. The new plan
may take more problem aspects into account, or it may simply be more efficient.
Refinement may be applied repeatedly, to produce a sequence of improved plans,
until the final one is executed. Figure 1.19 shows a refinement approach used
in robotics. Consider, for example, moving an indoor mobile robot. The first

1.4. ALGORITHMS, PLANNERS, AND PLANS 23

Design a feedback
control law that tracks
the trajectory

Design a trajectory
(velocity function)
along the path

Compute a collision-
free path

some differential
constraints

Geometric model
of the world

Execute the
feedback plan

Smooth it to satisfy

Figure 1.19: A refinement approach that has been used for decades in robotics.

M1 M2 E2

E1

Figure 1.20: In a hierarchical model, the environment of one machine may itself
contain a machine.

plan yields a collision-free path through the building. The second plan transforms
the route into one that satisfies differential constraints based on wheel motions
(recall Figure 1.11). The third plan considers how to move the robot along the
path at various speeds while satisfying momentum considerations. The fourth
plan incorporates feedback to ensure that the robot stays as close as possible to
the planned path in spite of unpredictable behavior. Further elaboration on this
approach and its trade-offs appears in Section 14.6.1.

Hierarchical inclusion Under hierarchical inclusion, a plan is incorporated as
an action in a larger plan. The original plan can be imagined as a subroutine
in the larger plan. For this to succeed, it is important for the original plan to
guarantee termination, so that the larger plan can execute more actions as needed.
Hierarchical inclusion can be performed any number of times, resulting in a rooted
tree of plans. This leads to a general model of hierarchical planning. Each vertex
in the tree is a plan. The root vertex represents the master plan. The children
of any vertex are plans that are incorporated as actions in the plan of the vertex.
There is no limit to the tree depth or number of children per vertex. In hierarchical
planning, the line between machine and environment is drawn in multiple places.
For example, the environment, E1, with respect to a machine, M1, might actually
include another machine, M2, that interacts with its environment, E2, as depicted
in Figure 1.20. Examples of hierarchical planning appear in Sections 7.3.2 and
12.5.1.

24 S. M. LaValle: Planning Algorithms

1.5 Organization of the Book

Here is a brief overview of the book. See also the overviews at the beginning of
Parts II–IV.
PART I: Introductory Material
This provides very basic background for the rest of the book.

• Chapter 1: Introductory Material
This chapter offers some general perspective and includes some motivational
examples and applications of planning algorithms.

• Chapter 2: Discrete Planning
This chapter covers the simplest form of planning and can be considered as
a springboard for entering into the rest of the book. From here, you can
continue to Part II, or even head straight to Part III. Sections 2.1 and 2.2
are most important for heading into Part II. For Part III, Section 2.3 is
additionally useful.

PART II: Motion Planning
The main source of inspiration for the problems and algorithms covered in this
part is robotics. The methods, however, are general enough for use in other appli-
cations in other areas, such as computational biology, computer-aided design, and
computer graphics. An alternative title that more accurately reflects the kind of
planning that occurs is “Planning in Continuous State Spaces.”

• Chapter 3: Geometric Representations and Transformations
The chapter gives important background for expressing a motion planning
problem. Section 3.1 describes how to construct geometric models, and the
remaining sections indicate how to transform them. Sections 3.1 and 3.2 are
important for later chapters.

• Chapter 4: The Configuration Space
This chapter introduces concepts from topology and uses them to formu-
late the configuration space, which is the state space that arises in motion
planning. Sections 4.1, 4.2, and 4.3.1 are important for understanding most
of the material in later chapters. In addition to the previously mentioned
sections, all of Section 4.3 provides useful background for the combinatorial
methods of Chapter 6.

• Chapter 5: Sampling-Based Motion Planning
This chapter introduces motion planning algorithms that have dominated
the literature in recent years and have been applied in fields both in and
out of robotics. If you understand the basic idea that the configuration
space represents a continuous state space, most of the concepts should be
understandable. They even apply to other problems in which continuous
state spaces emerge, in addition to motion planning and robotics. Chapter
14 revisits sampling-based planning, but under differential constraints.

1.5. ORGANIZATION OF THE BOOK 25

• Chapter 6: Combinatorial Motion Planning
The algorithms covered in this section are sometimes called exact algorithms
because they build discrete representations without losing any information.
They are complete, which means that they must find a solution if one exists;
otherwise, they report failure. The sampling-based algorithms have been
more useful in practice, but they only achieve weaker notions of completeness.

• Chapter 7: Extensions of Basic Motion Planning
This chapter introduces many problems and algorithms that are extensions
of the methods from Chapters 5 and 6. Most can be followed with basic un-
derstanding of the material from these chapters. Section 7.4 covers planning
for closed kinematic chains; this requires an understanding of the additional
material, from Section 4.4

• Chapter 8: Feedback Motion Planning
This is a transitional chapter that introduces feedback into the motion plan-
ning problem but still does not introduce differential constraints, which are
deferred until Part IV. The previous chapters of Part II focused on computing
open-loop plans, which means that any errors that might occur during execu-
tion of the plan are ignored, yet the plan will be executed as planned. Using
feedback yields a closed-loop plan that responds to unpredictable events dur-
ing execution.

PART III: Decision-Theoretic Planning
An alternative title to Part III is “Planning Under Uncertainty.” Most of Part III
addresses discrete state spaces, which can be studied immediately following Part
I. However, some sections cover extensions to continuous spaces; to understand
these parts, it will be helpful to have read some of Part II.

• Chapter 9: Basic Decision Theory
The main idea in this chapter is to design the best decision for a decision
maker that is confronted with interference from other decision makers. The
others may be true opponents in a game or may be fictitious in order to model
uncertainties. The chapter focuses on making a decision in a single step and
provides a building block for Part III because planning under uncertainty
can be considered as multi-step decision making.

• Chapter 10: Sequential Decision Theory
This chapter takes the concepts from Chapter 9 and extends them by chain-
ing together a sequence of basic decision-making problems. Dynamic pro-
gramming concepts from Section 2.3 become important here. For all of the
problems in this chapter, it is assumed that the current state is always known.
All uncertainties that exist are with respect to prediction of future states, as
opposed to measuring the current state.

26 S. M. LaValle: Planning Algorithms

• Chapter 11: Sensors and Information Spaces
The chapter extends the formulations of Chapter 10 into a framework for
planning when the current state is unknown during execution. Information
regarding the state is obtained from sensor observations and the memory of
actions that were previously applied. The information space serves a similar
purpose for problems with sensing uncertainty as the configuration space has
for motion planning.

• Chapter 12: Planning Under Sensing Uncertainty
This chapter covers several planning problems and algorithms that involve
sensing uncertainty. This includes problems such as localization, map build-
ing, pursuit-evasion, and manipulation. All of these problems are unified
under the idea of planning in information spaces, which follows from Chap-
ter 11.

PART IV: Planning Under Differential Constraints
This can be considered as a continuation of Part II. Here there can be both global
(obstacles) and local (differential) constraints on the continuous state spaces that
arise in motion planning. Dynamical systems are also considered, which yields
state spaces that include both position and velocity information (this coincides
with the notion of a state space in control theory or a phase space in physics and
differential equations).

• Chapter 13: Differential Models
This chapter serves as an introduction to Part IV by introducing numerous
models that involve differential constraints. This includes constraints that
arise from wheels rolling as well as some that arise from the dynamics of
mechanical systems.

• Chapter 14: Sampling-Based Planning Under Differential Con-
straints
Algorithms for solving planning problems under the models of Chapter 13
are presented. Many algorithms are extensions of methods from Chapter
5. All methods are sampling-based because very little can be accomplished
with combinatorial techniques in the context of differential constraints.

• Chapter 15: System Theory and Analytical Techniques
This chapter provides an overview of the concepts and tools developed mainly
in control theory literature. They are complementary to the algorithms
of Chapter 14 and often provide important insights or components in the
development of planning algorithms under differential constraints.

Chapter 2

Discrete Planning

This chapter provides introductory concepts that serve as an entry point into
other parts of the book. The planning problems considered here are the simplest
to describe because the state space will be finite in most cases. When it is not
finite, it will at least be countably infinite (i.e., a unique integer may be assigned
to every state). Therefore, no geometric models or differential equations will be
needed to characterize the discrete planning problems. Furthermore, no forms
of uncertainty will be considered, which avoids complications such as probability
theory. All models are completely known and predictable.

There are three main parts to this chapter. Sections 2.1 and 2.2 define and
present search methods for feasible planning, in which the only concern is to reach
a goal state. The search methods will be used throughout the book in numerous
other contexts, including motion planning in continuous state spaces. Following
feasible planning, Section 2.3 addresses the problem of optimal planning. The
principle of optimality, or the dynamic programming principle, [84] provides a key
insight that greatly reduces the computation effort in many planning algorithms.
The value-iteration method of dynamic programming is the main focus of Section
2.3. The relationship between Dijkstra’s algorithm and value iteration is also
discussed. Finally, Sections 2.4 and 2.5 describe logic-based representations of
planning and methods that exploit these representations to make the problem
easier to solve; material from these sections is not needed in later chapters.

Although this chapter addresses a form of planning, it encompasses what is
sometimes referred to as problem solving. Throughout the history of artificial
intelligence research, the distinction between problem solving [735] and planning
has been rather elusive. The widely used textbook by Russell and Norvig [839]
provides a representative, modern survey of the field of artificial intelligence. Two
of its six main parts are termed “problem-solving” and “planning”; however, their
definitions are quite similar. The problem-solving part begins by stating, “Problem
solving agents decide what to do by finding sequences of actions that lead to
desirable states” ([839], p. 59). The planning part begins with, “The task of
coming up with a sequence of actions that will achieve a goal is called planning”
([839], p. 375). Also, the STRIPS system [337] is widely considered as a seminal

27

28 S. M. LaValle: Planning Algorithms

planning algorithm, and the “PS” part of its name stands for “Problem Solver.”
Thus, problem solving and planning appear to be synonymous. Perhaps the term
“planning” carries connotations of future time, whereas “problem solving” sounds
somewhat more general. A problem-solving task might be to take evidence from a
crime scene and piece together the actions taken by suspects. It might seem odd
to call this a “plan” because it occurred in the past.

Since it is difficult to make clear distinctions between problem solving and
planning, we will simply refer to both as planning. This also helps to keep with
the theme of this book. Note, however, that some of the concepts apply to a
broader set of problems than what is often meant by planning.

2.1 Introduction to Discrete Feasible Planning

2.1.1 Problem Formulation

The discrete feasible planning model will be defined using state-space models,
which will appear repeatedly throughout this book. Most of these will be natural
extensions of the model presented in this section. The basic idea is that each
distinct situation for the world is called a state, denoted by x, and the set of all
possible states is called a state space, X. For discrete planning, it will be important
that this set is countable; in most cases it will be finite. In a given application,
the state space should be defined carefully so that irrelevant information is not
encoded into a state (e.g., a planning problem that involves moving a robot in
France should not encode information about whether certain light bulbs are on in
China). The inclusion of irrelevant information can easily convert a problem that
is amenable to efficient algorithmic solutions into one that is intractable. On the
other hand, it is important that X is large enough to include all information that
is relevant to solve the task.

The world may be transformed through the application of actions that are
chosen by the planner. Each action, u, when applied from the current state,
x, produces a new state, x′, as specified by a state transition function, f . It is
convenient to use f to express a state transition equation,

x′ = f(x, u). (2.1)

Let U(x) denote the action space for each state x, which represents the set of
all actions that could be applied from x. For distinct x, x′ ∈ X, U(x) and U(x′)
are not necessarily disjoint; the same action may be applicable in multiple states.
Therefore, it is convenient to define the set U of all possible actions over all states:

U =
⋃

x∈X
U(x). (2.2)

As part of the planning problem, a set XG ⊂ X of goal states is defined. The
task of a planning algorithm is to find a finite sequence of actions that when ap-

2.1. INTRODUCTION TO DISCRETE FEASIBLE PLANNING 29

plied, transforms the initial state xI to some state inXG. The model is summarized
as:

Formulation 2.1 (Discrete Feasible Planning)

1. A nonempty state space X, which is a finite or countably infinite set of states.

2. For each state x ∈ X, a finite action space U(x).

3. A state transition function f that produces a state f(x, u) ∈ X for every
x ∈ X and u ∈ U(x). The state transition equation is derived from f as
x′ = f(x, u).

4. An initial state xI ∈ X.

5. A goal set XG ⊂ X.

It is often convenient to express Formulation 2.1 as a directed state transition
graph. The set of vertices is the state space X. A directed edge from x ∈ X to
x′ ∈ X exists in the graph if and only if there exists an action u ∈ U(x) such that
x′ = f(x, u). The initial state and goal set are designated as special vertices in
the graph, which completes the representation of Formulation 2.1 in graph form.

2.1.2 Examples of Discrete Planning

Example 2.1 (Moving on a 2D Grid) Suppose that a robot moves on a grid
in which each grid point has integer coordinates of the form (i, j). The robot
takes discrete steps in one of four directions (up, down, left, right), each of which
increments or decrements one coordinate. The motions and corresponding state
transition graph are shown in Figure 2.1, which can be imagined as stepping from
tile to tile on an infinite tile floor.

This will be expressed using Formulation 2.1. Let X be the set of all integer
pairs of the form (i, j), in which i, j ∈ Z (Z denotes the set of all integers). Let
U = {(0, 1), (0,−1), (1, 0), (−1, 0)}. Let U(x) = U for all x ∈ X. The state
transition equation is f(x, u) = x + u, in which x ∈ X and u ∈ U are treated as
two-dimensional vectors for the purpose of addition. For example, if x = (3, 4)
and u = (0, 1), then f(x, u) = (3, 5). Suppose for convenience that the initial state
is xI = (0, 0). Many interesting goal sets are possible. Suppose, for example, that
XG = {(100, 100)}. It is easy to find a sequence of actions that transforms the
state from (0, 0) to (100, 100).

The problem can be made more interesting by shading in some of the square
tiles to represent obstacles that the robot must avoid, as shown in Figure 2.2. In
this case, any tile that is shaded has its corresponding vertex and associated edges
deleted from the state transition graph. An outer boundary can be made to fence
in a bounded region so that X becomes finite. Very complicated labyrinths can
be constructed. �

30 S. M. LaValle: Planning Algorithms

Figure 2.1: The state transition graph for an example problem that involves walk-
ing around on an infinite tile floor.

Example 2.2 (Rubik’s Cube Puzzle) Many puzzles can be expressed as dis-
crete planning problems. For example, the Rubik’s cube is a puzzle that looks like
an array of 3 × 3 × 3 little cubes, which together form a larger cube as shown in
Figure 1.1a (Section 1.2). Each face of the larger cube is painted one of six colors.
An action may be applied to the cube by rotating a 3 × 3 sheet of cubes by 90
degrees. After applying many actions to the Rubik’s cube, each face will generally
be a jumble of colors. The state space is the set of configurations for the cube
(the orientation of the entire cube is irrelevant). For each state there are 12 pos-
sible actions. For some arbitrarily chosen configuration of the Rubik’s cube, the
planning task is to find a sequence of actions that returns it to the configuration

Figure 2.2: Interesting planning problems that involve exploring a labyrinth can
be made by shading in tiles.

2.1. INTRODUCTION TO DISCRETE FEASIBLE PLANNING 31

in which each one of its six faces is a single color. �

It is important to note that a planning problem is usually specified without
explicitly representing the entire state transition graph. Instead, it is revealed
incrementally in the planning process. In Example 2.1, very little information
actually needs to be given to specify a graph that is infinite in size. If a planning
problem is given as input to an algorithm, close attention must be paid to the
encoding when performing a complexity analysis. For a problem in which X
is infinite, the input length must still be finite. For some interesting classes of
problems it may be possible to compactly specify a model that is equivalent to
Formulation 2.1. Such representation issues have been the basis of much research
in artificial intelligence over the past decades as different representation logics have
been proposed; see Section 2.4 and [382]. In a sense, these representations can be
viewed as input compression schemes.

Readers experienced in computer engineering might recognize that when X is
finite, Formulation 2.1 appears almost identical to the definition of a finite state
machine or Mealy/Moore machines. Relating the two models, the actions can
be interpreted as inputs to the state machine, and the output of the machine
simply reports its state. Therefore, the feasible planning problem (if X is finite)
may be interpreted as determining whether there exists a sequence of inputs that
makes a finite state machine eventually report a desired output. From a planning
perspective, it is assumed that the planning algorithm has a complete specification
of the machine transitions and is able to read its current state at any time.

Readers experienced with theoretical computer science may observe similar
connections to a deterministic finite automaton (DFA), which is a special kind of
finite state machine that reads an input string and makes a decision about whether
to accept or reject the string. The input string is just a finite sequence of inputs,
in the same sense as for a finite state machine. A DFA definition includes a set of
accept states, which in the planning context can be renamed to the goal set. This
makes the feasible planning problem (if X is finite) equivalent to determining
whether there exists an input string that is accepted by a given DFA. Usually, a
language is associated with a DFA, which is the set of all strings it accepts. DFAs
are important in the theory of computation because their languages correspond
precisely to regular expressions. The planning problem amounts to determining
whether the empty language is associated with the DFA.

Thus, there are several ways to represent and interpret the discrete feasible
planning problem that sometimes lead to a very compact, implicit encoding of the
problem. This issue will be revisited in Section 2.4. Until then, basic planning
algorithms are introduced in Section 2.2, and discrete optimal planning is covered
in Section 2.3.

32 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 2.3: (a) Many search algorithms focus too much on one direction, which
may prevent them from being systematic on infinite graphs. (b) If, for example,
the search carefully expands in wavefronts, then it becomes systematic. The re-
quirement to be systematic is that, in the limit, as the number of iterations tends
to infinity, all reachable vertices are reached.

2.2 Searching for Feasible Plans

The methods presented in this section are just graph search algorithms, but with
the understanding that the state transition graph is revealed incrementally through
the application of actions, instead of being fully specified in advance. The presenta-
tion in this section can therefore be considered as visiting graph search algorithms
from a planning perspective. An important requirement for these or any search
algorithms is to be systematic. If the graph is finite, this means that the algorithm
will visit every reachable state, which enables it to correctly declare in finite time
whether or not a solution exists. To be systematic, the algorithm should keep track
of states already visited; otherwise, the search may run forever by cycling through
the same states. Ensuring that no redundant exploration occurs is sufficient to
make the search systematic.

If the graph is infinite, then we are willing to tolerate a weaker definition for
being systematic. If a solution exists, then the search algorithm still must report it
in finite time; however, if a solution does not exist, it is acceptable for the algorithm
to search forever. This systematic requirement is achieved by ensuring that, in the
limit, as the number of search iterations tends to infinity, every reachable vertex
in the graph is explored. Since the number of vertices is assumed to be countable,
this must always be possible.

As an example of this requirement, consider Example 2.1 on an infinite tile
floor with no obstacles. If the search algorithm explores in only one direction, as

2.2. SEARCHING FOR FEASIBLE PLANS 33

FORWARD SEARCH
1 Q.Insert(xI) and mark xI as visited
2 while Q not empty do
3 x← Q.GetF irst()
4 if x ∈ XG

5 return SUCCESS
6 forall u ∈ U(x)
7 x′ ← f(x, u)
8 if x′ not visited
9 Mark x′ as visited
10 Q.Insert(x′)
11 else
12 Resolve duplicate x′

13 return FAILURE

Figure 2.4: A general template for forward search.

depicted in Figure 2.3a, then in the limit most of the space will be left uncovered,
even though no states are revisited. If instead the search proceeds outward from
the origin in wavefronts, as depicted in Figure 2.3b, then it may be systematic. In
practice, each search algorithm has to be carefully analyzed. A search algorithm
could expand in multiple directions, or even in wavefronts, but still not be system-
atic. If the graph is finite, then it is much simpler: Virtually any search algorithm
is systematic, provided that it marks visited states to avoid revisiting the same
states indefinitely.

2.2.1 General Forward Search

Figure 2.4 gives a general template of search algorithms, expressed using the state-
space representation. At any point during the search, there will be three kinds of
states:

1. Unvisited: States that have not been visited yet. Initially, this is every
state except xI .

2. Dead: States that have been visited, and for which every possible next state
has also been visited. A next state of x is a state x′ for which there exists a
u ∈ U(x) such that x′ = f(x, u). In a sense, these states are dead because
there is nothing more that they can contribute to the search; there are no
new leads that could help in finding a feasible plan. Section 2.3.3 discusses
a variant in which dead states can become alive again in an effort to obtain
optimal plans.

3. Alive: States that have been encountered, but possibly have unvisited next
states. These are considered alive. Initially, the only alive state is xI .

34 S. M. LaValle: Planning Algorithms

The set of alive states is stored in a priority queue, Q, for which a priority
function must be specified. The only significant difference between various search
algorithms is the particular function used to sort Q. Many variations will be
described later, but for the time being, it might be helpful to pick one. Therefore,
assume for now that Q is a common FIFO (First-In First-Out) queue; whichever
state has been waiting the longest will be chosen when Q.GetF irst() is called. The
rest of the general search algorithm is quite simple. Initially, Q contains the initial
state xI . A while loop is then executed, which terminates only when Q is empty.
This will only occur when the entire graph has been explored without finding
any goal states, which results in a FAILURE (unless the reachable portion of X
is infinite, in which case the algorithm should never terminate). In each while
iteration, the highest ranked element, x, of Q is removed. If x lies in XG, then it
reports SUCCESS and terminates; otherwise, the algorithm tries applying every
possible action, u ∈ U(x). For each next state, x′ = f(x, u), it must determine
whether x′ is being encountered for the first time. If it is unvisited, then it is
inserted into Q; otherwise, there is no need to consider it because it must be
either dead or already in Q.

The algorithm description in Figure 2.4 omits several details that often become
important in practice. For example, how efficient is the test to determine whether
x ∈ XG in line 4? This depends, of course, on the size of the state space and
on the particular representations chosen for x and XG. At this level, we do not
specify a particular method because the representations are not given.

One important detail is that the existing algorithm only indicates whether
a solution exists, but does not seem to produce a plan, which is a sequence of
actions that achieves the goal. This can be fixed by inserting a line after line
7 that associates with x′ its parent, x. If this is performed each time, one can
simply trace the pointers from the final state to the initial state to recover the
plan. For convenience, one might also store which action was taken, in addition
to the pointer from x′ to x.

Lines 8 and 9 are conceptually simple, but how can one tell whether x′ has
been visited? For some problems the state transition graph might actually be a
tree, which means that there are no repeated states. Although this does not occur
frequently, it is wonderful when it does because there is no need to check whether
states have been visited. If the states in X all lie on a grid, one can simply make
a lookup table that can be accessed in constant time to determine whether a state
has been visited. In general, however, it might be quite difficult because the state
x′ must be compared with every other state in Q and with all of the dead states.
If the representation of each state is long, as is sometimes the case, this will be
very costly. A good hashing scheme or another clever data structure can greatly
alleviate this cost, but in many applications the computation time will remain
high. One alternative is to simply allow repeated states, but this could lead to an
increase in computational cost that far outweighs the benefits. Even if the graph
is very small, search algorithms could run in time exponential in the size of the
state transition graph, or the search may not terminate at all, even if the graph is

2.2. SEARCHING FOR FEASIBLE PLANS 35

finite.
One final detail is that some search algorithms will require a cost to be com-

puted and associated with every state. If the same state is reached multiple times,
the cost may have to be updated, which is performed in line 12, if the particular
search algorithm requires it. Such costs may be used in some way to sort the
priority queue, or they may enable the recovery of the plan on completion of the
algorithm. Instead of storing pointers, as mentioned previously, the optimal cost
to return to the initial state could be stored with each state. This cost alone is suf-
ficient to determine the action sequence that leads to any visited state. Starting at
a visited state, the path back to xI can be obtained by traversing the state transi-
tion graph backward in a way that decreases the cost as quickly as possible in each
step. For this to succeed, the costs must have a certain monotonicity property,
which is obtained by Dijkstra’s algorithm and A∗ search, and will be introduced
in Section 2.2.2. More generally, the costs must form a navigation function, which
is considered in Section 8.2.2 as feedback is incorporated into discrete planning.

2.2.2 Particular Forward Search Methods

This section presents several search algorithms, each of which constructs a search
tree. Each search algorithm is a special case of the algorithm in Figure 2.4, ob-
tained by defining a different sorting function for Q. Most of these are just classical
graph search algorithms [243].

Breadth first The method given in Section 2.2.1 specifies Q as a First-In First-
Out (FIFO) queue, which selects states using the first-come, first-serve principle.
This causes the search frontier to grow uniformly and is therefore referred to as
breadth-first search. All plans that have k steps are exhausted before plans with
k + 1 steps are investigated. Therefore, breadth first guarantees that the first
solution found will use the smallest number of steps. On detection that a state
has been revisited, there is no work to do in line 12. Since the search progresses in
a series of wavefronts, breadth-first search is systematic. In fact, it even remains
systematic if it does not keep track of repeated states (however, it will waste time
considering irrelevant cycles).

The asymptotic running time of breadth-first search is O(|V |+ |E|), in which
|V | and |E| are the numbers of vertices and edges, respectively, in the state tran-
sition graph (recall, however, that the graph is usually not the input; for example,
the input may be the rules of the Rubik’s cube). This assumes that all basic
operations, such as determining whether a state has been visited, are performed
in constant time. In practice, these operations will typically require more time
and must be counted as part of the algorithm’s complexity. The running time
can be expressed in terms of the other representations. Recall that |V | = |X| is
the number of states. If the same actions U are available from every state, then
|E| = |U ||X|. If the action sets U(x1) and U(x2) are pairwise disjoint for any
x1, x2 ∈ X, then |E| = |U |.

36 S. M. LaValle: Planning Algorithms

Depth first By making Q a stack (Last-In, First-Out; or LIFO), aggressive ex-
ploration of the state transition graph occurs, as opposed to the uniform expansion
of breadth-first search. The resulting variant is called depth-first search because
the search dives quickly into the graph. The preference is toward investigating
longer plans very early. Although this aggressive behavior might seem desirable,
note that the particular choice of longer plans is arbitrary. Actions are applied in
the forall loop in whatever order they happen to be defined. Once again, if a state
is revisited, there is no work to do in line 12. Depth-first search is systematic for
any finite X but not for an infinite X because it could behave like Figure 2.3a. The
search could easily focus on one “direction” and completely miss large portions of
the search space as the number of iterations tends to infinity. The running time
of depth first search is also O(|V |+ |E|).

Dijkstra’s algorithm Up to this point, there has been no reason to prefer one
action over any other in the search. Section 2.3 will formalize optimal discrete
planning and will present several algorithms that find optimal plans. Before go-
ing into that, we present a systematic search algorithm that finds optimal plans
because it is also useful for finding feasible plans. The result is the well-known
Dijkstra’s algorithm for finding single-source shortest paths in a graph [273], which
is a special form of dynamic programming. More general dynamic programming
computations appear in Section 2.3 and throughout the book.

Suppose that every edge, e ∈ E, in the graph representation of a discrete plan-
ning problem has an associated nonnegative cost l(e), which is the cost to apply
the action. The cost l(e) could be written using the state-space representation as
l(x, u), indicating that it costs l(x, u) to apply action u from state x. The total
cost of a plan is just the sum of the edge costs over the path from the initial state
to a goal state.

The priority queue, Q, will be sorted according to a function C : X → [0,∞],
called the cost-to-come. For each state x, the value C∗(x) is called the optimal1

cost-to-come from the initial state xI . This optimal cost is obtained by summing
edge costs, l(e), over all possible paths from xI to x and using the path that
produces the least cumulative cost. If the cost is not known to be optimal, then
it is written as C(x).

The cost-to-come is computed incrementally during the execution of the search
algorithm in Figure 2.4. Initially, C∗(xI) = 0. Each time the state x′ is generated,
a cost is computed as C(x′) = C∗(x) + l(e), in which e is the edge from x to x′

(equivalently, we may write C(x′) = C∗(x) + l(x, u)). Here, C(x′) represents the
best cost-to-come that is known so far, but we do not write C∗ because it is not
yet known whether x′ was reached optimally. Due to this, some work is required in
line 12. If x′ already exists in Q, then it is possible that the newly discovered path
to x′ is more efficient. If so, then the cost-to-come value C(x′) must be lowered
for x′, and Q must be reordered accordingly.

1As in optimization literature, we will use ∗ to mean optimal.

2.2. SEARCHING FOR FEASIBLE PLANS 37

When does C(x) finally become C∗(x) for some state x? Once x is removed
from Q using Q.GetF irst(), the state becomes dead, and it is known that x cannot
be reached with a lower cost. This can be argued by induction. For the initial
state, C∗(xI) is known, and this serves as the base case. Now assume that every
dead state has its optimal cost-to-come correctly determined. This means that
their cost-to-come values can no longer change. For the first element, x, of Q, the
value must be optimal because any path that has a lower total cost would have
to travel through another state in Q, but these states already have higher costs.
All paths that pass only through dead states were already considered in producing
C(x). Once all edges leaving x are explored, then x can be declared as dead,
and the induction continues. This is not enough detail to constitute a proof of
optimality; more arguments appear in Section 2.3.3 and in [243]. The running time
is O(|V | lg |V |+ |E|), in which |V | and |E| are the numbers of edges and vertices,
respectively, in the graph representation of the discrete planning problem. This
assumes that the priority queue is implemented with a Fibonacci heap, and that
all other operations, such as determining whether a state has been visited, are
performed in constant time. If other data structures are used to implement the
priority queue, then higher running times may be obtained.

A-star The A∗ (pronounced “ay star”) search algorithm is an extension of Di-
jkstra’s algorithm that tries to reduce the total number of states explored by
incorporating a heuristic estimate of the cost to get to the goal from a given state.
Let C(x) denote the cost-to-come from xI to x, and let G(x) denote the cost-to-go
from x to some state in XG. It is convenient that C∗(x) can be computed in-
crementally by dynamic programming; however, there is no way to know the true
optimal cost-to-go, G∗, in advance. Fortunately, in many applications it is possible
to construct a reasonable underestimate of this cost. As an example of a typical
underestimate, consider planning in the labyrinth depicted in Figure 2.2. Suppose
that the cost is the total number of steps in the plan. If one state has coordinates
(i, j) and another has (i′, j′), then |i′− i|+ |j′− j| is an underestimate because this
is the length of a straightforward plan that ignores obstacles. Once obstacles are
included, the cost can only increase as the robot tries to get around them (which
may not even be possible). Of course, zero could also serve as an underestimate,
but that would not provide any helpful information to the algorithm. The aim is
to compute an estimate that is as close as possible to the optimal cost-to-go and
is also guaranteed to be no greater. Let Ĝ∗(x) denote such an estimate.

The A∗ search algorithm works in exactly the same way as Dijkstra’s algorithm.
The only difference is the function used to sort Q. In the A∗ algorithm, the sum
C∗(x′) + Ĝ∗(x′) is used, implying that the priority queue is sorted by estimates of

the optimal cost from xI to XG. If Ĝ
∗(x) is an underestimate of the true optimal

cost-to-go for all x ∈ X, the A∗ algorithm is guaranteed to find optimal plans
[337, 777]. As Ĝ∗ becomes closer to G∗, fewer vertices tend to be explored in
comparison with Dijkstra’s algorithm. This would always seem advantageous, but
in some problems it is difficult or impossible to find a heuristic that is both efficient

38 S. M. LaValle: Planning Algorithms

xI

xG

Figure 2.5: Here is a troublesome example for best-first search. Imagine trying to
reach a state that is directly below the spiral tube. If the initial state starts inside
of the opening at the top of the tube, the search will progress around the spiral
instead of leaving the tube and heading straight for the goal.

to evaluate and provides good search guidance. Note that when Ĝ∗(x) = 0 for all
x ∈ X, then A∗ degenerates to Dijkstra’s algorithm. In any case, the search will
always be systematic.

Best first For best-first search, the priority queue is sorted according to an
estimate of the optimal cost-to-go. The solutions obtained in this way are not
necessarily optimal; therefore, it does not matter whether the estimate exceeds
the true optimal cost-to-go, which was important to maintain optimality for A∗

search. Although optimal solutions are not found, in many cases, far fewer vertices
are explored, which results in much faster running times. There is no guarantee,
however, that this will happen. The worst-case performance of best-first search is
worse than that of A∗ search and dynamic programming. The algorithm is often
too greedy because it prefers states that “look good” very early in the search.
Sometimes the price must be paid for being greedy! Figure 2.5 shows a contrived
example in which the planning problem involves taking small steps in a 3D world.
For any specified number, k, of steps, it is easy to construct a spiral example that
wastes at least k steps in comparison to Dijkstra’s algorithm. Note that best-first

2.2. SEARCHING FOR FEASIBLE PLANS 39

search is not systematic.

Iterative deepening The iterative deepening approach is usually preferable if
the search tree has a large branching factor (i.e., there are many more vertices in
the next level than in the current level). This could occur if there are many actions
per state and only a few states are revisited. The idea is to use depth-first search
and find all states that are distance i or less from xI . If the goal is not found,
then the previous work is discarded, and depth first is applied to find all states
of distance i + 1 or less from xI . This generally iterates from i = 1 and proceeds
indefinitely until the goal is found. Iterative deepening can be viewed as a way of
converting depth-first search into a systematic search method. The motivation for
discarding the work of previous iterations is that the number of states reached for
i + 1 is expected to far exceed (e.g., by a factor of 10) the number reached for i.
Therefore, once the commitment has been made to reach level i + 1, the cost of
all previous iterations is negligible.

The iterative deepening method has better worst-case performance than breadth-
first search for many problems. Furthermore, the space requirements are reduced
because the queue in breadth-first search is usually much larger than for depth-
first search. If the nearest goal state is i steps from xI , breadth-first search in
the worst case might reach nearly all states of distance i + 1 before terminating
successfully. This occurs each time a state x 6∈ XG of distance i from xI is reached
because all new states that can be reached in one step are placed onto Q. The
A∗ idea can be combined with iterative deepening to yield IDA∗, in which i is
replaced by C∗(x′) + Ĝ∗(x′). In each iteration of IDA∗, the allowed total cost
gradually increases [777].

2.2.3 Other General Search Schemes

This section covers two other general templates for search algorithms. The first
one is simply a “backward” version of the tree search algorithm in Figure 2.4. The
second one is a bidirectional approach that grows two search trees, one from the
initial state and one from a goal state.

Backward search Backward versions of any of the forward search algorithms of
Section 2.2.2 can be made. For example, a backward version of Dijkstra’s algorithm
can be made by starting from xG. To create backward search algorithms, suppose
that there is a single goal state, xG. For many planning problems, it might be the
case that the branching factor is large when starting from xI . In this case, it might
be more efficient to start the search at a goal state and work backward until the
initial state is encountered. A general template for this approach is given in Figure
2.6. For forward search, recall that an action u ∈ U(x) is applied from x ∈ X to
obtain a new state, x′ = f(x, u). For backward search, a frequent computation
will be to determine for some x′, the preceding state x ∈ X, and action u ∈ U(x)
such that x′ = f(x, u). The template in Figure 2.6 can be extended to handle a

40 S. M. LaValle: Planning Algorithms

BACKWARD SEARCH
1 Q.Insert(xG) and mark xG as visited
2 while Q not empty do
3 x′ ← Q.GetF irst()
4 if x = xI
5 return SUCCESS
6 forall u−1 ∈ U−1(x)
7 x← f−1(x′, u−1)
8 if x not visited
9 Mark x as visited
10 Q.Insert(x)
11 else
12 Resolve duplicate x
13 return FAILURE

Figure 2.6: A general template for backward search.

goal region, XG, by inserting all xG ∈ XG into Q in line 1 and marking them as
visited.

For most problems, it may be preferable to precompute a representation of the
state transition function, f , that is “backward” to be consistent with the search
algorithm. Some convenient notation will now be constructed for the backward
version of f . Let U−1 = {(x, u) ∈ X ×U | x ∈ X, u ∈ U(x)}, which represents the
set of all state-action pairs and can also be considered as the domain of f . Imagine
from a given state x′ ∈ X, the set of all (x, u) ∈ U−1 that map to x′ using f . This
can be considered as a backward action space, defined formally for any x′ ∈ X as

U−1(x′) = {(x, u) ∈ U−1 | x′ = f(x, u)}. (2.3)

For convenience, let u−1 denote a state-action pair (x, u) that belongs to some
U−1(x′). From any u−1 ∈ U−1(x′), there is a unique x ∈ X. Thus, let f−1 denote
a backward state transition function that yields x from x′ and u−1 ∈ U−1(x′). This
defines a backward state transition equation, x = f−1(x′, u−1), which looks very
similar to the forward version, x′ = f(x, u).

The interpretation of f−1 is easy to capture in terms of the state transition
graph: reverse the direction of every edge. This makes finding a plan in the
reversed graph using backward search equivalent to finding one in the original
graph using forward search. The backward state transition function is the variant
of f that is obtained after reversing all of the edges. Each u−1 is a reversed edge.
Since there is a perfect symmetry with respect to the forward search of Section
2.2.1, any of the search algorithm variants from Section 2.2.2 can be adapted to
the template in Figure 2.6, provided that f−1 has been defined.

2.2. SEARCHING FOR FEASIBLE PLANS 41

Bidirectional search Now that forward and backward search have been cov-
ered, the next reasonable idea is to conduct a bidirectional search. The general
search template given in Figure 2.7 can be considered as a combination of the two
in Figures 2.4 and 2.6. One tree is grown from the initial state, and the other
is grown from the goal state (assume again that XG is a singleton, {xG}). The
search terminates with success when the two trees meet. Failure occurs if either
priority queue has been exhausted. For many problems, bidirectional search can
dramatically reduce the amount of required exploration. There are Dijkstra and
A∗ variants of bidirectional search, which lead to optimal solutions. For best-
first and other variants, it may be challenging to ensure that the two trees meet
quickly. They might come very close to each other and then fail to connect. Addi-
tional heuristics may help in some settings to guide the trees into each other. One
can even extend this framework to allow any number of search trees. This may
be desirable in some applications, but connecting the trees becomes even more
complicated and expensive.

2.2.4 A Unified View of the Search Methods

It is convenient to summarize the behavior of all search methods in terms of
several basic steps. Variations of these steps will appear later for more complicated
planning problems. For example, in Section 5.4, a large family of sampling-based
motion planning algorithms can be viewed as an extension of the steps presented
here. The extension in this case is made from a discrete state space to a continuous
state space (called the configuration space). Each method incrementally constructs
a search graph, G(V,E), which is the subgraph of the state transition graph that
has been explored so far.

All of the planning methods from this section followed the same basic template:

1. Initialization: Let the search graph, G(V,E), be initialized with E empty
and V containing some starting states. For forward search, V = {xI}; for
backward search, V = {xG}. If bidirectional search is used, then V =
{xI , xG}. It is possible to grow more than two trees and merge them during
the search process. In this case, more states can be initialized in V . The
search graph will incrementally grow to reveal more and more of the state
transition graph.

2. Select Vertex: Choose a vertex ncur ∈ V for expansion; this is usually
accomplished by maintaining a priority queue. Let xcur denote the state
associated with ncur.

3. Apply an Action: In either a forward or backward direction, a new state,
xnew, is obtained. This may arise from xnew = f(x, u) for some u ∈ U(x)
(forward) or x = f(xnew, u) for some u ∈ U(xnew) (backward).

4. Insert a Directed Edge into the Graph: If certain algorithm-specific
tests are passed, then generate an edge from x to xnew for the forward case,

42 S. M. LaValle: Planning Algorithms

BIDIRECTIONAL SEARCH
1 QI .Insert(xI) and mark xI as visited
2 QG.Insert(xG) and mark xG as visited
3 while QI not empty and QG not empty do
4 if QI not empty
5 x← QI .GetF irst()
6 if x already visited from xG
7 return SUCCESS
8 forall u ∈ U(x)
9 x′ ← f(x, u)
10 if x′ not visited
11 Mark x′ as visited
12 QI .Insert(x

′)
13 else
14 Resolve duplicate x′

15 if QG not empty
16 x′ ← QG.GetF irst()
17 if x′ already visited from xI
18 return SUCCESS
19 forall u−1 ∈ U−1(x′)
20 x← f−1(x′, u−1)
21 if x not visited
22 Mark x as visited
23 QG.Insert(x)
24 else
25 Resolve duplicate x
26 return FAILURE

Figure 2.7: A general template for bidirectional search.

2.3. DISCRETE OPTIMAL PLANNING 43

or an edge from xnew to x for the backward case. If xnew is not yet in V , it
will be inserted into V .2

5. Check for Solution: Determine whether G encodes a path from xI to xG.
If there is a single search tree, then this is trivial. If there are two or more
search trees, then this step could be expensive.

6. Return to Step 2: Iterate unless a solution has been found or an early
termination condition is satisfied, in which case the algorithm reports failure.

Note that in this summary, several iterations may have to be made to generate
one iteration in the previous formulations. The forward search algorithm in Figure
2.4 tries all actions for the first element ofQ. If there are k actions, this corresponds
to k iterations in the template above.

2.3 Discrete Optimal Planning

This section extends Formulation 2.1 to allow optimal planning problems to be
defined. Rather than being satisfied with any sequence of actions that leads to the
goal set, suppose we would like a solution that optimizes some criterion, such as
time, distance, or energy consumed. Three important extensions will be made: 1)
A stage index will be used to conveniently indicate the current plan step; 2) a cost
functional will be introduced, which behaves like a taxi meter by indicating how
much cost accumulates during the plan execution; and 3) a termination action will
be introduced, which intuitively indicates when it is time to stop the plan and fix
the total cost.

The presentation involves three phases. First, the problem of finding optimal
paths of a fixed length is covered in Section 2.3.1. The approach, called value
iteration, involves iteratively computing optimal cost-to-go functions over the state
space. Although this case is not very useful by itself, it is much easier to understand
than the general case of variable-length plans. Once the concepts from this section
are understood, their extension to variable-length plans will be much clearer and
is covered in Section 2.3.2. Finally, Section 2.3.3 explains the close relationship
between value iteration and Dijkstra’s algorithm, which was covered in Section
2.2.1.

With nearly all optimization problems, there is the arbitrary, symmetric choice
of whether to define a criterion to minimize or maximize. If the cost is a kind of
energy or expense, then minimization seems sensible, as is typical in robotics
and control theory. If the cost is a kind of reward, as in investment planning or
in most AI books, then maximization is preferred. Although this issue remains
throughout the book, we will choose to minimize everything. If maximization is
instead preferred, then multiplying the costs by −1 and swapping minimizations
with maximizations should suffice.

2In some variations, the vertex could be added without a corresponding edge. This would
start another tree in a multiple-tree approach

44 S. M. LaValle: Planning Algorithms

The fixed-length optimal planning formulation will be given shortly, but first
we introduce some new notation. Let πK denote aK-step plan, which is a sequence
(u1, u2, . . ., uK) of K actions. If πK and xI are given, then a sequence of states,
(x1, x2, . . ., xK+1), can be derived using the state transition function, f . Initially,
x1 = xI , and each subsequent state is obtained by xk+1 = f(xk, uk).

The model is now given; the most important addition with respect to Formu-
lation 2.1 is L, the cost functional.

Formulation 2.2 (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U(x),
f , xI , and XG, except here it is assumed that X is finite (some algorithms
may easily extend to the case in which X is countably infinite, but this will
not be considered here).

2. A number, K, of stages, which is the exact length of a plan (measured as the
number of actions, u1, u2, . . ., uK). States may also obtain a stage index.
For example, xk+1 denotes the state obtained after uk is applied.

3. Let L denote a stage-additive cost (or loss) functional, which is applied to a
K-step plan, πK . This means that the sequence (u1, . . . , uK) of actions and
the sequence (x1, . . . , xK+1) of states may appear in an expression of L. For
convenience, let F denote the final stage, F = K + 1 (the application of uK
advances the stage to K + 1). The cost functional is

L(πK) =
K∑

k=1

l(xk, uk) + lF (xF). (2.4)

The cost term l(xk, uk) yields a real value for every xk ∈ X and uk ∈ U(xk).
The final term lF (xF) is outside of the sum and is defined as lF (xF) = 0 if
xF ∈ XG, and lF (xF) =∞ otherwise.

An important comment must be made regarding lF . Including lF in (2.4) is
actually unnecessary if it is agreed in advance that L will only be applied to eval-
uate plans that reach XG. It would then be undefined for all other plans. The
algorithms to be presented shortly will also function nicely under this assumption;
however, the notation and explanation can become more cumbersome because the
action space must always be restricted to ensure that successful plans are pro-
duced. Instead of this, the domain of L is extended to include all plans, and those
that do not reach XG are penalized with infinite cost so that they are eliminated
automatically in any optimization steps. At some point, the role of lF may become
confusing, and it is helpful to remember that it is just a trick to convert feasibility
constraints into a straightforward optimization (L(πK) = ∞ means not feasible
and L(πK) <∞ means feasible with cost L(πK)).

Now the task is to find a plan that minimizes L. To obtain a feasible planning
problem like Formulation 2.1 but restricted to K-step plans, let l(x, u) ≡ 0. To

2.3. DISCRETE OPTIMAL PLANNING 45

obtain a planning problem that requires minimizing the number of stages, let
l(x, u) ≡ 1. The possibility also exists of having goals that are less “crisp” by
letting lF (x) vary for different x ∈ XG, as opposed to lF (x) = 0. This is much
more general than what was allowed with feasible planning because now states
may take on any value, as opposed to being classified as inside or outside of XG.

2.3.1 Optimal Fixed-Length Plans

Consider computing an optimal plan under Formulation 2.2. One could naively
generate all length-K sequences of actions and select the sequence that produces
the best cost, but this would require O(|U |K) running time (imagine K nested
loops, one for each stage), which is clearly prohibitive. Luckily, the dynamic
programming principle helps. We first say in words what will appear later in
equations. The main observation is that portions of optimal plans are themselves
optimal. It would be absurd to be able to replace a portion of an optimal plan
with a portion that produces lower total cost; this contradicts the optimality of
the original plan.

The principle of optimality leads directly to an iterative algorithm, called value
iteration,3 that can solve a vast collection of optimal planning problems, including
those that involve variable-length plans, stochastic uncertainties, imperfect state
measurements, and many other complications. The idea is to iteratively compute
optimal cost-to-go (or cost-to-come) functions over the state space. In some cases,
the approach can be reduced to Dijkstra’s algorithm; however, this only occurs
under some special conditions. The value-iteration algorithm will be presented
next, and Section 2.3.3 discusses its connection to Dijkstra’s algorithm.

2.3.1.1 Backward value iteration

As for the search methods, there are both forward and backward versions of the
approach. The backward case will be covered first. Even though it may appear
superficially to be easier to progress from xI , it turns out that progressing backward
from XG is notationally simpler. The forward case will then be covered once some
additional notation is introduced.

The key to deriving long optimal plans from shorter ones lies in the construction
of optimal cost-to-go functions over X. For k from 1 to F , let G∗

k denote the cost
that accumulates from stage k to F under the execution of the optimal plan:

G∗
k(xk) = min

uk,...,uK

{
K∑

i=k

l(xi, ui) + lF (xF)

}

. (2.5)

Inside of the min of (2.5) are the last F − k terms of the cost functional, (2.4).
The optimal cost-to-go for the boundary condition of k = F reduces to

G∗
F (xF) = lF (xF). (2.6)

3The “value” here refers to the optimal cost-to-go or cost-to-come. Therefore, an alternative
name could be cost-to-go iteration.

46 S. M. LaValle: Planning Algorithms

This makes intuitive sense: Since there are no stages in which an action can be
applied, the final stage cost is immediately received.

Now consider an algorithm that makes K passes over X, each time computing
G∗
k from G∗

k+1, as k ranges from F down to 1. In the first iteration, G∗
F is copied

from lF without significant effort. In the second iteration, G∗
K is computed for

each xK ∈ X as

G∗
K(xK) = min

uK

{

l(xK , uK) + lF (xF)
}

. (2.7)

Since lF = G∗
F and xF = f(xK , uK), substitutions can be made into (2.7) to obtain

G∗
K(xK) = min

uK

{

l(xK , uK) +G∗
F (f(xK , uK))

}

, (2.8)

which is straightforward to compute for each xK ∈ X. This computes the costs of
all optimal one-step plans from stage K to stage F = K + 1.

It will be shown next that G∗
k can be computed similarly once G∗

k+1 is given.
Carefully study (2.5) and note that it can be written as

G∗
k(xk) = min

uk

{

min
uk+1,...,uK

{

l(xk, uk) +
K∑

i=k+1

l(xi, ui) + lF (xF)

}}

(2.9)

by pulling the first term out of the sum and by separating the minimization over
uk from the rest, which range from uk+1 to uK . The second min does not affect
the l(xk, uk) term; thus, l(xk, uk) can be pulled outside to obtain

G∗
k(xk) = min

uk

{

l(xk, uk) + min
uk+1,...,uK

{
K∑

i=k+1

l(xi, ui) + lF (xF)

}}

. (2.10)

The inner min is exactly the definition of the optimal cost-to-go function G∗
k+1.

Upon substitution, this yields the recurrence

G∗
k(xk) = min

uk

{

l(xk, uk) +G∗
k+1(xk+1)

}

, (2.11)

in which xk+1 = f(xk, uk). Now that the right side of (2.11) depends only on
xk, uk, and G

∗
k+1, the computation of G∗

k easily proceeds in O(|X||U |) time. This
computation is called a value iteration. Note that in each value iteration, some
states receive an infinite value only because they are not reachable; a (K − k)-
step plan from xk to XG does not exist. This means that there are no actions,
uk ∈ U(xk), that bring xk to a state xk+1 ∈ X from which a (K − k− 1)-step plan
exists that terminates in XG.

Summarizing, the value iterations proceed as follows:

G∗
F → G∗

K → G∗
K−1 · · · G∗

k → G∗
k−1 · · · G∗

2 → G∗
1 (2.12)

until finally G∗
1 is determined after O(K|X||U |) time. The resulting G∗

1 may be
applied to yield G∗

1(xI), the optimal cost to go to the goal from xI . It also con-
veniently gives the optimal cost-to-go from any other initial state. This cost is
infinity for states from which XG cannot be reached in K stages.

2.3. DISCRETE OPTIMAL PLANNING 47

1 112

4

1 1

ba c2 d e

Figure 2.8: A five-state example. Each vertex represents a state, and each edge
represents an input that can be applied to the state transition equation to change
the state. The weights on the edges represent l(xk, uk) (xk is the originating vertex
of the edge).

a b c d e

G∗
5 ∞ ∞ ∞ 0 ∞

G∗
4 ∞ 4 1 ∞ ∞

G∗
3 6 2 ∞ 2 ∞

G∗
2 4 6 3 ∞ ∞

G∗
1 6 4 5 4 ∞

Figure 2.9: The optimal cost-to-go functions computed by backward value itera-
tion.

It seems convenient that the cost of the optimal plan can be computed so easily,
but how is the actual plan extracted? One possibility is to store the action that
satisfied the min in (2.11) from every state, and at every stage. Unfortunately,
this requires O(K|X|) storage, but it can be reduced to O(|X|) using the tricks to
come in Section 2.3.2 for the more general case of variable-length plans.

Example 2.3 (A Five-State Optimal Planning Problem) Figure 2.8 shows
a graph representation of a planning problem in which X = {a, c, b, d, e}. Suppose
that K = 4, xI = a, and XG = {d}. There will hence be four value iterations,
which construct G∗

4, G
∗
3, G

∗
2, and G

∗
1, once the final-stage cost-to-go, G∗

5, is given.
The cost-to-go functions are shown in Figure 2.9. Figures 2.10 and 2.11 il-

ba c d e

ba c d e

2 2 1

1

1 1

14

Figure 2.10: The possibilities for advancing forward one stage. This is obtained
by making two copies of the states from Figure 2.8, one copy for the current state
and one for the potential next state.

48 S. M. LaValle: Planning Algorithms

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

d

b

c

e

a

Figure 2.11: By turning Figure 2.10 sideways and copying it K times, a graph
can be drawn that easily shows all of the ways to arrive at a final state from an
initial state by flowing from left to right. The computations automatically select
the optimal route.

lustrate the computations. For computing G∗
4, only b and c receive finite values

because only they can reach d in one stage. For computing G∗
3, only the values

G∗
4(b) = 4 and G∗

4(c) = 1 are important. Only paths that reach b or c can possibly
lead to d in stage k = 5. Note that the minimization in (2.11) always chooses the
action that produces the lowest total cost when arriving at a vertex in the next
stage. �

2.3.1.2 Forward value iteration

The ideas from Section 2.3.1.1 may be recycled to yield a symmetrically equiva-
lent method that computes optimal cost-to-come functions from the initial stage.
Whereas backward value iterations were able to find optimal plans from all initial
states simultaneously, forward value iterations can be used to find optimal plans
to all states in X. In the backward case, XG must be fixed, and in the forward
case, xI must be fixed.

The issue of maintaining feasible solutions appears again. In the forward di-

2.3. DISCRETE OPTIMAL PLANNING 49

rection, the role of lF is not important. It may be applied in the last iteration, or
it can be dropped altogether for problems that do not have a predetermined XG.
However, one must force all plans considered by forward value iteration to origi-
nate from xI . We again have the choice of either making notation that imposes
constraints on the action spaces or simply adding a term that forces infeasible
plans to have infinite cost. Once again, the latter will be chosen here.

Let C∗
k denote the optimal cost-to-come from stage 1 to stage k, optimized over

all (k − 1)-step plans. To preclude plans that do not start at xI , the definition of
C∗

1 is given by
C∗

1(x1) = lI(x1), (2.13)

in which lI is a new function that yields lI(xI) = 0, and lI(x) =∞ for all x 6= xI .
Thus, any plans that try to start from a state other than xI will immediately
receive infinite cost.

For an intermediate stage, k ∈ {2, . . . , K}, the following represents the optimal
cost-to-come:

C∗
k(xk) = min

u1,...,uk−1

{

lI(x1) +
k−1∑

i=1

l(xi, ui)

}

. (2.14)

Note that the sum refers to a sequence of states, x1, . . . , xk−1, which is the result
of applying the action sequence (u1, . . . , uk−2). The last state, xk, is not included
because its cost term, l(xk, uk), requires the application of an action, uk, which
has not been chosen. If it is possible to write the cost additively, as l(xk, uk) =
l1(xk)+l2(uk), then the l1(xk) part could be included in the cost-to-come definition,
if desired. This detail will not be considered further.

As in (2.5), it is assumed in (2.14) that ui ∈ U(xi) for every i ∈ {1, . . . , k− 1}.
The resulting xk, obtained after applying uk−1, must be the same xk that is named
in the argument on the left side of (2.14). It might appear odd that x1 appears
inside of the min above; however, this is not a problem. The state x1 can be
completely determined once u1, . . . , uk−1 and xk are given.

The final forward value iteration is the arrival at the final stage, F . The cost-
to-come in this case is

C∗
F (xF) = min

u1,...,uK

{

lI(x1) +
K∑

i=1

l(xi, ui)

}

. (2.15)

This equation looks the same as (2.5) after substituting k = 1; however, lI is used
here instead of lF . This has the effect of filtering the plans that are considered
to include only those that start at xI . The forward value iterations find optimal
plans to any reachable final state from xI . This behavior is complementary to that
of backward value iteration. In that case, XG was fixed, and optimal plans from
any initial state were found. For forward value iteration, this is reversed.

To express the dynamic-programming recurrence, one further issue remains.
Suppose that C∗

k−1 is known by induction, and we want to compute C∗
k(xk) for

a particular xk. This means that we must start at some state xk−1 and arrive

50 S. M. LaValle: Planning Algorithms

a b c d e

C∗
1 0 ∞ ∞ ∞ ∞

C∗
2 2 2 ∞ ∞ ∞

C∗
3 4 4 3 6 ∞

C∗
4 4 6 5 4 7

C∗
5 6 6 5 6 5

Figure 2.12: The optimal cost-to-come functions computed by forward value iter-
ation.

in state xk by applying some action. Once again, the backward state transition
equation from Section 2.2.3 is useful. Using the stage indices, it is written here as
xk−1 = f−1(xk, u

−1
k).

The recurrence is

C∗
k(xk) = min

u−1
k

∈U−1(xk)

{

C∗
k−1(xk−1) + l(xk−1, uk−1)

}

, (2.16)

in which xk−1 = f−1(xk, u
−1
k) and uk−1 ∈ U(xk−1) is the input to which u−1

k ∈
U−1(xk) corresponds. Using (2.16), the final cost-to-come is iteratively computed
in O(K|X||U |) time, as in the case of computing the first-stage cost-to-go in the
backward value-iteration method.

Example 2.4 (Forward Value Iteration) Example 2.3 is revisited for the case
of forward value iterations with a fixed plan length of K = 4. The cost-to-come
functions shown in Figure 2.12 are obtained by direct application of (2.16). It will
be helpful to refer to Figures 2.10 and 2.11 once again. The first row corresponds
to the immediate application of lI . In the second row, finite values are obtained
for a and b, which are reachable in one stage from xI = a. The iterations continue
until k = 5, at which point that optimal cost-to-come is determined for every
state. �

2.3.2 Optimal Plans of Unspecified Lengths

The value-iteration method for fixed-length plans can be generalized nicely to the
case in which plans of different lengths are allowed. There will be no bound on
the maximal length of a plan; therefore, the current case is truly a generalization
of Formulation 2.1 because arbitrarily long plans may be attempted in efforts to
reach XG. The model for the general case does not require the specification of K
but instead introduces a special action, uT .

Formulation 2.3 (Discrete Optimal Planning)

2.3. DISCRETE OPTIMAL PLANNING 51

1. All of the components from Formulation 2.1 are inherited directly: X, U(x),
f , xI , and XG. Also, the notion of stages from Formulation 2.2 is used.

2. Let L denote a stage-additive cost functional, which may be applied to any
K-step plan, πK , to yield

L(πK) =
K∑

k=1

l(xk, uk) + lF (xF). (2.17)

In comparison with L from Formulation 2.2, the present expression does not
consider K as a predetermined constant. It will now vary, depending on the
length of the plan. Thus, the domain of L is much larger.

3. Each U(x) contains the special termination action, uT . If uT is applied at xk,
then the action is repeatedly applied forever, the state remains unchanged,
and no more cost accumulates. Thus, for all i ≥ k, ui = uT , xi = xk, and
l(xi, uT) = 0.

The termination action is the key to allowing plans of different lengths. It will
appear throughout this book. Suppose that value iterations are performed up to
K = 5, and for the problem there exists a two-step solution plan, (u1, u2), that ar-
rives inXG from xI . This plan is equivalent to the five-step plan (u1, u2, uT , uT , uT)
because the termination action does not change the state, nor does it accumulate
cost. The resulting five-step plan reaches XG and costs the same as (u1, u2). With
this simple extension, the forward and backward value iteration methods of Sec-
tion 2.3.1 may be applied for any fixed K to optimize over all plans of length K
or less (instead of fixing K).

The next step is to remove the dependency on K. Consider running backward
value iterations indefinitely. At some point, G∗

1 will be computed, but there is
no reason why the process cannot be continued onward to G∗

0, G
∗
−1, and so on.

Recall that xI is not utilized in the backward value-iteration method; therefore,
there is no concern regarding the starting initial state of the plans. Suppose that
backward value iteration was applied for K = 16 and was executed down to G∗

−8.
This considers all plans of length 25 or less. Note that it is harmless to add 9 to
all stage indices to shift all of the cost-to-go functions. Instead of running from
G∗

−8 to G
∗
16, they can run from G∗

1 to G
∗
25 without affecting their values. The index

shifting is allowed because none of the costs depend on the particular index that is
given to the stage. The only important aspect of the value iterations is that they
proceed backward and consecutively from stage to stage.

Eventually, enough iterations will have been executed so that an optimal plan
is known from every state that can reach XG. From that stage, say k, onward, the
cost-to-go values from one value iteration to the next will be stationary, meaning
that for all i ≤ k, G∗

i−1(x) = G∗
i (x) for all x ∈ X. Once the stationary condition

is reached, the cost-to-go function no longer depends on a particular stage k. In
this case, the stage index may be dropped, and the recurrence becomes

G∗(x) = min
u

{

l(x, u) +G∗(f(x, u))
}

. (2.18)

52 S. M. LaValle: Planning Algorithms

Are there any conditions under which backward value iterations could be exe-
cuted forever, with each iteration producing a cost-to-go function for which some
values are different from the previous iteration? If l(x, u) is nonnegative for all
x ∈ X and u ∈ U(x), then this could never happen. It could certainly be true that,
for any fixed K, longer plans will exist, but this cannot be said of optimal plans.
From every x ∈ X, there either exists a plan that reaches XG with finite cost or
there is no solution. For each state from which there exists a plan that reaches
XG, consider the number of stages in the optimal plan. Consider the maximum
number of stages taken from all states that can reach XG. This serves as an upper
bound on the number of value iterations before the cost-to-go becomes stationary.
Any further iterations will just consider solutions that are worse than the ones
already considered (some may be equivalent due to the termination action and
shifting of stages). Some trouble might occur if l(x, u) contains negative values.
If the state transition graph contains a cycle for which total cost is negative, then
it is preferable to execute a plan that travels around the cycle forever, thereby
reducing the total cost to −∞. Therefore, we will assume that the cost functional
is defined in a sensible way so that negative cycles do not exist. Otherwise, the
optimization model itself appears flawed. Some negative values for l(x, u), how-
ever, are allowed as long as there are no negative cycles. (It is straightforward to
detect and report negative cycles before running the value iterations.)

Since the particular stage index is unimportant, let k = 0 be the index of the
final stage, which is the stage at which the backward value iterations begin. Hence,
G∗

0 is the final stage cost, which is obtained directly from lF . Let −K denote the
stage index at which the cost-to-go values all become stationary. At this stage,
the optimal cost-to-go function, G∗ : X → R ∪ {∞}, is expressed by assigning
G∗ = G∗

−K . In other words, the particular stage index no longer matters. The
value G∗(x) gives the optimal cost to go from state x ∈ X to the specific goal state
xG.

If the optimal actions are not stored during the value iterations, the optimal
cost-to-go, G∗, can be used to efficiently recover them. Consider starting from
some x ∈ X. What is the optimal next action? This is given by

u∗ = argmin
u∈U(x)

{

l(x, u) +G∗(f(x, u))
}

, (2.19)

in which argmin denotes the argument that achieves the minimum value of the
expression. The action minimizes an expression that is very similar to (2.11). The
only differences between (2.19) and (2.11) are that the stage indices are dropped
in (2.19) because the cost-to-go values no longer depend on them, and argmin is
used so that u∗ is selected. After applying u∗, the state transition equation is
used to obtain x′ = f(x, u∗), and (2.19) may be applied again on x′. This process
continues until a state in XG is reached. This procedure is based directly on the
dynamic programming recurrence; therefore, it recovers the optimal plan. The
function G∗ serves as a kind of guide that leads the system from any initial state
into the goal set optimally. This can be considered as a special case of a navigation
function, which will be covered in Section 8.2.2.

2.3. DISCRETE OPTIMAL PLANNING 53

As in the case of fixed-length plans, the direction of the value iterations can
be reversed to obtain a forward value-iteration method for the variable-length
planning problem. In this case, the backward state transition equation, f−1, is
used once again. Also, the initial cost term lI is used instead of lF , as in (2.14). The
forward value-iteration method starts at k = 1, and then iterates until the cost-
to-come becomes stationary. Once again, the termination action, uT , preserves
the cost of plans that arrived at a state in earlier iterations. Note that it is not
required to specify XG. A counterpart to G∗ may be obtained, from which optimal
actions can be recovered. When the cost-to-come values become stationary, an
optimal cost-to-come function, C∗ : X → R∪{∞}, may be expressed by assigning
C∗ = C∗

F , in which F is the final stage reached when the algorithm terminates.
The value C∗(x) gives the cost of an optimal plan that starts from xI and reaches
x. The optimal action sequence for any specified goal xG ∈ X can be obtained
using

argmin
u−1∈U−1

{

C∗(f−1(x, u−1)) + l(f−1(x, u−1), u′)
}

, (2.20)

which is the forward counterpart of (2.19). The u′ is the action in U(f−1(x, u−1))
that yields x when the state transition function, f , is applied. The iterations
proceed backward from xG and terminate when xI is reached.

Example 2.5 (Value Iteration for Variable-Length Plans) Once again, Ex-
ample 2.3 is revisited; however, this time the plan length is not fixed due to the
termination action. Its effect is depicted in Figure 2.13 by the superposition of
new edges that have zero cost. It might appear at first that there is no incen-
tive to choose nontermination actions, but remember that any plan that does not
terminate in state xG = d will receive infinite cost.

See Figure 2.14. After a few backward value iterations, the cost-to-go values
become stationary. After this point, the termination action is being applied from
all reachable states and no further cost accumulates. The final cost-to-go function
is defined to be G∗. Since d is not reachable from e, G∗(e) =∞.

As an example of using (2.19) to recover optimal actions, consider starting
from state a. The action that leads to b is chosen next because the total cost
2 + G∗(b) = 4 is better than 2 + G∗(a) = 6 (the 2 comes from the action cost).
From state b, the optimal action leads to c, which produces total cost 1+G∗(c) = 1.
Similarly, the next action leads to d ∈ XG, which terminates the plan.

Using forward value iteration, suppose that xI = b. The following cost-to-come
functions shown in Figure 2.15 are obtained. For any finite value that remains
constant from one iteration to the next, the termination action was applied. Note
that the last value iteration is useless in this example. Once C∗

3 is computed, the
optimal cost-to-come to every possible state from xI is determined, and future
cost-to-come functions are identical. Therefore, the final cost-to-come is renamed
C∗. �

54 S. M. LaValle: Planning Algorithms

0 0

00

0 0 0

0

2 2 2

0

0

2

0

0

1

a

b

c

d

e

2

4

1

1

1

1

0

0

0

2

0

0

1

a

b

c

d

e

2

4

1

1

1

1

0

d

b

c

e

a

1

a

b

c

d

e

2

4

1

1

1

1

0

0 0 0

1

a

b

c

d

e

2

4

1

1

1

1

1

a

b

c

d

e

2

4

1

1

1

1

0

0 0

Figure 2.13: Compare this figure to Figure 2.11, for which K was fixed at 4. The
effect of the termination action is depicted as dashed-line edges that yield 0 cost
when traversed. This enables plans of all finite lengths to be considered. Also, the
stages extend indefinitely to the left (for the case of backward value iteration).

a b c d e

G∗
0 ∞ ∞ ∞ 0 ∞

G∗
−1 ∞ 4 1 0 ∞

G∗
−2 6 2 1 0 ∞

G∗
−3 4 2 1 0 ∞

G∗
−4 4 2 1 0 ∞
G∗ 4 2 1 0 ∞

Figure 2.14: The optimal cost-to-go functions computed by backward value itera-
tion applied in the case of variable-length plans.

2.3. DISCRETE OPTIMAL PLANNING 55

a b c d e

C∗
1 ∞ 0 ∞ ∞ ∞

C∗
2 ∞ 0 1 4 ∞

C∗
3 2 0 1 2 5

C∗
4 2 0 1 2 3

C∗ 2 0 1 2 3

Figure 2.15: The optimal cost-to-come functions computed by forward value iter-
ation applied in the case of variable-length plans.

2.3.3 Dijkstra Revisited

So far two different kinds of dynamic programming have been covered. The value-
iteration method of Section 2.3.2 involves repeated computations over the entire
state space. Dijkstra’s algorithm from Section 2.2.2 flows only once through the
state space, but with the additional overhead of maintaining which states are alive.

Dijkstra’s algorithm can be derived by focusing on the forward value iterations,
as in Example 2.5, and identifying exactly where the “interesting” changes occur.
Recall that for Dijkstra’s algorithm, it was assumed that all costs are nonnega-
tive. For any states that are not reachable, their values remain at infinity. They
are precisely the unvisited states. States for which the optimal cost-to-come has
already become stationary are dead. For the remaining states, an initial cost is
obtained, but this cost may be lowered one or more times until the optimal cost
is obtained. All states for which the cost is finite, but possibly not optimal, are in
the queue, Q.

After understanding value iteration, it is easier to understand why Dijkstra’s
form of dynamic programming correctly computes optimal solutions. It is clear
that the unvisited states will remain at infinity in both algorithms because no
plan has reached them. It is helpful to consider the forward value iterations in
Example 2.5 for comparison. In a sense, Dijkstra’s algorithm is very much like the
value iteration, except that it efficiently maintains the set of states within which
cost-to-go values can change. It correctly inserts any states that are reached for
the first time, changing their cost-to-come from infinity to a finite value. The
values are changed in the same manner as in the value iterations. At the end of
both algorithms, the resulting values correspond to the stationary, optimal cost-
to-come, C∗.

If Dijkstra’s algorithm seems so clever, then why have we spent time cover-
ing the value-iteration method? For some problems it may become too expensive
to maintain the sorted queue, and value iteration could provide a more efficient
alternative. A more important reason is that value iteration extends easily to a
much broader class of problems. Examples include optimal planning over contin-
uous state spaces (Sections 8.5.2 and 14.5), stochastic optimal planning (Section
10.2), and computing dynamic game equilibria (Section 10.5). In some cases, it

56 S. M. LaValle: Planning Algorithms

FORWARD LABEL CORRECTING(xG)
1 Set C(x) =∞ for all x 6= xI , and set C(xI) = 0
2 Q.Insert(xI)
3 while Q not empty do
4 x← Q.GetF irst()
5 forall u ∈ U(x)
6 x′ ← f(x, u)
7 if C(x) + l(x, u) < min{C(x′), C(xG)} then
8 C(x′)← C(x) + l(x, u)
9 if x′ 6= xG then
10 Q.Insert(x′)

Figure 2.16: A generalization of Dijkstra’s algorithm, which upon termination
produces an optimal plan (if one exists) for any prioritization of Q, as long as X
is finite. Compare this to Figure 2.4.

is still possible to obtain a Dijkstra-like algorithm by focusing the computation
on the “interesting” region; however, as the model becomes more complicated, it
may be inefficient or impossible in practice to maintain this region. Therefore, it
is important to have a good understanding of both algorithms to determine which
is most appropriate for a given problem.

Dijkstra’s algorithm belongs to a broader family of label-correcting algorithms,
which all produce optimal plans by making small modifications to the general
forward-search algorithm in Figure 2.4. Figure 2.16 shows the resulting algorithm.
The main difference is to allow states to become alive again if a better cost-to-come
is found. This enables other cost-to-come values to be improved accordingly. This
is not important for Dijkstra’s algorithm and A∗ search because they only need to
visit each state once. Thus, the algorithms in Figures 2.4 and 2.16 are essentially
the same in this case. However, the label-correcting algorithm produces optimal
solutions for any sorting of Q, including FIFO (breadth first) and LIFO (depth
first), as long as X is finite. If X is not finite, then the issue of systematic search
dominates because one must guarantee that states are revisited sufficiently many
times to guarantee that optimal solutions will eventually be found.

Another important difference between label-correcting algorithms and the stan-
dard forward-search model is that the label-correcting approach uses the cost at
the goal state to prune away many candidate paths; this is shown in line 7. Thus,
it is only formulated to work for a single goal state; it can be adapted to work
for multiple goal states, but performance degrades. The motivation for including
C(xG) in line 7 is that there is no need to worry about improving costs at some
state, x′, if its new cost-to-come would be higher than C(xG); there is no way it
could be along a path that improves the cost to go to xG. Similarly, xG is not
inserted in line 10 because there is no need to consider plans that have xG as an
intermediate state. To recover the plan, either pointers can be stored from x to x′

2.4. USING LOGIC TO FORMULATE DISCRETE PLANNING 57

each time an update is made in line 7, or the final, optimal cost-to-come, C∗, can
be used to recover the actions using (2.20).

2.4 Using Logic to Formulate Discrete Planning

For many discrete planning problems that we would like a computer to solve, the
state space is enormous (e.g., 10100 states). Therefore, substantial effort has been
invested in constructing implicit encodings of problems in hopes that the entire
state space does not have to be explored by the algorithm to solve the problem.
This will be a recurring theme throughout this book; therefore, it is important to
pay close attention to representations. Many planning problems can appear trivial
once everything has been explicitly given.

Logic-based representations have been popular for constructing such implicit
representations of discrete planning. One historical reason is that such represen-
tations were the basis of the majority of artificial intelligence research during the
1950s–1980s. Another reason is that they have been useful for representing cer-
tain kinds of planning problems very compactly. It may be helpful to think of
these representations as compression schemes. A string such as 010101010101...
may compress very nicely, but it is impossible to substantially compress a random
string of bits. Similar principles are true for discrete planning. Some problems
contain a kind of regularity that enables them to be expressed compactly, whereas
for others it may be impossible to find such representations. This is why there
has been a variety of representation logics proposed through decades of planning
research.

Another reason for using logic-based representations is that many discrete plan-
ning algorithms are implemented in large software systems. At some point, when
these systems solve a problem, they must provide the complete plan to a user, who
may not care about the internals of planning. Logic-based representations have
seemed convenient for producing output that logically explains the steps involved
to arrive at some goal. Other possibilities may exist, but logic has been a first
choice due to its historical popularity.

In spite of these advantages, one shortcoming with logic-based representations
is that they are difficult to generalize. It is important in many applications to
enable concepts such as continuous spaces, unpredictability, sensing uncertainty,
and multiple decision makers to be incorporated into planning. This is the main
reason why the state-space representation has been used so far: It will be easy to
extend and adapt to the problems covered throughout this book. Nevertheless,
it is important to study logic-based representations to understand the relation-
ship between the vast majority of discrete planning research and other problems
considered in this book, such as motion planning and planning under differential
constraints. There are many recurring themes throughout these different kinds
of problems, even though historically they have been investigated by separate
research communities. Understanding these connections well provides powerful
insights into planning issues across all of these areas.

58 S. M. LaValle: Planning Algorithms

2.4.1 A STRIPS-Like Representation

STRIPS-like representations have been the most common logic-based representa-
tions for discrete planning problems. This refers to the STRIPS system, which is
considered one of the first planning algorithms and representations [337]; its name
is derived from the STanford Research Institute Problem Solver. The original
representation used first-order logic, which had great expressive power but many
technical difficulties. Therefore, the representation was later restricted to only
propositional logic [743], which is similar to the form introduced in this section.
There are many variations of STRIPS-like representations. Here is one formula-
tion:

Formulation 2.4 (STRIPS-Like Planning)

1. A finite, nonempty set I of instances.

2. A finite, nonempty set P of predicates, which are binary-valued (partial)
functions of one of more instances. Each application of a predicate to a
specific set of instances is called a positive literal. A logically negated positive
literal is called a negative literal.

3. A finite, nonempty set O of operators, each of which has: 1) preconditions,
which are positive or negative literals that must hold for the operator to
apply, and 2) effects, which are positive or negative literals that are the
result of applying the operator.

4. An initial set S which is expressed as a set of positive literals. Negative
literals are implied. For any positive literal that does not appear in S, its
corresponding negative literal is assumed to hold initially.

5. A goal set G which is expressed as a set of both positive and negative literals.

Formulation 2.4.1 provides a definition of discrete feasible planning expressed in
a STRIPS-like representation. The three most important components are the sets
of instances I, predicates P , and operators O. Informally, the instances characterize
the complete set of distinct things that exist in the world. They could, for example,
be books, cars, trees, and so on. The predicates correspond to basic properties or
statements that can be formed regarding the instances. For example, a predicate
called Under might be used to indicate things like Under(Book, Table) (the book
is under the table) or Under(Dirt, Rug). A predicate can be interpreted as a kind
of function that yields true or false values; however, it is important to note
that it is only a partial function because it might not be desirable to allow any
instance to be inserted as an argument to the predicate.

If a predicate is evaluated on an instance, for example, Under(Dirt, Rug), the
expression is called a positive literal. The set of all possible positive literals can be
formed by applying all possible instances to the domains over which the predicates
are defined. Every positive literal has a corresponding negative literal, which is

2.4. USING LOGIC TO FORMULATE DISCRETE PLANNING 59

formed by negating the positive literal. For example, ¬Under(Dirt, Rug) is the
negative literal that corresponds to the positive literal Under(Dirt, Rug), and ¬
denotes negation. Let a complementary pair refer to a positive literal together with
its counterpart negative literal. The various components of the planning problem
are expressed in terms of positive and negative literals.

The role of an operator is to change the world. To be applicable, a set of pre-
conditions must all be satisfied. Each element of this set is a positive or negative
literal that must hold true for the operator to be applicable. Any complemen-
tary pairs that can be formed from the predicates, but are not mentioned in the
preconditions, may assume any value without affecting the applicability of the op-
erator. If the operator is applied, then the world is updated in a manner precisely
specified by the set of effects, which indicates positive and negative literals that
result from the application of the operator. It is assumed that the truth values of
all unmentioned complementary pairs are not affected.

Multiple operators are often defined in a single statement by using variables.
For example, Insert(i) may allow any instance i ∈ I to be inserted. In some cases,
this dramatically reduces the space required to express the problem.

The planning problem is expressed in terms of an initial set S of positive
literals and a goal set G of positive and negative literals. A state can be defined
by selecting either the positive or negative literal for every possible complementary
pair. The initial set S specifies such a state by giving the positive literals only.
For all possible positive literals that do not appear in S, it is assumed that their
negative counterparts hold in the initial state. The goal set G actually refers to
a set of states because, for any unmentioned complementary pair, the positive
or negative literal may be chosen, and the goal is still achieved. The task is to
find a sequence of operators that when applied in succession will transform the
world from the initial state into one in which all literals of G are true. For each
operator, the preconditions must also be satisfied before it can be applied. The
following example illustrates Formulation 2.4.

Example 2.6 (Putting Batteries into a Flashlight) Imagine a planning prob-
lem that involves putting two batteries into a flashlight, as shown in Figure 2.17.
The set of instances are

I = {Battery1, Battery2, Cap, F lashlight}. (2.21)

Two different predicates will be defined, On and In, each of which is a partial
function on I. The predicate On may only be applied to evaluate whether the
Cap is On the Flashlight and is written as On(Cap, F lashlight). The pred-
icate In may be applied in the following two ways: In(Battery1, F lashlight),
In(Battery2, F lashlight), to indicate whether either battery is in the flashlight.
Recall that predicates are only partial functions in general. For the predicate In, it
is not desirable to apply any instance to any argument. For example, it is meaning-
less to define In(Battery1, Battery1) and In(Flashlight, Battery2) (they could
be included in the model, always retaining a negative value, but it is inefficient).

60 S. M. LaValle: Planning Algorithms

Figure 2.17: An example that involves putting batteries into a flashlight.

Name Preconditions Effects

PlaceCap {¬On(Cap, F lashlight)} {On(Cap, F lashlight)}
RemoveCap {On(Cap, F lashlight)} {¬On(Cap, F lashlight)}
Insert(i) {¬On(Cap, F lashlight),¬In(i, F lashlight)} {In(i, F lashlight)}

Figure 2.18: Three operators for the flashlight problem. Note that an operator
can be expressed with variable argument(s) for which different instances could be
substituted.

The initial set is

S = {On(Cap, F lashlight)}. (2.22)

Based on S, both ¬In(Battery1, F lashlight) and ¬In(Battery2, F lashlight) are
assumed to hold. Thus, S indicates that the cap is on the flashlight, but the
batteries are outside.

The goal state is

G = {On(Cap, F lashlight), In(Battery1, F lashlight),
In(Battery2, F lashlight)}, (2.23)

which means that both batteries must be in the flashlight, and the cap must be
on.

The set O consists of the four operators, which are shown in Figure 2.18. Here
is a plan that reaches the goal state in the smallest number of steps:

(RemoveCap, Insert(Battery1), Insert(Battery2), P laceCap). (2.24)

In words, the plan simply says to take the cap off, put the batteries in, and place
the cap back on.

2.4. USING LOGIC TO FORMULATE DISCRETE PLANNING 61

This example appears quite simple, and one would expect a planning algorithm
to easily find such a solution. It can be made more challenging by adding many
more instances to I, such as more batteries, more flashlights, and a bunch of
objects that are irrelevant to achieving the goal. Also, many other predicates and
operators can be added so that the different combinations of operators become
overwhelming. �

A large number of complexity results exist for planning expressed using logic.
The graph search problem is solved efficiently in polynomial time; however, a
state transition graph is not given as the input. An input that is expressed using
Formulation 2.4 may describe an enormous state transition graph using very few
instances, predicates, and operators. In a sense, the model is highly compressed
when using some logic-based formulations. This brings it closer to the Kolmogorov
complexity [248, 630] of the state transition graph, which is the shortest bit size
to which it can possibly be compressed and then fully recovered by a Turing
machine. This has the effect of making the planning problem appear more difficult.
Concise inputs may encode very challenging planning problems. Most of the known
hardness results are surveyed in Chapter 3 of [382]. Under most formulations,
logic-based planning is NP-hard. The particular level of hardness (NP, PSPACE,
EXPTIME, etc.) depends on the precise problem conditions. For example, the
complexity depends on whether the operators are fixed in advance or included
in the input. The latter case is much harder. Separate complexities are also
obtained based on whether negative literals are allowed in the operator effects and
also whether they are allowed in preconditions. The problem is generally harder
if both positive and negative literals are allowed in these cases.

2.4.2 Converting to the State-Space Representation

It is useful to characterize the relationship between Formulation 2.4 and the origi-
nal formulation of discrete feasible planning, Formulation 2.1. One benefit is that
it immediately shows how to adapt the search methods of Section 2.2 to work
for logic-based representations. It is also helpful to understand the relationships
between the algorithmic complexities of the two representations.

Up to now, the notion of “state” has been only vaguely mentioned in the con-
text of the STRIPS-like representation. Now consider making this more concrete.
Suppose that every predicate has k arguments, and any instance could appear in
each argument. This means that there are |P | |I|k complementary pairs, which
corresponds to all of the ways to substitute instances into all arguments of all
predicates. To express the state, a positive or negative literal must be selected
from every complementary pair. For convenience, this selection can be encoded
as a binary string by imposing a linear ordering on the instances and predicates.

62 S. M. LaValle: Planning Algorithms

Using Example 2.6, the state might be specified in order as

(On(Cap, F lashlight),¬In(Battery1, F lashlight1), In(Battery2, F lashlight)).
(2.25)

Using a binary string, each element can be “0” to denote a negative literal or “1”
to denote positive literal. The encoded state is x = 101 for (2.25). If any instance
can appear in the argument of any predicate, then the length of the string is
|P | |I|k. The total number of possible states of the world that could possibly be
distinguished corresponds to the set of all possible bit strings. This set has size

2|P | |I|k . (2.26)

The implication is that with a very small number of instances and predicates,
an enormous state space can be generated. Even though the search algorithms
of Section 2.2 may appear efficient with respect to the size of the search graph
(or the number of states), the algorithms appear horribly inefficient with respect
to the sizes of P and I. This has motivated substantial efforts on the develop-
ment of techniques to help guide the search by exploiting the structure of specific
representations. This is the subject of Section 2.5.

The next step in converting to a state-space representation is to encode the
initial state xI as a string. The goal set, XG, is the set of all strings that are
consistent with the positive and negative goal literals. This can be compressed by
extending the string alphabet to include a “don’t care” symbol, δ. A single string
that has a “0” for each negative literal, a “1” for each positive literal, and a “δ”
for all others would suffice in representing any XG that is expressed with positive
and negative literals.

Now convert the operators. For each state, x ∈ X, the set U(x) represents
the set of operators with preconditions that are satisfied by x. To apply the
search techniques of Section 2.2, note that it is not necessary to determine U(x)
explicitly in advance for all x ∈ X. Instead, U(x) can be computed whenever each
x is encountered for the first time in the search. The effects of the operator are
encoded by the state transition equation. From a given x ∈ X, the next state,
f(x, u), is obtained by flipping the bits as prescribed by the effects part of the
operator.

All of the components of Formulation 2.1 have been derived from the com-
ponents of Formulation 2.4. Adapting the search techniques of Section 2.2 is
straightforward. It is also straightforward to extend Formulation 2.4 to represent
optimal planning. A cost can be associated with each operator and set of literals
that capture the current state. This would express l(x, u) of the cost functional,
L, from Section 2.3. Thus, it is even possible to adapt the value-iteration method
to work under the logic-based representation, yielding optimal plans.

2.5. LOGIC-BASED PLANNING METHODS 63

2.5 Logic-Based Planning Methods

A huge body of research has been developed over the last few decades for plan-
ning using logic-based representations [382, 839]. These methods usually exploit
some structure that is particular to the representation. Furthermore, numerous
heuristics for accelerating performance have been developed from implementation
studies. The main ideas behind some of the most influential approaches are de-
scribed in this section, but without presenting particular heuristics.

Rather than survey all logic-based planning methods, this section focuses on
some of the main approaches that exploit logic-based representations. Keep in
mind that the searching methods of Section 2.2 also apply. Once a problem is
given using Formulation 2.4, the state transition graph is incrementally revealed
during the search. In practice, the search graph may be huge relative to the size
of the problem description. One early attempt to reduce the size of this graph was
the STRIPS planning algorithm [337, 743]; it dramatically reduced the branching
factor but unfortunately was not complete. The methods presented in this section
represent other attempts to reduce search complexity in practice while maintaining
completeness. For each method, there are some applications in which the method
may be more efficient, and others for which performance may be worse. Thus,
there is no clear choice of method that is independent of its particular use.

2.5.1 Searching in a Space of Partial Plans

One alternative to searching directly in X is to construct partial plans without
reference to particular states. By using the operator representation, partial plans
can be incrementally constructed. The idea is to iteratively achieve required sub-
goals in a partial plan while ensuring that no conflicts arise that could destroy the
solution developed so far.

A partial plan σ is defined as

1. A set Oσ of operators that need to be applied. If the operators contain
variables, these may be filled in by specific values or left as variables. The
same operator may appear multiple times in Oσ, possibly with different
values for the variables.

2. A partial ordering relation ≺σ on Oσ, which indicates for some pairs o1, o2 ∈
Oσ that one must appear before other: o1 ≺σ o2.

3. A set Bσ of binding constraints, in which each indicates that some variables
across operators must take on the same value.

4. A set Cσ of causal links, in which each is of the form (o1, l, o2) and indicates
that o1 achieves the literal l for the purpose of satisfying a precondition of
o2.

64 S. M. LaValle: Planning Algorithms

Example 2.7 (A Partial Plan) Each partial plan encodes a set of possible plans.
Recall the model from Example 2.6. Suppose

Oσ = {RemoveCap, Insert(Battery1)}. (2.27)

A sensible ordering constraint is that

RemoveCap ≺σ Insert(Battery1). (2.28)

A causal link,

(RemoveCap,¬On(Cap, F lashlight), Insert(Battery1)), (2.29)

indicates that theRemoveCap operator achieves the literal ¬On(Cap, F lashlight),
which is a precondition of Insert(Battery1). There are no binding constraints
for this example. The partial plan implicitly represents the set of all plans for
which RemoveCap appears before Insert(Battery1), under the constraint that
the causal link is not violated. �

Several algorithms have been developed to search in the space of partial plans.
To obtain some intuition about the partial-plan approach, a planning algorithm
is described in Figure 2.19. A vertex in the partial-plan search graph is a partial
plan, and an edge is constructed by extending one partial plan to obtain another
partial plan that is closer to completion. Although the general template is simple,
the algorithm performance depends critically on the choice of initial plan and the
particular flaw that is resolved in each iteration. One straightforward generaliza-
tion is to develop multiple partial plans and decide which one to refine in each
iteration.

In early works, methods based on partial plans seemed to offer substantial
benefits; however, they are currently considered to be not “competitive enough”
in comparison to methods that search the state space [382]. One problem is that
it becomes more difficult to develop application-specific heuristics without explicit
references to states. Also, the vertices in the partial-plan search graph are costly
to maintain and manipulate in comparison to ordinary states.

2.5.2 Building a Planning Graph

Blum and Furst introduced the notion of a planning graph, which is a power-
ful data structure that encodes information about which states may be reachable
[117]. For the logic-based problem expressed in Formulation 2.4, consider perform-
ing reachability analysis. Breadth-first search can be used from the initial state
to expand the state transition graph. In terms of the input representation, the
resulting graph may be of exponential size in the number of stages. This gives
precise reachability information and is guaranteed to find the goal state.

The idea of Blum and Furst is to construct a graph that is much smaller than
the state transition graph and instead contains only partial information about

2.5. LOGIC-BASED PLANNING METHODS 65

PLAN-SPACE PLANNING

1. Start with any initial partial plan, σ.

2. Find a flaw in σ, which may be 1) an operator precondition that has not
achieved, or 2) an operator in Oσ that threatens a causal constraint in Cσ.

3. If there is no flaw, then report that σ is a complete solution and compute a
linear ordering of Oσ that satisfies all constraints.

4. If the flaw is an unachieved precondition, l, for some operator o2, then find an
operator, o1, that achieves it and record a new causal constraint, (o1, l, o2).

5. If the flaw is a threat on a causal link, then the threat must be removed by
updating ≺σ to induce an appropriate operator ordering, or by updating Bσ

to bind the operators in a way that resolves the threat.

6. Return to Step 2.

Figure 2.19: Planning in the plan space is achieved by iteratively finding a flaw
in the plan and fixing it.

reachability. The resulting planning graph is polynomial in size and can be effi-
ciently constructed for some challenging problems. The trade-off is that the plan-
ning graph indicates states that can possibly be reached. The true reachable set
is overapproximated, by eliminating many impossible states from consideration.
This enables quick elimination of impossible alternatives in the search process.
Planning algorithms have been developed that extract a plan from the planning
graph. In the worst case, this may take exponential time, which is not surpris-
ing because the problem in Formulation 2.4 is NP-hard in general. Nevertheless,
dramatic performance improvements were obtained on some well-known planning
benchmarks. Another way to use the planning graph is as a source of information
for developing search heuristics for a particular problem.

Planning graph definition A layered graph is a graph that has its vertices
partitioned into a sequence of layers, and its edges are only permitted to connect
vertices between successive layers. The planning graph is a layered graph in which
the layers of vertices form an alternating sequence of literals and operators:

(L1, O1, L2, O2, L3, O3, . . . , Lk, Ok, Lk+1). (2.30)

The edges are defined as follows. To each operator oi ∈ Oi, a directed edge is
made from each li ∈ Li that is a precondition of oi. To each literal li ∈ Li, an edge
is made from each operator oi−1 ∈ Oi−1 that has li as an effect.

One important requirement is that no variables are allowed in the operators.
Any operator from Formulation 2.4 that contains variables must be converted into

66 S. M. LaValle: Planning Algorithms

a set that contains a distinct copy of the operator for every possible substitution
of values for the variables.

Layer-by-layer construction The planning graph is constructed layer by layer,
starting from L1. In the first stage, L1 represents the initial state. Every positive
literal in S is placed into L1, along with the negation of every positive literal not
in S. Now consider stage i. The set Oi is the set of all operators for which their
preconditions are a subset of Li. The set Li+1 is the union of the effects of all
operators in Oi. The iterations continue until the planning graph stabilizes, which
means that Oi+1 = Oi and Li+1 = Li. This situation is very similar to the stabiliza-
tion of value iterations in Section 2.3.2. A trick similar to the termination action,
uT , is needed even here so that plans of various lengths are properly handled. In
Section 2.3.2, one job of the termination action was to prevent state transitions
from occurring. The same idea is needed here. For each possible literal, l, a trivial
operator is constructed for which l is the only precondition and effect. The intro-
duction of trivial operators ensures that once a literal is reached, it is maintained
in the planning graph for every subsequent layer of literals. Thus, each Oi may
contain some trivial operators, in addition to operators from the initially given
set O. These are required to ensure that the planning graph expansion reaches a
steady state, in which the planning graph is identical for all future expansions.

Mutex conditions During the construction of the planning graph, information
about the conflict between operators and literals within a layer is maintained. A
conflict is called a mutex condition, which means that a pair of literals4 or pair of
operators is mutually exclusive. Both cannot be chosen simultaneously without
leading to some kind of conflict. A pair in conflict is called mutex. For each layer,
a mutex relation is defined that indicates which pairs satisfy the mutex condition.
A pair, o, o′ ∈ Oi, of operators is defined to be mutex if any of these conditions is
met:

1. Inconsistent effects: An effect of o is the negated literal of an effect of o′.

2. Interference: An effect of o is the negated literal of a precondition of o′.

3. Competing needs: A pair of preconditions, one from each of o and o′, are
mutex in Li.

The last condition relies on the definition of mutex for literals, which is presented
next. Any pair, l, l′ ∈ Li, of literals is defined to be mutex if at least one of the
two conditions is met:

1. Negated literals: l and l′ form a complementary pair.

4The pair of literals need not be a complementary pair, as defined in Section 2.4.1.

2.5. LOGIC-BASED PLANNING METHODS 67

L2 O2 O3L1 O1 L3

¬O(C, F)

I(B2, F)

I(B1, F)

L4

¬O(C, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

¬O(C, F)

I(B2, F)

I(B1, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

I1

RC RC

I2

RC

I2

I1

PC PC

Figure 2.20: The planning graph for the flashlight example. The unlabeled oper-
ator vertices correspond to trivial operators. For clarity, the operator and literal
names are abbreviated.

2. Inconsistent support: Every pair of operators, o, o′ ∈ Oi−1, that achieve
l and l′ is mutex. In this case, one operator must achieve l, and the other
must achieve l′. If there exists an operator that achieves both, then this
condition is false, regardless of the other pairs of operators.

The mutex definition depends on the layers; therefore, it is computed layer by
layer during the planning graph construction.

Example 2.8 (The Planning Graph for the Flashlight) Figure 2.20 shows
the planning graph for Example 2.6. In the first layer, L1 expresses the initial
state. The only applicable operator is RemoveCap. The operator layer O1 con-
tains RemoveCap and three trivial operators, which are needed to maintain the
literals from L1. The appearance of ¬On(Cap, F lashlight) enables the battery-
insertion operator to apply. Since variables are not allowed in operator definitions
in a planning graph, two different operators (labeled as I1 and I2) appear, one for
each battery. Notice the edges drawn to I1 and I2 from their preconditions. The
cap may also be replaced; hence, PlaceCap is included in O2. At the L3 layer, all
possible literals have been obtained. At O3, all possible operators, including the
trivial ones, are included. Finally, L4 = L3, and O4 will be the same as O3. This
implies that the planning graph has stabilized. �

68 S. M. LaValle: Planning Algorithms

Plan extraction Suppose that the planning graph has been constructed up to
Li. At this point, the planning graph can be searched for a solution. If no solution
is found and the planning graph has stabilized, then no solution exists to the
problem in general (this was shown in [117]; see also [382]). If the planning graph
has not stabilized, then it can be extended further by adding Oi and Li+1. The
extended graph can then be searched for a solution plan. A planning algorithm
derived from the planning graph interleaves the graph extensions and the searches
for solutions. Either a solution is reported at some point or the algorithm correctly
reports that no solution exists after the planning graph stabilizes. The resulting
algorithm is complete. One of the key observations in establishing completeness
is that the literal and operator layers each increase monotonically as i increases.
Furthermore, the sets of pairs that are mutex decrease monotonically, until all
possible conflicts are resolved.

Rather than obtaining a fully specified plan, the planning graph yields a layered
plan, which is a special form of partial plan. All of the necessary operators are
included, and the layered plan is specified as

(A1, A2, . . . , Ak), (2.31)

in which each Ai is a set of operators. Within any Ai, the operators are nonmutex
and may be applied in any order without altering the state obtained by the layered
plan. The only constraint is that for each i from 1 to k, every operator in Ai must
be applied before any operators in Ai+1 can be applied. For the flashlight example,
a layered plan that would be constructed from the planning graph in Figure 2.20
is

({RemoveCap}, {Insert(Battery1), Insert(Battery2)}, {PlaceCap}). (2.32)

To obtain a fully specified plan, the layered plan needs to be linearized by specify-
ing a linear ordering for the operators that is consistent with the layer constraints.
For (2.32), this results in (2.24). The actual plan execution usually involves more
stages than the number in the planning graph. For complicated planning prob-
lems, this difference is expected to be huge. With a small number of stages, the
planning graph can consider very long plans because it can apply several nonmutex
operators in a single layer.

At each level, the search for a plan could be quite costly. The idea is to start
from Li and perform a backward and/or search. To even begin the search, the
goal literals G must be a subset of Li, and no pairs are allowed to be mutex;
otherwise, immediate failure is declared. From each literal l ∈ G, an “or” part
of the search tries possible operators that produce l as an effect. The “and”
part of the search must achieve all literals in the precondition of an operator
chosen at the previous “or” level. Each of these preconditions must be achieved,
which leads to another “or” level in the search. The idea is applied recursively
until the initial set L1 of literals is obtained. During the and/or search, the
computed mutex relations provide information that immediately eliminates some

2.5. LOGIC-BASED PLANNING METHODS 69

branches. Frequently, triples and higher order tuples are checked for being mutex
together, even though they are not pairwise mutex. A hash table is constructed to
efficiently retrieve this information as it is considered multiple times in the search.
Although the plan extraction is quite costly, superior performance was shown in
[117] on several important benchmarks. In the worst case, the search could require
exponential time (otherwise, a polynomial-time algorithm would have been found
to an NP-hard problem).

2.5.3 Planning as Satisfiability

Another interesting approach is to convert the planning problem into an enormous
Boolean satisfiability problem. This means that the planning problem of Formu-
lation 2.4 can be solved by determining whether some assignment of variables is
possible for a Boolean expression that leads to a true value. Generic methods
for determining satisfiability can be directly applied to the Boolean expression
that encodes the planning problem. The Davis-Putnam procedure is one of the
most widely known algorithms for satisfiability. It performs a depth-first search
by iteratively trying assignments for variables and backtracking when assignments
fail. During the search, large parts of the expression can be eliminated due to
the current assignments. The algorithm is complete and reasonably efficient. Its
use in solving planning problems is surveyed in [382]. In practice, stochastic local
search methods provide a reasonable alternative to the Davis-Putnam procedure
[459].

Suppose a planning problem has been given in terms of Formulation 2.4. All
literals and operators will be tagged with a stage index. For example, a literal that
appears in two different stages will be considered distinct. This kind of tagging
is similar to situation calculus [378]; however, in that case, variables are allowed
for the tags. To obtain a finite, Boolean expression the total number of stages
must be declared. Let K denote the number of stages at which operators can be
applied. As usual, the fist stage is k = 1 and the final stage is k = F = K + 1.
Setting a stage limit is a significant drawback of the approach because this is
usually not known before the problem is solved. A planning algorithm can assume
a small value for F and then gradually increase it each time the resulting Boolean
expression is not satisfied. If the problem is not solvable, however, this approach
iterates forever.

Let ∨ denote logical OR, and let ∧ denote logical AND. The Boolean expression
is written as a conjunction5 of many terms, which arise from five different sources:

1. Initial state: A conjunction of all literals in S is formed, along with the
negation of all positive literals not in S. These are all tagged with 1, the
initial stage index.

2. Goal state: A conjunction of all literals in G, tagged with the final stage
index, F = K + 1.

5Conjunction means logical AND.

70 S. M. LaValle: Planning Algorithms

3. Operator encodings: Each operator must be copied over the stages. For
each o ∈ O, let ok denote the operator applied at stage k. A conjunction is
formed over all operators at all stages. For each ok, the expression is

¬ok ∨ (p1 ∧ p2 ∧ · · · ∧ pm ∧ e1 ∧ e2 ∧ · · · ∧ en) , (2.33)

in which p1, . . ., pm are the preconditions of ok, and e1, . . ., en are the effects
of ok.

4. Frame axioms: The next part is to encode the implicit assumption that
every literal that is not an effect of the applied operator remains unchanged
in the next stage. This can alternatively be stated as follows: If a literal l
becomes negated to ¬l, then an operator that includes ¬l as an effect must
have been executed. (If l was already a negative literal, then ¬l is a positive
literal.) For each stage and literal, an expression is needed. Suppose that
lk and lk+1 are the same literal but are tagged for different stages. The
expression is

(lk ∨ ¬lk+1) ∨ (ok,1 ∨ ok,2 ∨ · · · ∨ ok,j), (2.34)

in which ok,1, . . ., ok,j are the operators, tagged for stage k, that contain lk+1

as an effect. This ensures that if ¬lk appears, followed by lk+1, then some
operator must have caused the change.

5. Complete exclusion axiom: This indicates that only one operator applies
at every stage. For every stage k, and any pair of stage-tagged operators ok
and o′k, the expression is

¬ok ∨ ¬o′k, (2.35)

which is logically equivalent to ¬(ok ∧ o′k) (meaning, “not both at the same
stage”).

It is shown in [512] that a solution plan exists if and only if the resulting Boolean
expression is satisfiable.

The following example illustrates the construction.

Example 2.9 (The Flashlight Problem as a Boolean Expression) A Boolean
expression will be constructed for Example 2.6. Each of the expressions given be-
low is joined into one large expression by connecting them with ∧’s.

The expression for the initial state is

O(C,F, 1) ∧ ¬I(B1, F, 1) ∧ ¬I(B2, F, 1), (2.36)

which uses the abbreviated names, and the stage tag has been added as an argu-
ment to the predicates. The expression for the goal state is

O(C,F, 5) ∧ I(B1, F, 5) ∧ I(B2, F, 5), (2.37)

which indicates that the goal must be achieved at stage k = 5. This value was
determined because we already know the solution plan from (2.24). The method

2.5. LOGIC-BASED PLANNING METHODS 71

will also work correctly for a larger value of k. The expressions for the operators
are

¬PCk ∨ (¬O(C,F, k) ∧O(C,F, k + 1))

¬RCk ∨ (O(C,F, k) ∧ ¬O(C,F, k + 1))

¬I1k ∨ (¬O(C,F, k) ∧ ¬I(B1, F, k) ∧ I(B1, F, k + 1))

¬I2k ∨ (¬O(C,F, k) ∧ ¬I(B2, F, k) ∧ I(B2, F, k + 1))

(2.38)

for each k from 1 to 4.
The frame axioms yield the expressions

(O(C,F, k) ∨ ¬O(C,F, k + 1)) ∨ (PCk)

(¬O(C,F, k) ∨O(C,F, k + 1)) ∨ (RCk)

(I(B1, F, k) ∨ ¬I(B1, F, k + 1)) ∨ (I1k)

(¬I(B1, F, k) ∨ I(B1, F, k + 1))

(I(B2, F, k) ∨ ¬I(B2, F, k + 1)) ∨ (I2k)

(¬I(B2, F, k) ∨ I(B2, F, k + 1)),

(2.39)

for each k from 1 to 4. No operators remove batteries from the flashlight. Hence,
two of the expressions list no operators.

Finally, the complete exclusion axiom yields the expressions

¬RCk ∨ ¬PCk ¬RCk ∨ ¬O1k ¬RCk ∨ ¬O2k (2.40)

¬PCk ∨ ¬O1k ¬PCk ∨ ¬O2k ¬O1k ∨ ¬O2k,

for each k from 1 to 4. The full problem is encoded by combining all of the given
expressions into an enormous conjunction. The expression is satisfied by assign-
ing true values to RC1, IB12, IB23, and PC4. An alternative solution is RC1,
IB22, IB13, and PC4. The stage index tags indicate the order that the actions
are applied in the recovered plan. �

Further Reading

Most of the ideas and methods in this chapter have been known for decades. Most
of the search algorithms of Section 2.2 are covered in algorithms literature as graph
search [243, 404, 692, 857] and in AI literature as planning or search methods [551,
743, 744, 777, 839, 975]. Many historical references to search in AI appear in [839].
Bidirectional search was introduced in [797, 798] and is closely related to means-end
analysis [735]; more discussion of bidirectional search appears in [185, 184, 497, 569, 839].
The development of good search heuristics is critical to many applications of discrete
planning. For substantial material on this topic, see [382, 550, 777]. For the relationship
between planning and scheduling, see [266, 382, 896].

72 S. M. LaValle: Planning Algorithms

142

1

ba c d e3

7

11

Figure 2.21: Another five-state discrete planning problem.

The dynamic programming principle forms the basis of optimal control theory and
many algorithms in computer science. The main ideas follow from Bellman’s principle
of optimality [84, 85]. These classic works led directly to the value-iteration methods of
Section 2.3. For more recent material on this topic, see [95], which includes Dijkstra’s
algorithm and its generalization to label-correcting algorithms. An important special
version of Dijkstra’s algorithm is Dial’s algorithm [272] (see [946] and Section 8.2.3).
Throughout this book, there are close connections between planning methods and control
theory. One step in this direction was taken earlier in [267].

The foundations of logic-based planning emerged from early work of Nilsson [337,
743], which contains most of the concepts introduced in Section 2.4. Over the last few
decades, an enormous body of literature has been developed. Section 2.5 briefly surveyed
some of the highlights; however, several more chapters would be needed to do this
subject justice. For a comprehensive, recent treatment of logic-based planning, see [382];
topics beyond those covered here include constraint-satisfaction planning, scheduling,
and temporal logic. Other sources for logic-based planning include [378, 839, 963, 984]. A
critique of benchmarks used for comparisons of logic-based planning algorithms appears
in [464].

Too add uncertainty or multiple decision makers to the problems covered in this
chapter, jump ahead to Chapter 10 (this may require some background from Chapter
9). To move from searching in discrete to continuous spaces, try Chapters 5 and 6 (some
background from Chapters 3 and 4 is required).

Exercises

1. Consider the planning problem shown in Figure 2.21. Let a be the initial state,
and let e be the goal state.

(a) Use backward value iteration to determine the stationary cost-to-go.

(b) Do the same but instead use forward value iteration.

2. Try to construct a worst-case example for best-first search that has properties
similar to that shown in Figure 2.5, but instead involves moving in a 2D world
with obstacles, as introduced in Example 2.1.

3. It turns out that value iteration can be generalized to a cost functional of the form

L(πK) =
K∑

k=1

l(xk, uk, xk+1) + lF (xF), (2.41)

in which l(xk, uk) in (2.4) has been replaced by l(xk, uk, xk+1).

2.5. LOGIC-BASED PLANNING METHODS 73

(a) Show that the dynamic programming principle can be applied in this more
general setting to obtain forward and backward value iteration methods that
solve the fixed-length optimal planning problem.

(b) Do the same but for the more general problem of variable-length plans, which
uses termination conditions.

4. The cost functional can be generalized to being stage-dependent, which means
that the cost might depend on the particular stage k in addition to the state, xk
and the action uk. Extend the forward and backward value iteration methods of
Section 2.3.1 to work for this case, and show that they give optimal solutions.
Each term of the more general cost functional should be denoted as l(xk, uk, k).

5. Recall from Section 2.3.2 the method of defining a termination action uT to make
the value iterations work correctly for variable-length planning. Instead of re-
quiring that one remains at the same state, it is also possible to formulate the
problem by creating a special state, called the terminal state, xT . Whenever uT
is applied, the state becomes xT . Describe in detail how to modify the cost func-
tional, state transition equation, and any other necessary components so that the
value iterations correctly compute shortest plans.

6. Dijkstra’s algorithm was presented as a kind of forward search in Section 2.2.1.

(a) Develop a backward version of Dijkstra’s algorithm that starts from the goal.
Show that it always yields optimal plans.

(b) Describe the relationship between the algorithm from part (a) and the back-
ward value iterations from Section 2.3.2.

(c) Derive a backward version of theA∗ algorithm and show that it yields optimal
plans.

7. Reformulate the general forward search algorithm of Section 2.2.1 so that it is
expressed in terms of the STRIPS-like representation. Carefully consider what
needs to be explicitly constructed by a planning algorithm and what is considered
only implicitly.

8. Rather than using bit strings, develop a set-based formulation of the logic-based
planning problem. A state in this case can be expressed as a set of positive literals.

9. Extend Formulation 2.4 to allow disjunctive goal sets (there are alternative sets
of literals that must be satisfied). How does this affect the binary string represen-
tation?

10. Make a Remove operator for Example 2.17 that takes a battery away from the
flashlight. For this operator to apply, the battery must be in the flashlight and
must not be blocked by another battery. Extend the model to allow enough
information for the Remove operator to function properly.

11. Model the operation of the sliding-tile puzzle in Figure 1.1b using the STRIPS-like
representation. You may use variables in the operator definitions.

74 S. M. LaValle: Planning Algorithms

12. Find the complete set of plans that are implicitly encoded by Example 2.7.

13. Explain why, in Formulation 2.4, G needs to include both positive and negative
literals, whereas S only needs positive literals. As an alternative definition, could
S have contained only negative literals? Explain.

14. Using Formulation 2.4, model a problem in which a robot checks to determine
whether a room is dark, moves to a light switch, and flips on the light. Predicates
should indicate whether the robot is at the light switch and whether the light is
on. Operators that move the robot and flip the switch are needed.

15. Construct a planning graph for the model developed in Exercise 14.

16. Express the model in Exercise 14 as a Boolean satisfiability problem.

17. In the worst case, how many terms are needed for the Boolean expression for
planning as satisfiability? Express your answer in terms of |I|, |P |, |O|, |S|, and
|G|.

Implementations

18. Using A∗ search, the performance degrades substantially when there are many
alternative solutions that are all optimal, or at least close to optimal. Implement
A∗ search and evaluate it on various grid-based problems, based on Example 2.1.
Compare the performance for two different cases:

(a) Using |i′ − i|+ |j′ − j| as the heuristic, as suggested in Section 2.2.2.

(b) Using
√

(i′ − i)2 + (j′ − j)2 as the heuristic.

Which heuristic seems superior? Explain your answer.

19. Implement A∗, breadth-first, and best-first search for grid-based problems. For
each search algorithm, design and demonstrate examples for which one is clearly
better than the other two.

20. Experiment with bidirectional search for grid-based planning. Try to understand
and explain the trade-off between exploring the state space and the cost of con-
necting the trees.

21. Try to improve the method used to solve Exercise 18 by detecting when the search
might be caught in a local minimum and performing random walks to try to escape.
Try using best-first search instead of A∗. There is great flexibility in possible
approaches. Can you obtain better performance on average for any particular
examples?

22. Implement backward value iteration and verify its correctness by reconstructing
the costs obtained in Example 2.5. Test the implementation on some complicated
examples.

2.5. LOGIC-BASED PLANNING METHODS 75

23. For a planning problem under Formulation 2.3, implement both Dijkstra’s algo-
rithm and forward value iteration. Verify that these find the same plans. Comment
on their differences in performance.

24. Consider grid-based problems for which there are mostly large, open rooms. At-
tempt to develop a multi-resolution search algorithm that first attempts to take
larger steps, and only takes smaller steps as larger steps fail. Implement your
ideas, conduct experiments on examples, and refine your approach accordingly.

76 S. M. LaValle: Planning Algorithms

Part II

Motion Planning

77

79

Overview of Part II: Motion Planning

Planning in Continuous Spaces

Part II makes the transition from discrete to continuous state spaces. Two alter-
native titles are appropriate for this part: 1) motion planning, or 2) planning in
continuous state spaces. Chapters 3–8 are based on research from the field of mo-
tion planning, which has been building since the 1970s; therefore, the name motion
planning is widely known to refer to the collection of models and algorithms that
will be covered. On the other hand, it is convenient to also think of Part II as
planning in continuous spaces because this is the primary distinction with respect
to most other forms of planning.

In addition, motion planning will frequently refer to motions of a robot in a
2D or 3D world that contains obstacles. The robot could model an actual robot,
or any other collection of moving bodies, such as humans or flexible molecules. A
motion plan involves determining what motions are appropriate for the robot so
that it reaches a goal state without colliding into obstacles. Recall the examples
from Section 1.2.

Many issues that arose in Chapter 2 appear once again in motion planning.
Two themes that may help to see the connection are as follows.

1. Implicit representations

A familiar theme from Chapter 2 is that planning algorithms must deal with im-
plicit representations of the state space. In motion planning, this will become even
more important because the state space is uncountably infinite. Furthermore, a
complicated transformation exists between the world in which the models are de-
fined and the space in which the planning occurs. Chapter 3 covers ways to model
motion planning problems, which includes defining 2D and 3D geometric models
and transforming them. Chapter 4 introduces the state space that arises for these
problems. Following motion planning literature [657, 588], we will refer to this
state space as the configuration space. The dimension of the configuration space
corresponds to the number of degrees of freedom of the robot. Using the configura-
tion space, motion planning will be viewed as a kind of search in a high-dimensional
configuration space that contains implicitly represented obstacles. One additional
complication is that configuration spaces have unusual topological structure that
must be correctly characterized to ensure correct operation of planning algorithms.
A motion plan will then be defined as a continuous path in the configuration space.

2. Continuous → discrete

A central theme throughout motion planning is to transform the continuous model
into a discrete one. Due to this transformation, many algorithms from Chapter
2 are embedded in motion planning algorithms. There are two alternatives to

80

achieving this transformation, which are covered in Chapters 5 and 6, respec-
tively. Chapter 6 covers combinatorial motion planning, which means that from
the input model the algorithms build a discrete representation that exactly rep-
resents the original problem. This leads to complete planning approaches, which
are guaranteed to find a solution when it exists, or correctly report failure if one
does not exist. Chapter 5 covers sampling-based motion planning, which refers to
algorithms that use collision detection methods to sample the configuration space
and conduct discrete searches that utilize these samples. In this case, complete-
ness is sacrificed, but it is often replaced with a weaker notion, such as resolution
completeness or probabilistic completeness. It is important to study both Chapters
5 and 6 because each methodology has its strengths and weaknesses. Combi-
natorial methods can solve virtually any motion planning problem, and in some
restricted cases, very elegant solutions may be efficiently constructed in practice.
However, for the majority of “industrial-grade” motion planning problems, the
running times and implementation difficulties of these algorithms make them un-
appealing. Sampling-based algorithms have fulfilled much of this need in recent
years by solving challenging problems in several settings, such as automobile as-
sembly, humanoid robot planning, and conformational analysis in drug design.
Although the completeness guarantees are weaker, the efficiency and ease of im-
plementation of these methods have bolstered interest in applying motion planning
algorithms to a wide variety of applications.

Two additional chapters appear in Part II. Chapter 7 covers several exten-
sions of the basic motion planning problem from the earlier chapters. These
extensions include avoiding moving obstacles, multiple robot coordination, ma-
nipulation planning, and planning with closed kinematic chains. Algorithms that
solve these problems build on the principles of earlier chapters, but each extension
involves new challenges.

Chapter 8 is a transitional chapter that involves many elements of motion
planning but is additionally concerned with gracefully recovering from unexpected
deviations during execution. Although uncertainty in predicting the future is not
explicitly modeled until Part III, Chapter 8 redefines the notion of a plan to be a
function over state space, as opposed to being a path through it. The function gives
the appropriate actions to take during exection, regardless of what configuration
is entered. This allows the true configuration to drift away from the commanded
configuration. In Part III such uncertainties will be explicitly modeled, but this
comes at greater modeling and computational costs. It is worthwhile to develop
effective ways to avoid this.

Chapter 3

Geometric Representations and
Transformations

This chapter provides important background material that will be needed for Part
II. Formulating and solving motion planning problems require defining and manip-
ulating complicated geometric models of a system of bodies in space. Section 3.1
introduces geometric modeling, which focuses mainly on semi-algebraic modeling
because it is an important part of Chapter 6. If your interest is mainly in Chapter
5, then understanding semi-algebraic models is not critical. Sections 3.2 and 3.3
describe how to transform a single body and a chain of bodies, respectively. This
will enable the robot to “move.” These sections are essential for understanding
all of Part II and many sections beyond. It is expected that many readers will al-
ready have some or all of this background (especially Section 3.2, but it is included
for completeness). Section 3.4 extends the framework for transforming chains of
bodies to transforming trees of bodies, which allows modeling of complicated sys-
tems, such as humanoid robots and flexible organic molecules. Finally, Section 3.5
briefly covers transformations that do not assume each body is rigid.

3.1 Geometric Modeling

A wide variety of approaches and techniques for geometric modeling exist, and
the particular choice usually depends on the application and the difficulty of the
problem. In most cases, there are generally two alternatives: 1) a boundary repre-
sentation, and 2) a solid representation. Suppose we would like to define a model
of a planet. Using a boundary representation, we might write the equation of a
sphere that roughly coincides with the planet’s surface. Using a solid representa-
tion, we would describe the set of all points that are contained in the sphere. Both
alternatives will be considered in this section.

The first step is to define the worldW for which there are two possible choices:
1) a 2D world, in which W = R2, and 2) a 3D world, in which W = R3. These
choices should be sufficient for most problems; however, one might also want to
allow more complicated worlds, such as the surface of a sphere or even a higher

81

82 S. M. LaValle: Planning Algorithms

dimensional space. Such generalities are avoided in this book because their current
applications are limited. Unless otherwise stated, the world generally contains two
kinds of entities:

1. Obstacles: Portions of the world that are “permanently” occupied, for
example, as in the walls of a building.

2. Robots: Bodies that are modeled geometrically and are controllable via a
motion plan.

Based on the terminology, one obvious application is to model a robot that moves
around in a building; however, many other possibilities exist. For example, the
robot could be a flexible molecule, and the obstacles could be a folded protein.
As another example, the robot could be a virtual human in a graphical simulation
that involves obstacles (imagine the family of Doom-like video games).

This section presents a method for systematically constructing representations
of obstacles and robots using a collection of primitives. Both obstacles and robots
will be considered as (closed) subsets of W . Let the obstacle region O denote the
set of all points in W that lie in one or more obstacles; hence, O ⊆ W . The
next step is to define a systematic way of representing O that has great expressive
power while being computationally efficient. Robots will be defined in a similar
way; however, this will be deferred until Section 3.2, where transformations of
geometric bodies are defined.

3.1.1 Polygonal and Polyhedral Models

In this and the next subsection, a solid representation of O will be developed in
terms of a combination of primitives. Each primitive Hi represents a subset of W
that is easy to represent and manipulate in a computer. A complicated obstacle
region will be represented by taking finite, Boolean combinations of primitives.
Using set theory, this implies that O can also be defined in terms of a finite
number of unions, intersections, and set differences of primitives.

Convex polygons First consider O for the case in which the obstacle region is
a convex, polygonal subset of a 2D world, W = R2. A subset X ⊂ Rn is called
convex if and only if, for any pair of points in X, all points along the line segment
that connects them are contained in X. More precisely, this means that for any
x1, x2 ∈ X and λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ X. (3.1)

Thus, interpolation between x1 and x2 always yields points in X. Intuitively, X
contains no pockets or indentations. A set that is not convex is called nonconvex
(as opposed to concave, which seems better suited for lenses).

A boundary representation of O is an m-sided polygon, which can be described
using two kinds of features: vertices and edges. Every vertex corresponds to a
“corner” of the polygon, and every edge corresponds to a line segment between a

3.1. GEOMETRIC MODELING 83

Figure 3.1: A convex polygonal region can be identified by the intersection of
half-planes.

pair of vertices. The polygon can be specified by a sequence, (x1, y1), (x2, y2), . . .,
(xm, ym), of m points in R2, given in counterclockwise order.

A solid representation of O can be expressed as the intersection of m half-
planes. Each half-plane corresponds to the set of all points that lie to one side
of a line that is common to a polygon edge. Figure 3.1 shows an example of an
octagon that is represented as the intersection of eight half-planes.

An edge of the polygon is specified by two points, such as (x1, y1) and (x2, y2).
Consider the equation of a line that passes through (x1, y1) and (x2, y2). An
equation can be determined of the form ax + by + c = 0, in which a, b, c ∈ R

are constants that are determined from x1, y1, x2, and y2. Let f : R2 → R be
the function given by f(x, y) = ax + by + c. Note that f(x, y) < 0 on one side
of the line, and f(x, y) > 0 on the other. (In fact, f may be interpreted as a
signed Euclidean distance from (x, y) to the line.) The sign of f(x, y) indicates a
half-plane that is bounded by the line, as depicted in Figure 3.2. Without loss of
generality, assume that f(x, y) is defined so that f(x, y) < 0 for all points to the
left of the edge from (x1, y1) to (x2, y2) (if it is not, then multiply f(x, y) by −1).

Let fi(x, y) denote the f function derived from the line that corresponds to
the edge from (xi, yi) to (xi+1, yi+1) for 1 ≤ i < m. Let fm(x, y) denote the line
equation that corresponds to the edge from (xm, ym) to (x1, y1). Let a half-plane
Hi for 1 ≤ i ≤ m be defined as a subset of W :

Hi = {(x, y) ∈ W | fi(x, y) ≤ 0}. (3.2)

Above, Hi is a primitive that describes the set of all points on one side of the

84 S. M. LaValle: Planning Algorithms

+
+

+

+

+
+

+

+

−

−

−

−

−

−

−
−

−−

Figure 3.2: The sign of the f(x, y) partitions R2 into three regions: two half-planes
given by f(x, y) < 0 and f(x, y) > 0, and the line f(x, y) = 0.

line fi(x, y) = 0 (including the points on the line). A convex, m-sided, polygonal
obstacle region O is expressed as

O = H1 ∩H2 ∩ · · · ∩Hm. (3.3)

Nonconvex polygons The assumption that O is convex is too limited for most
applications. Now suppose that O is a nonconvex, polygonal subset of W . In this
case O can be expressed as

O = O1 ∪ O2 ∪ · · · ∪ On, (3.4)

in which each Oi is a convex, polygonal set that is expressed in terms of half-
planes using (3.3). Note that Oi and Oj for i 6= j need not be disjoint. Using this
representation, very complicated obstacle regions in W can be defined. Although
these regions may contain multiple components and holes, if O is bounded (i.e., O
will fit inside of a big enough rectangular box), its boundary will consist of linear
segments.

In general, more complicated representations of O can be defined in terms of
any finite combination of unions, intersections, and set differences of primitives;
however, it is always possible to simplify the representation into the form given
by (3.3) and (3.4). A set difference can be avoided by redefining the primitive.
Suppose the model requires removing a set defined by a primitiveHi that contains

1

fi(x, y) < 0. This is equivalent to keeping all points such that fi(x, y) ≥ 0, which is
equivalent to −fi(x, y) ≤ 0. This can be used to define a new primitive H ′

i, which
when taken in union with other sets, is equivalent to the removal of Hi. Given
a complicated combination of primitives, once set differences are removed, the
expression can be simplified into a finite union of finite intersections by applying
Boolean algebra laws.

1In this section, we want the resulting set to include all of the points along the boundary.
Therefore, < is used to model a set for removal, as opposed to ≤.

3.1. GEOMETRIC MODELING 85

Note that the representation of a nonconvex polygon is not unique. There
are many ways to decompose O into convex components. The decomposition
should be carefully selected to optimize computational performance in whatever
algorithms that model will be used. In most cases, the components may even be
allowed to overlap. Ideally, it seems that it would be nice to represent O with the
minimum number of primitives, but automating such a decomposition may lead to
an NP-hard problem (see Section 6.5.1 for a brief overview of NP-hardness). One
efficient, practical way to decompose O is to apply the vertical cell decomposition
algorithm, which will be presented in Section 6.2.2

Defining a logical predicate What is the value of the previous representation?
As a simple example, we can define a logical predicate that serves as a collision
detector. Recall from Section 2.4.1 that a predicate is a Boolean-valued function.
Let φ be a predicate defined as φ :W → {true, false}, which returns true for
a point in W that lies in O, and false otherwise. For a line given by f(x, y) =
0, let e(x, y) denote a logical predicate that returns true if f(x, y) ≤ 0, and
false otherwise.

A predicate that corresponds to a convex polygonal region is represented by a
logical conjunction,

α(x, y) = e1(x, y) ∧ e2(x, y) ∧ · · · ∧ em(x, y). (3.5)

The predicate α(x, y) returns true if the point (x, y) lies in the convex polygonal
region, and false otherwise. An obstacle region that consists of n convex polygons
is represented by a logical disjunction of conjuncts,

φ(x, y) = α1(x, y) ∨ α2(x, y) ∨ · · · ∨ αn(x, y). (3.6)

Although more efficient methods exist, φ can check whether a point (x, y) lies
in O in time O(n), in which n is the number of primitives that appear in the
representation of O (each primitive is evaluated in constant time).

Note the convenient connection between a logical predicate representation and
a set-theoretic representation. Using the logical predicate, the unions and inter-
sections of the set-theoretic representation are replaced by logical ORs and ANDs.
It is well known from Boolean algebra that any complicated logical sentence can
be reduced to a logical disjunction of conjunctions (this is often called “sum of
products” in computer engineering). This is equivalent to our previous statement
that O can always be represented as a union of intersections of primitives.

Polyhedral models For a 3D world, W = R3, and the previous concepts can
be nicely generalized from the 2D case by replacing polygons with polyhedra and
replacing half-plane primitives with half-space primitives. A boundary represen-
tation can be defined in terms of three features: vertices, edges, and faces. Every
face is a “flat” polygon embedded in R3. Every edge forms a boundary between
two faces. Every vertex forms a boundary between three or more edges.

86 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 3.3: (a) A polyhedron can be described in terms of faces, edges, and vertices.
(b) The edges of each face can be stored in a circular list that is traversed in
counterclockwise order with respect to the outward normal vector of the face.

Several data structures have been proposed that allow one to conveniently
“walk” around the polyhedral features. For example, the doubly connected edge
list [264] data structure contains three types of records: faces, half-edges, and
vertices. Intuitively, a half-edge is a directed edge. Each vertex record holds the
point coordinates and a pointer to an arbitrary half-edge that touches the vertex.
Each face record contains a pointer to an arbitrary half-edge on its boundary. Each
face is bounded by a circular list of half-edges. There is a pair of directed half-edge
records for each edge of the polyhedon. Each half-edge is shown as an arrow in
Figure 3.3b. Each half-edge record contains pointers to five other records: 1) the
vertex from which the half-edge originates; 2) the “twin” half-edge, which bounds
the neighboring face, and has the opposite direction; 3) the face that is bounded by
the half-edge; 4) the next element in the circular list of edges that bound the face;
and 5) the previous element in the circular list of edges that bound the face. Once
all of these records have been defined, one can conveniently traverse the structure
of the polyhedron.

Now consider a solid representation of a polyhedron. Suppose that O is a con-
vex polyhedron, as shown in Figure 3.3. A solid representation can be constructed
from the vertices. Each face of O has at least three vertices along its boundary.
Assuming these vertices are not collinear, an equation of the plane that passes
through them can be determined of the form

ax+ by + cz + d = 0, (3.7)

in which a, b, c, d ∈ R are constants.
Once again, f can be constructed, except now f : R3 → R and

f(x, y, z) = ax+ by + cz + d. (3.8)

3.1. GEOMETRIC MODELING 87

Let m be the number of faces. For each face of O, a half-space Hi is defined as a
subset of W :

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0}. (3.9)

It is important to choose fi so that it takes on negative values inside of the poly-
hedron. In the case of a polygonal model, it was possible to consistently define
fi by proceeding in counterclockwise order around the boundary. In the case of
a polyhedron, the half-edge data structure can be used to obtain for each face
the list of edges that form its boundary in counterclockwise order. Figure 3.3b
shows the edge ordering for each face. For every edge, the arrows point in opposite
directions, as required by the half-edge data structure. The equation for each face
can be consistently determined as follows. Choose three consecutive vertices, p1,
p2, p3 (they must not be collinear) in counterclockwise order on the boundary of
the face. Let v12 denote the vector from p1 to p2, and let v23 denote the vector
from p2 to p3. The cross product v = v12 × v23 always yields a vector that points
out of the polyhedron and is normal to the face. Recall that the vector [a b c]
is parallel to the normal to the plane. If its components are chosen as a = v[1],
b = v[2], and c = v[3], then f(x, y, z) ≤ 0 for all points in the half-space that
contains the polyhedron.

As in the case of a polygonal model, a convex polyhedron can be defined as
the intersection of a finite number of half-spaces, one for each face. A nonconvex
polyhedron can be defined as the union of a finite number of convex polyhedra.
The predicate φ(x, y, z) can be defined in a similar manner, in this case yielding
true if (x, y, z) ∈ O, and false otherwise.

3.1.2 Semi-Algebraic Models

In both the polygonal and polyhedral models, f was a linear function. In the
case of a semi-algebraic model for a 2D world, f can be any polynomial with real-
valued coefficients and variables x and y. For a 3D world, f is a polynomial with
variables x, y, and z. The class of semi-algebraic models includes both polygonal
and polyhedral models, which use first-degree polynomials. A point set determined
by a single polynomial primitive is called an algebraic set; a point set that can be
obtained by a finite number of unions and intersections of algebraic sets is called
a semi-algebraic set.

Consider the case of a 2D world. A solid representation can be defined using
algebraic primitives of the form

H = {(x, y) ∈ W | f(x, y) ≤ 0}. (3.10)

As an example, let f = x2 + y2 − 4. In this case, H represents a disc of radius
2 that is centered at the origin. This corresponds to the set of points (x, y) for
which f(x, y) ≤ 0, as depicted in Figure 3.4a.

Example 3.1 (Gingerbread Face) Consider constructing a model of the shaded
region shown in Figure 3.4b. Let the center of the outer circle have radius r1 and

88 S. M. LaValle: Planning Algorithms

+
+

+
+

+
+

++
−

−

−
−

−

−
−

−
+

+

+

++

+
+

+++
+

+
+

(a) (b)

Figure 3.4: (a) Once again, f is used to partition R2 into two regions. In this case,
the algebraic primitive represents a disc-shaped region. (b) The shaded “face” can
be exactly modeled using only four algebraic primitives.

be centered at the origin. Suppose that the “eyes” have radius r2 and r3 and are
centered at (x2, y2) and (x3, y3), respectively. Let the “mouth” be an ellipse with
major axis a and minor axis b and is centered at (0, y4). The functions are defined
as

f1 = x2 + y2 − r21,
f2 = −

(
(x− x2)2 + (y − y2)2 − r22

)
,

f3 = −
(
(x− x3)2 + (y − y3)2 − r23

)
,

f4 = −
(
x2/a2 + (y − y4)2/b2 − 1

)
.

(3.11)

For f2, f3, and f4, the familiar circle and ellipse equations were multiplied by −1 to
yield algebraic primitives for all points outside of the circle or ellipse. The shaded
region O is represented as

O = H1 ∩H2 ∩H3 ∩H4. (3.12)

�

In the case of semi-algebraic models, the intersection of primitives does not
necessarily result in a convex subset of W . In general, however, it might be
necessary to form O by taking unions and intersections of algebraic primitives.

A logical predicate, φ(x, y), can once again be formed, and collision checking
is still performed in time that is linear in the number of primitives. Note that
it is still very efficient to evaluate every primitive; f is just a polynomial that is
evaluated on the point (x, y, z).

The semi-algebraic formulation generalizes easily to the case of a 3D world.
This results in algebraic primitives of the form

H = {(x, y, z) ∈ W | f(x, y, z) ≤ 0}, (3.13)

3.1. GEOMETRIC MODELING 89

which can be used to define a solid representation of a 3D obstacle O and a logical
predicate φ.

Equations (3.10) and (3.13) are sufficient to express any model of interest. One
may define many other primitives based on different relations, such as f(x, y, z) ≥
0, f(x, y, z) = 0, f(x, y, z) < 0, f(x, y, z) = 0, and f(x, y, z) 6= 0; however, most
of them do not enhance the set of models that can be expressed. They might,
however, be more convenient in certain contexts. To see that some primitives do
not allow new models to be expressed, consider the primitive

H = {(x, y, z) ∈ W | f(x, y, z) ≥ 0}. (3.14)

The right part may be alternatively represented as −f(x, y, z) ≤ 0, and −f may
be considered as a new polynomial function of x, y, and z. For an example that
involves the = relation, consider the primitive

H = {(x, y, z) ∈ W | f(x, y, z) = 0}. (3.15)

It can instead be constructed as H = H1 ∩H2, in which

H1 = {(x, y, z) ∈ W | f(x, y, z) ≤ 0} (3.16)

and

H2 = {(x, y, z) ∈ W | − f(x, y, z) ≤ 0}. (3.17)

The relation< does add some expressive power if it is used to construct primitives.2

It is needed to construct models that do not include the outer boundary (for
example, the set of all points inside of a sphere, which does not include points on
the sphere). These are generally called open sets and are defined Chapter 4.

3.1.3 Other Models

The choice of a model often depends on the types of operations that will be per-
formed by the planning algorithm. For combinatorial motion planning methods,
to be covered in Chapter 6, the particular representation is critical. On the other
hand, for sampling-based planning methods, to be covered in Chapter 5, the par-
ticular representation is important only to the collision detection algorithm, which
is treated as a “black box” as far as planning is concerned. Therefore, the models
given in the remainder of this section are more likely to appear in sampling-based
approaches and may be invisible to the designer of a planning algorithm (although
it is never wise to forget completely about the representation).

2An alternative that yields the same expressive power is to still use ≤, but allow set comple-
ments, in addition to unions and intersections.

90 S. M. LaValle: Planning Algorithms

Figure 3.5: A polygon with holes can be expressed by using different orientations:
counterclockwise for the outer boundary and clockwise for the hole boundaries.
Note that the shaded part is always to the left when following the arrows.

Nonconvex polygons and polyhedra The method in Section 3.1.1 required
nonconvex polygons to be represented as a union of convex polygons. Instead, a
boundary representation of a nonconvex polygon may be directly encoded by list-
ing vertices in a specific order; assume that counterclockwise order is used. Each
polygon of m vertices may be encoded by a list of the form (x1, y1), (x2, y2), . . .,
(xm, ym). It is assumed that there is an edge between each (xi, yi) and (xi+1, yi+1)
for each i from 1 tom−1, and also an edge between (xm, ym) and (x1, y1). Ordinar-
ily, the vertices should be chosen in a way that makes the polygon simple, meaning
that no edges intersect. In this case, there is a well-defined interior of the polygon,
which is to the left of every edge, if the vertices are listed in counterclockwise
order.

What if a polygon has a hole in it? In this case, the boundary of the hole
can be expressed as a polygon, but with its vertices appearing in the clockwise
direction. To the left of each edge is the interior of the outer polygon, and to the
right is the hole, as shown in Figure 3.5

Although the data structures are a little more complicated for three dimen-
sions, boundary representations of nonconvex polyhedra may be expressed in a
similar manner. In this case, instead of an edge list, one must specify faces, edges,
and vertices, with pointers that indicate their incidence relations. Consistent ori-
entations must also be chosen, and holes may be modeled once again by selecting
opposite orientations.

3D triangles Suppose W = R3. One of the most convenient geometric models
to express is a set of triangles, each of which is specified by three points, (x1, y1, z1),
(x2, y2, z2), (x3, y3, z3). This model has been popular in computer graphics because
graphics acceleration hardware primarily uses triangle primitives. It is assumed
that the interior of the triangle is part of the model. Thus, two triangles are
considered as “colliding” if one pokes into the interior of another. This model offers
great flexibility because there are no constraints on the way in which triangles must

3.1. GEOMETRIC MODELING 91

Figure 3.6: Triangle strips and triangle fans can reduce the number of redundant
points.

be expressed; however, this is also one of the drawbacks. There is no coherency
that can be exploited to easily declare whether a point is “inside” or “outside” of
a 3D obstacle. If there is at least some coherency, then it is sometimes preferable
to reduce redundancy in the specification of triangle coordinates (many triangles
will share the same corners). Representations that remove this redundancy are
called a triangle strip, which is a sequence of triangles such that each adjacent
pair shares a common edge, and a triangle fan, which is a triangle strip in which
all triangles share a common vertex. See Figure 3.6.

Nonuniform rational B-splines (NURBS) These are used in many engi-
neering design systems to allow convenient design and adjustment of curved sur-
faces, in applications such as aircraft or automobile body design. In contrast to
semi-algebraic models, which are implicit equations, NURBS and other splines are
parametric equations. This makes computations such as rendering easier; however,
others, such as collision detection, become more difficult. These models may be
defined in any dimension. A brief 2D formulation is given here.

A curve can be expressed as

C(u) =

n∑

i=0

wiPiNi,k(u)

n∑

i=0

wiNi,k(u)

, (3.18)

in which wi ∈ R are weights and Pi are control points. The Ni,k are normalized
basis functions of degree k, which can be expressed recursively as

Ni,k(u) =

(
u− ti
ti+k − ti

)

Ni,k−1(u) +

(
ti+k+1 − u
ti+k+1 − ti+1

)

Ni+1,k−1(u). (3.19)

The basis of the recursion is Ni,0(u) = 1 if ti ≤ u < ti+1, and Ni,0(u) = 0 otherwise.
A knot vector is a nondecreasing sequence of real values, {t0, t1, . . . , tm}, that
controls the intervals over which certain basic functions take effect.

Bitmaps For either W = R2 or W = R3, it is possible to discretize a bounded
portion of the world into rectangular cells that may or may not be occupied.
The resulting model looks very similar to Example 2.1. The resolution of this
discretization determines the number of cells per axis and the quality of the ap-
proximation. The representation may be considered as a binary image in which

92 S. M. LaValle: Planning Algorithms

each “1” in the image corresponds to a rectangular region that contains at least
one point of O, and “0” represents those that do not contain any of O. Although
bitmaps do not have the elegance of the other models, they often arise in applica-
tions. One example is a digital map constructed by a mobile robot that explores
an environment with its sensors. One generalization of bitmaps is a gray-scale
map or occupancy grid. In this case, a numerical value may be assigned to each
cell, indicating quantities such as “the probability that an obstacle exists” or the
“expected difficulty of traversing the cell.” The latter interpretation is often used
in terrain maps for navigating planetary rovers.

Superquadrics Instead of using polynomials to define fi, many generalizations
can be constructed. One popular primitive is a superquadric, which generalizes
quadric surfaces. One example is a superellipsoid, which is given for W = R3 by

(
|x/a|n1 + |y/b|n2

)n1/n2 + |z/c|n1 − 1 ≤ 0, (3.20)

in which n1 ≥ 2 and n2 ≥ 2. If n1 = n2 = 2, an ellipse is generated. As n1 and n2

increase, the superellipsoid becomes shaped like a box with rounded corners.

Generalized cylinders A generalized cylinder is a generalization of an ordinary
cylinder. Instead of being limited to a line, the center axis is a continuous spine
curve, (x(s), y(s), z(s)), for some parameter s ∈ [0, 1]. Instead of a constant radius,
a radius function r(s) is defined along the spine. The value r(s) is the radius of
the circle obtained as the cross section of the generalized cylinder at the point
(x(s), y(s), z(s)). The normal to the cross-section plane is the tangent to the spine
curve at s.

3.2 Rigid-Body Transformations

Any of the techniques from Section 3.1 can be used to define both the obstacle
region and the robot. Let O refer to the obstacle region, which is a subset of W .
Let A refer to the robot, which is a subset of R2 or R3, matching the dimension
of W . Although O remains fixed in the world, W , motion planning problems will
require “moving” the robot, A.

3.2.1 General Concepts

Before giving specific transformations, it will be helpful to define them in general to
avoid confusion in later parts when intuitive notions might fall apart. Suppose that
a rigid robot, A, is defined as a subset of R2 or R3. A rigid-body transformation is
a function, h : A →W , that maps every point of A intoW with two requirements:
1) The distance between any pair of points of A must be preserved, and 2) the
orientation of A must be preserved (no “mirror images”).

3.2. RIGID-BODY TRANSFORMATIONS 93

Using standard function notation, h(a) for some a ∈ A refers to the point in
W that is “occupied” by a. Let

h(A) = {h(a) ∈ W | a ∈ A}, (3.21)

which is the image of h and indicates all points inW occupied by the transformed
robot.

Transforming the robot model Consider transforming a robot model. If A
is expressed by naming specific points in R2, as in a boundary representation of a
polygon, then each point is simply transformed from a to h(a) ∈ W . In this case,
it is straightforward to transform the entire model using h. However, there is a
slight complication if the robot model is expressed using primitives, such as

Hi = {a ∈ R2 | fi(a) ≤ 0}. (3.22)

This differs slightly from (3.2) because the robot is defined in R2 (which is not
necessarily W), and also a is used to denote a point (x, y) ∈ A. Under a transfor-
mation h, the primitive is transformed as

h(Hi) = {h(a) ∈ W | fi(a) ≤ 0}. (3.23)

To transform the primitive completely, however, it is better to directly name points
in w ∈ W , as opposed to h(a) ∈ W . Using the fact that a = h−1(w), this becomes

h(Hi) = {w ∈ W | fi(h−1(w)) ≤ 0}, (3.24)

in which the inverse of h appears in the right side because the original point a ∈ A
needs to be recovered to evaluate fi. Therefore, it is important to be careful
because either h or h−1 may be required to transform the model. This will be
observed in more specific contexts in some coming examples.

A parameterized family of transformations It will become important to
study families of transformations, in which some parameters are used to select
the particular transformation. Therefore, it makes sense to generalize h to accept
two variables: a parameter vector, q ∈ Rn, along with a ∈ A. The resulting
transformed point a is denoted by h(q, a), and the entire robot is transformed to
h(q,A) ⊂ W .

The coming material will use the following shorthand notation, which requires
the specific h to be inferred from the context. Let h(q, a) be shortened to a(q), and
let h(q,A) be shortened to A(q). This notation makes it appear that by adjusting
the parameter q, the robot A travels around inW as different transformations are
selected from the predetermined family. This is slightly abusive notation, but it is
convenient. The expression A(q) can be considered as a set-valued function that
yields the set of points in W that are occupied by A when it is transformed by
q. Most of the time the notation does not cause trouble, but when it does, it is
helpful to remember the definitions from this section, especially when trying to
determine whether h or h−1 is needed.

94 S. M. LaValle: Planning Algorithms

Defining frames It was assumed so far that A is defined in R2 or R3, but before
it is transformed, it is not considered to be a subset of W . The transformation h
places the robot in W . In the coming material, it will be convenient to indicate
this distinction using coordinate frames. The origin and coordinate basis vectors
of W will be referred to as the world frame.3 Thus, any point w ∈ W is expressed
in terms of the world frame.

The coordinates used to define A are initially expressed in the body frame,
which represents the origin and coordinate basis vectors of R2 or R3. In the case
of A ⊂ R2, it can be imagined that the body frame is painted on the robot.
Transforming the robot is equivalent to converting its model from the body frame
to the world frame. This has the effect of placing4 A into W at some position
and orientation. When multiple bodies are covered in Section 3.3, each body will
have its own body frame, and transformations require expressing all bodies with
respect to the world frame.

3.2.2 2D Transformations

Translation A rigid robot A ⊂ R2 is translated by using two parameters, xt, yt ∈
R. Using definitions from Section 3.2.1, q = (xt, yt), and h is defined as

h(x, y) = (x+ xt, y + yt). (3.25)

A boundary representation of A can be translated by transforming each vertex in
the sequence of polygon vertices using (3.25). Each point, (xi, yi), in the sequence
is replaced by (xi + xt, yi + yt).

Now consider a solid representation of A, defined in terms of primitives. Each
primitive of the form

Hi = {(x, y) ∈ R2 | f(x, y) ≤ 0} (3.26)

is transformed to

h(Hi) = {(x, y) ∈ W | f(x− xt, y − yt) ≤ 0}. (3.27)

Example 3.2 (Translating a Disc) For example, suppose the robot is a disc of
unit radius, centered at the origin. It is modeled by a single primitive,

Hi = {(x, y) ∈ R2 | x2 + y2 − 1 ≤ 0}. (3.28)

Suppose A = Hi is translated xt units in the x direction and yt units in the y
direction. The transformed primitive is

h(Hi) = {(x, y) ∈ W | (x− xt)2 + (y − yt)2 − 1 ≤ 0}, (3.29)

3The world frame serves the same purpose as an inertial frame in Newtonian mechanics.
Intuitively, it is a frame that remains fixed and from which all measurements are taken. See
Section 13.3.1.

4Technically, this placement is a function called an orientation-preserving isometric embed-
ding.

3.2. RIGID-BODY TRANSFORMATIONS 95

Moving
the Robot

Moving the
Coordinate
Frame

(a) Translation of the robot (b) Translation of the frame

Figure 3.7: Every transformation has two interpretations.

which is the familiar equation for a disc centered at (xt, yt). In this example, the
inverse, h−1 is used, as described in Section 3.2.1. �

The translated robot is denoted as A(xt, yt). Translation by (0, 0) is the iden-
tity transformation, which results in A(0, 0) = A, if it is assumed that A ⊂ W
(recall that A does not necessarily have to be initially embedded inW). It will be
convenient to use the term degrees of freedom to refer to the maximum number of
independent parameters that are needed to completely characterize the transfor-
mation applied to the robot. If the set of allowable values for xt and yt forms a
two-dimensional subset of R2, then the degrees of freedom is two.

Suppose that A is defined directly in W with translation. As shown in Figure
3.7, there are two interpretations of a rigid-body transformation applied to A: 1)
The world frame remains fixed and the robot is transformed; 2) the robot remains
fixed and the world frame is translated. The first one characterizes the effect of
the transformation from a fixed world frame, and the second one indicates how
the transformation appears from the robot’s perspective. Unless stated otherwise,
the first interpretation will be used when we refer to motion planning problems
because it often models a robot moving in a physical world. Numerous books cover
coordinate transformations under the second interpretation. This has been known
to cause confusion because the transformations may sometimes appear “backward”
from what is desired in motion planning.

Rotation The robot, A, can be rotated counterclockwise by some angle θ ∈
[0, 2π) by mapping every (x, y) ∈ A as

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ). (3.30)

96 S. M. LaValle: Planning Algorithms

Using a 2× 2 rotation matrix,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)

, (3.31)

the transformation can be written as
(
x cos θ − y sin θ
x sin θ + y cos θ

)

= R(θ)

(
x
y

)

. (3.32)

Using the notation of Section 3.2.1, R(θ) becomes h(q), for which q = θ. For
linear transformations, such as the one defined by (3.32), recall that the column
vectors represent the basis vectors of the new coordinate frame. The column
vectors of R(θ) are unit vectors, and their inner product (or dot product) is zero,
indicating that they are orthogonal. Suppose that the x and y coordinate axes,
which represent the body frame, are “painted” on A. The columns of R(θ) can be
derived by considering the resulting directions of the x- and y-axes, respectively,
after performing a counterclockwise rotation by the angle θ. This interpretation
generalizes nicely for higher dimensional rotation matrices.

Note that the rotation is performed about the origin. Thus, when defining the
model of A, the origin should be placed at the intended axis of rotation. Using
the semi-algebraic model, the entire robot model can be rotated by transforming
each primitive, yielding A(θ). The inverse rotation, R(−θ), must be applied to
each primitive.

Combining translation and rotation Suppose a rotation by θ is performed,
followed by a translation by xt, yt. This can be used to place the robot in any
desired position and orientation. Note that translations and rotations do not
commute! If the operations are applied successively, each (x, y) ∈ A is transformed
to (

x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

)

. (3.33)

The following matrix multiplication yields the same result for the first two vector
components:





cos θ − sin θ xt
sin θ cos θ yt
0 0 1









x
y
1



 =





x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

1



 . (3.34)

This implies that the 3× 3 matrix,

T =





cos θ − sin θ xt
sin θ cos θ yt
0 0 1



 , (3.35)

represents a rotation followed by a translation. The matrix T will be referred to
as a homogeneous transformation matrix. It is important to remember that T

3.2. RIGID-BODY TRANSFORMATIONS 97

Yaw

z

y

x

PitchRoll

γ

β

α

Figure 3.8: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

represents a rotation followed by a translation (not the other way around). Each
primitive can be transformed using the inverse of T , resulting in a transformed
solid model of the robot. The transformed robot is denoted by A(xt, yt, θ), and
in this case there are three degrees of freedom. The homogeneous transformation
matrix is a convenient representation of the combined transformations; therefore,
it is frequently used in robotics, mechanics, computer graphics, and elsewhere.
It is called homogeneous because over R3 it is just a linear transformation with-
out any translation. The trick of increasing the dimension by one to absorb the
translational part is common in projective geometry [804].

3.2.3 3D Transformations

Rigid-body transformations for the 3D case are conceptually similar to the 2D case;
however, the 3D case appears more difficult because rotations are significantly more
complicated.

3D translation The robot, A, is translated by some xt, yt, zt ∈ R using

(x, y, z) 7→ (x+ xt, y + yt, z + zt). (3.36)

A primitive of the form

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0} (3.37)

is transformed to

{(x, y, z) ∈ W | fi(x− xt, y − yt, z − zt) ≤ 0}. (3.38)

The translated robot is denoted as A(xt, yt, zt).

98 S. M. LaValle: Planning Algorithms

Yaw, pitch, and roll rotations A 3D body can be rotated about three orthog-
onal axes, as shown in Figure 3.8. Borrowing aviation terminology, these rotations
will be referred to as yaw, pitch, and roll:

1. A yaw is a counterclockwise rotation of α about the z-axis. The rotation
matrix is given by

Rz(α) =





cosα − sinα 0
sinα cosα 0
0 0 1



 . (3.39)

Note that the upper left entries of Rz(α) form a 2D rotation applied to the
x and y coordinates, whereas the z coordinate remains constant.

2. A pitch is a counterclockwise rotation of β about the y-axis. The rotation
matrix is given by

Ry(β) =





cos β 0 sin β
0 1 0

− sin β 0 cos β



 . (3.40)

3. A roll is a counterclockwise rotation of γ about the x-axis. The rotation
matrix is given by

Rx(γ) =





1 0 0
0 cos γ − sin γ
0 sin γ cos γ



 . (3.41)

Each rotation matrix is a simple extension of the 2D rotation matrix, (3.31). For
example, the yaw matrix, Rz(α), essentially performs a 2D rotation with respect
to the x and y coordinates while leaving the z coordinate unchanged. Thus, the
third row and third column of Rz(α) look like part of the identity matrix, while
the upper right portion of Rz(α) looks like the 2D rotation matrix.

The yaw, pitch, and roll rotations can be used to place a 3D body in any
orientation. A single rotation matrix can be formed by multiplying the yaw, pitch,
and roll rotation matrices to obtain

R(α,β, γ) = Rz(α)Ry(β)Rx(γ) =




cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cos β cos γ



 .

(3.42)

It is important to note that R(α, β, γ) performs the roll first, then the pitch, and
finally the yaw. If the order of these operations is changed, a different rotation

3.2. RIGID-BODY TRANSFORMATIONS 99

matrix would result. Be careful when interpreting the rotations. Consider the
final rotation, a yaw by α. Imagine sitting inside of a robot A that looks like
an aircraft. If β = γ = 0, then the yaw turns the plane in a way that feels
like turning a car to the left. However, for arbitrary values of β and γ, the final
rotation axis will not be vertically aligned with the aircraft because the aircraft is
left in an unusual orientation before α is applied. The yaw rotation occurs about
the z-axis of the world frame, not the body frame of A. Each time a new rotation
matrix is introduced from the left, it has no concern for original body frame of
A. It simply rotates every point in R3 in terms of the world frame. Note that 3D
rotations depend on three parameters, α, β, and γ, whereas 2D rotations depend
only on a single parameter, θ. The primitives of the model can be transformed
using R(α, β, γ), resulting in A(α, β, γ).

Determining yaw, pitch, and roll from a rotation matrix It is often con-
venient to determine the α, β, and γ parameters directly from a given rotation
matrix. Suppose an arbitrary rotation matrix





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (3.43)

is given. By setting each entry equal to its corresponding entry in (3.42), equations
are obtained that must be solved for α, β, and γ. Note that r21/r11 = tanα and

r32/r33 = tan γ. Also, r31 = − sin β and
√

r232 + r233 = cos β. Solving for each
angle yields

α = tan−1(r21/r11), (3.44)

β = tan−1
(

− r31
/
√

r232 + r233

)

, (3.45)

and
γ = tan−1(r32/r33). (3.46)

There is a choice of four quadrants for the inverse tangent functions. How can
the correct quadrant be determined? Each quadrant should be chosen by using
the signs of the numerator and denominator of the argument. The numerator sign
selects whether the direction will be above or below the x-axis, and the denomi-
nator selects whether the direction will be to the left or right of the y-axis. This
is the same as the atan2 function in the C programming language, which nicely
expands the range of the arctangent to [0, 2π). This can be applied to express
(3.44), (3.45), and (3.46) as

α = atan2(r21, r11), (3.47)

β = atan2
(

− r31,
√

r232 + r233

)

, (3.48)

and
γ = atan2(r32, r33). (3.49)

Note that this method assumes r11 6= 0 and r33 6= 0.

100 S. M. LaValle: Planning Algorithms

The homogeneous transformation matrix for 3D bodies As in the 2D
case, a homogeneous transformation matrix can be defined. For the 3D case, a
4 × 4 matrix is obtained that performs the rotation given by R(α, β, γ), followed
by a translation given by xt, yt, zt. The result is

T =






cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ xt
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ yt
− sinβ cosβ sin γ cosβ cos γ zt

0 0 0 1




.

(3.50)
Once again, the order of operations is critical. The matrix T in (3.50) represents
the following sequence of transformations:

1. Roll by γ 3. Yaw by α
2. Pitch by β 4. Translate by (xt, yt, zt).

The robot primitives can be transformed to yield A(xt, yt, zt, α, β, γ). A 3D rigid
body that is capable of translation and rotation therefore has six degrees of free-
dom.

3.3 Transforming Kinematic Chains of Bodies

The transformations become more complicated for a chain of attached rigid bodies.
For convenience, each rigid body is referred to as a link. LetA1, A2, . . . , Am denote
a set of m links. For each i such that 1 ≤ i < m, link Ai is “attached” to link Ai+1

in a way that allows Ai+1 some constrained motion with respect to Ai. The motion
constraint must be explicitly given, and will be discussed shortly. As an example,
imagine a trailer that is attached to the back of a car by a hitch that allows the
trailer to rotate with respect to the car. In general, a set of attached bodies will
be referred to as a linkage. This section considers bodies that are attached in a
single chain. This leads to a particular linkage called a kinematic chain.

3.3.1 A 2D Kinematic Chain

Before considering a kinematic chain, suppose A1 and A2 are unattached rigid
bodies, each of which is capable of translating and rotating in W = R2. Since
each body has three degrees of freedom, there is a combined total of six degrees
of freedom; the independent parameters are x1, y1, θ1, x2, y2, and θ2.

Attaching bodies When bodies are attached in a kinematic chain, degrees of
freedom are removed. Figure 3.9 shows two different ways in which a pair of 2D
links can be attached. The place at which the links are attached is called a joint.
For a revolute joint, one link is capable only of rotation with respect to the other.
For a prismatic joint is shown, one link slides along the other. Each type of joint
removes two degrees of freedom from the pair of bodies. For example, consider a

3.3. TRANSFORMING KINEMATIC CHAINS OF BODIES 101

A1

A2

A1

A2

Revolute Prismatic

Figure 3.9: Two types of 2D joints: a revolute joint allows one link to rotate with
respect to the other, and a prismatic joint allows one link to translate with respect
to the other.

revolute joint that connects A1 to A2. Assume that the point (0, 0) in the body
frame of A2 is permanently fixed to a point (xa, ya) in the body frame of A1.
This implies that the translation of A2 is completely determined once xa and ya
are given. Note that xa and ya depend on x1, y1, and θ1. This implies that A1

and A2 have a total of four degrees of freedom when attached. The independent
parameters are x1, y1, θ1, and θ2. The task in the remainder of this section is to
determine exactly how the models of A1, A2, . . ., Am are transformed when they
are attached in a chain, and to give the expressions in terms of the independent
parameters.

Consider the case of a kinematic chain in which each pair of links is attached
by a revolute joint. The first task is to specify the geometric model for each link,
Ai. Recall that for a single rigid body, the origin of the body frame determines the
axis of rotation. When defining the model for a link in a kinematic chain, excessive
complications can be avoided by carefully placing the body frame. Since rotation
occurs about a revolute joint, a natural choice for the origin is the joint between
Ai and Ai−1 for each i > 1. For convenience that will soon become evident, the
xi-axis for the body frame of Ai is defined as the line through the two joints that
lie in Ai, as shown in Figure 3.10. For the last link, Am, the xm-axis can be
placed arbitrarily, assuming that the origin is placed at the joint that connects
Am to Am−1. The body frame for the first link, A1, can be placed using the same
considerations as for a single rigid body.

Homogeneous transformation matrices for 2D chains We are now pre-
pared to determine the location of each link. The location in W of a point in
(x, y) ∈ A1 is determined by applying the 2D homogeneous transformation matrix
(3.35),

T1 =





cos θ1 − sin θ1 xt
sin θ1 cos θ1 yt
0 0 1



 . (3.51)

102 S. M. LaValle: Planning Algorithms

xi−1

θi

Ai−1

A i−
2

x i

y i

ai−1

yi−1

A
i

Figure 3.10: The body frame of each Ai, for 1 < i < m, is based on the joints that
connect Ai to Ai−1 and Ai+1.

As shown in Figure 3.10, let ai−1 be the distance between the joints in Ai−1. The
orientation difference between Ai and Ai−1 is denoted by the angle θi. Let Ti
represent a 3 × 3 homogeneous transformation matrix (3.35), specialized for link
Ai for 1 < i ≤ m,

Ti =





cos θi − sin θi ai−1

sin θi cos θi 0
0 0 1



 . (3.52)

This generates the following sequence of transformations:

1. Rotate counterclockwise by θi.

2. Translate by ai−1 along the x-axis.

The transformation Ti expresses the difference between the body frame of Ai and
the body frame of Ai−1. The application of Ti moves Ai from its body frame to
the body frame of Ai−1. The application of Ti−1Ti moves both Ai and Ai−1 to the
body frame of Ai−2. By following this procedure, the location in W of any point
(x, y) ∈ Am is determined by multiplying the transformation matrices to obtain

T1T2 · · ·Tm





x
y
1



 . (3.53)

Example 3.3 (A 2D Chain of Three Links) To gain an intuitive understand-
ing of these transformations, consider determining the configuration for link A3,
as shown in Figure 3.11. Figure 3.11a shows a three-link chain in which A1 is at
its initial configuration and the other links are each offset by π/4 from the pre-
vious link. Figure 3.11b shows the frame in which the model for A3 is initially
defined. The application of T3 causes a rotation of θ3 and a translation by a2.
As shown in Figure 3.11c, this places A3 in its appropriate configuration. Note
that A2 can be placed in its initial configuration, and it will be attached cor-
rectly to A3. The application of T2 to the previous result places both A3 and A2

3.3. TRANSFORMING KINEMATIC CHAINS OF BODIES 103

in their proper configurations, and A1 can be placed in its initial configuration. �

For revolute joints, the ai parameters are constants, and the θi parameters are
variables. The transformed mth link is represented as Am(xt, yt, θ1, . . . , θm). In
some cases, the first link might have a fixed location in the world. In this case,
the revolute joints account for all degrees of freedom, yielding Am(θ1, . . . , θm). For
prismatic joints, the ai parameters are variables, instead of the θi parameters. It
is straightforward to include both types of joints in the same kinematic chain.

3.3.2 A 3D Kinematic Chain

As for a single rigid body, the 3D case is significantly more complicated than the
2D case due to 3D rotations. Also, several more types of joints are possible, as
shown in Figure 3.12. Nevertheless, the main ideas from the transformations of
2D kinematic chains extend to the 3D case. The following steps from Section 3.3.1
will be recycled here:

1. The body frame must be carefully placed for each Ai.

2. Based on joint relationships, several parameters are measured.

3. The parameters define a homogeneous transformation matrix, Ti.

4. The location in W of any point in Am is given by applying the matrix
T1T2 · · ·Tm.

Consider a kinematic chain of m links in W = R3, in which each Ai for 1 ≤
i < m is attached to Ai+1 by a revolute joint. Each link can be a complicated,
rigid body as shown in Figure 3.13. For the 2D problem, the coordinate frames
were based on the points of attachment. For the 3D problem, it is convenient to
use the axis of rotation of each revolute joint (this is equivalent to the point of
attachment for the 2D case). The axes of rotation will generally be skew lines in
R3, as shown in Figure 3.14. Let the zi-axis be the axis of rotation for the revolute
joint that holds Ai to Ai−1. Between each pair of axes in succession, let the xi-axis
join the closest pair of points between the zi- and zi+1-axes, with the origin on the
zi-axis and the direction pointing towards the nearest point of the zi+1-axis. This
axis is uniquely defined if the zi- and zi+1-axes are not parallel. The recommended
body frame for each Ai will be given with respect to the zi- and xi-axes, which
are shown in Figure 3.14. Assuming a right-handed coordinate system, the yi-
axis points away from us in Figure 3.14. In the transformations that will appear
shortly, the coordinate frame given by xi, yi, and zi will be most convenient for
defining the model for Ai. It might not always appear convenient because the
origin of the frame may even lie outside of Ai, but the resulting transformation
matrices will be easy to understand.

In Section 3.3.1, each Ti was defined in terms of two parameters, ai−1 and θi.
For the 3D case, four parameters will be defined: di, θi, ai−1, and αi−1. These

104 S. M. LaValle: Planning Algorithms

x3

θ3

θ2A1

A2

y1

x1

x2

A3

A3

y3

x3

(a) A three-link chain (b) A3 in its body frame

A2

A3

y2

x2

A1

A2

A3

y1

x1

(c) T3 puts A3 in A2’s body frame (d) T2T3 puts A3 in A1’s body frame

Figure 3.11: Applying the transformation T2T3 to the model of A3. If T1 is the
identity matrix, then this yields the location in W of points in A3.

3.3. TRANSFORMING KINEMATIC CHAINS OF BODIES 105

Revolute Prismatic Screw
1 Degree of Freedom 1 Degree of Freedom 1 Degree of Freedom

Cylindrical Spherical Planar
2 Degrees of Freedom 3 Degrees of Freedom 3 Degrees of Freedom

Figure 3.12: Types of 3D joints arising from the 2D surface contact between two
bodies.

are referred to as Denavit-Hartenberg (DH) parameters [434]. The definition of
each parameter is indicated in Figure 3.15. Figure 3.15a shows the definition of
di. Note that the xi−1- and xi-axes contact the zi-axis at two different places. Let
di denote signed distance between these points of contact. If the xi-axis is above
the xi−1-axis along the zi-axis, then di is positive; otherwise, di is negative. The
parameter θi is the angle between the xi- and xi−1-axes, which corresponds to the
rotation about the zi-axis that moves the xi−1-axis to coincide with the xi-axis.
The parameter ai is the distance between the zi- and zi−1-axes; recall these are
generally skew lines in R3. The parameter αi−1 is the angle between the zi- and
zi−1-axes.

Two screws The homogeneous transformation matrix Ti will be constructed by
combining two simpler transformations. The transformation

Ri =







cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di
0 0 0 1







(3.54)

causes a rotation of θi about the zi-axis, and a translation of di along the zi-
axis. Notice that the rotation by θi and translation by di commute because both

106 S. M. LaValle: Planning Algorithms

Ai+1

zi+1zi

Ai−1

Ai

Figure 3.13: The rotation axes for a generic link attached by revolute joints.

operations occur with respect to the same axis, zi. The combined operation of a
translation and rotation with respect to the same axis is referred to as a screw (as
in the motion of a screw through a nut). The effect of Ri can thus be considered
as a screw about the zi-axis. The second transformation is

Qi−1 =







1 0 0 ai−1

0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1






, (3.55)

which can be considered as a screw about the xi−1-axis. A rotation of αi−1 about
the xi−1-axis and a translation of ai−1 are performed.

The homogeneous transformation matrix The transformation Ti, for each
i such that 1 < i ≤ m, is

Ti = Qi−1Ri =







cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1






.

(3.56)
This can be considered as the 3D counterpart to the 2D transformation matrix,
(3.52). The following four operations are performed in succession:

1. Translate by di along the zi-axis.

2. Rotate counterclockwise by θi about the zi-axis.

3. Translate by ai−1 along the xi−1-axis.

4. Rotate counterclockwise by αi−1 about the xi−1-axis.

3.3. TRANSFORMING KINEMATIC CHAINS OF BODIES 107

zi+1

xi

zi

xi−1

zi−1

Figure 3.14: The rotation axes of the generic links are skew lines in R3.

As in the 2D case, the first matrix, T1, is special. To represent any position
and orientation of A1, it could be defined as a general rigid-body homogeneous
transformation matrix, (3.50). If the first body is only capable of rotation via a
revolute joint, then a simple convention is usually followed. Let the a0, α0 param-
eters of T1 be assigned as a0 = α0 = 0 (there is no z0-axis). This implies that Q0

from (3.55) is the identity matrix, which makes T1 = R1.
The transformation Ti for i > 1 gives the relationship between the body frame

of Ai and the body frame of Ai−1. The position of a point (x, y, z) on Am is given
by

T1T2 · · ·Tm







x
y
z
1






. (3.57)

For each revolute joint, θi is treated as the only variable in Ti. Prismatic joints
can be modeled by allowing ai to vary. More complicated joints can be modeled as
a sequence of degenerate joints. For example, a spherical joint can be considered
as a sequence of three zero-length revolute joints; the joints perform a roll, a
pitch, and a yaw. Another option for more complicated joints is to abandon the
DH representation and directly develop the homogeneous transformation matrix.
This might be needed to preserve topological properties that become important in
Chapter 4.

Example 3.4 (Puma 560) This example demonstrates the 3D chain kinematics
on a classic robot manipulator, the PUMA 560, shown in Figure 3.16. The cur-
rent parameterization here is based on [37, 555]. The procedure is to determine

108 S. M. LaValle: Planning Algorithms

xi

xi−1

di

zi

θi

xi

zi xi−1

(a) (b)

ai−1

zi−1 zi

xi−1

αi−1

xi−1

zi−1zi

(c) (d)

Figure 3.15: Definitions of the four DH parameters: di, θi, ai−1, αi−1. The zi- and
xi−1-axes in (b) and (d), respectively, are pointing outward. Any parameter may
be positive, zero, or negative.

appropriate body frames to represent each of the links. The first three links allow
the hand (called an end-effector) to make large movements in W , and the last
three enable the hand to achieve a desired orientation. There are six degrees of
freedom, each of which arises from a revolute joint. The body frames are shown in
Figure 3.16, and the corresponding DH parameters are given in Figure 3.17. Each
transformation matrix Ti is a function of θi; hence, it is written Ti(θi). The other
parameters are fixed for this example. Only θ1, θ2, . . ., θ6 are allowed to vary.

The parameters from Figure 3.17 may be substituted into the homogeneous
transformation matrices to obtain

T1(θ1) =







cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1






, (3.58)

T2(θ2) =







cos θ2 − sin θ2 0 0
0 0 1 d2

− sin θ2 − cos θ2 0 0
0 0 0 1






, (3.59)

3.3. TRANSFORMING KINEMATIC CHAINS OF BODIES 109

x ,
1 0

x

z ,
1 0

z

x
2

y
2

x , , x
64 5

x

z , y , y
65 4

z ,
4 6

z

z
3

x
3y

3

d
2

a
2

d
4

d
3

a
3

y , y
1 0

z
2

y
5

Figure 3.16: The Puma 560 is shown along with the DH parameters and body
frames for each link in the chain. This figure is borrowed from [555] by courtesy
of the authors.

T3(θ3) =







cos θ3 − sin θ3 0 a2
sin θ3 cos θ3 0 0
0 0 1 d3
0 0 0 1






, (3.60)

T4(θ4) =







cos θ4 − sin θ4 0 a3
0 0 −1 −d4

sin θ4 cos θ4 0 0
0 0 0 1






, (3.61)

T5(θ5) =







cos θ5 − sin θ5 0 0
0 0 1 0

− sin θ5 − cos θ5 0 0
0 0 0 1






, (3.62)

and

T6(θ6) =







cos θ6 − sin θ6 0 0
0 0 −1 0

sin θ6 cos θ6 0 0
0 0 0 1






. (3.63)

110 S. M. LaValle: Planning Algorithms

Matrix αi−1 ai−1 θi di

T1(θ1) 0 0 θ1 0
T2(θ2) −π/2 0 θ2 d2
T3(θ3) 0 a2 θ3 d3
T4(θ4) π/2 a3 θ4 d4
T5(θ5) −π/2 0 θ5 0
T6(θ6) π/2 0 θ6 0

Figure 3.17: The DH parameters are shown for substitution into each homogeneous
transformation matrix (3.56). Note that a3 and d3 are negative in this example
(they are signed displacements, not distances).

Figure 3.18: A hydrocarbon (octane) molecule with 8 carbon atoms and 18 hy-
drogen atoms (courtesy of the New York University MathMol Library).

A point (x, y, z) in the body frame of the last link A6 appears in W as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)







x
y
z
1






. (3.64)

�

Example 3.5 (Transforming Octane) Figure 3.18 shows a ball-and-stick model
of an octane molecule. Each “ball” is an atom, and each “stick” represents a bond
between a pair of atoms. There is a linear chain of eight carbon atoms, and a
bond exists between each consecutive pair of carbons in the chain. There are also
numerous hydrogen atoms, but we will ignore them. Each bond between a pair
of carbons is capable of twisting, as shown in Figure 3.19. Studying the configu-
rations (called conformations) of molecules is an important part of computational

3.3. TRANSFORMING KINEMATIC CHAINS OF BODIES 111

C

C

C

C

C

C

C

C

Figure 3.19: Consider transforming the spine of octane by ignoring the hydrogen
atoms and allowing the bonds between carbons to rotate. This can be easily
constructed with balls and sticks (e.g., Tinkertoys). If the first link is held fixed,
then there are six degrees of freedom. The rotation of the last link is ignored.

biology. It is assumed that there are seven degrees of freedom, each of which arises
from twisting a bond. The techniques from this section can be applied to represent
these transformations.

Note that the bonds correspond exactly to the axes of rotation. This suggests
that the zi axes should be chosen to coincide with the bonds. Since consecutive
bonds meet at atoms, there is no distance between them. From Figure 3.15c,
observe that this makes ai = 0 for all i. From Figure 3.15a, it can be seen that each
di corresponds to a bond length, the distance between consecutive carbon atoms.
See Figure 3.20. This leaves two angular parameters, θi and αi. Since the only
possible motion of the links is via rotation of the zi-axes, the angle between two
consecutive axes, as shown in Figure 3.15d, must remain constant. In chemistry,
this is referred to as the bond angle and is represented in the DH parameterization
as αi. The remaining θi parameters are the variables that represent the degrees of
freedom. However, looking at Figure 3.15b, observe that the example is degenerate
because each xi-axis has no frame of reference because each ai = 0. This does not,
however, cause any problems. For visualization purposes, it may be helpful to
replace xi−1 and xi by zi−1 and zi+1, respectively. This way it is easy to see that as
the bond for the zi-axis is twisted, the observed angle changes accordingly. Each
bond is interpreted as a link, Ai. The origin of each Ai must be chosen to coincide
with the intersection point of the zi- and zi+1-axes. Thus, most of the points in
Ai will lie in the −zi direction; see Figure 3.20.

The next task is to write down the matrices. Attach a world frame to the first
bond, with the second atom at the origin and the bond aligned with the z-axis,
in the negative direction; see Figure 3.20. To define T1, recall that T1 = R1 from
(3.54) because Q0 is dropped. The parameter d1 represents the distance between
the intersection points of the x0- and x1-axes along the z1 axis. Since there is no
x0-axis, there is freedom to choose d1; hence, let d1 = 0 to obtain

T1(θ1) = R1(θ1) =







cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1






. (3.65)

112 S. M. LaValle: Planning Algorithms

zi+1

zi

zi−1

di

Ai

xi

xi−1

Figure 3.20: Each bond may be interpreted as a “link” of length di that is aligned
with the zi-axis. Note that most of Ai appears in the −zi direction.

The application of T1 to points in A1 causes them to rotate around the z1-axis,
which appears correct.

The matrices for the remaining six bonds are

Ti(θi) =







cos θi − sin θi 0 0
sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1






, (3.66)

for i ∈ {2, . . . , 7}. The position of any point, (x, y, z) ∈ A7, is given by

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)T7(θ7)







x
y
z
1






. (3.67)

�

3.4 Transforming Kinematic Trees

Motivation For many interesting problems, the linkage is arranged in a “tree”
as shown in Figure 3.21a. Assume here that the links are not attached in ways

3.4. TRANSFORMING KINEMATIC TREES 113

(a) (b)

Figure 3.21: General linkages: (a) Instead of a chain of rigid bodies, a “tree” of
rigid bodies can be considered. (b) If there are loops, then parameters must be
carefully assigned to ensure that the loops are closed.

that form loops (i.e., Figure 3.21b); that case is deferred until Section 4.4, although
some comments are also made at the end of this section. The human body, with its
joints and limbs attached to the torso, is an example that can be modeled as a tree
of rigid links. Joints such as knees and elbows are considered as revolute joints.
A shoulder joint is an example of a spherical joint, although it cannot achieve any
orientation (without a visit to the emergency room!). As mentioned in Section
1.4, there is widespread interest in animating humans in virtual environments and
also in developing humanoid robots. Both of these cases rely on formulations of
kinematics that mimic the human body.

Another problem that involves kinematic trees is the conformational analysis of
molecules. Example 3.5 involved a single chain; however, most organic molecules
are more complicated, as in the familiar drugs shown in Figure 1.14a (Section
1.2). The bonds may twist to give degrees of freedom to the molecule. Moving
through the space of conformations requires the formulation of a kinematic tree.
Studying these conformations is important because scientists need to determine
for some candidate drug whether the molecule can twist the right way so that it
docks nicely (i.e., requires low energy) with a protein cavity; this induces a phar-
macological effect, which hopefully is the desired one. Another important problem
is determining how complicated protein molecules fold into certain configurations.
These molecules are orders of magnitude larger (in terms of numbers of atoms
and degrees of freedom) than typical drug molecules. For more information, see
Section 7.5.

114 S. M. LaValle: Planning Algorithms

A6 A7

A13

A8

A9

A12

A5

Figure 3.22: Now it is possible for a link to have more than two joints, as in A7.

Common joints for W = R2 First consider the simplest case in which there is
a 2D tree of links for which every link has only two points at which revolute joints
may be attached. This corresponds to Figure 3.21a. A single link is designated as
the root, A1, of the tree. To determine the transformation of a body, Ai, in the
tree, the tools from Section 3.3.1 are directly applied to the chain of bodies that
connects Ai to A1 while ignoring all other bodies. Each link contributes a θi to
the total degrees of freedom of the tree. This case seems quite straightforward;
unfortunately, it is not this easy in general.

Junctions with more than two rotation axes Now consider modeling a more
complicated collection of attached links. The main novelty is that one link may
have joints attached to it in more than two locations, as in A7 in Figure 3.22. A
link with more than two joints will be referred to as a junction.

If there is only one junction, then most of the complications arising from junc-
tions can be avoided by choosing the junction as the root. For example, for a
simple humanoid model, the torso would be a junction. It would be sensible to
make this the root of the tree, as opposed to the right foot. The legs, arms, and
head could all be modeled as independent chains. In each chain, the only concern
is that the first link of each chain does not attach to the same point on the torso.
This can be solved by inserting a fixed, fictitious link that connects from the origin
of the torso to the attachment point of the limb.

The situation is more interesting if there are multiple junctions. Suppose that
Figure 3.22 represents part of a 2D system of links for which the root, A1, is
attached via a chain of links to A5. To transform link A9, the tools from Section

3.4. TRANSFORMING KINEMATIC TREES 115

A7

y7
y
7

x7

x
7

φ

Figure 3.23: The junction is assigned two different frames, depending on which
chain was followed. The solid axes were obtained from transforming A9, and the
dashed axes were obtained from transforming A13.

3.3.1 may be directly applied to yield a sequence of transformations,

T1 · · ·T5T6T7T8T9





x
y
1



 , (3.68)

for a point (x, y) ∈ A9. Likewise, to transform T13, the sequence

T1 · · ·T5T6T7T12T13





x
y
1



 (3.69)

can be used by ignoring the chain formed by A8 and A9. So far everything seems
to work well, but take a close look at A7. As shown in Figure 3.23, its body frame
was defined in two different ways, one for each chain. If both are forced to use
the same frame, then at least one must abandon the nice conventions of Section
3.3.1 for choosing frames. This situation becomes worse for 3D trees because
this would suggest abandoning the DH parameterization. The Khalil-Kleinfinger
parameterization is an elegant extension of the DH parameterization and solves
these frame assignment issues [524].

Constraining parameters Fortunately, it is fine to use different frames when
following different chains; however, one extra piece of information is needed. Imag-
ine transforming the whole tree. The variable θ7 will appear twice, once from each

116 S. M. LaValle: Planning Algorithms

of the upper and lower chains. Let θ7u and θ7l denote these θ’s. Can θ really be
chosen two different ways? This would imply that the tree is instead as pictured
in Figure 3.24, in which there are two independently moving links, A7u and A7l.
To fix this problem, a constraint must be imposed. Suppose that θ7l is treated as

A6

A13

A8

A9

A12

A5

A7u

A7l

Figure 3.24: Choosing each θ7 independently would result in a tree that ignores
that fact that A7 is rigid.

an independent variable. The parameter θ7u must then be chosen as θ7l + φ, in
which φ is as shown in Figure 3.23.

Example 3.6 (A 2D Tree of Bodies) Figure 3.25 shows a 2D example that
involves six links. To transform (x, y) ∈ A6, the only relevant links are A5, A2,
and A1. The chain of transformations is

T1T2lT5T6





x
y
1



 , (3.70)

in which

T1 =





cos θ1 − sin θ1 xt
sin θ1 cos θ1 yt
0 0 1



 =





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1



 , (3.71)

T2l =





cos θ2l − sin θ2l a1
sin θ2l cos θ2l 0
0 0 1



 =





cos θ2 − sin θ2 1
sin θ2 cos θ2 0
0 0 1



 , (3.72)

T5 =





cos θ5 − sin θ5 a2
sin θ5 cos θ5 0
0 0 1



 =





cos θ5 − sin θ5
√
2

sin θ5 cos θ5 0
0 0 1



 , (3.73)

3.4. TRANSFORMING KINEMATIC TREES 117

(0,0) (1,0) (3,0) (4,0)

(0,−1)
A1

A2

A3

A6

A5

A4

(0, 0) (1, 0) (3, 0)

(2,−1)

(4, 0)

Figure 3.25: A tree of bodies in which the joints are attached in different places.

and

T6 =





cos θ6 − sin θ6 a5
sin θ6 cos θ6 0
0 0 1



 =





cos θ6 − sin θ6 1
sin θ6 cos θ6 0
0 0 1



 . (3.74)

The matrix T2l in (3.72) denotes the fact that the lower chain was followed. The
transformation for points in A4 is

T1T2uT3T4





x
y
1



 , (3.75)

in which T1 is the same as in (3.71), and

T3 =





cos θ3 − sin θ3 a2
sin θ3 cos θ3 0
0 0 1



 =





cos θ3 − sin θ3
√
2

sin θ3 cos θ3 0
0 0 1



 , (3.76)

and

T4 =





cos θ4 − sin θ4 a4
sin θ4 cos θ4 0
0 0 1



 =





cos θ4 − sin θ4 0
sin θ4 cos θ4 0
0 0 1



 . (3.77)

The interesting case is

T2u =





cos θ2u − sin θ2u a1
sin θ2u cos θ2u 0

0 0 1



 =





cos(θ2l + π/4) − sin(θ2l + π/4) a1
sin(θ2l + π/4) cos(θ2l + π/4) 0

0 0 1



 ,

(3.78)

118 S. M. LaValle: Planning Algorithms

A2
A3

A4

A5

A7

A10

A9

A1

A8

A6

Figure 3.26: There are ten links and ten revolute joints arranged in a loop. This
is an example of a closed kinematic chain.

in which the constraint θ2u = θ2l + π/4 is imposed to enforce the fact that A2 is a
junction. �

For a 3D tree of bodies the same general principles may be followed. In some
cases, there will not be any complications that involve special considerations of
junctions and constraints. One example of this is the transformation of flexible
molecules because all consecutive rotation axes intersect, and junctions occur di-
rectly at these points of intersection. In general, however, the DH parameter
technique may be applied for each chain, and then the appropriate constraints
have to be determined and applied to represent the true degrees of freedom of the
tree. The Khalil-Kleinfinger parameterization conveniently captures the resulting
solution [524].

What if there are loops? The most general case includes links that are con-
nected in loops, as shown in Figure 3.26. These are generally referred to as closed
kinematic chains. This arises in many applications. For example, with humanoid
robotics or digital actors, a loop is formed when both feet touch the ground. As
another example, suppose that two robot manipulators, such as the Puma 560
from Example 3.4, cooperate together to carry an object. If each robot grasps the
same object with its hand, then a loop will be formed. A complicated example
of this was shown in Figure 1.5, in which mobile robots moved a piano. Outside
of robotics, a large fraction of organic molecules have flexible loops. Exploring
the space of their conformations requires careful consideration of the difficulties
imposed by these loops.

The main difficulty of working with closed kinematic chains is that it is hard
to determine which parameter values are within an acceptable range to ensure
closure. If these values are given, then the transformations are handled in the

3.4. TRANSFORMING KINEMATIC TREES 119

A7

A10

A9
A8

A6

A1

A2

A5

A4

A3

Figure 3.27: Loops may be opened to enable tree-based transformations to be
applied; however, a closure constraint must still be satisfied.

same way as the case of trees. For example, the links in Figure 3.26 may be
transformed by breaking the loop into two different chains. Suppose we forget
that the joint between A5 and A6 exists, as shown in Figure 3.27. Consider two
different kinematic chains that start at the joint on the extreme left. There is an
upper chain from A1 to A5 and a lower chain from A10 to A6. The transformations
for any of these bodies can be obtained directly from the techniques of Section
3.3.1. Thus, it is easy to transform the bodies, but how do we choose parameter
values that ensure A5 and A6 are connected at their common joint? Using the
upper chain, the position of this joint may be expressed as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)





a5
0
1



 , (3.79)

in which (a5, 0) ∈ A5 is the location of the joint of A5 that is supposed to connect
to A6. The position of this joint may also be expressed using the lower chain as

T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)





a6
0
1



 , (3.80)

with (a6, 0) representing the position of the joint in the body frame of A6. If
the loop does not have to be maintained, then any values for θ1, . . ., θ10 may be
selected, resulting in ten degrees of freedom. However, if a loop must maintained,

120 S. M. LaValle: Planning Algorithms

then (3.79) and (3.80) must be equal,

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)





a5
0
1



 = T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)





a6
0
1



 ,

(3.81)
which is quite a mess of nonlinear, trigonometric equations that must be solved.
The set of solutions to (3.81) could be very complicated. For the example, the
true degrees of freedom is eight because two were removed by making the joint
common. Since the common joint allows the links to rotate, exactly two degrees of
freedom are lost. If A5 and A6 had to be rigidly attached, then the total degrees
of freedom would be only seven. For most problems that involve loops, it will not
be possible to obtain a nice parameterization of the set of solutions. This a form
of the well-known inverse kinematics problem [252, 693, 775, 994].

In general, a complicated arrangement of links can be imagined in which there
are many loops. Each time a joint along a loop is “ignored,” as in the procedure
just described, then one less loop exists. This process can be repeated iteratively
until there are no more loops in the graph. The resulting arrangement of links
will be a tree for which the previous techniques of this section may be applied.
However, for each joint that was “ignored” an equation similar to (3.81) must be
introduced. All of these equations must be satisfied simultaneously to respect the
original loop constraints. Suppose that a set of value parameters is already given.
This could happen, for example, using motion capture technology to measure
the position and orientation of every part of a human body in contact with the
ground. From this the solution parameters could be computed, and all of the
transformations are easy to represent. However, as soon as the model moves, it
is difficult to ensure that the new transformations respect the closure constraints.
The foot of the digital actor may push through the floor, for example. Further
information on this problem appears in Section 4.4.

3.5 Nonrigid Transformations

One can easily imagine motion planning for nonrigid bodies. This falls outside
of the families of transformations studied so far in this chapter. Several kinds of
nonrigid transformations are briefly surveyed here.

Linear transformations A rotation is a special case of a linear transformation,
which is generally expressed by an n×n matrix, M , assuming the transformations
are performed over Rn. Consider transforming a point (x, y) in a 2D robot, A, as

(
m11 m12

m21 m22

)(
x
y

)

. (3.82)

If M is a rotation matrix, then the size and shape of A will remain the same. In
some applications, however, it may be desirable to distort these. The robot can

3.5. NONRIGID TRANSFORMATIONS 121

Figure 3.28: Shearing transformations may be performed.

be scaled by m11 along the x-axis and m22 along the y-axis by applying

(
m11 0
0 m22

)(
x
y

)

, (3.83)

for positive real values m11 and m22. If one of them is negated, then a mirror
image of A is obtained. In addition to scaling, A can be sheared by applying

(
1 m12

0 1

)(
x
y

)

(3.84)

for m12 6= 0. The case of m12 = 1 is shown in Figure 3.28.
The scaling, shearing, and rotation matrices may be multiplied together to

yield a general transformation matrix that explicitly parameterizes each effect. It
is also possible to extend the M from n × n to (n + 1) × (n + 1) to obtain a
homogeneous transformation matrix that includes translation. Also, the concepts
extend in a straightforward way to R3 and beyond. This enables the additional
effects of scaling and shearing to be incorporated directly into the concepts from
Sections 3.2-3.4.

Flexible materials In some applications there is motivation to move beyond
linear transformations. Imagine trying to warp a flexible material, such as a mat-
tress, through a doorway. The mattress could be approximated by a 2D array of
links; however, the complexity and degrees of freedom would be too cumbersome.
For another example, suppose that a snake-like robot is designed by connecting
100 revolute joints together in a chain. The tools from Section 3.3 may be used
to transform it with 100 rotation parameters, θ1, . . ., θ100, but this may become
unwieldy for use in a planning algorithm. An alternative is to approximate the
snake with a deformable curve or shape.

For problems such as these, it is desirable to use a parameterized family of
curves or surfaces. Spline models are often most appropriate because they are de-
signed to provide easy control over the shape of a curve through the adjustment of
a small number of parameters. Other possibilities include the generalized-cylinder
and superquadric models that were mentioned in Section 3.1.3.

One complication is that complicated constraints may be imposed on the space
of allowable parameters. For example, each joint of a snake-like robot could have a

122 S. M. LaValle: Planning Algorithms

small range of rotation. This would be easy to model using a kinematic chain; how-
ever, determining which splines from a spline family satisfy this extra constraint
may be difficult. Likewise, for manipulating flexible materials, there are usually
complicated constraints based on the elasticity of the material. Even determining
its correct shape under the application of some forces requires integration of an
elastic energy function over the material [577].

Further Reading

Section 3.1 barely scratches the surface of geometric modeling. Most literature focuses
on parametric curves and surfaces [376, 718, 788]. These models are not as popular
for motion planning because obtaining efficient collision detection is most important
in practice, and processing implicit algebraic surfaces is most important in theoretical
methods. A thorough coverage of solid and boundary representations, including semi-
algebraic models, can be found in [454]. Theoretical algorithm issues regarding semi-
algebraic models are covered in [704, 705]. For a comparison of the doubly connected
edge list to its variants, see [522].

The material of Section 3.2 appears in virtually any book on robotics, computer vi-
sion, or computer graphics. Consulting linear algebra texts may be helpful to gain more
insight into rotations. There are many ways to parameterize the set of all 3D rotation
matrices. The yaw-pitch-roll formulation was selected because it is the easiest to under-
stand. There are generally 12 different variants of the yaw-pitch-roll formulation (also
called Euler angles) based on different rotation orderings and axis selections. This for-
mulation, however, is not well suited for the development of motion planning algorithms.
It is easy (and safe) to use for making quick 3D animations of motion planning output,
but it incorrectly captures the structure of the state space for planning algorithms. Sec-
tion 4.2 introduces the quaternion parameterization, which correctly captures this state
space; however, it is harder to interpret when constructing examples. Therefore, it is
helpful to understand both. In addition to Euler angles and quaternions, there is still
motivation for using many other parameterizations of rotations, such as spherical coor-
dinates, Cayley-Rodrigues parameters, and stereographic projection. Chapter 5 of [210]
provides extensive coverage of 3D rotations and different parameterizations.

The coverage in Section 3.3 of transformations of chains of bodies was heavily influ-
enced by two classic robotics texts [252, 775]. The DH parameters were introduced in
[434] and later extended to trees and loops in [524]. An alternative to DH parameters is
exponential coordinates [725], which simplify some computations; however, determining
the parameters in the modeling stage may be less intuitive. A fascinating history of
mechanisms appears in [435]. Other texts on kinematics include [29, 310, 531, 689].
The standard approach in many robotics books [366, 856, 907, 994] is to introduce the
kinematic chain formulations and DH parameters in the first couple of chapters, and
then move on to topics that are crucial for controlling robot manipulators, including dy-
namics modeling, singularities, manipulability, and control. Since this book is concerned
instead with planning algorithms, we depart at the point where dynamics would usually
be covered and move into a careful study of the configuration space in Chapter 4.

3.5. NONRIGID TRANSFORMATIONS 123

Exercises

1. Define a semi-algebraic model that removes a triangular “nose” from the region
shown in Figure 3.4.

2. For distinct values of yaw, pitch, and roll, it is possible to generate the same
rotation. In other words, R(α, β, γ) = R(α′, β′, γ′) for some cases in which at least
α 6= α, β 6= β′, or γ 6= γ′. Characterize the sets of angles for which this occurs.

3. Using rotation matrices, prove that 2D rotation is commutative but 3D rotation
is not.

4. An alternative to the yaw-pitch-roll formulation from Section 3.2.3 is considered
here. Consider the following Euler angle representation of rotation (there are many
other variants). The first rotation is Rz(γ), which is just (3.39) with α replaced by
γ. The next two rotations are identical to the yaw-pitch-roll formulation: Ry(β)
is applied, followed by Rz(α). This yields Reuler(α, β, γ) = Rz(α)Ry(β)Rz(γ).

(a) Determine the matrix Reuler.

(b) Show that Reuler(α, β, γ) = Reuler(α− π,−β, γ − π).
(c) Suppose that a rotation matrix is given as shown in (3.43). Show that the

Euler angles are

α = atan2(r23, r13), (3.85)

β = atan2(
√

1− r233, r33), (3.86)

and

γ = atan2(r32,−r31). (3.87)

5. There are 12 different variants of yaw-pitch-roll (or Euler angles), depending on
which axes are used and the order of these axes. Determine all of the possibilities,
using only notation such as Rz(α)Ry(β)Rz(γ) for each one. Give brief arguments
that support why or why not specific combinations of rotations are included in
your list of 12.

6. Let A be a unit disc, centered at the origin, and W = R2. Assume that A is
represented by a single, algebraic primitive, H = {(x, y) | x2+y2 ≤ 1}. Show that
the transformed primitive is unchanged after any rotation is applied.

7. Consider the articulated chain of bodies shown in Figure 3.29. There are three
identical rectangular bars in the plane, called A1,A2,A3. Each bar has width 2
and length 12. The distance between the two points of attachment is 10. The first
bar, A1, is attached to the origin. The second bar, A2, is attached to A1, and A3 is
attached to A2. Each bar is allowed to rotate about its point of attachment. The
configuration of the chain can be expressed with three angles, (θ1, θ2, θ3). The first
angle, θ1, represents the angle between the segment drawn between the two points
of attachment of A1 and the x-axis. The second angle, θ2, represents the angle

124 S. M. LaValle: Planning Algorithms

(0,0)

2

10

a

b

c

12

A1
A2

A3

Figure 3.29: A chain of three bodies.

(0,0) (1,0) (3,0) (4,0)
A2

A1 A3

Figure 3.30: Another exercise involving a chain of bodies.

betweenA2 andA1 (θ2 = 0 when they are parallel). The third angle, θ3, represents
the angle between A3 and A2. Suppose the configuration is (π/4, π/2,−π/4).

(a) Use the homogeneous transformation matrices to determine the locations of
points a, b, and c.

(b) Characterize the set of all configurations for which the final point of attach-
ment (near the end of A3) is at (0, 0) (you should be able to figure this out
without using the matrices).

8. A three-link chain of bodies that moves in a 2D world is shown Figure 3.30. The
first link, A1, is attached at (0, 0) but can rotate. Each remaining link is attached
to another link with a revolute joint. The second link, A2, is a rigid ring, and the
other two links are rectangular bars.

Assume that the structure is shown in the zero configuration. Suppose that
the linkage is moved to the configuration (θ1, θ2, θ3) = (π4 ,

π
2 ,

π
4), in which θ1 is

the angle of A1, θ2 is the angle of A2 with respect to A1, and θ3 is the angle of
A3 with respect to A2. Using homogeneous transformation matrices, compute the
position of the point at (4, 0) in Figure 3.30, when the linkage is at configuration
(π4 ,

π
2 ,

π
4) (the point is attached to A3).

9. Approximate a spherical joint as a chain of three short, perpendicular links that
are attached by revolute joints and give the sequence of transformation matrices.
Show that as the link lengths approach zero, the resulting sequence of transforma-
tion matrices converges to exactly representing the freedom of a spherical joint.

3.5. NONRIGID TRANSFORMATIONS 125

Compare this approach to directly using a full rotation matrix, (3.42), to represent
the joint in the homogeneous transformation matrix.

10. Figure 3.12 showed six different ways in which 2D surfaces can slide with respect
to each other to produce a joint.

(a) Suppose that two bodies contact each other along a one-dimensional curve.
Characterize as many different kinds of “joints” as possible, and indicate the
degrees of freedom of each.

(b) Suppose that the two bodies contact each other at a point. Indicate the types
of rolling and sliding that are possible, and their corresponding degrees of
freedom.

11. Suppose that two bodies form a screw joint in which the axis of the central axis of
the screw aligns with the x-axis of the first body. Determine an appropriate homo-
geneous transformation matrix to use in place of the DH matrix. Define the matrix
with the screw radius, r, and displacement-per-revolution, d, as parameters.

12. Recall Example 3.6. How should the transformations be modified so that the links
are in the positions shown in Figure 3.25 at the zero configuration (θi = 0 for every
revolute joint whose angle can be independently chosen)?

13. Generalize the shearing transformation of (3.84) to enable shearing of 3D models.

Implementations

14. Develop and implement a kinematic model for 2D linkages. Enable the user to
display the arrangement of links in the plane.

15. Implement the kinematics of molecules that do not have loops and show them
graphically as a “ball and stick” model. The user should be able to input the
atomic radii, bond connections, bond lengths, and rotation ranges for each bond.

16. Design and implement a software system in which the user can interactively attach
various links to make linkages that resemble those possible from using Tinkertoys
(or another popular construction set that allows pieces to move). There are several
rods of various lengths, which fit into holes in the center and around the edge of
several coin-shaped pieces. Assume that all joints are revolute. The user should
be allowed to change parameters and see the resulting positions of all of the links.

17. Construct a model of the human body as a tree of links in a 3D world. For
simplicity, the geometric model may be limited to spheres and cylinders. Design
and implement a system that displays the virtual human and allows the user to
click on joints of the body to enable them to rotate.

18. Develop a simulator with 3D graphics for the Puma 560 model shown in Figure
3.4.

126 S. M. LaValle: Planning Algorithms

Chapter 4

The Configuration Space

Chapter 3 only covered how to model and transform a collection of bodies; how-
ever, for the purposes of planning it is important to define the state space. The
state space for motion planning is a set of possible transformations that could be
applied to the robot. This will be referred to as the configuration space, based on
Lagrangian mechanics and the seminal work of Lozano-Pérez [656, 660, 657], who
extensively utilized this notion in the context of planning (the idea was also used
in early collision avoidance work by Udupa [947]). The motion planning literature
was further unified around this concept by Latombe’s book [588]. Once the config-
uration space is clearly understood, many motion planning problems that appear
different in terms of geometry and kinematics can be solved by the same planning
algorithms. This level of abstraction is therefore very important.

This chapter provides important foundational material that will be very useful
in Chapters 5 to 8 and other places where planning over continuous state spaces
occurs. Many concepts introduced in this chapter come directly from mathemat-
ics, particularly from topology. Therefore, Section 4.1 gives a basic overview of
topological concepts. Section 4.2 uses the concepts from Chapter 3 to define the
configuration space. After reading this, you should be able to precisely character-
ize the configuration space of a robot and understand its structure. In Section 4.3,
obstacles in the world are transformed into obstacles in the configuration space,
but it is important to understand that this transformation may not be explicitly
constructed. The implicit representation of the state space is a recurring theme
throughout planning. Section 4.4 covers the important case of kinematic chains
that have loops, which was mentioned in Section 3.4. This case is so difficult that
even the space of transformations usually cannot be explicitly characterized (i.e.,
parameterized).

4.1 Basic Topological Concepts

This section introduces basic topological concepts that are helpful in understand-
ing configuration spaces. Topology is a challenging subject to understand in depth.
The treatment given here provides only a brief overview and is designed to stim-

127

128 S. M. LaValle: Planning Algorithms

ulate further study (see the literature overview at the end of the chapter). To
advance further in this chapter, it is not necessary to understand all of the ma-
terial of this section; however, the more you understand, the deeper will be your
understanding of motion planning in general.

4.1.1 Topological Spaces

Recall the concepts of open and closed intervals in the set of real numbers R. The
open interval (0, 1) includes all real numbers between 0 and 1, except 0 and 1.
However, for either endpoint, an infinite sequence may be defined that converges
to it. For example, the sequence 1/2, 1/4, . . ., 1/2i converges to 0 as i tends to
infinity. This means that we can choose a point in (0, 1) within any small, positive
distance from 0 or 1, but we cannot pick one exactly on the boundary of the
interval. For a closed interval, such as [0, 1], the boundary points are included.

The notion of an open set lies at the heart of topology. The open set definition
that will appear here is a substantial generalization of the concept of an open
interval. The concept applies to a very general collection of subsets of some larger
space. It is general enough to easily include any kind of configuration space that
may be encountered in planning.

A set X is called a topological space if there is a collection of subsets of X called
open sets for which the following axioms hold:

1. The union of any number of open sets is an open set.

2. The intersection of a finite number of open sets is an open set.

3. Both X and ∅ are open sets.

Note that in the first axiom, the union of an infinite number of open sets may be
taken, and the result must remain an open set. Intersecting an infinite number of
open sets, however, does not necessarily lead to an open set.

For the special case of X = R, the open sets include open intervals, as ex-
pected. Many sets that are not intervals are open sets because taking unions and
intersections of open intervals yields other open sets. For example, the set

∞⋃

i=1

(
1

3i
,
2

3i

)

, (4.1)

which is an infinite union of pairwise-disjoint intervals, is an open set.

Closed sets Open sets appear directly in the definition of a topological space.
It next seems that closed sets are needed. Suppose X is a topological space. A
subset C ⊂ X is defined to be a closed set if and only if X \C is an open set. Thus,
the complement of any open set is closed, and the complement of any closed set
is open. Any closed interval, such as [0, 1], is a closed set because its complement,
(−∞, 0) ∪ (1,∞), is an open set. For another example, (0, 1) is an open set;

4.1. BASIC TOPOLOGICAL CONCEPTS 129

x1

U

x3

x2

O2

O1

Figure 4.1: An illustration of the boundary definition. Suppose X = R2, and U is
a subset as shown. Three kinds of points appear: 1) x1 is a boundary point, 2) x2
is an interior point, and 3) x3 is an exterior point. Both x1 and x2 are limit points
of U .

therefore, R \ (0, 1) = (−∞, 0] ∪ [1,∞) is a closed set. The use of “(” may seem
wrong in the last expression, but “[” cannot be used because −∞ and ∞ do not
belong to R. Thus, the use of “(” is just a notational quirk.

Are all subsets of X either closed or open? Although it appears that open
sets and closed sets are opposites in some sense, the answer is no. For X = R,
the interval [0, 2π) is neither open nor closed (consider its complement: [2π,∞) is
closed, and (−∞, 0) is open). Note that for any topological space, X and ∅ are
both open and closed!

Special points From the definitions and examples so far, it should seem that
points on the “edge” or “border” of a set are important. There are several terms
that capture where points are relative to the border. Let X be a topological space,
and let U be any subset of X. Furthermore, let x be any point in X. The following
terms capture the position of point x relative to U (see Figure 4.1):

• If there exists an open set O1 such that x ∈ O1 and O1 ⊆ U , then x is called
an interior point of U . The set of all interior points in U is called the interior
of U and is denoted by int(U).

• If there exists an open set O2 such that x ∈ O2 and O2 ⊆ X \ U , then x is
called an exterior point with respect to U .

• If x is neither an interior point nor an exterior point, then it is called a
boundary point of U . The set of all boundary points in X is called the
boundary of U and is denoted by ∂U .

• All points in x ∈ X must be one of the three above; however, another
term is often used, even though it is redundant given the other three. If x is
either an interior point or a boundary point, then it is called a limit point (or
accumulation point) of U . The set of all limit points of U is a closed set called
the closure of U , and it is denoted by cl(U). Note that cl(U) = int(U)∪ ∂U .

For the case of X = R, the boundary points are the endpoints of intervals. For
example, 0 and 1 are boundary points of intervals, (0, 1), [0, 1], [0, 1), and (0, 1].
Thus, U may or may not include its boundary points. All of the points in (0, 1)

130 S. M. LaValle: Planning Algorithms

are interior points, and all of the points in [0, 1] are limit points. The motivation
of the name “limit point” comes from the fact that such a point might be the limit
of an infinite sequence of points in U . For example, 0 is the limit point of the
sequence generated by 1/2i for each i ∈ N, the natural numbers.

There are several convenient consequences of the definitions. A closed set C
contains the limit point of any sequence that is a subset of C. This implies that
it contains all of its boundary points. The closure, cl, always results in a closed
set because it adds all of the boundary points to the set. On the other hand, an
open set contains none of its boundary points. These interpretations will come in
handy when considering obstacles in the configuration space for motion planning.

Some examples The definition of a topological space is so general that an
incredible variety of topological spaces can be constructed.

Example 4.1 (The Topology of Rn) We should expect that X = Rn for any
integer n is a topological space. This requires characterizing the open sets. An
open ball B(x, ρ) is the set of points in the interior of a sphere of radius ρ, centered
at x. Thus,

B(x, ρ) = {x′ ∈ Rn | ‖x′ − x‖ < ρ}, (4.2)

in which ‖ · ‖ denotes the Euclidean norm (or magnitude) of its argument. The
open balls are open sets in Rn. Furthermore, all other open sets can be expressed
as a countable union of open balls.1 For the case of R, this reduces to representing
any open set as a union of intervals, which was done so far.

Even though it is possible to express open sets of Rn as unions of balls, we pre-
fer to use other representations, with the understanding that one could revert to
open balls if necessary. The primitives of Section 3.1 can be used to generate many
interesting open and closed sets. For example, any algebraic primitive expressed
in the form H = {x ∈ Rn | f(x) ≤ 0} produces a closed set. Taking finite unions
and intersections of these primitives will produce more closed sets. Therefore, all
of the models from Sections 3.1.1 and 3.1.2 produce an obstacle region O that is
a closed set. As mentioned in Section 3.1.2, sets constructed only from primitives
that use the < relation are open. �

Example 4.2 (Subspace Topology) A new topological space can easily be con-
structed from a subset of a topological space. Let X be a topological space, and
let Y ⊂ X be a subset. The subspace topology on Y is obtained by defining the
open sets to be every subset of Y that can be represented as U ∩ Y for some open
set U ⊆ X. Thus, the open sets for Y are almost the same as for X, except
that the points that do not lie in Y are trimmed away. New subspaces can be
constructed by intersecting open sets of Rn with a complicated region defined by
semi-algebraic models. This leads to many interesting topological spaces, some of

1Such a collection of balls is often referred to as a basis.

4.1. BASIC TOPOLOGICAL CONCEPTS 131

which will appear later in this chapter. �

Example 4.3 (The Trivial Topology) For any set X, there is always one triv-
ial example of a topological space that can be constructed from it. Declare that
X and ∅ are the only open sets. Note that all of the axioms are satisfied. �

Example 4.4 (A Strange Topology) It is important to keep in mind the al-
most absurd level of generality that is allowed by the definition of a topological
space. A topological space can be defined for any set, as long as the declared open
sets obey the axioms. Suppose a four-element set is defined as

X = {cat,dog,tree,house}. (4.3)

In addition to ∅ and X, suppose that {cat} and {dog} are open sets. Using the
axioms, {cat,dog} must also be an open set. Closed sets and boundary points
can be derived for this topology once the open sets are defined. �

After the last example, it seems that topological spaces are so general that not
much can be said about them. Most spaces that are considered in topology and
analysis satisfy more axioms. For Rn and any configuration spaces that arise in
this book, the following is satisfied:

Hausdorff axiom: For any distinct x1, x2 ∈ X, there exist open sets O1 and
O2 such that x1 ∈ O1, x2 ∈ O2, and O1 ∩O2 = ∅.

In other words, it is possible to separate x1 and x2 into nonoverlapping open
sets. Think about how to do this for Rn by selecting small enough open balls. Any
topological space X that satisfies the Hausdorff axiom is referred to as a Hausdorff
space. Section 4.1.2 will introduce manifolds, which happen to be Hausdorff spaces
and are general enough to capture the vast majority of configuration spaces that
arise. We will have no need in this book to consider topological spaces that are
not Hausdorff spaces.

Continuous functions A very simple definition of continuity exists for topo-
logical spaces. It nicely generalizes the definition from standard calculus. Let
f : X → Y denote a function between topological spaces X and Y . For any set
B ⊆ Y , let the preimage of B be denoted and defined by

f−1(B) = {x ∈ X | f(x) ∈ B}. (4.4)

Note that this definition does not require f to have an inverse.
The function f is called continuous if f−1(O) is an open set for every open set

O ⊆ Y . Analysis is greatly simplified by this definition of continuity. For example,
to show that any composition of continuous functions is continuous requires only a
one-line argument that the preimage of the preimage of any open set always yields

132 S. M. LaValle: Planning Algorithms

an open set. Compare this to the cumbersome classical proof that requires a mess
of δ’s and ǫ’s. The notion is also so general that continuous functions can even be
defined on the absurd topological space from Example 4.4.

Homeomorphism: Making a donut into a coffee cup You might have
heard the expression that to a topologist, a donut and a coffee cup appear the
same. In many branches of mathematics, it is important to define when two
basic objects are equivalent. In graph theory (and group theory), this equivalence
relation is called an isomorphism. In topology, the most basic equivalence is a
homeomorphism, which allows spaces that appear quite different in most other
subjects to be declared equivalent in topology. The surfaces of a donut and a
coffee cup (with one handle) are considered equivalent because both have a single
hole. This notion needs to be made more precise!

Suppose f : X → Y is a bijective (one-to-one and onto) function between
topological spaces X and Y . Since f is bijective, the inverse f−1 exists. If both
f and f−1 are continuous, then f is called a homeomorphism. Two topological
spaces X and Y are said to be homeomorphic, denoted by X ∼= Y , if there exists a
homeomorphism between them. This implies an equivalence relation on the set of
topological spaces (verify that the reflexive, symmetric, and transitive properties
are implied by the homeomorphism).

Example 4.5 (Interval Homeomorphisms) Any open interval of R is home-
omorphic to any other open interval. For example, (0, 1) can be mapped to (0, 5)
by the continuous mapping x 7→ 5x. Note that (0, 1) and (0, 5) are each being
interpreted here as topological subspaces of R. This kind of homeomorphism can
be generalized substantially using linear algebra. If a subset, X ⊂ Rn, can be
mapped to another, Y ⊂ Rn, via a nonsingular linear transformation, then X and
Y are homeomorphic. For example, the rigid-body transformations of the previ-
ous chapter were examples of homeomorphisms applied to the robot. Thus, the
topology of the robot does not change when it is translated or rotated. (In this
example, note that the robot itself is the topological space. This will not be the
case for the rest of the chapter.)

Be careful when mixing closed and open sets. The space [0, 1] is not homeomor-
phic to (0, 1), and neither is homeomorphic to [0, 1). The endpoints cause trouble
when trying to make a bijective, continuous function. Surprisingly, a bounded and
unbounded set may be homeomorphic. A subset X of Rn is called bounded if there
exists a ball B ⊂ Rn such that X ⊂ B. The mapping x 7→ 1/x establishes that
(0, 1) and (1,∞) are homeomorphic. The mapping x 7→ 2 tan−1(x)/π establishes
that (−1, 1) and all of R are homeomorphic! �

Example 4.6 (Topological Graphs) Let X be a topological space. The pre-
vious example can be extended nicely to make homeomorphisms look like graph

4.1. BASIC TOPOLOGICAL CONCEPTS 133

Figure 4.2: Even though the graphs are not isomorphic, the corresponding topo-
logical spaces may be homeomorphic due to useless vertices. The example graphs
map into R2, and are all homeomorphic to a circle.

Figure 4.3: These topological graphs map into subsets of R2 that are not homeo-
morphic to each other.

isomorphisms. Let a topological graph2 be a graph for which every vertex cor-
responds to a point in X and every edge corresponds to a continuous, injective
(one-to-one) function, τ : [0, 1] → X. The image of τ connects the points in X
that correspond to the endpoints (vertices) of the edge. The images of different
edge functions are not allowed to intersect, except at vertices. Recall from graph
theory that two graphs, G1(V1, E1) and G2(V2, E2), are called isomorphic if there
exists a bijective mapping, f : V1 → V2 such that there is an edge between v1 and
v′1 in G1, if and only if there exists an edge between f(v1) and f(v

′
1) in G2.

The bijective mapping used in the graph isomorphism can be extended to
produce a homeomorphism. Each edge in E1 is mapped continuously to its cor-
responding edge in E2. The mappings nicely coincide at the vertices. Now you
should see that two topological graphs are homeomorphic if they are isomorphic
under the standard definition from graph theory.3 What if the graphs are not
isomorphic? There is still a chance that the topological graphs may be homeo-
morphic, as shown in Figure 4.2. The problem is that there appear to be “useless”
vertices in the graph. By removing vertices of degree two that can be deleted
without affecting the connectivity of the graph, the problem is fixed. In this case,

2In topology this is called a 1-complex [439].
3Technically, the images of the topological graphs, as subspaces of X, are homeomorphic, not

the graphs themselves.

134 S. M. LaValle: Planning Algorithms

graphs that are not isomorphic produce topological graphs that are not homeomor-
phic. This allows many distinct, interesting topological spaces to be constructed.
A few are shown in Figure 4.3. �

4.1.2 Manifolds

In motion planning, efforts are made to ensure that the resulting configuration
space has nice properties that reflect the true structure of the space of transforma-
tions. One important kind of topological space, which is general enough to include
most of the configuration spaces considered in Part II, is called a manifold. Intu-
itively, a manifold can be considered as a “nice” topological space that behaves at
every point like our intuitive notion of a surface.

Manifold definition A topological space M ⊆ Rm is a manifold4 if for every
x ∈ M , an open set O ⊂ M exists such that: 1) x ∈ O, 2) O is homeomorphic to
Rn, and 3) n is fixed for all x ∈ M . The fixed n is referred to as the dimension
of the manifold, M . The second condition is the most important. It states that
in the vicinity of any point, x ∈ M , the space behaves just like it would in the
vicinity of any point y ∈ Rn; intuitively, the set of directions that one can move
appears the same in either case. Several simple examples that may or may not be
manifolds are shown in Figure 4.4.

One natural consequence of the definitions is that m ≥ n. According to Whit-
ney’s embedding theorem [449], m ≥ 2n+1. In other words, R2n+1 is “big enough”
to hold any n-dimensional manifold.5 Technically, it is said that the n-dimensional
manifoldM is embedded in Rm, which means that an injective mapping exists from
M to Rm (if it is not injective, then the topology of M could change).

As it stands, it is impossible for a manifold to include its boundary points
because they are not contained in open sets. A manifold with boundary can be
defined requiring that the neighborhood of each boundary point of M is homeo-
morphic to a half-space of dimension n (which was defined for n = 2 and n = 3 in
Section 3.1) and that the interior points must be homeomorphic to Rn.

The presentation now turns to ways of constructing some manifolds that fre-
quently appear in motion planning. It is important to keep in mind that two

4Manifolds that are not subsets of Rm may also be defined. This requires thatM is a Hausdorff
space and is second countable, which means that there is a countable number of open sets from
which any other open set can be constructed by taking a union of some of them. These conditions
are automatically satisfied when assuming M ⊆ Rm; thus, it avoids these extra complications
and is still general enough for our purposes. Some authors use the term manifold to refer to a
smooth manifold. This requires the definition of a smooth structure, and the homeomorphism
is replaced by diffeomorphism. This extra structure is not needed here but will be introduced
when it is needed in Section 8.3.

5One variant of the theorem is that for smooth manifolds, R2n is sufficient. This bound is
tight because RPn (n-dimensional projective space, which will be introduced later in this section),
cannot be embedded in R2n−1.

4.1. BASIC TOPOLOGICAL CONCEPTS 135

Yes

NoYes

Yes

Yes No

Yes No

Figure 4.4: Some subsets of R2 that may or may not be manifolds. For the three
that are not, the point that prevents them from being manifolds is indicated.

manifolds will be considered equivalent if they are homeomorphic (recall the donut
and coffee cup).

Cartesian products There is a convenient way to construct new topological
spaces from existing ones. Suppose that X and Y are topological spaces. The
Cartesian product, X × Y , defines a new topological space as follows. Every
x ∈ X and y ∈ Y generates a point (x, y) in X × Y . Each open set in X × Y
is formed by taking the Cartesian product of one open set from X and one from
Y . Exactly one open set exists in X × Y for every pair of open sets that can be
formed by taking one from X and one from Y . Furthermore, these new open sets
are used as a basis for forming the remaining open sets of X × Y by allowing any
unions and finite intersections of them.

A familiar example of a Cartesian product is R×R, which is equivalent to R2.
In general, Rn is equivalent to R×Rn−1. The Cartesian product can be taken over
many spaces at once. For example, R × R × · · · × R = Rn. In the coming text,
many important manifolds will be constructed via Cartesian products.

1D manifolds The set R of reals is the most obvious example of a 1D manifold
because R certainly looks like (via homeomorphism) R in the vicinity of every
point. The range can be restricted to the unit interval to yield the manifold (0, 1)
because they are homeomorphic (recall Example 4.5).

Another 1D manifold, which is not homeomorphic to (0, 1), is a circle, S1. In
this case Rm = R2, and let

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. (4.5)

If you are thinking like a topologist, it should appear that this particular circle
is not important because there are numerous ways to define manifolds that are

136 S. M. LaValle: Planning Algorithms

homeomorphic to S1. For any manifold that is homeomorphic to S1, we will
sometimes say that the manifold is S1, just represented in a different way. Also,
S1 will be called a circle, but this is meant only in the topological sense; it only
needs to be homeomorphic to the circle that we learned about in high school
geometry. Also, when referring to R, we might instead substitute (0, 1) without
any trouble. The alternative representations of a manifold can be considered as
changing parameterizations, which are formally introduced in Section 8.3.2.

Identifications A convenient way to represent S1 is obtained by identification,
which is a general method of declaring that some points of a space are identical,
even though they originally were distinct.6 For a topological space X, let X/ ∼
denote that X has been redefined through some form of identification. The open
sets of X become redefined. Using identification, S1 can be defined as [0, 1]/ ∼,
in which the identification declares that 0 and 1 are equivalent, denoted as 0 ∼ 1.
This has the effect of “gluing” the ends of the interval together, forming a closed
loop. To see the homeomorphism that makes this possible, use polar coordinates
to obtain θ 7→ (cos 2πθ, sin 2πθ). You should already be familiar with 0 and 2π
leading to the same point in polar coordinates; here they are just normalized to
0 and 1. Letting θ run from 0 up to 1, and then “wrapping around” to 0 is a
convenient way to represent S1 because it does not need to be curved as in (4.5).

It might appear that identifications are cheating because the definition of a
manifold requires it to be a subset of Rm. This is not a problem because Whitney’s
theorem, as mentioned previously, states that any n-dimensional manifold can be
embedded in R2n+1. The identifications just reduce the number of dimensions
needed for visualization. They are also convenient in the implementation of motion
planning algorithms.

2D manifolds Many important, 2D manifolds can be defined by applying the
Cartesian product to 1D manifolds. The 2D manifold R2 is formed by R×R. The
product R × S1 defines a manifold that is equivalent to an infinite cylinder. The
product S1×S1 is a manifold that is equivalent to a torus (the surface of a donut).

Can any other 2D manifolds be defined? See Figure 4.5. The identification
idea can be applied to generate several new manifolds. Start with an open square
M = (0, 1)× (0, 1), which is homeomorphic to R2. Let (x, y) denote a point in the
plane. A flat cylinder is obtained by making the identification (0, y) ∼ (1, y) for
all y ∈ (0, 1) and adding all of these points to M . The result is depicted in Figure
4.5 by drawing arrows where the identification occurs.

A Möbius band can be constructed by taking a strip of paper and connecting
the ends after making a 180-degree twist. This result is not homeomorphic to the
cylinder. The Möbius band can also be constructed by putting the twist into the
identification, as (0, y) ∼ (1, 1 − y) for all y ∈ (0, 1). In this case, the arrows are
drawn in opposite directions. The Möbius band has the famous properties that

6This is usually defined more formally and called a quotient topology.

4.1. BASIC TOPOLOGICAL CONCEPTS 137

Plane, R2 Cylinder, R× S1

Möbius band Torus, T2

Klein bottle Projective plane, RP2

Two-sphere, S2 Double torus

Figure 4.5: Some 2D manifolds that can be obtained by identifying pairs of points
along the boundary of a square region.

it has only one side (trace along the paper strip with a pencil, and you will visit
both sides of the paper) and is nonorientable (if you try to draw it in the plane,
without using identification tricks, it will always have a twist).

For all of the cases so far, there has been a boundary to the set. The next few
manifolds will not even have a boundary, even though they may be bounded. If
you were to live in one of them, it means that you could walk forever along any
trajectory and never encounter the edge of your universe. It might seem like our
physical universe is unbounded, but it would only be an illusion. Furthermore,
there are several distinct possibilities for the universe that are not homeomorphic
to each other. In higher dimensions, such possibilities are the subject of cosmology,
which is a branch of astrophysics that uses topology to characterize the structure
of our universe.

A torus can be constructed by performing identifications of the form (0, y) ∼
(1, y), which was done for the cylinder, and also (x, 0) ∼ (x, 1), which identifies the
top and bottom. Note that the point (0, 0) must be included and is identified with
three other points. Double arrows are used in Figure 4.5 to indicate the top and
bottom identification. All of the identification points must be added to M . Note
that there are no twists. A funny interpretation of the resulting flat torus is as the
universe appears for a spacecraft in some 1980s-style Asteroids-like video games.

138 S. M. LaValle: Planning Algorithms

The spaceship flies off of the screen in one direction and appears somewhere else,
as prescribed by the identification.

Two interesting manifolds can be made by adding twists. Consider performing
all of the identifications that were made for the torus, except put a twist in the side
identification, as was done for the Möbius band. This yields a fascinating manifold
called the Klein bottle, which can be embedded in R4 as a closed 2D surface in
which the inside and the outside are the same! (This is in a sense similar to that of
the Möbius band.) Now suppose there are twists in both the sides and the top and
bottom. This results in the most bizarre manifold yet: the real projective plane,
RP2. This space is equivalent to the set of all lines in R3 that pass through the
origin. The 3D version, RP3, happens to be one of the most important manifolds
for motion planning!

Let S2 denote the unit sphere, which is defined as

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. (4.6)

Another way to represent S2 is by making the identifications shown in the last
row of Figure 4.5. A dashed line is indicated where the equator might appear,
if we wanted to make a distorted wall map of the earth. The poles would be at
the upper left and lower right corners. The final example shown in Figure 4.5 is a
double torus, which is the surface of a two-holed donut.

Higher dimensional manifolds The construction techniques used for the 2D
manifolds generalize nicely to higher dimensions. Of course, Rn, is an n-dimensional
manifold. An n-dimensional torus, Tn, can be made by taking a Cartesian prod-
uct of n copies of S1. Note that S1 × S1 6= S2. Therefore, the notation Tn is used
for (S1)n. Different kinds of n-dimensional cylinders can be made by forming a
Cartesian product Ri×Tj for positive integers i and j such that i+ j = n. Higher
dimensional spheres are defined as

Sn = {x ∈ Rn+1 | ‖x‖ = 1}, (4.7)

in which ‖x‖ denotes the Euclidean norm of x, and n is a positive integer. Many
interesting spaces can be made by identifying faces of the cube (0, 1)n (or even faces
of a polyhedron or polytope), especially if different kinds of twists are allowed. An
n-dimensional projective space can be defined in this way, for example. Lens spaces
are a family of manifolds that can be constructed by identification of polyhedral
faces [834].

Due to its coming importance in motion planning, more details are given on
projective spaces. The standard definition of an n-dimensional real projective
space RPn is the set of all lines in Rn+1 that pass through the origin. Each line
is considered as a point in RPn. Using the definition of Sn in (4.7), note that
each of these lines in Rn+1 intersects Sn ⊂ Rn+1 in exactly two places. These
intersection points are called antipodal, which means that they are as far from
each other as possible on Sn. The pair is also unique for each line. If we identify

4.1. BASIC TOPOLOGICAL CONCEPTS 139

all pairs of antipodal points of Sn, a homeomorphism can be defined between each
line through the origin of Rn+1 and each antipodal pair on the sphere. This means
that the resulting manifold, Sn/ ∼, is homeomorphic to RPn.

Another way to interpret the identification is that RPn is just the upper half
of Sn, but with every equatorial point identified with its antipodal point. Thus, if
you try to walk into the southern hemisphere, you will find yourself on the other
side of the world walking north. It is helpful to visualize the special case of RP2

and the upper half of S2. Imagine warping the picture of RP2 from Figure 4.5
from a square into a circular disc, with opposite points identified. The result still
represents RP2. The center of the disc can now be lifted out of the plane to form
the upper half of S2.

4.1.3 Paths and Connectivity

Central to motion planning is determining whether one part of a space is reachable
from another. In Chapter 2, one state was reached from another by applying a
sequence of actions. For motion planning, the analog to this is connecting one point
in the configuration space to another by a continuous path. Graph connectivity is
important in the discrete planning case. An analog to this for topological spaces
is presented in this section.

Paths Let X be a topological space, which for our purposes will also be a man-
ifold. A path is a continuous function, τ : [0, 1] → X. Alternatively, R may be
used for the domain of τ . Keep in mind that a path is a function, not a set of
points. Each point along the path is given by τ(s) for some s ∈ [0, 1]. This makes
it appear as a nice generalization to the sequence of states visited when a plan
from Chapter 2 is applied. Recall that there, a countable set of stages was defined,
and the states visited could be represented as x1, x2, In the current setting
τ(s) is used, in which s replaces the stage index. To make the connection clearer,
we could use x instead of τ to obtain x(s) for each s ∈ [0, 1].

Connected vs. path connected A topological space X is said to be connected
if it cannot be represented as the union of two disjoint, nonempty, open sets. While
this definition is rather elegant and general, if X is connected, it does not imply
that a path exists between any pair of points in X thanks to crazy examples like
the topologist’s sine curve:

X = {(x, y) ∈ R2 | x = 0 or y = sin(1/x)}. (4.8)

Consider plotting X. The sin(1/x) part creates oscillations near the y-axis in
which the frequency tends to infinity. After union is taken with the y-axis, this
space is connected, but there is no path that reaches the y-axis from the sine curve.

How can we avoid such problems? The standard way to fix this is to use the
path definition directly in the definition of connectedness. A topological space X
is said to be path connected if for all x1, x2 ∈ X, there exists a path τ such that

140 S. M. LaValle: Planning Algorithms

t = 0

t = 1

t = 1/3

t = 2/3

t = 0

t = 1

(a) (b)

Figure 4.6: (a) Homotopy continuously warps one path into another. (b) The
image of the path cannot be continuously warped over a hole in R2 because it
causes a discontinuity. In this case, the two paths are not homotopic.

τ(0) = x1 and τ(1) = x2. It can be shown that if X is path connected, then it is
also connected in the sense defined previously.

Another way to fix it is to make restrictions on the kinds of topological spaces
that will be considered. This approach will be taken here by assuming that all topo-
logical spaces are manifolds. In this case, no strange things like (4.8) can happen,7

and the definitions of connected and path connected coincide [451]. Therefore, we
will just say a space is connected. However, it is important to remember that this
definition of connected is sometimes inadequate, and one should really say that X
is path connected.

Simply connected Now that the notion of connectedness has been established,
the next step is to express different kinds of connectivity. This may be done by
using the notion of homotopy, which can intuitively be considered as a way to
continuously “warp” or “morph” one path into another, as depicted in Figure
4.6a.

Two paths τ1 and τ2 are called homotopic (with endpoints fixed) if there exists
a continuous function h : [0, 1]× [0, 1]→ X for which the following four conditions
are met:

1. (Start with first path) h(s, 0) = τ1(s) for all s ∈ [0, 1] .

2. (End with second path) h(s, 1) = τ2(s) for all s ∈ [0, 1] .

3. (Hold starting point fixed) h(0, t) = h(0, 0) for all t ∈ [0, 1] .

4. (Hold ending point fixed) h(1, t) = h(1, 0) for all t ∈ [0, 1] .

7The topologist’s sine curve is not a manifold because all open sets that contain the point
(0, 0) contain some of the points from the sine curve. These open sets are not homeomorphic to
R.

4.1. BASIC TOPOLOGICAL CONCEPTS 141

The parameter t can be interpreted as a knob that is turned to gradually deform
the path from τ1 into τ2. The first two conditions indicate that t = 0 yields τ1 and
t = 1 yields τ2, respectively. The remaining two conditions indicate that the path
endpoints are held fixed.

During the warping process, the path image cannot make a discontinuous jump.
In R2, this prevents it from moving over holes, such as the one shown in Figure 4.6b.
The key to preventing homotopy from jumping over some holes is that h must be
continuous. In higher dimensions, however, there are many different kinds of holes.
For the case of R3, for example, suppose the space is like a block of Swiss cheese
that contains air bubbles. Homotopy can go around the air bubbles, but it cannot
pass through a hole that is drilled through the entire block of cheese. Air bubbles
and other kinds of holes that appear in higher dimensions can be characterized by
generalizing homotopy to the warping of higher dimensional surfaces, as opposed
to paths [439].

It is straightforward to show that homotopy defines an equivalence relation on
the set of all paths from some x1 ∈ X to some x2 ∈ X. The resulting notion
of “equivalent paths” appears frequently in motion planning, control theory, and
many other contexts. Suppose that X is path connected. If all paths fall into the
same equivalence class, then X is called simply connected; otherwise, X is called
multiply connected.

Groups The equivalence relation induced by homotopy starts to enter the realm
of algebraic topology, which is a branch of mathematics that characterizes the
structure of topological spaces in terms of algebraic objects, such as groups. These
resulting groups have important implications for motion planning. Therefore, we
give a brief overview. First, the notion of a group must be precisely defined. A
group is a set, G, together with a binary operation, ◦, such that the following
group axioms are satisfied:

1. (Closure) For any a, b ∈ G, the product a ◦ b ∈ G.

2. (Associativity) For all a, b, c ∈ G, (a◦b)◦c = a◦(b◦c). Hence, parentheses
are not needed, and the product may be written as a ◦ b ◦ c.

3. (Identity) There is an element e ∈ G, called the identity, such that for all
a ∈ G, e ◦ a = a and a ◦ e = a.

4. (Inverse) For every element a ∈ G, there is an element a−1, called the
inverse of a, for which a ◦ a−1 = e and a−1 ◦ a = e.

Here are some examples.

Example 4.7 (Simple Examples of Groups) The set of integers Z is a group
with respect to addition. The identity is 0, and the inverse of each i is −i. The set
Q\0 of rational numbers with 0 removed is a group with respect to multiplication.
The identity is 1, and the inverse of every element, q, is 1/q (0 was removed to

142 S. M. LaValle: Planning Algorithms

avoid division by zero). �

An important property, which only some groups possess, is commutativity:
a ◦ b = b ◦ a for any a, b ∈ G. The group in this case is called commutative or
Abelian. We will encounter examples of both kinds of groups, both commutative
and noncommutative. An example of a commutative group is vector addition over
Rn. The set of all 3D rotations is an example of a noncommutative group.

The fundamental group Now an interesting group will be constructed from
the space of paths and the equivalence relation obtained by homotopy. The funda-
mental group, π1(X) (or first homotopy group), is associated with any topological
space, X. Let a (continuous) path for which f(0) = f(1) be called a loop. Let
some xb ∈ X be designated as a base point. For some arbitrary but fixed base
point, xb, consider the set of all loops such that f(0) = f(1) = xb. This can be
made into a group by defining the following binary operation. Let τ1 : [0, 1]→ X
and τ2 : [0, 1] → X be two loop paths with the same base point. Their product
τ = τ1 ◦ τ2 is defined as

τ(t) =

{
τ1(2t) if t ∈ [0, 1/2)
τ2(2t− 1) if t ∈ [1/2, 1].

(4.9)

This results in a continuous loop path because τ1 terminates at xb, and τ2 begins
at xb. In a sense, the two paths are concatenated end-to-end.

Suppose now that the equivalence relation induced by homotopy is applied to
the set of all loop paths through a fixed point, xb. It will no longer be important
which particular path was chosen from a class; any representative may be used.
The equivalence relation also applies when the set of loops is interpreted as a
group. The group operation actually occurs over the set of equivalences of paths.

Consider what happens when two paths from different equivalence classes are
concatenated using ◦. Is the resulting path homotopic to either of the first two?
Is the resulting path homotopic if the original two are from the same homotopy
class? The answers in general are no and no, respectively. The fundamental group
describes how the equivalence classes of paths are related and characterizes the
connectivity of X. Since fundamental groups are based on paths, there is a nice
connection to motion planning.

Example 4.8 (A Simply Connected Space) Suppose that a topological space
X is simply connected. In this case, all loop paths from a base point xb are homo-
topic, resulting in one equivalence class. The result is π1(X) = 1G, which is the
group that consists of only the identity element. �

Example 4.9 (The Fundamental Group of S1) Suppose X = S1. In this
case, there is an equivalence class of paths for each i ∈ Z, the set of integers.

4.1. BASIC TOPOLOGICAL CONCEPTS 143

1

1
1

1

2

2

1

12

2

(a) (b) (c)

Figure 4.7: An illustration of why π1(RP
2) = Z2. The integers 1 and 2 indicate

precisely where a path continues when it reaches the boundary. (a) Two paths are
shown that are not equivalent. (b) A path that winds around twice is shown. (c)
This is homotopic to a loop path that does not wind around at all. Eventually, the
part of the path that appears at the bottom is pulled through the top. It finally
shrinks into an arbitrarily small loop.

If i > 0, then it means that the path winds i times around S1 in the counterclock-
wise direction and then returns to xb. If i < 0, then the path winds around i times
in the clockwise direction. If i = 0, then the path is equivalent to one that remains
at xb. The fundamental group is Z, with respect to the operation of addition. If
τ1 travels i1 times counterclockwise, and τ2 travels i2 times counterclockwise, then
τ = τ1 ◦ τ2 belongs to the class of loops that travel around i1 + i2 times counter-
clockwise. Consider additive inverses. If a path travels seven times around S1, and
it is combined with a path that travels seven times in the opposite direction, the
result is homotopic to a path that remains at xb. Thus, π1(S

1) = Z. �

Example 4.10 (The Fundamental Group of Tn) For the torus, π1(T
n) = Zn,

in which the ith component of Zn corresponds to the number of times a loop path
wraps around the ith component of Tn. This makes intuitive sense because Tn is
just the Cartesian product of n circles. The fundamental group Zn is obtained by
starting with a simply connected subset of the plane and drilling out n disjoint,
bounded holes. This situation arises frequently when a mobile robot must avoid
collision with n disjoint obstacles in the plane. �

By now it seems that the fundamental group simply keeps track of how many
times a path travels around holes. This next example yields some very bizarre
behavior that helps to illustrate some of the interesting structure that arises in
algebraic topology.

144 S. M. LaValle: Planning Algorithms

Example 4.11 (The Fundamental Group of RP2) Suppose X = RP2, the
projective plane. In this case, there are only two equivalence classes on the space of
loop paths. All paths that “wrap around” an even number of times are homotopic.
Likewise, all paths that wrap around an odd number of times are homotopic. This
strange behavior is illustrated in Figure 4.7. The resulting fundamental group
therefore has only two elements: π1(RP

2) = Z2, the cyclic group of order 2, which
corresponds to addition mod 2. This makes intuitive sense because the group
keeps track of whether a sum of integers is odd or even, which in this application
corresponds to the total number of traversals over the square representation of
RP2. The fundamental group is the same for RP3, which arises in Section 4.2.2
because it is homeomorphic to the set of 3D rotations. Thus, there are surprisingly
only two path classes for the set of 3D rotations. �

Unfortunately, two topological spaces may have the same fundamental group
even if the spaces are not homeomorphic. For example, Z is the fundamental
group of S1, the cylinder, R × S1, and the Möbius band. In the last case, the
fundamental group does not indicate that there is a “twist” in the space. Another
problem is that spaces with interesting connectivity may be declared as simply
connected. The fundamental group of the sphere S2 is just 1G, the same as for
R2. Try envisioning loop paths on the sphere; it can be seen that they all fall into
one equivalence class. Hence, S2 is simply connected. The fundamental group also
neglects bubbles in R3 because the homotopy can warp paths around them. Some
of these troubles can be fixed by defining second-order homotopy groups. For
example, a continuous function, [0, 1] × [0, 1] → X, of two variables can be used
instead of a path. The resulting homotopy generates a kind of sheet or surface
that can be warped through the space, to yield a homotopy group π2(X) that
wraps around bubbles in R3. This idea can be extended beyond two dimensions
to detect many different kinds of holes in higher dimensional spaces. This leads to
the higher order homotopy groups. A stronger concept than simply connected for
a space is that its homotopy groups of all orders are equal to the identity group.
This prevents all kinds of holes from occurring and implies that a space, X, is
contractible, which means a kind of homotopy can be constructed that shrinks X
to a point [439]. In the plane, the notions of contractible and simply connected are
equivalent; however, in higher dimensional spaces, such as those arising in motion
planning, the term contractible should be used to indicate that the space has no
interior obstacles (holes).

An alternative to basing groups on homotopy is to derive them using homology,
which is based on the structure of cell complexes instead of homotopy mappings.
This subject is much more complicated to present, but it is more powerful for
proving theorems in topology. See the literature overview at the end of the chapter
for suggested further reading on algebraic topology.

4.2. DEFINING THE CONFIGURATION SPACE 145

4.2 Defining the Configuration Space

This section defines the manifolds that arise from the transformations of Chapter
3. If the robot has n degrees of freedom, the set of transformations is usually a
manifold of dimension n. This manifold is called the configuration space of the
robot, and its name is often shortened to C-space. In this book, the C-space
may be considered as a special state space. To solve a motion planning problem,
algorithms must conduct a search in the C-space. The C-space provides a powerful
abstraction that converts the complicated models and transformations of Chapter
3 into the general problem of computing a path that traverses a manifold. By
developing algorithms directly for this purpose, they apply to a wide variety of
different kinds of robots and transformations. In Section 4.3 the problem will be
complicated by bringing obstacles into the configuration space, but in Section 4.2
there will be no obstacles.

4.2.1 2D Rigid Bodies: SE(2)

Section 3.2.2 expressed how to transform a rigid body in R2 by a homogeneous
transformation matrix, T , given by (3.35). The task in this chapter is to char-
acterize the set of all possible rigid-body transformations. Which manifold will
this be? Here is the answer and brief explanation. Since any xt, yt ∈ R can be
selected for translation, this alone yields a manifold M1 = R2. Independently, any
rotation, θ ∈ [0, 2π), can be applied. Since 2π yields the same rotation as 0, they
can be identified, which makes the set of 2D rotations into a manifold, M2 = S1.
To obtain the manifold that corresponds to all rigid-body motions, simply take
C =M1×M2 = R2× S1. The answer to the question is that the C-space is a kind
of cylinder.

Now we give a more detailed technical argument. The main purpose is that
such a simple, intuitive argument will not work for the 3D case. Our approach is
to introduce some of the technical machinery here for the 2D case, which is easier
to understand, and then extend it to the 3D case in Section 4.2.2.

Matrix groups The first step is to consider the set of transformations as a
group, in addition to a topological space.8 We now derive several important groups
from sets of matrices, ultimately leading to SO(n), the group of n × n rotation
matrices, which is very important for motion planning. The set of all nonsingular
n × n real-valued matrices is called the general linear group, denoted by GL(n),
with respect to matrix multiplication. Each matrix A ∈ GL(n) has an inverse
A−1 ∈ GL(n), which when multiplied yields the identity matrix, AA−1 = I. The

8The groups considered in this section are actually Lie groups because they are smooth
manifolds [63]. We will not use that name here, however, because the notion of a smooth
structure has not yet been defined. Readers familiar with Lie groups, however, will recognize
most of the coming concepts. Some details on Lie groups appear later in Sections 15.4.3 and
15.5.1.

146 S. M. LaValle: Planning Algorithms

matrices must be nonsingular for the same reason that 0 was removed from Q. The
analog of division by zero for matrix algebra is the inability to invert a singular
matrix.

Many interesting groups can be formed from one group, G1, by removing some
elements to obtain a subgroup, G2. To be a subgroup, G2 must be a subset of
G1 and satisfy the group axioms. We will arrive at the set of rotation matrices
by constructing subgroups. One important subgroup of GL(n) is the orthogonal
group, O(n), which is the set of all matrices A ∈ GL(n) for which AAT = I,
in which AT denotes the matrix transpose of A. These matrices have orthogonal
columns (the inner product of any pair is zero) and the determinant is always 1 or
−1. Thus, note that AAT takes the inner product of every pair of columns. If the
columns are different, the result must be 0; if they are the same, the result is 1
because AAT = I. The special orthogonal group, SO(n), is the subgroup of O(n)
in which every matrix has determinant 1. Another name for SO(n) is the group
of n-dimensional rotation matrices.

A chain of groups, SO(n) ≤ O(n) ≤ GL(n), has been described in which ≤
denotes “a subgroup of.” Each group can also be considered as a topological space.
The set of all n×n matrices (which is not a group with respect to multiplication)
with real-valued entries is homeomorphic to Rn2

because n2 entries in the matrix
can be independently chosen. For GL(n), singular matrices are removed, but an
n2-dimensional manifold is nevertheless obtained. For O(n), the expression AAT =
I corresponds to n2 algebraic equations that have to be satisfied. This should
substantially drop the dimension. Note, however, that many of the equations are
redundant (pick your favorite value for n, multiply the matrices, and see what
happens). There are only (n2) ways (pairwise combinations) to take the inner
product of pairs of columns, and there are n equations that require the magnitude
of each column to be 1. This yields a total of n(n + 1)/2 independent equations.
Each independent equation drops the manifold dimension by one, and the resulting
dimension of O(n) is n2−n(n+1)/2 = n(n− 1)/2, which is easily remembered as
(n2). To obtain SO(n), the constraint detA = 1 is added, which eliminates exactly
half of the elements of O(n) but keeps the dimension the same.

Example 4.12 (Matrix Subgroups) It is helpful to illustrate the concepts for
n = 2. The set of all 2× 2 matrices is

{(
a b
c d

) ∣
∣
∣
∣
a, b, c, d ∈ R

}

, (4.10)

which is homeomorphic to R4. The group GL(2) is formed from the set of all
nonsingular 2× 2 matrices, which introduces the constraint that ad− bc 6= 0. The
set of singular matrices forms a 3D manifold with boundary in R4, but all other
elements of R4 are in GL(2); therefore, GL(2) is a 4D manifold.

Next, the constraint AAT = I is enforced to obtain O(2). This becomes
(
a b
c d

)(
a c
b d

)

=

(
1 0
0 1

)

, (4.11)

4.2. DEFINING THE CONFIGURATION SPACE 147

which directly yields four algebraic equations:

a2 + b2 = 1 (4.12)

ac+ bd = 0 (4.13)

ca+ db = 0 (4.14)

c2 + d2 = 1. (4.15)

Note that (4.14) is redundant. There are two kinds of equations. One equation,
given by (4.13), forces the inner product of the columns to be 0. There is only
one because (n2) = 1 for n = 2. Two other constraints, (4.12) and (4.15), force the
rows to be unit vectors. There are two because n = 2. The resulting dimension of
the manifold is (n2) = 1 because we started with R4 and lost three dimensions from
(4.12), (4.13), and (4.15). What does this manifold look like? Imagine that there
are two different two-dimensional unit vectors, (a, b) and (c, d). Any value can be
chosen for (a, b) as long as a2 + b2 = 1. This looks like S1, but the inner product
of (a, b) and (c, d) must also be 0. Therefore, for each value of (a, b), there are two
choices for c and d: 1) c = b and d = −a, or 2) c = −b and d = a. It appears
that there are two circles! The manifold is S1 ⊔ S1, in which ⊔ denotes the union
of disjoint sets. Note that this manifold is not connected because no path exists
from one circle to the other.

The final step is to require that detA = ad− bc = 1, to obtain SO(2), the set
of all 2D rotation matrices. Without this condition, there would be matrices that
produce a rotated mirror image of the rigid body. The constraint simply forces
the choice for c and d to be c = −b and a = d. This throws away one of the circles
from O(2), to obtain a single circle for SO(2). We have finally obtained what you
already knew: SO(2) is homeomorphic to S1. The circle can be parameterized
using polar coordinates to obtain the standard 2D rotation matrix, (3.31), given
in Section 3.2.2. �

Special Euclidean group Now that the group of rotations, SO(n), is charac-
terized, the next step is to allow both rotations and translations. This corresponds
to the set of all (n+ 1)× (n+ 1) transformation matrices of the form

{(
R v
0 1

) ∣
∣
∣
∣
R ∈ SO(n) and v ∈ Rn

}

. (4.16)

This should look like a generalization of (3.52) and (3.56), which were for n = 2
and n = 3, respectively. The R part of the matrix achieves rotation of an n-
dimensional body in Rn, and the v part achieves translation of the same body.
The result is a group, SE(n), which is called the special Euclidean group. As a
topological space, SE(n) is homeomorphic to Rn × SO(n), because the rotation
matrix and translation vectors may be chosen independently. In the case of n = 2,
this means SE(2) is homeomorphic to R2 × S1, which verifies what was stated

148 S. M. LaValle: Planning Algorithms

qI

qG

Figure 4.8: A planning algorithm may have to cross the identification boundary
to find a solution path.

at the beginning of this section. Thus, the C-space of a 2D rigid body that can
translate and rotate in the plane is

C = R2 × S1. (4.17)

To be more precise, ∼= should be used in the place of = to indicate that C could
be any space homeomorphic to R2 × S1; however, this notation will mostly be
avoided.

Interpreting the C-space It is important to consider the topological impli-
cations of C. Since S1 is multiply connected, R × S1 and R2 × S1 are multiply
connected. It is difficult to visualize C because it is a 3D manifold; however,
there is a nice interpretation using identification. Start with the open unit cube,
(0, 1)3 ⊂ R3. Include the boundary points of the form (x, y, 0) and (x, y, 1), and
make the identification (x, y, 0) ∼ (x, y, 1) for all x, y ∈ (0, 1). This means that
when traveling in the x and y directions, there is a “frontier” to the C-space;
however, traveling in the z direction causes a wraparound.

It is very important for a motion planning algorithm to understand that this
wraparound exists. For example, consider R× S1 because it is easier to visualize.
Imagine a path planning problem for which C = R × S1, as depicted in Figure
4.8. Suppose the top and bottom are identified to make a cylinder, and there is
an obstacle across the middle. Suppose the task is to find a path from qI to qG. If
the top and bottom were not identified, then it would not be possible to connect
qI to qG; however, if the algorithm realizes it was given a cylinder, the task is
straightforward. In general, it is very important to understand the topology of C;
otherwise, potential solutions will be lost.

The next section addresses SE(n) for n = 3. The main difficulty is determining
the topology of SO(3). At least we do not have to consider n > 3 in this book.

4.2.2 3D Rigid Bodies: SE(3)

One might expect that defining C for a 3D rigid body is an obvious extension of the
2D case; however, 3D rotations are significantly more complicated. The resulting

4.2. DEFINING THE CONFIGURATION SPACE 149

C-space will be a six-dimensional manifold, C = R3×RP3. Three dimensions come
from translation and three more come from rotation.

The main quest in this section is to determine the topology of SO(3). In Section
3.2.3, yaw, pitch, and roll were used to generate rotation matrices. These angles
are convenient for visualization, performing transformations in software, and also
for deriving the DH parameters. However, these were concerned with applying
a single rotation, whereas the current problem is to characterize the set of all
rotations. It is possible to use α, β, and γ to parameterize the set of rotations,
but it causes serious troubles. There are some cases in which nonzero angles yield
the identity rotation matrix, which is equivalent to α = β = γ = 0. There are
also cases in which a continuum of values for yaw, pitch, and roll angles yield the
same rotation matrix. These problems destroy the topology, which causes both
theoretical and practical difficulties in motion planning.

Consider applying the matrix group concepts from Section 4.2.1. The general
linear group GL(3) is homeomorphic to R9. The orthogonal group, O(3), is de-
termined by imposing the constraint AAT = I. There are (32) = 3 independent
equations that require distinct columns to be orthogonal, and three independent
equations that force the magnitude of each column to be 1. This means that O(3)
has three dimensions, which matches our intuition since there were three rotation
parameters in Section 3.2.3. To obtain SO(3), the last constraint, detA = 1,
is added. Recall from Example 4.12 that SO(2) consists of two circles, and the
constraint detA = 1 selects one of them. In the case of O(3), there are two
three-spheres, S3 ⊔ S3, and detA = 1 selects one of them. However, there is one
additional complication: Antipodal points on these spheres generate the same ro-
tation matrix. This will be seen shortly when quaternions are used to parameterize
SO(3).

Using complex numbers to represent SO(2) Before introducing quaternions
to parameterize 3D rotations, consider using complex numbers to parameterize 2D
rotations. Let the term unit complex number refer to any complex number, a+ bi,
for which a2 + b2 = 1.

The set of all unit complex numbers forms a group under multiplication. It will
be seen that it is “the same” group as SO(2). This idea needs to be made more
precise. Two groups, G and H, are considered “the same” if they are isomorphic,
which means that there exists a bijective function f : G → H such that for all
a, b ∈ G, f(a)◦f(b) = f(a◦ b). This means that we can perform some calculations
in G, map the result to H, perform more calculations, and map back to G without
any trouble. The sets G and H are just two alternative ways to express the same
group.

The unit complex numbers and SO(2) are isomorphic. To see this clearly, recall
that complex numbers can be represented in polar form as reiθ; a unit complex
number is simply eiθ. A bijective mapping can be made between 2D rotation
matrices and unit complex numbers by letting eiθ correspond to the rotation matrix
(3.31).

150 S. M. LaValle: Planning Algorithms

If complex numbers are used to represent rotations, it is important that they
behave algebraically in the same way. If two rotations are combined, the matrices
are multiplied. The equivalent operation is multiplication of complex numbers.
Suppose that a 2D robot is rotated by θ1, followed by θ2. In polar form, the complex
numbers are multiplied to yield eiθ1eiθ2 = ei(θ1+θ2), which clearly represents a
rotation of θ1 + θ2. If the unit complex number is represented in Cartesian form,
then the rotations corresponding to a1 + b1i and a2 + b2i are combined to obtain
(a1a2−b1b2)+(a1b2+a2b1)i. Note that here we have not used complex numbers to
express the solution to a polynomial equation, which is their more popular use; we
simply borrowed their nice algebraic properties. At any time, a complex number
a+ bi can be converted into the equivalent rotation matrix

R(a, b) =

(
a −b
b a

)

. (4.18)

Recall that only one independent parameter needs to be specified because a2 +
b2 = 1. Hence, it appears that the set of unit complex numbers is the same
manifold as SO(2), which is the circle S1 (recall, that “same” means in the sense
of homeomorphism).

Quaternions The manner in which complex numbers were used to represent 2D
rotations will now be adapted to using quaternions to represent 3D rotations. Let
H represent the set of quaternions, in which each quaternion, h ∈ H, is represented
as h = a+bi+cj+dk, and a, b, c, d ∈ R. A quaternion can be considered as a four-
dimensional vector. The symbols i, j, and k are used to denote three “imaginary”
components of the quaternion. The following relationships are defined: i2 = j2 =
k2 = ijk = −1, from which it follows that ij = k, jk = i, and ki = j. Using
these, multiplication of two quaternions, h1 = a1 + b1i + c1j + d1k and h2 =
a2+ b2i+ c2j+d2k, can be derived to obtain h1 ·h2 = a3+ b3i+ c3j+d3k, in which

a3 = a1a2 − b1b2 − c1c2 − d1d2
b3 = a1b2 + a2b1 + c1d2 − c2d1
c3 = a1c2 + a2c1 + b2d1 − b1d2
d3 = a1d2 + a2d1 + b1c2 − b2c1.

(4.19)

Using this operation, it can be shown that H is a group with respect to quaternion
multiplication. Note, however, that the multiplication is not commutative! This
is also true of 3D rotations; there must be a good reason.

For convenience, quaternion multiplication can be expressed in terms of vector
multiplications, a dot product, and a cross product. Let v = [b c d] be a three-
dimensional vector that represents the final three quaternion components. The
first component of h1 · h2 is a1a2 − v1 · v2. The final three components are given
by the three-dimensional vector a1v2 + a2v1 + v1 × v2.

In the same way that unit complex numbers were needed for SO(2), unit quater-
nions are needed for SO(3), which means that H is restricted to quaternions for

4.2. DEFINING THE CONFIGURATION SPACE 151

v

θ

Figure 4.9: Any 3D rotation can be considered as a rotation by an angle θ about
the axis given by the unit direction vector v = [v1 v2 v3].

v

θ
2π − θ

−v

Figure 4.10: There are two ways to encode the same rotation.

which a2 + b2 + c2 + d2 = 1. Note that this forms a subgroup because the multi-
plication of unit quaternions yields a unit quaternion, and the other group axioms
hold.

The next step is to describe a mapping from unit quaternions to SO(3). Let
the unit quaternion h = a+ bi+ cj + dk map to the matrix

R(h) =





2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1



 , (4.20)

which can be verified as orthogonal and detR(h) = 1. Therefore, it belongs to
SO(3). It is not shown here, but it conveniently turns out that h represents the
rotation shown in Figure 4.9, by making the assignment

h = cos
θ

2
+

(

v1 sin
θ

2

)

i+

(

v2 sin
θ

2

)

j +

(

v3 sin
θ

2

)

k. (4.21)

Unfortunately, this representation is not unique. It can be verified in (4.20)
that R(h) = R(−h). A nice geometric interpretation is given in Figure 4.10.
The quaternions h and −h represent the same rotation because a rotation of θ
about the direction v is equivalent to a rotation of 2π− θ about the direction −v.
Consider the quaternion representation of the second expression of rotation with
respect to the first. The real part is

cos

(
2π − θ

2

)

= cos

(

π − θ

2

)

= − cos

(
θ

2

)

= −a. (4.22)

The i, j, and k components are

− v sin
(
2π − θ

2

)

= −v sin
(

π − θ

2

)

= −v sin
(
θ

2

)

= [−b − c − d]. (4.23)

152 S. M. LaValle: Planning Algorithms

The quaternion −h has been constructed. Thus, h and −h represent the same
rotation. Luckily, this is the only problem, and the mapping given by (4.20) is
two-to-one from the set of unit quaternions to SO(3).

This can be fixed by the identification trick. Note that the set of unit quater-
nions is homeomorphic to S3 because of the constraint a2 + b2 + c2 + d2 = 1. The
algebraic properties of quaternions are not relevant at this point. Just imagine
each h as an element of R4, and the constraint a2 + b2 + c2 + d2 = 1 forces the
points to lie on S3. Using identification, declare h ∼ −h for all unit quaternions.
This means that the antipodal points of S3 are identified. Recall from the end
of Section 4.1.2 that when antipodal points are identified, RPn ∼= Sn/ ∼. Hence,
SO(3) ∼= RP3, which can be considered as the set of all lines through the origin
of R4, but this is hard to visualize. The representation of RP2 in Figure 4.5 can
be extended to RP3. Start with (0, 1)3 ⊂ R3, and make three different kinds
of identifications, one for each pair of opposite cube faces, and add all of the
points to the manifold. For each kind of identification a twist needs to be made
(without the twist, T3 would be obtained). For example, in the z direction, let
(x, y, 0) ∼ (1− x, 1− y, 1) for all x, y ∈ [0, 1].

One way to force uniqueness of rotations is to require staying in the “upper
half” of S3. For example, require that a ≥ 0, as long as the boundary case of
a = 0 is handled properly because of antipodal points at the equator of S3. If
a = 0, then require that b ≥ 0. However, if a = b = 0, then require that c ≥ 0
because points such as (0, 0,−1, 0) and (0, 0, 1, 0) are the same rotation. Finally,
if a = b = c = 0, then only d = 1 is allowed. If such restrictions are made, it is
important, however, to remember the connectivity of RP3. If a path travels across
the equator of S3, it must be mapped to the appropriate place in the “northern
hemisphere.” At the instant it hits the equator, it must move to the antipodal
point. These concepts are much easier to visualize if you remove a dimension and
imagine them for S2 ⊂ R3, as described at the end of Section 4.1.2.

Using quaternion multiplication The representation of rotations boiled down
to picking points on S3 and respecting the fact that antipodal points give the same
element of SO(3). In a sense, this has nothing to do with the algebraic properties
of quaternions. It merely means that SO(3) can be parameterized by picking
points in S3, just like SO(2) was parameterized by picking points in S1 (ignoring
the antipodal identification problem for SO(3)).

However, one important reason why the quaternion arithmetic was introduced
is that the group of unit quaternions with h and −h identified is also isomorphic
to SO(3). This means that a sequence of rotations can be multiplied together
using quaternion multiplication instead of matrix multiplication. This is important
because fewer operations are required for quaternion multiplication in comparison
to matrix multiplication. At any point, (4.20) can be used to convert the result
back into a matrix; however, this is not even necessary. It turns out that a point
in the world, (x, y, z) ∈ R3, can be transformed by directly using quaternion
arithmetic. An analog to the complex conjugate from complex numbers is needed.

4.2. DEFINING THE CONFIGURATION SPACE 153

For any h = a+ bi+ cj + dk ∈ H, let h∗ = a− bi− cj − dk be its conjugate. For
any point (x, y, z) ∈ R3, let p ∈ H be the quaternion 0 + xi + yj + zk. It can be
shown (with a lot of algebra) that the rotated point (x, y, z) is given by h · p · h∗.
The i, j, k components of the resulting quaternion are new coordinates for the
transformed point. It is equivalent to having transformed (x, y, z) with the matrix
R(h).

Finding quaternion parameters from a rotation matrix Recall from Sec-
tion 3.2.3 that given a rotation matrix (3.43), the yaw, pitch, and roll parameters
could be directly determined using the atan2 function. It turns out that the
quaternion representation can also be determined directly from the matrix. This
is the inverse of the function in (4.20).9

For a given rotation matrix (3.43), the quaternion parameters h = a+bi+cj+dk
can be computed as follows [210]. The first component is

a = 1
2

√
r11 + r22 + r33 + 1, (4.24)

and if a 6= 0, then

b =
r32 − r23

4a
, (4.25)

c =
r13 − r31

4a
, (4.26)

and

d =
r21 − r12

4a
. (4.27)

If a = 0, then the previously mentioned equator problem occurs. In this case,

b =
r13r12

√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (4.28)

c =
r12r23

√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (4.29)

and

d =
r13r23

√

r212r
2
13 + r212r

2
23 + r213r

2
23

. (4.30)

This method fails if r12 = r23 = 0 or r13 = r23 = 0 or r12 = r23 = 0. These
correspond precisely to the cases in which the rotation matrix is a yaw, (3.39),
pitch, (3.40), or roll, (3.41), which can be detected in advance.

9Since that function was two-to-one, it is technically not an inverse until the quaternions are
restricted to the upper hemisphere, as described previously.

154 S. M. LaValle: Planning Algorithms

Special Euclidean group Now that the complicated part of representing SO(3)
has been handled, the representation of SE(3) is straightforward. The general form
of a matrix in SE(3) is given by (4.16), in which R ∈ SO(3) and v ∈ R3. Since
SO(3) ∼= RP3, and translations can be chosen independently, the resulting C-space
for a rigid body that rotates and translates in R3 is

C = R3 × RP3, (4.31)

which is a six-dimensional manifold. As expected, the dimension of C is exactly
the number of degrees of freedom of a free-floating body in space.

4.2.3 Chains and Trees of Bodies

If there are multiple bodies that are allowed to move independently, then their
C-spaces can be combined using Cartesian products. Let Ci denote the C-space of
Ai. If there are n free-floating bodies in W = R2 or W = R3, then

C = C1 × C2 × · · · × Cn. (4.32)

If the bodies are attached to form a kinematic chain or kinematic tree, then
each C-space must be considered on a case-by-case basis. There is no general rule
that simplifies the process. One thing to generally be careful about is that the full
range of motion might not be possible for typical joints. For example, a revolute
joint might not be able to swing all of the way around to enable any θ ∈ [0, 2π).
If θ cannot wind around S1, then the C-space for this joint is homeomorphic to R

instead of S1. A similar situation occurs for a spherical joint. A typical ball joint
cannot achieve any orientation in SO(3) due to mechanical obstructions. In this
case, the C-space is not RP3 because part of SO(3) is missing.

Another complication is that the DH parameterization of Section 3.3.2 is de-
signed to facilitate the assignment of coordinate frames and computation of trans-
formations, but it neglects considerations of topology. For example, a common
approach to representing a spherical robot wrist is to make three zero-length links
that each behave as a revolute joint. If the range of motion is limited, this might
not cause problems, but in general the problems would be similar to using yaw,
pitch, and roll to represent SO(3). There may be multiple ways to express the
same arm configuration.

Several examples are given below to help in determining C-spaces for chains
and trees of bodies. Suppose W = R2, and there is a chain of n bodies that are
attached by revolute joints. Suppose that the first joint is capable of rotation only
about a fixed point (e.g., it spins around a nail). If each joint has the full range
of motion θi ∈ [0, 2π), the C-space is

C = S1 × S1 × · · · × S1 = Tn. (4.33)

However, if each joint is restricted to θi ∈ (−π/2, π/2), then C = Rn. If any
transformation in SE(2) can be applied to A1, then an additional R2 is needed.

4.3. CONFIGURATION SPACE OBSTACLES 155

In the case of restricted joint motions, this yields Rn+2. If the joints can achieve
any orientation, then C = R2 × Tn. If there are prismatic joints, then each joint
contributes R to the C-space.

Recall from Figure 3.12 that for W = R3 there are six different kinds of joints.
The cases of revolute and prismatic joints behave the same as for W = R2. Each
screw joint contributes R. A cylindrical joint contributes R × S1, unless its ro-
tational motion is restricted. A planar joint contributes R2 × S1 because any
transformation in SE(2) is possible. If its rotational motions are restricted, then
it contributes R3. Finally, a spherical joint can theoretically contribute RP3. In
practice, however, this rarely occurs. It is more likely to contribute R2 × S1 or R3

after restrictions are imposed. Note that if the first joint is a free-floating body,
then it contributes R3 × RP3.

Kinematic trees can be handled in the same way as kinematic chains. One
issue that has not been mentioned is that there might be collisions between the
links. This has been ignored up to this point, but obviously this imposes very
complicated restrictions. The concepts from Section 4.3 can be applied to handle
this case and the placement of additional obstacles in W . Reasoning about these
kinds of restrictions and the path connectivity of the resulting space is indeed the
main point of motion planning.

4.3 Configuration Space Obstacles

Section 4.2 defined C, the manifold of robot transformations in the absence of any
collision constraints. The current section removes from C the configurations that
either cause the robot to collide with obstacles or cause some specified links of
the robot to collide with each other. The removed part of C is referred to as the
obstacle region. The leftover space is precisely what a solution path must traverse.
A motion planning algorithm must find a path in the leftover space from an initial
configuration to a goal configuration. Finally, after the models of Chapter 3 and
the previous sections of this chapter, the motion planning problem can be precisely
described.

4.3.1 Definition of the Basic Motion Planning Problem

Obstacle region for a rigid body Suppose that the world, W = R2 or W =
R3, contains an obstacle region, O ⊂ W . Assume here that a rigid robot, A ⊂ W ,
is defined; the case of multiple links will be handled shortly. Assume that both
A and O are expressed as semi-algebraic models (which includes polygonal and
polyhedral models) from Section 3.1. Let q ∈ C denote the configuration of A, in
which q = (xt, yt, θ) for W = R2 and q = (xt, yt, zt, h) for W = R3 (h represents
the unit quaternion).

The obstacle region, Cobs ⊆ C, is defined as

Cobs = {q ∈ C | A(q) ∩ O 6= ∅}, (4.34)

156 S. M. LaValle: Planning Algorithms

which is the set of all configurations, q, at which A(q), the transformed robot,
intersects the obstacle region, O. Since O and A(q) are closed sets in W , the
obstacle region is a closed set in C.

The leftover configurations are called the free space, which is defined and de-
noted as Cfree = C \ Cobs. Since C is a topological space and Cobs is closed, Cfree
must be an open set. This implies that the robot can come arbitrarily close to the
obstacles while remaining in Cfree. If A “touches” O,

int(O) ∩ int(A(q)) = ∅ and O ∩A(q) 6= ∅, (4.35)

then q ∈ Cobs (recall that int means the interior). The condition above indicates
that only their boundaries intersect.

The idea of getting arbitrarily close may be nonsense in practical robotics, but
it makes a clean formulation of the motion planning problem. Since Cfree is open,
it becomes impossible to formulate some optimization problems, such as finding
the shortest path. In this case, the closure, cl(Cfree), should instead be used, as
described in Section 7.7.

Obstacle region for multiple bodies If the robot consists of multiple bodies,
the situation is more complicated. The definition in (4.34) only implies that the
robot does not collide with the obstacles; however, if the robot consists of multiple
bodies, then it might also be appropriate to avoid collisions between different links
of the robot. Let the robot be modeled as a collection, {A1,A2, . . . ,Am}, of m
links, which may or may not be attached together by joints. A single configuration
vector q is given for the entire collection of links. We will write Ai(q) for each link,
i, even though some of the parameters of q may be irrelevant for moving link Ai.
For example, in a kinematic chain, the configuration of the second body does not
depend on the angle between the ninth and tenth bodies.

Let P denote the set of collision pairs, in which each collision pair, (i, j) ∈ P ,
represents a pair of link indices i, j ∈ {1, 2, . . . ,m}, such that i 6= j. If (i, j)
appears in P , it means that Ai and Aj are not allowed to be in a configuration,
q, for which Ai(q) ∩ Aj(q) 6= ∅. Usually, P does not represent all pairs because
consecutive links are in contact all of the time due to the joint that connects them.
One common definition for P is that each link must avoid collisions with any links
to which it is not attached by a joint. For m bodies, P is generally of size O(m2);
however, in practice it is often possible to eliminate many pairs by some geometric
analysis of the linkage. Collisions between some pairs of links may be impossible
over all of C, in which case they do not need to appear in P .

Using P , the consideration of robot self-collisions is added to the definition of
Cobs to obtain

Cobs =
(

m⋃

i=1

{q ∈ C | Ai(q) ∩ O 6= ∅}
)
⋃
(
⋃

[i,j]∈P
{q ∈ C | Ai(q) ∩ Aj(q) 6= ∅}

)

.

(4.36)

4.3. CONFIGURATION SPACE OBSTACLES 157

Cobs

qI

qG
Cfree

Cobs

Cobs

Figure 4.11: The basic motion planning problem is conceptually very simple using
C-space ideas. The task is to find a path from qI to qG in Cfree. The entire blob
represents C = Cfree ∪ Cobs.

Thus, a configuration q ∈ C is in Cobs if at least one link collides with O or a pair
of links indicated by P collide with each other.

Definition of basic motion planning Finally, enough tools have been intro-
duced to precisely define the motion planning problem. The problem is concep-
tually illustrated in Figure 4.11. The main difficulty is that it is neither straight-
forward nor efficient to construct an explicit boundary or solid representation of
either Cfree or Cobs. The components are as follows:

Formulation 4.1 (The Piano Mover’s Problem)

1. A world W in which either W = R2 or W = R3.

2. A semi-algebraic obstacle region O ⊂ W in the world.

3. A semi-algebraic robot is defined in W . It may be a rigid robot A or a
collection of m links, A1,A2, . . . ,Am.

4. The configuration space C determined by specifying the set of all possible
transformations that may be applied to the robot. From this, Cobs and Cfree
are derived.

5. A configuration, qI ∈ Cfree designated as the initial configuration.

158 S. M. LaValle: Planning Algorithms

6. A configuration qG ∈ Cfree designated as the goal configuration. The initial
and goal configurations together are often called a query pair (or query) and
designated as (qI , qG).

7. A complete algorithm must compute a (continuous) path, τ : [0, 1] → Cfree,
such that τ(0) = qI and τ(1) = qG, or correctly report that such a path does
not exist.

It was shown by Reif [817] that this problem is PSPACE-hard, which implies
NP-hard. The main problem is that the dimension of C is unbounded.

4.3.2 Explicitly Modeling Cobs: The Translational Case

It is important to understand how to construct a representation of Cobs. In some
algorithms, especially the combinatorial methods of Chapter 6, this represents an
important first step to solving the problem. In other algorithms, especially the
sampling-based planning algorithms of Chapter 5, it helps to understand why such
constructions are avoided due to their complexity.

The simplest case for characterizing Cobs is when C = Rn for n = 1, 2, and
3, and the robot is a rigid body that is restricted to translation only. Under
these conditions, Cobs can be expressed as a type of convolution. For any two sets
X, Y ⊂ Rn, let their Minkowski difference10 be defined as

X ⊖ Y = {x− y ∈ Rn | x ∈ X and y ∈ Y }, (4.37)

in which x−y is just vector subtraction on Rn. The Minkowski difference between
X and Y can also be considered as the Minkowski sum of X and −Y . The
Minkowski sum ⊕ is obtained by simply adding elements of X and Y in (4.37), as
opposed to subtracting them. The set −Y is obtained by replacing each y ∈ Y by
−y.

In terms of the Minkowski difference, Cobs = O⊖A(0). To see this, it is helpful
to consider a one-dimensional example.

Example 4.13 (One-Dimensional C-Space Obstacle) In Figure 4.12, both
the robot A = [−1, 2] and obstacle region O = [0, 4] are intervals in a one-
dimensional world, W = R. The negation, −A, of the robot is shown as the
interval [−2, 1]. Finally, by applying the Minkowski sum to O and −A, the C-
space obstacle, Cobs = [−2, 5], is obtained. �

The Minkowski difference is often considered as a convolution. It can even be
defined to appear the same as studied in differential equations and system theory.

10In some contexts, which include mathematics and image processing, the Minkowski difference
or Minkowski subtraction is defined differently (instead, it is a kind of “erosion”). For this
reason, some authors prefer to define all operations in terms of the Minkowski sum, ⊕, which is
consistently defined in all contexts. Following this convention, we would define X⊕ (−Y), which
is equivalent to X ⊖ Y .

4.3. CONFIGURATION SPACE OBSTACLES 159

-4 -3 -2 -1

A

O

Cobs

−A

6543210

Figure 4.12: A one-dimensional C-space obstacle.

O
A

Figure 4.13: A triangular robot and a rectangular obstacle.

For a one-dimensional example, let f : R→ {0, 1} be a function such that f(x) = 1
if and only if x ∈ O. Similarly, let g : R→ {0, 1} be a function such that g(x) = 1
if and only if x ∈ A. The convolution

h(x) =

∫ ∞

−∞
f(τ)g(x− τ)dτ, (4.38)

yields a function h, for which h(x) > 0 if x ∈ int(Cobs), and h(x) = 0 otherwise.

A polygonal C-space obstacle A simple algorithm for computing Cobs exists
in the case of a 2D world that contains a convex polygonal obstacle O and a
convex polygonal robot A [657]. This is often called the star algorithm. For this
problem, Cobs is also a convex polygon. Recall that nonconvex obstacles and robots
can be modeled as the union of convex parts. The concepts discussed below can
also be applied in the nonconvex case by considering Cobs as the union of convex
components, each of which corresponds to a convex component of A colliding with
a convex component of O.

The method is based on sorting normals to the edges of the polygons on the
basis of angles. The key observation is that every edge of Cobs is a translated edge
from either A or O. In fact, every edge from O and A is used exactly once in
the construction of Cobs. The only problem is to determine the ordering of these
edges of Cobs. Let α1, α2, . . ., αn denote the angles of the inward edge normals
in counterclockwise order around A. Let β1, β2, . . ., βn denote the outward edge
normals to O. After sorting both sets of angles in circular order around S1, Cobs
can be constructed incrementally by using the edges that correspond to the sorted
normals, in the order in which they are encountered.

Example 4.14 (A Triangular Robot and Rectangular Obstacle) To gain an
understanding of the method, consider the case of a triangular robot and a rect-
angular obstacle, as shown in Figure 4.13. The black dot on A denotes the origin

160 S. M. LaValle: Planning Algorithms

Cobs O

(a) (b)

Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in
contact. (b) The edges traced out by the origin of A form Cobs.

β1

β2

α1

α3

β4

β3
α2

β4

β1β3

β2

α1

α2

α3

(a) (b)

Figure 4.15: (a) Take the inward edge normals of A and the outward edge normals
of O. (b) Sort the edge normals around S1. This gives the order of edges in Cobs.

4.3. CONFIGURATION SPACE OBSTACLES 161

of its body frame. Consider sliding the robot around the obstacle in such a way
that they are always in contact, as shown in Figure 4.14a. This corresponds to the
traversal of all of the configurations in ∂Cobs (the boundary of Cobs). The origin of
A traces out the edges of Cobs, as shown in Figure 4.14b. There are seven edges,
and each edge corresponds to either an edge of A or an edge of O. The directions
of the normals are defined as shown in Figure 4.15a. When sorted as shown in
Figure 4.15b, the edges of Cobs can be incrementally constructed. �

The running time of the algorithm is O(n +m), in which n is the number of
edges defining A, and m is the number of edges defining O. Note that the angles
can be sorted in linear time because they already appear in counterclockwise order
around A and O; they only need to be merged. If two edges are collinear, then
they can be placed end-to-end as a single edge of Cobs.

Computing the boundary of Cobs So far, the method quickly identifies each
edge that contributes to Cobs. It can also construct a solid representation of Cobs
in terms of half-planes. This requires defining n +m linear equations (assuming
there are no collinear edges).

A O OA

Type EV Type VE

Figure 4.16: Two different types of contact, each of which generates a different
kind of Cobs edge [280, 657].

There are two different ways in which an edge of Cobs is generated, as shown
in Figure 4.16 [282, 657]. Type EV contact refers to the case in which an edge
of A is in contact with a vertex of O. Type EV contacts contribute to n edges
of Cobs, once for each edge of A. Type VE contact refers to the case in which a
vertex of A is in contact with an edge of O. This contributes to m edges of Cobs.
The relationships between the edge normals are also shown in Figure 4.16. For
Type EV, the inward edge normal points between the outward edge normals of the
obstacle edges that share the contact vertex. Likewise for Type VE, the outward
edge normal of O points between the inward edge normals of A.

Using the ordering shown in Figure 4.15b, Type EV contacts occur precisely
when an edge normal of A is encountered, and Type VE contacts occur when an

162 S. M. LaValle: Planning Algorithms

OA

p

v

n

Figure 4.17: Contact occurs when n and v are perpendicular.

edge normal of O is encountered. The task is to determine the line equation for
each occurrence. Consider the case of a Type EV contact; the Type VE contact
can be handled in a similar manner. In addition to the constraint on the directions
of the edge normals, the contact vertex of O must lie on the contact edge of A.
Recall that convex obstacles were constructed by the intersection of half-planes.
Each edge of Cobs can be defined in terms of a supporting half-plane; hence, it is
only necessary to determine whether the vertex of O lies on the line through the
contact edge of A. This condition occurs precisely as n and v are perpendicular,
as shown in Figure 4.17, and yields the constraint n · v = 0.

Note that the normal vector n does not depend on the configuration of A
because the robot cannot rotate. The vector v, however, depends on the translation
q = (xt, yt) of the point p. Therefore, it is more appropriate to write the condition
as n · v(xt, yt) = 0. The transformation equations are linear for translation; hence,
n · v(xt, yt) = 0 is the equation of a line in C. For example, if the coordinates
of p are (1, 2) for A(0, 0), then the expression for p at configuration (xt, yt) is
(1 + xt, 2 + yt). Let f(xt, yt) = n · v(xt, yt). Let H = {(xt, yt) ∈ C | f(xt, yt) ≤ 0}.
Observe that any configurations not in H must lie in Cfree. The half-plane H
is used to define one edge of Cobs. The obstacle region Cobs can be completely
characterized by intersecting the resulting half-planes for each of the Type EV
and Type VE contacts. This yields a convex polygon in C that has n +m sides,
as expected.

a1

a2

A

(−1,−1)
a3

(1, 0)

(0, 1)
b1b2

b3 b4

(1, 1)(−1, 1)

(1,−1)(−1,−1)

O

Figure 4.18: Consider constructing the obstacle region for this example.

4.3. CONFIGURATION SPACE OBSTACLES 163

Type Vtx. Edge n v Half-Plane

VE a3 b4-b1 [1, 0] [xt − 2, yt] {q ∈ C | xt − 2 ≤ 0}
VE a3 b1-b2 [0, 1] [xt − 2, yt − 2] {q ∈ C | yt − 2 ≤ 0}
EV b2 a3-a1 [1,-2] [−xt, 2− yt] {q ∈ C | − xt + 2yt − 4 ≤ 0}
VE a1 b2-b3 [−1, 0] [2 + xt, yt − 1] {q ∈ C | − xt − 2 ≤ 0}
EV b3 a1-a2 [1, 1] [−1− xt,−yt] {q ∈ C | − xt − yt − 1 ≤ 0}
VE a2 b3-b4 [0,−1] [xt + 1, yt + 2] {q ∈ C | − yt − 2 ≤ 0}
EV b4 a2-a3 [−2, 1] [2− xt,−yt] {q ∈ C | 2xt − yt − 4 ≤ 0}

Figure 4.19: The various contact conditions are shown in the order as the edge
normals appear around S1 (using inward normals for A and outward normals for
O).

Example 4.15 (The Boundary of Cobs) Consider building a geometric model
of Cobs for the robot and obstacle shown in Figure 4.18. Suppose that the orien-
tation of A is fixed as shown, and C = R2. In this case, Cobs will be a convex
polygon with seven sides. The contact conditions that occur are shown in Figure
4.19. The ordering as the normals appear around S1 (using inward edge normals
for A and outward edge normals for O). The Cobs edges and their corresponding
contact types are shown in Figure 4.19. �

A polyhedral C-space obstacle Most of the previous ideas generalize nicely
for the case of a polyhedral robot that is capable of translation only in a 3D world
that contains polyhedral obstacles. If A and O are convex polyhedra, the resulting
Cobs is a convex polyhedron.

O
A

A
O

A

O

Type FV Type VF Type EE

Figure 4.20: Three different types of contact, each of which generates a different
kind of Cobs face.

There are three different kinds of contacts that each lead to half-spaces in C:

1. Type FV: A face of A and a vertex of O

164 S. M. LaValle: Planning Algorithms

OA
v

n
v1

v2

p

Figure 4.21: An illustration to help in constructing Cobs when rotation is allowed.

2. Type VF: A vertex of A and a face of O

3. Type EE: An edge of A and an edge of O .

These are shown in Figure 4.20. Each half-space defines a face of the polyhedron,
Cobs. The representation of Cobs can be constructed in O(n+m+k) time, in which
n is the number of faces of A, m is the number of faces of O, and k is the number
of faces of Cobs, which is at most nm [411].

4.3.3 Explicitly Modeling Cobs: The General Case

Unfortunately, the cases in which Cobs is polygonal or polyhedral are quite lim-
ited. Most problems yield extremely complicated C-space obstacles. One good
point is that Cobs can be expressed using semi-algebraic models, for any robots
and obstacles defined using semi-algebraic models, even after applying any of the
transformations from Sections 3.2 to 3.4. It might not be true, however, for other
kinds of transformations, such as warping a flexible material [32, 577].

Consider the case of a convex polygonal robot and a convex polygonal obstacle
in a 2D world. Assume that any transformation in SE(2) may be applied to A;
thus, C = R2 × S1 and q = (xt, yt, θ). The task is to define a set of algebraic
primitives that can be combined to define Cobs. Once again, it is important to
distinguish between Type EV and Type VE contacts. Consider how to construct
the algebraic primitives for the Type EV contacts; Type VE can be handled in a
similar manner.

For the translation-only case, we were able to determine all of the Type EV
contacts by sorting the edge normals. With rotation, the ordering of edge normals
depends on θ. This implies that the applicability of a Type EV contact depends on
θ, the robot orientation. Recall the constraint that the inward normal of A must
point between the outward normals of the edges of O that contain the vertex of
contact, as shown in Figure 4.21. This constraint can be expressed in terms of inner
products using the vectors v1 and v2. The statement regarding the directions of the
normals can equivalently be formulated as the statement that the angle between n
and v1, and between n and v2, must each be less than π/2. Using inner products,

4.3. CONFIGURATION SPACE OBSTACLES 165

this implies that n · v1 ≥ 0 and n · v2 ≥ 0. As in the translation case, the condition
n · v = 0 is required for contact. Observe that n now depends on θ. For any q ∈ C,
if n(θ) ·v1 ≥ 0, n(θ) ·v2 ≥ 0, and n(θ) ·v(q) > 0, then q ∈ Cfree. Let Hf denote the
set of configurations that satisfy these conditions. These conditions imply that a
point is in Cfree. Furthermore, any other Type EV and Type VE contacts could
imply that more points are in Cfree. Ordinarily, Hf ⊂ Cfree, which implies that the
complement, C \Hf , is a superset of Cobs (thus, Cobs ⊂ C \Hf). Let HA = C \Hf .
Using the primitives

H1 = {q ∈ C | n(θ) · v1 ≤ 0}, (4.39)

H2 = {q ∈ C | n(θ) · v2 ≤ 0}, (4.40)

and

H3 = {q ∈ C | n(θ) · v(q) ≤ 0}, (4.41)

let HA = H1 ∪H2 ∪H3.
It is known that Cobs ⊆ HA, but HA may contain points in Cfree. The situ-

ation is similar to what was explained in Section 3.1.1 for building a model of a
convex polygon from half-planes. In the current setting, it is only known that any
configuration outside ofHA must be in Cfree. IfHA is intersected with all other cor-
responding sets for each possible Type EV and Type VE contact, then the result is
Cobs. Each contact has the opportunity to remove a portion of Cfree from considera-
tion. Eventually, enough pieces of Cfree are removed so that the only configurations
remaining must lie in Cobs. For any Type EV contact, (H1 ∪H2) \H3 ⊆ Cfree. A
similar statement can be made for Type VE contacts. A logical predicate, similar
to that defined in Section 3.1.1, can be constructed to determine whether q ∈ Cobs
in time that is linear in the number of Cobs primitives.

One important issue remains. The expression n(θ) is not a polynomial because
of the cos θ and sin θ terms in the rotation matrix of SO(2). If polynomials could
be substituted for these expressions, then everything would be fixed because the
expression of the normal vector (not a unit normal) and the inner product are
both linear functions, thereby transforming polynomials into polynomials. Such
a substitution can be made using stereographic projection (see [588]); however,
a simpler approach is to use complex numbers to represent rotation. Recall that
when a+ bi is used to represent rotation, each rotation matrix in SO(2) is repre-
sented as (4.18), and the 3× 3 homogeneous transformation matrix becomes

T (a, b, xt, yt) =





a −b xt
b a yt
0 0 1



 . (4.42)

Using this matrix to transform a point [x y 1] results in the point coordinates
(ax− by+xt, bx+ ay+ yt). Thus, any transformed point on A is a linear function
of a, b, xt, and yt.

This was a simple trick to make a nice, linear function, but what was the cost?
The dependency is now on a and b instead of θ. This appears to increase the

166 S. M. LaValle: Planning Algorithms

dimension of C from 3 to 4, and C = R4. However, an algebraic primitive must be
added that constrains a and b to lie on the unit circle.

By using complex numbers, primitives in R4 are obtained for each Type EV
and Type VE contact. By defining C = R4, the following algebraic primitives are
obtained for a Type EV contact:

H1 = {(xt, yt, a, b) ∈ C | n(xt, yt, a, b) · v1 ≤ 0}, (4.43)

H2 = {(xt, yt, a, b) ∈ C | n(xt, yt, a, b) · v2 ≤ 0}, (4.44)

and
H3 = {(xt, yt, a, b) ∈ C | n(xt, yt, a, b) · v(xt, yt, a, b) ≤ 0}. (4.45)

This yields HA = H1 ∪ H2 ∪ H3. To preserve the correct R2 × S1 topology of C,
the set

Hs = {(xt, yt, a, b) ∈ C | a2 + b2 − 1 = 0} (4.46)

is intersected with HA. The set Hs remains fixed over all Type EV and Type VE
contacts; therefore, it only needs to be considered once.

Example 4.16 (A Nonlinear Boundary for Cobs) Consider adding rotation to
the model described in Example 4.15. In this case, all possible contacts between
pairs of edges must be considered. For this example, there are 12 Type EV con-
tacts and 12 Type VE contacts. Each contact produces 3 algebraic primitives.
With the inclusion of Hs, this simple example produces 73 primitives! Rather
than construct all of these, we derive the primitives for a single contact. Consider
the Type VE contact between a3 and b4-b1. The outward edge normal n remains
fixed at n = [1, 0]. The vectors v1 and v2 are derived from the edges adjacent to
a3, which are a3-a2 and a3-a1. Note that each of a1, a2, and a3 depend on the con-
figuration. Using the 2D homogeneous transformation (3.35), a1 at configuration
(xt, yt, θ) is (cos θ+xt, sin θ+yt). Using a+bi to represent rotation, the expression
of a1 becomes (a+xt, b+yt). The expressions of a2 and a3 are (−b+xt, a+yt) and
(−a+b+xt,−b−a+yt), respectively. It follows that v1 = a2−a3 = [a−2b, 2a+b]
and v2 = a1 − a3 = [2a − b, a + 2b]. Note that v1 and v2 depend only on the
orientation of A, as expected. Assume that v is drawn from b4 to a3. This yields
v = a3 − b4 = [−a+ b+ xt − 1,−a− b+ yt + 1]. The inner products v1 · n, v2 · n,
and v · n can easily be computed to form H1, H2, and H3 as algebraic primitives.

One interesting observation can be made here. The only nonlinear primitive is
a2 + b2 = 1. Therefore, Cobs can be considered as a linear polytope (like a polyhe-
dron, but one dimension higher) in R4 that is intersected with a cylinder. �

3D rigid bodies For the case of a 3D rigid body to which any transformation
in SE(3) may be applied, the same general principles apply. The quaternion
parameterization once again becomes the right way to represent SO(3) because
using (4.20) avoids all trigonometric functions in the same way that (4.18) avoided
them for SO(2). Unfortunately, (4.20) is not linear in the configuration variables,

4.4. CLOSED KINEMATIC CHAINS 167

as it was for (4.18), but it is at least polynomial. This enables semi-algebraic
models to be formed for Cobs. Type FV, VF, and EE contacts arise for the SE(3)
case. From all of the contact conditions, polynomials that correspond to each
patch of Cobs can be made. These patches are polynomials in seven variables: xt,
yt, zt, a, b, c, and d. Once again, a special primitive must be intersected with
all others; here, it enforces the constraint that unit quaternions are used. This
reduces the dimension from 7 back down to 6. Also, constraints should be added to
throw away half of S3, which is redundant because of the identification of antipodal
points on S3.

Chains and trees of bodies For chains and trees of bodies, the ideas are con-
ceptually the same, but the algebra becomes more cumbersome. Recall that the
transformation for each link is obtained by a product of homogeneous transforma-
tion matrices, as given in (3.53) and (3.57) for the 2D and 3D cases, respectively.
If the rotation part is parameterized using complex numbers for SO(2) or quater-
nions for SO(3), then each matrix consists of polynomial entries. After the matrix
product is formed, polynomial expressions in terms of the configuration variables
are obtained. Therefore, a semi-algebraic model can be constructed. For each
link, all of the contact types need to be considered. Extrapolating from Exam-
ples 4.15 and 4.16, you can imagine that no human would ever want to do all
of that by hand, but it can at least be automated. The ability to construct this
representation automatically is also very important for the existence of theoretical
algorithms that solve the motion planning problem combinatorially; see Section
6.4.

If the kinematic chains were formulated for W = R3 using the DH parameter-
ization, it may be inconvenient to convert to the quaternion representation. One
way to avoid this is to use complex numbers to represent each of the θi and αi vari-
ables that appear as configuration variables. This can be accomplished because
only cos and sin functions appear in the transformation matrices. They can be
replaced by the real and imaginary parts, respectively, of a complex number. The
dimension will be increased, but this will be appropriately reduced after imposing
the constraints that all complex numbers must have unit magnitude.

4.4 Closed Kinematic Chains

This section continues the discussion from Section 3.4. Suppose that a collection
of links is arranged in a way that forms loops. In this case, the C-space becomes
much more complicated because the joint angles must be chosen to ensure that
the loops remain closed. This leads to constraints such as that shown in (3.80)
and Figure 3.26, in which some links must maintain specified positions relative
to each other. Consider the set of all configurations that satisfy such constraints.
Is this a manifold? It turns out, unfortunately, that the answer is generally no.
However, the C-space belongs to a nice family of spaces from algebraic geometry

168 S. M. LaValle: Planning Algorithms

called varieties. Algebraic geometry deals with characterizing the solution sets of
polynomials. As seen so far in this chapter, all of the kinematics can be expressed
as polynomials. Therefore, it may not be surprising that the resulting constraints
are a system of polynomials whose solution set represents the C-space for closed
kinematic linkages. Although the algebraic varieties considered here need not be
manifolds, they can be decomposed into a finite collection of manifolds that fit
together nicely.11

Unfortunately, a parameterization of the variety that arises from closed chains
is available in only a few simple cases. Even the topology of the variety is extremely
difficult to characterize. To make matters worse, it was proved in [489] that for
every closed, bounded real algebraic variety that can be embedded in Rn, there
exists a linkage whose C-space is homeomorphic to it. These troubles imply that
most of the time, motion planning algorithms need to work directly with implicit
polynomials. For the algebraic methods of Section 6.4.2, this does not pose any
conceptual difficulty because the methods already work directly with polynomials.
Sampling-based methods usually rely on the ability to efficiently sample configu-
rations, which cannot be easily adapted to a variety without a parameterization.
Section 7.4 covers recent methods that extend sampling-based planning algorithms
to work for varieties that arise from closed chains.

4.4.1 Mathematical Concepts

To understand varieties, it will be helpful to have definitions of polynomials and
their solutions that are more formal than the presentation in Chapter 3.

Fields Polynomials are usually defined over a field, which is another object from
algebra. A field is similar to a group, but it has more operations and axioms.
The definition is given below, and while reading it, keep in mind several familiar
examples of fields: the rationals, Q; the reals, R; and the complex plane, C. You
may verify that these fields satisfy the following six axioms.

A field is a set F that has two binary operations, · : F × F → F (called
multiplication) and + : F × F → F (called addition), for which the following
axioms are satisfied:

1. (Associativity) For all a, b, c ∈ F, (a+b)+c = a+(b+c) and (a·b)·c = a·(b·c).

2. (Commutativity) For all a, b ∈ F, a+ b = b+ a and a · b = b · a.

3. (Distributivity) For all a, b, c ∈ F, a · (b+ c) = a · b+ a · c.

4. (Identities) There exist 0, 1 ∈ F, such that a+ 0 = a · 1 = a for all a ∈ F.

5. (Additive Inverses) For every a ∈ F, there exists some b ∈ F such that
a+ b = 0.

11This is called a Whitney stratification [173, 968].

4.4. CLOSED KINEMATIC CHAINS 169

6. (Multiplicative Inverses) For every a ∈ F , except a = 0, there exists
some c ∈ F such that a · c = 1.

Compare these axioms to the group definition from Section 4.2.1. Note that a
field can be considered as two different kinds of groups, one with respect to mul-
tiplication and the other with respect to addition. Fields additionally require
commutativity; hence, we cannot, for example, build a field from quaternions.
The distributivity axiom appears because there is now an interaction between two
different operations, which was not possible with groups.

Polynomials Suppose there are n variables, x1, x2, . . . , xn. A monomial over a
field F is a product of the form

xd11 · xd22 · · · · xdnn , (4.47)

in which all of the exponents d1, d2, . . ., dn are positive integers. The total degree
of the monomial is d1 + · · ·+ dn.

A polynomial f in variables x1, . . . , xn with coefficients in F is a finite lin-
ear combination of monomials that have coefficients in F. A polynomial can be
expressed as

m∑

i=1

cimi, (4.48)

in which mi is a monomial as shown in (4.47), and ci ∈ F is a coefficient. If ci 6= 0,
then each cimi is called a term. Note that the exponents di may be different
for every term of f . The total degree of f is the maximum total degree among
the monomials of the terms of f . The set of all polynomials in x1, . . . , xn with
coefficients in F is denoted by F[x1, . . . , xn].

Example 4.17 (Polynomials) The definitions correspond exactly to our intu-
itive notion of a polynomial. For example, suppose F = Q. An example of a
polynomial in Q[x1, x2, x3] is

x41 − 1
2
x1x2x

3
3 + x21x

2
2 + 4. (4.49)

Note that 1 is a valid monomial; hence, any element of F may appear alone as a
term, such as the 4 ∈ Q in the polynomial above. The total degree of (4.49) is
5 due to the second term. An equivalent polynomial may be written using nicer
variables. Using x, y, and z as variables yields

x4 − 1
2
xyz3 + x2y2 + 4, (4.50)

which belongs to Q[x, y, z]. �

170 S. M. LaValle: Planning Algorithms

The set F[x1, . . . , xn] of polynomials is actually a group with respect to addition;
however, it is not a field. Even though polynomials can be multiplied, some
polynomials do not have a multiplicative inverse. Therefore, the set F[x1, . . . , xn]
is often referred to as a commutative ring of polynomials. A commutative ring is
a set with two operations for which every axiom for fields is satisfied except the
last one, which would require a multiplicative inverse.

Varieties For a given field F and positive integer n, the n-dimensional affine
space over F is the set

Fn = {(c1, . . . , cn) | c1, . . . , cn ∈ F}. (4.51)

For our purposes in this section, an affine space can be considered as a vector
space (for an exact definition, see [438]). Thus, Fn is like a vector version of the
scalar field F. Familiar examples of this are Qn, Rn, and Cn.

A polynomial in f ∈ F[x1, . . . , xn] can be converted into a function,

f : Fn → F, (4.52)

by substituting elements of F for each variable and evaluating the expression using
the field operations. This can be written as f(a1, . . . , an) ∈ F, in which each ai
denotes an element of F that is substituted for the variable xi.

We now arrive at an interesting question. For a given f , what are the elements
of Fn such that f(a1, . . . , an) = 0? We could also ask the question for some nonzero
element, but notice that this is not necessary because the polynomial may be
redefined to formulate the question using 0. For example, what are the elements
of R2 such that x2 + y2 = 1? This familiar equation for S1 can be reformulated to
yield: What are the elements of R2 such that x2 + y2 − 1 = 0?

Let F be a field and let {f1, . . . , fk} be a set of polynomials in F[x1, . . . , xn].
The set

V (f1, . . . , fk) = {(a1, . . . , an) ∈ F | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ k} (4.53)

is called the (affine) variety defined by f1, . . . , fk. One interesting fact is that
unions and intersections of varieties are varieties. Therefore, they behave like the
semi-algebraic sets from Section 3.1.2, but for varieties only equality constraints are
allowed. Consider the varieties V (f1, . . . , fk) and V (g1, . . . , gl). Their intersection
is given by

V (f1, . . . , fk) ∩ V (g1, . . . , gl) = V (f1, . . . , fk, g1, . . . , gl), (4.54)

because each element of Fn must produce a 0 value for each of the polynomials in
{f1, . . . , fk, g1, . . . , gl}.

To obtain unions, the polynomials simply need to be multiplied. For example,
consider the varieties V1, V2 ⊂ F defined as

V1 = {(a1, . . . , an) ∈ F | f1(a1, . . . , an) = 0} (4.55)

4.4. CLOSED KINEMATIC CHAINS 171

and

V2 = {(a1, . . . , an) ∈ F | f2(a1, . . . , an) = 0}. (4.56)

The set V1 ∪ V2 ⊂ F is obtained by forming the polynomial f = f1f2. Note
that f(a1, . . . , an) = 0 if either f1(a1, . . . , an) = 0 or f2(a1, . . . , an) = 0. Therefore,
V1∪V2 is a variety. The varieties V1 and V2 were defined using a single polynomial,
but the same idea applies to any variety. All pairs of the form figj must appear
in the argument of V (·) if there are multiple polynomials.

4.4.2 Kinematic Chains in R2

To illustrate the concepts it will be helpful to study a simple case in detail. Let
W = R2, and suppose there is a chain of links, A1, . . ., An, as considered in
Example 3.3 for n = 3. Suppose that the first link is attached at the origin of
W by a revolute joint, and every other link, Ai is attached to Ai−1 by a revolute
joint. This yields the C-space

C = S1 × S1 × · · · × S1 = Tn, (4.57)

which is the n-dimensional torus.

Two links If there are two links, A1 and A2, then the C-space can be nicely
visualized as a square with opposite faces identified. Each coordinate, θ1 and θ2,
ranges from 0 to 2π, for which 0 ∼ 2π. Suppose that each link has length 1. This
yields a1 = 1. A point (x, y) ∈ A2 is transformed as





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1









cos θ2 − sin θ2 1
sin θ2 cos θ2 0
0 0 1









x
y
1



 . (4.58)

To obtain polynomials, the technique from Section 4.2.2 is applied to replace
the trigonometric functions using ai = cos θi and bi = sin θi, subject to the con-
straint a2i + b2i = 1. This results in





a1 −b1 0
b1 a1 0
0 0 1









a2 −b2 1
b2 a2 0
0 0 1









x
y
1



 , (4.59)

for which the constraints a2i + b2i = 1 for i = 1, 2 must be satisfied. This preserves
the torus topology of C, but now the C-space is embedded in R4. The coordinates of
each point are (a1, b1, a2, b2) ∈ R4; however, there are only two degrees of freedom
because each ai, bi pair must lie on a unit circle.

Multiplying the matrices in (4.59) yields the polynomials, f1, f2 ∈ R[a1, b1, a2, b2],

f1 = xa1a2 − ya1b2 − xb1b2 + ya2b1 + a1 (4.60)

172 S. M. LaValle: Planning Algorithms

��

A1

A2

y1

x1

p

Figure 4.22: Two configurations hold the point p at (1, 1).

and
f2 = −ya1a2 + xa1b2 + xa2b1 − yb1b2 + b1, (4.61)

for the x and y coordinates, respectively. Note that the polynomial variables are
configuration parameters; x and y are not polynomial variables. For a given point
(x, y) ∈ A2, all coefficients are determined.

A zero-dimensional variety Now a kinematic closure constraint will be im-
posed. Fix the point (1, 0) in the body frame of A2 at (1, 1) in W . This yields the
constraints

f1 = a1a2 − b1b2 + a1 = 1 (4.62)

and
f2 = a1b2 + a2b1 + b1 = 1, (4.63)

by substituting x = 1 and y = 0 into (4.60) and (4.61). This yields the variety

V (a1a2 − b1b2 + a1 − 1, a1b2 + a2b1 + b1 − 1, a21 + b21 − 1, a22 + b22 − 1), (4.64)

which is a subset of R4. The polynomials are slightly modified because each
constraint must be written in the form f = 0.

Although (4.64) represents the constrained configuration space for the chain
of two links, it is not very explicit. Without an explicit characterization (i.e., a
parameterization), it complicates motion planning. From Figure 4.22 it can be
seen that there are only two solutions. These occur for θ1 = 0, θ2 = π/2 and
θ1 = π/2, θ2 = −π/2. In terms of the polynomial variables, (a1, b1, a2, b2), the
two solutions are (1, 0, 0, 1) and (0, 1, 0,−1). These may be substituted into each
polynomial in (4.64) to verify that 0 is obtained. Thus, the variety represents two
points in R4. This can also be interpreted as two points on the torus, S1 × S1.

4.4. CLOSED KINEMATIC CHAINS 173

It might not be surprising that the set of solutions has dimension zero because
there are four independent constraints, shown in (4.64), and four variables. De-
pending on the choices, the variety may be empty. For example, it is physically
impossible to bring the point (1, 0) ∈ A2 to (1000, 0) ∈ W .

A one-dimensional variety The most interesting and complicated situations
occur when there is a continuum of solutions. For example, if one of the constraints
is removed, then a one-dimensional set of solutions can be obtained. Suppose only
one variable is constrained for the example in Figure 4.22. Intuitively, this should
yield a one-dimensional variety. Set the x coordinate to 0, which yields

a1a2 − b1b2 + a1 = 0, (4.65)

and allow any possible value for y. As shown in Figure 4.23a, the point p must fol-
low the y-axis. (This is equivalent to a three-bar linkage that can be constructed
by making a third joint that is prismatic and forced to stay along the y-axis.)
Figure 4.23b shows the resulting variety V (a1a2− b1b2 + a1) but plotted in θ1− θ2
coordinates to reduce the dimension from 4 to 2 for visualization purposes. To cor-
rectly interpret the figures in Figure 4.23, recall that the topology is S1×S1, which
means that the top and bottom are identified, and also the sides are identified.
The center of Figure 4.23b, which corresponds to (θ1, θ2) = (π, π), prevents the
variety from being a manifold. The resulting space is actually homeomorphic to
two circles that touch at a point. Thus, even with such a simple example, the nice
manifold structure may disappear. Observe that at (π, π) the links are completely
overlapped, and the point p of A2 is placed at (0, 0) in W . The horizontal line in
Figure 4.23b corresponds to keeping the two links overlapping and swinging them
around together by varying θ1. The diagonal lines correspond to moving along
configurations such as the one shown in Figure 4.23a. Note that the links and
the y-axis always form an isosceles triangle, which can be used to show that the
solution set is any pair of angles, θ1, θ2 for which θ2 = π − θ1. This is the reason
why the diagonal curves in Figure 4.23b are linear. Figures 4.23c and 4.23d show
the varieties for the constraints

a1a2 − b1b2 + a1 =
1
8
, (4.66)

and
a1a2 − b1b2 + a1 = 1, (4.67)

respectively. In these cases, the point (0, 1) in A2 must follow the x = 1/8 and
x = 1 axes, respectively. The varieties are manifolds, which are homeomorphic
to S1. The sequence from Figure 4.23b to 4.23d can be imagined as part of an
animation in which the variety shrinks into a small circle. Eventually, it shrinks
to a point for the case a1a2 − b1b2 + a1 = 2, because the only solution is when
θ1 = θ2 = 0. Beyond this, the variety is the empty set because there are no
solutions. Thus, by allowing one constraint to vary, four different topologies are
obtained: 1) two circles joined at a point, 2) a circle, 3) a point, and 4) the empty
set.

174 S. M. LaValle: Planning Algorithms

A1

A2

x1

y1

p

2

theta2

5

1

10

4

2

3

0

theta1

653 4

6

θ1

θ2
(a) (b)

theta2

5

1

6

4

0

theta1

3 642 5

2

3

10

θ1

θ2

5

1

3

theta1

654320

theta2

6

4

2

0
1

θ1

θ2
(c) (d)

Figure 4.23: A single constraint was added to the point p on A2, as shown in (a).
The curves in (b), (c), and (d) depict the variety for the cases of f1 = 0, f1 = 1/8,
and f1 = 1, respectively.

4.4. CLOSED KINEMATIC CHAINS 175

Three links Since visualization is still possible with one more dimension, sup-
pose there are three links, A1, A2, and A3. The C-space can be visualized as a
3D cube with opposite faces identified. Each coordinate θi ranges from 0 to 2π,
for which 0 ∼ 2π. Suppose that each link has length 1 to obtain a1 = a2 = 1. A
point (x, y) ∈ A3 is transformed as





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1









cos θ2 − sin θ2 10
sin θ2 cos θ2 0
0 0 1









cos θ3 − sin θ3 10
sin θ3 cos θ3 0
0 0 1









x
y
1



 .

(4.68)
To obtain polynomials, let ai = cos θi and bi = sin θi, which results in





a1 −b1 0
b1 a1 0
0 0 1









a2 −b2 1
b2 a2 0
0 0 1









a3 −b3 1
b3 a3 0
0 0 1









x
y
1



 , (4.69)

for which the constraints a2i + b2i = 1 for i = 1, 2, 3 must also be satisfied. This
preserves the torus topology of C, but now it is embedded in R6. Multiplying the
matrices yields the polynomials f1, f2 ∈ R[a1, b1, a2, b2, a3, b3], defined as

f1 = 2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1, (4.70)

and
f2 = 2b1a2a3 − b1b2b3 + b1a2 + 2a1b2a3 + a1a2b3, (4.71)

for the x and y coordinates, respectively.
Again, consider imposing a single constraint,

2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1 = 0, (4.72)

which constrains the point (1, 0) ∈ A3 to traverse the y-axis. The resulting variety
is an interesting manifold, depicted in Figure 4.24 (remember that the sides of the
cube are identified).

Increasing the required f1 value for the constraint on the final point causes the
variety to shrink. Snapshots for f1 = 7/8 and f1 = 2 are shown in Figure 4.25. At
f1 = 1, the variety is not a manifold, but it then changes to S2. Eventually, this
sphere is reduced to a point at f1 = 3, and then for f1 > 3 the variety is empty.

Instead of the constraint f1 = 0, we could instead constrain the y coordinate of
p to obtain f2 = 0. This yields another 2D variety. If both constraints are enforced
simultaneously, then the result is the intersection of the two original varieties. For
example, suppose f1 = 1 and f2 = 0. This is equivalent to a kind of four-bar
mechanism [310], in which the fourth link, A4, is fixed along the x-axis from 0 to
1. The resulting variety,

V (2a1a2a3 − a1b2b3 + a1a2 − 2b1b2a3 − b1a2b3 + a1 − 1,

2b1a2a3 − b1b2b3 + b1a2 + 2a1b2a3 + a1a2b3),
(4.73)

176 S. M. LaValle: Planning Algorithms

θ3

θ1 θ2

Figure 4.24: The variety for the three-link chain with f1 = 0 is a 2D manifold.

is depicted in Figure 4.26. Using the θ1, θ2, θ3 coordinates, the solution may be
easily parameterized as a collection of line segments. For all t ∈ [0, π], there exist
solution points at (0, 2t, π), (t, 2π − t, π + t), (2π − t, t, π − t), (2π − t, π, π + t),
and (t, π, π − t). Note that once again the variety is not a manifold. A family
of interesting varieties can be generated for the four-bar mechanism by selecting
different lengths for the links. The topologies of these mechanisms have been
determined for 2D and a 3D extension that uses spherical joints (see [698]).

4.4.3 Defining the Variety for General Linkages

We now describe a general methodology for defining the variety. Keeping the
previous examples in mind will help in understanding the formulation. In the
general case, each constraint can be thought of as a statement of the form:

The ith coordinate of a point p ∈ Aj needs to be held at the value x in
the body frame of Ak.

For the variety in Figure 4.23b, the first coordinate of a point p ∈ A2 was held at
the value 0 in W in the body frame of A1. The general form must also allow a
point to be fixed with respect to the body frames of links other than A1; this did
not occur for the example in Section 4.4.2

Suppose that n links, A1,. . .,An, move in W = R2 or W = R3. One link, A1

for convenience, is designated as the root as defined in Section 3.4. Some links

4.4. CLOSED KINEMATIC CHAINS 177

θ1

θ3

θ2

θ2

θ1

θ3

f1 = 7/8 f1 = 2

Figure 4.25: If f1 > 0, then the variety shrinks. If 1 < p < 3, the variety is a
sphere. At f1 = 0 it is a point, and for f1 > 3 it completely vanishes.

are attached in pairs to form joints. A linkage graph, G(V,E), is constructed from
the links and joints. Each vertex of G represents a link in L. Each edge in G
represents a joint. This definition may seem somewhat backward, especially in
the plane because links often look like edges and joints look like vertices. This
alternative assignment is also possible, but it is not easy to generalize to the case
of a single link that has more than two joints. If more than two links are attached
at the same point, each generates an edge of G.

The steps to determine the polynomial constraints that express the variety are
as follows:

1. Define the linkage graph G with one vertex per link and one edge per joint.
If a joint connects more than two bodies, then one body must be designated
as a junction. See Figures 4.27 and 4.28a. In Figure 4.28, links 4, 13, and
23 are designated as junctions in this way.

2. Designate one link as the root, A1. This link may either be fixed in W , or
transformations may be applied. In the latter case, the set of transformations
could be SE(2) or SE(3), depending on the dimension of W . This enables
the entire linkage to move independently of its internal motions.

3. Eliminate the loops by constructing a spanning tree T of the linkage graph,
G. This implies that every vertex (or link) is reachable by a path from
the root). Any spanning tree may be used. Figure 4.28b shows a resulting
spanning tree after deleting the edges shown with dashed lines.

4. Apply the techniques of Section 3.4 to assign body frames and transforma-
tions to the resulting tree of links.

178 S. M. LaValle: Planning Algorithms

θ1

θ2

θ3
θ3

θ2
θ1

Figure 4.26: If two constraints, f1 = 1 and f2 = 0, are imposed, then the varieties
are intersected to obtain a 1D set of solutions. The example is equivalent to a
well-studied four-bar mechanism.

5. For each edge of G that does not appear in T , write a set of constraints
between the two corresponding links. In Figure 4.28b, it can be seen that
constraints are needed between four pairs of links: 14–15, 21–22, 23–24, and
19–23.

This is perhaps the trickiest part. For examples like the one shown in Fig-
ure 3.27, the constraint may be formulated as in (3.81). This is equivalent to
what was done to obtain the example in Figure 4.26, which means that there
are actually two constraints, one for each of the x and y coordinates. This
will also work for the example shown in Figure 4.27 if all joints are revolute.
Suppose instead that two bodies, Aj and Ak, must be rigidly attached. This
requires adding one more constraint that prevents mutual rotation. This
could be achieved by selecting another point on Aj and ensuring that one
of its coordinates is in the correct position in the body frame of Ak. If four
equations are added, two from each point, then one of them would be redun-
dant because there are only three degrees of freedom possible for Aj relative
to Ak (which comes from the dimension of SE(2)).

A similar but more complicated situation occurs for W = R3. Holding a
single point fixed produces three constraints. If a single point is held fixed,
then Aj may achieve any rotation in SO(3) with respect to Ak. This implies
that Aj and Ak are attached by a spherical joint. If they are attached by a
revolute joint, then two more constraints are needed, which can be chosen
from the coordinates of a second point. If Aj and Ak are rigidly attached,
then one constraint from a third point is needed. In total, however, there can

4.4. CLOSED KINEMATIC CHAINS 179

1

2

3
4

5

6

7 8
9

10

11

12

13
14

15

16

17
18

19

20

21

22

23

24
25

26

27

28

29

Figure 4.27: A complicated linkage that has 29 links, several loops, links with more
than two bodies, and bodies with more than two links. Each integer i indicates
link Ai.

be no more than six independent constraints because this is the dimension
of SE(3).

6. Convert the trigonometric functions to polynomials. For any 2D transforma-
tion, the familiar substitution of complex numbers may be made. If the DH
parameterization is used for the 3D case, then each of the cos θi, sin θi expres-
sions can be parameterized with one complex number, and each of the cosαi,
sinαi expressions can be parameterized with another. If the rotation matrix
for SO(3) is directly used in the parameterization, then the quaternion pa-
rameterization should be used. In all of these cases, polynomial expressions
are obtained.

7. List the constraints as polynomial equations of the form f = 0. To write the
description of the variety, all of the polynomials must be set equal to zero,
as was done for the examples in Section 4.4.2.

Is it possible to determine the dimension of the variety from the number of

180 S. M. LaValle: Planning Algorithms

27

22

21

19
18

14

17

12

11

10

98
7

5

15

13

16

24
25

23

26

28

29

1

2

3

20

6

4

27

22

21

19
18

14

17

12

11

10

98
7

5

15

13

16

24

23

26

28

29

1

2

3

20

6

4

25

(a) (b)

Figure 4.28: (a) One way to make the linkage graph that corresponds to the linkage
in Figure 4.27. (b) A spanning tree is indicated by showing the removed edges
with dashed lines.

independent constraints? The answer is generally no, which can be easily seen from
the chains of links in Section 4.4.2; they produced varieties of various dimensions,
depending on the particular equations. Techniques for computing the dimension
exist but require much more machinery than is presented here (see the literature
overview at the end of the chapter). However, there is a way to provide a simple
upper bound on the number of degrees of freedom. Suppose the total degrees of
freedom of the linkage in spanning tree form ism. Each independent constraint can
remove at most one degree of freedom. Thus, if there are l independent constraints,
then the variety can have no more than m− l dimensions. One expression of this
for a general class of mechanisms is the Kutzbach criterion; the planar version of
this is called Grübler’s formula [310].

One final concern is the obstacle region, Cobs. Once the variety has been identi-
fied, the obstacle region and motion planning definitions in (4.34) and Formulation
4.1 do not need to be changed. The configuration space C must be redefined, how-
ever, to be the set of configurations that satisfy the closure constraints.

Further Reading

Section 4.1 introduced the basic definitions and concepts of topology. Further study
of this fascinating subject can provide a much deeper understanding of configuration
spaces. There are many books on topology, some of which may be intimidating, de-
pending on your level of math training. For a heavily illustrated, gentle introduction
to topology, see [535]. Another gentle introduction appears in [496]. An excellent text
at the graduate level is available on-line: [439]. Other sources include [38, 451]. To
understand the motivation for many technical definitions in topology, [911] is helpful.
The manifold coverage in Section 4.1.2 was simpler than that found in most sources
because most sources introduce smooth manifolds, which are complicated by differentia-

4.4. CLOSED KINEMATIC CHAINS 181

bility requirements (these were not needed in this chapter); see Section 8.3.2 for smooth
manifolds. For the configuration spaces of points moving on a topological graph, see [5].

Section 4.2 provided basic C-space definitions. For further reading on matrix groups
and their topological properties, see [63], which provides a transition into more advanced
material on Lie group theory. For more about quaternions in engineering, see [210, 563].
The remainder of Section 4.2 and most of Section 4.3 were inspired by the coverage in
[588]. C-spaces are also covered in [220]. For further reading on computing represen-
tations of Cobs, see [513, 736] for bitmaps, and Chapter 6 and [865] for combinatorial
approaches.

Much of the presentation in Section 4.4 was inspired by the nice introduction to alge-
braic varieties in [250], which even includes robotics examples; methods for determining
the dimension of a variety are also covered. More algorithmic coverage appears in [704].
See [693] for detailed coverage of robots that are designed with closed kinematic chains.

Exercises

1. Consider the set X = {1, 2, 3, 4, 5}. Let X, ∅, {1, 3}, {1, 2}, {2, 3}, {1}, {2}, and
{3} be the collection of all subsets of X that are designated as open sets.

(a) Is X a topological space?

(b) Is it a topological space if {1, 2, 3} is added to the collection of open sets?
Explain.

(c) What are the closed sets (assuming {1, 2, 3} is included as an open set)?

(d) Are any subsets of X neither open nor closed?

2. Continuous functions for the strange topology:

(a) Give an example of a continuous function, f : X → X, for the strange
topology in Example 4.4.

(b) Characterize the set of all possible continuous functions.

3. For the letters of the Russian alphabet, A, B, V, G, D, E, Ë, Ж, Z, I, I,
K, L, M, N, O, P, R, S, T, U, F, H, C, Q, X, W, Ъ, Y, Ь, З, �,
�, determine which pairs are homeomorphic. Imagine each as a 1D subset of R2

and draw them accordingly before solving the problem.

4. Prove that homeomorphisms yield an equivalence relation on the collection of all
topological spaces.

5. What is the dimension of the C-space for a cylindrical rod that can translate and
rotate in R3? If the rod is rotated about its central axis, it is assumed that the
rod’s position and orientation are not changed in any detectable way. Express the
C-space of the rod in terms of a Cartesian product of simpler spaces (such as S1,
S2, Rn, P 2, etc.). What is your reasoning?

6. Let τ1 : [0, 1] → R2 be a loop path that traverses the unit circle in the plane,
defined as τ1(s) = (cos(2πs), sin(2πs)). Let τ2 : [0, 1] → R2 be another loop

182 S. M. LaValle: Planning Algorithms

path: τ1(s) = (−2 + 3 cos(2πs), 12 sin(2πs)). This path traverses an ellipse that
is centered at (−2, 0). Show that τ1 and τ2 are homotopic (by constructing a
continuous function with an additional parameter that “morphs” τ1 into τ2).

7. Prove that homotopy yields an equivalence relation on the set of all paths from
some x1 ∈ X to some x2 ∈ X, in which x1 and x2 may be chosen arbitrarily.

8. Determine the C-space for a spacecraft that can translate and rotate in a 2D
Asteroids-style video game. The sides of the screen are identified. The top and
bottom are also identified. There are no “twists” in the identifications.

9. Repeat the derivation of HA from Section 4.3.3, but instead consider Type VE
contacts.

10. Determine the C-space for a car that drives around on a huge sphere (such as
the earth with no mountains or oceans). Assume the sphere is big enough so
that its curvature may be neglected (e.g., the car rests flatly on the earth without
wobbling). [Hint: It is not S2 × S1.]

11. Suppose that A and O are each defined as equilateral triangles, with coordinates
(0, 0), (2, 0), and (1,

√
3). Determine the C-space obstacle. Specify the coordinates

of all of its vertices and indicate the corresponding contact type for each edge.

12. Show that (4.20) is a valid rotation matrix for all unit quaternions.

13. Show that F[x1, . . . , xn], the set of polynomials over a field F with variables
x1, . . . , xn, is a group with respect to addition.

14. Quaternions:

(a) Define a unit quaternion h1 that expresses a rotation of −π
2 around the axis

given by the vector [1√
3

1√
3

1√
3
].

(b) Define a unit quaternion h2 that expresses a rotation of π around the axis
given by the vector [0 1 0].

(c) Suppose the rotation represented by h1 is performed, followed by the rotation
represented by h2. This combination of rotations can be represented as a
single rotation around an axis given by a vector. Find this axis and the angle
of rotation about this axis.

15. What topological space is contributed to the C-space by a spherical joint that
achieves any orientation except the identity?

16. Suppose five polyhedral bodies float freely in a 3D world. They are each capable
of rotating and translating. If these are treated as “one” composite robot, what
is the topology of the resulting C-space (assume that the bodies are not attached
to each other)? What is its dimension?

17. Suppose a goal region G ⊆ W is defined in the C-space by requiring that the
entire robot is contained in G. For example, a car may have to be parked entirely
within a space in a parking lot.

4.4. CLOSED KINEMATIC CHAINS 183

0 1
0

1/3

2/3

1

(a) (b)

Figure 4.29: (a) What topological space is obtained after slicing the Möbius band?
(b) Is a manifold obtained after tearing holes out of the plane?

(a) Give a definition of Cgoal that is similar to (4.34) but pertains to containment
of A inside of G.

(b) For the case in which A and G are convex and polygonal, develop an algo-
rithm for efficiently computing Cgoal.

18. Figure 4.29a shows the Möbius band defined by identification of sides of the unit
square. Imagine that scissors are used to cut the band along the two dashed lines.
Describe the resulting topological space. Is it a manifold? Explain.

19. Consider Figure 4.29b, which shows the set of points in R2 that are remaining
after a closed disc of radius 1/4 with center (x, y) is removed for every value of
(x, y) such that x and y are both integers.

(a) Is the remaining set of points a manifold? Explain.

(b) Now remove discs of radius 1/2 instead of 1/4. Is a manifold obtained?

(c) Finally, remove disks of radius 2/3. Is a manifold obtained?

20. Show that the solution curves shown in Figure 4.26 correctly illustrate the variety
given in (4.73).

21. Find the number of faces of Cobs for a cube and regular tetrahedron, assuming C
is SE(3). How many faces of each contact type are obtained?

22. Following the analysis matrix subgroups from Section 4.2, determine the dimen-
sion of SO(4), the group of 4 × 4 rotation matrices. Can you characterize this
topological space?

23. Suppose that a kinematic chain of spherical joints is given. Show how to use (4.20)
as the rotation part in each homogeneous transformation matrix, as opposed to
using the DH parameterization. Explain why using (4.20) would be preferable for
motion planning applications.

184 S. M. LaValle: Planning Algorithms

24. Suppose that the constraint that c is held to position (10, 10) is imposed on the
mechanism shown in Figure 3.29. Using complex numbers to represent rotation,
express this constraint using polynomial equations.

25. The Tangle toy is made of 18 pieces of macaroni-shaped joints that are attached
together to form a loop. Each attachment between joints forms a revolute joint.
Each link is a curved tube that extends around 1/4 of a circle. What is the
dimension of the variety that results from maintaining the loop? What is its
configuration space (accounting for internal degrees of freedom), assuming the toy
can be placed anywhere in R3?

Implementations

26. Computing C-space obstacles:

(a) Implement the algorithm from Section 4.3.2 to construct a convex, polygonal
C-space obstacle.

(b) Now allow the robot to rotate in the plane. For any convex robot and obsta-
cle, compute the orientations at which the C-space obstacle fundamentally
changes due to different Type EV and Type VE contacts becoming active.

(c) Animate the changing C-space obstacle by using the robot orientation as the
time axis in the animation.

27. Consider “straight-line” paths that start at the origin (lower left corner) of the
manifolds shown in Figure 4.5 and leave at a particular angle, which is input to
the program. The lines must respect identifications; thus, as the line hits the edge
of the square, it may continue onward. Study the conditions under which the lines
fill the entire space versus forming a finite pattern (i.e., a segment, stripes, or a
tiling).

Chapter 5

Sampling-Based Motion Planning

There are two main philosophies for addressing the motion planning problem, in
Formulation 4.1 from Section 4.3.1. This chapter presents one of the philosophies,
sampling-based motion planning, which is outlined in Figure 5.1. The main idea is
to avoid the explicit construction of Cobs, as described in Section 4.3, and instead
conduct a search that probes the C-space with a sampling scheme. This probing
is enabled by a collision detection module, which the motion planning algorithm
considers as a “black box.” This enables the development of planning algorithms
that are independent of the particular geometric models. The collision detection
module handles concerns such as whether the models are semi-algebraic sets, 3D
triangles, nonconvex polyhedra, and so on. This general philosophy has been very
successful in recent years for solving problems from robotics, manufacturing, and
biological applications that involve thousands and even millions of geometric prim-
itives. Such problems would be practically impossible to solve using techniques
that explicitly represent Cobs.

Notions of completeness It is useful to define several notions of complete-
ness for sampling-based algorithms. These algorithms have the drawback that
they result in weaker guarantees that the problem will be solved. An algorithm
is considered complete if for any input it correctly reports whether there is a so-

Sampling−Based
Motion Planning AlgorithmCollision

Detection
Geometric
Models

Discrete
Searching

C−Space
Sampling

Figure 5.1: The sampling-based planning philosophy uses collision detection as
a “black box” that separates the motion planning from the particular geometric
and kinematic models. C-space sampling and discrete planning (i.e., searching)
are performed.

185

186 S. M. LaValle: Planning Algorithms

lution in a finite amount of time. If a solution exists, it must return one in finite
time. The combinatorial motion planning methods of Chapter 6 will achieve this.
Unfortunately, such completeness is not achieved with sampling-based planning.
Instead, weaker notions of completeness are tolerated. The notion of denseness
becomes important, which means that the samples come arbitrarily close to any
configuration as the number of iterations tends to infinity. A deterministic ap-
proach that samples densely will be called resolution complete. This means that
if a solution exists, the algorithm will find it in finite time; however, if a solution
does not exist, the algorithm may run forever. Many sampling-based approaches
are based on random sampling, which is dense with probability one. This leads
to algorithms that are probabilistically complete, which means that with enough
points, the probability that it finds an existing solution converges to one. The
most relevant information, however, is the rate of convergence, which is usually
very difficult to establish.

Section 5.1 presents metric and measure space concepts, which are fundamen-
tal to nearly all sampling-based planning algorithms. Section 5.2 presents general
sampling concepts and quality criteria that are effective for analyzing the perfor-
mance of sampling-based algorithms. Section 5.3 gives a brief overview of collision
detection algorithms, to gain an understanding of the information available to
a planning algorithm and the computation price that must be paid to obtain
it. Section 5.4 presents a framework that defines algorithms which solve motion
planning problems by integrating sampling and discrete planning (i.e., searching)
techniques. These approaches can be considered single query in the sense that a
single pair, (qI , qG), is given, and the algorithm must search until it finds a solution
(or it may report early failure). Section 5.5 focuses on rapidly exploring random
trees (RRTs) and rapidly exploring dense trees (RDTs), which are used to develop
efficient single-query planning algorithms. Section 5.6 covers multiple-query algo-
rithms, which invest substantial preprocessing effort to build a data structure that
is later used to obtain efficient solutions for many initial-goal pairs. In this case,
it is assumed that the obstacle region O remains the same for every query.

5.1 Distance and Volume in C-Space

Virtually all sampling-based planning algorithms require a function that measures
the distance between two points in C. In most cases, this results in a metric space,
which is introduced in Section 5.1.1. Useful examples for motion planning are given
in Section 5.1.2. It will also be important in many of these algorithms to define
the volume of a subset of C. This requires a measure space, which is introduced in
Section 5.1.3. Section 5.1.4 introduces invariant measures, which should be used
whenever possible.

5.1. DISTANCE AND VOLUME IN C-SPACE 187

5.1.1 Metric Spaces

It is straightforward to define Euclidean distance in Rn. To define a distance
function over any C, however, certain axioms will have to be satisfied so that it
coincides with our expectations based on Euclidean distance.

The following definition and axioms are used to create a function that converts
a topological space into a metric space.1 A metric space (X, ρ) is a topological
space X equipped with a function ρ : X ×X → R such that for any a, b, c ∈ X:

1. Nonnegativity: ρ(a, b) ≥ 0.

2. Reflexivity: ρ(a, b) = 0 if and only if a = b.

3. Symmetry: ρ(a, b) = ρ(b, a).

4. Triangle inequality: ρ(a, b) + ρ(b, c) ≥ ρ(a, c).

The function ρ defines distances between points in the metric space, and each
of the four conditions on ρ agrees with our intuitions about distance. The final
condition implies that ρ is optimal in the sense that the distance from a to c will
always be less than or equal to the total distance obtained by traveling through
an intermediate point b on the way from a to c.

Lp metrics The most important family of metrics over Rn is given for any p ≥ 1
as

ρ(x, x′) =

(n∑

i=1

|xi − x′i|p
)1/p

. (5.1)

For each value of p, (5.1) is called an Lp metric (pronounced “el pee”). The three
most common cases are

1. L2: The Euclidean metric, which is the familiar Euclidean distance in Rn.

2. L1: The Manhattan metric, which is often nicknamed this way because in
R2 it corresponds to the length of a path that is obtained by moving along
an axis-aligned grid. For example, the distance from (0, 0) to (2, 5) is 7 by
traveling “east two blocks” and then “north five blocks”.

3. L∞: The L∞ metric must actually be defined by taking the limit of (5.1) as
p tends to infinity. The result is

L∞(x, x′) = max
1≤i≤n

{|xi − x′i|}, (5.2)

which seems correct because the larger the value of p, the more the largest
term of the sum in (5.1) dominates.

1Some topological spaces are not metrizable, which means that no function exists that satisfies
the axioms. Many metrization theorems give sufficient conditions for a topological space to be
metrizable [451], and virtually any space that has arisen in motion planning will be metrizable.

188 S. M. LaValle: Planning Algorithms

An Lp metric can be derived from a norm on a vector space. An Lp norm over Rn

is defined as

‖x‖p =
(n∑

i=1

|xi|p
)1/p

. (5.3)

The case of p = 2 is the familiar definition of the magnitude of a vector, which is
called the Euclidean norm. For example, assume the vector space is Rn, and let
‖ · ‖ be the standard Euclidean norm. The L2 metric is ρ(x, y) = ‖x − y‖. Any
Lp metric can be written in terms of a vector subtraction, which is notationally
convenient.

Metric subspaces By verifying the axioms, it can be shown that any subspace
Y ⊂ X of a metric space (X, ρ) itself becomes a metric space by restricting the
domain of ρ to Y ×Y . This conveniently provides metrics on any of the manifolds
and varieties from Chapter 4 by simply using any Lp metric on Rm, the space in
which the manifold or variety is embedded.

Cartesian products of metric spaces Metrics extend nicely across Cartesian
products, which is very convenient because C-spaces are often constructed from
Cartesian products, especially in the case of multiple bodies. Let (X, ρx) and
(Y, ρy) be two metric spaces. A metric space (Z, ρz) can be constructed for the
Cartesian product Z = X × Y by defining the metric ρz as

ρz(z, z
′) = ρz(x, y, x

′, y′) = c1ρx(x, x
′) + c2ρy(y, y

′), (5.4)

in which c1 > 0 and c2 > 0 are any positive real constants, and x, x′ ∈ X and
y, y′ ∈ Y . Each z ∈ Z is represented as z = (x, y).

Other combinations lead to a metric for Z; for example,

ρz(z, z
′) =

(

c1
[
ρx(x, x

′)
]p

+ c2
[
ρy(y, y

′)
]p
)1/p

, (5.5)

is a metric for any positive integer p. Once again, two positive constants must be
chosen. It is important to understand that many choices are possible, and there
may not necessarily be a “correct” one.

5.1.2 Important Metric Spaces for Motion Planning

This section presents some metric spaces that arise frequently in motion planning.

Example 5.1 (SO(2) Metric Using Complex Numbers) If SO(2) is repre-
sented by unit complex numbers, recall that the C-space is the subset of R2 given
by {(a, b) ∈ R2 | a2 + b2 = 1}. Any Lp metric from R2 may be applied. Using the
Euclidean metric,

ρ(a1, b1, a2, b2) =
√

(a1 − a2)2 + (b1 − b2)2, (5.6)

for any pair of points (a1, b1) and (a2, b2). �

5.1. DISTANCE AND VOLUME IN C-SPACE 189

Example 5.2 (SO(2) Metric by Comparing Angles) You might have noticed
that the previous metric for SO(2) does not give the distance traveling along the
circle. It instead takes a shortcut by computing the length of the line segment in
R2 that connects the two points. This distortion may be undesirable. An alterna-
tive metric is obtained by directly comparing angles, θ1 and θ2. However, in this
case special care has to be given to the identification, because there are two ways
to reach θ2 from θ1 by traveling along the circle. This causes a min to appear in
the metric definition:

ρ(θ1, θ2) = min
{
|θ1 − θ2|, 2π − |θ1 − θ2|

}
, (5.7)

for which θ1, θ2 ∈ [0, 2π]/ ∼. This may alternatively be expressed using the com-
plex number representation a+ bi as an angle between two vectors:

ρ(a1, b1, a2, b2) = cos−1(a1a2 + b1b2), (5.8)

for two points (a1, b1) and (a2, b2). �

Example 5.3 (An SE(2) Metric) Again by using the subspace principle, a met-
ric can easily be obtained for SE(2). Using the complex number representation of
SO(2), each element of SE(2) is a point (xt, yt, a, b) ∈ R4. The Euclidean metric,
or any other Lp metric on R4, can be immediately applied to obtain a metric. �

Example 5.4 (SO(3) Metrics Using Quaternions) As usual, the situation be-
comes more complicated for SO(3). The unit quaternions form a subset S3 of R4.
Therefore, any Lp metric may be used to define a metric on S3, but this will not be
a metric for SO(3) because antipodal points need to be identified. Let h1, h2 ∈ R4

represent two unit quaternions (which are being interpreted here as elements of
R4 by ignoring the quaternion algebra). Taking the identifications into account,
the metric is

ρ(h1, h2) = min
{
‖h1 − h2‖, ‖h1 + h2‖

}
, (5.9)

in which the two arguments of the min correspond to the distances from h1 to h2
and −h2, respectively. The h1 + h2 appears because h2 was negated to yield its
antipodal point, −h2.

As in the case of SO(2), the metric in (5.9) may seem distorted because it
measures the length of line segments that cut through the interior of S3, as opposed
to traveling along the surface. This problem can be fixed to give a very natural
metric for SO(3), which is based on spherical linear interpolation. This takes
the line segment that connects the points and pushes it outward onto S3. It is
easier to visualize this by dropping a dimension. Imagine computing the distance
between two points on S2. If these points lie on the equator, then spherical linear
interpolation yields a distance proportional to that obtained by traveling along

190 S. M. LaValle: Planning Algorithms

the equator, as opposed to cutting through the interior of S2 (for points not on
the equator, use the great circle through the points).

It turns out that this metric can easily be defined in terms of the inner product
between the two quaternions. Recall that for unit vectors v1 and v2 in Rn, v1 ·v2 =
cos θ, in which θ is the angle between the vectors. This angle is precisely what is
needed to give the proper distance along S3. The resulting metric is a surprisingly
simple extension of (5.8). The distance along S3 between two quaternions is

ρs(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2), (5.10)

in which each hi = (ai, bi, ci, di). Taking identification into account yields the
metric

ρ(h1, h2) = min
{
ρs(h1, h2), ρs(h1,−h2)

}
. (5.11)

�

Example 5.5 (Another SE(2) Metric) For many C-spaces, the problem of re-
lating different kinds of quantities arises. For example, any metric defined on
SE(2) must compare both distance in the plane and an angular quantity. For
example, even if c1 = c2 = 1, the range for S1 is [0, 2π) using radians but [0, 360)
using degrees. If the same constant c2 is used in either case, two very different
metrics are obtained. The units applied to R2 and S1 are completely incompatible.
�

Example 5.6 (Robot Displacement Metric) Sometimes this incompatibility
problem can be fixed by considering the robot displacement. For any two config-
urations q1, q2 ∈ C, a robot displacement metric can be defined as

ρ(q1, q2) = max
a∈A

{
‖a(q1)− a(q2)‖

}
, (5.12)

in which a(qi) is the position of the point a in the world when the robot A is at
configuration qi. Intuitively, the robot displacement metric yields the maximum
amount inW that any part of the robot is displaced when moving from configura-
tion q1 to q2. The difficulty and efficiency with which this metric can be computed
depend strongly on the particular robot geometric model and kinematics. For a
convex polyhedral robot that can translate and rotate, it is sufficient to check
only vertices. The metric may appear to be ideal, but efficient algorithms are not
known for most situations. �

Example 5.7 (Tn Metrics) Next consider making a metric over a torus Tn. The
Cartesian product rules such as (5.4) and (5.5) can be extended over every copy of
S1 (one for each parameter θi). This leads to n arbitrary coefficients c1, c2, . . ., cn.

5.1. DISTANCE AND VOLUME IN C-SPACE 191

Robot displacement could be used to determine the coefficients. For example, if
the robot is a chain of links, it might make sense to weight changes in the first link
more heavily because the entire chain moves in this case. When the last parameter
is changed, only the last link moves; in this case, it might make sense to give it
less weight. �

Example 5.8 (SE(3) Metrics) Metrics for SE(3) can be formed by applying
the Cartesian product rules to a metric for R3 and a metric for SO(3), such as
that given in (5.11). Again, this unfortunately leaves coefficients to be specified.
These issues will arise again in Section 5.3.4, where more details appear on robot
displacement. �

Pseudometrics Many planning algorithms use functions that behave somewhat
like a distance function but may fail to satisfy all of the metric axioms. If such
distance functions are used, they will be referred to as pseudometrics. One general
principle that can be used to derive pseudometrics is to define the distance to be
the optimal cost-to-go for some criterion (recall discrete cost-to-go functions from
Section 2.3). This will become more important when differential constraints are
considered in Chapter 14.

In the continuous setting, the cost could correspond to the distance traveled
by a robot or even the amount of energy consumed. Sometimes, the resulting
pseudometric is not symmetric. For example, it requires less energy for a car to
travel downhill as opposed to uphill. Alternatively, suppose that a car is only
capable of driving forward. It might travel a short distance to go forward from
q1 to some q2, but it might have to travel a longer distance to reach q1 from q2
because it cannot drive in reverse. These issues arise for the Dubins car, which is
covered in Sections 13.1.2 and 15.3.1.

An important example of a pseudometric from robotics is a potential function,
which is an important part of the randomized potential field method, which is
discussed in Section 5.4.3. The idea is to make a scalar function that estimates
the distance to the goal; however, there may be additional terms that attempt
to repel the robot away from obstacles. This generally causes local minima to
appear in the distance function, which may cause potential functions to violate
the triangle inequality.

5.1.3 Basic Measure Theory Definitions

This section briefly indicates how to define volume in a metric space. This provides
a basis for defining concepts such as integrals or probability densities. Measure
theory is an advanced mathematical topic that is well beyond the scope of this

192 S. M. LaValle: Planning Algorithms

book; however, it is worthwhile to briefly introduce some of the basic definitions
because they sometimes arise in sampling-based planning.

Measure can be considered as a function that produces real values for subsets
of a metric space, (X, ρ). Ideally, we would like to produce a nonnegative value,
µ(A) ∈ [0,∞], for any subset A ⊆ X. Unfortunately, due to the Banach-Tarski
paradox, if X = Rn, there are some subsets for which trying to assign volume
leads to a contradiction. If X is finite, this cannot happen. Therefore, it is hard
to visualize the problem; see [836] for a construction of the bizarre nonmeasurable
sets. Due to this problem, a workaround was developed by defining a collection of
subsets that avoids the paradoxical sets. A collection B of subsets of X is called
a sigma algebra if the following axioms are satisfied:

1. The empty set is in B.
2. If B ∈ B, then X \B ∈ B.
3. For any collection of a countable number of sets in B, their union must also

be in B.
Note that the last two conditions together imply that the intersection of a count-
able number of sets in B is also in B. The sets in B are called the measurable
sets.

A nice sigma algebra, called the Borel sets, can be formed from any metric
space (X, ρ) as follows. Start with the set of all open balls in X. These are the
sets of the form

B(x, r) = {x′ ∈ X | ρ(x, x′) < r} (5.13)

for any x ∈ X and any r ∈ (0,∞). From the open balls, the Borel sets B are
the sets that can be constructed from these open balls by using the sigma algebra
axioms. For example, an open square in R2 is in B because it can be constructed
as the union of a countable number of balls (infinitely many are needed because
the curved balls must converge to covering the straight square edges). By using
Borel sets, the nastiness of nonmeasurable sets is safely avoided.

Example 5.9 (Borel Sets) A simple example of B can be constructed for R.
The open balls are just the set of all open intervals, (x1, x2) ⊂ R, for any x1, x2 ∈ R

such that x1 < x2. �

Using B, a measure µ is now defined as a function µ : B → [0,∞] such that
the measure axioms are satisfied:

1. For the empty set, µ(∅) = 0.

2. For any collection, E1, E2, E3, . . ., of a countable (possibly finite) number of
pairwise disjoint, measurable sets, let E denote their union. The measure µ
must satisfy

µ(E) =
∑

i

µ(Ei), (5.14)

5.1. DISTANCE AND VOLUME IN C-SPACE 193

in which i counts over the whole collection.

Example 5.10 (Lebesgue Measure) The most common and important mea-
sure is the Lebesgue measure, which becomes the standard notions of length in R,
area in R2, and volume in Rn for n ≥ 3. One important concept with Lebesgue
measure is the existence of sets of measure zero. For any countable set A, the
Lebesgue measure yields µ(A) = 0. For example, what is the total length of the
point {1} ⊂ R? The length of any single point must be zero. To satisfy the mea-
sure axioms, sets such as {1, 3, 4, 5} must also have measure zero. Even infinite
subsets such as Z and Q have measure zero in R. If the dimension of a set A ⊆ Rn

is m for some integer m < n, then µ(A) = 0, according to the Lebesgue measure
on Rn. For example, the set S2 ⊂ R3 has measure zero because the sphere has
no volume. However, if the measure space is restricted to S2 and then the surface
area is defined, then nonzero measure is obtained. �

Example 5.11 (The Counting Measure) If (X, ρ) is finite, then the counting
measure can be defined. In this case, the measure can be defined over the entire
power set of X. For any A ⊂ X, the counting measure yields µ(A) = |A|, the
number of elements in A. Verify that this satisfies the measure axioms. �

Example 5.12 (Probability Measure) Measure theory even unifies discrete and
continuous probability theory. The measure µ can be defined to yield probability
mass. The probability axioms (see Section 9.1.2) are consistent with the measure
axioms, which therefore yield a measure space. The integrals and sums needed to
define expectations of random variables for continuous and discrete cases, respec-
tively, unify into a single measure-theoretic integral. �

Measure theory can be used to define very general notions of integration that
are much more powerful than the Riemann integral that is learned in classical
calculus. One of the most important concepts is the Lebesgue integral. Instead
of being limited to partitioning the domain of integration into intervals, virtually
any partition into measurable sets can be used. Its definition requires the notion
of a measurable function to ensure that the function domain is partitioned into
measurable sets. For further study, see [346, 546, 836].

5.1.4 Using the Correct Measure

Since many metrics and measures are possible, it may sometimes seem that there is
no “correct” choice. This can be frustrating because the performance of sampling-
based planning algorithms can depend strongly on these. Conveniently, there is a

194 S. M. LaValle: Planning Algorithms

natural measure, called the Haar measure, for some transformation groups, includ-
ing SO(N). Good metrics also follow from the Haar measure, but unfortunately,
there are still arbitrary alternatives.

The basic requirement is that the measure does not vary when the sets are
transformed using the group elements. More formally, let G represent a matrix
group with real-valued entries, and let µ denote a measure on G. If for any
measurable subset A ⊆ G, and any element g ∈ G, µ(A) = µ(gA) = µ(Ag), then
µ is called the Haar measure2 for G. The notation gA represents the set of all
matrices obtained by the product ga, for any a ∈ A. Similarly, Ag represents all
products of the form ag.

Example 5.13 (Haar Measure for SO(2)) The Haar measure for SO(2) can
be obtained by parameterizing the rotations as [0, 1]/ ∼ with 0 and 1 identified,
and letting µ be the Lebesgue measure on the unit interval. To see the invariance
property, consider the interval [1/4, 1/2], which produces a set A ⊂ SO(2) of
rotation matrices. This corresponds to the set of all rotations from θ = π/2 to
θ = π. The measure yields µ(A) = 1/4. Now consider multiplying every matrix
a ∈ A by a rotation matrix, g ∈ SO(2), to yield Ag. Suppose g is the rotation
matrix for θ = π. The set Ag is the set of all rotation matrices from θ = 3π/2
up to θ = 2π = 0. The measure µ(Ag) = 1/4 remains unchanged. Invariance
for gA may be checked similarly. The transformation g translates the intervals
in [0, 1]/ ∼. Since the measure is based on interval lengths, it is invariant with
respect to translation. Note that µ can be multiplied by a fixed constant (such as
2π) without affecting the invariance property.

An invariant metric can be defined from the Haar measure on SO(2). For any
points x1, x2 ∈ [0, 1], let ρ = µ([x1, x2]), in which [x1, x2] is the shortest length
(smallest measure) interval that contains x1 and x2 as endpoints. This metric was
already given in Example 5.2.

To obtain examples that are not the Haar measure, let µ represent probability
mass over [0, 1] and define any nonuniform probability density function (the uni-
form density yields the Haar measure). Any shifting of intervals will change the
probability mass, resulting in a different measure.

Failing to use the Haar measure weights some parts of SO(2) more heavily
than others. Sometimes imposing a bias may be desirable, but it is at least as
important to know how to eliminate bias. These ideas may appear obvious, but in
the case of SO(3) and many other groups it is more challenging to eliminate this
bias and obtain the Haar measure. �

Example 5.14 (Haar Measure for SO(3)) For SO(3) it turns out once again
that quaternions come to the rescue. If unit quaternions are used, recall that
SO(3) becomes parameterized in terms of S3, but opposite points are identified.

2Such a measure is unique up to scale and exists for any locally compact topological group
[346, 836].

5.2. SAMPLING THEORY 195

It can be shown that the surface area on S3 is the Haar measure. (Since S3 is a 3D
manifold, it may more appropriately be considered as a surface “volume.”) It will
be seen in Section 5.2.2 that uniform random sampling over SO(3) must be done
with a uniform probability density over S3. This corresponds exactly to the Haar
measure. If instead SO(3) is parameterized with Euler angles, the Haar measure
will not be obtained. An unintentional bias will be introduced; some rotations in
SO(3) will have more weight than others for no particularly good reason. �

5.2 Sampling Theory

5.2.1 Motivation and Basic Concepts

The state space for motion planning, C, is uncountably infinite, yet a sampling-
based planning algorithm can consider at most a countable number of samples.
If the algorithm runs forever, this may be countably infinite, but in practice we
expect it to terminate early after only considering a finite number of samples.
This mismatch between the cardinality of C and the set that can be probed by
an algorithm motivates careful consideration of sampling techniques. Once the
sampling component has been defined, discrete planning methods from Chapter
2 may be adapted to the current setting. Their performance, however, hinges on
the way the C-space is sampled.

Since sampling-based planning algorithms are often terminated early, the par-
ticular order in which samples are chosen becomes critical. Therefore, a distinction
is made between a sample set and a sample sequence. A unique sample set can
always be constructed from a sample sequence, but many alternative sequences
can be constructed from one sample set.

Denseness Consider constructing an infinite sample sequence over C. What
would be some desirable properties for this sequence? It would be nice if the
sequence eventually reached every point in C, but this is impossible because C is
uncountably infinite. Strangely, it is still possible for a sequence to get arbitrarily
close to every element of C (assuming C ⊆ Rm). In topology, this is the notion of
denseness. Let U and V be any subsets of a topological space. The set U is said
to be dense in V if cl(U) = V (recall the closure of a set from Section 4.1.1). This
means adding the boundary points to U produces V . A simple example is that
(0, 1) ⊂ R is dense in [0, 1] ⊂ R. A more interesting example is that the set Q of
rational numbers is both countable and dense in R. Think about why. For any
real number, such as π ∈ R, there exists a sequence of fractions that converges to
it. This sequence of fractions must be a subset of Q. A sequence (as opposed to a
set) is called dense if its underlying set is dense. The bare minimum for sampling
methods is that they produce a dense sequence. Stronger requirements, such as
uniformity and regularity, will be explained shortly.

196 S. M. LaValle: Planning Algorithms

A random sequence is probably dense Suppose that C = [0, 1]. One of
the simplest ways conceptually to obtain a dense sequence is to pick points at
random. Suppose I ⊂ [0, 1] is an interval of length e. If k samples are chosen
independently at random,3 the probability that none of them falls into I is (1−e)k.
As k approaches infinity, this probability converges to zero. This means that the
probability that any nonzero-length interval in [0, 1] contains no points converges
to zero. One small technicality exists. The infinite sequence of independently,
randomly chosen points is only dense with probability one, which is not the same as
being guaranteed. This is one of the strange outcomes of dealing with uncountably
infinite sets in probability theory. For example, if a number between [0, 1] is
chosen at random, the probably that π/4 is chosen is zero; however, it is still
possible. (The probability is just the Lebesgue measure, which is zero for a set of
measure zero.) For motion planning purposes, this technicality has no practical
implications; however, if k is not very large, then it might be frustrating to obtain
only probabilistic assurances, as opposed to absolute guarantees of coverage. The
next sequence is guaranteed to be dense because it is deterministic.

The van der Corput sequence A beautiful yet underutilized sequence was
published in 1935 by van der Corput, a Dutch mathematician [952]. It exhibits
many ideal qualities for applications. At the same time, it is based on a simple
idea. Unfortunately, it is only defined for the unit interval. The quest to extend
many of its qualities to higher dimensional spaces motivates the formal quality
measures and sampling techniques in the remainder of this section.

To explain the van der Corput sequence, let C = [0, 1]/ ∼, in which 0 ∼ 1,
which can be interpreted as SO(2). Suppose that we want to place 16 samples in
C. An ideal choice is the set S = {i/16 | 0 ≤ i < 16}, which evenly spaces the
points at intervals of length 1/16. This means that no point in C is further than
1/32 from the nearest sample. What if we want to make S into a sequence? What
is the best ordering? What if we are not even sure that 16 points are sufficient?
Maybe 16 is too few or even too many.

The first two columns of Figure 5.2 show a naive attempt at making S into
a sequence by sorting the points by increasing value. The problem is that after
i = 8, half of C has been neglected. It would be preferable to have a nice covering
of C for any i. Van der Corput’s clever idea was to reverse the order of the bits,
when the sequence is represented with binary decimals. In the original sequence,
the most significant bit toggles only once, whereas the least significant bit toggles
in every step. By reversing the bits, the most significant bit toggles in every step,
which means that the sequence alternates between the lower and upper halves of C.
The third and fourth columns of Figure 5.2 show the original and reversed-order
binary representations. The resulting sequence dances around [0, 1]/ ∼ in a nice
way, as shown in the last two columns of Figure 5.2. Let ν(i) denote the ith point
of the van der Corput sequence.

3See Section 9.1.2 for a review of probability theory.

5.2. SAMPLING THEORY 197

Naive Reverse Van der
i Sequence Binary Binary Corput Points in [0, 1]/ ∼
1 0 .0000 .0000 0
2 1/16 .0001 .1000 1/2
3 1/8 .0010 .0100 1/4
4 3/16 .0011 .1100 3/4
5 1/4 .0100 .0010 1/8
6 5/16 .0101 .1010 5/8
7 3/8 .0110 .0110 3/8
8 7/16 .0111 .1110 7/8
9 1/2 .1000 .0001 1/16
10 9/16 .1001 .1001 9/16
11 5/8 .1010 .0101 5/16
12 11/16 .1011 .1101 13/16
13 3/4 .1100 .0011 3/16
14 13/16 .1101 .1011 11/16
15 7/8 .1110 .0111 7/16
16 15/16 .1111 .1111 15/16

Figure 5.2: The van der Corput sequence is obtained by reversing the bits in the
binary decimal representation of the naive sequence.

In contrast to the naive sequence, each ν(i) lies far away from ν(i + 1). Fur-
thermore, the first i points of the sequence, for any i, provide reasonably uniform
coverage of C. When i is a power of 2, the points are perfectly spaced. For other
i, the coverage is still good in the sense that the number of points that appear in
any interval of length l is roughly il. For example, when i = 10, every interval of
length 1/2 contains roughly 5 points.

The length, 16, of the naive sequence is actually not important. If instead
8 is used, the same ν(1), . . ., ν(8) are obtained. Observe in the reverse binary
column of Figure 5.2 that this amounts to removing the last zero from each binary
decimal representation, which does not alter their values. If 32 is used for the naive
sequence, then the same ν(1), . . ., ν(16) are obtained, and the sequence continues
nicely from ν(17) to ν(32). To obtain the van der Corput sequence from ν(33) to
ν(64), six-bit sequences are reversed (corresponding to the case in which the naive
sequence has 64 points). The process repeats to produce an infinite sequence that
does not require a fixed number of points to be specified a priori. In addition to
the nice uniformity properties for every i, the infinite van der Corput sequence is
also dense in [0, 1]/ ∼. This implies that every open subset must contain at least
one sample.

You have now seen ways to generate nice samples in a unit interval both ran-
domly and deterministically. Sections 5.2.2–5.2.4 explain how to generate dense
samples with nice properties in the complicated spaces that arise in motion plan-

198 S. M. LaValle: Planning Algorithms

ning.

5.2.2 Random Sampling

Now imagine moving beyond [0, 1] and generating a dense sample sequence for any
bounded C-space, C ⊆ Rm. In this section the goal is to generate uniform random
samples. This means that the probability density function p(q) over C is uniform.
Wherever relevant, it also will mean that the probability density is also consistent
with the Haar measure. We will not allow any artificial bias to be introduced by
selecting a poor parameterization. For example, picking uniform random Euler
angles does not lead to uniform random samples over SO(3). However, picking
uniform random unit quaternions works perfectly because quaternions use the
same parameterization as the Haar measure; both choose points on S3.

Random sampling is the easiest of all sampling methods to apply to C-spaces.
One of the main reasons is that C-spaces are formed from Cartesian products, and
independent random samples extend easily across these products. If X = X1×X2,
and uniform random samples x1 and x2 are taken from X1 and X2, respectively,
then (x1, x2) is a uniform random sample for X. This is very convenient in im-
plementations. For example, suppose the motion planning problem involves 15
robots that each translate for any (xt, yt) ∈ [0, 1]2; this yields C = [0, 1]30. In
this case, 30 points can be chosen uniformly at random from [0, 1] and combined
into a 30-dimensional vector. Samples generated this way are uniformly randomly
distributed over C. Combining samples over Cartesian products is much more
difficult for nonrandom (deterministic) methods, which are presented in Sections
5.2.3 and 5.2.4.

Generating a random element of SO(3) One has to be very careful about
sampling uniformly over the space of rotations. The probability density must
correspond to the Haar measure, which means that a random rotation should be
obtained by picking a point at random on S3 and forming the unit quaternion. An
extremely clever way to sample SO(3) uniformly at random is given in [883] and
is reproduced here. Choose three points u1, u2, u3 ∈ [0, 1] uniformly at random. A
uniform, random quaternion is given by the simple expression

h = (
√
1− u1 sin 2πu2,

√
1− u1 cos 2πu2,

√
u1 sin 2πu3,

√
u1 cos 2πu3). (5.15)

A full explanation of the method is given in [883], and a brief intuition is given here.
First drop down a dimension and pick u1, u2 ∈ [0, 1] to generate points on S2. Let
u1 represent the value for the third coordinate, (0, 0, u1) ∈ R3. The slice of points
on S2 for which u1 is fixed for 0 < u1 < 1 yields a circle on S2 that corresponds
to some line of latitude on S2. The second parameter selects the longitude, 2πu2.
Fortunately, the points are uniformly distributed over S2. Why? Imagine S2 as
the crust on a spherical loaf of bread that is run through a bread slicer. The slices
are cut in a direction parallel to the equator and are of equal thickness. The crusts
of each slice have equal area; therefore, the points are uniformly distributed. The

5.2. SAMPLING THEORY 199

method proceeds by using that fact that S3 can be partitioned into a spherical
arrangement of circles (known as the Hopf fibration); there is an S1 copy for each
point in S2. The method above is used to provide a random point on S2 using
u2 and u3, and u1 produces a random point on S1; they are carefully combined
in (5.15) to yield a random rotation. To respect the antipodal identification for
rotations, any quaternion h found in the lower hemisphere (i.e., a < 0) can be
negated to yield −h. This does not distort the uniform random distribution of the
samples.

Generating random directions Some sampling-based algorithms require choos-
ing motion directions at random.4 From a configuration q, the possible directions
of motion can be imagined as being distributed around a sphere. In an (n + 1)-
dimensional C-space, this corresponds to sampling on Sn. For example, choosing
a direction in R2 amounts to picking an element of S1; this can be parameter-
ized as θ ∈ [0, 2π]/ ∼. If n = 4, then the previously mentioned trick for SO(3)
should be used. If n = 3 or n > 4, then samples can be generated using a slightly
more expensive method that exploits spherical symmetries of the multidimensional
Gaussian density function [341]. The method is explained for Rn+1; boundaries
and identifications must be taken into account for other spaces. For each of the
n + 1 coordinates, generate a sample ui from a zero-mean Gaussian distribution
with the same variance for each coordinate. Following from the Central Limit
Theorem, ui can be approximately obtained by generating k samples at random
over [−1, 1] and adding them (k ≥ 12 is usually sufficient in practice). The vector
(u1, u2, . . . , un+1) gives a random direction in Rn+1 because each ui was obtained
independently, and the level sets of the resulting probability density function are
spheres. We did not use uniform random samples for each ui because this would
bias the directions toward the corners of a cube; instead, the Gaussian yields
spherical symmetry. The final step is to normalize the vector by taking ui/‖u‖ for
each coordinate.

Pseudorandom number generation Although there are advantages to uni-
form random sampling, there are also several disadvantages. This motivates the
consideration of deterministic alternatives. Since there are trade-offs, it is impor-
tant to understand how to use both kinds of sampling in motion planning. One
of the first issues is that computer-generated numbers are not random.5 A pseu-
dorandom number generator is usually employed, which is a deterministic method
that simulates the behavior of randomness. Since the samples are not truly ran-
dom, the advantage of extending the samples over Cartesian products does not
necessarily hold. Sometimes problems are caused by unforeseen deterministic de-
pendencies. One of the best pseudorandom number generators for avoiding such

4The directions will be formalized in Section 8.3.2 when smooth manifolds are introduced. In
that case, the directions correspond to the set of possible velocities that have unit magnitude.
Presently, the notion of a direction is only given informally.

5There are exceptions, which use physical phenomena as a random source [808].

200 S. M. LaValle: Planning Algorithms

troubles is the Mersenne twister [684], for which implementations can be found on
the Internet.

To help see the general difficulties, the classical linear congruential pseudo-
random number generator is briefly explained [619, 738]. The method uses three
integer parameters, M , a, and c, which are chosen by the user. The first two, M
and a, must be relatively prime, meaning that gcd(M,a) = 1. The third parame-
ter, c, must be chosen to satisfy 0 ≤ c < M . Using modular arithmetic, a sequence
can be generated as

yi+1 = ayi + c mod M, (5.16)

by starting with some arbitrary seed 1 ≤ y0 ≤ M . Pseudorandom numbers in
[0, 1] are generated by the sequence

xi = yi/M. (5.17)

The sequence is periodic; therefore, M is typically very large (e.g., M = 231 − 1).
Due to periodicity, there are potential problems of regularity appearing in the
samples, especially when applied across a Cartesian product to generate points in
Rn. Particular values must be chosen for the parameters, and statistical tests are
used to evaluate the samples either experimentally or theoretically [738].

Testing for randomness Thus, it is important to realize that even the “ran-
dom” samples are deterministic. They are designed to optimize performance on
statistical tests. Many sophisticated statistical tests of uniform randomness are
used. One of the simplest, the chi-square test, is described here. This test measures
how far computed statistics are from their expected value. As a simple example,
suppose C = [0, 1]2 and is partitioned into a 10 by 10 array of 100 square boxes. If
a set P of k samples is chosen at random, then intuitively each box should receive
roughly k/100 of the samples. An error function can be defined to measure how
far from true this intuition is:

e(P) =
100∑

i=1

(bi − k/100)2, (5.18)

in which bi is the number of samples that fall into box i. It is shown [521] that
e(P) follows a chi-squared distribution. A surprising fact is that the goal is not
to minimize e(P). If the error is too small, we would declare that the samples are
too uniform to be random! Imagine k = 1, 000, 000 and exactly 10, 000 samples
appear in each of the 100 boxes. This yields e(P) = 0, but how likely is this to ever
occur? The error must generally be larger (it appears in many statistical tables)
to account for the irregularity due to randomness.

This irregularity can be observed in terms of Voronoi diagrams, as shown in
Figure 5.3. The Voronoi diagram partitions R2 into regions based on the samples.
Each sample x has an associated Voronoi region Vor(x). For any point y ∈ Vor(x),
x is the closest sample to y using Euclidean distance. The different sizes and shapes

5.2. SAMPLING THEORY 201

(a) 196 pseudorandom samples (b) 196 pseudorandom samples

Figure 5.3: Irregularity in a collection of (pseudo)random samples can be nicely
observed with Voronoi diagrams.

of these regions give some indication of the required irregularity of random sam-
pling. This irregularity may be undesirable for sampling-based motion planning
and is somewhat repaired by the deterministic sampling methods of Sections 5.2.3
and 5.2.4 (however, these methods also have drawbacks).

5.2.3 Low-Dispersion Sampling

This section describes an alternative to random sampling. Here, the goal is to
optimize a criterion called dispersion [738]. Intuitively, the idea is to place samples
in a way that makes the largest uncovered area be as small as possible. This
generalizes of the idea of grid resolution. For a grid, the resolution may be selected
by defining the step size for each axis. As the step size is decreased, the resolution
increases. If a grid-based motion planning algorithm can increase the resolution
arbitrarily, it becomes resolution complete. Using the concepts in this section,
it may instead reduce its dispersion arbitrarily to obtain a resolution complete
algorithm. Thus, dispersion can be considered as a powerful generalization of the
notion of “resolution.”

Dispersion definition The dispersion6 of a finite set P of samples in a metric
space (X, ρ) is7

δ(P) = sup
x∈X

{
min
p∈P

{
ρ(x, p)

}}
. (5.19)

6The definition is unfortunately backward from intuition. Lower dispersion means that the
points are nicely dispersed. Thus, more dispersion is bad, which is counterintuitive.

7The sup represents the supremum, which is the least upper bound. If X is closed, then the
sup becomes a max. See Section 9.1.1 for more details.

202 S. M. LaValle: Planning Algorithms

(a) L2 dispersion (b) L∞ dispersion

Figure 5.4: Reducing the dispersion means reducing the radius of the largest empty
ball.

(a) 196-point Sukharev grid (b) 196 lattice points

Figure 5.5: The Sukharev grid and a nongrid lattice.

Figure 5.4 gives an interpretation of the definition for two different metrics.
An alternative way to consider dispersion is as the radius of the largest empty
ball (for the L∞ metric, the balls are actually cubes). Note that at the boundary
of X (if it exists), the empty ball becomes truncated because it cannot exceed
the boundary. There is also a nice interpretation in terms of Voronoi diagrams.
Figure 5.3 can be used to help explain L2 dispersion in R2. The Voronoi vertices
are the points at which three or more Voronoi regions meet. These are points in
C for which the nearest sample is far. An open, empty disc can be placed at any
Voronoi vertex, with a radius equal to the distance to the three (or more) closest
samples. The radius of the largest disc among those placed at all Voronoi vertices
is the dispersion. This interpretation also extends nicely to higher dimensions.

5.2. SAMPLING THEORY 203

Making good grids Optimizing dispersion forces the points to be distributed
more uniformly over C. This causes them to fail statistical tests, but the point
distribution is often better for motion planning purposes. Consider the best way
to reduce dispersion if ρ is the L∞ metric and X = [0, 1]n. Suppose that the
number of samples, k, is given. Optimal dispersion is obtained by partitioning
[0, 1] into a grid of cubes and placing a point at the center of each cube, as shown
for n = 2 and k = 196 in Figure 5.5a. The number of cubes per axis must be
⌊k 1

n ⌋, in which ⌊·⌋ denotes the floor. If k 1
n is not an integer, then there are leftover

points that may be placed anywhere without affecting the dispersion. Notice that
k

1
n just gives the number of points per axis for a grid of k points in n dimensions.

The resulting grid will be referred to as a Sukharev grid [922].
The dispersion obtained by the Sukharev grid is the best possible. Therefore,

a useful lower bound can be given for any set P of k samples [922]:

δ(P) ≥ 1

2
⌊
k

1
d

⌋ . (5.20)

This implies that keeping the dispersion fixed requires exponentially many points
in the dimension, d.

At this point you might wonder why L∞ was used instead of L2, which seems
more natural. This is because the L2 case is extremely difficult to optimize (except
in R2, where a tiling of equilateral triangles can be made, with a point in the center
of each one). Even the simple problem of determining the best way to distribute
a fixed number of points in [0, 1]3 is unsolved for most values of k. See [241] for
extensive treatment of this problem.

Suppose now that other topologies are considered instead of [0, 1]n. Let X =
[0, 1]/ ∼, in which the identification produces a torus. The situation is quite
different because X no longer has a boundary. The Sukharev grid still produces
optimal dispersion, but it can also be shifted without increasing the dispersion. In
this case, a standard grid may also be used, which has the same number of points
as the Sukharev grid but is translated to the origin. Thus, the first grid point
is (0, 0), which is actually the same as 2n − 1 other points by identification. If
X represents a cylinder and the number of points, k, is given, then it is best to
just use the Sukharev grid. It is possible, however, to shift each coordinate that
behaves like S1. If X is rectangular but not a square, a good grid can still be made
by tiling the space with cubes. In some cases this will produce optimal dispersion.
For complicated spaces such as SO(3), no grid exists in the sense defined so far.
It is possible, however, to generate grids on the faces of an inscribed Platonic solid
[251] and lift the samples to Sn with relatively little distortion [987]. For example,
to sample S2, Sukharev grids can be placed on each face of a cube. These are lifted
to obtain the warped grid shown in Figure 5.6a.

Example 5.15 (Sukharev Grid) Suppose that n = 2 and k = 9. If X = [0, 1]2,
then the Sukharev grid yields points for the nine cases in which either coordinate
may be 1/6, 1/2, or 5/6. The L∞ dispersion is 1/6. The spacing between the points

204 S. M. LaValle: Planning Algorithms

g1

g2

(a) (b)

Figure 5.6: (a) A distorted grid can even be placed over spheres and SO(3) by
putting grids on the faces of an inscribed cube and lifting them to the surface
[987]. (b) A lattice can be considered as a grid in which the generators are not
necessarily orthogonal.

along each axis is 1/3, which is twice the dispersion. If instead X = [0, 1]2/ ∼,
which represents a torus, then the nine points may be shifted to yield the stan-
dard grid. In this case each coordinate may be 0, 1/3, or 2/3. The dispersion and
spacing between the points remain unchanged. �

One nice property of grids is that they have a lattice structure. This means that
neighboring points can be obtained very easily be adding or subtracting vectors.
Let gj be an n-dimensional vector called a generator. A point on a lattice can be
expressed as

x =
n∑

j=1

kjgj (5.21)

for n independent generators, as depicted in Figure 5.6b. In a 2D grid, the gen-
erators represent “up” and “right.” If X = [0, 100]2 and a standard grid with
integer spacing is used, then the neighbors of the point (50, 50) are obtained by
adding (0, 1), (0,−1), (−1, 0), or (1, 0). In a general lattice, the generators need
not be orthogonal. An example is shown in Figure 5.5b. In Section 5.4.2, lattice
structure will become important and convenient for defining the search graph.

Infinite grid sequences Now suppose that the number, k, of samples is not
given. The task is to define an infinite sequence that has the nice properties of
the van der Corput sequence but works for any dimension. This will become the
notion of a multi-resolution grid. The resolution can be iteratively doubled. For a
multi-resolution standard grid in Rn, the sequence will first place one point at the
origin. After 2n points have been placed, there will be a grid with two points per
axis. After 4n points, there will be four points per axis. Thus, after 2ni points for
any positive integer i, a grid with 2i points per axis will be represented. If only
complete grids are allowed, then it becomes clear why they appear inappropriate

5.2. SAMPLING THEORY 205

for high-dimensional problems. For example, if n = 10, then full grids appear
after 1, 210, 220, 230, and so on, samples. Each doubling in resolution multiplies
the number of points by 2n. Thus, to use grids in high dimensions, one must be
willing to accept partial grids and define an infinite sequence that places points in
a nice way.

The van der Corput sequence can be extended in a straightforward way as
follows. Suppose X = T2 = [0, 1]2/ ∼. The original van der Corput sequence
started by counting in binary. The least significant bit was used to select which
half of [0, 1] was sampled. In the current setting, the two least significant bits can
be used to select the quadrant of [0, 1]2. The next two bits can be used to select
the quadrant within the quadrant. This procedure continues recursively to obtain
a complete grid after k = 22i points, for any positive integer i. For any k, however,
there is only a partial grid. The points are distributed with optimal L∞ dispersion.
This same idea can be applied in dimension n by using n bits at a time from
the binary sequence to select the orthant (n-dimensional quadrant). Many other
orderings produce L∞-optimal dispersion. Selecting orderings that additionally
optimize other criteria, such as discrepancy or L2 dispersion, are covered in [639,
644]. Unfortunately, it is more difficult to make a multi-resolution Sukharev grid.
The base becomes 3 instead of 2; after every 3ni points a complete grid is obtained.
For example, in one dimension, the first point appears at 1/2. The next two points
appear at 1/6 and 5/6. The next complete one-dimensional grid appears after there
are 9 points.

Dispersion bounds Since the sample sequence is infinite, it is interesting to
consider asymptotic bounds on dispersion. It is known that for X = [0, 1]n and
any Lp metric, the best possible asymptotic dispersion is O(k−1/n) for k points
and n dimensions [738]. In this expression, k is the variable in the limit and n
is treated as a constant. Therefore, any function of n may appear as a constant
(i.e., O(f(n)k−1/n) = O(k−1/n) for any positive f(n)). An important practical
consideration is the size of f(n) in the asymptotic analysis. For example, for the
van der Corput sequence from Section 5.2.1, the dispersion is bounded by 1/k,
which means that f(n) = 1. This does not seem good because for values of k
that are powers of two, the dispersion is 1/2k. Using a multi-resolution Sukharev
grid, the constant becomes 3/2 because it takes a longer time before a full grid is
obtained. Nongrid, low-dispersion infinite sequences exist that have f(n) = 1/ ln 4
[738]; these are not even uniformly distributed, which is rather surprising.

5.2.4 Low-Discrepancy Sampling

In some applications, selecting points that align with the coordinate axis may be
undesirable. Therefore, extensive sampling theory has been developed to deter-
mine methods that avoid alignments while distributing the points uniformly. In
sampling-based motion planning, grids sometimes yield unexpected behavior be-
cause a row of points may align nicely with a corridor in Cfree. In some cases, a

206 S. M. LaValle: Planning Algorithms

R

Figure 5.7: Discrepancy measures whether the right number of points fall into
boxes. It is related to the chi-square test but optimizes over all possible boxes.

solution is obtained with surprisingly few samples, and in others, too many sam-
ples are necessary. These alignment problems, when they exist, generally drive the
variance higher in computation times because it is difficult to predict when they
will help or hurt. This provides motivation for developing sampling techniques
that try to reduce this sensitivity.

Discrepancy theory and its corresponding sampling methods were developed to
avoid these problems for numerical integration [738]. Let X be a measure space,
such as [0, 1]n. Let R be a collection of subsets of X that is called a range space.
In most cases, R is chosen as the set of all axis-aligned rectangular subsets; hence,
this will be assumed from this point onward. With respect to a particular point
set, P , and range space, R, the discrepancy [965] for k samples is defined as (see
Figure 5.7)

D(P,R) = sup
R∈R

{∣
∣
∣
∣

|P ∩R|
k

− µ(R)

µ(X)

∣
∣
∣
∣

}

, (5.22)

in which |P ∩ R| denotes the number of points in P ∩ R. Each term in the
supremum considers how well P can be used to estimate the volume of R. For
example, if µ(R) is 1/5, then we would hope that about 1/5 of the points in P fall
into R. The discrepancy measures the largest volume estimation error that can be
obtained over all sets in R.

Asymptotic bounds There are many different asymptotic bounds for discrep-
ancy, depending on the particular range space and measure space [682]. The most
widely referenced bounds are based on the standard range space of axis-aligned
rectangular boxes in [0, 1]n. There are two different bounds, depending on whether
the number of points, k, is given. The best possible asymptotic discrepancy for a
single sequence is O(k−1 logn k). This implies that k is not specified. If, however,
for every k a new set of points can be chosen, then the best possible discrepancy
is O(k−1 logn−1 k). This bound is lower because it considers the best that can be
achieved by a sequence of points sets, in which every point set may be completely

5.2. SAMPLING THEORY 207

different. In a single sequence, the next set must be extended from the current set
by adding a single sample.

Relating dispersion and discrepancy Since balls have positive volume, there
is a close relationship between discrepancy, which is measure-based, and dispersion,
which is metric-based. For example, for any P ⊂ [0, 1]n,

δ(P,L∞) ≤ D(P,R)1/d, (5.23)

which means low-discrepancy implies low-dispersion. Note that the converse is
not true. An axis-aligned grid yields high discrepancy because of alignments with
the boundaries of sets in R, but the dispersion is very low. Even though low-
discrepancy implies low-dispersion, lower dispersion can usually be obtained by
ignoring discrepancy (this is one less constraint to worry about). Thus, a trade-off
must be carefully considered in applications.

Low-discrepancy sampling methods Due to the fundamental importance of
numerical integration and the intricate link between discrepancy and integration
error, most sampling literature has led to low-discrepancy sequences and point sets
[738, 893, 937]. Although motion planning is quite different from integration, it
is worth evaluating these carefully constructed and well-analyzed samples. Their
potential use in motion planning is no less reasonable than using pseudorandom
sequences, which were also designed with a different intention in mind (satisfying
statistical tests of randomness).

Low-discrepancy sampling methods can be divided into three categories: 1)
Halton/Hammersley sampling; 2) (t,s)-sequences and (t,m,s)-nets; and 3) lattices.
The first category represents one of the earliest methods, and is based on extending
the van der Corput sequence. The Halton sequence is an n-dimensional generaliza-
tion of the van der Corput sequence, but instead of using binary representations,
a different basis is used for each coordinate [430]. The result is a reasonable de-
terministic replacement for random samples in many applications. The resulting
discrepancy (and dispersion) is lower than that for random samples (with high
probability). Figure 5.8a shows the first 196 Halton points in R2.

Choose n relatively prime integers p1, p2, . . . , pn (usually the first n primes,
p1 = 2, p2 = 3, . . ., are chosen). To construct the ith sample, consider the base-p
representation for i, which takes the form i = a0 + pa1 + p2a2 + p3a3 + The
following point in [0, 1] is obtained by reversing the order of the bits and moving
the decimal point (as was done in Figure 5.2):

r(i, p) =
a0
p

+
a1
p2

+
a2
p3

+
a3
p4

+ · · · . (5.24)

For p = 2, this yields the ith point in the van der Corput sequence. Starting from
i = 0, the ith sample in the Halton sequence is

(
r(i, p1), r(i, p2), . . . , r(i, pn)

)
. (5.25)

208 S. M. LaValle: Planning Algorithms

Suppose instead that k, the required number of points, is known. In this case,
a better distribution of samples can be obtained. The Hammersley point set [431]
is an adaptation of the Halton sequence. Using only d − 1 distinct primes and
starting at i = 0, the ith sample in a Hammersley point set with k elements is

(
i/k, r(i, p1), . . . , r(i, pn−1)

)
. (5.26)

Figure 5.8b shows the Hammersley set for n = 2 and k = 196.
The construction of Halton/Hammersley samples is simple and efficient, which

has led to widespread application. They both achieve asymptotically optimal
discrepancy; however, the constant in their asymptotic analysis increases more
than exponentially with dimension [738]. The constant for the dispersion also
increases exponentially, which is much worse than for the methods of Section
5.2.3.

(a) 196 Halton points (b) 196 Hammersley points

Figure 5.8: The Halton and Hammersley points are easy to construct and provide
a nice alternative to random sampling that achieves more regularity. Compare the
Voronoi regions to those in Figure 5.3. Beware that although these sequences pro-
duce asymptotically optimal discrepancy, their performance degrades substantially
in higher dimensions (e.g., beyond 10).

Improved constants are obtained for sequences and finite points by using (t,s)-
sequences, and (t,m,s)-nets, respectively [738]. The key idea is to enforce zero
discrepancy over particular subsets of R known as canonical rectangles, and all
remaining ranges in R will contribute small amounts to discrepancy. The most
famous and widely used (t,s)-sequences are Sobol’ and Faure (see [738]). The
Niederreiter-Xing (t,s)-sequence has the best-known asymptotic constant, (a/n)n,
in which a is a small positive constant [739].

The third category is lattices, which can be considered as a generalization of
grids that allows nonorthogonal axes [682, 893, 959]. As an example, consider

5.3. COLLISION DETECTION 209

Figure 5.5b, which shows 196 lattice points generated by the following technique.
Let α be a positive irrational number. For a fixed k, generate the ith point ac-
cording to (i/k, {iα}), in which {·} denotes the fractional part of the real value
(modulo-one arithmetic). In Figure 5.5b, α = (

√
5 + 1)/2, the golden ratio. This

procedure can be generalized to n dimensions by picking n− 1 distinct irrational
numbers. A technique for choosing the α parameters by using the roots of irre-
ducible polynomials is discussed in [682]. The ith sample in the lattice is

(
i

k
, {iα1}, . . . , {iαn−1}

)

. (5.27)

Recent analysis shows that some lattice sets achieve asymptotic discrepancy
that is very close to that of the best-known nonlattice sample sets [445, 938].
Thus, restricting the points to lie on a lattice seems to entail little or no loss in
performance, but has the added benefit of a regular neighborhood structure that
is useful for path planning. Historically, lattices have required the specification
of k in advance; however, there has been increasing interest in extensible lattices,
which are infinite sequences [446, 938].

5.3 Collision Detection

Once it has been decided where the samples will be placed, the next problem is to
determine whether the configuration is in collision. Thus, collision detection is a
critical component of sampling-based planning. Even though it is often treated as
a black box, it is important to study its inner workings to understand the informa-
tion it provides and its associated computational cost. In most motion planning
applications, the majority of computation time is spent on collision checking.

A variety of collision detection algorithms exist, ranging from theoretical algo-
rithms that have excellent computational complexity to heuristic, practical algo-
rithms whose performance is tailored to a particular application. The techniques
from Section 4.3 can be used to develop a collision detection algorithm by defining
a logical predicate using the geometric model of Cobs. For the case of a 2D world
with a convex robot and obstacle, this leads to an linear-time collision detection
algorithm. In general, however, it can be determined whether a configuration is
in collision more efficiently by avoiding the full construction of Cobs.

5.3.1 Basic Concepts

As in Section 3.1.1, collision detection may be viewed as a logical predicate. In
the current setting it appears as φ : C → {true, false}, in which the domain is
C instead of W . If q ∈ Cobs, then φ(q) = true; otherwise, φ(q) = false.

Distance between two sets For the Boolean-valued function φ, there is no
information about how far the robot is from hitting the obstacles. Such informa-
tion is very important in planning algorithms. A distance function provides this

210 S. M. LaValle: Planning Algorithms

information and is defined as d : C → [0,∞), in which the real value in the range
of f indicates the distance in the world,W , between the closest pair of points over
all pairs from A(q) and O. In general, for two closed, bounded subsets, E and F ,
of Rn, the distance is defined as

ρ(E,F) = min
e∈E

{

min
f∈F

{

‖e− f‖
}}

, (5.28)

in which ‖ · ‖ is the Euclidean norm. Clearly, if E ∩F 6= ∅, then ρ(E,F) = 0. The
methods described in this section may be used to either compute distance or only
determine whether q ∈ Cobs. In the latter case, the computation is often much
faster because less information is required.

Two-phase collision detection Suppose that the robot is a collection of m
attached links, A1, A2, . . ., Am, and that O has k connected components. For this
complicated situation, collision detection can be viewed as a two-phase process.

1. Broad Phase: In the broad phase, the task is to avoid performing expensive
computations for bodies that are far away from each other. Simple bounding
boxes can be placed around each of the bodies, and simple tests can be per-
formed to avoid costly collision checking unless the boxes overlap. Hashing
schemes can be employed in some cases to greatly reduce the number of pairs
of boxes that have to be tested for overlap [703]. For a robot that consists
of multiple bodies, the pairs of bodies that should be considered for collision
must be specified in advance, as described in Section 4.3.1.

2. Narrow Phase: In the narrow phase, individual pairs of bodies are each
checked carefully for collision. Approaches to this phase are described in
Sections 5.3.2 and 5.3.3.

5.3.2 Hierarchical Methods

In this section, suppose that two complicated, nonconvex bodies, E and F , are
to be checked for collision. Each body could be part of either the robot or the
obstacle region. They are subsets of R2 or R3, defined using any kind of geometric
primitives, such as triangles in R3. Hierarchical methods generally decompose
each body into a tree. Each vertex in the tree represents a bounding region that
contains some subset of the body. The bounding region of the root vertex contains
the whole body.

There are generally two opposing criteria that guide the selection of the type
of bounding region:

1. The region should fit the intended body points as tightly as possible.

2. The intersection test for two regions should be as efficient as possible.

5.3. COLLISION DETECTION 211

(a) (b) (c) (d)

Figure 5.9: Four different kinds of bounding regions: (a) sphere, (b) axis-aligned
bounding box (AABB), (c) oriented bounding box (OBB), and (d) convex hull.
Each usually provides a tighter approximation than the previous one but is more
expensive to test for overlapping pairs.

Figure 5.10: The large circle shows the bounding region for a vertex that covers an
L-shaped body. After performing a split along the dashed line, two smaller circles
are used to cover the two halves of the body. Each circle corresponds to a child
vertex.

Several popular choices are shown in Figure 5.9 for an L-shaped body.

The tree is constructed for a body, E (or alternatively, F) recursively as fol-
lows. For each vertex, consider the set X of all points in E that are contained in
the bounding region. Two child vertices are constructed by defining two smaller
bounding regions whose union covers X. The split is made so that the portion cov-
ered by each child is of similar size. If the geometric model consists of primitives
such as triangles, then a split could be made to separate the triangles into two
sets of roughly the same number of triangles. A bounding region is then computed
for each of the children. Figure 5.10 shows an example of a split for the case of
an L-shaped body. Children are generated recursively by making splits until very
simple sets are obtained. For example, in the case of triangles in space, a split is
made unless the vertex represents a single triangle. In this case, it is easy to test
for the intersection of two triangles.

Consider the problem of determining whether bodies E and F are in collision.
Suppose that the trees Te and Tf have been constructed for E and F , respectively.
If the bounding regions of the root vertices of Te and Tf do not intersect, then it
is known that Te and Tf are not in collision without performing any additional
computation. If the bounding regions do intersect, then the bounding regions of

212 S. M. LaValle: Planning Algorithms

the children of Te are compared to the bounding region of Tf . If either of these
intersect, then the bounding region of Tf is replaced with the bounding regions
of its children, and the process continues recursively. As long as the bounding
regions overlap, lower levels of the trees are traversed, until eventually the leaves
are reached. If triangle primitives are used for the geometric models, then at the
leaves the algorithm tests the individual triangles for collision, instead of bounding
regions. Note that as the trees are traversed, if a bounding region from the vertex
v1 of Te does not intersect the bounding region from a vertex, v2, of Tf , then no
children of v1 have to be compared to children of v1. Usually, this dramatically
reduces the number of comparisons, relative to a naive approach that tests all pairs
of triangles for intersection.

It is possible to extend the hierarchical collision detection scheme to also com-
pute distance. The closest pair of points found so far serves as an upper bound
that prunes aways some future pairs from consideration. If a pair of bounding
regions has a distance greater than the smallest distance computed so far, then
their children do not have to be considered [638]. In this case, an additional re-
quirement usually must be imposed. Every bounding region must be a proper
subset of its parent bounding region [807]. If distance information is not needed,
then this requirement can be dropped.

5.3.3 Incremental Methods

This section focuses on a particular approach called incremental distance com-
putation, which assumes that between successive calls to the collision detection
algorithm, the bodies move only a small amount. Under this assumption the
algorithm achieves “almost constant time” performance for the case of convex
polyhedral bodies [636, 702]. Nonconvex bodies can be decomposed into convex
components.

These collision detection algorithms seem to offer wonderful performance, but
this comes at a price. The models must be coherent, which means that all of the
primitives must fit together nicely. For example, if a 2D model uses line segments,
all of the line segments must fit together perfectly to form polygons. There can be
no isolated segments or chains of segments. In three dimensions, polyhedral models
are required to have all faces come together perfectly to form the boundaries of
3D shapes. The model cannot be an arbitrary collection of 3D triangles.

The method will be explained for the case of 2D convex polygons, which are
interpreted as convex subsets of R2. Voronoi regions for a convex polygon will be
defined in terms of features. The feature set is the set of all vertices and edges of a
convex polygon. Thus, a polygon with n edges has 2n features. Any point outside
of the polygon has a closest feature in terms of Euclidean distance. For a given
feature, F , the set of all points in R2 from which F is the closest feature is called
the Voronoi region of F and is denoted Vor(F). Figure 5.11 shows all ten Voronoi
regions for a pentagon. Each feature is considered as a point set in the discussion
below.

5.3. COLLISION DETECTION 213

V

V

V

E

E

E

V

E

E

V

Figure 5.11: The Voronoi regions alternate between being edge-based and vertex-
based. The Voronoi regions of vertices are labeled with a “V” and the Voronoi
regions of edges are labeled with an “E.”

For any two convex polygons that do not intersect, the closest point is deter-
mined by a pair of points, one on each polygon (the points are unique, except in
the case of parallel edges). Consider the feature for each point in the closest pair.
There are only three possible combinations:

• Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

• Edge-Vertex One point of the closest pair lies on an edge, and the other
lies on a vertex.

• Edge-Edge Each point of the closest pair lies on an edge. In this case, the
edges must be parallel.

Let P1 and P2 be two convex polygons, and let F1 and F2 represent any feature
pair, one from each polygon. Let (x1, y1) ∈ F1 and (x2, y2) ∈ F2 denote the closest
pair of points, among all pairs of points in F1 and F2, respectively. The following
condition implies that the distance between (x1, y1) and (x2, y2) is the distance
between P1 and P2:

(x1, y1) ∈ Vor(F2) and (x2, y2) ∈ Vor(F1). (5.29)

If (5.29) is satisfied for a given feature pair, then the distance between P1 and P2

equals the distance between F1 and F2. This implies that the distance between P1

and P2 can be determined in constant time. The assumption that P1 moves only
a small amount relative to P2 is made to increase the likelihood that the closest
feature pair remains the same. This is why the phrase “almost constant time” is
used to describe the performance of the algorithm. Of course, it is possible that
the closest feature pair will change. In this case, neighboring features are tested

214 S. M. LaValle: Planning Algorithms

using the condition above until the new closest pair of features is found. In this
worst case, this search could be costly, but this violates the assumption that the
bodies do not move far between successive collision detection calls.

The 2D ideas extend to 3D convex polyhedra [247, 636, 702]. The primary
difference is that three kinds of features are considered: faces, edges, and vertices.
The cases become more complicated, but the idea is the same. Once again, the
condition regarding mutual Voronoi regions holds, and the resulting incremental
collision detection algorithm has “almost constant time” performance.

5.3.4 Checking a Path Segment

Collision detection algorithms determine whether a configuration lies in Cfree, but
motion planning algorithms require that an entire path maps into Cfree. The
interface between the planner and collision detection usually involves validation
of a path segment (i.e., a path, but often a short one). This cannot be checked
point-by-point because it would require an uncountably infinite number of calls to
the collision detection algorithm.

Suppose that a path, τ : [0, 1]→ C, needs to be checked to determine whether
τ([0, 1]) ⊂ Cfree. A common approach is to sample the interval [0, 1] and call the
collision checker only on the samples. What resolution of sampling is required?
How can one ever guarantee that the places where the path is not sampled are
collision-free? There are both practical and theoretical answers to these questions.
In practice, a fixed ∆q > 0 is often chosen as the C-space step size. Points t1, t2 ∈
[0, 1] are then chosen close enough together to ensure that ρ(τ(t1), τ(t2)) ≤ ∆q, in
which ρ is the metric on C. The value of ∆q is often determined experimentally. If
∆q is too small, then considerable time is wasted on collision checking. If ∆q is too
large, then there is a chance that the robot could jump through a thin obstacle.

Setting ∆q empirically might not seem satisfying. Fortunately, there are sound
algorithmic ways to verify that a path is collision-free. In some applications the
methods are still not used because they are trickier to implement and they often
yield worse performance. Therefore, both methods are presented here, and you can
decide which is appropriate, depending on the context and your personal tastes.

Ensuring that τ([0, 1]) ⊂ Cfree requires the use of both distance information
and bounds on the distance that points on A can travel in R. Such bounds can
be obtained by using the robot displacement metric from Example 5.6. Before ex-
pressing the general case, first we will explain the concept in terms of a rigid robot
that translates and rotates inW = R2. Let xt, yt ∈ R2 and θ ∈ [0, 2π]/ ∼. Suppose
that a collision detection algorithm indicates that A(q) is at least d units away
from collision with obstacles in W . This information can be used to determine
a region in Cfree that contains q. Suppose that the next candidate configuration
to be checked along τ is q′. If no point on A travels more than distance d when
moving from q to q′ along τ , then q′ and all configurations between q and q′ must
be collision-free. This assumes that on the path from q to q′, every visited config-
uration must lie between qi and q

′
i for the ith coordinate and any i from 1 to n.

5.3. COLLISION DETECTION 215

A x

y

ar

r

Figure 5.12: The furthest point on A from the origin travels the fastest when A
is rotated. At most it can be displaced by 2πr, if xt and yt are fixed.

If the robot can instead take any path between q and q′, then no such guarantee
can be made).

When A undergoes a translation, all points move the same distance. For
rotation, however, the distance traveled depends on how far the point on A is
from the rotation center, (0, 0). Let ar = (xr, yr) denote the point on A that
has the largest magnitude, r =

√

x2r + y2r . Figure 5.12 shows an example. A
transformed point a ∈ A may be denoted by a(xt, yt, θ). The following bound is
obtained for any a ∈ A, if the robot is rotated from orientation θ to θ′:

‖a(xt, yt, θ)− a(xt, yt, θ′)‖ ≤ ‖ar(xt, yt, θ)− ar(xt, yt, θ′)‖ < r|θ − θ′|, (5.30)

assuming that a path in C is followed that interpolates between θ and θ′ (using the
shortest path in S1 between θ and θ′). Thus, if A(q) is at least d away from the
obstacles, then the orientation may be changed without causing collision as long
as r|θ − θ′| < d. Note that this is a loose upper bound because ar travels along a
circular arc and can be displaced by no more than 2πr.

Similarly, xt and yt may individually vary up to d, yielding |xt − x′t| < d and
|yt − y′t| < d. If all three parameters vary simultaneously, then a region in Cfree
can be defined as

{(x′t, y′t, θ′) ∈ C | |xt − x′t|+ |yt − y′t|+ r|θ − θ′| < d}. (5.31)

Such bounds can generally be used to set a step size, ∆q, for collision checking
that guarantees the intermediate points lie in Cfree. The particular value used may
vary depending on d and the direction8 of the path.

For the case of SO(3), once again the displacement of the point on A that
has the largest magnitude can be bounded. It is best in this case to express the
bounds in terms of quaternion differences, ‖h−h′‖. Euler angles may also be used

8To formally talk about directions, it would be better to define a differentiable structure on
C. This will be deferred to Section 8.3, where it seems unavoidable.

216 S. M. LaValle: Planning Algorithms

to obtain a straightforward generalization of (5.31) that has six terms, three for
translation and three for rotation. For each of the three rotation parts, a point
with the largest magnitude in the plane perpendicular to the rotation axis must
be chosen.

If there are multiple links, it becomes much more complicated to determine the
step size. Each point a ∈ Ai is transformed by some nonlinear function based on
the kinematic expressions from Sections 3.3 and 3.4. Let a : C → W denote this
transformation. In some cases, it might be possible to derive a Lipschitz condition
of the form

‖a(q)− a(q′)‖ < c‖q − q′‖, (5.32)

in which c ∈ (0,∞) is a fixed constant, a is any point on Ai, and the expression
holds for any q, q′ ∈ C. The goal is to make the Lipschitz constant, c, as small as
possible; this enables larger variations in q.

A better method is to individually bound the link displacement with respect
to each parameter,

‖a(q1, . . . , qi−1, qi, qi+1, . . . , qn)− a(q1, . . . , qi−1, q
′
i, qi+1, . . . , qn)‖ < ci|qi − q′i|,

(5.33)
to obtain the Lipschitz constants c1, . . ., cn. The bound on robot displacement
becomes

‖a(q)− a(q′)‖ <
n∑

i=1

ci|qi − q′i|. (5.34)

The benefit of using individual parameter bounds can be seen by considering a long
chain. Consider a 50-link chain of line segments in R2, and each link has length 10.
The C-space is T50, which can be parameterized as [0, 2π]50/ ∼. Suppose that the
chain is in a straight-line configuration (θi = 0 for all 1 ≤ i ≤ 50), which means
that the last point is at (500, 0) ∈ W . Changes in θ1, the orientation of the first
link, dramatically move A50. However, changes in θ50 move A50 a smaller amount.
Therefore, it is advantageous to pick a different ∆qi for each 1 ≤ i ≤ 50. In this
example, a smaller value should be used for ∆θ1 in comparison to ∆θ50.

Unfortunately, there are more complications. Suppose the 50-link chain is in
a configuration that folds all of the links on top of each other (θi = π for each
1 ≤ i ≤ n). In this case, A50 does not move as fast when θ1 is perturbed,
in comparison to the straight-line configuration. A larger step size for θ1 could
be used for this configuration, relative to other parts of C. The implication is
that, although Lipschitz constants can be made to hold over all of C, it might be
preferable to determine a better bound in a local region around q ∈ C. A linear
method could be obtained by analyzing the Jacobian of the transformations, such
as (3.53) and (3.57).

Another important concern when checking a path is the order in which the
samples are checked. For simplicity, suppose that ∆q is constant and that the
path is a constant-speed parameterization. Should the collision checker step along
from 0 up to 1? Experimental evidence indicates that it is best to use a recursive
binary strategy [379]. This makes no difference if the path is collision-free, but

5.4. INCREMENTAL SAMPLING AND SEARCHING 217

it often saves time if the path is in collision. This is a kind of sampling problem
over [0, 1], which is addressed nicely by the van der Corput sequence, ν. The last
column in Figure 5.2 indicates precisely where to check along the path in each
step. Initially, τ(1) is checked. Following this, points from the van der Corput
sequence are checked in order: τ(0), τ(1/2), τ(1/4), τ(3/4), τ(1/8), The
process terminates if a collision is found or when the dispersion falls below ∆q.
If ∆q is not constant, then it is possible to skip over some points of ν in regions
where the allowable variation in q is larger.

5.4 Incremental Sampling and Searching

5.4.1 The General Framework

The algorithms of Sections 5.4 and 5.5 follow the single-query model, which means
(qI , qG) is given only once per robot and obstacle set. This means that there are no
advantages to precomputation, and the sampling-based motion planning problem
can be considered as a kind of search. The multiple-query model, which favors
precomputation, is covered in Section 5.6.

The sampling-based planning algorithms presented in the present section are
strikingly similar to the family of search algorithms summarized in Section 2.2.4.
The main difference lies in step 3 below, in which applying an action, u, is replaced
by generating a path segment, τs. Another difference is that the search graph, G,
is undirected, with edges that represent paths, as opposed to a directed graph in
which edges represent actions. It is possible to make these look similar by defining
an action space for motion planning that consists of a collection of paths, but this
is avoided here. In the case of motion planning with differential constraints, this
will actually be required; see Chapter 14.

Most single-query, sampling-based planning algorithms follow this template:

1. Initialization: Let G(V,E) represent an undirected search graph, for which
V contains at least one vertex and E contains no edges. Typically, V contains
qI , qG, or both. In general, other points in Cfree may be included.

2. Vertex Selection Method (VSM): Choose a vertex qcur ∈ V for expan-
sion.

3. Local Planning Method (LPM): For some qnew ∈ Cfree that may or may
not be represented by a vertex in V , attempt to construct a path τs : [0, 1]→
Cfree such that τ(0) = qcur and τ(1) = qnew. Using the methods of Section
5.3.4, τs must be checked to ensure that it does not cause a collision. If this
step fails to produce a collision-free path segment, then go to step 2.

4. Insert an Edge in the Graph: Insert τs into E, as an edge from qcur to
qnew. If qnew is not already in V , then it is inserted.

218 S. M. LaValle: Planning Algorithms

5. Check for a Solution: Determine whether G encodes a solution path.
As in the discrete case, if there is a single search tree, then this is trivial;
otherwise, it can become complicated and expensive.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied, in which case the algorithm reports failure.

In the present context, G is a topological graph, as defined in Example 4.6. Each
vertex is a configuration and each edge is a path that connects two configurations.
In this chapter, it will be simply referred to as a graph when there is no chance of
confusion. Some authors refer to such a graph as a roadmap; however, we reserve
the term roadmap for a graph that contains enough paths to make any motion
planning query easily solvable. This case is covered in Section 5.6 and throughout
Chapter 6.

A large family of sampling-based algorithms can be described by varying the
implementations of steps 2 and 3. Implementations of the other steps may also
vary, but this is less important and will be described where appropriate. For
convenience, step 2 will be called the vertex selection method (VSM) and step 3
will be called the local planning method (LPM). The role of the VSM is similar to
that of the priority queue, Q, in Section 2.2.1. The role of the LPM is to compute
a collision-free path segment that can be added to the graph. It is called local
because the path segment is usually simple (e.g., the shortest path) and travels a
short distance. It is not global in the sense that the LPM does not try to solve the
entire planning problem; it is expected that the LPM may often fail to construct
path segments.

It will be formalized shortly, but imagine for the time being that any of the
search algorithms from Section 2.2 may be applied to motion planning by ap-
proximating C with a high-resolution grid. The resulting problem looks like a
multi-dimensional extension of Example 2.1 (the “labyrinth” walls are formed by
Cobs). For a high-resolution grid in a high-dimensional space, most classical dis-
crete searching algorithms have trouble getting trapped in a local minimum. There
could be an astronomical number of configurations that fall within a concavity in
Cobs that must be escaped to solve the problem, as shown in Figure 5.13a. Imagine
a problem in which the C-space obstacle is a giant “bowl” that can trap the config-
uration. This figure is drawn in two dimensions, but imagine that the C has many
dimensions, such as six for SE(3) or perhaps dozens for a linkage. If the discrete
planning algorithms from Section 2.2 are applied to a high-resolution grid approx-
imation of C, then they will all waste their time filling up the bowl before being
able to escape to qG. The number of grid points in this bowl would typically be on
the order of 100n for an n-dimensional C-space. Therefore, sampling-based motion
planning algorithms combine sampling and searching in a way that attempts to
overcome this difficulty.

As in the case of discrete search algorithms, there are several classes of algo-
rithms based on the number of search trees.

5.4. INCREMENTAL SAMPLING AND SEARCHING 219

qI qG

qI qG

(a) (b)

qG
qI

qGqI

(c) (d)

Figure 5.13: All of these depict high-dimensional obstacle regions in C-space. (a)
The search must involve some sort of multi-resolution aspect, otherwise, that al-
gorithm may explore too many points within a cavity. (b) Sometimes the problem
is like a bug trap, in which case bidirectional search can help. (c) For a double bug
trap, multi-directional search may be needed. (d) This example is hard to solve
even for multi-directional search.

Unidirectional (single-tree) methods: In this case, the planning ap-
pears very similar to discrete forward search, which was given in Figure 2.4.
The main difference between algorithms in this category is how they imple-
ment the VSM and LPM. Figure 5.13b shows a bug trap9 example for which
forward-search algorithms would have great trouble; however, the problem
might not be difficult for backward search, if the planner incorporates some
kind of greedy, best-first behavior. This example, again in high dimensions,
can be considered as a kind of “bug trap.” To leave the trap, a path must
be found from qI into the narrow opening. Imagine a fly buzzing around
through the high-dimensional trap. The escape opening might not look too
difficult in two dimensions, but if it has a small range with respect to each
configuration parameter, it is nearly impossible to find the opening. The tip
of the “volcano” would be astronomically small compared to the rest of the
bug trap. Examples such as this provide some motivation for bidirectional

9This principle is actually used in real life to trap flying bugs. This analogy was suggested
by James O’Brien in a discussion with James Kuffner.

220 S. M. LaValle: Planning Algorithms

algorithms. It might be easier for a search tree that starts in qG to arrive in
the bug trap.

Bidirectional (two-tree) methods: Since it is not known whether qI or
qG might lie in a bug trap (or another challenging region), a bidirectional
approach is often preferable. This follows from an intuition that two prop-
agating wavefronts, one centered on qI and the other on qG, will meet after
covering less area in comparison to a single wavefront centered at qI that
must arrive at qG. A bidirectional search is achieved by defining the VSM to
alternate between trees when selecting vertices. The LPM sometimes gen-
erates paths that explore new parts of Cfree, and at other times it tries to
generate a path that connects the two trees.

Multi-directional (more than two trees) methods: If the problem
is so bad that a double bug trap exists, as shown in Figure 5.13c, then it
might make sense to grow trees from other places in the hopes that there are
better chances to enter the traps in the other direction. This complicates the
problem of connecting trees, however. Which pairs of trees should be selected
in each iteration for possible connection? How often should the same pair be
selected? Which vertex pairs should be selected? Many heuristic parameters
may arise in practice to answer these questions.

Of course, one can play the devil’s advocate and construct the example in Figure
5.13d, for which virtually all sampling-based planning algorithms are doomed.
Even harder versions can be made in which a sequence of several narrow corridors
must be located and traversed. We must accept the fact that some problems are
hopeless to solve using sampling-based planning methods, unless there is some
problem-specific structure that can be additionally exploited.

5.4.2 Adapting Discrete Search Algorithms

One of the most convenient and straightforward ways to make sampling-based
planning algorithms is to define a grid over C and conduct a discrete search using
the algorithms of Section 2.2. The resulting planning problem actually looks very
similar to Example 2.1. Each edge now corresponds to a path in Cfree. Some edges
may not exist because of collisions, but this will have to be revealed incrementally
during the search because an explicit representation of Cobs is too expensive to
construct (recall Section 4.3).

Assume that an n-dimensional C-space is represented as a unit cube, C =
[0, 1]n/ ∼, in which ∼ indicates that identifications of the sides of the cube are
made to reflect the C-space topology. Representing C as a unit cube usually
requires a reparameterization. For example, an angle θ ∈ [0, 2π) would be replaced
with θ/2π to make the range lie within [0, 1]. If quaternions are used for SO(3),
then the upper half of S3 must be deformed into [0, 1]3/ ∼.

5.4. INCREMENTAL SAMPLING AND SEARCHING 221

Discretization Assume that C is discretized by using the resolutions k1, k2,. . .,
and kn, in which each ki is a positive integer. This allows the resolution to be
different for each C-space coordinate. Either a standard grid or a Sukharev grid
can be used. Let

∆qi = [0 · · · 0 1/ki 0 · · · 0], (5.35)

in which the first i − 1 components and the last n − i components are 0. A grid
point is a configuration q ∈ C that can be expressed in the form10

n∑

i=1

ji∆qi, (5.36)

in which each ji ∈ {0, 1, . . . , ki}. The integers j1, . . ., jn can be imagined as array
indices for the grid. Let the term boundary grid point refer to a grid point for
which ji = 0 or ji = ki for some i. Due to identifications, boundary grid points
might have more than one representation using (5.36).

Neighborhoods For each grid point q we need to define the set of nearby grid
points for which an edge may be constructed. Special care must be given to
defining the neighborhood of a boundary grid point to ensure that identifications
and the C-space boundary (if it exists) are respected. If q is not a boundary grid
point, then the 1-neighborhood is defined as

N1(q) = {q +∆q1, . . . , q +∆qn, q −∆q1, . . . , q −∆qn}. (5.37)

For an n-dimensional C-space there at most 2n 1-neighbors. In two dimensions,
this yields at most four 1-neighbors, which can be thought of as “up,” “down,”
“left,” and “right.” There are at most four because some directions may be blocked
by the obstacle region.

A 2-neighborhood is defined as

N2(q) = {q ±∆qi ±∆qj | 1 ≤ i, j ≤ n, i 6= j} ∪N1(q). (5.38)

Similarly, a k-neighborhood can be defined for any positive integer k ≤ n. For
an n-neighborhood, there are at most 3n − 1 neighbors; there may be fewer due
to boundaries or collisions. The definitions can be easily extended to handle the
boundary points.

Obtaining a discrete planning problem Once the grid and neighborhoods
have been defined, a discrete planning problem is obtained. Figure 5.14 depicts
the process for a problem in which there are nine Sukharev grid points in [0, 1]2.
Using 1-neighborhoods, the potential edges in the search graph, G(V,E), appear
in Figure 5.14a. Note that G is a topological graph, as defined in Example 4.6,
because each vertex is a configuration and each edge is a path. If qI and qG do not

10Alternatively, the general lattice definition in (5.21) could be used.

222 S. M. LaValle: Planning Algorithms

(a) (b)

(c) (d)

Figure 5.14: A topological graph can be constructed during the search and can
successfully solve a motion planning problem using very few samples.

coincide with grid points, they need to be connected to some nearby grid points,
as shown in Figure 5.14b. What grid points should qI and qG be connected to?
As a general rule, if k-neighbors are used, then one should try connecting qI and
qG to any grid points that are at least as close as the furthest k-neighbor from a
typical grid point.

Usually, all of the vertices and edges shown in Figure 5.14b do not appear in G
because some intersect with Cobs. Figure 5.14c shows a more typical situation, in
which some of the potential vertices and edges are removed because of collisions.
This representation could be computed in advance by checking all potential vertices
and edges for collision. This would lead to a roadmap, which is suited for multiple
queries and is covered in Section 5.6. In this section, it is assumed that G is
revealed “on the fly” during the search. This is the same situation that occurs
for the discrete planning methods from Section 2.2. In the current setting, the
potential edges of G are validated during the search. The candidate edges to
evaluate are given by the definition of the k-neighborhoods. During the search,

5.4. INCREMENTAL SAMPLING AND SEARCHING 223

any edge or vertex that has been checked for collision explicitly appears in a data
structure so that it does not need to be checked again. At the end of the search,
a path is found, as depicted in Figure 5.14d.

Grid resolution issues The method explained so far will nicely find the solution
to many problems when provided with the correct resolution. If the number of
points per axis is too high, then the search may be too slow. This motivates
selecting fewer points per axis, but then solutions might be missed. This trade-off
is fundamental to sampling-based motion planning. In a more general setting, if
other forms of sampling and neighborhoods are used, then enough samples have
to be generated to yield a sufficiently small dispersion.

There are two general ways to avoid having to select this resolution (or more
generally, dispersion):

1. Iteratively refine the resolution until a solution is found. In this case, sam-
pling and searching become interleaved. One important variable is how
frequently to alternate between the two processes. This will be presented
shortly.

2. An alternative is to abandon the adaptation of discrete search algorithms
and develop algorithms directly for the continuous problem. This forms the
basis of the methods in Sections 5.4.3, 5.4.4, and 5.5.

The most straightforward approach is to iteratively improve the grid resolution.
Suppose that initially a standard grid with 2n points total and 2 points per axis
is searched using one of the discrete search algorithms, such as best-first or A∗. If
the search fails, what should be done? One possibility is to double the resolution,
which yields a grid with 4n points. Many of the edges can be reused from the
first grid; however, the savings diminish rapidly in higher dimensions. Once the
resolution is doubled, the search can be applied again. If it fails again, then the
resolution can be doubled again to yield 8n points. In general, there would be a
full grid for 2ni points, for each i. The problem is that if n is large, then the rate
of growth is too large. For example, if n = 10, then there would initially be 1024
points; however, when this fails, the search is not performed again until there are
over one million points! If this also fails, then it might take a very long time to
reach the next level of resolution, which has 230 points.

A method similar to iterative deepening from Section 2.2.2 would be preferable.
Simply discard the efforts of the previous resolution and make grids that have in

points per axis for each iteration i. This yields grids of sizes 2n, 3n, 4n, and so on,
which is much better. The amount of effort involved in searching a larger grid is
insignificant compared to the time wasted on lower resolution grids. Therefore, it
seems harmless to discard previous work.

A better solution is not to require that a complete grid exists before it can
be searched. For example, the resolution can be increased for one axis at a time
before attempting to search again. Even better yet may be to tightly interleave

224 S. M. LaValle: Planning Algorithms

searching and sampling. For example, imagine that the samples appear as an
infinite, dense sequence α. The graph can be searched after every 100 points are
added, assuming that neighborhoods can be defined or constructed even though
the grid is only partially completed. If the search is performed too frequently, then
searching would dominate the running time. An easy way make this efficient is
to apply the union-find algorithm [243, 823] to iteratively keep track of connected
components in G instead of performing explicit searching. If qI and qG become part
of the same connected component, then a solution path has been found. Every
time a new point in the sequence α is added, the “search” is performed in nearly11

constant time by the union-find algorithm. This is the tightest interleaving of
the sampling and searching, and results in a nice sampling-based algorithm that
requires no resolution parameter. It is perhaps best to select a sequence α that
contains some lattice structure to facilitate the determination of neighborhoods in
each iteration.

What if we simply declare the resolution to be outrageously high at the outset?
Imagine there are 100n points in the grid. This places all of the burden on the
search algorithm. If the search algorithm itself is good at avoiding local minima
and has built-in multi-resolution qualities, then it may perform well without the
iterative refinement of the sampling. The method of Section 5.4.3 is based on
this idea by performing best-first search on a high-resolution grid, combined with
random walks to avoid local minima. The algorithms of Section 5.5 go one step
further and search in a multi-resolution way without requiring resolutions and
neighborhoods to be explicitly determined. This can be considered as the limiting
case as the number of points per axis approaches infinity.

Although this section has focused on grids, it is also possible to use other forms
of sampling from Section 5.2. This requires defining the neighborhoods in a suit-
able way that generalizes the k-neighborhoods of this section. In every case, an
infinite, dense sample sequence must be defined to obtain resolution completeness
by reducing the dispersion to zero in the limit. Methods for obtaining neighbor-
hoods for irregular sample sets have been developed in the context of sampling-
based roadmaps; see Section 5.6. The notion of improving resolution becomes
generalized to adding samples that improve dispersion (or even discrepancy).

5.4.3 Randomized Potential Fields

Adapting the discrete algorithms from Section 2.2 works well if the problem can
be solved with a small number of points. The number of points per axis must be
small or the dimension must be low, to ensure that the number of points, kn, for
k points per axis and n dimensions is small enough so that every vertex in g can
be reached in a reasonable amount of time. If, for example, the problem requires
50 points per axis and the dimension is 10, then it is impossible to search all of

11It is not constant because the running time is proportional to the inverse Ackerman function,
which grows very, very slowly. For all practical purposes, the algorithm operates in constant time.
See Section 6.5.2.

5.4. INCREMENTAL SAMPLING AND SEARCHING 225

Random Walk BacktrackBest First

Stuck and i < K

Stuck
and i=K

Reset i to 1

Increment i

Initialization (i=1)

Figure 5.15: The randomized potential field method can be modeled as a three-
state machine.

the 5010 samples. Planners that exploit best-first heuristics might find the answer
without searching most of them; however, for a simple problem such as that shown
in Figure 5.13a, the planner will take too long exploring the vertices in the bowl.12

The randomized potential field [70, 72, 588] approach uses random walks to
attempt to escape local minima when best-first search becomes stuck. It was
one of the first sampling-based planners that developed specialized techniques
beyond classical discrete search, in an attempt to better solve challenging motion
planning problems. In many cases, remarkable results were obtained. In its time,
the approach was able to solve problems up to 31 degrees of freedom, which was
well beyond what had been previously possible. The main drawback, however,
was that the method involved many heuristic parameters that had to be adjusted
for each problem. This frustration eventually led to the development of better
approaches, which are covered in Sections 5.4.4, 5.5, and 5.6. Nevertheless, it is
worthwhile to study the clever heuristics involved in this earlier method because
they illustrate many interesting issues, and the method was very influential in the
development of other sampling-based planning algorithms.13

The most complicated part of the algorithm is the definition of a potential
function, which can be considered as a pseudometric that tries to estimate the
distance from any configuration to the goal. In most formulations, there is an
attractive term, which is a metric on C that yields the distance to the goal, and
a repulsive term, which penalizes configurations that come too close to obstacles.
The construction of potential functions involves many heuristics and is covered
in great detail in [588]. One of the most effective methods involves constructing
cost-to-go functions over W and lifting them to C [71]. In this section, it will be
sufficient to assume that some potential function, g(q), is defined, which is the
same notation (and notion) as a cost-to-go function in Section 2.2.2. In this case,
however, there is no requirement that g(q) is optimal or even an underestimate of
the true cost to go.

When the search becomes stuck and a random walk is needed, it is executed for
some number of iterations. Using the discretization procedures of Section 5.4.2, a

12Of course, that problem does not appear to need so many points per axis; fewer may be used
instead, if the algorithm can adapt the sampling resolution or dispersion.

13The exciting results obtained by the method even helped inspire me many years ago to work
on motion planning.

226 S. M. LaValle: Planning Algorithms

high-resolution grid (e.g., 50 points per axis) is initially defined. In each iteration,
the current configuration is modified as follows. Each coordinate, qi, is increased
or decreased by ∆qi (the grid step size) based on the outcome of a fair coin toss.
Topological identifications must be respected, of course. After each iteration, the
new configuration is checked for collision, or whether it exceeds the boundary of
C (if it has a boundary). If so, then it is discarded, and another attempt is made
from the previous configuration. The failures can repeat indefinitely until a new
configuration in Cfree is obtained.

The resulting planner can be described in terms of a three-state machine, which
is shown in Figure 5.15. Each state is called a mode to avoid confusion with earlier
state-space concepts. The VSM and LPM are defined in terms of the mode.
Initially, the planner is in the best first mode and uses qI to start a gradient
descent. While in the best first mode, the VSM selects the newest vertex,
v ∈ V . In the first iteration, this is qI . The LPM creates a new vertex, vn, in a
neighborhood of v, in a direction that minimizes g. The direction sampling may
be performed using randomly selected or deterministic samples. Using random
samples, the sphere sampling method from Section 5.2.2 can be applied. After
some number of tries (another parameter), if the LPM is unsuccessful at reducing
g, then the mode is changed to random walk because the best-first search is
stuck in a local minimum of g.

In the random walk mode, a random walk is executed from the newest ver-
tex. The random walk terminates if either g is lowered or a specified limit of
iterations is reached. The limit is actually sampled from a predetermined ran-
dom variable (which contains parameters that also must be selected). When the
random walk mode terminates, the mode is changed back to best first. A
counter is incremented to keep track of the number of times that the random walk
was attempted. A parameter K determines the maximum number of attempted
random walks (a reasonable value is K = 20 [71]). If best first fails after K
random walks have been attempted, then the backtrack mode is entered. The
backtrack mode selects a vertex at random from among the vertices in V that
were obtained during a random walk. Following this, the counter is reset, and the
mode is changed back to best first.

Due to the random walks, the resulting paths are often too complicated to be
useful in applications. Fortunately, it is straightforward to transform a computed
path into a simpler one that is still collision-free. A common approach is to
iteratively pick pairs of points at random along the domain of the path and attempt
to replace the path segment with a straight-line path (in general, the shortest path
in C). For example, suppose t1, t2 ∈ [0, 1] are chosen at random, and τ : [0, 1] →
Cfree is the computed solution path. This path is transformed into a new path,

τ ′(t) =







τ(t) if 0 ≤ t ≤ t1
aτ(t1) + (1− a)τ(t2) if t1 ≤ t ≤ t2
τ(t) if t2 ≤ t ≤ 1,

(5.39)

in which a ∈ [0, 1] represents the fraction of the way from t1 to t2. Explicitly,

5.4. INCREMENTAL SAMPLING AND SEARCHING 227

a = (t2 − t)/(t2 − t1). The new path must be checked for collision. If it passes,
then it replaces the old path; otherwise, it is discarded and a new pair t1, t2, is
chosen.

The randomized potential field approach can escape high-dimensional local
minima, which allow interesting solutions to be found for many challenging high-
dimensional problems. Unfortunately, the heavy amount of parameter tuning
caused most people to abandon the method in recent times, in favor of newer
methods.

5.4.4 Other Methods

Several influential sampling-based methods are given here. Each of them appears
to offer advantages over the randomized potential field method. All of them use
randomization, which was perhaps inspired by the potential field method.

Ariadne’s Clew algorithm This approach grows a search tree that is biased
to explore as much new territory as possible in each iteration [688, 687]. There are
two modes, search and explore, which alternate over successive iterations. In
the explore mode, the VSM selects a vertex, ve, at random, and the LPM finds
a new configuration that can be easily connected to ve and is as far as possible
from the other vertices in G. A global optimization function that aggregates the
distances to other vertices is optimized using a genetic algorithm. In the search

mode, an attempt is made to extend the vertex added in the explore mode to
the goal configuration. The key idea from this approach, which influenced both
the next approach and the methods in Section 5.5, is that some of the time must
be spent exploring the space, as opposed to focusing on finding the solution. The
greedy behavior of the randomized potential field led to some efficiency but was
also its downfall for some problems because it was all based on escaping local
minima with respect to the goal instead of investing time on global exploration.
One disadvantage of Ariadne’s Clew algorithm is that it is very difficult to solve
the optimization problem for placing a new vertex in the explore mode. Genetic
algorithms were used in [687], which are generally avoided for motion planning
because of the required problem-specific parameter tuning.

Expansive-space planner This method [467, 844] generates samples in a way
that attempts to explore new parts of the space. In this sense, it is similar to
the explore mode of the Ariadne’s Clew algorithm. Furthermore, the planner is
made more efficient by borrowing the bidirectional search idea from discrete search
algorithms, as covered in Section 2.2.3. The VSM selects a vertex, ve, from G with
a probability that is inversely proportional to the number of other vertices of G
that lie within a predetermined neighborhood of ve. Thus, “isolated” vertices
are more likely to be chosen. The LPM generates a new vertex vn at random
within a predetermined neighborhood of ve. It will decide to insert vn into G
with a probability that is inversely proportional to the number of other vertices

228 S. M. LaValle: Planning Algorithms

of G that lie within a predetermined neighborhood of vn. For a fixed number
of iterations, the VSM repeatedly chooses the same vertex, until moving on to
another vertex. The resulting planner is able to solve many interesting problems
by using a surprisingly simple criterion for the placement of points. The main
drawbacks are that the planner requires substantial parameter tuning, which is
problem-specific (or at least specific to a similar family of problems), and the
performance tends to degrade if the query requires systematically searching a long
labyrinth. Choosing the radius of the predetermined neighborhoods essentially
amounts to determining the appropriate resolution.

Random-walk planner A surprisingly simple and efficient algorithm can be
made entirely from random walks [179]. To avoid parameter tuning, the algorithm
adjusts its distribution of directions and magnitude in each iteration, based on the
success of the past k iterations (perhaps k is the only parameter). In each iteration,
the VSM just selects the vertex that was most recently added to G. The LPM
generates a direction and magnitude by generating samples from a multivariate
Gaussian distribution whose covariance parameters are adaptively tuned. The
main drawback of the method is similar to that of the previous method. Both
have difficulty traveling through long, winding corridors. It is possible to combine
adaptive random walks with other search algorithms, such as the potential field
planner [178].

5.5 Rapidly Exploring Dense Trees

This section introduces an incremental sampling and searching approach that
yields good performance in practice without any parameter tuning.14 The idea
is to incrementally construct a search tree that gradually improves the resolution
but does not need to explicitly set any resolution parameters. In the limit, the
tree densely covers the space. Thus, it has properties similar to space filling curves
[842], but instead of one long path, there are shorter paths that are organized into
a tree. A dense sequence of samples is used as a guide in the incremental con-
struction of the tree. If this sequence is random, the resulting tree is called a
rapidly exploring random tree (RRT). In general, this family of trees, whether
the sequence is random or deterministic, will be referred to as rapidly exploring
dense trees (RDTs) to indicate that a dense covering of the space is obtained. This
method was originally developed for motion planning under differential constraints
[608, 611]; that case is covered in Section 14.4.3.

14The original RRT [598] was introduced with a step size parameter, but this is eliminated in
the current presentation. For implementation purposes, one might still want to revert to this
older way of formulating the algorithm because the implementation is a little easier. This will
be discussed shortly.

5.5. RAPIDLY EXPLORING DENSE TREES 229

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G), α(i));
5 G.add edge(qn, α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let α
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
α(i). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =
⋃

e∈E
e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at q0. For k iterations, a tree is iteratively grown by connecting

230 S. M. LaValle: Planning Algorithms

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

5.5. RAPIDLY EXPLORING DENSE TREES 231

qn

q0

Cobs

qs

α(i)

Figure 5.20: If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

α(i) to its nearest point in the swath, S. The connection is usually made along
the shortest possible path. In every iteration, α(i) becomes a vertex. Therefore,
the resulting tree is dense. Figures 5.17–5.18 illustrate an iteration graphically.
Suppose the tree has three edges and four vertices, as shown in Figure 5.17a. If
the nearest point, qn ∈ S, to α(i) is a vertex, as shown in Figure 5.17b, then an
edge is made from qn to α(i). However, if the nearest point lies in the interior of an
edge, as shown in Figure 5.18, then the existing edge is split so that qn appears as
a new vertex, and an edge is made from qn to α(i). The edge splitting, if required,
is assumed to be handled in line 4 by the method that adds edges. Note that the
total number of edges may increase by one or two in each iteration.

The method as described here does not fit precisely under the general frame-
work from Section 5.4.1; however, with the modifications suggested in Section
5.5.2, it can be adapted to fit. In the RDT formulation, the nearest function
serves the purpose of the VSM, but in the RDT, a point may be selected from
anywhere in the swath of the graph. The VSM can be generalized to a swath-point
selection method, SSM. This generalization will be used in Section 14.3.4. The
LPM tries to connect α(i) to qn along the shortest path possible in C.

Figure 5.19 shows an execution of the algorithm in Figure 5.16 for the case
in which C = [0, 1]2 and q0 = (1/2, 1/2). It exhibits a kind of fractal behavior.15

Several main branches are first constructed as it rapidly reaches the far corners of
the space. Gradually, more and more area is filled in by smaller branches. From
the pictures, it is clear that in the limit, the tree densely fills the space. Thus, it
can be seen that the tree gradually improves the resolution (or dispersion) as the
iterations continue. This behavior turns out to be ideal for sampling-based motion
planning.

Recall that in sampling-based motion planning, the obstacle region Cobs is not
explicitly represented. Therefore, it must be taken into account in the construction
of the tree. Figure 5.20 indicates how to modify the algorithm in Figure 5.16 so that
collision checking is taken into account. The modified algorithm appears in Figure
5.21. The procedure stopping-configuration yields the nearest configuration
possible to the boundary of Cfree, along the direction toward α(i). The nearest

15If α is uniform, random, then a stochastic fractal [586] is obtained. Deterministic fractals
can be constructed using sequences that have appropriate symmetries.

232 S. M. LaValle: Planning Algorithms

RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 qn ← nearest(S, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 6= qn then
6 G.add vertex(qs);
7 G.add edge(qn, qs);

Figure 5.21: The RDT with obstacles.

point qn ∈ S is defined to be same (obstacles are ignored); however, the new edge
might not reach to α(i). In this case, an edge is made from qn to qs, the last point
possible before hitting the obstacle. How close can the edge come to the obstacle
boundary? This depends on the method used to check for collision, as explained
in Section 5.3.4. It is sometimes possible that qn is already as close as possible to
the boundary of Cfree in the direction of α(i). In this case, no new edge or vertex
is added that for that iteration.

5.5.2 Efficiently Finding Nearest Points

There are several interesting alternatives for implementing the nearest function
in line 3 of the algorithm in Figure 5.16. There are generally two families of
methods: exact or approximate. First consider the exact case.

Exact solutions Suppose that all edges in G are line segments in Rm for some
dimension m ≥ n. An edge that is generated early in the construction process will
be split many times in later iterations. For the purposes of finding the nearest
point in S, however, it is best to handle this as a single segment. For example, see
the three large branches that extend from the root in Figure 5.19. As the number
of points increases, the benefit of agglomerating the segments increases. Let each
of these agglomerated segments be referred to as a supersegment. To implement
nearest, a primitive is needed that computes the distance between a point and a
line segment. This can be performed in constant time with simple vector calculus.
Using this primitive, nearest is implemented by iterating over all supersegments
and taking the point with minimum distance among all of them. It may be possible
to improve performance by building hierarchical data structures that can eliminate
large sets of supersegments, but this remains to be seen experimentally.

In some cases, the edges of G may not be line segments. For example, the
shortest paths between two points in SO(3) are actually circular arcs along S3. One
possible solution is to maintain a separate parameterization of C for the purposes
of computing the nearest function. For example, SO(3) can be represented
as [0, 1]3/ ∼, by making the appropriate identifications to obtain RP3. Straight-

5.5. RAPIDLY EXPLORING DENSE TREES 233

qn

q0 α(i)

Figure 5.22: For implementation ease, intermediate vertices can be inserted to
avoid checking for closest points along line segments. The trade-off is that the
number of vertices is increased dramatically.

line segments can then be used. The problem is that the resulting metric is not
consistent with the Haar measure, which means that an accidental bias would
result. Another option is to tightly enclose S3 in a 4D cube. Every point on S3

can be mapped outward onto a cube face. Due to antipodal identification, only
four of the eight cube faces need to be used to obtain a bijection between the set
of all rotation and the cube surface. Linear interpolation can be used along the
cube faces, as long as both points remain on the same face. If the points are on
different faces, then two line segments can be used by bending the shortest path
around the corner between the two faces. This scheme will result in less distortion
than mapping SO(3) to [0, 1]3/ ∼; however, some distortion will still exist.

Another approach is to avoid distortion altogether and implement primitives
that can compute the distance between a point and a curve. In the case of SO(3),
a primitive is needed that can find the distance between a circular arc in Rm

and a point in Rm. This might not be too difficult, but if the curves are more
complicated, then an exact implementation of the nearest function may be too
expensive computationally.

Approximate solutions Approximate solutions are much easier to construct,
however, a resolution parameter is introduced. Each path segment can be approx-
imated by inserting intermediate vertices along long segments, as shown in Figure
5.22. The intermediate vertices should be added each time a new sample, α(i),
is inserted into G. A parameter ∆q can be defined, and intermediate samples are
inserted to ensure that no two consecutive vertices in G are ever further than ∆q
from each other. Using intermediate vertices, the interiors of the edges in G are
ignored when finding the nearest point in S. The approximate computation of
nearest is performed by finding the closest vertex to α(i) in G. This approach
is by far the simplest to implement. It also fits precisely under the incremental
sampling and searching framework from Section 5.4.1.

When using intermediate vertices, the trade-offs are clear. The computation
time for each evaluation of nearest is linear in the number of vertices. Increasing
the number of vertices improves the quality of the approximation, but it also
dramatically increases the running time. One way to recover some of this cost is
to insert the vertices into an efficient data structure for nearest-neighbor searching.

234 S. M. LaValle: Planning Algorithms

13

12

14

11
8

9
10

7

4

5

6

2 3

1

7

8

3 1 10 11

2 4 6 9 13 14

12

5

Figure 5.23: A Kd-tree can be used for efficient nearest-neighbor computations.

One of the most practical and widely used data structures is the Kd-tree [264, 365,
758]. A depiction is shown in Figure 5.23 for 14 points in R2. The Kd-tree can
be considered as a multi-dimensional generalization of a binary search tree. The
Kd-tree is constructed for points, P , in R2 as follows. Initially, sort the points
with respect to the x coordinate. Take the median point, p ∈ P , and divide
P into two sets, depending on which side of a vertical line through p the other
points fall. For each of the two sides, sort the points by the y coordinate and find
their medians. Points are divided at this level based on whether they are above
or below horizontal lines. At the next level of recursion, vertical lines are used
again, followed by horizontal again, and so on. The same idea can be applied in
Rn by cycling through the n coordinates, instead of alternating between x and y,
to form the divisions. In [52], the Kd-tree is extended to topological spaces that
arise in motion planning and is shown to yield good performance for RRTs and
sampling-based roadmaps. A Kd-tree of k points can be constructed in O(nk lg k)
time. Topological identifications must be carefully considered when traversing the
tree. To find the nearest point in the tree to some given point, the query algorithm
descends to a leaf vertex whose associated region contains the query point, finds all
distances from the data points in this leaf to the query point, and picks the closest
one. Next, it recursively visits those surrounding leaf vertices that are further from
the query point than the closest point found so far [47, 52]. The nearest point can
be found in time logarithmic in k.

Unfortunately, these bounds hide a constant that increases exponentially with
the dimension, n. In practice, the Kd-tree is useful in motion planning for problems
of up to about 20 dimensions. After this, the performance usually degrades too
much. As an empirical rule, if there are more than 2n points, then the Kd-tree
should be more efficient than naive nearest neighbors. In general, the trade-offs
must be carefully considered in a particular application to determine whether
exact solutions, approximate solutions with naive nearest-neighbor computations,
or approximate solutions with Kd-trees will be more efficient. There is also the
issue of implementation complexity, which probably has caused most people to
prefer the approximate solution with naive nearest-neighbor computations.

5.5. RAPIDLY EXPLORING DENSE TREES 235

5.5.3 Using the Trees for Planning

So far, the discussion has focused on exploring Cfree, but this does not solve a
planning query by itself. RRTs and RDTs can be used in many ways in plan-
ning algorithms. For example, they could be used to escape local minima in the
randomized potential field planner of Section 5.4.3.

Single-tree search A reasonably efficient planner can be made by directly using
the algorithm in Figure 5.21 to grow a tree from qI and periodically check whether
it is possible to connect the RDT to qG. An easy way to achieve this is to start
with a dense sequence α and periodically insert qG at regularly spaced intervals.
For example, every 100th sample could be qG. Each time this sample is reached,
an attempt is made to reach qG from the closest vertex in the RDT. If the sample
sequence is random, which generates an RRT, then the following modification
works well. In each iteration, toss a biased coin that has probability 99/100 of
being heads and 1/100 of being tails. If the result is heads, then set α(i), to be
the next element of the pseudorandom sequence; otherwise, set α(i) = qG. This
forces the RRT to occasionally attempt to make a connection to the goal, qG. Of
course, 1/100 is arbitrary, but it is in a range that works well experimentally. If the
bias is too strong, then the RRT becomes too greedy like the randomized potential
field. If the bias is not strong enough, then there is no incentive to connect the tree
to qG. An alternative is to consider other dense, but not necessarily nonuniform
sequences in C. For example, in the case of random sampling, the probability
density function could contain a gentle bias towards the goal. Choosing such a
bias is a difficult heuristic problem; therefore, such a technique should be used
with caution (or avoided altogether).

Balanced, bidirectional search Much better performance can usually be ob-
tained by growing two RDTs, one from qI and the other from qG. This is particu-
larly valuable for escaping one of the bug traps, as mentioned in Section 5.4.1. For
a grid search, it is straightforward to implement a bidirectional search that ensures
that the two trees meet. For the RDT, special considerations must be made to
ensure that the two trees will connect while retaining their “rapidly exploring”
property. One additional idea is to make sure that the bidirectional search is
balanced [560], which ensures that both trees are the same size.

Figure 5.24 gives an outline of the algorithm. The graph G is decomposed
into two trees, denoted by Ta and Tb. Initially, these trees start from qI and qG,
respectively. After some iterations, Ta and Tb are swapped; therefore, keep in
mind that Ta is not always the tree that contains qI . In each iteration, Ta is grown
exactly the same way as in one iteration of the algorithm in Figure 5.16. If a new
vertex, qs, is added to Ta, then an attempt is made in lines 10–12 to extend Tb.
Rather than using α(i) to extend Tb, the new vertex qs of Ta is used. This causes
Tb to try to grow toward Ta. If the two connect, which is tested in line 13, then a
solution has been found.

236 S. M. LaValle: Planning Algorithms

RDT BALANCED BIDIRECTIONAL(qI , qG)
1 Ta.init(qI); Tb.init(qG);
2 for i = 1 to K do
3 qn ← nearest(Sa, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 6= qn then
6 Ta.add vertex(qs);
7 Ta.add edge(qn, qs);
8 q′n ← nearest(Sb, qs);
9 q′s ← stopping-configuration(q′n,qs);
10 if q′s 6= q′n then
11 Tb.add vertex(q′s);
12 Tb.add edge(q′n, q

′
s);

13 if q′s = qs then return SOLUTION;
14 if |Tb| > |Ta| then SWAP(Ta, Tb);
15 return FAILURE

Figure 5.24: A bidirectional RDT-based planner.

Line 14 represents an important step that balances the search. This is partic-
ularly important for a problem such as the bug trap shown in Figure 5.13b or the
puzzle shown in Figure 1.2. If one of the trees is having trouble exploring, then
it makes sense to focus more energy on it. Therefore, new exploration is always
performed for the smaller tree. How is “smaller” defined? A simple criterion is to
use the total number of vertices. Another reasonable criterion is to use the total
length of all segments in the tree.

An unbalanced bidirectional search can instead be made by forcing the trees
to be swapped in every iteration. Once the trees are swapped, then the roles are
reversed. For example, after the first swap, Tb is extended in the same way as an
integration in Figure 5.16, and if a new vertex qs is added then an attempt is made
to connect Ta to qs.

One important concern exists when α is deterministic. It might be possible
that even though α is dense, when the samples are divided among the trees, each
may not receive a dense set. If each uses its own deterministic sequence, then this
problem can be avoided. In the case of making a bidirectional RRT planner, the
same (pseudo)random sequence can be used for each tree without encountering
such troubles.

More than two trees If a dual-tree approach offers advantages over a single
tree, then it is natural to ask whether growing three or more RDTs might be
even better. This is particularly helpful for problems like the double bug trap in
Figure 5.13c. New trees can be grown from parts of C that are difficult to reach.
Controlling the number of trees and determining when to attempt connections

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 237

between them is difficult. Some interesting recent work has been done in this
direction [82, 918, 919].

These additional trees could be started at arbitrary (possibly random) configu-
rations. As more trees are considered, a complicated decision problem arises. The
computation time must be divided between attempting to explore the space and
attempting to connect trees to each other. It is also not clear which connections
should be attempted. Many research issues remain in the development of this and
other RRT-based planners. A limiting case would be to start a new tree from
every sample in α(i) and to try to connect nearby trees whenever possible. This
approach results in a graph that covers the space in a nice way that is independent
of the query. This leads to the main topic of the next section.

5.6 Roadmap Methods for Multiple Queries

Previously, it was assumed that a single initial-goal pair was given to the planning
algorithm. Suppose now that numerous initial-goal queries will be given to the
algorithm, while keeping the robot model and obstacles fixed. This leads to a
multiple-query version of the motion planning problem. In this case, it makes
sense to invest substantial time to preprocess the models so that future queries
can be answered efficiently. The goal is to construct a topological graph called a
roadmap, which efficiently solves multiple initial-goal queries. Intuitively, the paths
on the roadmap should be easy to reach from each of qI and qG, and the graph
can be quickly searched for a solution. The general framework presented here was
mainly introduced in [516] under the name probabilistic roadmaps (PRMs). The
probabilistic aspect, however, is not important to the method. Therefore, we call
this family of methods sampling-based roadmaps. This distinguishes them from
combinatorial roadmaps, which will appear in Chapter 6.

5.6.1 The Basic Method

Once again, let G(V,E) represent a topological graph in which V is a set of vertices
and E is the set of paths that map into Cfree. Under the multiple-query philosophy,
motion planning is divided into two phases of computation:

Preprocessing Phase: During the preprocessing phase, substantial effort
is invested to build G in a way that is useful for quickly answering future
queries. For this reason, it is called a roadmap, which in some sense should
be accessible from every part of Cfree.

Query Phase: During the query phase, a pair, qI and qG, is given. Each
configuration must be connected easily to G using a local planner. Following
this, a discrete search is performed using any of the algorithms in Section
2.2 to obtain a sequence of edges that forms a path from qI to qG.

238 S. M. LaValle: Planning Algorithms

BUILD ROADMAP
1 G.init(); i← 0;
2 while i < N
3 if α(i) ∈ Cfree then
4 G.add vertex(α(i)); i← i+ 1;
5 for each q ∈ neighborhood(α(i),G)
6 if ((not G.same component(α(i), q)) and connect(α(i), q)) then
7 G.add edge(α(i), q);

Figure 5.25: The basic construction algorithm for sampling-based roadmaps. Note
that i is not incremented if α(i) is in collision. This forces i to correctly count the
number of vertices in the roadmap.

α(i)

Cobs

Cobs

Figure 5.26: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, α(i), to nearby vertices in the roadmap.

Generic preprocessing phase Figure 5.25 presents an outline of the basic
preprocessing phase, and Figure 5.26 illustrates the algorithm. As seen throughout
this chapter, the algorithm utilizes a uniform, dense sequence α. In each iteration,
the algorithm must check whether α(i) ∈ Cfree. If α(i) ∈ Cobs, then it must
continue to iterate until a collision-free sample is obtained. Once α(i) ∈ Cfree,
then in line 4 it is inserted as a vertex of G. The next step is to try to connect α(i)
to some nearby vertices, q, of G. Each connection is attempted by the connect

function, which is a typical LPM (local planning method) from Section 5.4.1.
In most implementations, this simply tests the shortest path between α(i) and
q. Experimentally, it seems most efficient to use the multi-resolution, van der
Corput–based method described at the end of Section 5.3.4 [379]. Instead of the
shortest path, it is possible to use more sophisticated connection methods, such
as the bidirectional algorithm in Figure 5.24. If the path is collision-free, then
connect returns true.

The same component condition in line 6 checks to make sure α(i) and q are
in different components of G before wasting time on collision checking. This en-
sures that every time a connection is made, the number of connected components

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 239

of G is decreased. This can be implemented very efficiently (near constant time)
using the previously mentioned union-find algorithm [243, 823]. In some imple-
mentations this step may be ignored, especially if it is important to generate
multiple, alternative solutions. For example, it may be desirable to generate so-
lution paths from different homotopy classes. In this case the condition (not
G.same component(α(i), q)) is replaced with G.vertex degree(q) < K, for some
fixed K (e.g., K = 15).

Selecting neighboring samples Several possible implementations of line 5 can
be made. In all of these, it seems best to sort the vertices that will be considered
for connection in order of increasing distance from α(i). This makes sense because
shorter paths are usually less costly to check for collision, and they also have a
higher likelihood of being collision-free. If a connection is made, this avoids costly
collision checking of longer paths to configurations that would eventually belong
to the same connected component.

Several useful implementations of neighborhood are

1. Nearest K: The K closest points to α(i) are considered. This requires
setting the parameter K (a typical value is 15). If you are unsure which
implementation to use, try this one.

2. Component K: Try to obtain up to K nearest samples from each con-
nected component of G. A reasonable value is K = 1; otherwise, too many
connections would be tried.

3. Radius: Take all points within a ball of radius r centered at α(i). An upper
limit, K, may be set to prevent too many connections from being attempted.
Typically, K = 20. A radius can be determined adaptively by shrinking the
ball as the number of points increases. This reduction can be based on
dispersion or discrepancy, if either of these is available for α. Note that if
the samples are highly regular (e.g., a grid), then choosing the nearest K
and taking points within a ball become essentially equivalent. If the point
set is highly irregular, as in the case of random samples, then taking the
nearest K seems preferable.

4. Visibility: In Section 5.6.2, a variant will be described for which it is worth-
while to try connecting α to all vertices in G.

Note that all of these require C to be a metric space. One variation that has not yet
been given much attention is to ensure that the directions of the neighborhood
points relative to α(i) are distributed uniformly. For example, if the 20 closest
points are all clumped together in the same direction, then it may be preferable
to try connecting to a further point because it is in the opposite direction.

240 S. M. LaValle: Planning Algorithms

qGqI

Figure 5.27: An example such as this is difficult for sampling-based roadmaps (in
higher dimensional C-spaces) because some samples must fall along many points
in the curved tube. Other methods, however, may be able to easily solve it.

Query phase In the query phase, it is assumed that G is sufficiently complete
to answer many queries, each of which gives an initial configuration, qI , and a goal
configuration, qG. First, the query phase pretends as if qI and qG were chosen from
α for connection to G. This requires running two more iterations of the algorithm
in Figure 5.25. If qI and qG are successfully connected to other vertices in G, then
a search is performed for a path that connects the vertex qI to the vertex qG. The
path in the graph corresponds directly to a path in Cfree, which is a solution to the
query. Unfortunately, if this method fails, it cannot be determined conclusively
whether a solution exists. If the dispersion is known for a sample sequence, α,
then it is at least possible to conclude that no solution exists for the resolution of
the planner. In other words, if a solution does exist, it would require the path to
travel through a corridor no wider than the radius of the largest empty ball [600].

Some analysis There have been many works that analyze the performance of
sampling-based roadmaps. The basic idea from one of them [69] is briefly presented
here. Consider problems such as the one in Figure 5.27, in which the connect

method will mostly likely fail in the thin tube, even though a connection exists.
The higher dimensional versions of these problems are even more difficult. Many
planning problems involve moving a robot through an area with tight clearance.
This generally causes narrow channels to form in Cfree, which leads to a challenging
planning problem for the sampling-based roadmap algorithm. Finding the escape
of a bug trap is also challenging, but for the roadmap methods, even traveling
through a single corridor is hard (unless more sophisticated LPMs are used [479]).

Let V (q) denote the set of all configurations that can be connected to q using
the connect method. Intuitively, this is considered as the set of all configurations
that can be “seen” using line-of-sight visibility, as shown in Figure 5.28a

The ǫ-goodness of Cfree is defined as

ǫ(Cfree) = min
q∈Cfree

{
µ(V (q))

µ(Cfree)

}

, (5.41)

in which µ represents the measure. Intuitively, ǫ(Cfree) represents the small frac-

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 241

V (q)

q

(a) Visibility definition (b) Visibility roadmap

Figure 5.28: (a) V (q) is the set of points reachable by the LPM from q. (b) A
visibility roadmap has two kinds of vertices: guards, which are shown in black,
and connectors, shown in white. Guards are not allowed to see other guards.
Connectors must see at least two guards.

tion of Cfree that is visible from any point. In terms of ǫ and the number of vertices
in G, bounds can be established that yield the probability that a solution will be
found [69]. The main difficulties are that the ǫ-goodness concept is very conserva-
tive (it uses worst-case analysis over all configurations), and ǫ-goodness is defined
in terms of the structure of Cfree, which cannot be computed efficiently. This
result and other related results help to gain a better understanding of sampling-
based planning, but such bounds are difficult to apply to particular problems to
determine whether an algorithm will perform well.

5.6.2 Visibility Roadmap

One of the most useful variations of sampling-based roadmaps is the visibility
roadmap [885]. The approach works very hard to ensure that the roadmap repre-
sentation is small yet covers Cfree well. The running time is often greater than the
basic algorithm in Figure 5.25, but the extra expense is usually worthwhile if the
multiple-query philosophy is followed to its fullest extent.

The idea is to define two different kinds of vertices in G:

Guards: To become a guard, a vertex, q must not be able to see other
guards. Thus, the visibility region, V (q), must be empty of other guards.

Connectors: To become a connector, a vertex, q, must see at least two
guards. Thus, there exist guards q1 and q2, such that q ∈ V (q1) ∩ V (q2).

The roadmap construction phase proceeds similarly to the algorithm in Figure
5.25. The neighborhood function returns all vertices in G. Therefore, for each new
sample α(i), an attempt is made to connect it to every other vertex in G.

242 S. M. LaValle: Planning Algorithms

The main novelty of the visibility roadmap is using a strong criterion to deter-
mine whether to keep α(i) and its associated edges in G. There are three possible
cases for each α(i):

1. The new sample, α(i), is not able to connect to any guards. In this case,
α(i) earns the privilege of becoming a guard itself and is inserted into G.

2. The new sample can connect to guards from at least two different connected
components of G. In this case, it becomes a connector that is inserted into
G along with its associated edges, which connect it to these guards from
different components.

3. Neither of the previous two conditions were satisfied. This means that the
sample could only connect to guards in the same connected component. In
this case, α(i) is discarded.

The final condition causes a dramatic reduction in the number of roadmap vertices.
One problem with this method is that it does not allow guards to be deleted in

favor of better guards that might appear later. The placement of guards depends
strongly on the order in which samples appear in α. The method may perform
poorly if guards are not positioned well early in the sequence. It would be better
to have an adaptive scheme in which guards could be reassigned in later iterations
as better positions become available. Accomplishing this efficiently remains an
open problem. Note the algorithm is still probabilistically complete using random
sampling or resolution complete if α is dense, even though many samples are
rejected.

5.6.3 Heuristics for Improving Roadmaps

The quest to design a good roadmap through sampling has spawned many heuris-
tic approaches to sampling and making connections in roadmaps. Most of these
exploit properties that are specific to the shape of the C-space and/or the partic-
ular geometry and kinematics of the robot and obstacles. The emphasis is usually
on finding ways to dramatically reduce the number or required samples. Several
of these methods are briefly described here.

Vertex enhancement [516] This heuristic strategy focuses effort on vertices
that were difficult to connect to other vertices in the roadmap construction algo-
rithm in Figure 5.25. A probability distribution, P (v), is defined over the vertices
v ∈ V . A number of iterations are then performed in which a vertex is sampled
from V according to P (v), and then some random motions are performed from v
to try to reach new configurations. These new configurations are added as ver-
tices, and attempts are made to connect them to other vertices, as selected by the
neighborhood function in an ordinary iteration of the algorithm in Figure 5.25.
A recommended heuristic [516] for defining P (v) is to define a statistic for each
v as nf/(nt + 1), in which nt is the total number of connections attempted for

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 243

1
α(i)

Cobs

4

2
3

Cobs Cobs

(a) (b)

Figure 5.29: (a) To obtain samples along the boundary, binary search is used
along random directions from a sample in Cobs. (b) The bridge test finds narrow
corridors by examining a triple of nearby samples along a line.

v, and nf is the number of times these attempts failed. The probability P (v) is
assigned as nf/(nt + 1)m, in which m is the sum of the statistics over all v ∈ V
(this normalizes the statistics to obtain a valid probability distribution).

Sampling on the Cfree boundary [22, 26] This scheme is based on the intu-
ition that it is sometimes better to sample along the boundary, ∂Cfree, rather than
waste samples on large areas of Cfree that might be free of obstacles. Figure 5.29a
shows one way in which this can be implemented. For each sample of α(i) that
falls into Cobs, a number of random directions are chosen in C; these directions can
be sampled using the Sn sampling method from Section 5.2.2. For each direction,
a binary search is performed to get a sample in Cfree that is as close as possible
to Cobs. The order of point evaluation in the binary search is shown in Figure
5.29a. Let τ : [0, 1] denote the path for which τ(0) ∈ Cobs and τ(1) ∈ Cfree. In
the first step, test the midpoint, τ(1/2). If τ(1/2) ∈ Cfree, this means that ∂Cfree
lies between τ(0) and τ(1/2); otherwise, it lies between τ(1/2) and τ(1). The next
iteration selects the midpoint of the path segment that contains ∂Cfree. This will
be either τ(1/4) or τ(3/4). The process continues recursively until the desired
resolution is obtained.

Gaussian sampling [132] The Gaussian sampling strategy follows some of the
same motivation for sampling on the boundary. In this case, the goal is to obtain
points near ∂Cfree by using a Gaussian distribution that biases the samples to be
closer to ∂Cfree, but the bias is gentler, as prescribed by the variance parameter of
the Gaussian. The samples are generated as follows. Generate one sample, q1 ∈ C,
uniformly at random. Following this, generate another sample, q2 ∈ C, according
to a Gaussian with mean q1; the distribution must be adapted for any topological
identifications and/or boundaries of C. If one of q1 or q2 lies in Cfree and the other
lies in Cobs, then the one that lies in Cfree is kept as a vertex in the roadmap. For
some examples, this dramatically prunes the number of required vertices.

244 S. M. LaValle: Planning Algorithms

Figure 5.30: The medial axis is traced out by the centers of the largest inscribed
balls. The five line segments inside of the rectangle correspond to the medial axis.

Bridge-test sampling [465] The Gaussian sampling strategy decides to keep
a point based in part on testing a pair of samples. This idea can be carried one
step further to obtain a bridge test, which uses three samples along a line segment.
If the samples are arranged as shown in Figure 5.29b, then the middle sample
becomes a roadmap vertex. This is based on the intuition that narrow corridors
are thin in at least one direction. The bridge test indicates that a point lies in a
thin corridor, which is often an important place to locate a vertex.

Medial-axis sampling [455, 635, 971] Rather than trying to sample close
to the boundary, another strategy is to force the samples to be as far from the
boundary as possible. Let (X, ρ) be a metric space. Let a maximal ball be a ball
B(x, r) ⊆ X such that no other ball can be a proper subset. The centers of all
maximal balls trace out a one-dimensional set of points referred to as the medial
axis. A simple example of a medial axis is shown for a rectangular subset of R2

in Figure 5.30. The medial axis in Cfree is based on the largest balls that can be
inscribed in cl(Cfree). Sampling on the medial axis is generally difficult, especially
because the representation of Cfree is implicit. Distance information from collision
checking can be used to start with a sample, α(i), and iteratively perturb it to
increase its distance from ∂Cfree [635, 971]. Sampling on the medial axis of W \O
has also been proposed [455]. In this case, the medial axis in W \ O is easier to
compute, and it can be used to heuristically guide the placement of good roadmap
vertices in Cfree.

Further Reading

Unlike the last two chapters, the material of Chapter 5 is a synthesis of very recent
research results. Some aspects of sampling-based motion planning are still evolving.
Early approaches include [70, 144, 193, 280, 282, 329, 330, 658, 760]. The Gilbert-
Johnson-Keerthi algorithm [388] is an early collision detection approach that helped
inspire sampling-based motion planning; see [472] and [588] for many early references.

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 245

In much of the early work, randomization appeared to be the main selling point; however,
more recently it has been understood that deterministic sampling can work at least as
well while obtaining resolution completeness. For a more recent survey of sampling-based
motion planning, see [640].

Section 5.1 is based on material from basic mathematics books. For a summary
of basic theorems and numerous examples of metric spaces, see [696]. More material
appears in basic point-set topology books (e.g., [451, 496]) and analysis books (e.g.,
[346]). Metric issues in the context of sampling-based motion planning are discussed
in [21, 609]. Measure theory is most often introduced in the context of real analysis
[346, 425, 546, 836, 837]. More material on Haar measure appears in [425].

Section 5.2 is mainly inspired by literature on Monte Carlo and quasi–Monte Carlo
methods for numerical integration and optimization. An excellent source of material is
[738]. Other important references for further reading include [191, 540, 682, 937, 938].
Sampling issues in the context of motion planning are considered in [380, 559, 600, 639,
987]. Comprehensive introductions to pure Monte Carlo algorithms appear in [341, 502].
The original source for the Monte Carlo method is [695]. For a survey on algorithms
that compute Voronoi diagrams, see [54].

For further reading on collision detection (beyond Section 5.3), see the surveys in
[488, 637, 638, 703]. Hierarchical collision detection is covered in [406, 638, 702]. The
incremental collision detection ideas in Section 5.3.3 were inspired by the algorithm
[636] and V-Clip [247, 702]. Distance computation is covered in [167, 306, 387, 406,
413, 702, 807]. A method suited for detecting self-collisions of linkages appears in [653].
A combinatorial approach to collision detection for motion planning appears in [855].
Numerous collision detection packages are available for use in motion planning research.
One of the most widely used is PQP because it works well for any mess of 3D triangles
[948].

The incremental sampling and searching framework was synthesized by unifying ideas
from many planning methods. Some of these include grid-based search [71, 548, 620] and
probabilistic roadmaps (PRMs) [516]. Although the PRM was developed for multiple
queries, the single-query version developed in [125] helped shed light on the connection
to earlier planning methods. This even led to grid-based variants of PRMs [123, 600].
Another single-query variant is presented in [845].

RDTs were developed in the literature mainly as RRTs, and were introduced in
[598, 610]. RRTs have been used in several applications, and many variants have been
developed [82, 138, 150, 200, 224, 244, 265, 362, 393, 495, 499, 498, 528, 631, 641, 642,
918, 919, 949, 979, 986]. Originally, they were developed for planning under differen-
tial constraints, but most of their applications to date have been for ordinary motion
planning. For more information on efficient nearest-neighbor searching, see the recent
survey [475], and [46, 47, 48, 52, 99, 230, 365, 476, 538, 758, 908, 989].

Section 5.6 is based mainly on the PRM framework [516]. The “probabilistic” part
is not critical to the method; thus, it was referred to here as a sampling-based roadmap.
A related precursor to the PRM was proposed in [390, 391]. The PRM has been widely
used in practice, and many variants have been proposed [1, 23, 61, 62, 125, 161, 181, 244,
479, 544, 600, 627, 628, 740, 784, 792, 885, 900, 950, 971, 979, 995]. An experimental
comparison of many of these variants appears in [380]. Some analysis of PRMs appears
in [69, 467, 573]. In some works, the term PRM has been applied to virtually any

246 S. M. LaValle: Planning Algorithms

sampling-based planning algorithm (e.g., [467]); however, in recent years the term has
been used more consistently with its original meaning in [516].

Many other methods and issues fall outside of the scope of this chapter. Several
interesting methods based on approximate cell decomposition [144, 328, 646, 658] can be
considered as a form of sampling-based motion planning. A sampling-based method of
developing global potential functions appears in [124]. Other sampling-based planning
algorithms appear in [194, 348, 417, 418, 463]. The algorithms of this chapter are gener-
ally unable to guarantee that a solution does not exist for a motion planning problem.
It is possible, however, to use sampling-based techniques to establish in finite time that
no solution exists [75]. Such a result is called a disconnection proof. Parallelization
issues have also been investigated in the context of sampling-based motion planning
[82, 177, 183, 257, 795].

Exercises

1. Prove that the Cartesian product of a metric space is a metric space by taking a
linear combination as in (5.4).

2. Prove or disprove: If ρ is a metric, then ρ2 is a metric.

3. Determine whether the following function is a metric on any topological space: X:
ρ(x, x′) = 1 is x 6= x′; otherwise, ρ(x, x′) = 0.

4. State and prove whether or not (5.28) yields a metric space on C = SE(3), as-
suming that the two sets are rigid bodies.

5. The dispersion definition given in (5.19) is based on the worst case. Consider
defining the average dispersion:

δ̄(P) =
1

µ(X)

∫

X
min
p∈P
{ρ(x, p)}dx. (5.42)

Describe a Monte Carlo (randomized) method to approximately evaluate (5.42).

6. Determine the average dispersion (as a function of i) for the van der Corput
sequence (base 2) on [0, 1]/ ∼.

7. Show that using the Lebesgue measure on S3 (spreading mass around uniformly
on S3) yields the Haar measure for SO(3).

8. Is the Haar measure useful in selecting an appropriate C-space metric? Explain.

9. Determine an expression for the (worst-case) dispersion of the ith sample in the
base-p (Figure 5.2 shows base-2) van der Corput sequence in [0, 1]/ ∼, in which 0
and 1 are identified.

10. Determine the dispersion of the following sequence on [0, 1]. The first point is
α(1) = 1. For each i > 1, let ci = ln(2i − 3)/ ln 4 and α(i) = ci − ⌊ci⌋. It turns
out that this sequence achieves the best asymptotic dispersion possible, even in
terms of the preceding constant. Also, the points are not uniformly distributed.
Can you explain why this happens? [It may be helpful to plot the points in the
sequence.]

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 247

11. Prove that (5.20) holds.

12. Prove that (5.23) holds.

13. Show that for any given set of points in [0, 1]n, a range space R can be designed
so that the discrepancy is as close as desired to 1.

14. Suppose A is a rigid body in R3 with a fixed orientation specified by a quaternion,
h. Suppose that h is perturbed a small amount to obtain another quaternion, h′

(no translation occurs). Construct a good upper bound on distance traveled by
points on A, expressed in terms of the change in the quaternion.

15. Design combinations of robots and obstacles in W that lead to C-space obstacles
resembling bug traps.

16. How many k-neighbors can there be at most in an n-dimensional grid with 1 ≤
k ≤ n?

17. In a high-dimensional grid, it becomes too costly to consider all 3n−1 n-neighbors.
It might not be enough to consider only 2n 1-neighbors. Determine a scheme
for selecting neighbors that are spatially distributed in a good way, but without
requiring too many. For example, what is a good way to select 50 neighbors for a
grid in R10?

18. Explain the difference between searching an implicit, high-resolution grid and
growing search trees directly on the C-space without a grid.

19. Improve the bound in (5.31) by considering the fact that rotating points trace out
a circle, instead of a straight line.

20. (Open problem) Prove there are n+1 main branches for an RRT starting from the
center of an “infinite” n-dimensional ball in Rn. The directions of the branches
align with the vertices of a regular simplex centered at the initial configuration.

Implementations

21. Implement 2D incremental collision checking for convex polygons to obtain “near
constant time” performance.

22. Implement the sampling-based roadmap approach. Select an appropriate family of
motion planning problems: 2D rigid bodies, 2D chains of bodies, 3D rigid bodies,
etc.

(a) Compare the roadmaps obtained using visibility-based sampling to those
obtained for the ordinary sampling method.

(b) Study the sensitivity of the method with respect to the particular neigh-

borhood method.

(c) Compare random and deterministic sampling methods.

248 S. M. LaValle: Planning Algorithms

(d) Use the bridge test to attempt to produce better samples.

23. Implement the balanced, bidirectional RRT planning algorithm.

(a) Study the effect of varying the amount of intermediate vertices created along
edges.

(b) Try connecting to the random sample using more powerful descent functions.

(c) Explore the performance gains from using Kd-trees to select nearest neigh-
bors.

24. Make an RRT-based planning algorithm that uses more than two trees. Carefully
resolve issues such as the maximum number of allowable trees, when to start a
tree, and when to attempt connections between trees.

25. Implement both the expansive-space planner and the RRT, and conduct compar-
ative experiments on planning problems. For the full set of problems, keep the
algorithm parameters fixed.

26. Implement a sampling-based algorithm that computes collision-free paths for a
rigid robot that can translate or rotate on any of the flat 2D manifolds shown in
Figure 4.5.

Chapter 6

Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continuous
configuration space without resorting to approximations. Due to this property,
they are alternatively referred to as exact algorithms. This is in contrast to the
sampling-based motion planning algorithms from Chapter 5.

6.1 Introduction

All of the algorithms presented in this chapter are complete, which means that
for any problem instance (over the space of problems for which the algorithm is
designed), the algorithm will either find a solution or will correctly report that no
solution exists. By contrast, in the case of sampling-based planning algorithms,
weaker notions of completeness were tolerated: resolution completeness and prob-
abilistic completeness.

Representation is important When studying combinatorial motion planning
algorithms, it is important to carefully consider the definition of the input. What
is the representation used for the robot and obstacles? What set of transforma-
tions may be applied to the robot? What is the dimension of the world? Are
the robot and obstacles convex? Are they piecewise linear? The specification of
possible inputs defines a set of problem instances on which the algorithm will op-
erate. If the instances have certain convenient properties (e.g., low dimensionality,
convex models), then a combinatorial algorithm may provide an elegant, practical
solution. If the set of instances is too broad, then a requirement of both complete-
ness and practical solutions may be unreasonable. Many general formulations of
general motion planning problems are PSPACE-hard1; therefore, such a hope ap-
pears unattainable. Nevertheless, there exist general, complete motion planning
algorithms. Note that focusing on the representation is the opposite philosophy
from sampling-based planning, which hides these issues in the collision detection
module.

1This implies NP-hard. An overview of such complexity statements appears in Section 6.5.1.

249

250 S. M. LaValle: Planning Algorithms

Reasons to study combinatorial methods There are generally two good
reasons to study combinatorial approaches to motion planning:

1. In many applications, one may only be interested in a special class of planning
problems. For example, the world might be 2D, and the robot might only
be capable of translation. For many special classes, elegant and efficient
algorithms can be developed. These algorithms are complete, do not depend
on approximation, and can offer much better performance than sampling-
based planning methods, such as those in Chapter 5.

2. It is both interesting and satisfying to know that there are complete algo-
rithms for an extremely broad class of motion planning problems. Thus,
even if the class of interest does not have some special limiting assumptions,
there still exist general-purpose tools and algorithms that can solve it. These
algorithms also provide theoretical upper bounds on the time needed to solve
motion planning problems.

Warning: Some methods are impractical Be careful not to make the wrong
assumptions when studying the algorithms of this chapter. A few of them are effi-
cient and easy to implement, but many might be neither. Even if an algorithm has
an amazing asymptotic running time, it might be close to impossible to implement.
For example, one of the most famous algorithms from computational geometry can
split a simple2 polygon into triangles in O(n) time for a polygon with n edges [190].
This is so amazing that it was covered in the New York Times, but the algorithm
is so complicated that it is doubtful that anyone will ever implement it. Sometimes
it is preferable to use an algorithm that has worse theoretical running time but
is much easier to understand and implement. In general, though, it is valuable
to understand both kinds of methods and decide on the trade-offs for yourself.
It is also an interesting intellectual pursuit to try to determine how efficiently a
problem can be solved, even if the result is mainly of theoretical interest. This
might motivate others to look for simpler algorithms that have the same or similar
asymptotic running times.

Roadmaps Virtually all combinatorial motion planning approaches construct a
roadmap along the way to solving queries. This notion was introduced in Section
5.6, but in this chapter stricter requirements are imposed in the roadmap definition
because any algorithm that constructs one needs to be complete. Some of the
algorithms in this chapter first construct a cell decomposition of Cfree from which
the roadmap is consequently derived. Other methods directly construct a roadmap
without the consideration of cells.

Let G be a topological graph (defined in Example 4.6) that maps into Cfree.
Furthermore, let S ⊂ Cfree be the swath, which is set of all points reached by G,
as defined in (5.40). The graph G is called a roadmap if it satisfies two important
conditions:

2A polygonal region that has no holes.

6.2. POLYGONAL OBSTACLE REGIONS 251

1. Accessibility: From any q ∈ Cfree, it is simple and efficient to compute a
path τ : [0, 1] → Cfree such that τ(0) = q and τ(1) = s, in which s may be
any point in S. Usually, s is the closest point to q, assuming C is a metric
space.

2. Connectivity-preserving: Using the first condition, it is always possible
to connect some qI and qG to some s1 and s2, respectively, in S. The second
condition requires that if there exists a path τ : [0, 1] → Cfree such that
τ(0) = qI and τ(1) = qG, then there also exists a path τ ′ : [0, 1] → S, such
that τ ′(0) = s1 and τ

′(1) = s2. Thus, solutions are not missed because G fails
to capture the connectivity of Cfree. This ensures that complete algorithms
are developed.

By satisfying these properties, a roadmap provides a discrete representation of the
continuous motion planning problem without losing any of the original connectivity
information needed to solve it. A query, (qI , qG), is solved by connecting each
query point to the roadmap and then performing a discrete graph search on G. To
maintain completeness, the first condition ensures that any query can be connected
to G, and the second condition ensures that the search always succeeds if a solution
exists.

6.2 Polygonal Obstacle Regions

Rather than diving into the most general forms of combinatorial motion planning,
it is helpful to first see several methods explained for a case that is easy to visualize.
Several elegant, straightforward algorithms exist for the case in which C = R2 and
Cobs is polygonal. Most of these cannot be directly extended to higher dimensions;
however, some of the general principles remain the same. Therefore, it is very
instructive to see how combinatorial motion planning approaches work in two
dimensions. There are also applications where these algorithms may directly apply.
One example is planning for a small mobile robot that may be modeled as a point
moving in a building that can be modeled with a 2D polygonal floor plan.

After covering representations in Section 6.2.1, Sections 6.2.2–6.2.4 present
three different algorithms to solve the same problem. The one in Section 6.2.2
first performs cell decomposition on the way to building the roadmap, and the
ones in Sections 6.2.3 and 6.2.4 directly produce a roadmap. The algorithm in
Section 6.2.3 computes maximum clearance paths, and the one in Section 6.2.4
computes shortest paths (which consequently have no clearance).

6.2.1 Representation

Assume that W = R2; the obstacles, O, are polygonal; and the robot, A, is a
polygonal body that is only capable of translation. Under these assumptions, Cobs
will be polygonal. For the special case in which A is a point inW , O maps directly

252 S. M. LaValle: Planning Algorithms

Figure 6.1: A polygonal model specified by four oriented simple polygons.

to Cobs without any distortion. Thus, the problems considered in this section may
also be considered as planning for a point robot. If A is not a point robot, then
the Minkowski difference, (4.37), of O and A must be computed. For the case
in which both A and each component of O are convex, the algorithm in Section
4.3.2 can be applied to compute each component of Cobs. In general, both A and
O may be nonconvex. They may even contain holes, which results in a Cobs model
such as that shown in Figure 6.1. In this case, A and O may be decomposed
into convex components, and the Minkowski difference can be computed for each
pair of components. The decompositions into convex components can actually be
performed by adapting the cell decomposition algorithm that will be presented
in Section 6.2.2. Once the Minkowski differences have been computed, they need
to be merged to obtain a representation that can be specified in terms of simple
polygons, such as those in Figure 6.1. An efficient algorithm to perform this
merging is given in Section 2.4 of [264]. It can also be based on many of the same
principles as the planning algorithm in Section 6.2.2.

To implement the algorithms described in this section, it will be helpful to
have a data structure that allows convenient access to the information contained
in a model such as Figure 6.1. How is the outer boundary represented? How
are holes inside of obstacles represented? How do we know which holes are inside
of which obstacles? These questions can be efficiently answered by using the
doubly connected edge list data structure, which was described in Section 3.1.3
for consistent labeling of polyhedral faces. We will need to represent models, such

6.2. POLYGONAL OBSTACLE REGIONS 253

as the one in Figure 6.1, and any other information that planning algorithms need
to maintain during execution. There are three different records:

Vertices: Every vertex v contains a pointer to a point (x, y) ∈ C = R2 and
a pointer to some half-edge that has v as its origin.

Faces: Every face has one pointer to a half-edge on the boundary that sur-
rounds the face; the pointer value is nil if the face is the outermost boundary.
The face also contains a list of pointers for each connected component (i.e.,
hole) that is contained inside of that face. Each pointer in the list points to
a half-edge of the component’s boundary.

Half-edges: Each half-edge is directed so that the obstacle portion is always
to its left. It contains five different pointers. There is a pointer to its origin
vertex. There is a twin half-edge pointer, which may point to a half-edge that
runs in the opposite direction (see Section 3.1.3). If the half-edge borders an
obstacle, then this pointer is nil. Half-edges are always arranged in circular
chains to form the boundary of a face. Such chains are oriented so that the
obstacle portion (or a twin half-edge) is always to its left. Each half-edge
stores a pointer to its internal face. It also contains pointers to the next and
previous half-edges in the circular chain of half-edges.

For the example in Figure 6.1, there are four circular chains of half-edges that each
bound a different face. The face record of the small triangular hole points to the
obstacle face that contains the hole. Each obstacle contains a pointer to the face
represented by the outermost boundary. By consistently assigning orientations to
the half-edges, circular chains that bound an obstacle always run counterclockwise,
and chains that bound holes run clockwise. There are no twin half-edges because
all half-edges bound part of Cobs. The doubly connected edge list data structure
is general enough to allow extra edges to be inserted that slice through Cfree.
These edges will not be on the border of Cobs, but they can be managed using twin
half-edge pointers. This will be useful for the algorithm in Section 6.2.2.

6.2.2 Vertical Cell Decomposition

Cell decompositions will be defined formally in Section 6.3, but here we use the
notion informally. Combinatorial methods must construct a finite data structure
that exactly encodes the planning problem. Cell decomposition algorithms achieve
this partitioning of Cfree into a finite set of regions called cells. The term k-
cell refers to a k-dimensional cell. The cell decomposition should satisfy three
properties:

1. Computing a path from one point to another inside of a cell must be trivially
easy. For example, if every cell is convex, then any pair of points in a cell
can be connected by a line segment.

254 S. M. LaValle: Planning Algorithms

Figure 6.2: There are four general cases: 1) extending upward and downward, 2)
upward only, 3) downward only, and 4) no possible extension.

2. Adjacency information for the cells can be easily extracted to build the
roadmap.

3. For a given qI and qG, it should be efficient to determine which cells contain
them.

If a cell decomposition satisfies these properties, then the motion planning problem
is reduced to a graph search problem. Once again the algorithms of Section 2.2
may be applied; however, in the current setting, the entire graph, G, is usually
known in advance.3 This was not assumed for discrete planning problems.

Defining the vertical decomposition We next present an algorithm that con-
structs a vertical cell decomposition [189], which partitions Cfree into a finite col-
lection of 2-cells and 1-cells. Each 2-cell is either a trapezoid that has vertical
sides or a triangle (which is a degenerate trapezoid). For this reason, the method
is sometimes called trapezoidal decomposition. The decomposition is defined as
follows. Let P denote the set of vertices used to define Cobs. At every p ∈ P , try to
extend rays upward and downward through Cfree, until Cobs is hit. There are four
possible cases, as shown in Figure 6.2, depending on whether or not it is possible
to extend in each of the two directions. If Cfree is partitioned according to these
rays, then a vertical decomposition results. Extending these rays for the example
in Figure 6.3a leads to the decomposition of Cfree shown in Figure 6.3b. Note that
only trapezoids and triangles are obtained for the 2-cells in Cfree.

Every 1-cell is a vertical segment that serves as the border between two 2-cells.
We must ensure that the topology of Cfree is correctly represented. Recall that
Cfree was defined to be an open set. Every 2-cell is actually defined to be an
open set in R2; thus, it is the interior of a trapezoid or triangle. The 1-cells are
the interiors of segments. It is tempting to make 0-cells, which correspond to the
endpoints of segments, but these are not allowed because they lie in Cobs.

3Exceptions to this are some algorithms mentioned in Section 6.5.3, which obtain greater
efficiency by only maintaining one connected component of Cobs.

6.2. POLYGONAL OBSTACLE REGIONS 255

(a) (b)

Figure 6.3: The vertical cell decomposition method uses the cells to construct a
roadmap, which is searched to yield a solution to a query.

General position issues What if two points along Cobs lie on a vertical line
that slices through Cfree? What happens when one of the edges of Cobs is vertical?
These are special cases that have been ignored so far. Throughout much of com-
binatorial motion planning it is common to ignore such special cases and assume
Cobs is in general position. This usually means that if all of the data points are
perturbed by a small amount in some random direction, the probability that the
special case remains is zero. Since a vertical edge is no longer vertical after being
slightly perturbed, it is not in general position. The general position assumption is
usually made because it greatly simplifies the presentation of an algorithm (and, in
some cases, its asymptotic running time is even lower). In practice, however, this
assumption can be very frustrating. Most of the implementation time is often de-
voted to correctly handling such special cases. Performing random perturbations
may avoid this problem, but it tends to unnecessarily complicate the solutions. For
the vertical decomposition, the problems are not too difficult to handle without
resorting to perturbations; however, in general, it is important to be aware of this
difficulty, which is not as easy to fix in most other settings.

Defining the roadmap To handle motion planning queries, a roadmap is con-
structed from the vertical cell decomposition. For each cell Ci, let qi denote a
designated sample point such that qi ∈ Ci. The sample points can be selected as
the cell centroids, but the particular choice is not too important. Let G(V,E) be
a topological graph defined as follows. For every cell, Ci, define a vertex qi ∈ V .
There is a vertex for every 1-cell and every 2-cell. For each 2-cell, define an edge
from its sample point to the sample point of every 1-cell that lies along its bound-
ary. Each edge is a line-segment path between the sample points of the cells. The
resulting graph is a roadmap, as depicted in Figure 6.4. The accessibility condi-
tion is satisfied because every sample point can be reached by a straight-line path
thanks to the convexity of every cell. The connectivity condition is also satisfied

256 S. M. LaValle: Planning Algorithms

Figure 6.4: The roadmap derived from the vertical cell decomposition.

qI

qG

Figure 6.5: An example solution path.

6.2. POLYGONAL OBSTACLE REGIONS 257

because G is derived directly from the cell decomposition, which also preserves the
connectivity of Cfree. Once the roadmap is constructed, the cell information is no
longer needed for answering planning queries.

Solving a query Once the roadmap is obtained, it is straightforward to solve
a motion planning query, (qI , qG). Let C0 and Ck denote the cells that contain qI
and qG, respectively. In the graph G, search for a path that connects the sample
point of C0 to the sample point of Ck. If no such path exists, then the planning
algorithm correctly declares that no solution exists. If one does exist, then let C1,
C2, . . ., Ck−1 denote the sequence of 1-cells and 2-cells visited along the computed
path in G from C0 to Ck.

A solution path can be formed by simply “connecting the dots.” Let q0, q1, q2,
. . ., qk−1, qk, denote the sample points along the path in G. There is one sample
point for every cell that is crossed. The solution path, τ : [0, 1]→ Cfree, is formed
by setting τ(0) = qI , τ(1) = qG, and visiting each of the points in the sequence
from q0 to qk by traveling along the shortest path. For the example, this leads to
the solution shown in Figure 6.5. In selecting the sample points, it was important
to ensure that each path segment from the sample point of one cell to the sample
point of its neighboring cell is collision-free.4

Computing the decomposition The problem of efficiently computing the de-
composition has not yet been considered. Without concern for efficiency, the
problem appears simple enough that all of the required steps can be computed by
brute-force computations. If Cobs has n vertices, then this approach would take at
least O(n2) time because intersection tests have to be made between each vertical
ray and each segment. This even ignores the data structure issues involved in
finding the cells that contain the query points and in building the roadmap that
holds the connectivity information. By careful organization of the computation,
it turns out that all of this can be nicely handled, and the resulting running time
is only O(n lg n).

Plane-sweep principle The algorithm is based on the plane-sweep (or line-
sweep) principle from computational geometry [129, 264, 302], which forms the
basis of many combinatorial motion planning algorithms and many other algo-
rithms in general. Much of computational geometry can be considered as the de-
velopment of data structures and algorithms that generalize the sorting problem
to multiple dimensions. In other words, the algorithms carefully “sort” geometric
information.

The word “sweep” is used to refer to these algorithms because it can be imag-
ined that a line (or plane, etc.) sweeps across the space, only to stop where some

4This is the reason why the approach is defined differently from Chapter 1 of [588]. In that
case, sample points were not placed in the interiors of the 2-cells, and collision could result for
some queries.

258 S. M. LaValle: Planning Algorithms

critical change occurs in the information. This gives the intuition, but the sweep-
ing line is not explicitly represented by the algorithm. To construct the vertical
decomposition, imagine that a vertical line sweeps from x = −∞ to x =∞, using
(x, y) to denote a point in C = R2.

From Section 6.2.1, note that the set P of Cobs vertices are the only data in R2

that appear in the problem input. It therefore seems reasonable that interesting
things can only occur at these points. Sort the points in P in increasing order
by their X coordinate. Assuming general position, no two points have the same
X coordinate. The points in P will now be visited in order of increasing x value.
Each visit to a point will be referred to as an event. Before, after, and in between
every event, a list, L, of some Cobs edges will be maintained. This list must be
maintained at all times in the order that the edges appear when stabbed by the
vertical sweep line. The ordering is maintained from lower to higher.

Algorithm execution Figures 6.6 and 6.7 show how the algorithm proceeds.
Initially, L is empty, and a doubly connected edge list is used to represent Cfree.
Each connected component of Cfree yields a single face in the data structure.
Suppose inductively that after several events occur, L is correctly maintained. For
each event, one of the four cases in Figure 6.2 occurs. By maintaining L in a
balanced binary search tree [243], the edges above and below p can be determined
in O(lg n) time. This is much better than O(n) time, which would arise from
checking every segment. Depending on which of the four cases from Figure 6.2
occurs, different updates to L are made. If the first case occurs, then two different
edges are inserted, and the face of which p is on the border is split two times by
vertical line segments. For each of the two vertical line segments, two half-edges
are added, and all faces and half-edges must be updated correctly (this operation is
local in that only records adjacent to where the change occurs need to be updated).
The next two cases in Figure 6.2 are simpler; only a single face split is made. For
the final case, no splitting occurs.

Once the face splitting operations have been performed, L needs to be updated.
When the sweep line crosses p, two edges are always affected. For example, in the
first and last cases of Figure 6.2, two edges must be inserted into L (the mirror
images of these cases cause two edges to be deleted from L). If the middle two cases
occur, then one edge is replaced by another in L. These insertion and deletion
operations can be performed in O(lg n) time. Since there are n events, the running
time for the construction algorithm is O(n lg n).

The roadmap G can be computed from the face pointers of the doubly connected
edge list. A more elegant approach is to incrementally build G at each event.
In fact, all of the pointer maintenance required to obtain a consistent doubly
connected edge list can be ignored if desired, as long as G is correctly built and
the sample point is obtained for each cell along the way. We can even go one
step further, by forgetting about the cell decomposition and directly building a
topological graph of line-segment paths between all sample points of adjacent cells.

6.2. POLYGONAL OBSTACLE REGIONS 259

1 2 3 4 5 6 7 8 9 10 11 12 130

a

d

f

b

i

m

n
h

g
c

e

l

j

k

Figure 6.6: There are 14 events in this example.

Event Sorted Edges in L Event Sorted Edges in L
0 {a, b} 7 {d, j, n, b}
1 {d, b} 8 {d, j, n,m, l, b}
2 {d, f, e, b} 9 {d, j, l, b}
3 {d, f, i, b} 10 {d, k, l, b}
4 {d, f, g, h, i, b} 11 {d, b}
5 {d, f, g, j, n, h, i, b} 12 {d, c}
6 {d, f, g, j, n, b} 13 {}

Figure 6.7: The status of L is shown after each of 14 events occurs. Before the
first event, L is empty.

260 S. M. LaValle: Planning Algorithms

One closest
point

Two closest
points

One closest
point

Figure 6.8: The maximum clearance roadmap keeps as far away from the Cobs as
possible. This involves traveling along points that are equidistant from two or
more points on the boundary of Cobs.

Edge-Edge Vertex-Vertex Vertex-Edge

Figure 6.9: Voronoi roadmap pieces are generated in one of three possible cases.
The third case leads to a quadratic curve.

6.2.3 Maximum-Clearance Roadmaps

A maximum-clearance roadmap tries to keep as far as possible from Cobs, as shown
for the corridor in Figure 6.8. The resulting solution paths are sometimes pre-
ferred in mobile robotics applications because it is difficult to measure and control
the precise position of a mobile robot. Traveling along the maximum-clearance
roadmap reduces the chances of collisions due to these uncertainties. Other names
for this roadmap are generalized Voronoi diagram and retraction method [749]. It
is considered as a generalization of the Voronoi diagram (recall from Section 5.2.2)
from the case of points to the case of polygons. Each point along a roadmap edge
is equidistant from two points on the boundary of Cobs. Each roadmap vertex
corresponds to the intersection of two or more roadmap edges and is therefore
equidistant from three or more points along the boundary of Cobs.

The retraction term comes from topology and provides a nice intuition about
the method. A subspace S is a deformation retract of a topological space X if the
following continuous homotopy, h : X× [0, 1]→ X, can be defined as follows [451]:

1. h(x, 0) = x for all x ∈ X.

2. h(x, 1) is a continuous function that maps every element of X to some ele-
ment of S.

6.2. POLYGONAL OBSTACLE REGIONS 261

3. For all t ∈ [0, 1], h(s, t) = s for any s ∈ S.

The intuition is that Cfree is gradually thinned through the homotopy process,
until a skeleton, S, is obtained. An approximation to this shrinking process can
be imagined by shaving off a thin layer around the whole boundary of Cfree. If
this is repeated iteratively, the maximum-clearance roadmap is the only part that
remains (assuming that the shaving always stops when thin “slivers” are obtained).

To construct the maximum-clearance roadmap, the concept of features from
Section 5.3.3 is used again. Let the feature set refer to the set of all edges and
vertices of Cobs. Candidate paths for the roadmap are produced by every pair
of features. This leads to a naive O(n4) time algorithm as follows. For every
edge-edge feature pair, generate a line as shown in Figure 6.9a. For every vertex-
vertex pair, generate a line as shown in Figure 6.9b. The maximum-clearance path
between a point and a line is a parabola. Thus, for every edge-point pair, generate
a parabolic curve as shown in Figure 6.9c. The portions of the paths that actually
lie on the maximum-clearance roadmap are determined by intersecting the curves.
Several algorithms exist that provide better asymptotic running times [616, 626],
but they are considerably more difficult to implement. The best-known algorithm
runs in O(n lg n) time in which n is the number of roadmap curves [865].

6.2.4 Shortest-Path Roadmaps

Instead of generating paths that maximize clearance, suppose that the goal is to
find shortest paths. This leads to the shortest-path roadmap, which is also called
the reduced visibility graph in [588]. The idea was first introduced in [742] and may
perhaps be the first example of a motion planning algorithm. The shortest-path
roadmap is in direct conflict with maximum clearance because shortest paths tend
to graze the corners of Cobs. In fact, the problem is ill posed because Cfree is an
open set. For any path τ : [0, 1] → Cfree, it is always possible to find a shorter
one. For this reason, we must consider the problem of determining shortest paths
in cl(Cfree), the closure of Cfree. This means that the robot is allowed to “touch”
or “graze” the obstacles, but it is not allowed to penetrate them. To actually use
the computed paths as solutions to a motion planning problem, they need to be
slightly adjusted so that they come very close to Cobs but do not make contact. This
slightly increases the path length, but the additional cost can be made arbitrarily
small as the path gets arbitrarily close to Cobs.

The shortest-path roadmap, G, is constructed as follows. Let a reflex vertex be a
polygon vertex for which the interior angle (in Cfree) is greater than π. All vertices
of a convex polygon (assuming that no three consecutive vertices are collinear) are
reflex vertices. The vertices of G are the reflex vertices. Edges of G are formed
from two different sources:

Consecutive reflex vertices: If two reflex vertices are the endpoints of an
edge of Cobs, then an edge between them is made in G.

262 S. M. LaValle: Planning Algorithms

Figure 6.10: A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the line must extend outward past each of them
without poking into Cobs.

Figure 6.11: The shortest-path roadmap includes edges between consecutive reflex
vertices on Cobs and also bitangent edges.

Bitangent edges: If a bitangent line can be drawn through a pair of reflex
vertices, then a corresponding edge is made in G. A bitangent line, depicted
in Figure 6.10, is a line that is incident to two reflex vertices and does not
poke into the interior of Cobs at any of these vertices. Furthermore, these
vertices must be mutually visible from each other.

An example of the resulting roadmap is shown in Figure 6.11. Note that the
roadmap may have isolated vertices, such as the one at the top of the figure. To
solve a query, qI and qG are connected to all roadmap vertices that are visible;
this is shown in Figure 6.12. This makes an extended roadmap that is searched
for a solution. If Dijkstra’s algorithm is used, and if each edge is given a cost that
corresponds to its path length, then the resulting solution path is the shortest path
between qI and qG. The shortest path for the example in Figure 6.12 is shown in
Figure 6.13.

If the bitangent tests are performed naively, then the resulting algorithm re-
quires O(n3) time, in which n is the number of vertices of Cobs. There are O(n2)
pairs of reflex vertices that need to be checked, and each check requires O(n) time
to make certain that no other edges prevent their mutual visibility. The plane-
sweep principle from Section 6.2.2 can be adapted to obtain a better algorithm,

6.2. POLYGONAL OBSTACLE REGIONS 263

qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap
vertices, and graph search is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path
between qI and qG.

which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each
reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n). See
Chapter 15 of [264] for more details. There exists an algorithm that can compute
the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [384]. If the obstacle region is described by a simple poly-
gon, the time complexity can be reduced to O(n); see [709] for many shortest-path
variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R

2 × R2 × R2 → {true, false}, as

264 S. M. LaValle: Planning Algorithms

p1 p3

p4p6

p5

p2

Figure 6.14: Potential bitangents can be identified by checking for left turns, which
avoids the use of trigonometric functions and their associated numerical problems.

fl(p1, p2, p3) = true if and only if p3 is to the left of the ray that starts at p1 and
pierces p2. A point p2 is a reflex vertex if and only if fl(p1, p2, p3) = true, in which
p1 and p3 are the points before and after, respectively, along the boundary of Cobs.
The bitangent test can be performed by assigning points as shown in Figure 6.14.
Assume that no three points are collinear and the segment that connects p2 and
p5 is not in collision. The pair, p2, p5, of vertices should receive a bitangent edge
if the following sentence is false:

(
fl(p1, p2, p5)⊕ fl(p3, p2, p5)

)
∨
(
fl(p4, p5, p2)⊕ fl(p6, p5, p2)

)
, (6.1)

in which ⊕ denotes logical “exclusive or.” The fl predicate can be implemented
without trigonometric functions by defining

M(p1, p2, p3) =





1 x1 y1
1 x2 y2
1 x3 y3



 , (6.2)

in which pi = (xi, yi). If det(M) > 0, then fl(p1, p2, p3) = true; otherwise,
fl(p1, p2, p3) = false.

6.3 Cell Decompositions

Section 6.2.2 introduced the vertical cell decomposition to solve the motion plan-
ning problem when Cobs is polygonal. It is important to understand, however, that
this is just one choice among many for the decomposition. Some of these choices
may not be preferable in 2D; however, they might generalize better to higher
dimensions. Therefore, other cell decompositions are covered in this section, to
provide a smoother transition from vertical cell decomposition to cylindrical alge-
braic decomposition in Section 6.4, which solves the motion planning problem in
any dimension for any semi-algebraic model. Along the way, a cylindrical decom-
position will appear in Section 6.3.4 for the special case of a line-segment robot in
W = R2.

6.3. CELL DECOMPOSITIONS 265

6.3.1 General Definitions

In this section, the term complex refers to a collection of cells together with their
boundaries. A partition into cells can be derived from a complex, but the complex
contains additional information that describes how the cells must fit together. The
term cell decomposition still refers to the partition of the space into cells, which is
derived from a complex.

It is tempting to define complexes and cell decompositions in a very general
manner. Imagine that any partition of Cfree could be called a cell decomposition.
A cell could be so complicated that the notion would be useless. Even Cfree itself
could be declared as one big cell. It is more useful to build decompositions out
of simpler cells, such as ones that contain no holes. Formally, this requires that
every k-dimensional cell is homeomorphic to Bk ⊂ Rk, an open k-dimensional
unit ball. From a motion planning perspective, this still yields cells that are quite
complicated, and it will be up to the particular cell decomposition method to
enforce further constraints to yield a complete planning algorithm.

Two different complexes will be introduced. The simplicial complex is explained
because it is one of the easiest to understand. Although it is useful in many
applications, it is not powerful enough to represent all of the complexes that arise
in motion planning. Therefore, the singular complex is also introduced. Although
it is more complicated to define, it encompasses all of the cell complexes that are
of interest in this book. It also provides an elegant way to represent topological
spaces. Another important cell complex, which is not covered here, is the CW-
complex [439].

Simplicial Complex For this definition, it is assumed that X = Rn. Let p1, p2,
. . ., pk+1, be k + 1 linearly independent5 points in Rn. A k-simplex, [p1, . . . , pk+1],
is formed from these points as

[p1, . . . , pk+1] =

{
k+1∑

i=1

αipi ∈ Rn
∣
∣
∣ αi ≥ 0 for all i and

k+1∑

i=1

αi = 1

}

, (6.3)

in which αipi is the scalar multiplication of αi by each of the point coordinates.
Another way to view (6.3) is as the convex hull of the k + 1 points (i.e., all ways
to linearly interpolate between them). If k = 2, a triangular region is obtained.
For k = 3, a tetrahedron is produced.

For any k-simplex and any i such that 1 ≤ i ≤ k + 1, let αi = 0. This yields
a (k − 1)-dimensional simplex that is called a face of the original simplex. A 2-
simplex has three faces, each of which is a 1-simplex that may be called an edge.
Each 1-simplex (or edge) has two faces, which are 0-simplexes called vertices.

5Form k vectors by subtracting p1 from the other k points for some positive integer k such
that k ≤ n. Arrange the vectors into a k × n matrix. For linear independence, there must be
at least one k × k cofactor with a nonzero determinant. For example, if k = 2, then the three
points cannot be collinear.

266 S. M. LaValle: Planning Algorithms

Not a simplicial complex A simplicial complex

Figure 6.15: To become a simplicial complex, the simplex faces must fit together
nicely.

To form a complex, the simplexes must fit together in a nice way. This yields
a high-dimensional notion of a triangulation, which in R2 is a tiling composed of
triangular regions. A simplicial complex, K, is a finite set of simplexes that satisfies
the following:

1. Any face of a simplex in K is also in K.

2. The intersection of any two simplexes in K is either a common face of both
of them or the intersection is empty.

Figure 6.15 illustrates these requirements. For k > 0, a k-cell of K is defined to
be interior, int([p1, . . . , pk+1]), of any k-simplex. For k = 0, every 0-simplex is a
0-cell. The union of all of the cells forms a partition of the point set covered by
K. This therefore provides a cell decomposition in a sense that is consistent with
Section 6.2.2.

Singular complex Simplicial complexes are useful in applications such as ge-
ometric modeling and computer graphics for computing the topology of models.
Due to the complicated topological spaces, implicit, nonlinear models, and de-
composition algorithms that arise in motion planning, they are insufficient for the
most general problems. A singular complex is a generalization of the simplicial
complex. Instead of being limited to Rn, a singular complex can be defined on any
manifold, X (it can even be defined on any Hausdorff topological space). The main
difference is that, for a simplicial complex, each simplex is a subset of Rn; however,
for a singular complex, each singular simplex is actually a homeomorphism from
a (simplicial) simplex in Rn to a subset of X.

To help understand the idea, first consider a 1D singular complex, which hap-
pens to be a topological graph (as introduced in Example 4.6). The interval [0, 1]
is a 1-simplex, and a continuous path τ : [0, 1] → X is a singular 1-simplex be-
cause it is a homeomorphism of [0, 1] to the image of τ in X. Suppose G(V,E) is
a topological graph. The cells are subsets of X that are defined as follows. Each
point v ∈ V is a 0-cell in X. To follow the formalism, each is considered as the

6.3. CELL DECOMPOSITIONS 267

image of a function f : {0} → X, which makes it a singular 0-simplex, because
{0} is a 0-simplex. For each path τ ∈ E, the corresponding 1-cell is

{x ∈ X | τ(s) = x for some s ∈ (0, 1)}. (6.4)

Expressed differently, it is τ((0, 1)), the image of the path τ , except that the
endpoints are removed because they are already covered by the 0-cells (the cells
must form a partition).

These principles will now be generalized to higher dimensions. Since all balls
and simplexes of the same dimension are homeomorphic, balls can be used instead
of a simplex in the definition of a singular simplex. Let Bk ⊂ Rk denote a closed,
k-dimensional unit ball,

Dk = {x ∈ Rn | ‖x‖ ≤ 1}, (6.5)

in which ‖·‖ is the Euclidean norm. A singular k-simplex is a continuous mapping
σ : Dk → X. Let int(Dk) refer to the interior of Dk. For k ≥ 1, the k-cell,
C, corresponding to a singular k-simplex, σ, is the image C = σ(int(Dk)) ⊆ X.
The 0-cells are obtained directly as the images of the 0 singular simplexes. Each
singular 0-simplex maps to the 0-cell in X. If σ is restricted to int(Dk), then it
actually defines a homeomorphism between Dk and C. Note that both of these
are open sets if k > 0.

A simplicial complex requires that the simplexes fit together nicely. The same
concept is applied here, but topological concepts are used instead because they
are more general. Let K be a set of singular simplexes of varying dimensions. Let
Sk denote the union of the images of all singular i-simplexes for all i ≤ k.

A collection of singular simplexes that map into a topological space X is called
a singular complex if:

1. For each dimension k, the set Sk ⊆ X must be closed. This means that the
cells must all fit together nicely.

2. Each k-cell is an open set in the topological subspace Sk. Note that 0-cells
are open in S0, even though they are usually closed in X.

Example 6.1 (Vertical Decomposition) The vertical decomposition of Sec-
tion 6.2.2 is a nice example of a singular complex that is not a simplicial complex
because it contains trapezoids. The interior of each trapezoid and triangle forms a
2-cell, which is an open set. For every pair of adjacent 2-cells, there is a 1-cell on
their common boundary. There are no 0-cells because the vertices lie in Cobs, not
in Cfree. The subspace S2 is formed by taking the union of all 2-cells and 1-cells
to yield S2 = Cfree. This satisfies the closure requirement because the complex is
built in Cfree only; hence, the topological space is Cfree. The set S2 = Cfree is both
open and closed. The set S1 is the union of all 1-cells. This is also closed because
the 1-cell endpoints all lie in Cobs. Each 1-cell is also an open set.

One way to avoid some of these strange conclusions from the topology restricted
to Cfree is to build the vertical decomposition in cl(Cfree), the closure of Cfree. This

268 S. M. LaValle: Planning Algorithms

can be obtained by starting with the previously defined vertical decomposition and
adding a new 1-cell for every edge of Cobs and a 0-cell for every vertex of Cobs. Now
S3 = cl(Cfree), which is closed in R2. Likewise, S2, S1, and S0, are closed in the
usual way. Each of the individual k-dimensional cells, however, is open in the
topological space Sk. The only strange case is that the 0-cells are considered open,
but this is true in the discrete topological space S0. �

6.3.2 2D Decompositions

The vertical decomposition method of Section 6.2.2 is just one choice of many
cell decomposition methods for solving the problem when Cobs is polygonal. It
provides a nice balance between the number of cells, computational efficiency,
and implementation ease. It is usually possible to decompose Cobs into far fewer
convex cells. This would be preferable for multiple-query applications because
the roadmap would be smaller. It is unfortunately quite difficult to optimize the
number of cells. Determining the decomposition of a polygonal Cobs with holes
that uses the smallest number of convex cells is NP-hard [519, 645]. Therefore, we
are willing to tolerate nonoptimal decompositions.

Triangulation One alternative to the vertical decomposition is to perform a
triangulation, which yields a simplicial complex over Cfree. Figure 6.16 shows an
example. Since Cfree is an open set, there are no 0-cells. Each 2-simplex (triangle)
has either one, two, or three faces, depending on how much of its boundary is
shared with Cobs. A roadmap can be made by connecting the samples for 1-cells
and 2-cells as shown in Figure 6.17. Note that there are many ways to triangulate
Cfree for a given problem. Finding good triangulations, which for example means
trying to avoid thin triangles, is given considerable attention in computational
geometry [129, 264, 302].

Figure 6.16: A triangulation of Cfree.

6.3. CELL DECOMPOSITIONS 269

Figure 6.17: A roadmap obtained from the triangulation.

How can the triangulation be computed? It might seem tempting to run the
vertical decomposition algorithm of Section 6.2.2 and split each trapezoid into
two triangles. Even though this leads to triangular cells, it does not produce a
simplicial complex (two triangles could abut the same side of a triangle edge). A
naive approach is to incrementally split faces by attempting to connect two vertices
of a face by a line segment. If this segment does not intersect other segments, then
the split can be made. This process can be iteratively performed over all vertices
of faces that have more than three vertices, until a triangulation is eventually
obtained. Unfortunately, this results in an O(n3) time algorithm because O(n2)
pairs must be checked in the worst case, and each check requires O(n) time to
determine whether an intersection occurs with other segments. This can be easily
reduced to O(n2 lg n) by performing radial sweeping. Chapter 3 of [264] presents
an algorithm that runs in O(n lg n) time by first partitioning Cfree into monotone
polygons, and then efficiently triangulating each monotone polygon. If Cfree is
simply connected, then, surprisingly, a triangulation can be computed in linear
time [190]. Unfortunately, this algorithm is too complicated to use in practice
(there are, however, simpler algorithms for which the complexity is close to O(n);
see [90] and the end of Chapter 3 of [264] for surveys).

Cylindrical decomposition The cylindrical decomposition is very similar to
the vertical decomposition, except that when any of the cases in Figure 6.2 occurs,
then a vertical line slices through all faces, all the way from y = −∞ to y =∞. The
result is shown in Figure 6.18, which may be considered as a singular complex. This
may appear very inefficient in comparison to the vertical decomposition; however,
it is presented here because it generalizes nicely to any dimension, any C-space
topology, and any semi-algebraic model. Therefore, it is presented here to ease

270 S. M. LaValle: Planning Algorithms

1 2 3 4 5 6 7 8 9 10 11 12 130

a

b

i

h

g
c

e

l

f

j

k

n
m

d

Figure 6.18: The cylindrical decomposition differs from the vertical decomposition
in that the rays continue forever instead of stopping at the nearest edge. Compare
this figure to Figure 6.6.

the transition to more general decompositions. The most important property of
the cylindrical decomposition is shown in Figure 6.19. Consider each vertical strip
between two events. When traversing a strip from y = −∞ to y =∞, the points
alternate between being Cobs and Cfree. For example, between events 4 and 5, the
points below edge f are in Cfree. Points between f and g lie in Cobs. Points between
g and h lie in Cfree, and so forth. The cell decomposition can be defined so that
2D cells are also created in Cobs. Let S(x, y) denote the logical predicate (3.6) from
Section 3.1.1. When traversing a strip, the value of S(x, y) also alternates. This
behavior is the main reason to construct a cylindrical decomposition, which will
become clearer in Section 6.4.2. Each vertical strip is actually considered to be a
cylinder, hence, the name cylindrical decomposition (i.e., there are not necessarily
any cylinders in the 3D geometric sense).

6.3.3 3D Vertical Decomposition

It turns out that the vertical decomposition method of Section 6.2.2 can be ex-
tended to any dimension by recursively applying the sweeping idea. The method
requires, however, that Cobs is piecewise linear. In other words, Cobs is represented
as a semi-algebraic model for which all primitives are linear. Unfortunately, most
of the general motion planning problems involve nonlinear algebraic primitives
because of the nonlinear transformations that arise from rotations. Recall the

6.3. CELL DECOMPOSITIONS 271

1 2 3 4 5 6 7 8 9 10 11 12 130

a

b

i

h

g
c

e

l

m
n

d

k

f

j

Figure 6.19: The cylindrical decomposition produces vertical strips. Inside of a
strip, there is a stack of collision-free cells, separated by Cobs.

complicated algebraic Cobs model constructed in Section 4.3.3. To handle generic
algebraic models, powerful techniques from computational algebraic geometry are
needed. This will be covered in Section 6.4.

One problem for which Cobs is piecewise linear is a polyhedral robot that can
translate in R3, and the obstacles in W are polyhedra. Since the transformation
equations are linear in this case, Cobs ⊂ R3 is polyhedral. The polygonal faces of
Cobs are obtained by forming geometric primitives for each of the Type FV, Type
VF, and Type EE cases of contact between A and O, as mentioned in Section
4.3.2.

Figure 6.20 illustrates the algorithm that constructs the 3D vertical decompo-
sition. Compare this to the algorithm in Section 6.2.2. Let (x, y, z) denote a point
in C = R3. The vertical decomposition yields convex 3-cells, 2-cells, and 1-cells.
Neglecting degeneracies, a generic 3-cell is bounded by six planes. The cross sec-
tion of a 3-cell for some fixed x value yields a trapezoid or triangle, exactly as in
the 2D case, but in a plane parallel to the yz plane. Two sides of a generic 3-cell
are parallel to the yz plane, and two other sides are parallel to the xz plane. The
3-cell is bounded above and below by two polygonal faces of Cobs.

Initially, sort the Cobs vertices by their x coordinate to obtain the events. Now
consider sweeping a plane perpendicular to the x-axis. The plane for a fixed value
of x produces a 2D polygonal slice of Cobs. Three such slices are shown at the
bottom of Figure 6.20. Each slice is parallel to the yz plane and appears to look
exactly like a problem that can be solved by the 2D vertical decomposition method.

272 S. M. LaValle: Planning Algorithms

y y y

z z z

y

z

x

Figure 6.20: In higher dimensions, the sweeping idea can be applied recursively.

The 2-cells in a slice are actually slices of 3-cells in the 3D decomposition. The
only places in which these 3-cells can critically change is when the sweeping plane
stops at some x value. The center slice in Figure 6.20 corresponds to the case in
which a vertex of a convex polyhedron is encountered, and all of the polyhedron
lies to right of the sweep plane (i.e., the rest of the polyhedron has not been
encountered yet). This corresponds to a place where a critical change must occur
in the slices. These are 3D versions of the cases in Figure 6.2, which indicate how
the vertical decomposition needs to be updated. The algorithm proceeds by first
building the 2D vertical decomposition at the first x event. At each event, the 2D
vertical decomposition must be updated to take into account the critical changes.
During this process, the 3D cell decomposition and roadmap can be incrementally
constructed, as in the 2D case.

The roadmap is constructed by placing a sample point in the center of each
3-cell and 2-cell. The vertices are the sample points, and edges are added to the
roadmap by connecting the sample points for each case in which a 3-cell is adjacent
to a 2-cell.

This same principle can be extended to any dimension, but the applications to

6.3. CELL DECOMPOSITIONS 273

Figure 6.21: Motion planning for a line segment that can translate and rotate in
a 2D world.

motion planning are limited because the method requires linear models (or at least
it is very challenging to adapt to nonlinear models; in some special cases, this can
be done). See [426] for a summary of the complexity of vertical decompositions
for various geometric primitives and dimensions.

6.3.4 A Decomposition for a Line-Segment Robot

This section presents one of the simplest cell decompositions that involves nonlin-
ear models, yet it is already fairly complicated. This will help to give an appreci-
ation of the difficulty of combinatorial planning in general. Consider the planning
problem shown in Figure 6.21. The robot, A, is a single line segment that can
translate or rotate in W = R2. The dot on one end of A is used to illustrate
its origin and is not part of the model. The C-space, C, is homeomorphic to
R2 × S1. Assume that the parameterization R2 × [0, 2π]/ ∼ is used in which the
identification equates θ = 0 and θ = 2π. A point in C is represented as (x, y, θ).

An approximate solution First consider making a cell decomposition for the
case in which the segment can only translate. The method from Section 4.3.2 can
be used to compute Cobs by treating the robot-obstacle interaction with Type EV
and Type VE contacts. When the interior of A touches an obstacle vertex, then
Type EV is obtained. An endpoint of A touching an object interior yields Type
VE. Each case produces an edge of Cobs, which is polygonal. Once this is repre-
sented, the vertical decomposition can be used to solve the problem. This inspires
a reasonable numerical approach to the rotational case, which is to discretize θ
into K values, i∆θ, for 0 ≤ i ≤ K, and ∆θ = 2π/K [20]. The obstacle region,
Cobs, is polygonal for each case, and we can imagine having a stack of K polyg-
onal regions. A roadmap can be formed by connecting sampling points inside of
a slice in the usual way, and also by connecting samples between corresponding
cells in neighboring slices. If K is large enough, this strategy works well, but the
method is not complete because a sufficient value for K cannot be determined in

274 S. M. LaValle: Planning Algorithms

v1

e3

e2

e1

v1

e3e3

e2

(a) (b)

Figure 6.22: Fix (x, y) and swing the segment around for all values of θ ∈
[0, 2π]/ ∼. (a) Note the vertex and edge features that are hit by the segment.
(b) Record orientation intervals over which the robot is not in collision.

advance. The method is actually an interesting hybrid between combinatorial and
sampling-based motion planning. A resolution-complete version can be imagined.

In the limiting case, as K tends to infinity, the surfaces of Cobs become curved
along the θ direction. The conditions in Section 4.3.3 must be applied to gen-
erate the actual obstacle regions. This is possible, but it yields a semi-algebraic
representation of Cobs in terms of implicit polynomial primitives. It is no easy
task to determine an explicit representation in terms of simple cells that can be
used for motion planning. The method of Section 6.3.3 cannot be used because
Cobs is not polyhedral. Therefore, special analysis is warranted to produce a cell
decomposition.

The general idea is to construct a cell decomposition in R2 by considering only
the translation part, (x, y). Each cell in R2 is then lifted into C by considering θ as
a third axis that is “above” the xy plane. A cylindrical decomposition results in
which each cell in the xy plane produces a cylindrical stack of cells for different θ
values. Recall the cylinders in Figures 6.18 and 6.19. The vertical axis corresponds
to θ in the current setting, and the horizontal axis is replaced by two axes, x and
y.

To construct the decomposition in R2, consider the various robot-obstacle con-
tacts shown in Figure 6.22. In Figure 6.22a, the segment swings around from a
fixed (x, y). Two different kinds of contacts arise. For some orientation (value of
θ), the segment contacts v1, forming a Type EV contact. For three other orienta-
tions, the segment contacts an edge, forming Type VE contacts. Once again using
the feature concept, there are four orientations at which the segment contacts a
feature. Each feature may be either a vertex or an edge. Between the two contacts
with e2 and e3, the robot is not in collision. These configurations lie in Cfree. Also,
configurations for which the robot is between contacts e3 (the rightmost contact)
and v1 are also in Cfree. All other orientations produce configurations in Cobs. Note
that the line segment cannot get from being between e2 and e3 to being between

6.3. CELL DECOMPOSITIONS 275

e2

e1

e3

v1

e3e3

(a) (b)

Figure 6.23: If x is increased enough, a critical change occurs in the radar map
because v1 can no longer be reached by the robot.

e3 and v1, unless the (x, y) position is changed. It therefore seems sensible that
these must correspond to different cells in whatever decomposition is made.

Radar maps Figure 6.22b illustrates which values of θ produce collision. We
will refer to this representation as a radar map. The four contact orientations are
indicated by the contact feature. The notation [e3, v1] and [e2, e3] identifies the
two intervals for which (x, y, θ) ∈ Cfree. Now imagine changing (x, y) by a small
amount, to obtain (x′, y′). How would the radar map change? The precise angles
at which the contacts occur would change, but the notation [e3, v1] and [e2, e3],
for configurations that lie in Cfree, remains unchanged. Even though the angles
change, there is no interesting change in terms of the contacts; therefore, it makes
sense to declare (x, y, θ) and (x, y, θ′) to lie in the same cell in Cfree because θ and
θ′ both place the segment between the same contacts. Imagine a column of two
3-cells above a small area around (x, y). One 3-cell is for orientations in [e3, v1],
and the other is for orientations in [e2, e3]. These appear to be 3D regions in Cfree
because each of x, y, and θ can be perturbed a small amount without leaving the
cell.

Of course, if (x, y) is changed enough, then eventually we expect a dramatic
change to occur in the radar map. For example, imagine e3 is infinitely long, and
the x value is gradually increased in Figure 6.22a. The black band between v1 and
e2 in Figure 6.22b shrinks in length. Eventually, when the distance from (x′, y′)
to v1 is greater than the length of A, the black band disappears. This situation
is shown in Figure 6.23. The change is very important to notice because after
that region vanishes, any orientation θ′ between e3 and e3, traveling the long way
around the circle, produces a configuration (x′, y′, θ′) ∈ Cfree. This seems very
important because it tells us that we can travel between the original two cells by
moving the robot further way from v1, rotating the robot, and then moving back.
Now move from the position shown in Figure 6.23 into the positive y direction. The
remaining black band begins to shrink and finally disappears when the distance

276 S. M. LaValle: Planning Algorithms

to e3 is further than the robot length. This represents another critical change.
The radar map can be characterized by specifying a circular ordering

([f1, f2], [f3, f4], [f5, f6], . . . , [f2k−1, f2k]), (6.6)

when there are k orientation intervals over which the configurations lie in Cfree. For
the radar map in Figure 6.22b, this representation yields ([e3, v1], [e2, e3]). Each fi
is a feature, which may be an edge or a vertex. Some of the fi may be identical;
the representation for Figure 6.23b is ([e3, e3]). The intervals are specified in
counterclockwise order around the radar map. Since the ordering is circular, it
does not matter which interval is specified first. There are two degenerate cases.
If (x, y, θ) ∈ Cfree for all θ ∈ [0, 2π), then we write () for the ordering. On the
other hand, if (x, y, θ) ∈ Cobs for all θ ∈ [0, 2π), then we write ∅.

Critical changes in cells Now we are prepared to explain the cell decompo-
sition in more detail. Imagine traveling along a path in R2 and producing an
animated version of the radar map in Figure 6.22b. We say that a critical change
occurs each time the circular ordering representation of (6.6) changes. Changes
occur when intervals: 1) appear, 2) disappear, 3) split apart, 4) merge into one,
or 5) when the feature of an interval changes. The first task is to partition R2 into
maximal 2-cells over which no critical changes occur. Each one of these 2-cells,
R, represents the projection of a strip of 3-cells in Cfree. Each 3-cell is defined as
follows. Let {R, [fi, fi+1]} denote the 3D region in Cfree for which (x, y) ∈ R and
θ places the segment between contacts fi and fi+1. The cylinder of cells above R
is given by {R, [fi, fi+1]} for each interval in the circular ordering representation,
(6.6). If any orientation is possible because A never contacts an obstacle while in
R, then we write {R}.

What are the positions in R2 that cause critical changes to occur? It turns
out that there are five different cases to consider, each of which produces a set of
critical curves in R2. When one of these curves is crossed, a critical change occurs.
If none of these curves is crossed, then no critical change can occur. Therefore,
these curves precisely define the boundaries of the desired 2-cells in R2. Let L
denote the length of the robot (which is the line segment).

Consider how the five cases mentioned above may occur. Two of the five cases
have already been observed in Figures 6.22 and 6.23. These appear in Figures
6.24a and Figures 6.24b, and occur if (x, y) is within L of an edge or a vertex. The
third and fourth cases are shown in Figures 6.24c and 6.24d, respectively. The
third case occurs because crossing the curve causes A to change between being
able to touch e and being able to touch v. This must be extended from any edge
at an endpoint that is a reflex vertex (interior angle is greater than π). The fourth
case is actually a return of the bitangent case from Figure 6.10, which arose for
the shortest path graph. If the vertices are within L of each other, then a linear
critical curve is generated because A is no longer able to touch v2 when crossing it
from right to left. Bitangents always produce curves in pairs; the curve above v2 is
not shown. The final case, shown in Figure 6.25, is the most complicated. It is a

6.3. CELL DECOMPOSITIONS 277

e

L

v

L

(a) (b)

e
v

L

L
v1

v2

(c) (d)

Figure 6.24: Four of the five cases that produce critical curves in R2.

fourth-degree algebraic curve called the Conchoid of Nicomedes, which arises from
A being in simultaneous contact between v and e. Inside of the teardrop-shaped
curve, A can contact e but not v. Just outside of the curve, it can touch v. If the
xy coordinate frame is placed so that v is at (0, 0), then the equation of the curve
is

(x2 − y2)(y + d)2 − y2L2 = 0, (6.7)

in which d is the distance from v to e.
Putting all of the curves together generates a cell decomposition of R2. There

are noncritical regions, over which there is no change in (6.6); these form the 2-
cells. The boundaries between adjacent 2-cells are sections of the critical curves

v

e
A

L

Figure 6.25: The fifth case is the most complicated. It results in a fourth-degree
algebraic curve called the Conchoid of Nicomedes.

278 S. M. LaValle: Planning Algorithms

R1 R2 R3 R4

R6
R7

R9

R10

R11

R12

R13

A

R8

R5

e3

e2

x2

x1

e4

e1

Figure 6.26: The critical curves form the boundaries of the noncritical regions in
R2.

and form 1-cells. There are also 0-cells at places where critical curves intersect.
Figure 6.26 shows an example adapted from [588]. Note that critical curves are not
drawn if their corresponding configurations are all in Cobs. The method still works
correctly if they are included, but unnecessary cell boundaries are made. Just for
fun, they could be used to form a nice cell decomposition of Cobs, in addition to
Cfree. Since Cobs is avoided, is seems best to avoid wasting time on decomposing
it. These unnecessary cases can be detected by imagining that A is a laser with
range L. As the laser sweeps around, only features that are contacted by the laser
are relevant. Any features that are hidden from view of the laser correspond to
unnecessary boundaries.

After the cell decomposition has been constructed in R2, it needs to be lifted
into R2× [0, 2π]/ ∼. This generates a cylinder of 3-cells above each 2D noncritical
region, R. The roadmap could easily be defined to have a vertex for every 3-cell
and 2-cell, which would be consistent with previous cell decompositions; however,
vertices at 2-cells are not generated here to make the coming example easier to
understand. Each 3-cell, {R, [fi, fi+1]}, corresponds to the vertex in a roadmap.
The roadmap edges connect neighboring 3-cells that have a 2-cell as part of their
common boundary. This means that in R2 they share a one-dimensional portion
of a critical curve.

Constructing the roadmap The problem is to determine which 3-cells are
actually adjacent. Figure 6.27 depicts the cases in which connections need to be
made. The xy plane is represented as one axis (imagine looking in a direction
parallel to it). Consider two neighboring 2-cells (noncritical regions), R and R′, in
the plane. It is assumed that a 1-cell (critical curve) in R2 separates them. The

6.3. CELL DECOMPOSITIONS 279

xy plane
R R′

θ

Figure 6.27: Connections are made between neighboring 3-cells that lie above
neighboring noncritical regions.

task is to connect together 3-cells in the cylinders above R and R′. If neighbor-
ing cells share the same feature pair, then they are connected. This means that
{R, [fi, fi+1]} and {R′, [fi, fi+1]} must be connected. In some cases, one feature
may change, while the interval of orientations remains unchanged. This may hap-
pen, for example, when the robot changes from contacting an edge to contacting
a vertex of the edge. In these cases, a connection must also be made. One case
illustrated in Figure 6.27 is when a splitting or merging of orientation intervals
occurs. Traveling from R to R′, the figure shows two regions merging into one. In
this case, connections must be made from each of the original two 3-cells to the
merged 3-cell. When constructing the roadmap edges, sample points of both the
3-cells and 2-cells should be used to ensure collision-free paths are obtained, as
in the case of the vertical decomposition in Section 6.2.2. Figure 6.28 depicts the
cells for the example in Figure 6.26. Each noncritical region has between one and
three cells above it. Each of the various cells is indicated by a shortened robot that
points in the general direction of the cell. The connections between the cells are
also shown. Using the noncritical region and feature names from Figure 6.26, the
resulting roadmap is depicted abstractly in Figure 6.29. Each vertex represents a
3-cell in Cfree, and each edge represents the crossing of a 2-cell between adjacent
3-cells. To make the roadmap consistent with previous roadmaps, we could insert
a vertex into every edge and force the path to travel through the sample point of
the corresponding 2-cell.

Once the roadmap has been constructed, it can be used in the same way as
other roadmaps in this chapter to solve a query. Many implementation details have
been neglected here. Due to the fifth case, some of the region boundaries in R2 are
fourth-degree algebraic curves. Ways to prevent the explicit characterization of
every noncritical region boundary, and other implementation details, are covered
in [56]. Some of these details are also summarized in [588].

280 S. M. LaValle: Planning Algorithms

R7

R5

e3

e2

x2

x1

e4

e1

R10

R9

R8

R13

R11

R12

R2 R3R1 R6R4

Figure 6.28: A depiction of the 3-cells above the noncritical regions. Sample
rod orientations are shown for each cell (however, the rod length is shortened for
clarity). Edges between cells are shown in Figure 6.29.

Complexity How many cells can there possibly be in the worst case? First
count the number of noncritical regions in R2. There are O(n) different ways to
generate critical curves of the first three types because each corresponds to a single
feature. Unfortunately, there are O(n2) different ways to generate bitangents and
the Conchoid of Nicomedes because these are based on pairs of features. Assuming
no self-intersections, a collection of O(n2) curves in R2, may intersect to generate at
most O(n4) regions. Above each noncritical region in R2, there could be a cylinder
of O(n) 3-cells. Therefore, the size of the cell decomposition is O(n5) in the worst
case. In practice, however, it is highly unlikely that all of these intersections will
occur, and the number of cells is expected to be reasonable. In [851], an O(n5)-time
algorithm is given to construct the cell decomposition. Algorithms that have much
better running time are mentioned in Section 6.5.3, but they are more complicated
to understand and implement.

6.4 Computational Algebraic Geometry

This section presents algorithms that are so general that they solve any problem of
Formulation 4.1 and even the closed-chain problems of Section 4.4. It is amazing
that such algorithms exist; however, it is also unfortunate that they are both ex-
tremely challenging to implement and not efficient enough for most applications.
The concepts and tools of this section were mostly developed in the context of com-
putational real algebraic geometry [77, 250]. They are powerful enough to conquer
numerous problems in robotics, computer vision, geometric modeling, computer-

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 281

{R1, [e1, e3]} {R2, [e1, e3]} {R3, [e1, e3]} {R4, [e1, e3]} {R9, [e1, e3]} {R10, [v1, e3]}

{R5, [e1, e3]}

{R8, [v1, e3]}{R6, [e1, e3]}

{R7, [e4, e3]}{R6, [e4, e2]}{R5, [e4, v1]}

{R8, [e4, e2]}

{R4, [e4, v1]} {R9, [e4, e2]} {R10, [e4, e2]} {R11, [e4, e2]} {R12, [e4, e2]} {R13, [e4, e2]}

{R1, [e3, e1]} {R2, [e3, v1]} {R3, [e3, e4]}

{R9, [e3, e4]}

{R10, [e3, e4]}{R11, [e3, e4]}{R12, [v1, e4]}{R13, [e2, e4]}

{R4, [e3, e4]}

Figure 6.29: The roadmap corresponding to the example in Figure 6.26.

aided design, and geometric theorem proving. One of these problems happens to
be motion planning, for which the connection to computational algebraic geometry
was first recognized in [852].

6.4.1 Basic Definitions and Concepts

This section builds on the semi-algebraic model definitions from Section 3.1 and
the polynomial definitions from Section 4.4.1. It will be assumed that C ⊆ Rn,
which could for example arise by representing each copy of SO(2) or SO(3) in its
2× 2 or 3× 3 matrix form. For example, in the case of a 3D rigid body, we know
that C = R3 × RP3, which is a six-dimensional manifold, but it can be embedded
in R12, which is obtained from the Cartesian product of R3 and the set of all
3 × 3 matrices. The constraints that force the matrices to lie in SO(2) or SO(3)
are polynomials, and they can therefore be added to the semi-algebraic models of
Cobs and Cfree. If the dimension of C is less than n, then the algorithm presented
below is sufficient, but there are some representation and complexity issues that
motivate using a special parameterization of C to make both dimensions the same
while altering the topology of C to become homeomorphic to Rn. This is discussed
briefly in Section 6.4.2.

Suppose that the models in Rn are all expressed using polynomials fromQ[x1, . . . , xn],
the set of polynomials6 over the field of rational numbers Q. Let f ∈ Q[x1, . . . , xn]
denote a polynomial.

6It will be explained shortly why Q[x1, . . . , xn] is preferred over R[x1, . . . , xn].

282 S. M. LaValle: Planning Algorithms

Tarski sentences Recall the logical predicates that were formed in Section 3.1.
They will be used again here, but now they are defined with a little more flexibility.
For any f ∈ Q[x1, . . . , xn], an atom is an expression of the form f ⊲⊳ 0, in which ⊲⊳
may be any relation in the set {=, 6=, <,>,≤,≥}. In Section 3.1, such expressions
were used to define logical predicates. Here, we assume that relations other than
≤ can be used and that the vector of polynomial variables lies in Rn.

A quantifier-free formula, φ(x1, . . . , xn), is a logical predicate composed of
atoms and logical connectives, “and,” “or,” and “not,” which are denoted by
∧, ∨, and ¬, respectively. Each atom itself is considered as a logical predicate
that yields true if and only if the relation is satisfied when the polynomial is
evaluated at the point (x1, . . . , xn) ∈ Rn.

Example 6.2 (An Example Predicate) Let φ be a predicate over R3, defined
as

φ(x1, x2, x3) = (x21x3 − x42 < 0) ∨
(
¬(3x2x3 6= 0) ∧ (2x23 − x1x2x3 + 2 ≥ 0)

)
. (6.8)

The precedence order of the connectives follows the laws of Boolean algebra. �

Let a quantifier Q be either of the symbols, ∀, which means “for all,” or ∃,
which means “there exists.” A Tarski sentence Φ is a logical predicate that may
additionally involve quantifiers on some or all of the variables. In general, a Tarski
sentence takes the form

Φ(x1, . . . , xn−k) = (Qz1)(Qz2) . . . (Qzk) φ(z1, . . . , zk, x1, . . . , xn−k), (6.9)

in which the zi are the quantified variables, the xi are the free variables, and φ is
a quantifier-free formula. The quantifiers do not necessarily have to appear at the
left to be a valid Tarski sentence; however, any expression can be manipulated into
an equivalent expression that has all quantifiers in front, as shown in (6.9). The
procedure for moving quantifiers to the front is as follows [705]: 1) Eliminate any
redundant quantifiers; 2) rename some of the variables to ensure that the same
variable does not appear both free and bound; 3) move negation symbols as far
inward as possible; and 4) push the quantifiers to the left.

Example 6.3 (Several Tarski Sentences) Tarski sentences that have no free
variables are either true or false in general because there are no arguments on
which the results depend. The sentence

Φ = ∀x∃y (x2 − y < 0), (6.10)

is true because for any x ∈ R, some y ∈ R can always be chosen so that y > x2.
In the general notation of (6.9), this example becomes Qz1 = ∀x, Qz2 = ∃y, and
φ(z1, z2) = (x2 − y < 0).

Swapping the order of the quantifiers yields the Tarski sentence

Φ = ∃y∀x (x2 − y < 0), (6.11)

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 283

which is false because for any y, there is always an x such that x2 > y.
Now consider a Tarski sentence that has a free variable:

Φ(z) = ∃y∀x (x2 − zx2 − y < 0). (6.12)

This yields a function Φ : R→ {true, false}, in which

Φ(z) =

{
true if z ≥ 1
false if z < 1.

(6.13)

An equivalent quantifier-free formula φ can be defined as φ(z) = (z > 1), which
takes on the same truth values as the Tarski sentence in (6.12). This might make
you wonder whether it is always possible to make a simplification that eliminates
the quantifiers. This is called the quantifier-elimination problem, which will be
explained shortly. �

The decision problem The sentences in (6.10) and (6.11) lead to an interesting
problem. Consider the set of all Tarski sentences that have no free variables.
The subset of these that are true comprise the first-order theory of the reals.
Can an algorithm be developed to determine whether such a sentence is true?
This is called the decision problem for the first-order theory of the reals. At
first it may appear hopeless because Rn is uncountably infinite, and an algorithm
must work with a finite set. This is a familiar issue faced throughout motion
planning. The sampling-based approaches in Chapter 5 provided one kind of
solution. This idea could be applied to the decision problem, but the resulting lack
of completeness would be similar. It is not possible to check all possible points
in Rn by sampling. Instead, the decision problem can be solved by constructing
a combinatorial representation that exactly represents the decision problem by
partitioning Rn into a finite collection of regions. Inside of each region, only one
point needs to be checked. This should already seem related to cell decompositions
in motion planning; it turns out that methods developed to solve the decision
problem can also conquer motion planning.

The quantifier-elimination problem Another important problem was exem-
plified in (6.12). Consider the set of all Tarski sentences of the form (6.9), which
may or may not have free variables. Can an algorithm be developed that takes
a Tarski sentence Φ and produces an equivalent quantifier-free formula φ? Let
x1, . . . , xn denote the free variables. To be equivalent, both must take on the same
true values over Rn, which is the set of all assignments (x1, . . . , xn) for the free
variables.

Given a Tarski sentence, (6.9), the quantifier-elimination problem is to find a
quantifier-free formula φ such that

Φ(x1, . . . , xn) = φ(x1, . . . , xn) (6.14)

284 S. M. LaValle: Planning Algorithms

for all (x1, . . . , xn) ∈ Rn. This is equivalent to constructing a semi-algebraic model
because φ can always be expressed in the form

φ(x1, . . . , xn) =
k∨

i=1

mi∧

j=1

(fi,j(x1, . . . , xn) ⊲⊳ 0) , (6.15)

in which ⊲⊳ may be either <, =, or >. This appears to be the same (3.6), except
that (6.15) uses the relations <, =, and > to allow open and closed semi-algebraic
sets, whereas (3.6) only used ≤ to construct closed semi-algebraic sets for O and
A.

Once again, the problem is defined on Rn, which is uncountably infinite, but
an algorithm must work with a finite representation. This will be achieved by the
cell decomposition technique presented in Section 6.4.2.

Semi-algebraic decomposition As stated in Section 6.3.1, motion planning in-
side of each cell in a complex should be trivial. To solve the decision and quantifier-
elimination problems, a cell decomposition was developed for which these problems
become trivial in each cell. The decomposition is designed so that only a single
point in each cell needs to be checked to solve the decision problem.

The semi-algebraic set Y ⊆ Rn that is expressed with (6.15) is

Y =
k⋃

i=1

mi⋂

j=1

{(x1, . . . , xn) ∈ Rn | sgn(fi,j(x1, . . . , xn)) = si,j} , (6.16)

in which sgn is the sign function, and each si,j ∈ {−1, 0, 1}, which is the range
of sgn. Once again the nice relationship between set-theory and logic, which was
described in Section 3.1, appears here. We convert from a set-theoretic description
to a logical predicate by changing ∪ and ∩ to ∨ and ∧, respectively.

Let F denote the set ofm =
∑k

i=1mi polynomials that appear in (6.16). A sign
assignment with respect to F is a vector-valued function, sgnF : Rn → {−1, 0, 1}m.
Each f ∈ F has a corresponding position in the sign assignment vector. At
this position, the sign, sgn(f(x1, . . . , xn)) ∈ {−1, 0, 1}, appears. A semi-algebraic
decomposition is a partition of Rn into a finite set of connected regions that are each
sign invariant. This means that inside of each region, sgnF must remain constant.
The regions will not be called cells because a semi-algebraic decomposition is not
necessarily a singular complex as defined in Section 6.3.1; the regions here may
contain holes.

Example 6.4 (Sign assignment) Recall Example 3.1 and Figure 3.4 from Sec-
tion 3.1.2. Figure 3.4a shows a sign assignment for a case in which there is only
one polynomial, F = {x2 + y2 − 4}. The sign assignment is defined as

sgnF(x, y) =







−1 if x2 + y2 − 4 < 0
0 if x2 + y2 − 4 = 0
1 if x2 + y2 − 4 > 0.

(6.17)

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 285

(−1,−1, 1, 1) (−1, 1,−1, 1)

(−1, 1, 1, 0)

(−1, 1, 0, 1)(−1, 0, 1, 1)

(1, 1, 1, 1)

(0, 1, 1, 1)
(−1, 1, 1,−1)

(−1, 1, 1, 1)

Figure 6.30: A semi-algebraic decomposition of the gingerbread face yields 9 sign-
invariant regions.

Now consider the sign assignment sgnF , shown in Figure 6.30 for the gin-
gerbread face of Figure 3.4b. The polynomials of the semi-algebraic model are
F = {f1, f2, f3, f4}, as defined in Example 3.1. In order, these are the “head,” “left
eye,” “right eye,” and “mouth.” The sign assignment produces a four-dimensional
vector of signs. Note that if (x, y) lies on one of the zeros of a polynomial in
F , then a 0 appears in the sign assignment. If the curves of two or more of the
polynomials had intersected, then the sign assignment would produce more than
one 0 at the intersection points.

For the semi-algebraic decomposition for the gingerbread face in Figure 6.30,
there are nine regions. Five 2D regions correspond to: 1) being outside of the
face, 2)inside of the left eye, 3) inside of the right eye, 4) inside of the mouth,
and 5) inside of the face but outside of the mouth and eyes. There are four 1D
regions, each of which corresponds to points that lie on one of the zero sets of a
polynomial. The resulting decomposition is not a singular complex because the
(−1, 1, 1, 1) region contains three holes. �

A decomposition such as the one in Figure 6.30 would not be very useful
for motion planning because of the holes in the regions. Further refinement is
needed for motion planning, which is fortunately produced by cylindrical algebraic
decomposition. On the other hand, any semi-algebraic decomposition is quite
useful for solving the decision problem. Only one point needs to be checked inside
of each region to determine whether some Tarski sentence that has no free variables
is true. Why? If the polynomial signs cannot change over some region, then
the true/false value of the corresponding logical predicate, Φ, cannot change.
Therefore, it sufficient only to check one point per sign-invariant region.

286 S. M. LaValle: Planning Algorithms

6.4.2 Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition is a general method that produces a cylindrical
decomposition in the same sense considered in Section 6.3.2 for polygons in R2

and also the decomposition in Section 6.3.4 for the line-segment robot. It is also
referred to as Collins decomposition after its original developer [40, 232, 233]. The
decomposition in Figure 6.19 can even be considered as a cylindrical algebraic
decomposition for a semi-algebraic set in which every geometric primitive is a
linear polynomial. In this section, such a decomposition is generalized to any
semi-algebraic set in Rn.

The idea is to develop a sequence of projections that drops the dimension of the
semi-algebraic set by one each time. Initially, the set is defined over Rn, and after
one projection, a semi-algebraic set is obtained in Rn−1. Eventually, the projection
reaches R, and a univariate polynomial is obtained for which the zeros are at the
critical places where cell boundaries need to be formed. A cell decomposition of
1-cells (intervals) and 0-cells is formed by partitioning R. The sequence is then
reversed, and decompositions are formed from R2 up to Rn. Each iteration starts
with a cell decomposition in Ri and lifts it to obtain a cylinder of cells in Ri+1.
Figure 6.35 shows how the decomposition looks for the gingerbread example; since
n = 2, it only involves one projection and one lifting.

Semi-algebraic projections are semi-algebraic The following is implied by
the Tarski-Seidenberg Theorem [77]:

A projection of a semi-algebraic set from dimension n to dimension
n− 1 is a semi-algebraic set.

This gives a kind of closure of semi-algebraic sets under projection, which is re-
quired to ensure that every projection of a semi-algebraic set in Ri leads to a
semi-algebraic set in Ri−1. This property is actually not true for (real) algebraic
varieties, which were introduced in Section 4.4.1. Varieties are defined using only
the = relation and are not closed under the projection operation. Therefore, it is
a good thing (not just a coincidence!) that we are using semi-algebraic sets.

Real algebraic numbers As stated previously, the sequence of projections ends
with a univariate polynomial over R. The sides of the cells will be defined based
on the precise location of the roots of this polynomial. Furthermore, representing
a sample point for a cell of dimension k in a complex in Rn for k < n requires
perfect precision. If the coordinates are slightly off, the point will lie in a different
cell. This raises the complicated issue of how these roots are represented and
manipulated in a computer.

For univariate polynomials of degree 4 or less, formulas exist to compute all
of the roots in terms of functions of square roots and higher order roots. From
Galois theory [469, 769], it is known that such formulas and nice expressions for
roots do not exist for most higher degree polynomials, which can certainly arise

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 287

in the complicated semi-algebraic models that are derived in motion planning.
The roots in R could be any real number, and many real numbers require infinite
representations.

One way of avoiding this mess is to assume that only polynomials inQ[x1, . . . , xn]
are used, instead of the more general R[x1, . . . , xn]. The field Q is not alge-
braically closed because zeros of the polynomials lie outside of Qn. For example, if
f(x1) = x21 − 2, then f = 0 for x1 = ±

√
2, and

√
2 6∈ Q. However, some elements

of R can never be roots of a polynomial in Q[x1, . . . , xn].
The set A of all real roots to all polynomials in Q[x] is called the set of real

algebraic numbers. The set A ⊂ R actually represents a field (recall from Section
4.4.1). Several nice algorithmic properties of the numbers in A are 1) they all
have finite representations, 2) addition and multiplication operations on elements
of A can be computed in polynomial time, and 3) conversions between different
representations of real algebraic numbers can be performed in polynomial time.
This means that all operations can be computed efficiently without resorting to
some kind of numerical approximation. In some applications, such approximations
are fine; however, for algebraic decompositions, they destroy critical information by
potentially confusing roots (e.g., how can we know for sure whether a polynomial
has a double root or just two roots that are very close together?).

The details are not presented here, but there are several methods for rep-
resenting real algebraic numbers and the corresponding algorithms for manipu-
lating them efficiently. The running time of cylindrical algebraic decomposition
ultimately depends on this representation. In practice, a numerical root-finding
method that has a precision parameter, ǫ, can be used by choosing ǫ small enough
to ensure that roots will not be confused. A sufficiently small value can be de-
termined by applying gap theorems, which give lower bounds on the amount of
real root separation, expressed in terms of the polynomial coefficients [173]. Some
methods avoid requiring a precision parameter. One well-known example is the
derivation of a Sturm sequence of polynomials based on the given polynomial.
The polynomials in the Sturm sequence are then used to find isolating intervals
for each of the roots [77]. The polynomial, together with its isolating interval, can
be considered as an exact root representation. Algebraic operations can even be
performed using this representation in time O(d lg2 d), in which d is the degree of
the polynomial [852]. See [77, 173, 852] for detailed presentations on the exact
representation and calculation with real algebraic numbers.

One-dimensional decomposition To explain the cylindrical algebraic decom-
position method, we first perform a semi-algebraic decomposition of R, which is
the final step in the projection sequence. Once this is explained, then the multi-
dimensional case follows more easily.

Let F be a set of m univariate polynomials,

F = {fi ∈ Q[x] | i = 1, . . . ,m}, (6.18)

which are used to define some semi-algebraic set in R. The polynomials in F could

288 S. M. LaValle: Planning Algorithms

f1(x) = x2 − 2x f2(x) = x2 − 4x+ 3

2 310
R

−1

Figure 6.31: Two parabolas are used to define the semi-algebraic set [1, 2].

R
0

[3, 3](2, 3)(1, 2)[1, 1] [2, 2](0, 1)[0, 0](−∞, 0) (3,∞)

2 31

Figure 6.32: A semi-algebraic decomposition for the polynomials in Figure 6.31.

come directly from a quantifier-free formula φ (which could even appear inside of
a Tarski sentence, as in (6.9)).

Define a single polynomial as f =
∏m

i=1 fi. Suppose that f has k distinct, real
roots, which are sorted in increasing order:

−∞ < β1 < β2 < · · · < βi−1 < βi < βi+1 < · · · < βk < ∞. (6.19)

The one-dimensional semi-algebraic decomposition is given by the following
sequence of alternating 1-cells and 0-cells:

(−∞, β1), [β1, β1], (β1, β2), . . . , (βi−1, βi), [βi, βi],

(βi, βi+1), . . . , [βk, βk], (βk,∞).
(6.20)

Any semi-algebraic set that can be expressed using the polynomials in F can also
be expressed as the union of some of the 0-cells and 1-cells given in (6.20). This can
also be considered as a singular complex (it can even be considered as a simplicial
complex, but this does not extend to higher dimensions).

Sample points can be generated for each of the cells as follows. For the un-
bounded cells [−∞, β1) and (βk,∞], valid samples are β1 − 1 and βk + 1, respec-
tively. For each finite 1-cell, (βi, βi+1), the midpoint (βi + βi+1)/2 produces a
sample point. For each 0-cell, [βi, βi], the only choice is to use βi as the sample
point.

Example 6.5 (One-Dimensional Decomposition) Figure 6.31 shows a semi-
algebraic subset of R that is defined by two polynomials, f1(x) = x2 − 2x and
f2(x) = x2 − 4x+ 3. Here, F = {f1, f2}. Consider the quantifier-free formula

φ(x) = (x2 − 2x ≥ 0) ∧ (x2 − 4x+ 3 ≥ 0). (6.21)

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 289

Folding over Intersection

Figure 6.33: Critical points occur either when the surface folds over in the vertical
direction or when surfaces intersect.

The semi-algebraic decomposition into five 1-cells and four 0-cells is shown in
Figure 6.32. Each cell is sign invariant. The sample points for the 1-cells are −1,
1/2, 3/2, 5/2, and 4, respectively. The sample points for the 0-cells are 0, 1, 2,
and 3, respectively.

A decision problem can be nicely solved using the decomposition. Suppose
a Tarski sentence that uses the polynomials in F has been given. Here is one
possibility:

Φ = ∃x[(x2 − 2x ≥ 0) ∧ (x2 − 4x+ 3 ≥ 0)] (6.22)

The sample points alone are sufficient to determine whether Φ is true or false.
Once x = 1 is attempted, it is discovered that Φ is true. The quantifier-
elimination problem cannot yet be considered because more dimensions are needed.
�

The inductive step to higher dimensions Now consider constructing a cylin-
drical algebraic decomposition for Rn (note the decomposition is actually semi-
algebraic). Figure 6.35 shows an example for R2. First consider how to iteratively
project the polynomials down to R to ensure that when the decomposition of Rn

is constructed, the sign-invariant property is maintained. The resulting decompo-
sition corresponds to a singular complex.

There are two cases that cause cell boundaries to be formed, as shown in Figure
6.33. Let Fn denote the original set of polynomials in Q[x1, . . . , xn] that are used to
define the semi-algebraic set (or Tarski sentence) in Rn. Form a single polynomial
f =

∏m
i=1 fi. Let f ′ = ∂f/∂xn, which is also a polynomial. Let g = GCD(f, f ′),

which is the greatest common divisor of f and f ′. The set of zeros of g is the set of
all points that are zeros of both f and f ′. Being a zero of f ′ means that the surface
given by f = 0 does not vary locally when perturbing xn. These are places where
a cell boundary needs to be formed because the surface may fold over itself in
the xn direction, which is not permitted for a cylindrical decomposition. Another
place where a cell boundary needs to be formed is at the intersection of two or
more polynomials in Fn. The projection technique from Rn to Rn−1 generates
a set, Fn−1, of polynomials in Q[x1, . . . , xn−1] that satisfies these requirements.

290 S. M. LaValle: Planning Algorithms

The polynomials Fn−1 have the property that at least one contains a zero point
below every point in x ∈ Rn for which f(x) = 0 and f ′(x) = 0, or polynomials
in Fn intersect. The projection method that constructs Fn−1 involves computing
principle subresultant coefficients, which are covered in [77, 853]. Resultants, of
which the subresultants are an extension, are covered in [250].

The polynomials in Fn−1 are then projected to Rn−2 to obtain Fn−2. This
process continues until F1 is obtained, which is a set of polynomials in Q[x1]. A
one-dimensional decomposition is formed, as defined earlier. From F1, a single
polynomial is formed by taking the product, and R is partitioned into 0-cells and
1-cells. We next describe the process of lifting a decomposition over Ri−1 up to
Ri. This technique is applied iteratively until Rn is reached.

Assume inductively that a cylindrical algebraic decomposition has been com-
puted for a set of polynomials Fi−1 in Q[x1, . . . , xi−1]. The decomposition consists
of k-cells for which 0 ≤ k ≤ i. Let p = (x1, . . . , xi−1) ∈ Ri−1. For each one of the
k-cells Ci−1, a cylinder over Ci−1 is defined as the (k + 1)-dimensional set

{(p, xi) ∈ Ri | p ∈ Ci−1}. (6.23)

The cylinder is sliced into a strip of k-dimensional and k + 1-dimensional cells by
using polynomials in Fi. Let fj denote one of the ℓ slicing polynomials in the
cylinder, sorted in increasing xi order as f1, f2, . . ., fj, fj+1, . . ., fℓ. The following
kinds of cells are produced (see Figure 6.34):

1. Lower unbounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and xi < f1(p) }. (6.24)

2. Section:

{(p, xi) ∈ Ri | p ∈ Ci−1 and xi = fj(p) }. (6.25)

3. Bounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and fj(p) < xi < fj+1(p) }. (6.26)

4. Upper unbounded sector:

{(p, xi) ∈ Ri | p ∈ Ci−1 and fℓ(p) < xi }. (6.27)

There is one degenerate possibility in which there are no slicing polynomials and
the cylinder over Ci−1 can be extended into one unbounded cell. In general, the
sample points are computed by picking a point in p ∈ Ci−1 and making a vertical
column of samples of the form (p, xi). A polynomial in Q[xi] can be generated,
and the samples are placed using the same assignment technique that was used
for the one-dimensional decomposition.

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 291

f1

fj

Ci−1

fj+1

fℓ

Figure 6.34: A cylinder over every k-cell Ci−1 is formed. A sequence of poly-
nomials, f1, . . ., fℓ, slices the cylinder into k-dimensional sections and (k + 1)-
dimensional sectors.

Example 6.6 (Mutilating the Gingerbread Face) Figure 6.35 shows a cylin-
drical algebraic decomposition of the gingerbread face. Observe that the resulting
complex is very similar to that obtained in Figure 6.19. �

Note that the cells do not necessarily project onto a rectangular set, as in the
case of a higher dimensional vertical decomposition. For example, a generic n-cell
Cn for a decomposition of Rn is described as the open set of (x1, . . . , xn) ∈ Rn

such that

• C0 < xn < C ′
0 for some 0-cells C0, C

′
0 ∈ R, which are roots of some f, f ′ ∈ F1.

• (xn−1, xn) lies between C1 and C
′
1 for some 1-cells C1, C

′
1, which are zeros of

some f, f ′ ∈ F2.

...

• (xn−i+1, . . . , xn) lies between Ci−1 and C
′
i−1 for some i-cells Ci−1, C

′
i−1, which

are zeros of some f, f ′ ∈ Fi.
...

292 S. M. LaValle: Planning Algorithms

3

5

6

7

9

10

11

12

1 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

328

33

34
2

35

30

364

37

31

R

Figure 6.35: A cylindrical algebraic decomposition of the gingerbread face. There
are 37 2-cells, 64 1-cells, and 28 0-cells. The straight 1-cells are intervals of the
vertical lines, and the curved ones are portions of the zero set of a polynomial in
F . The decomposition of R is also shown.

• (x1, . . . , xn) lies between Cn−1 and C ′
n−1 for some (n − 1)-cells Cn−1, C

′
n−1,

which are zeros of some f, f ′ ∈ Fn.

The resulting decomposition is sign invariant, which allows the decision and
quantifier-elimination problems to be solved in finite time. To solve a decision
problem, the polynomials in Fn are evaluated at every sample point to deter-
mine whether one of them satisfies the Tarski sentence. To solve the quantifier-
elimination problem, note that any semi-algebraic sets that can be constructed
from Fn can be defined as a union of some cells in the decomposition. For the
given Tarski sentence, Fn is formed from all polynomials that are mentioned in
the sentence, and the cell decomposition is performed. Once obtained, the sign
information is used to determine which cells need to be included in the union. The
resulting union of cells is designed to include only the points in Rn at which the
Tarski sentence is true.

Solving a motion planning problem Cylindrical algebraic decomposition is
also capable of solving any of the motion planning problems formulated in Chapter
4. First assume that C = Rn. As for other decompositions, a roadmap is formed

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 293

in which every vertex is an n-cell and edges connect every pair of adjacent n-cells
by traveling through an (n−1)-cell. It is straightforward to determine adjacencies
inside of a cylinder, but there are several technical details associated with deter-
mining adjacencies of cells from different cylinders (pages 152–154 of [77] present
an example that illustrates the problem). The cells of dimension less than n − 1
are not needed for motion planning purposes (just as vertices were not needed
for the vertical decomposition in Section 6.2.2). The query points qI and qG are
connected to the roadmap depending on the cell in which they lie, and a discrete
search is performed.

If C ⊂ Rn and its dimension is k for k < n, then all of the interesting cells are of
lower dimension. This occurs, for example, due to the constraints on the matrices
to force them to lie in SO(2) or SO(3). This may also occur for problems from
Section 4.4, in which closed chains reduce the degrees of freedom. The cylindrical
algebraic decomposition method can still solve such problems; however, the exact
root representation problem becomes more complicated when determining the cell
adjacencies. A discussion of these issues appears in [852]. For the case of SO(2)
and SO(3), this complication can be avoided by using stereographic projection to
map S1 or S3 to R or R3, respectively. This mapping removes a single point from
each, but the connectivity of Cfree remains unharmed. The antipodal identification
problem for unit quaternions represented by S3 also does not present a problem;
there is a redundant copy of C, which does not affect the connectivity.

The running time for cylindrical algebraic decomposition depends on many fac-
tors, but in general it is polynomial in the number of polynomials in Fn, polynomial
in the maximum algebraic degree of the polynomials, and doubly exponential in
the dimension. Complexity issues are covered in more detail in Section 6.5.3.

6.4.3 Canny’s Roadmap Algorithm

The doubly exponential running time of cylindrical algebraic decomposition in-
spired researchers to do better. It has been shown that quantifier elimination
requires doubly exponential time [262]; however, motion planning is a different
problem. Canny introduced a method that produces a roadmap directly from the
semi-algebraic set, rather than constructing a cell decomposition along the way.
Since there are doubly exponentially many cells in the cylindrical algebraic de-
composition, avoiding this construction pays off. The resulting roadmap method
of Canny solves the motion planning problem in time that is again polynomial in
the number of polynomials and polynomial in the algebraic degree, but it is only
singly exponential in dimension [170, 173]; see also [77].

Much like the other combinatorial motion planning approaches, it is based on
finding critical curves and critical points. The main idea is to construct linear
mappings from Rn to R2 that produce silhouette curves of the semi-algebraic sets.
Performing one such mapping on the original semi-algebraic set yields a roadmap,
but it might not preserve the original connectivity. Therefore, linear mappings
from Rn−1 to R2 are performed on some (n − 1)-dimensional slices of the orig-

294 S. M. LaValle: Planning Algorithms

inal semi-algebraic set to yield more roadmap curves. This process is applied
recursively until the slices are already one-dimensional. The resulting roadmap
is formed from the union of all of the pieces obtained in the recursive calls. The
resulting roadmap has the same connectivity as the original semi-algebraic set
[173].

Suppose that C = Rn. Let F = {f1, . . . , fm} denote the set of polynomials
that define the semi-algebraic set, which is assumed to be a disjoint union of
manifolds. Assume that each fi ∈ Q[x1, . . . , xn]. First, a small perturbation to
the input polynomials F is performed to ensure that every sign-invariant set of Rn

is a manifold. This forces the polynomials into a kind of general position, which
can be achieved with probability one using random perturbations; there are also
deterministic methods to solve this problem. The general position requirements
on the input polynomials and the 2D projection directions are fairly strong, which
has stimulated more recent work that eliminates many of the problems [77]. From
this point onward, it will be assumed that the polynomials are in general position.

Recall the sign-assignment function from Section 6.4.1. Each sign-invariant
set is a manifold because of the general position assumption. Canny’s method
computes a roadmap for any k-dimensional manifold for k < n. Such a manifold
has precisely n − k signs that are 0 (which means that points lie precisely on
the zero sets of n − k polynomials in F). At least one of the signs must be 0,
which means that Canny’s roadmap actually lies in ∂Cfree (this technically is not
permitted, but the algorithm nevertheless correctly decides whether a solution
path exists through Cfree).

Recall that each fi is a function, fi : R
n → R. Let x denote (x1, . . . , xn) ∈ Rn.

The k polynomials that have zero signs can be put together sequentially to produce
a mapping ψ : Rn → Rk. The ith component of the vector ψ(x) is ψi(x) = fi(x).
This is closely related to the sign assignment function of Section 6.4.1, except that
now the real value from each polynomial is directly used, rather than taking its
sign.

Now introduce a function g : Rn → Rj, in which either j = 1 or j = 2 (the
general concepts presented below work for other values of j, but 1 and 2 are the
only values needed for Canny’s method). The function g serves the same purpose
as a projection in cylindrical algebraic decomposition, but note that g immediately
drops from dimension n to dimension 2 or 1, instead of dropping to n − 1 as in
the case of cylindrical projections.

Let h : Rn → Rk+j denote a mapping constructed directly from ψ and g as
follows. For the ith component, if i ≤ k, then hi(x) = ψi(x) = fi(x). Assume that
k + j ≤ n. If i > k, then hi(x) = gi−k(x). Let Jx(h) denote the Jacobian of h and

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 295

be defined at x as

Jx(h) =









∂h1(x)

∂x1
· · · ∂h1(x)

∂xn
...

...
∂hm+k(x)

∂x1
· · · ∂hm+k(x)

∂xn









=





















∂f1(x)

∂x1
· · · ∂f1(x)

∂xn
...

...
∂fk(x)

∂x1
· · · ∂fk(x)

∂xn

∂g1(x)

∂x1
· · · ∂g1(x)

∂xn
...

...
∂gj(x)

∂x1
· · · ∂gj(x)

∂xn





















. (6.28)

A point x ∈ Rn at which Jx(h) is singular is called a critical point. The matrix is
defined to be singular if every (m+k)×(m+k) subdeterminant is zero. Each of the
first k rows of Jx(h) calculates the surface normal to fi(x) = 0. If these normals
are not linearly independent of the directions given by the last j rows, then the
matrix becomes singular. The following example from [169] nicely illustrates this
principle.

Example 6.7 (Canny’s Roadmap Algorithm) Let n = 3, k = 1, and j = 1.
The zeros of a single polynomial f1 define a 2D subset of R3. Let f1 be the unit
sphere, S2, defined as the zeros of the polynomial

f1(x1, x2, x3) = x21 + x22 + x23 − 1. (6.29)

Suppose that g : R3 → R is defined as g(x1, x2, x3) = x1. The Jacobian, (6.28),
becomes (

2x1 2x2 2x3
1 0 0

)

(6.30)

and is singular when all three of the possible 2× 2 subdeterminants are zero. This
occurs if and only if x2 = x3 = 0. This yields the critical points (−1, 0, 0) and
(1, 0, 0) on S2. Note that this is precisely when the surface normals of S2 are
parallel to the vector [1 0 0].

Now suppose that j = 2 to obtain g : R3 → R2, and suppose g(x1, x2, x3) =
(x1, x2). In this case, (6.28) becomes





2x1 2x2 2x3
1 0 0
0 1 0



 , (6.31)

which is singular if and only if x3 = 0. The critical points are therefore the x1x2
plane intersected with S3, which yields the equator points (all (x1, x2) ∈ R2 such
that x21 + x22 = 1). In this case, more points are generated because the matrix
becomes degenerate for any surface normal of S2 that is parallel to [1 0 0], [0 1 0]
or any linear combination of these. �

296 S. M. LaValle: Planning Algorithms

The first mapping in Example 6.7 yielded two isolated critical points, and the
second mapping yielded a one-dimensional set of critical points, which is referred
to as a silhouette. The union of the silhouette and the isolated critical points
yields a roadmap for S2. Now consider generalizing this example to obtain the
full algorithm for general n and k. A linear mapping g : Rn → R2 is constructed
that might not be axis-aligned as in Example 6.7 because it must be chosen in
general position (otherwise degeneracies might arise in the roadmap). Define ψ to
be the set of polynomials that become zero on the desired manifold on which to
construct a roadmap. Form the matrix (6.28) and determine the silhouette. This
is accomplished in general using subresultant techniques that were also needed for
cylindrical algebraic decomposition; see [77, 173] for details. Let g1 denote the
first component of g, which yields a mapping g1 : R

n → R. Forming (6.28) using
g1 yields a finite set of critical points. Taking the union of the critical points and
the silhouette produces part of the roadmap.

So far, however, there are no guarantees that the connectivity is preserved.
To handle this problem, Canny’s algorithm proceeds recursively. For each of the
critical points x ∈ Rn, an n − 1-dimensional hyperplane through x is chosen for
which the g1 row of (6.28) is the normal (hence it is perpendicular in some sense to
the flow of g1). Inside of this hyperplane, a new g mapping is formed. This time
a new direction is chosen, and the mapping takes the form g : Rn−1 → R2. Once
again, the silhouettes and critical points are found and added to the roadmap.
This process is repeated recursively until the base case in which the silhouettes
and critical points are directly obtained without forming g.

It is helpful to consider an example. Since the method involves a sequence of
2D projections, it is difficult to visualize. Problems in R4 and higher involve two
or more 2D projections and would therefore be more interesting. An example over
R3 is presented here, even though it unfortunately has only one projection; see
[173] for another example over R3.

Example 6.8 (Canny’s Algorithm on a Torus) Consider the 3D algebraic set
shown in Figure 6.36. After defining the mapping g(x1, x2, x3) = (x1, x2), the
roadmap shown in Figure 6.37 is obtained. The silhouettes are obtained from g,
and the critical points are obtained from g1 (this is the first component of g). Note
that the original connectivity of the solid torus is not preserved because the inner
ring does not connect to the outer ring. This illustrates the need to also compute
the roadmap for lower dimensional slices. For each of the four critical points, the
critical curves are computed for a plane that is parallel to the x2x3 plane and for
which the x1 position is determined by the critical point. The slice for one of the
inner critical points is shown in Figure 6.38. In this case, the slice already has two
dimensions. New silhouette curves are added to the roadmap to obtain the final
result shown in Figure 6.39. �

To solve a planning problem, the query points qI and qG are artificially declared
to be critical points in the top level of recursion. This forces the algorithm to

6.4. COMPUTATIONAL ALGEBRAIC GEOMETRY 297

x1

x3

x2

Figure 6.36: Suppose that the semi-algebraic set is a solid torus in R3.

Figure 6.37: The projection into the x1x2 plane yields silhouettes for the inner
and outer rings and also four critical points.

Figure 6.38: A slice taken for the inner critical points is parallel to the x2x3 plane.
The roadmap for the slice connects to the silhouettes from Figure 6.37, thereby
preserving the connectivity of the original set in Figure 6.36.

Figure 6.39: All of the silhouettes and critical points are merged to obtain the
roadmap.

298 S. M. LaValle: Planning Algorithms

generate curves that connect them to the rest of the roadmap.
The completeness of the method requires very careful analysis, which is thor-

oughly covered in [77, 173]. The main elements of the analysis are showing that:
1) the polynomials can be perturbed and g can be chosen to ensure general po-
sition, 2) the singularity conditions on (6.28) lead to algebraic sets (varieties),
and 3) the resulting roadmap has the required properties mentioned in Section
6.1 of being accessible and connectivity-preserving for Cfree (actually it is shown
for ∂Cfree). The method explained above computes the roadmap for each sign-
invariant set, but to obtain a roadmap for the planning problem, the roadmaps
from each sign-invariant set must be connected together correctly; fortunately, this
has been solved via the Linking Lemma of [169]. A major problem, however, is that
even after knowing the connectivity of the roadmap, it is a considerable challenge
to obtain a parameterization of each curve on the roadmap. For this and many
other technical reasons, no general implementation of Canny’s algorithm appears
to exist at present. Another problem is the requirement of a Whitney stratification
(which can be fixed by perturbation of the input). The Basu-Pollack-Roy roadmap
algorithm overcomes this problem [77].

6.5 Complexity of Motion Planning

This section summarizes theoretical work that characterizes the complexity of
motion planning problems. Note that this is not equivalent to characterizing the
running time of particular algorithms. The existence of an algorithm serves as
an upper bound on the problem’s difficulty because it is a proof by example that
solving the problem requires no more time than what is needed by the algorithm.
On the other hand, lower bounds are also very useful because they give an indica-
tion of the difficulty of the problem itself. Suppose, for example, you are given an
algorithm that solves a problem in time O(n2). Does it make sense to try to find
a more efficient algorithm? Does it make sense to try to find a general-purpose
motion planning algorithm that runs in time that is polynomial in the dimension?
Lower bounds provide answers to questions such as this. Usually lower bounds
are obtained by concocting bizarre, complicated examples that are allowed by the
problem definition but were usually not considered by the person who first for-
mulated the problem. In this line of research, progress is made by either raising
the lower bound (unless it is already tight) or by showing that a narrower version
of the problem still allows such bizarre examples. The latter case occurs often in
motion planning.

6.5.1 Lower Bounds

Lower bounds have been established for a variety of motion planning problems and
also a wide variety of planning problems in general. To interpret these bounds a
basic understanding of the theory of computation is required [462, 891]. This
fascinating subject will be unjustly summarized in a few paragraphs. A problem is

6.5. COMPLEXITY OF MOTION PLANNING 299

a set of instances that are each carefully encoded as a binary string. An algorithm
is formally considered as a Turing machine, which is a finite-state machine that can
read and write bits to an unbounded piece of tape. Other models of computation
also exist, such as integer RAM and real RAM (see [118]); there are debates
as to which model is most appropriate, especially when performing geometric
computations with real numbers. The standard Turing machine model will be
assumed from here onward. Algorithms are usually formulated to make a binary
output, which involves accepting or rejecting a problem instance that is initially
written to the tape and given to the algorithm. In motion planning, this amounts
to deciding whether a solution path exists for a given problem instance.

Languages A language is a set of binary strings associated with a problem. It
represents the complete set of instances of a problem. An algorithm is said to
decide a language if in finite time it correctly accepts all strings that belong to
it and rejects all others. The interesting question is: How much time or space is
required to decide a language? This question is asked of the problem, under the
assumption that the best possible algorithm would be used to decide it. (We can
easily think of inefficient algorithms that waste resources.)

A complexity class is a set of languages that can all be decided within some
specified resource bound. The class P is the set of all languages (and hence prob-
lems) for which a polynomial-time algorithm exists (i.e., the algorithm runs in
time O(nk) for some integer k). By definition, an algorithm is called efficient if it
decides its associated language in polynomial time.7 If no efficient algorithm ex-
ists, then the problem is called intractable. The relationship between several other
classes that often emerge in theoretical motion planning is shown in Figure 6.40.
The class NP is the set of languages that can be solved in polynomial time by a
nondeterministic Turing machine. Some discussion of nondeterministic machines
appears in Section 11.3.2. Intuitively, it means that solutions can be verified in
polynomial time because the machine magically knows which choices to make while
trying to make the decision. The class PSPACE is the set of languages that can
be decided with no more than a polynomial amount of storage space during the
execution of the algorithm (NPSPACE=PSPACE, so there is no nondeterministic
version). The class EXPTIME is the set of languages that can be decided in time

O(2n
k

) for some integer k. It is known that EXPTIME is larger than P, but it is
not known precisely where the boundaries of NP and PSPACE lie. It might be
the case that P = NP = PSPACE (although hardly anyone believes this), or it
could be that NP = PSPACE = EXPTIME.

Hardness and completeness Since an easier class is included as a subset of
a harder one, it is helpful to have a notion of a language (i.e., problem) being
among the hardest possible within a class. Let X refer to either P, NP, PSPACE,

7Note that this definition may be absurd in practice; an algorithm that runs in time O(n90125)
would probably not be too efficient for most purposes.

300 S. M. LaValle: Planning Algorithms

P NP PSPACE EXPTIME

Figure 6.40: It is known that P ⊂ EXPTIME is a strict subset; however, it is not
known precisely how large NP and PSPACE are.

or EXPTIME. A language A is called X-hard if every language B in class X is
polynomial-time reducible to A. In short, this means that in polynomial time,
any language in B can be translated into instances for language A, and then the
decisions for A can be correctly translated back in polynomial time to correctly
decide B. Thus, if A can be decided, then within a polynomial-time factor, every
language in X can be decided. The hardness concept can even be applied to
a language (problem) that does not belong to the class. For example, we can
declare that a language A is NP-hard even if A 6∈NP (it could be harder and lie in
EXPTIME, for example). If it is known that the language is both hard for some
class X and is also a member of X, then it is called X-complete (i.e., NP-complete,
PSPACE-complete, etc.).8 Note that because of this uncertainty regarding P, NP,
and PSPACE, one cannot say that a problem is intractable if it is NP-hard or
PSPACE-hard, but one can, however, if the problem is EXPTIME-hard. One
additional remark: it is useful to remember that PSPACE-hard implies NP-hard.

Lower bounds for motion planning The general motion planning problem,
Formulation 4.1, was shown in 1979 to be PSPACE-hard by Reif [817]. In fact, the
problem was restricted to polyhedral obstacles and a finite number of polyhedral
robot bodies attached by spherical joints. The coordinates of all polyhedra are
assumed to be in Q (this enables a finite-length string encoding of the problem
instance). The proof introduces a fascinating motion planning instance that in-
volves many attached, dangling robot parts that must work their way through a
complicated system of tunnels, which together simulates the operation of a sym-
metric Turing machine. Canny later established that the problem in Formulation
4.1 (expressed using polynomials that have rational coefficients) lies in PSPACE
[173]. Therefore, the general motion planning problem is PSPACE-complete.

Many other lower bounds have been shown for a variety of planning problems.
One famous example is the Warehouseman’s problem shown in Figure 6.41. This

8If you remember hearing that a planning problem is NP-something, but cannot remember
whether it was NP-hard or NP-complete, then it is safe to say NP-hard because NP-complete
implies NP-hard. This can similarly be said for other classes, such as PSPACE-complete vs.
PSPACE-hard.

6.5. COMPLEXITY OF MOTION PLANNING 301

Figure 6.41: Even motion planning for a bunch of translating rectangles inside of
a rectangular box in R2 is PSPACE-hard (and hence, NP-hard).

problem involves a finite number of translating, axis-aligned rectangles in a rect-
angular world. It was shown in [461] to be PSPACE-hard. This example is a
beautiful illustration of how such a deceptively simple problem formulation can
lead to such a high lower bound. More recently, it was even shown that planning
for Sokoban, which is a warehouseman’s problem on a discrete 2D grid, is also
PSPACE-hard [255]. Other general motion planning problems that were shown
to be PSPACE-hard include motion planning for a chain of bodies in the plane
[460, 490] and motion planning for a chain of bodies among polyhedral obsta-
cles in R3. Many lower bounds have been established for a variety of extensions
and variations of the general motion planning problem. For example, in [172] it
was established that a certain form of planning under uncertainty for a robot in
a 3D polyhedral environment is NEXPTIME-hard, which is harder than any of
the classes shown in Figure 6.40; the hardest problems in this NEXPTIME are
believed to require doubly exponential time to solve.

The lower bound or hardness results depend significantly on the precise repre-
sentation of the problem. For example, it is possible to make problems look easier
by making instance encodings that are exponentially longer than they should be.
The running time or space required is expressed in terms of n, the input size. If
the motion planning problem instances are encoded with exponentially more bits
than necessary, then a language that belongs to P is obtained. As long as the
instance encoding is within a polynomial factor of the optimal encoding (this can
be made precise using Kolmogorov complexity [630]), then this bizarre behavior
is avoided. Another important part of the representation is to pay attention to
how parameters in the problem formulation can vary. We can redefine motion

302 S. M. LaValle: Planning Algorithms

planning to be all instances for which the dimension of C is never greater than
21000. The number of dimensions is sufficiently large for virtually any application.
The resulting language for this problem belongs to P because cylindrical algebraic
decomposition and Canny’s algorithm can solve any motion planning problem in
polynomial time. Why? This is because now the dimension parameter in the
time-complexity expressions can be replaced by 21000, which is a constant. This
formally implies that an efficient algorithm is already known for any motion plan-
ning problem that we would ever care about. This implication has no practical
value, however. Thus, be very careful when interpreting theoretical bounds.

The lower bounds may appear discouraging. There are two general directions
to go from here. One is to weaken the requirements and tolerate algorithms that
yield some kind of resolution completeness or probabilistic completeness. This
approach was taken in Chapter 5 and leads to many efficient algorithms. An-
other direction is to define narrower problems that do not include the bizarre
constructions that lead to bad lower bounds. For the narrower problems, it may
be possible to design interesting, efficient algorithms. This approach was taken
for the methods in Sections 6.2 and 6.3. In Section 6.5.3, upper bounds for some
algorithms that address these narrower problems will be presented, along with
bounds for the general motion planning algorithms. Several of the upper bounds
involve Davenport-Schinzel sequences, which are therefore covered next.

6.5.2 Davenport-Schinzel Sequences

Davenport-Schinzel sequences provide a powerful characterization of the structure
that arises from the lower or upper envelope of a collection of functions. The lower
envelope of five functions is depicted in Figure 6.42. Such envelopes arise in many
problems throughout computational geometry, including many motion planning
problems. They are an important part of the design and analysis of many modern
algorithms, and the resulting algorithm’s time complexity usually involves terms
that follow directly from the sequences. Therefore, it is worthwhile to understand
some of the basics before interpreting some of the results of Section 6.5.3. Much
more information on Davenport-Schinzel sequences and their applications appears
in [866]. The brief introduction presented here is based on [865].

For positive integers n and s, an (n, s) Davenport-Schinzel sequence is a se-
quence (u1, . . . , um) composed from a set of n symbols such that:

1. The same symbol may not appear consecutively in the sequence. In other
words, ui 6= ui+1 for any i such that 1 ≤ i < m.

2. The sequence does not contain any alternating subsequence that uses two
symbols and has length s+2. A subsequence can be formed by deleting any
elements in the original sequence. The condition can be expressed as: There
do not exist s + 2 indices i1 < i2 < · · · < is+2 for which ui1 = ui3 = ui5 = a
and ui2 = ui4 = ui6 = b, for some symbols a and b.

6.5. COMPLEXITY OF MOTION PLANNING 303

X

f4(x)

f5(x)

f3(x)

f2(x)

f1(x)

Figure 6.42: The lower envelope of a collection of functions.

As an example, an (n, 3) sequence cannot appear as (a · · · b · · · a · · · b · · · a), in which
each · · · is filled in with any sequence of symbols. Let λs(n) denote the maximum
possible length of an (n, s) Davenport-Schinzel sequence.

The connection between Figure 6.42 and these sequences can now be explained.
Consider the sequence of function indices that visit the lower envelope. In the
example, this sequence is (5, 2, 3, 4, 1). Suppose it is known that each pair of
functions intersects in at most s places. If there are n real-valued continuous
functions, then the sequence of function indices must be an (n, s) Davenport-
Schinzel sequence. It is amazing that such sequences cannot be very long. For a
fixed s, they are close to being linear.

The standard bounds for Davenport-Schinzel sequences are [865]9

λ1(n) = n (6.32)

λ2(n) = 2n− 1 (6.33)

λ3(n) = Θ(nα(n)) (6.34)

λ4(n) = Θ(n · 2α(n)) (6.35)

λ2s(n) ≤ n · 2α(n)s−1+C2s(n) (6.36)

λ2s+1(n) ≤ n · 2α(n)s−1 lgα(n)+C′

2s+1(n) (6.37)

λ2s(n) = Ω(n · 2 1
(s−1)!

α(n)s−1+C′

2s(n)). (6.38)

In the expressions above Cr(n) and C ′
r(n) are terms that are smaller than their

leading exponents. The α(n) term is the inverse Ackerman function, which is an
extremely slow-growing function that appears frequently in algorithms. The Ack-
erman function is defined as follows. Let A1(m) = 2m and An+1(m) represent m

9The following asymptotic notion is used: O(f(n)) denotes an upper bound, Ω(f(n)) denotes
a lower bound, and Θ(f(n)) means that the bound is tight (both upper and lower). This notation
is used in most books on algorithms [243].

304 S. M. LaValle: Planning Algorithms

applications of An. Thus, A1(m) performs doubling, A2(m) performs exponentia-
tion, and A3(m) performs tower exponentiation, which makes a stack of 2’s,

22
...

22

, (6.39)

that has height m. The Ackerman function is defined as A(n) = An(n). This
function grows so fast that A(4) is already an exponential tower of 2’s that has
height 65536. Thus, the inverse Ackerman function, α, grows very slowly. If n is
less than or equal to an exponential tower of 65536 2’s, then α(n) ≤ 4. Even when
it appears in exponents of the Davenport-Schinzel bounds, it does not represent a
significant growth rate.

Example 6.9 (Lower Envelope of Line Segments) One interesting applica-
tion of Davenport-Schinzel applications is to the lower envelope of a set of line
segments in R2. Since segments in general position may appear multiple times
along the lower envelope, the total number of edges is Θ(λ3(n)) = Θ(nα(n)),
which is higher than one would obtain from infinite lines. There are actually ar-
rangements of segments in R2 that reach this bound; see [866]. �

6.5.3 Upper Bounds

The upper bounds for motion planning problems arise from the existence of com-
plete algorithms that solve them. This section proceeds by starting with the most
general bounds, which are based on the methods of Section 6.4, and concludes
with bounds for simpler motion planning problems.

General algorithms The first upper bound for the general motion planning
problem of Formulation 4.1 came from the application of cylindrical algebraic
decomposition [852]. Let n be the dimension of C. Let m be the number of
polynomials in F , which are used to define Cobs. Recall from Section 4.3.3 how
quickly this grows for simple examples. Let d be the maximum degree among the
polynomials in F . The maximum degree of the resulting polynomials is bounded
by O(d2

n−1
), and the total number of polynomials is bounded by O((md)3

n−1
). The

total running time required to use cylindrical algebraic decomposition for motion
planning is bounded by (md)O(1)n .10 Note that the algorithm is doubly exponential
in dimension n but polynomial in m and d. It can theoretically be declared to be
efficient on a space of motion planning problems of bounded dimension (although,
it certainly is not efficient for motion planning in any practical sense).

10It may seem odd for O(·) to appear in the middle of an expression. In this context, it means
that there exists some c ∈ [0,∞) such that the running time is bounded by (md)c

n

. Note that
another O is not necessary in front of the whole formula.

6.5. COMPLEXITY OF MOTION PLANNING 305

Since the general problem is PSPACE-complete, it appears unavoidable that
a complete, general motion planning algorithm will require a running time that
is exponential in dimension. Since cylindrical algebraic decomposition is dou-
bly exponential, it led many in the 1980s to wonder whether this upper bound
could be lowered. This was achieved by Canny’s roadmap algorithm, for which
the running time is bounded by mn(lgm)dO(n4). Hence, it is singly exponential,
which appears very close to optimal because it is up against the lower bound that
seems to be implied by PSPACE-hardness (and the fact that problems exist that
require a roadmap with (md)n connected components [77]). Much of the algo-
rithm’s complexity is due to finding a suitable deterministic perturbation to put
the input polynomials into general position. A randomized algorithm can alter-
natively be used, for which the randomized expected running time is bounded
by mn(lgm)dO(n2). For a randomized algorithm [719], the randomized expected
running time is still a worst-case upper bound, but averaged over random “coin
tosses” that are introduced internally in the algorithm; it does not reflect any kind
of average over the expected input distribution. Thus, these two bounds represent
the best-known upper bounds for the general motion planning problem. Canny’s
algorithm may also be applied to solve the kinematic closure problems of Section
4.4, but the complexity does not reflect the fact that the dimension, k, of the
algebraic variety is less than n, the dimension of C. A roadmap algorithm that
is particularly suited for this problem is introduced in [76], and its running time
is bounded by mk+1dO(n2). This serves as the best-known upper bound for the
problems of Section 4.4.

Specialized algorithms Now upper bounds are summarized for some narrower
problems, which can be solved more efficiently than the general problem. All of the
problems involve either two or three degrees of freedom. Therefore, we expect that
the bounds are much lower than those for the general problem. In many cases, the
Davenport-Schinzel sequences of Section 6.5.2 arise. Most of the bounds presented
here are based on algorithms that are not practical to implement; they mainly serve
to indicate the best asymptotic performance that can be obtained for a problem.
Most of the bounds mentioned here are included in [865].

Consider the problem from Section 6.2, in which the robot translates inW = R2

and Cobs is polygonal. Suppose that A is a convex polygon that has k edges and O
is the union of m disjoint, convex polygons with disjoint interiors, and their total
number of edges is n. In this case, the boundary of Cfree (computed by Minkowski
difference; see Section 4.3.2) has at most 6m−12 nonreflex vertices (interior angles
less than π) and n + km reflex vertices (interior angles greater than π). The free
space, Cfree, can be decomposed and searched in time O((n+km) lg2 n) [518, 865].
Using randomized algorithms, the bound reduces to O((n+km)·2α(n) lg n) random-
ized expected time. Now suppose that A is a single nonconvex polygonal region
described by k edges and that O is a similar polygonal region described by n edges.
The Minkowski difference could yield as many as Ω(k2n2) edges for Cobs. This can
be avoided if the search is performed within a single connected component of Cfree.

306 S. M. LaValle: Planning Algorithms

Based on analysis that uses Davenport-Schinzel sequences, it can be shown that
the worst connected component may have complexity Θ(knα(k)), and the planning
problem can be solved in time O(kn lg2 n) deterministically or for a randomized
algorithm, O(kn · 2α(n) lg n) randomized expected time is needed. More generally,
if Cobs consists of n algebraic curves in R2, each with degree no more than d, then
the motion planning problem for translation only can be solved deterministically
in time O(λs+2(n) lg

2 n), or with a randomized algorithm in O(λs+2(n) lg n) ran-
domized expected time. In these expressions, λs+2(n) is the bound (6.37) obtained
from the (n, s+ 2) Davenport-Schinzel sequence, and s ≤ d2.

For the case of the line-segment robot of Section 6.3.4 in an obstacle region
described with n edges, an O(n5)-time algorithm was given. This is not the best
possible running time for solving the line-segment problem, but the method is
easier to understand than others that are more efficient. In [748], a roadmap
algorithm based on retraction is given that solves the problem in O(n2 lg n lg∗ n)
time, in which lg∗ n is the number of times that lg has to be iterated on n to
yield a result less than or equal to 1 (i.e., it is a very small, insignificant term;
for practical purposes, you can imagine that the running time is O(n2 lg n)). The
tightest known upper bound is O(n2 lg n) [625]. It is established in [517] that there
exist examples for which the solution path requires Ω(n2) length to encode. For
the case of a line segment moving in R3 among polyhedral obstacles with a total
of n vertices, a complete algorithm that runs in time O(n4 + ǫ) for any ǫ > 0 was
given in [547]. In [517] it was established that solution paths of complexity Ω(n4)
exist.

Now consider the case for which C = SE(2), A is a convex polygon with k
edges, and O is a polygonal region described by n edges. The boundary of Cfree
has no more than O(knλ6(kn)) edges and can be computed to solve the motion
planning problem in time O(knλ6(kn) lg kn) [10, 11]. An algorithm that runs
in time O(k4nλ3(n) lg n) and provides better clearance between the robot and
obstacles is given in [205]. In [55] (some details also appear in [588]), an algorithm
is presented, and even implemented, that solves the more general case in which
A is nonconvex in time O(k3n3 lg(kn)). The number of faces of Cobs could be as
high as Ω(k3n3) for this problem. By explicitly representing and searching only one
connected component, the best-known upper bound for the problem is O((kn)2+ǫ),
in which ǫ > 0 may be chosen arbitrarily small [428].

In the final case, suppose that A translates in W = R3 to yield C = R3.
For a polyhedron or polyhedral region, let its complexity be the total number of
faces, edges, and vertices. If A is a polyhedron with complexity k, and O is a
polyhedral region with complexity n, then the boundary of Cfree is a polyhedral
surface of complexity Θ(k3n3). As for other problems, if the search is restricted
to a single component, then the complexity is reduced. The motion planning
problem in this case can be solved in time O((kn)2+ǫ) [42]. If A is convex and
there are m convex obstacles, then the best-known bound is O(kmn lg2m) time.
More generally, if Cobs is bounded by n algebraic patches of constant maximum
degree, then a vertical decomposition method solves the motion planning problem

6.5. COMPLEXITY OF MOTION PLANNING 307

within a single connected component of Cfree in time O(n2+ǫ).

Further Reading

Most of the literature on combinatorial planning is considerably older than the sampling-
based planning literature. A nice collection of early papers appears in [854]; this includes
[460, 748, 749, 817, 851, 852, 853]. The classic motion planning textbook of Latombe
[588] covers most of the methods presented in this chapter. The coverage here does
not follow [588], which makes separate categories for cell decomposition methods and
roadmap methods. A cell decomposition is constructed to produce a roadmap; hence,
they are unified in this chapter. An excellent reference for material in combinatorial
algorithms, computational geometry, and complete algorithms for motion planning is
the collection of survey papers in [403].

Section 6.2 follows the spirit of basic algorithms from computational geometry. For a
gentle introduction to computational geometry, including a nice explanation of vertical
composition, see [264]. Other sources for computational geometry include [129, 302, 806].
To understand the difficulties in computing optimal decompositions of polygons, see
[757]. See [650, 709, 832] for further reading on computing shortest paths.

Cell decompositions and cell complexes are very important in computational geom-
etry and algebraic topology. Section 6.3 provided a brief perspective that was tailored
to motion planning. For simplicial complexes in algebraic topology, see [496, 535, 834];
for singular complexes, see [834]. In computational geometry, various kinds of cell de-
compositions arise. Some of the most widely studied decompositions are triangulations
[90] and arrangements [426], which are regions generated by a collection of primitives,
such as lines or circles in the plane. For early cell decomposition methods in motion
planning, see [854]. A survey of computational topology appears in [954].

The most modern and complete reference for the material in Section 6.4 is [77]. A
gentle introduction to computational algebraic geometry is given in [250]. For details
regarding algebraic computations with polynomials, see [704]. A survey of computational
algebraic geometry appears in [705]. In addition to [77], other general references to
cylindrical algebraic decomposition are [40, 232]. For its use in motion planning, see
[588, 852]. The main reference for Canny’s roadmap algorithm is [173]. Alternative high-
level overviews to the one presented in Section 6.4.3 appear in [220, 588]. Variations and
improvements to the algorithm are covered in [77]. A potential function-based extension
of Canny’s roadmap algorithm is developed in [176].

For further reading on the complexity of motion planning, consult the numerous
references given in Section 6.5.

Exercises

1. Extend the vertical decomposition algorithm to correctly handle the case in which
Cobs has two or more points that lie on the same vertical line. This includes the
case of vertical segments. Random perturbations are not allowed.

2. Fully describe and prove the correctness of the bitangent computation method
shown in Figure 6.14, which avoids trigonometric functions. Make certain that all
types of bitangents (in general position) are considered.

308 S. M. LaValle: Planning Algorithms

y

x

Figure 6.43: Determine the cylindrical algebraic decomposition obtained by pro-
jecting onto the x-axis.

3. Develop an algorithm that uses the plane-sweep principle to efficiently compute a
representation of the union of two nonconvex polygons.

4. Extend the vertical cell decomposition algorithm of Section 6.2.2 to work for ob-
stacle boundaries that are described as chains of circular arcs and line segments.

5. Extend the shortest-path roadmap algorithm of Section 6.2.4 to work for obstacle
boundaries that are described as chains of circular arcs and line segments.

6. Derive the equation for the Conchoid of Nicomedes, shown in Figure 6.24, for the
case of a line-segment robot contacting an obstacle vertex and edge simultaneously.

7. Propose a resolution-complete algorithm for motion planning of the line-segment
robot in a polygonal obstacle region. The algorithm should compute exact C-space
obstacle slices for any fixed orientation, θ; however, the algorithm should use van
der Corput sampling over the set [0, 2π) of orientations.

8. Determine the result of cylindrical algebraic decomposition for unit spheres S1,
S2, S3, S4, Each Sn is expressed as a unit sphere in Rn+1. Graphically depict
the cases of S1 and S2. Also, attempt to develop an expression for the number of
cells as a function of n.

9. Determine the cylindrical algebraic decomposition for the three intersecting circles
shown in Figure 6.43. How many cells are obtained?

10. Using the matrix in (6.28), show that the result of Canny’s roadmap for the torus,
shown in Figure 6.39, is correct. Use the torus equation

(x21 + x22 + x23 − (r21 + r22))
2 − 4r21(r

2
2 − x23) = 0, (6.40)

in which r1 is the major circle, r2 is the minor circle, and r1 > r2.

11. Propose a vertical decomposition algorithm for a polygonal robot that can trans-
late in the plane and even continuously vary its scale. How would the algorithm
be modified to instead work for a robot that can translate or be sheared?

6.5. COMPLEXITY OF MOTION PLANNING 309

12. Develop a shortest-path roadmap algorithm for a flat torus, defined by identifying
opposite edges of a square. Use Euclidean distance but respect the identifications
when determining the shortest path. Assume the robot is a point and the obstacles
are polygonal.

Implementations

13. Implement the vertical cell decomposition planning algorithm of Section 6.2.2.

14. Implement the maximum-clearance roadmap planning algorithm of Section 6.2.3.

15. Implement a planning algorithm for a point robot that moves in W = R3 among
polyhedral obstacles. Use vertical decomposition.

16. Implement an algorithm that performs a cylindrical decomposition of a polygonal
obstacle region.

17. Implement an algorithm that computes the cell decomposition of Section 6.3.4 for
the line-segment robot.

18. Experiment with cylindrical algebraic decomposition. The project can be greatly
facilitated by utilizing existing packages for performing basic operations in com-
putational algebraic geometry.

19. Implement the algorithm proposed in Exercise 7.

310 S. M. LaValle: Planning Algorithms

Chapter 7

Extensions of Basic Motion
Planning

This chapter presents many extensions and variations of the motion planning prob-
lem considered in Chapters 3 to 6. Each one of these can be considered as a
“spin-off” that is fairly straightforward to describe using the mathematical con-
cepts and algorithms introduced so far. Unlike the previous chapters, there is not
much continuity in Chapter 7. Each problem is treated independently; therefore,
it is safe to jump to whatever sections in the chapter you find interesting without
fear of missing important details.

In many places throughout the chapter, a state space X will arise. This is con-
sistent with the general planning notation used throughout the book. In Chapter
4, the C-space, C, was introduced, which can be considered as a special state space:
It encodes the set of transformations that can be applied to a collection of bodies.
Hence, Chapters 5 and 6 addressed planning in X = C. The C-space alone is
insufficient for many of the problems in this chapter; therefore, X will be used
because it appears to be more general. For most cases in this chapter, however, X
is derived from one or more C-spaces. Thus, C-space and state space terminology
will be used in combination.

7.1 Time-Varying Problems

This section brings time into the motion planning formulation. Although the
robot has been allowed to move, it has been assumed so far that the obstacle
region O and the goal configuration, qG ∈ Cfree, are stationary for all time. It
is now assumed that these entities may vary over time, although their motions
are predictable. If the motions are not predictable, then some form of feedback is
needed to respond to observations that are made during execution. Such problems
are much more difficult and will be handled in Chapters 8 and throughout Part
IV.

311

312 S. M. LaValle: Planning Algorithms

7.1.1 Problem Formulation

The formulation is designed to allow the tools and concepts learned so far to be
applied directly. Let T ⊂ R denote the time interval, which may be bounded or
unbounded. If T is bounded, then T = [0, tf], in which 0 is the initial time and tf
is the final time. If T is unbounded, then T = [0,∞). An initial time other than
0 could alternatively be defined without difficulty, but this will not be done here.

Let the state space X be defined as X = C × T , in which C is the usual C-
space of the robot, as defined in Chapter 4. A state x is represented as x = (q, t),
to indicate the configuration q and time t components of the state vector. The
planning will occur directly in X, and in many ways it can be treated as any
C-space seen to far, but there is one critical difference: Time marches forward.
Imagine a path that travels through X. If it first reaches a state (q1, 5), and then
later some state (q2, 3), some traveling backward through time is required! There
is no mathematical problem with allowing such time travel, but it is not realistic
for most applications. Therefore, paths in X are forced to follow a constraint that
they must move forward in time.

Now consider making the following time-varying versions of the items used in
Formulation 4.1 for motion planning.

Formulation 7.1 (The Time-Varying Motion Planning Problem)

1. A world W in which either W = R2 or W = R3. This is the same as in
Formulation 4.1.

2. A time interval T ⊂ R that is either bounded to yield T = [0, tf] for some
final time, tf > 0, or unbounded to yield T = [0,∞).

3. A semi-algebraic, time-varying obstacle region O(t) ⊂ W for every t ∈ T . It
is assumed that the obstacle region is a finite collection of rigid bodies that
undergoes continuous, time-dependent rigid-body transformations.

4. The robot A (or A1, . . ., Am for a linkage) and configuration space C defini-
tions are the same as in Formulation 4.1.

5. The state space X is the Cartesian product X = C × T and a state x ∈ X is
denoted as x = (q, t) to denote the configuration q and time t components.
See Figure 7.1. The obstacle region, Xobs, in the state space is defined as

Xobs = {(q, t) ∈ X | A(q) ∩ O(t) 6= ∅}, (7.1)

and Xfree = X \ Xobs. For a given t ∈ T , slices of Xobs and Xfree are
obtained. These are denoted as Cobs(t) and Cfree(t), respectively, in which
(assuming A is one body)

Cobs(t) = {q ∈ C | A(q) ∩ O(t) 6= ∅} (7.2)

and Cfree = C \ Cobs.

7.1. TIME-VARYING PROBLEMS 313

Cfree(t1) Cfree(t2) Cfree(t3)

t3t2t1

xt

yt

qG

t

Figure 7.1: A time-varying example with piecewise-linear obstacle motion.

6. A state xI ∈ Xfree is designated as the initial state, with the constraint that
xI = (qI , 0) for some qI ∈ Cfree(0). In other words, at the initial time the
robot cannot be in collision.

7. A subset XG ⊂ Xfree is designated as the goal region. A typical definition
is to pick some qG ∈ C and let XG = {(qG, t) ∈ Xfree | t ∈ T}, which means
that the goal is stationary for all time.

8. A complete algorithm must compute a continuous, time-monotonic path,
τ [0, 1] → Xfree, such that τ(0) = xI and τ(1) ∈ XG, or correctly report
that such a path does not exist. To be time-monotonic implies that for any
s1, s2 ∈ [0, 1] such that s1 < s2, we have t1 < t2, in which (q1, t1) = τ(s1)
and (q2, t2) = τ(s2).

Example 7.1 (Piecewise-Linear Obstacle Motion) Figure 7.1 shows an ex-
ample of a convex, polygonal robot A that translates inW = R2. There is a single,
convex, polygonal obstacle O. The two of these together yield a convex, polygonal

314 S. M. LaValle: Planning Algorithms

C-space obstacle, Cobs(t), which is shown for times t1, t2, and t3. The obstacle
moves with a piecewise-linear motion model, which means that transformations
applied to O are a piecewise-linear function of time. For example, let (x, y) be a
fixed point on the obstacle. To be a linear motion model, this point must transform
as (x + c1t, y + c2t) for some constants c1, c2 ∈ R. To be piecewise-linear, it may
change to a different linear motion at a finite number of critical times. Between
these critical times, the motion must remain linear. There are two critical times in
the example. If Cobs(t) is polygonal, and a piecewise-linear motion model is used,
then Xobs is polyhedral, as depicted in Figure 7.1. A stationary goal is also shown,
which appears as a line that is parallel to the T -axis. �

In the general formulation, there are no additional constraints on the path,
τ , which means that the robot motion model allows infinite acceleration and un-
bounded speed. The robot velocity may change instantaneously, but the path
through C must always be continuous. These issues did not arise in Chapter 4
because there was no need to mention time. Now it becomes necessary.1

7.1.2 Direct Solutions

Sampling-based methods Many sampling-based methods can be adapted from
C to X without much difficulty. The time dependency of obstacle models must be
taken into account when verifying that path segments are collision-free; the tech-
niques from Section 5.3.4 can be extended to handle this. One important concern
is the metric for X. For some algorithms, it may be important to permit the use
of a pseudometric because symmetry is broken by time (going backward in time
is not as easy as going forward).

For example, suppose that the C-space C is a metric space, (C, ρ). The metric
can be extended across time to obtain a pseudometric, ρX , as follows. For a pair
of states, x = (q, t) and x′ = (q′, t′), let

ρX(x, x
′) =







0 if q = q′

∞ if q 6= q′ and t′ ≤ t
ρ(q, q′) otherwise.

(7.3)

Using ρX , several sampling-based methods naturally work. For example, RDTs
from Section 5.5 can be adapted to X. Using ρX for a single-tree approach ensures
that all path segments travel forward in time. Using bidirectional approaches
is more difficult for time-varying problems because XG is usually not a single
point. It is not clear which (q, t) should be the starting vertex for the tree from

1The infinite acceleration and unbounded speed assumptions may annoy those with mechanics
and control backgrounds. In this case, assume that the present models approximate the case in
which every body moves slowly, and the dynamics can be consequently neglected. If this is still
not satisfying, then jump ahead to Part IV, where general nonlinear systems are considered. It
is still helpful to consider the implications derived from the concepts in this chapter because the
issues remain for more complicated problems that involve dynamics.

7.1. TIME-VARYING PROBLEMS 315

the goal; one possibility is to initialize the goal tree to an entire time-invariant
segment. The sampling-based roadmap methods of Section 5.6 are perhaps the
most straightforward to adapt. The notion of a directed roadmap is needed, in
which every edge must be directed to yield a time-monotonic path. For each pair
of states, (q, t) and (q′, t′), such that t 6= t′, exactly one valid direction exists for
making a potential edge. If t = t′, then no edge can be attempted because it would
require the robot to instantaneously “teleport” from one part of W to another.
Since forward time progress is already taken into account by the directed edges,
a symmetric metric may be preferable instead of (7.3) for the sampling-based
roadmap approach.

Combinatorial methods In some cases, combinatorial methods can be used
to solve time-varying problems. If the motion model is algebraic (i.e., expressed
with polynomials), then Xobs is semi-algebraic. This enables the application of
general planners from Section 6.4, which are based on computational real alge-
braic geometry. The key issue once again is that the resulting roadmap must be
directed with all edges being time-monotonic. For Canny’s roadmap algorithm,
this requirement seems difficult to ensure. Cylindrical algebraic decomposition is
straightforward to adapt, provided that time is chosen as the last variable to be
considered in the sequence of projections. This yields polynomials in Q[t], and R

is nicely partitioned into time intervals and time instances. Connections can then
be made for a cell of one cylinder to an adjacent cell of a cylinder that occurs later
in time.

If Xobs is polyhedral as depicted in Figure 7.1, then vertical decomposition can
be used. It is best to first sweep the plane along the time axis, stopping at the
critical times when the linear motion changes. This yields nice sections, which are
further decomposed recursively, as explained in Section 6.3.3, and also facilitates
the connection of adjacent cells to obtain time-monotonic path segments. It is not
too difficult to imagine the approach working for a four-dimensional state space,
X, for which Cobs(t) is polyhedral as in Section 6.3.3, and time adds the fourth
dimension. Again, performing the first sweep with respect to the time axis is
preferable.

IfX is not decomposed into cylindrical slices over each noncritical time interval,
then cell decompositions may still be used, but be careful to correctly connect the
cells. Figure 7.2 illustrates the problem, for which transitivity among adjacent
cells is broken. This complicates sample point selection for the cells.

Bounded speed There has been no consideration so far of the speed at which
the robot must move to avoid obstacles. It is obviously impractical in many
applications if the solution requires the robot to move arbitrarily fast. One step
toward making a realistic model is to enforce a bound on the speed of the robot.
(More steps towards realism are taken in Chapter 13.) For simplicity, suppose
C = R2, which corresponds to a translating rigid robot, A, that moves inW = R2.
A configuration, q ∈ C, is represented as q = (y, z) (since x already refers to the

316 S. M. LaValle: Planning Algorithms

C2

C3

C1

q

t

Figure 7.2: Transitivity is broken if the cells are not formed in cylinders over T .
A time-monotonic path exists from C1 to C2, and from C2 to C3, but this does
not imply that one exists from C1 to C3.

whole state vector). The robot velocity is expressed as v = (ẏ, ż) ∈ R2, in which

ẏ = dy/dt and ż = dz/dt. The robot speed is ‖v‖ =
√

ẏ2 + ż2. A speed bound, b, is
a positive constant, b ∈ (0,∞), for which ‖v‖ ≤ b.

In terms of Figure 7.1, this means that the slope of a solution path τ is bounded.
Suppose that the domain of τ is T = [0, tf] instead of [0, 1]. This yields τ : T → X
and τ(t) = (y, z, t). Using this representation, dτ1/dt = ẏ and dτ2/dt = ż, in which
τi denotes the ith component of τ (because it is a vector-valued function). Thus,
it can seen that b constrains the slope of τ(t) in X. To visualize this, imagine
that only motion in the y direction occurs, and suppose b = 1. If τ holds the
robot fixed, then the speed is zero, which satisfies any bound. If the robot moves
at speed 1, then dτ1/dt = 1 and dτ2/dt = 0, which satisfies the speed bound. In
Figure 7.1 this generates a path that has slope 1 in the yt plane and is horizontal
in the zt plane. If dτ1/dt = dτ2/dt = 1, then the bound is exceeded because the
speed is

√
2. In general, the velocity vector at any state (y, z, t) points into a cone

that starts at (y, z) and is aligned in the positive t direction; this is depicted in
Figure 7.3. At time t+∆t, the state must stay within the cone, which means that

(
y(t+∆t)− y(t)

)2
+
(
z(t+∆t)− z(t)

)2 ≤ b2(∆t)2. (7.4)

This constraint makes it considerably more difficult to adapt the algorithms of
Chapters 5 and 6. Even for piecewise-linear motions of the obstacles, the problem
has been established to be PSPACE-hard [818, 819, 928]. A complete algorithm
is presented in [819] that is similar to the shortest-path roadmap algorithm of
Section 6.2.4. The sampling-based roadmap of Section 5.6 is perhaps one of the
easiest of the sampling-based algorithms to adapt for this problem. The neighbors
of point q, which are determined for attempted connections, must lie within the
cone that represents the speed bound. If this constraint is enforced, a resolution
complete or probabilistically complete planning algorithm results.

7.1. TIME-VARYING PROBLEMS 317

t

y

Figure 7.3: A projection of the cone constraint for the bounded-speed problem.

7.1.3 The Velocity-Tuning Method

An alternative to defining the problem in C × T is to decouple it into a path
planning part and a motion timing part [506]. Algorithms based on this method
are not complete, but velocity tuning is an important idea that can be applied
elsewhere. Suppose there are both stationary obstacles and moving obstacles. For
the stationary obstacles, suppose that some path τ : [0, 1] → Cfree has been
computed using any of the techniques described in Chapters 5 and 6.

The timing part is then handled in a second phase. Design a timing function
(or time scaling), σ : T → [0, 1], that indicates for time, t, the location of the robot
along the path, τ . This is achieved by defining the composition φ = τ ◦ σ, which
maps from T to Cfree via [0, 1]. Thus, φ : T → Cfree. The configuration at time
t ∈ T is expressed as φ(t) = τ(σ(t)).

A 2D state space can be defined as shown in Figure 7.4. The purpose is to
convert the design of σ (and consequently φ) into a familiar planning problem.
The robot must move along its path from τ(0) to τ(1) while an obstacle, O(t),
moves along its path over the time interval T . Let S = [0, 1] denote the domain of
τ . A state space, X = T × S, is shown in Figure 7.4b, in which each point (t, s)
indicates the time t ∈ T and the position along the path, s ∈ [0, 1]. The obstacle
region in X is defined as

Xobs = {(t, s) ∈ X | A(τ(s)) ∩ O(t) 6= ∅}. (7.5)

Once again, Xfree is defined as Xfree = X \Xobs. The task is to find a continuous
path g : [0, 1] → Xfree. If g is time-monotonic, then a position s ∈ S is assigned
for every time, t ∈ T . These assignments can be nicely organized into the timing
function, σ : T → S, from which φ is obtained by φ = τ ◦σ to determine where the
robot will be at each time. Being time-monotonic in this context means that the
path must always progress from left to right in Figure 7.4b. It can, however, be
nonmonotonic in the positive s direction. This corresponds to moving back and
forth along τ , causing some configurations to be revisited.

Any of the methods described in Formulation 7.1 can be applied here. The
dimension of X in this case is always 2. Note that Xobs is polygonal if A and O
are both polygonal regions and their paths are piecewise-linear. In this case, the

318 S. M. LaValle: Planning Algorithms

O(t)

A

t

1

0

s

(a) (b)

Figure 7.4: An illustration of path tuning. (a) If the robot follows its computed
path, it may collide with the moving obstacle. (b) The resulting state space.

vertical decomposition method of Section 6.2.2 can be applied by sweeping along
the time axis to yield a complete algorithm (it is complete after having committed
to τ , but it is not complete for Formulation 7.1). The result is shown in Figure
7.5. The cells are connected only if it is possible to reach one from the other
by traveling in the forward time direction. As an example of a sampling-based
approach that may be preferable when Xobs is not polygonal, place a grid over X
and apply one of the classical search algorithms described in Section 5.4.2. Once
again, only path segments in X that move forward in time are allowed.

7.2 Multiple Robots

Suppose that multiple robots share the same world,W . A path must be computed
for each robot that avoids collisions with obstacles and with other robots. In
Chapter 4, each robot could be a rigid body, A, or it could be made of k attached
bodies, A1, . . ., Ak. To avoid confusion, superscripts will be used in this section
to denote different robots. The ith robot will be denoted by Ai. Suppose there
are m robots, A1, A2, . . ., Am. Each robot, Ai, has its associated C-space, Ci, and
its initial and goal configurations, qiinit and q

i
goal, respectively.

7.2.1 Problem Formulation

A state space is defined that considers the configurations of all robots simultane-
ously,

X = C1 × C2 × · · · × Cm. (7.6)

A state x ∈ X specifies all robot configurations and may be expressed as x =
(q1, q2, . . . , qm). The dimension of X is N , which is N =

∑m
i=1 dim(Ci).

7.2. MULTIPLE ROBOTS 319

t

1

0

s

Figure 7.5: Vertical cell decomposition can solve the path tuning problem. Note
that this example is not in general position because vertical edges exist. The goal
is to reach the horizontal line at the top, which can be accomplished from any
adjacent 2-cell. For this example, it may even be accomplished from the first
2-cell if the robot is able to move quickly enough.

There are two sources of obstacle regions in the state space: 1) robot-obstacle
collisions, and 2) robot-robot collisions. For each i such that 1 ≤ i ≤ m, the subset
of X that corresponds to robot Ai in collision with the obstacle region, O, is

X i
obs = {x ∈ X | Ai(qi) ∩ O 6= ∅}. (7.7)

This only models the robot-obstacle collisions.
For each pair, Ai and Aj, of robots, the subset of X that corresponds to Ai in

collision with Aj is

X ij
obs = {x ∈ X | Ai(qi) ∩ Aj(qj) 6= ∅}. (7.8)

Both (7.7) and (7.8) will be combined in (7.10) later to yield Xobs.

Formulation 7.2 (Multiple-Robot Motion Planning)

1. The world W and obstacle region O are the same as in Formulation 4.1.

2. There are m robots, A1, . . ., Am, each of which may consist of one or more
bodies.

3. Each robot Ai, for i from 1 to m, has an associated configuration space, Ci.

4. The state space X is defined as the Cartesian product

X = C1 × C2 × · · · × Cm. (7.9)

320 S. M. LaValle: Planning Algorithms

The obstacle region in X is

Xobs =

(
m⋃

i=1

X i
obs

)
⋃
(
⋃

ij, i 6=j
X ij
obs

)

, (7.10)

in which X i
obs and X

ij
obs are the robot-obstacle and robot-robot collision states

from (7.7) and (7.8), respectively.

5. A state xI ∈ Xfree is designated as the initial state, in which xI = (q1I , . . . , q
m
I).

For each i such that 1 ≤ i ≤ m, qiI specifies the initial configuration of Ai.

6. A state xG ∈ Xfree is designated as the goal state, in which xG = (q1G, . . . , q
m
G).

7. The task is to compute a continuous path τ : [0, 1] → Xfree such that
τ(0) = xinit and τ(1) ∈ xgoal.

An ordinary motion planning problem? On the surface it may appear that
there is nothing unusual about the multiple-robot problem because the formu-
lations used in Chapter 4 already cover the case in which the robot consists of
multiple bodies. They do not have to be attached; therefore, X can be considered
as an ordinary C-space. The planning algorithms of Chapters 5 and 6 may be ap-
plied without adaptation. The main concern, however, is that the dimension of X
grows linearly with respect to the number of robots. For example, if there are 12
rigid bodies for which each has Ci = SE(3), then the dimension of X is 6 ·12 = 72.
Complete algorithms require time that is at least exponential in dimension, which
makes them unlikely candidates for such problems. Sampling-based algorithms are
more likely to scale well in practice when there many robots, but the dimension
of X might still be too high.

Reasons to study multi-robot motion planning Even though multiple-
robot motion planning can be handled like any other motion planning problem,
there are several reasons to study it separately:

1. The motions of the robots can be decoupled in many interesting ways. This
leads to several interesting methods that first develop some kind of partial
plan for the robots independently, and then consider the plan interactions
to produce a solution. This idea is referred to as decoupled planning.

2. The part of Xobs due to robot-robot collisions has a cylindrical structure,
depicted in Figure 7.6, which can be exploited to make more efficient plan-
ning algorithms. Each X ij

obs defined by (7.8) depends only on two robots. A
point, x = (q1, . . . , qm), is in Xobs if there exists i, j such that 1 ≤ i, j ≤ m
and Ai(qi) ∩ Aj(qj) 6= ∅, regardless of the configurations of the other m− 2
robots. For some decoupled methods, this even implies that Xobs can be
completely characterized by 2D projections, as depicted in Figure 7.9.

7.2. MULTIPLE ROBOTS 321

X

X

i

X

j

X

ij

obs

Figure 7.6: The set X ij
obs and its cylindrical structure on X.

A1 A2

A7

A3

A5

A6A4

A1

A2

A3

A4

A5

A6
A7

(a) (b)

Figure 7.7: (a) A collection of pieces used to define an assembly planning problem;
(b) assembly planning involves determining a sequence of motions that assembles
the parts. The object shown here is assembled from the parts.

3. If optimality is important, then a unique set of issues arises for the case of
multiple robots. It is not a standard optimization problem because the per-
formance of each robot has to be optimized. There is no clear way to combine
these objectives into a single optimization problem without losing some crit-
ical information. It will be explained in Section 7.7.2 that Pareto optimality
naturally arises as the appropriate notion of optimality for multiple-robot
motion planning.

Assembly planning One important variant of multiple-robot motion planning
is called assembly planning; recall from Section 1.2 its importance in applications.
In automated manufacturing, many complicated objects are assembled step-by-
step from individual parts. It is convenient for robots to manipulate the parts
one-by-one to insert them into the proper locations (see Section 7.3.2). Imagine a
collection of parts, each of which is interpreted as a robot, as shown in Figure 7.7a.
The goal is to assemble the parts into one coherent object, such as that shown
in Figure 7.7b. The problem is generally approached by starting with the goal

322 S. M. LaValle: Planning Algorithms

configuration, which is tightly constrained, and working outward. The problem
formulation may allow that the parts touch, but their interiors cannot overlap.
In general, the assembly planning problem with arbitrarily many parts is NP-
hard. Polynomial-time algorithms have been developed in several special cases.
For the case in which parts can be removed by a sequence of straight-line paths,
a polynomial-time algorithm is given in [973, 974].

7.2.2 Decoupled planning

Decoupled approaches first design motions for the robots while ignoring robot-
robot interactions. Once these interactions are considered, the choices available to
each robot are already constrained by the designed motions. If a problem arises,
these approaches are typically unable to reverse their commitments. Therefore,
completeness is lost. Nevertheless, decoupled approaches are quite practical, and
in some cases completeness can be recovered.

Prioritized planning A straightforward approach to decoupled planning is to
sort the robots by priority and plan for higher priority robots first [320, 951]. Lower
priority robots plan by viewing the higher priority robots as moving obstacles.
Suppose the robots are sorted as A1, . . ., Am, in which A1 has the highest priority.

Assume that collision-free paths, τi : [0, 1] → Cifree, have been computed for i
from 1 to n. The prioritized planning approach proceeds inductively as follows:

Base case: Use any motion planning algorithm from Chapters 5 and 6 to
compute a collision-free path, τ1 : [0, 1] → C1free for A1. Compute a timing
function, σ1, for τ1, to yield φ1 = τ1 ◦ σ1 : T → C1free.

Inductive step: Suppose that φ1, . . ., φi−1 have been designed for A1, . . .,
Ai−1, and that these functions avoid robot-robot collisions between any of
the first i− 1 robots. Formulate the first i− 1 robots as moving obstacles in
W . For each t ∈ T and j ∈ {1, . . . , i− 1}, the configuration qj of each Aj is
φj(t). This yields Aj(φj(t)) ⊂ W , which can be considered as a subset of the
obstacle O(t). Design a path, τi, and timing function, σi, using any of the
time-varying motion planning methods from Section 7.1 and form φi = τi◦σi.

Although practical in many circumstances, Figure 7.8 illustrates how completeness
is lost.

A special case of prioritized planning is to design all of the paths, τ1, τ2,
. . ., τm, in the first phase and then formulate each inductive step as a velocity
tuning problem. This yields a sequence of 2D planning problems that can be
solved easily. This comes at a greater expense, however, because the choices are
even more constrained. The idea of preplanned paths, and even roadmaps, for
all robots independently can lead to a powerful method if the coordination of the
robots is approached more carefully. This is the next topic.

7.2. MULTIPLE ROBOTS 323

A

2 A

1

Figure 7.8: If A1 neglects the query for A2, then completeness is lost when using
the prioritized planning approach. This example has a solution in general, but
prioritized planning fails to find it.

Fixed-path coordination Suppose that each robotAi is constrained to follow a
path τi : [0, 1]→ Cifree, which can be computed using any ordinary motion planning
technique. For m robots, an m-dimensional state space called a coordination space
is defined that schedules the motions of the robots along their paths so that they
will not collide [746]. One important feature is that time will only be implicitly
represented in the coordination space. An algorithm must compute a path in the
coordination space, from which explicit timings can be easily extracted.

For m robots, the coordination space X is defined as the m-dimensional unit
cube X = [0, 1]m. Figure 7.9 depicts an example for which m = 3. The ith
coordinate of X represents the domain, Si = [0, 1], of the path τi. Let si denote
a point in Si (it is also the ith component of x). A state, x ∈ X, indicates the
configuration of every robot. For each i, the configuration qi ∈ Ci is given by
qi = τi(si). At state (0, . . . , 0) ∈ X, every robot is in its initial configuration,
qiI = τi(0), and at state (1, . . . , 1) ∈ X, every robot is in its goal configuration,
qiG = τi(1). Any continuous path, h : [0, 1] → X, for which h(0) = (0, . . . , 0) and
h(1) = (1, . . . , 1), moves the robots to their goal configurations. The path h does
not even need to be monotonic, in contrast to prioritized planning.

One important concern has been neglected so far. What prevents us from
designing h as a straight-line path between the opposite corners of [0, 1]m? We
have not yet taken into account the collisions between the robots. This forms
an obstacle region Xobs that must be avoided when designing a path through X.
Thus, the task is to design h : [0, 1]→ Xfree, in which Xfree = X \Xobs.

The definition of Xobs is very similar to (7.8) and (7.10), except that here the
state-space dimension is much smaller. Each qi is replaced by a single parameter.
The cylindrical structure, however, is still retained, as shown in Figure 7.9. Each
cylinder of Xobs is

X ij
obs = {(s1, . . . , sm) ∈ X | Ai(τi(si)) ∩ Aj(τj(sj)) 6= ∅}, (7.11)

which are combined to yield

Xobs =
⋃

ij, i 6=j
X ij
obs. (7.12)

324 S. M. LaValle: Planning Algorithms

s1

s2

s3

s1

s2

s1

s3

s2

s3

Figure 7.9: The obstacles that arise from coordinating m robots are always cylin-
drical. The set of all 1

2
m(m − 1) axis-aligned 2D projections completely charac-

terizes Xobs.

Standard motion planning algorithms can be applied to the coordination space
because there is no monotonicity requirement on h. If 1) W = R2, 2) m = 2
(two robots), 3) the obstacles and robots are polygonal, and 4) the paths, τi, are
piecewise-linear, then Xobs is a polygonal region in X. This enables the methods
of Section 6.2, for a polygonal Cobs, to directly apply after the representation of
Xobs is explicitly constructed. For m > 2, the multi-dimensional version of vertical
cell decomposition given for m = 3 in Section 6.3.3 can be applied. For general
coordination problems, cylindrical algebraic decomposition or Canny’s roadmap
algorithm can be applied. For the problem of robots in W = R2 that either
translate or move along circular paths, a resolution complete planning method
based on the exact determination of Xobs using special collision detection methods
is given in [886].

For very challenging coordination problems, sampling-based solutions may

7.2. MULTIPLE ROBOTS 325

yield practical solutions. Perhaps one of the simplest solutions is to place a
grid over X and adapt the classical search algorithms, as described in Section
5.4.2 [606, 746]. Other possibilities include using the RDTs of Section 5.5 or,
if the multiple-query framework is appropriate, then the sampling-based roadmap
methods of 5.6 are suitable. Methods for validating the path segments, which were
covered in Section 5.3.4, can be adapted without trouble to the case of coordination
spaces.

Thus far, the particular speeds of the robots have been neglected. For expla-
nation purposes, consider the case of m = 2. Moving vertically or horizontally in
X holds one robot fixed while the other moves at some maximum speed. Moving
diagonally in X moves both robots, and their relative speeds depend on the slope
of the path. To carefully regulate these speeds, it may be necessary to reparam-
eterize the paths by distance. In this case each axis of X represents the distance
traveled, instead of [0, 1].

Fixed-roadmap coordination The fixed-path coordination approach still may
not solve the problem in Figure 7.8 if the paths are designed independently. For-
tunately, fixed-path coordination can be extended to enable each robot to move
over a roadmap or topological graph. This still yields a coordination space that
has only one dimension per robot, and the resulting planning methods are much
closer to being complete, assuming each robot utilizes a roadmap that has many
alternative paths. There is also motivation to study this problem by itself because
of automated guided vehicles (AGVs), which often move in factories on a net-
work of predetermined paths. In this case, coordinating the robots is the planning
problem, as opposed to being a simplification of Formulation 7.2.

One way to obtain completeness for Formulation 7.2 is to design the indepen-
dent roadmaps so that each robot has its own garage configuration. The conditions
for a configuration, qi, to be a garage for Ai are 1) while at configuration qi, it is
impossible for any other robots to collide with it (i.e., in all coordination states for
which the ith coordinate is qi, no collision occurs); and 2) qi is always reachable
by Ai from xI . If each robot has a roadmap and a garage, and if the planning
method for X is complete, then the overall planning algorithm is complete. If the
planning method in X uses some weaker notion of completeness, then this is also
maintained. For example, a resolution complete planner for X yields a resolution
complete approach to the problem in Formulation 7.2.

Cube complex How is the coordination space represented when there are mul-
tiple paths for each robot? It turns out that a cube complex is obtained, which is
a special kind of singular complex (recall from Section 6.3.1). The coordination
space for m fixed paths can be considered as a singular m-simplex. For example,
the problem in Figure 7.9 can be considered as a singular 3-simplex, [0, 1]3 → X.
In Section 6.3.1, the domain of a k-simplex was defined using Bk, a k-dimensional
ball; however, a cube, [0, 1]k, also works because Bk and [0, 1]k are homeomorphic.

For a topological space, X, let a k-cube (which is also a singular k-simplex),

326 S. M. LaValle: Planning Algorithms

τ2

τ1

C1
free

τ3

C2
free

τ ′1

s3

s′1

s2

s1

(a) (b)

Figure 7.10: (a) An example in which A1 moves along three paths, and A2 moves
along one. (b) The corresponding coordination space.

�k, be a continuous mapping σ : [0, 1]k → X. A cube complex is obtained by
connecting together k-cubes of different dimensions. Every k-cube for k ≥ 1 has
2k faces, which are (k − 1)-cubes that are obtained as follows. Let (s1, . . . , sk)
denote a point in [0, 1]k. For each i ∈ {1, . . . , k}, one face is obtained by setting
si = 0 and another is obtained by setting si = 1.

The cubes must fit together nicely, much in the same way that the simplexes of
a simplicial complex were required to fit together. To be a cube complex, K must
be a collection of simplexes that satisfy the following requirements:

1. Any face, �k−1, of a cube �k ∈ K is also in K.

2. The intersection of the images of any two k-cubes �k,�
′
k ∈ K, is either

empty or there exists some cube, �i ∈ K for i < k, which is a common face
of both �k and �

′
k.

Let Gi denote a topological graph (which may also be a roadmap) for robot Ai.
The graph edges are paths of the form τ : [0, 1] → Cifree. Before covering formal
definitions of the resulting complex, consider Figure 7.10a, in which A1 moves
along three paths connected in a “T” junction and A2 moves along one path. In
this case, three 2D fixed-path coordination spaces are attached together along one
common edge, as shown in Figure 7.10b. The resulting cube complex is defined
by three 2-cubes (i.e., squares), one 1-cube (i.e., line segment), and eight 0-cubes
(i.e., corner points).

Now suppose more generally that there are two robots, A1 and A2, with asso-
ciated topological graphs, G1(V1, E1) and G2(V2, E2), respectively. Suppose that G
and G2 have n1 and n2 edges, respectively. A 2D cube complex, K, is obtained as
follows. Let τi denote the ith path of G1, and let σj denote the jth path of G2. A
2-cube (square) exists in K for every way to select an edge from each graph. Thus,
there are n1n2 2-cubes, one for each pair (τi, σj), such that τi ∈ E1 and σj ∈ E2.
The 1-cubes are generated for pairs of the form (vi, σj) for vi ∈ V1 and σj ∈ E2, or
(τi, vj) for τi ∈ E1 and vj ∈ V2. The 0-cubes (corner points) are reached for each
pair (vi, vj) such that vi ∈ V1 and vj ∈ V2.

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 327

If there are m robots, then an m-dimensional cube complex arises. Every
m-cube corresponds to a unique combination of paths, one for each robot. The
(m − 1)-cubes are the faces of the m-cubes. This continues iteratively until the
0-cubes are reached.

Planning on the cube complex Once again, any of the planning methods
described in Chapters 5 and 6 can be adapted here, but the methods are slightly
complicated by the fact that X is a complex. To use sampling-based methods,
a dense sequence should be generated over X. For example, if random sampling
is used, then an m-cube can be chosen at random, followed by a random point
in the cube. The local planning method (LPM) must take into account the con-
nectivity of the cube complex, which requires recognizing when branches occur in
the topological graph. Combinatorial methods must also take into account this
connectivity. For example, a sweeping technique can be applied to produce a ver-
tical cell decomposition, but the sweep-line (or sweep-plane) must sweep across
the various m-cells of the complex.

7.3 Mixing Discrete and Continuous Spaces

Many important applications involve a mixture of discrete and continuous vari-
ables. This results in a state space that is a Cartesian product of the C-space
and a finite set called the mode space. The resulting space can be visualized as
having layers of C-spaces that are indexed by the modes, as depicted in Figure
7.11. The main application given in this section is manipulation planning; many
others exist, especially when other complications such as dynamics and uncertain-
ties are added to the problem. The framework of this section is inspired mainly
from hybrid systems in the control theory community [409], which usually model
mode-dependent dynamics. The main concern in this section is that the allowable
robot configurations and/or the obstacles depend on the mode.

7.3.1 Hybrid Systems Framework

As illustrated in Figure 7.11, a hybrid system involves interaction between dis-
crete and continuous spaces. The formal model will first be given, followed by
some explanation. This formulation can be considered as a combination of the
components from discrete feasible planning, Formulation 2.1, and basic motion
planning, Formulation 4.1.

Formulation 7.3 (Hybrid-System Motion Planning)

1. The W and C components from Formulation 4.1 are included.

2. A nonempty mode space,M that is a finite or countably infinite set of modes.

3. A semi-algebraic obstacle region O(m) for each m ∈M .

328 S. M. LaValle: Planning Algorithms

m = 4

m = 1 m = 2

m = 3

m = 4

m = 3

m = 2

m = 1

C

C

C

C

Modes Layers

Figure 7.11: A hybrid state space can be imagined as having layers of C-spaces
that are indexed by modes.

4. A semi-algebraic robot A(m), for each m ∈ M . It may be a rigid robot or
a collection of links. It is assumed that the C-space is not mode-dependent;
only the geometry of the robot can depend on the mode. The robot, trans-
formed to configuration q, is denoted as A(q,m).

5. A state space X is defined as the Cartesian product X = C ×M . A state is
represented as x = (q,m), in which q ∈ C and m ∈M . Let

Xobs = {(q,m) ∈ X | A(q,m) ∩ O(m) 6= ∅}, (7.13)

and Xfree = X \Xobs.

6. For each state, x ∈ X, there is a finite action space, U(x). Let U denote the
set of all possible actions (the union of U(x) over all x ∈ X).

7. There is a mode transition function fm that produces a mode, fm(x, u) ∈M ,
for every x ∈ X and u ∈ U(x). It is assumed that fm is defined in a way that
does not produce race conditions (oscillations of modes within an instant of
time). This means that if q is fixed, the mode can change at most once. It
then remains constant and can change only if q is changed.

8. There is a state transition function, f , that is derived from fm by changing
the mode and holding the configuration fixed. Thus, f(x, u) = (q, fm(x, u)).

9. A configuration xI ∈ Xfree is designated as the initial state.

10. A set XG ∈ Xfree is designated as the goal region. A region is defined instead
of a point to facilitate the specification of a goal configuration that does not
depend on the final mode.

11. An algorithm must compute a (continuous) path τ : [0, 1] → Xfree and an
action trajectory σ : [0, 1] → U such that τ(0) = xI and τ(1) ∈ XG, or the

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 329

algorithm correctly reports that such a combination of a path and an action
trajectory does not exist.

The obstacle region and robot may or may not be mode-dependent, depending
on the problem. Examples of each will be given shortly. Changes in the mode
depend on the action taken by the robot. From most states, it is usually assumed
that a “do nothing” action exists, which leaves the mode unchanged. From certain
states, the robot may select an action that changes the mode as desired. An
interesting degenerate case exists in which there is only a single action available.
This means that the robot has no control over the mode from that state. If the
robot arrives in such a state, a mode change could unavoidably occur.

The solution requirement is somewhat more complicated because both a path
and an action trajectory need to be specified. It is insufficient to specify a path
because it is important to know what action was applied to induce the correct
mode transitions. Therefore, σ indicates when these occur. Note that τ and σ
are closely coupled; one cannot simply associate any σ with a path τ ; it must
correspond to the actions required to generate τ .

Example 7.2 (The Power of the Portiernia) In this example, a robot, A, is
modeled as a square that translates in W = R2. Therefore, C = R2. The obstacle
region in W is mode-dependent because of two doors, which are numbered “1”
and “2” in Figure 7.12a. In the upper left sits the portiernia,2 which is able to
give a key to the robot, if the robot is in a configuration as shown in Figure 7.12b.
The portiernia only trusts the robot with one key at a time, which may be either
for Door 1 or Door 2. The robot can return a key by revisiting the portiernia. As
shown in Figures 7.12c and 7.12d, the robot can open a door by making contact
with it, as long as it holds the correct key.

The set, M , of modes needs to encode which key, if any, the robot holds, and
it must also encode the status of the doors. The robot may have: 1) the key to
Door 1; 2) the key to Door 2; or 3) no keys. The doors may have the status: 1)
both open; 2) Door 1 open, Door 2 closed; 3) Door 1 closed, Door 2 open; or 4)
both closed. Considering keys and doors in combination yields 12 possible modes.

If the robot is at a portiernia configuration as shown in Figure 7.12b, then its
available actions correspond to different ways to pick up and drop off keys. For
example, if the robot is holding the key to Door 1, it can drop it off and pick
up the key to Door 2. This changes the mode, but the door status and robot
configuration must remain unchanged when f is applied. The other locations in
which the robot may change the mode are when it comes in contact with Door 1 or
Door 2. The mode changes only if the robot is holding the proper key. In all other
configurations, the robot only has a single action (i.e., no choice), which keeps the
mode fixed.

The task is to reach the configuration shown in the lower right with dashed
lines. The problem is solved by: 1) picking up the key for Door 1 at the portiernia;

2This is a place where people guard the keys at some public facilities in Poland.

330 S. M. LaValle: Planning Algorithms

1

2A

1

2

A

(a) (b)

1

2

A

2

A

(c) (d)

Figure 7.12: In the upper left (at the portiernia), the robot can pick up and drop
off keys that open one of two doors. If the robot contacts a door while holding the
correct key, then it opens.

2) opening Door 1; 3) swapping the key at the portiernia to obtain the key for
Door 2; or 4) entering the innermost room to reach the goal configuration. As a
final condition, we might want to require that the robot returns the key to the
portiernia. �

Example 7.2 allows the robot to change the obstacles in O. The next example
involves a robot that can change its shape. This is an illustrative example of
a reconfigurable robot. The study of such robots has become a popular topic of
research [209, 385, 552, 990]; the reconfiguration possibilities in that research area
are much more complicated than the simple example considered here.

Example 7.3 (Reconfigurable Robot) To solve the problem shown in Figure
7.13, the robot must change its shape. There are two possible shapes, which
correspond directly to the modes: elongated and compressed. Examples of each
are shown in the figure. Figure 7.14 shows how Cfree(m) appears for each of the

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 331

A

A

Elongated

Compressed

Figure 7.13: An example in which the robot must reconfigure itself to solve the
problem. There are two modes: elongated and compressed.

A A

Elongated mode Compressed mode

Figure 7.14: When the robot reconfigures itself, Cfree(m) changes, enabling the
problem to be solved.

two modes. Suppose the robot starts initially from the left while in the elongated
mode and must travel to the last room on the right. This problem must be solved
by 1) reconfiguring the robot into the compressed mode; 2) passing through the
corridor into the center; 3) reconfiguring the robot into the elongated mode; and
4) passing through the corridor to the rightmost room. The robot has actions
that directly change the mode by reconfiguring itself. To make the problem more
interesting, we could require the robot to reconfigure itself in specific locations
(e.g., where there is enough clearance, or possibly at a location where another
robot can assist it).

The examples presented so far barely scratch the surface on the possible hybrid
motion planning problems that can be defined. Many such problems can arise, for
example, in the context making automated video game characters or digital actors.
To solve these problems, standard motion planning algorithms can be adapted if
they are given information about how to change the modes. Locations in X
from which the mode can be changed may be expressed as subgoals. Much of the
planning effort should then be focused on attempting to change modes, in addition
to trying to directly reach the goal. Applying sampling-based methods requires
the definition of a metric on X that accounts for both changes in the mode and the
configuration. A wide variety of hybrid problems can be formulated, ranging from
those that are impossible to solve in practice to those that are straightforward

332 S. M. LaValle: Planning Algorithms

extensions of standard motion planning. In general, the hybrid motion planning
model is useful for formulating a hierarchical approach, as described in Section
1.4. One particularly interesting class of problems that fit this model, for which
successful algorithms have been developed, will be covered next.

7.3.2 Manipulation Planning

This section presents an overview of manipulation planning; the concepts explained
here are mainly due to [16, 17]. Returning to Example 7.2, imagine that the robot
must carry a key that is so large that it changes the connectivity of Cfree. For the
manipulation planning problem, the robot is called a manipulator, which interacts
with a part. In some configurations it is able to grasp the part and move it
to other locations in the environment. The manipulation task usually requires
moving the part to a specified location in W , without particular regard as to
how the manipulator can accomplish the task. The model considered here greatly
simplifies the problems of grasping, stability, friction, mechanics, and uncertainties
and instead focuses on the geometric aspects (some of these issues will be addressed
in Section 12.5). For a thorough introduction to these other important aspects of
manipulation planning, see [681]; see also Sections 13.1.3 and 12.5.

Admissible configurations Assume that W , O, and A from Formulation 4.1
are used. For manipulation planning, A is called the manipulator, and let Ca refer
to the manipulator configuration space. Let P denote a part, which is a rigid body
modeled in terms of geometric primitives, as described in Section 3.1. It is assumed
that P is allowed to undergo rigid-body transformations and will therefore have
its own part configuration space, Cp = SE(2) or Cp = SE(3). Let qp ∈ Cp denote
a part configuration. The transformed part model is denoted as P(qp).

The combined configuration space, C, is defined as the Cartesian product

C = Ca × Cp, (7.14)

in which each configuration q ∈ C is of the form q = (qa, qp). The first step is
to remove all configurations that must be avoided. Parts of Figure 7.15 show
examples of these sets. Configurations for which the manipulator collides with
obstacles are

Caobs = {(qa, qp) ∈ C | A(qa) ∩ O 6= ∅}. (7.15)

The next logical step is to remove configurations for which the part collides with
obstacles. It will make sense to allow the part to “touch” the obstacles. For
example, this could model a part sitting on a table. Therefore, let

Cpobs = {(qa, qp) ∈ C | int(P(qp)) ∩ O 6= ∅} (7.16)

denote the open set for which the interior of the part intersects O. Certainly, if
the part penetrates O, then the configuration should be avoided.

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 333

O

A(qa)

O

P(qp) P(qp)

A(qa)

q ∈ Caobs q ∈ Cpobs q ∈ Capobs

P(q p
)

A(q a
)

P(qp) P(qp)

A(qa)

q ∈ Cgr q ∈ Csta q ∈ Ctra

Figure 7.15: Examples of several important subsets of C for manipulation planning.

334 S. M. LaValle: Planning Algorithms

Consider C \ (Caobs∪Cpobs). The configurations that remain ensure that the robot
and part do not inappropriately collide with O. Next consider the interaction
between A and P . The manipulator must be allowed to touch the part, but
penetration is once again not allowed. Therefore, let

Capobs = {(qa, qp) ∈ C | A(qa) ∩ int(P(qp)) 6= ∅}. (7.17)

Removing all of these bad configurations yields

Cadm = C \ (Caobs ∪ Cpobs ∪ Capobs), (7.18)

which is called the set of admissible configurations.

Stable and grasped configurations Two important subsets of Cadm are used
in the manipulation planning problem. See Figure 7.15. Let Cpsta denote the set
of stable part configurations, which are configurations at which the part can safely
rest without any forces being applied by the manipulator. This means that a part
cannot, for example, float in the air. It also cannot be in a configuration from
which it might fall. The particular stable configurations depend on properties
such as the part geometry, friction, mass distribution, and so on. These issues
are not considered here. From this, let Csta ⊆ Cadm be the corresponding stable
configurations, defined as

Csta = {(qa, qp) ∈ Cadm | qp ∈ Cpsta}. (7.19)

The other important subset of Cadm is the set of all configurations in which the
robot is grasping the part (and is capable of carrying it, if necessary). Let this
denote the grasped configurations, denoted by Cgr ⊆ Cadm. For every configuration,
(qa, qp) ∈ Cgr, the manipulator touches the part. This means thatA(qa)∩P(qp) 6= ∅
(penetration is still not allowed because Cgr ⊆ Cadm). In general, many configura-
tions at which A(qa) contacts P(qp) will not necessarily be in Cgr. The conditions
for a point to lie in Cgr depend on the particular characteristics of the manipulator,
the part, and the contact surface between them. For example, a typical manipula-
tor would not be able to pick up a block by making contact with only one corner
of it. This level of detail is not defined here; see [681] for more information about
grasping.

We must always ensure that either x ∈ Csta or x ∈ Cgr. Therefore, let Cfree =
Csta∪Cgr, to reflect the subset of Cadm that is permissible for manipulation planning.

The mode space, M , contains two modes, which are named the transit mode
and the transfer mode. In the transit mode, the manipulator is not carrying the
part, which requires that q ∈ Csta. In the transfer mode, the manipulator carries
the part, which requires that q ∈ Cgr. Based on these simple conditions, the only
way the mode can change is if q ∈ Csta ∩ Cgr. Therefore, the manipulator has two
available actions only when it is in these configurations. In all other configurations
the mode remains unchanged. For convenience, let Ctra = Csta ∩Cgr denote the set
of transition configurations, which are the places in which the mode may change.

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 335

Using the framework of Section 7.3.1, the mode space, M , and C-space, C, are
combined to yield the state space, X = C ×M . Since there are only two modes,
there are only two copies of C, one for each mode. State-based sets, Xfree, Xtra,
Xsta, and Xgr, are directly obtained from Cfree, Ctra, Csta, and Cgr by ignoring the
mode. For example,

Xtra = {(q,m) ∈ X | q ∈ Ctra}. (7.20)

The sets Xfree, Xsta, and Xgr are similarly defined.
The task can now be defined. An initial part configuration, qpinit ∈ Csta, and

a goal part configuration, qpgoal ∈ Csta, are specified. Compute a path τ : [0, 1] →
Xfree such that τ(0) = qpinit and τ(1) = qpgoal. Furthermore, the action trajectory
σ : [0, 1]→ U must be specified to indicate the appropriate mode changes whenever
τ(s) ∈ Xtra. A solution can be considered as an alternating sequence of transit
paths and transfer paths, whose names follow from the mode. This is depicted in
Figure 7.16.

Transfer

Transit

C

C

Figure 7.16: The solution to a manipulation planning problem alternates between
the two layers of X. The transitions can only occur when x ∈ Xtra.

Manipulation graph The manipulation planning problem generally can be
solved by forming a manipulation graph, Gm [16, 17]. Let a connected compo-
nent of Xtra refer to any connected component of Ctra that is lifted into the state
space by ignoring the mode. There are two copies of the connected component of
Ctra, one for each mode. For each connected component of Xtra, a vertex exists in
Gm. An edge is defined for each transfer path or transit path that connects two
connected components of Xtra. The general approach to manipulation planning
then is as follows:

1. Compute the connected components of Xtra to yield the vertices of Gm.

2. Compute the edges of Gm by applying ordinary motion planning methods to
each pair of vertices of Gm.

3. Apply motion planning methods to connect the initial and goal states to
every possible vertex of Xtra that can be reached without a mode transition.

336 S. M. LaValle: Planning Algorithms

4. Search Gm for a path that connects the initial and goal states. If one exists,
then extract the corresponding solution as a sequence of transit and transfer
paths (this yields σ, the actions that cause the required mode changes).

This can be considered as an example of hierarchical planning, as described in
Section 1.4.

Figure 7.17: This example was solved in [244] using the manipulation planning
framework and the visibility-based roadmap planner. It is very challenging because
the same part must be regrasped in many places.

Multiple parts The manipulation planning framework nicely generalizes to
multiple parts, P1, . . ., Pk. Each part has its own C-space, and C is formed
by taking the Cartesian product of all part C-spaces with the manipulator C-
space. The set Cadm is defined in a similar way, but now part-part collisions also
have to be removed, in addition to part-manipulator, manipulator-obstacle, and
part-obstacle collisions. The definition of Csta requires that all parts be in stable
configurations; the parts may even be allowed to stack on top of each other. The
definition of Cgr requires that one part is grasped and all other parts are stable.
There are still two modes, depending on whether the manipulator is grasping a
part. Once again, transitions occur only when the robot is in Ctra = Csta ∩ Cgr.

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 337

Figure 7.18: This manipulation planning example was solved in [915] and involves
90 movable pieces of furniture. Some of them must be dragged out of the way to
solve the problem. Paths for two different queries are shown.

The task involves moving each part from one configuration to another. This is
achieved once again by defining a manipulation graph and obtaining a sequence
of transit paths (in which no parts move) and transfer paths (in which one part is
carried and all other parts are fixed). Challenging manipulation problems solved
by motion planning algorithms are shown in Figures 7.17 and 7.18.

Other generalizations are possible. A generalization to k robots would lead to
2k modes, in which each mode indicates whether each robot is grasping the part.
Multiple robots could even grasp the same object. Another generalization could
allow a single robot to grasp more than one object.

7.4 Planning for Closed Kinematic Chains

This section continues where Section 4.4 left off. The subspace of C that results
from maintaining kinematic closure was defined and illustrated through some ex-

338 S. M. LaValle: Planning Algorithms

amples. Planning in this context requires that paths remain on a lower dimensional
variety for which a parameterization is not available. Many important applications
require motion planning while maintaining these constraints. For example, con-
sider a manipulation problem that involves multiple manipulators grasping the
same object, which forms a closed loop as shown in Figure 7.19. A loop exists be-
cause both manipulators are attached to the ground, which may itself be considered
as a link. The development of virtual actors for movies and video games also in-
volves related manipulation problems. Loops also arise in this context when more
than one human limb is touching a fixed surface (e.g., two feet on the ground). A
class of robots called parallel manipulators are intentionally designed with internal
closed loops [693]. For example, consider the Stewart-Gough platform [407, 914]
illustrated in Figure 7.20. The lengths of each of the six arms, A1, . . ., A6, can
be independently varied while they remain attached via spherical joints to the
ground and to the platform, which is A7. Each arm can actually be imagined as
two links that are connected by a prismatic joint. Due to the total of 6 degrees
of freedom introduced by the variable lengths, the platform actually achieves the
full 6 degrees of freedom (hence, some six-dimensional region in SE(3) is obtained
for A7). Planning the motion of the Stewart-Gough platform, or robots that are
based on the platform (the robot shown in Figure 7.27 uses a stack of several of
these mechanisms), requires handling many closure constraints that must be main-
tained simultaneously. Another application is computational biology, in which the
C-space of molecules is searched, many of which are derived from molecules that
have closed, flexible chains of bonds [245].

7.4.1 Adaptation of Motion Planning Algorithms

All of the components from the general motion planning problem of Formulation
4.1 are included: W , O, A1, . . ., Am, C, qI , and qG. It is assumed that the robot
is a collection of r links that are possibly attached in loops.

It is assumed in this section that C = Rn. If this is not satisfactory, there are
two ways to overcome the assumption. The first is to represent SO(2) and SO(3)
as S1 and S3, respectively, and include the circle or sphere equation as part of the
constraints considered here. This avoids the topology problems. The other option
is to abandon the restriction of using Rn and instead use a parameterization of C
that is of the appropriate dimension. To perform calculus on such manifolds, a
smooth structure is required, which is introduced in Section 8.3.2. In the presenta-
tion here, however, vector calculus on Rn is sufficient, which intentionally avoids
these extra technicalities.

Closure constraints The closure constraints introduced in Section 4.4 can be
summarized as follows. There is a set, P , of polynomials f1, . . ., fk that belong
to Q[q1, . . . , qn] and express the constraints for particular points on the links of
the robot. The determination of these is detailed in Section 4.4.3. As mentioned
previously, polynomials that force points to lie on a circle or sphere in the case of

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 339

Figure 7.19: Two or more manipulators manipulating the same object causes
closed kinematic chains. Each black disc corresponds to a revolute joint.

rotations may also be included in P .
Let n denote the dimension of C. The closure space is defined as

Cclo = {q ∈ C | ∀fi ∈ P , fi(q1, . . . , qn) = 0}, (7.21)

which is anm-dimensional subspace of C that corresponds to all configurations that
satisfy the closure constants. The obstacle set must also be taken into account.
Once again, Cobs and Cfree are defined using (4.34). The feasible space is defined
as Cfea = Cclo ∩ Cfree, which are the configurations that satisfy closure constraints
and avoid collisions.

The motion planning problem is to find a path τ : [0, 1]→ Cfea such that τ(0) =
qI and τ(1) = qG. The new challenge is that there is no explicit parameterization
of Cfea, which is further complicated by the fact that m < n (recall that m is the
dimension of Cclo).

Combinatorial methods Since the constraints are expressed with polynomials,
it may not be surprising that the computational algebraic geometry methods of
Section 6.4 can solve the general motion planning problem with closed kinematic
chains. Either cylindrical algebraic decomposition or Canny’s roadmap algorithm
may be applied. As mentioned in Section 6.5.3, an adaptation of the roadmap
algorithm that is optimized for problems in which m < n is given in [76].

340 S. M. LaValle: Planning Algorithms

A5

A6

A4

A3
A2

A1

A7

Figure 7.20: An illustration of the Stewart-Gough platform (adapted from a figure
made by Frank Sottile).

Sampling-based methods Most of the methods of Chapter 5 are not easy to
adapt because they require sampling in Cfea, for which a parameterization does not
exist. If points in a bounded region of Rn are chosen at random, the probability
is zero that a point on Cfea will be obtained. Some incremental sampling and
searching methods can, however, be adapted by the construction of a local planning
method (LPM) that is suited for problems with closure constraints. The sampling-
based roadmap methods require many samples to be generated directly on Cfea.
Section 7.4.2 presents some techniques that can be used to generate such samples
for certain classes of problems, enabling the development of efficient sampling-
based planners and also improving the efficiency of incremental search planners.
Before covering these techniques, we first present a method that leads to a more
general sampling-based planner and is easier to implement. However, if designed
well, planners based on the techniques of Section 7.4.2 are more efficient.

Now consider adapting the RDT of Section 5.5 to work for problems with
closure constraints. Similar adaptations may be possible for other incremental
sampling and searching methods covered in Section 5.4, such as the randomized
potential field planner. A dense sampling sequence, α, is generated over a bounded
n-dimensional subset of Rn, such as a rectangle or sphere, as shown in Figure 7.21.

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 341

C = R

n

C

lo

Figure 7.21: For the RDT, the samples can be drawn from a region in Rn, the
space in which Cclo is embedded.

The samples are not actually required to lie on Cclo because they do not necessarily
become part of the topological graph, G. They mainly serve to pull the search tree
in different directions. One concern in choosing the bounding region is that it
must include Cclo (at least the connected component that includes qI) but it must
not be unnecessarily large. Such bounds are obtained by analyzing the motion
limits for a particular linkage.

Stepping along Cclo The RDT algorithm given Figure 5.21 can be applied
directly; however, the stopping-configuration function in line 4 must be
changed to account for both obstacles and the constraints that define Cclo. Figure
7.22 shows one general approach that is based on numerical continuation [18]. An
alternative is to use inverse kinematics, which is part of the approach described
in Section 7.4.2. The nearest RDT vertex, q ∈ C, to the sample α(i) is first com-
puted. Let v = α(i) − q, which indicates the direction in which an edge would
be made from q if there were no constraints. A local motion is then computed by
projecting v into the tangent plane3 of Cclo at the point q. Since Cclo is generally
nonlinear, the local motion produces a point that is not precisely on Cclo. Some
numerical tolerance is generally accepted, and a small enough step is taken to
ensure that the tolerance is maintained. The process iterates by computing v with
respect to the new point and moving in the direction of v projected into the new
tangent plane. If the error threshold is surpassed, then motions must be executed
in the normal direction to return to Cclo. This process of executing tangent and
normal motions terminates when progress can no longer be made, due either to the
alignment of the tangent plane (nearly perpendicular to v) or to an obstacle. This
finally yields qs, the stopping configuration. The new path followed in Cfea is no
longer a “straight line” as was possible for some problems in Section 5.5; therefore,
the approximate methods in Section 5.5.2 should be used to create intermediate

3Tangent planes are defined rigorously in Section 8.3.

342 S. M. LaValle: Planning Algorithms

α(i)

Cclo

Cq

Figure 7.22: For each sample α(i) the nearest point, qn ∈ C, is found, and then the
local planner generates a motion that lies in the local tangent plane. The motion
is the project of the vector from qn to α(i) onto the tangent plane.

vertices along the path.
In each iteration, the tangent plane computation is computed at some q ∈ Cclo

as follows. The differential configuration vector dq lies in the tangent space of a
constraint fi(q) = 0 if

∂fi(q)

∂q1
dq1 +

∂fi(q)

∂q2
dq2 + · · ·+

∂fi(q)

∂qn
dqn = 0. (7.22)

This leads to the following homogeneous system for all of the k polynomials in P
that define the closure constraints















∂f1(q)

∂q1

∂f1(q)

∂q2
· · · ∂f1(q)

∂qn

∂f2(q)

∂q1

∂f2(q)

∂q2
· · · ∂f2(q)

∂qn
...

...
...

∂fk(q)

∂q1

∂fk(q)

∂q2
· · · ∂fk(q)

∂qn






















dq1
dq2
...
dqn








= 0. (7.23)

If the rank of the matrix is m ≤ n, then m configuration displacements can be
chosen independently, and the remaining n − m parameters must satisfy (7.23).
This can be solved using linear algebra techniques, such as singular value decom-
position (SVD) [399, 961], to compute an orthonormal basis for the tangent space
at q. Let e1, . . ., em, denote these n-dimensional basis vectors. The components

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 343

of the motion direction are obtained from v = α(i)− qn. First, construct the inner
products, a1 = v · e1, a2 = v · e2, . . ., am = v · em. Using these, the projection of v
in the tangent plane is the n-dimensional vector w given by

w =
m∑

i

aiei, (7.24)

which is used as the direction of motion. The magnitude must be appropriately
scaled to take sufficiently small steps. Since Cclo is generally curved, a linear motion
leaves Cclo. A motion in the inward normal direction is then required to move back
onto Cclo.

Since the dimension m of Cclo is less than n, the procedure just described can
only produce numerical approximations to paths in Cclo. This problem also arises
in implicit curve tracing in graphics and geometric modeling [454]. Therefore, each
constraint fi(q1, . . . , qn) = 0 is actually slightly weakened to |fi(q1, . . . , qn)| < ǫ for
some fixed tolerance ǫ > 0. This essentially “thickens” Cclo so that its dimension
is n. As an alternative to computing the tangent plane, motion directions can be
sampled directly inside of this thickened region without computing tangent planes.
This results in an easier implementation, but it is less efficient [979].

7.4.2 Active-Passive Link Decompositions

An alternative sampling-based approach is to perform an active-passive decom-
position, which is used to generate samples in Cclo by directly sampling active
variables, and computing the closure values for passive variables using inverse
kinematics methods. This method was introduced in [432] and subsequently im-
proved through the development of the random loop generator in [244, 246]. The
method serves as a general framework that can adapt virtually any of the meth-
ods of Chapter 5 to handle closed kinematic chains, and experimental evidence
suggests that the performance is better than the method of Section 7.4.1. One
drawback is that the method requires some careful analysis of the linkage to de-
termine the best decomposition and also bounds on its mobility. Such analysis
exists for very general classes of linkages [244].

Active and passive variables In this section, let C denote the C-space ob-
tained from all joint variables, instead of requiring C = Rn, as in Section 7.4.1.
This means that P includes only polynomials that encode closure constraints, as
opposed to allowing constraints that represent rotations. Using the tree repre-
sentation from Section 4.4.3, this means that C is of dimension n, arising from
assigning one variable for each revolute joint of the linkage in the absence of any
constraints. Let q ∈ C denote this vector of configuration variables. The active-
passive decomposition partitions the variables of q to form two vectors, qa, called
the active variables and qp, called the passive variables. The values of passive
variables are always determined from the active variables by enforcing the closure

344 S. M. LaValle: Planning Algorithms

constraints and using inverse kinematics techniques. If m is the dimension of Cclo,
then there are always m active variables and n−m passive variables.

θ2

θ4

θ5 θ6

θ1 θ7

θ3

Figure 7.23: A chain of links in the plane. There are seven links and seven joints,
which are constrained to form a loop. The dimension of C is seven, but the
dimension of Cclo is four.

Temporarily, suppose that the linkage forms a single loop as shown in Figure
7.23. One possible decomposition into active qa and passive qp variables is given in
Figure 7.24. If constrained to form a loop, the linkage has four degrees of freedom,
assuming the bottom link is rigidly attached to the ground. This means that
values can be chosen for four active joint angles qa and the remaining three qp can
be derived from solving the inverse kinematics. To determine qp, there are three
equations and three unknowns. Unfortunately, these equations are nonlinear and
fairly complicated. Nevertheless, efficient solutions exist for this case, and the 3D
generalization [675]. For a 3D loop formed of revolute joints, there are six passive
variables. The number, 3, of passive links in R2 and the number 6 for R3 arise
from the dimensions of SE(2) and SE(3), respectively. This is the freedom that
is stripped away from the system by enforcing the closure constraints. Methods
for efficiently computing inverse kinematics in two and three dimensions are given
in [30]. These can also be applied to the RDT stepping method in Section 7.4.1,
instead of using continuation.

If the maximal number of passive variables is used, there is at most a finite
number of solutions to the inverse kinematics problem; this implies that there are
often several choices for the passive variable values. It could be the case that
for some assignments of active variables, there are no solutions to the inverse
kinematics. An example is depicted in Figure 7.25. Suppose that we want to
generate samples in Cclo by selecting random values for qa and then using inverse
kinematics for qp. What is the probability that a solution to the inverse kinematics
exists? For the example shown, it appears that solutions would not exist in most

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 345

q

p

2

q

a

1

q

a

2

q

a

3

q

a

7

q

p

3

Passive joints

q

p

1

Figure 7.24: Three of the joint variables can be determined automatically by
inverse kinematics. Therefore, four of the joints be designated as active, and the
remaining three will be passive.

trials.

Loop generator The random loop generator greatly improves the chance of
obtaining closure by iteratively restricting the range on each of the active variables.
The method requires that the active variables appear sequentially along the chain
(i.e., there is no interleaving of active and passive variables). The m coordinates of
qa are obtained sequentially as follows. First, compute an interval, I1, of allowable
values for qa1 . The interval serves as a loose bound in the sense that, for any value
qa1 6∈ I1, it is known for certain that closure cannot be obtained. This is ensured
by performing a careful geometric analysis of the linkage, which will be explained
shortly. The next step is to generate a sample in qa1 ∈ I1, which is accomplished
in [244] by picking a random point in I1. Using the value qa1 , a bounding interval
I2 is computed for allowable values of qa2 . The value qa2 is obtained by sampling
in I2. This process continues iteratively until Im and qam are obtained, unless it
terminates early because some Ii = ∅ for i < m. If successful termination occurs,
then the active variables qa are used to find values qp for the passive variables.
This step still might fail, but the probability of success is now much higher. The
method can also be applied to linkages in which there are multiple, common loops,
as in the Stewart-Gough platform, by breaking the linkage into a tree and closing
loops one at a time using the loop generator. The performance depends on how
the linkage is decomposed [244].

Computing bounds on joint angles The main requirement for successful
application of the method is the ability to compute bounds on how far a chain of
links can travel inW over some range of joint variables. For example, for a planar

346 S. M. LaValle: Planning Algorithms

Figure 7.25: In this case, the active variables are chosen in a way that makes it
impossible to assign passive variables that close the loop.

chain that has revolute joints with no limits, the chain can sweep out a circle as
shown in Figure 7.26a. Suppose it is known that the angle between links must
remain between −π/6 and π/6. A tighter bounding region can be obtained, as
shown in Figure 7.26b. Three-dimensional versions of these bounds, along with
many necessary details, are included in [244]. These bounds are then used to
compute Ii in each iteration of the sampling algorithm.

Now that there is an efficient method that generates samples directly in Cclo,
it is straightforward to adapt any of the sampling-based planning methods of
Chapter 5. In [244] many impressive results are obtained for challenging problems
that have the dimension of C up to 97 and the dimension of Cclo up to 25; see
Figure 7.27. These methods are based on applying the new sampling techniques
to the RDTs of Section 5.5 and the visibility sampling-based roadmap of Section
5.6.2. For these algorithms, the local planning method is applied to the active
variables, and inverse kinematics algorithms are used for the passive variables in
the path validation step. This means that inverse kinematics and collision checking
are performed together, instead of only collision checking, as described in Section
5.3.4.

One important issue that has been neglected in this section is the existence of
kinematic singularities, which cause the dimension of Cclo to drop in the vicinity of
certain points. The methods presented here have assumed that solving the motion
planning problem does not require passing through a singularity. This assump-
tion is reasonable for robot systems that have many extra degrees of freedom,
but it is important to understand that completeness is lost in general because
the sampling-based methods do not explicitly handle these degeneracies. In a

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 347

(a) (b)

Figure 7.26: (a) If any joint angle is possible, then the links sweep out a circle in
the limit. (b) If there are limits on the joint angles, then a tighter bound can be
obtained for the reachability of the linkage.

sense, they occur below the level of sampling resolution. For more information on
kinematic singularities and related issues, see [693].

7.5 Folding Problems in Robotics and Biology

A growing number of motion planning applications involve some form of folding.
Examples include automated carton folding, computer-aided drug design, protein
folding, modular reconfigurable robots, and even robotic origami. These problems
are generally modeled as a linkage in which all bodies are connected by revolute
joints. In robotics, self-collision between pairs of bodies usually must be avoided.
In biological applications, energy functions replace obstacles. Instead of crisp
obstacle boundaries, energy functions can be imagined as “soft” obstacles, in which
a real value is defined for every q ∈ C, instead of defining a set Cobs ⊂ C. For a given
threshold value, such energy functions can be converted into an obstacle region
by defining Cobs to be the configurations that have energy above the threshold.
However, the energy function contains more information because such thresholds
are arbitrary. This section briefly shows some examples of folding problems and
techniques from the recent motion planning literature.

Carton folding An interesting application of motion planning to the automated
folding of boxes is presented in [661]. Figure 7.28 shows a carton in its original
flat form and in its folded form. As shown in Figure 7.29, the problem can be
modeled as a tree of bodies connected by revolute joints. Once this model has been
formulated, many methods from Chapters 5 and 6 can be adapted for this problem.
In [661], a planning algorithm optimized particularly for box folding is presented.

348 S. M. LaValle: Planning Algorithms

Figure 7.27: Planning for the Logabex LX4 robot [187]. This solution was com-
puted in less than a minute by applying active-passive decomposition to an RDT-
based planner [244]. In this example, the dimension of C is 97 and the dimension
of Cclo is 25.

It is an adaptation of an approximate cell decomposition algorithm developed for
kinematic chains in [658]. Its complexity is exponential in the degrees of freedom
of the carton, but it gives good performance on practical examples. One such
solution that was found by motion planning is shown in Figure 7.30. To use these
solutions in a factory, the manipulation problem has to be additionally considered.
For example, as demonstrated in [661], a manipulator arm robot can be used in
combination with a well-designed set of fixtures. The fixtures help hold the carton
in place while the manipulator applies pressure in the right places, which yields
the required folds. Since the feasibility with fixtures depends on the particular
folding path, the planning algorithm generates all possible distinct paths from the

Figure 7.28: An important packaging problem is to automate the folding of a
perforated sheet of cardboard into a carton.

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 349

Figure 7.29: The carton can be cleverly modeled as a tree of bodies that are
attached by revolute joints.

Figure 7.30: A folding sequence that was computed using the algorithm in [661].

350 S. M. LaValle: Planning Algorithms

initial configuration (at which the box is completely unfolded).

Simplifying knots A knot is a closed curve that does not intersect itself, is em-
bedded in R3, and cannot be untangled to produce a simple loop (such as a circular
path). If the knot is allowed to intersect itself, then any knot can be untangled;
therefore, a careful definition of what it means to untangle a knot is needed. For
a closed curve, τ : [0, 1]→ R3, embedded in R3 (it cannot intersect itself), let the
set R3 \ τ([0, 1]) of points not reached by the curve be called the ambient space
of τ . In knot theory, an ambient isotopy between two closed curves, τ1 and τ2,
embedded in R3 is a homeomorphism between their ambient spaces. Intuitively,
this means that τ1 can be warped into τ2 without allowing any self-intersections.
Therefore, determining whether two loops are equivalent seems closely related to
motion planning. Such equivalence gives rise to groups that characterize the space
of knots and are closely related to the fundamental group described in Section
4.1.3. For more information on knot theory, see [8, 451, 511].

A motion planning approach was developed in [571] to determine whether a
closed curve is equivalent to the unknot, which is completely untangled. This
can be expressed as a curve that maps onto S1, embedded in R3. The algorithm
takes as input a knot expressed as a circular chain of line segments embedded in
R3. In this case, the unknot can be expressed as a triangle in R3. One of the
most challenging examples solved by the planner is shown in Figure 7.31. The
planner is sampling-based and shares many similarities with the RDT algorithm
of Section 5.5 and the Ariadne’s clew and expansive space planners described in
Section 5.4.4. Since the task is not to produce a collision-free path, there are
several unique aspects in comparison to motion planning. An energy function is
defined over the collection of segments to try to guide the search toward simpler
configurations. There are two kinds of local operations that are made by the
planner: 1) Try to move a vertex toward a selected subgoal in the ambient space.
This is obtained by using random sampling to grow a search tree. 2) Try to delete
a vertex, and connect the neighboring vertices by a straight line. If no collision
occurs along the intermediate configurations, then the knot has been simplified.
The algorithm terminates when it is unable to further simplify the knot.

Drug design A sampling-based motion planning approach to pharmaceutical
drug design is taken in [601]. The development of a drug is a long, incremental
process, typically requiring years of research and experimentation. The goal is to
find a relatively small molecule called a ligand, typically comprising a few dozen
atoms, that docks with a receptor cavity in a specific protein [615]; Figure 1.14
(Section 1.2) illustrated this. Examples of drug molecules were also given in Figure
1.14. Protein-ligand docking can stimulate or inhibit some biological activity,
ultimately leading to the desired pharmacological effect. The problem of finding
suitable ligands is complicated due to both energy considerations and the flexibility
of the ligand. In addition to satisfying structural considerations, factors such as
synthetic accessibility, drug pharmacology and toxicology greatly complicate and

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 351

Figure 7.31: The planner in [571] untangles the famous Ochiai unknot benchmark
in a few minutes on a standard PC.

lengthen the search for the most effective drug molecules.
One popular model used by chemists in the context of drug design is a pharma-

cophore, which serves as a template for the desired ligand [229, 339, 383, 860]. The
pharmacophore is expressed as a set of features that an effective ligand should pos-
sess and a set of spatial constraints among the features. Examples of features are
specific atoms, centers of benzene rings, positive or negative charges, hydrophobic
or hydrophilic centers, and hydrogen bond donors or acceptors. Features gener-
ally require that parts of the molecule must remain fixed in R3, which induces
kinematic closure constraints. These features are developed by chemists to en-
capsulate the assumption that ligand binding is due primarily to the interaction
of some features of the ligand to “complementary” features of the receptor. The
interacting features are included in the pharmacophore, which is a template for
screening candidate drugs, and the rest of the ligand atoms merely provide a scaf-
fold for holding the pharmacophore features in their spatial positions. Figure 7.32
illustrates the pharmacophore concept.

Candidate drug molecules (ligands), such as the ones shown in Figure 1.14, can
be modeled as a tree of bodies as shown in Figure 7.33. Some bonds can rotate,
yielding revolute joints in the model; other bonds must remain fixed. The drug
design problem amounts to searching the space of configurations (called confor-
mations) to try to find a low-energy configuration that also places certain atoms

352 S. M. LaValle: Planning Algorithms

(x2, y2, z2)

(x1, y1, z1)
(x3, y3, z3)

(0, 0, 0)

Figure 7.32: A pharmacophore is a model used by chemists to simplify the inter-
action process between a ligand (candidate drug molecule) and a protein. It often
amounts to holding certain features of the molecule fixed in R3. In this example,
the positions of three atoms must be fixed relative to the body frame of an arbi-
trarily designated root atom. It is assumed that these features interact with some
complementary features in the cavity of the protein.

in specified locations in R3. This additional constraint arises from the pharma-
cophore and causes the planning to occur on Cclo from Section 7.4 because the
pharmacophores can be expressed as closure constraints.

An energy function serves a purpose similar to that of a collision detector. The
evaluation of a ligand for drug design requires determining whether it can achieve
low-energy conformations that satisfy the pharmacophore constraints. Thus, the
task is different from standard motion planning in that there is no predetermined
goal configuration. One of the greatest difficulties is that the energy functions are
extremely complicated, nonlinear, and empirical. Here is typical example (used in
[601]):

e(q)=
∑

bonds
1
2
Kb(R−R′)2 +

∑

ang
1
2
Ka(α− α′)2+

∑

torsionsKd[1 + cos(pθ − θ′)] +

∑

i,j

{

4ǫij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
cicj
ǫrij

}

.

(7.25)

The energy accounts for torsion-angle deformations, van der Waals potential, and
Coulomb potentials. In (7.25), the first sum is taken over all bonds, the second
over all bond angles, the third over all rotatable bonds, and the last is taken over
all pairs of atoms. The variables are the force constants, Kb, Ka, and Kd; the
dielectric constant, ǫ; a periodicity constant, p; the Lennard-Jones radii, σij; well
depth, ǫij; partial charge, ci; measured bond length, R; equilibrium bond length,

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 353

θ1 θ2

θ3

θ5

θ6

θ4

Root Atom

Figure 7.33: The modeling of a flexible molecule is similar to that of a robot. One
atom is designated as the root, and the remaining bodies are arranged in a tree.
If there are cyclic chains in the molecules, then constraints as described in Section
4.4 must be enforced. Typically, only some bonds are capable of rotation, whereas
others must remain rigid.

R′; measured bond angle, α; equilibrium bond angle, α′; measured torsional angle,
θ; equilibrium torsional angle, θ′; and distance between atom centers, rij. Although
the energy expression is very complicated, it only depends on the configuration
variables; all others are constants that are estimated in advance.

Protein folding In computational biology, the problem of protein folding shares
many similarities with drug design in that the molecules have rotatable bonds
and energy functions are used to express good configurations. The problems are
much more complicated, however, because the protein molecules are generally
much larger than drug molecules. Instead of a dozen degrees of freedom, which
is typical for a drug molecule, proteins have hundreds or thousands of degrees
of freedom. When proteins appear in nature, they are usually in a folded, low-
energy configuration. The structure problem involves determining precisely how
the protein is folded so that its biological activity can be completely understood.
In some studies, biologists are even interested in the pathway that a protein takes
to arrive in its folded state [24, 25]. This leads directly to an extension of motion
planning that involves arriving at a goal state in which the molecule is folded.
In [24, 25], sampling-based planning algorithms were applied to compute folding
pathways for proteins. The protein starts in an unfolded configuration and must
arrive in a specified folded configuration without violating energy constraints along
the way. Figure 7.34 shows an example from [25]. That work also draws interesting

354 S. M. LaValle: Planning Algorithms

connections between protein folding and box folding, which was covered previously.

Figure 7.34: Protein folding for a polypeptide, computed by a sampling-based
roadmap planning algorithm [24]

7.6 Coverage Planning

Imagine automating the motion of a lawnmower for an estate that has many obsta-
cles, such as a house, trees, garage, and a complicated property boundary. What
are the best zig-zag motions for the lawnmower? Can the amount of redundant
traversals be minimized? Can the number of times the lawnmower needs to be
stopped and rotated be minimized? This is one example of coverage planning,
which is motivated by applications such as lawn mowing, automated farming,
painting, vacuum cleaning, and mine sweeping. A survey of this area appears in
[217]. Even for a region inW = R2, finding an optimal-length solution to coverage
planning is NP-hard, by reduction to the closely related Traveling Salesman Prob-
lem [36, 709]. Therefore, we are willing to tolerate approximate or even heuristic
solutions to the general coverage problem, even in R2.

Boustrophedon decomposition One approach to the coverage problem is to
decompose Cfree into cells and perform boustrophedon (from the Greek “ox turn-
ing”) motions in each cell as shown in Figure 7.35 [222]. It is assumed that the
robot is a point in W = R2, but it carries a tool of thickness ǫ that hangs evenly
over the sides of the robot. This enables it to paint or mow part of Cfree up to
distance ǫ/2 from either side of the robot as it moves forward. Such motions are
often used in printers to reduce the number of carriage returns.

If Cobs is polygonal, a reasonable decomposition can be obtained by adapting the
vertical decomposition method of Section 6.2.2. In that algorithm, critical events
were defined for several cases, some of which are not relevant for the boustrophedon
motions. The only events that need to be handled are shown in Figure 7.36a
[216]. This produces a decomposition that has fewer cells, as shown in Figure
7.36b. Even though the cells are nonconvex, they can always be sliced nicely
into vertical strips, which makes them suitable for boustrophedon motions. The
original vertical decomposition could also be used, but the extra cell boundaries

7.6. COVERAGE PLANNING 355

Figure 7.35: An example of the ox plowing motions.

(a) (b)

Figure 7.36: (a) Only the first case from Figure 6.2 is needed: extend upward
and downward. All other cases are neglected. (b) The resulting decomposition is
shown, which has fewer cells than that of the vertical decomposition in Figure 6.3.

would cause unnecessary repositioning of the robot. A similar method, which
furthermore optimizes the number of robot turns, is presented in [468].

Spanning tree covering An interesting approximate method was developed
by Gabriely and Rimon; it places a tiling of squares inside of Cfree and computes
the spanning tree of the resulting connectivity graph [372, 373]. Suppose again
that Cfree is polygonal. Consider the example shown in Figure 7.37a. The first
step is to tile the interior of Cfree with squares, as shown in Figure 7.37b. Each
square should be of width ǫ, for some constant ǫ > 0. Next, construct a roadmap
G by placing a vertex in the center of each square and by defining an edge that
connects the centers of each pair of adjacent cubes. The next step is to compute
a spanning tree of G. This is a connected subgraph that has no cycles and touches
every vertex of G; it can be computed in O(n) time, if G has n edges [683]. There
are many possible spanning trees, and a criterion can be defined and optimized to
induce preferences. One possible spanning tree is shown Figure 7.37c.

Once the spanning tree is made, the robot path is obtained by starting at a

356 S. M. LaValle: Planning Algorithms

(a) (b)

(c) (d)

Figure 7.37: (a) An example used for spanning tree covering. (b) The first step is
to tile the interior with squares. (c) The spanning tree of a roadmap formed from
grid adjacencies. (d) The resulting coverage path.

Figure 7.38: A circular path is made by doubling the resolution and following the
perimeter of the spanning tree.

7.7. OPTIMAL MOTION PLANNING 357

point near the spanning tree and following along its perimeter. This path can be
precisely specified as shown in Figure 7.38. Double the resolution of the tiling,
and form the corresponding roadmap. Part of the roadmap corresponds to the
spanning tree, but also included is a loop path that surrounds the spanning tree.
This path visits the centers of the new squares. The resulting path for the example
of Figure 7.37a is shown in Figure 7.37d. In general, the method yields an optimal
route, once the approximation is given. A bound on the uncovered area due to
approximation is given in [372]. Versions of the method that do not require an
initial map are also given in [372, 373]; this involves reasoning about information
spaces, which are covered in Chapter 11.

7.7 Optimal Motion Planning

This section can be considered transitional in many ways. The main concern so far
with motion planning has been feasibility as opposed to optimality. This placed the
focus on finding any solution, rather than further requiring that a solution be opti-
mal. In later parts of the book, especially as uncertainty is introduced, optimality
will receive more attention. Even the most basic forms of decision theory (the topic
of Chapter 9) center on making optimal choices. The requirement of optimality
in very general settings usually requires an exhaustive search over the state space,
which amounts to computing continuous cost-to-go functions. Once such functions
are known, a feedback plan is obtained, which is much more powerful than having
only a path. Thus, optimality also appears frequently in the design of feedback
plans because it sometimes comes at no additional cost. This will become clearer
in Chapter 8. The quest for optimal solutions also raises interesting issues about
how to approximate a continuous problem as a discrete problem. The interplay
between time discretization and space discretization becomes very important in
relating continuous and discrete planning problems.

7.7.1 Optimality for One Robot

Euclidean shortest paths One of the most straightforward notions of optimal-
ity is the Euclidean shortest path in R2 or R3. Suppose that A is a rigid body that
translates only in either W = R2 or W = R3, which contains an obstacle region
O ⊂ W . Recall that, ordinarily, Cfree is an open set, which means that any path,
τ : [0, 1]→ Cfree, can be shortened. Therefore, shortest paths for motion planning
must be defined on the closure cl(Cfree), which allows the robot to make contact
with the obstacles; however, their interiors must not intersect.

For the case in which Cobs is a polygonal region, the shortest-path roadmap
method of Section 6.2.4 has already been given. This can be considered as a
kind of multiple-query approach because the roadmap completely captures the
structure needed to construct the shortest path for any query. It is possible to
make a single-query algorithm using the continuous Dijkstra paradigm [443, 708].
This method propagates a wavefront from qI and keeps track of critical events

358 S. M. LaValle: Planning Algorithms

Figure 7.39: For a polyhedral environment, the shortest paths do not have to cross
vertices. Therefore, the shortest-path roadmap method from Section 6.2.4 does
not extend to three dimensions.

in maintaining the wavefront. As events occur, the wavefront becomes composed
of wavelets, which are arcs of circles centered on obstacle vertices. The possible
events that can occur are 1) a wavelet disappears, 2) a wavelet collides with an
obstacle vertex, 3) a wavelet collides with another wavelet, or 4) a wavelet collides
with a point in the interior of an obstacle edge. The method can be made to run
in time O(n lg n) and uses O(n lg n) space. A roadmap is constructed that uses
O(n) space. See Section 8.4.3 for a related method.

Such elegant methods leave the impression that finding shortest paths is not
very difficult, but unfortunately they do not generalize nicely to R3 and a polyhe-
dral Cobs. Figure 7.39 shows a simple example in which the shortest path does not
have to cross a vertex of Cobs. It may cross anywhere in the interior of an edge;
therefore, it is not clear where to draw the bitangent lines that would form the
shortest-path roadmap. The lower bounds for this problem are also discouraging.
It was shown in [172] that the 3D shortest-path problem in a polyhedral environ-
ment is NP-hard. Most of the difficulty arises because of the precision required to
represent 3D shortest paths. Therefore, efficient polynomial-time approximation
algorithms exist [215, 763].

General optimality criteria It is difficult to even define optimality for more
general C-spaces. What does it mean to have a shortest path in SE(2) or SE(3)?
Consider the case of a planar, rigid robot that can translate and rotate. One
path could minimize the amount of rotation whereas another tries to minimize the
amount of translation. Without more information, there is no clear preference.
Ulam’s distance is one possibility, which is to minimize the distance traveled by
k fixed points [474]. In Chapter 13, differential models will be introduced, which
lead to meaningful definitions of optimality. For example, the shortest paths for a
slow-moving car are shown in Section 15.3; these require a precise specification of
the constraints on the motion of the car (it is more costly to move a car sideways
than forward).

This section formulates some optimal motion planning problems, to provide
a smooth transition into the later concepts. Up until now, actions were used in
Chapter 2 for discrete planning problems, but they were successfully avoided for
basic motion planning by directly describing paths that map into Cfree. It will be

7.7. OPTIMAL MOTION PLANNING 359

convenient to use them once again. Recall that they were convenient for defining
costs and optimal planning in Section 2.3.

To avoid for now the complications of differential equations, consider making
an approximate model of motion planning in which every path must be composed
of a sequence of shortest-path segments in Cfree. Most often these are line seg-
ments; however, for the case of SO(3), circular arcs obtained by spherical linear
interpolation may be preferable. Consider extending Formulation 2.3 from Section
2.3.2 to the problem of motion planning.

Let the C-space C be embedded in Rm (i.e., C ⊂ Rm). An action will be defined
shortly as an m-dimensional vector. Given a scaling constant ǫ and a configuration
q, an action u produces a new configuration, q′ = q + ǫu. This can be considered
as a configuration transition equation, q′ = f(q, u). The path segment represented
by the action u is the shortest path (usually a line segment) between q and q′.
Following Section 2.3, let πK denote a K-step plan, which is a sequence (u1, u2,
. . ., uK) of K actions. Note that if πK and qI are given, then a sequence of states,
q1, q2, . . ., qK+1, can be derived using f . Initially, q1 = qI , and each following state
is obtained by qk+1 = f(qk, uk). From this a path, τ : [0, 1]→ C, can be derived.

An approximate optimal planning problem is formalized as follows:

Formulation 7.4 (Approximate Optimal Motion Planning)

1. The following components are defined the same as in Formulation 4.1: W , O,
A, C, Cobs, Cfree, and qI . It is assumed that C is an n-dimensional manifold.

2. For each q ∈ C, a possibly infinite action space, U(q). Each u ∈ U is an
n-dimensional vector.

3. A positive constant ǫ > 0 called the step size.

4. A set of stages, each denoted by k, which begins at k = 1 and continues
indefinitely. Each stage is indicated by a subscript, to obtain qk and uk.

5. A configuration transition function f(q, u) = q + ǫu in which q + ǫu is com-
puted by vector addition on Rm.

6. Instead of a goal state, a goal region XG is defined.

7. Let L denote a real-valued cost functional, which is applied to a K-step
plan, πK . This means that the sequence (u1, . . . , uK) of actions and the
sequence (q1, . . . , qK+1) of configurations may appear in an expression of L.
Let F = K + 1. The cost functional is

L(πK) =
K∑

k=1

l(qk, uk) + lF (qF). (7.26)

The final term lF (qF) is outside of the sum and is defined as lF (qF) = 0
if qF ∈ XG and lF (qF) = ∞ otherwise. As in Formulation 2.3, K is not
necessarily a constant.

360 S. M. LaValle: Planning Algorithms

Figure 7.40: Under the Manhattan (L1) motion model, all monotonic paths that
follow the grid directions have equivalent length.

Independent
Joint

EuclideanManhattan

Figure 7.41: Depictions of the action sets, U(q), for Examples 7.4, 7.5, and 7.6.

8. Each U(q) contains the special termination action uT , which behaves the
same way as in Formulation 2.3. If uT is applied to qk at stage k, then the
action is repeatedly applied forever, the configuration remains in qk forever,
and no more cost accumulates.

The task is to compute a sequence of actions that optimizes (7.26). Formu-
lation 7.4 can be used to define a variety of optimal planning problems. The
parameter ǫ can be considered as the resolution of the approximation. In many
formulations it can be interpreted as a time step, ǫ = ∆t; however, note that no
explicit time reference is necessary because the problem only requires constructing
a path through Cfree. As ǫ approaches zero, the formulation approaches an exact
optimal planning problem. To properly express the exact problem, differential
equations are needed. This is deferred until Part IV.

Example 7.4 (Manhattan Motion Model) Suppose that in addition to uT ,
the action set U(q) contains 2n vectors in which only one component is nonzero
and must take the value 1 or −1. For example, if C = R2, then

U(q) = {(1, 0), (−1, 0), (0,−1), (0, 1), uT}. (7.27)

When used in the configuration transition equation, this set of actions produces
“up,” “down,” “left,” and “right” motions and a “terminate” command. This

7.7. OPTIMAL MOTION PLANNING 361

produces a topological graph according to the 1-neighborhood model, (5.37), which
was given in Section 5.4.2. The action set for this example and the following two
examples are shown in Figure 7.41 for comparison. The cost term l(qk, uk) is
defined to be 1 for all qk ∈ Cfree and uk. If qk ∈ Cobs, then l(qk, uk) = ∞. Note
that the set of configurations reachable by these actions lies on a grid, in which
the spacing between 1-neighbors is ǫ. This corresponds to a convenient special
case in which time discretization (implemented by ǫ) leads to a regular space
discretization. Consider Figure 7.40. It is impossible to take a shorter path along
a diagonal because the actions do not allow it. Therefore, all monotonic paths
along the grid produce the same costs.

Optimal paths can be obtained by simply applying the dynamic programming
algorithms of Chapter 2. This example provides a nice unification of concepts from
Section 2.2, which introduced grid search, and Section 5.4.2, which explained how
to adapt search methods to motion planning. In the current setting, only algo-
rithms that produce optimal solutions on the corresponding graph are acceptable.

This form of optimization might not seem relevant because it does not represent
the Euclidean shortest-path problem for R2. The next model adds more actions,
and does correspond to an important class of optimization problems in robotics.
�

Example 7.5 (Independent-Joint Motion Model) Now suppose that U(q)
includes uT and the set of all 3n vectors for which every element is either −1,
0, or 1. Under this model, a path can be taken along any diagonal. This still does
not change the fact that all reachable configurations lie on a grid. Therefore, the
standard grid algorithms can be applied once again. The difference is that now
there are 3n− 1 edges emanating from every vertex, as opposed to 2n in Example
7.4. This model is appropriate for robots that are constructed from a collection
of links attached by revolute joints. If each joint is operated independently, then
it makes sense that each joint could be moved either forward, backward, or held
stationary. This corresponds exactly to the actions. However, this model cannot
nicely approximate Euclidean shortest paths; this motivates the next example. �

Example 7.6 (Euclidean Motion Model) To approximate Euclidean shortest
paths, let U(q) = Sn−1 ∪ {uT}, in which Sn−1 is the m-dimensional unit sphere
centered at the origin of Rn. This means that in k stages, any piecewise-linear
path in which each segment has length ǫ can be formed by a sequence of inputs.
Therefore, the set of reachable states is no longer confined to a grid. Consider
taking ǫ = 1, and pick any point, such as (π, π) ∈ R2. How close can you come to
this point? It turns out that the set of points reachable with this model is dense
in Rn if obstacles are neglected. This means that we can come arbitrarily close to
any point in Rn. Therefore, a finite grid cannot be used to represent the problem.
Approximate solutions can still be obtained by numerically computing an optimal
cost-to-go function over C. This approach is presented in Section 8.5.2.

362 S. M. LaValle: Planning Algorithms

One additional issue for this problem is the precision defined for the goal. If
the goal region is very small relative to ǫ, then complicated paths may have to be
selected to arrive precisely at the goal. �

Example 7.7 (Weighted-Region Problem) In outdoor and planetary naviga-
tion applications, it does not make sense to define obstacles in the crisp way that
has been used so far. For each patch of terrain, it is more convenient to associate
a cost that indicates the estimated difficulty of its traversal. This is sometimes
considered as a “grayscale” model of obstacles. The model can be easily captured
in the cost term l(qk, uk). The action spaces can be borrowed from Examples 7.4 or
7.5. Stentz’s algorithm [913], which is introduced in Section 12.3.2, generates op-
timal navigation plans for this problem, even assuming that the terrain is initially
unknown. Theoretical bounds for optimal weighted-region planning problems are
given in [709, 710]. An approximation algorithm appears in [820]. �

7.7.2 Multiple-Robot Optimality

Suppose that there are two robots as shown in Figure 7.42. There is just enough
room to enable the robots to translate along the corridors. Each would like to
arrive at the bottom, as indicated by arrows; however, only one can pass at a time
through the horizontal corridor. Suppose that at any instant each robot can either
be on or off. When it is on, it moves at its maximum speed, and when it is off, it
is stopped.4 Now suppose that each robot would like to reach its goal as quickly
as possible. This means each would like to minimize the total amount of time
that it is off. In this example, there appears to be only two sensible choices: 1)
A1 stays on and moves straight to its goal while A2 is off just long enough to let
A1 pass, and then moves to its goal. 2) The opposite situation occurs, in which
A2 stays on and A1 must wait. Note that when a robot waits, there are multiple
locations at which it can wait and still yield the same time to reach the goal. The
only important information is how long the robot was off.

Thus, the two interesting plans are that either A2 is off for some amount of
time, toff > 0, or A1 is off for time toff . Consider a vector of costs of the form
(L1, L2), in which each component represents the cost for each robot. The costs
of the plans could be measured in terms of time wasted by waiting. This yields
(0, toff) and (toff , 0) for the cost vectors associated with the two plans (we could
equivalently define cost to be the total time traveled by each robot; the time on is
the same for both robots and can be subtracted from each for this simple example).
The two plans are better than or equivalent to any others. Plans with this property
are called Pareto optimal (or nondominated). For example, if A2 waits 1 second
too long for A1 to pass, then the resulting costs are (0, toff + 1), which is clearly

4This model allows infinite acceleration. Imagine that the speeds are slow enough to allow
this approximation. If this is still not satisfactory, then jump ahead to Chapter 13.

7.7. OPTIMAL MOTION PLANNING 363

A2A1

Figure 7.42: There are two Pareto-optimal coordination plans for this problem,
depending on which robot has to wait.

worse than (0, toff). The resulting plan is not Pareto optimal. More details on
Pareto optimality appear in Section 9.1.1.

Another way to solve the problem is to scalarize the costs by mapping them
to a single value. For example, we could find plans that optimize the average
wasted time. In this case, one of the two best plans would be obtained, yield-
ing toff average wasted time. However, no information is retained about which
robot had to make the sacrifice. Scalarizing the costs usually imposes some kind
of artificial preference or prioritization among the robots. Ultimately, only one
plan can be chosen, which might make it seem inappropriate to maintain multiple
solutions. However, finding and presenting the alternative Pareto-optimal solu-
tions could provide valuable information if, for example, these robots are involved
in a complicated application that involves many other time-dependent processes.
Presenting the Pareto-optimal solutions is equivalent to discarding all of the worse
plans and showing the best alternatives. In some applications, priorities between
robots may change, and if a scheduler of robots has access to the Pareto-optimal
solutions, it is easy to change priorities by switching between Pareto-optimal plans
without having to generate new plans each time.

Now the Pareto-optimality concept will be made more precise and general.
Suppose there are m robots, A1, . . ., Am. Let γ refer to a motion plan that
gives the paths and timing functions for all robots. For each Ai, let Li denote
its cost functional, which yields a value Li(γ) ∈ [0,∞] for a given plan, γ. An
m-dimensional vector, L(γ), is defined as

L(γ) = (L1(γ), L2(γ), . . . , Lm(γ)). (7.28)

Two plans, γ and γ′, are called equivalent if L(γ) = L(γ′). A plan γ is said

364 S. M. LaValle: Planning Algorithms

to dominate a plan γ′ if they are not equivalent and Li(γ) ≤ Li(γ
′) for all i

such that 1 ≤ i ≤ m. A plan is called Pareto optimal if it is not dominated
by any others. Since many Pareto-optimal plans may be equivalent, the task is
to determine one representative from each equivalence class. This will be called
finding the unique Pareto-optimal plans. For the example in Figure 7.42, there
are two unique Pareto-optimal plans, which were already given.

Scalarization For the motion planning problem, a Pareto-optimal solution is
also optimal for a scalar cost functional that is constructed as a linear combination
of the individual costs. Let α1, . . ., αm be positive real constants, and let

l(γ) =
m∑

i=1

αiLi(γ). (7.29)

It is easy to show that any plan that is optimal with respect to (7.29) is also a
Pareto-optimal solution [606]. If a Pareto optimal solution is generated in this
way, however, there is no easy way to determine what alternatives exist.

Computing Pareto-optimal plans Since optimization for one robot is already
very difficult, it may not be surprising that computing Pareto-optimal plans is even
harder. For some problems, it is even possible that a continuum of Pareto-optimal
solutions exist (see Example 9.3), which is very discouraging. Fortunately, for the
problem of coordinating robots on topological graphs, as considered in Section
7.2.2, there is only a finite number of solutions [386]. A grid-based algorithm,
which is based on dynamic programming and computes all unique Pareto-optimal
coordination plans, is presented in [606]. For the special case of two polygonal
robots moving on a tree of piecewise-linear paths, a complete algorithm is presented
in [212].

Further Reading

This chapter covered some of the most direct extensions of the basic motion planning
problem. Extensions that involve uncertainties are covered throughout Part III, and
the introduction of differential constraints to motion planning is the main focus of Part
IV. Numerous other extensions can be found by searching through robotics research
publications or the Internet.

The treatment of time-varying motion planning in Section 7.1 assumes that all mo-
tions are predictable. Most of the coverage is based on early work [153, 506, 818, 819];
other related work includes [367, 368, 532, 812, 875, 905]. To introduce uncertainties into
this scenario, see Chapter 10. The logic-based representations of Section 2.4 have been
extended to temporal logics to allow time-varying aspects of discrete planning problems
(see Part IV of [382]).

For more on multiple-robot motion planning, see [15, 34, 41, 319, 320, 345, 364, 408,
606, 780, 886]. Closely related is the problem of planning for modular reconfigurable
robots [180, 209, 385, 552, 990]. In both contexts, nonpositive curvature (NPC) is an

7.7. OPTIMAL MOTION PLANNING 365

important condition that greatly simplifies the structure of optimal paths [139, 385, 386].
For points moving on a topological graph, the topology of Cfree is described in [5]. Over
the last few years there has also been a strong interest in the coordination of a team or
swarm of robots [165, 228, 274, 300, 305, 336, 361, 665].

The complexity of assembly planning is studied in [398, 515, 733, 972]. The problem
is generally NP-hard; however, for some special cases, polynomial-time algorithms have
been developed [9, 429, 973, 974]. Other works include [186, 427, 453, 458, 542].

Hybrid systems have attracted widespread interest over the past decade. Most of
this work considers how to design control laws for piecewise-smooth systems [137, 634].
Early sources of hybrid control literature appear in [409]. The manipulation planning
framework of Section 7.3.2 is based on [16, 17, 166]. The manipulation planning frame-
work presented in this chapter ignores grasping issues. For analyses and algorithms for
grasping, see [256, 487, 681, 781, 799, 800, 826, 827, 920]. Manipulation on a microscopic
scale is considered in [126].

To read beyond Section 7.4 on sampling-based planning for closed kinematic chains,
see [244, 246, 432, 979]. A complete planner for some closed chains is presented in [697].
For related work on inverse kinematics, see [309, 693]. The power of redundant degrees
of freedom in robot systems was shown in [158].

Section 7.5 is a synthesis of several applications. The application of motion planning
techniques to problems in computational biology is a booming area; see [24, 25, 33, 245,
514, 589, 601, 654, 1001] for some representative papers. The knot-planning coverage is
based on [572]. The box-folding presentation is based on [661]. A robotic system and
planning technique for creating origami is presented in [65].

The coverage planning methods presented in Section 7.6 are based on [222] and
[372, 373]. A survey of coverage planning appears in [217]. Other references include
[6, 7, 164, 374, 444, 468, 976]. For discrete environments, approximation algorithms for
the problem of optimally visiting all states in a goal set (the orienteering problem) are
presented and analyzed in [115, 188].

Beyond two dimensions, optimal motion planning is extremely difficult. See Section
8.5.2 for dynamic programming-based approximations. See [215, 763] for approximate
shortest paths in R3. The weighted region problem is considered in [709, 710]. Pareto-
optimal coordination is considered in [212, 386, 606].

Exercises

1. Consider the obstacle region, (7.1), in the state space for time-varying motion
planning.

(a) To ensure that Xobs is polyhedral, what kind of paths should be allowed?
Show how the model primitives Hi that define O are expressed in general,
using t as a parameter.

(b) Repeat the exercise, but for ensuring that Xobs is semi-algebraic.

2. Propose a way to adapt the sampling-based roadmap algorithm of Section 5.6 to
solve the problem of time-varying motion planning with bounded speed.

366 S. M. LaValle: Planning Algorithms

A1

A2

Figure 7.43: Two translating robots moving along piecewise-linear paths.

3. Develop an efficient algorithm for computing the obstacle region for two translating
polygonal robots that each follow a linear path.

4. Sketch the coordination space for the two robots moving along the fixed paths
shown in Figure 7.43.

5. Suppose there are two robots, and each moves on its own roadmap of three paths.
The paths in each roadmap are arranged end-to-end in a triangle.

(a) Characterize the fixed-roadmap coordination space that results, including a
description of its topology.

(b) Now suppose there are n robots, each on a triangular roadmap, and charac-
terize the fixed-roadmap coordination space.

6. Consider the state space obtained as the Cartesian product of the C-spaces of n
identical robots. Suppose that each robot is labeled with a unique integer. Show
that X can be partitioned nicely into n! regions in which Xobs appears identical
and the only difference is the labels (which indicate the particular robots that are
in collision).

7. Suppose there are two robots, and each moves on its own roadmap of three paths.
The paths in one roadmap are arranged end-to-end in a triangle, and the paths in
the other are arranged as a Y. Characterize the fixed-roadmap coordination space
that results, including a description of its topology.

8. Design an efficient algorithm that takes as input a graph representation of the
connectivity of a linkage and computes an active-passive decomposition. Assume
that all links are revolute. The algorithm should work for either 2D or 3D linkages
(the dimension is also an input). Determine the asymptotic running time of your
algorithm.

9. Consider the problem of coordinating the motion of two robots that move along
precomputed paths but in the presence of predictable moving obstacles. Develop
a planning algorithm for this problem.

10. Consider a manipulator in W = R2 made of four links connected in a chain by
revolute joints. There is unit distance between the joints, and the first joint is
attached at (0, 0) in W = R2. Suppose that the end of the last link, which is
position (1, 0) in its body frame, is held at (0, 2) ∈ W.

7.7. OPTIMAL MOTION PLANNING 367

(a) Use kinematics expressions to express the closure constraints for a configu-
ration q ∈ C.

(b) Convert the closure constraints into polynomial form.

(c) Use differentiation to determine the constraints on the allowable velocities
that maintain closure at a configuration q ∈ C.

Implementations

11. Implement the vertical decomposition algorithm to solve the path-tuning problem,
as shown in Figure 7.5.

12. Use grid-based sampling and a search algorithm to compute collision-free motions
of three robots moving along predetermined paths.

13. Under the conditions of Exercise 12, compute Pareto-optimal coordination strate-
gies that optimize the time (number of stages) that each robot takes to reach
its goal. Design a wavefront propagation algorithm that keeps track of the com-
plete (ignoring equivalent strategies) set of minimal Pareto-optimal coordination
strategies at each reached state. Avoid storing entire plans at each discretized
state.

14. To gain an appreciation of the difficulties of planning for closed kinematic chains,
try motion planning for a point on a torus among obstacles using only the implicit
torus constraint given by (6.40). To simplify collision detection, the obstacles can
be a collection of balls in R3 that intersect the torus. Adapt a sampling-based
planning technique, such as the bidirectional RRT, to traverse the torus and solve
planning problems.

15. Implement the spanning-tree coverage planning algorithm of Section 7.6.

16. Develop an RRT-based planning algorithm that causes the robot to chase an un-
predictable moving target in a planar environment that contains obstacles. The
algorithm should run quickly enough so that replanning can occur during execu-
tion. The robot should execute the first part of the most recently computed path
while simultaneously computing a better plan for the next time increment.

17. Modify Exercise 16 so that the robot assumes the target follows a predictable,
constant-velocity trajectory until some deviation is observed.

18. Show how to handle unexpected obstacles by using a fast enough planning algo-
rithm. For simplicity, suppose the robot is a point moving in a polygonal obstacle
region. The robot first computes a path and then starts to execute it. If the obsta-
cle region changes, then a new path is computed from the robot’s current position.
Use vertical decomposition or another algorithm of your choice (provided it is fast
enough). The user should be able to interactively place or move obstacles during
plan execution.

368 S. M. LaValle: Planning Algorithms

19. Use the manipulation planning framework of Section 7.3.2 to develop an algorithm
that solves the famous Towers of Hanoi problem by a robot that carries the rings
[166]. For simplicity, suppose a polygonal robot moves polygonal parts inW = R2

and rotation is not allowed. Make three pegs, and initially place all parts on one
peg, sorted from largest to smallest. The goal is to move all of the parts to another
peg while preserving the sorting.

20. Use grid-based approximation to solve optimal planning problems for a point
robot in the plane. Experiment with using different neighborhoods and metrics.
Characterize the combinations under which good and bad approximations are
obtained.

Chapter 8

Feedback Motion Planning

So far in Part II it has been assumed that a continuous path sufficiently solves
a motion planning problem. In many applications, such as computer-generated
animation and virtual prototyping, there is no need to challenge this assumption
because models in a virtual environment usually behave as designed. In applica-
tions that involve interaction with the physical world, future configurations may
not be predictable. A traditional way to account for this in robotics is to use the
refinement scheme that was shown in Figure 1.19 to design a feedback control law
that attempts to follow the computed path as closely as possible. Sometimes this
is satisfactory, but it is important to recognize that this approach is highly de-
coupled. Feedback and dynamics are neglected in the construction of the original
path; the computed path may therefore not even be usable.

Section 8.1 motivates the consideration of feedback in the context of motion
planning. Section 8.2 presents the main concepts of this chapter, but only for the
case of a discrete state space. This requires less mathematical concepts than the
continuous case, making it easier to present feedback concepts. Section 8.3 then
provides the mathematical background needed to extend the feedback concepts
to continuous state spaces (which includes C-spaces). Feedback motion planning
methods are divided into complete methods, covered in Section 8.4, and sampling-
based methods, covered in Section 8.5.

8.1 Motivation

For most problems involving the physical world, some form of feedback is needed.
This means the actions of a plan should depend in some way on information
gathered during execution. The need for feedback arises from the unpredictability
of future states. In this chapter, every state space will be either discrete, or X = C,
which is a configuration space as considered in Chapter 4.

Two general ways to model uncertainty in the predictability of future states
are

1. Explicitly: Develop models that explicitly account for the possible ways

369

370 S. M. LaValle: Planning Algorithms

Open Loop Feedback
Free motions Traditional motion planning Chapter 8

Dynamics Chapters 14 and 15 Traditional control theory

Figure 8.1: By separating the issue of dynamics from feedback, two less-
investigated topics emerge.

that the actual future state can drift away from the planned future state. A
planning algorithm must take this uncertainty directly into account. Such
explicit models of uncertainty are introduced and incorporated into the plan-
ning model in Part III.

2. Implicitly: The model of state transitions indicates that no uncertainty
is possible; however, a feedback plan is constructed to ensure that it knows
which action to apply, just in case it happens to be in some unexpected state
during execution. This approach is taken in this chapter.

The implicit way to handle this uncertainty may seem strange at first; therefore,
some explanation is required. It will be seen in Part III that explicitly mod-
eling uncertainty is extremely challenging and complicated. The requirements
for expressing reliable models are much stronger; the complexity of the problem
increases, making algorithm design more difficult and leading to greater oppor-
tunities to make modeling errors. The implicit way of handling uncertainty in
predictability arose in control theory [108, 122, 686]. It is well known that a feed-
back control law is needed to obtain reliable performance, yet it is peculiar that
the formulation of dynamics used in most contexts does not explicitly account for
this. Classical control theory has always assumed that feedback is crucial; however,
only in modern branches of the field, such as stochastic control and robust control,
does this uncertainty get explicitly modeled. Thus, there is a widely accepted and
successful practice of designing feedback control laws that use state feedback to
implicitly account for the fact that future states may be unpredictable. Given the
widespread success of this control approach across numerous applications over the
past century, it seems valuable to utilize this philosophy in the context of motion
planning as well (if you still do not like it, then jump to Chapter 10).

Due to historical reasons in the development of feedback control, it often seems
that feedback and dynamics are inseparable. This is mainly because control theory
was developed to reliably alter the behavior of dynamical systems. In traditional
motion planning, neither feedback nor dynamics is considered. A solution path
is considered open loop, which means there is no feedback of information during
execution to close the loop. Dynamics are also not handled because the additional
complications of differential constraints and higher dimensional phase spaces arise
(see Part IV).

By casting history aside and separating feedback from dynamics, four separate
topics can be made, as shown in Figure 8.1. The topic of open-loop planning

8.2. DISCRETE STATE SPACES 371

that involves dynamics has received increasing attention in recent years. This is
the focus throughout most of Part IV. Those fond of classical control theory may
criticize it for failing to account for feedback; however, such open-loop trajectories
(paths in a phase space) are quite useful in applications that involve simulations.
Furthermore, a trajectory that accounts for dynamics is more worthwhile in a
decoupled approach than using a path that ignores dynamics, which has been an
acceptable practice for decades. These issues will be elaborated upon further in
Part IV.

The other interesting topic that emerges in Figure 8.1 is to develop feedback
plans for problems in which there are no explicit models of dynamics or other
differential constraints. If it was reasonable to solve problems in classical motion
planning by ignoring differential constraints, one should certainly feel no less guilty
designing feedback motion plans that still neglect differential constraints.1 This
uses the implicit model of uncertainty in predictability without altering any of the
other assumptions previously applied in traditional motion planning.

Even if there are no unpredictability issues, another important use of feedback
plans is for problems in which the initial state is not known. A feedback plan
indicates what action to take from every state. Therefore, the specification of
an initial condition is not important. The analog of this in graph algorithms is
the single-destination shortest-path problem, which indicates how to arrive at a
particular vertex optimally from any other vertex. Due to this connection, the
next section presents feedback concepts for discrete state spaces, before extending
the ideas to continuous spaces, which are needed for motion planning.

For these reasons, feedback motion planning is considered in this chapter. As
a module in a decoupled approach used in robotics, feedback motion plans are at
least as useful as a path computed by the previous techniques. We expect feedback
solutions to be more reliable in general, when used in the place of open-loop paths
computed by traditional motion planning algorithms.

8.2 Discrete State Spaces

This section is provided mainly to help to explain similar concepts that are coming
in later sections. The presentation is limited to discrete spaces, which are much
simpler to formulate and understand. Following this, an extension to configuration
spaces and other continuous state spaces can be made. The discussion here is also
relevant background for the feedback planning concepts that will be introduced in
Section 8.4.1. In that case, uncertainty will be explicitly modeled. The resulting
formulation and concepts can be considered as an extension of this section.

1Section 8.4.4 will actually consider some simple differential constraints, such as acceleration
bounds; the full treatment of differential constraints is deferred until Part IV.

372 S. M. LaValle: Planning Algorithms

8.2.1 Defining a Feedback Plan

Consider a discrete planning problem similar to the ones defined in Formulations
2.1 and 2.3, except that the initial state is not given. Due to this, the cost func-
tional cannot be expressed only as a function of a plan. It is instead defined in
terms of the state history and action history. At stage k, these are defined as

x̃k = (x1, x2, . . . , xk) (8.1)

and
ũk = (u1, u2, . . . , uk), (8.2)

respectively. Sometimes, it will be convenient to alternatively refer to x̃k as the
state trajectory.

The resulting formulation is

Formulation 8.1 (Discrete Optimal Feedback Planning)

1. A finite, nonempty state space X.

2. For each state, x ∈ X, a finite action space U(x).

3. A state transition function f that produces a state, f(x, u) ∈ X, for every
x ∈ X and u ∈ U(x). Let U denote the union of U(x) for all x ∈ X.

4. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely.

5. A goal set, XG ⊂ X.

6. Let L denote a stage-additive cost functional,

L(x̃F , ũK) =
K∑

k=1

l(xk, uk) + lF (xF), (8.3)

in which F = K + 1.

There is one other difference in comparison to the formulations of Chapter 2. The
state space is assumed here to be finite. This facilitates the construction of a
feedback plan, but it is not necessary in general.

Consider defining a plan that solves Formulation 8.1. If the initial condition
is given, then a sequence of actions could be specified, as in Chapter 2. Without
having the initial condition, one possible approach is to determine a sequence of
actions for each possible initial state, x1 ∈ X. Once the initial state is given, the
appropriate action sequence is known. This approach, however, wastes memory.
Suppose some x is given as the initial state and the first action is applied, leading
to the next state x′. What action should be applied from x′? The second action
in the sequence at x can be used; however, we can also imagine that x′ is now the

8.2. DISCRETE STATE SPACES 373

initial state and use its first action. This implies that keeping an action sequence
for every state is highly redundant. It is sufficient at each state to keep only the
first action in the sequence. The application of that action produces the next
state, at which the next appropriate action is stored. An execution sequence can
be imagined from an initial state as follows. Start at some state, apply the action
stored there, arrive at another state, apply its action, arrive at the next state, and
so on, until the goal is reached.

It therefore seems appropriate to represent a feedback plan as a function that
maps every state to an action. Therefore, a feedback plan π is defined as a function
π : X → U . From every state, x ∈ X, the plan indicates which action to apply.
If the goal is reached, then the termination action should be applied. This is
specified as part of the plan: π(x) = uT , if x ∈ XG. A feedback plan is called a
solution to the problem if it causes the goal to be reached from every state that is
reachable from the goal.

If an initial state x1 and a feedback plan π are given, then the state and action
histories can be determined. This implies that the execution cost, (8.3), also can
be determined. It can therefore be alternatively expressed as L(π, x1), instead of
L(x̃F , ũK). This relies on future states always being predictable. In Chapter 10, it
will not be possible to make this direct correspondence due to uncertainties (see
Section 10.1.3).

Feasibility and optimality The notions of feasible and optimal plans need to
be reconsidered in the context of feedback planning because the initial condition
is not given. A plan π is called a solution to the feasible planning problem if
from every x ∈ X from which XG is reachable the goal set is indeed reached by
executing π from x. This means that the cost functional is ignored (an alternative
to Formulation 8.1 can be defined in which the cost functional is removed). For
convenience, π will be called a feasible feedback plan.

Now consider optimality. From a given state x, it is clear that an optimal plan
exists using the concepts of Section 2.3. Is it possible that a different optimal
plan needs to be associated with every x ∈ X that can reach XG? It turns out
that only one plan is needed to encode optimal paths from every initial state to
XG. Why is this true? Suppose that the optimal cost-to-go is computed over X
using Dijkstra’s algorithm or value iteration, as covered in Section 2.3. Every cost-
to-go value at some x ∈ X indicates the cost received under the implementation
of the optimal open-loop plan from x. The first step in this optimal plan can
be determined by (2.19), which yields a new state x′ = f(x, u). From x′, (2.19)
can be applied once again to determine the next optimal action. The cost at x′

represents both the optimal cost-to-go if x′ is the initial condition and also the
optimal cost-to-go when continuing on the optimal path from x. The two must
be equivalent because of the dynamic programming principle. Since all such costs
must coincide, a single feedback plan can be used to obtain the optimal cost-to-go
from every initial condition.

A feedback plan π is therefore defined as optimal if from every x ∈ X, the total

374 S. M. LaValle: Planning Algorithms

xG uT

(a) (b)

Figure 8.2: a) A 2D grid-planning problem. b) A solution feedback plan.

cost, L(π, x), obtained by executing π is the lowest among all possible plans. The
requirement that this holds for every initial condition is important for feedback
planning.

Example 8.1 (Feedback Plan on a 2D Grid) This example uses the 2D grid
model explained in Example 2.1. A robot moves on a grid, and the possible actions
are up (↑), down (↓), left (←), right (→), and terminate (uT); some directions are
not available from some states. A solution feedback plan is depicted in Figure
8.2. Many other possible solutions plans exist. The one shown here happens to
be optimal in terms of the number of steps to the goal. Some alternative feedback
plans are also optimal (figure out which arrows can be changed). To apply the
plan from any initial state, simply follow the arrows to the goal. In each stage,
the application of the action represented by the arrow leads to the next state. The
process terminates when uT is applied at the goal. �

8.2.2 Feedback Plans as Navigation Functions

It conveniently turns out that tools for computing a feedback plan were already
given in Chapter 2. Methods such as Dijkstra’s algorithm and value iteration
produce information as a side effect that can be used to represent a feedback
plan. This section explains how this information is converted into a feedback
plan. To achieve this, a feedback plan will be alternatively expressed as a potential
function over the state space (recall potential functions from Section 5.4.3). The
potential values are computed by planning algorithms and can be used to recover

8.2. DISCRETE STATE SPACES 375

the appropriate actions during execution. In some cases, an optimal feedback plan
can even be represented using potential functions.

Navigation functions Consider a (discrete) potential function, defined as φ :
X → [0,∞]. The potential function can be used to define a feedback plan through
the use of a local operator, which is a function that selects the action that reduces
the potential as much as possible. First, consider the case of a feasible planning
problem. The potential function, φ, defines a feedback plan by selecting u through
the local operator,

u∗ = argmin
u∈U(x)

{

φ(f(x, u))
}

, (8.4)

which means that u∗ ∈ U(x) is chosen to reduce φ as much as possible. The local
operator yields a kind of greedy descent of the potential. Note that the action
u∗ may not be unique. In the continuous-space analog to this, the corresponding
local operator performs a descent along the negative gradient (often referred to as
gradient descent).

In the case of optimal planning, the local operator is defined as

u∗ = argmin
u∈U(x)

{

l(x, u) + φ(f(x, u))
}

, (8.5)

which looks similar to the dynamic programming condition, (2.19). It becomes
identical to (2.19) if φ is interpreted as the optimal cost-to-go. A simplification of
(8.5) can be made if the planning problem is isotropic, which means that the cost is
the same in every direction: l(x, u) = l(x, u′) for all u, u′ ∈ U(x)\{uT}. In this case,
the cost term l(x, u) does not affect the minimization in (8.5). A common example
in which this assumption applies is if the cost functional counts the number of
stages required to reach the goal. The costs of particular actions chosen along the
way are not important. Using the isotropic property, (8.5) simplifies back to (8.4).

When is a potential function useful? Many useless potential functions can be
defined that fail to reach the goal, or cause states to cycle indefinitely, and so on.
The most desirable potential function is one that for any initial state causes arrival
in XG, if it is reachable. This requires only a few simple properties. A potential
function that satisfies these will be called a navigation function.2

Suppose that the cost functional is isotropic. Let x′ = f(x, u∗), which is the
state reached after applying the action u∗ ∈ U(x) that was selected by (8.4). A
potential function, φ, is called a (feasible) navigation function if

1. φ(x) = 0 for all x ∈ XG.

2. φ(x) =∞ if and only if no point in XG is reachable from x.

3. For every reachable state, x ∈ X \XG, the local operator produces a state
x′ for which φ(x′) < φ(x).

2This term was developed for continuous configuration spaces in [541, 829]; it will be used
more broadly in this book but still retains the basic idea.

376 S. M. LaValle: Planning Algorithms

1

1

1

1

2 2

22

2 2

3 3

3 3 4 5 6 7

7 8

8

8

9

9

9

10

10

10

11

11

11

0

12

12

12

12

13

13

13

1314

14

14

14

15

15

15

15 16

16

16

1617

17

17 17

18

18

18

19

19

19

20

20

2021

21 212222

Figure 8.3: The cost-to-go values serve as a navigation function.

The first condition requires the goal to have zero potential (this condition is actu-
ally not necessary but is included for convenience). The second condition requires
that∞ serves as a special indicator that the goal is not reachable from some state.
The third condition means that the potential function has no local minima except
at the goal. This means that the execution of the resulting feedback plan will
progress without cycling and the goal region will eventually be reached.

An optimal navigation function is defined as the optimal cost-to-go, G∗. This
means that in addition to the three properties above, the navigation function must
also satisfy the principle of optimality:

φ(x) = min
u∈U(x)

{

l(x, u) + φ(f(x, u))
}

, (8.6)

which is just (2.18) with G∗ replaced by φ. See Section 15.2.1 for more on this
connection.

Example 8.2 (Navigation Function on a 2D Grid) Return to the planning
problem in Example 8.1. Assume that an isotropic cost model is used: l(x, u) = 1
if u 6= uT . Figure 8.3 shows a navigation function. The numbers shown in the
tiles represent φ. Verify that φ satisfies the three requirements for a navigation
function.

At any state, an action is applied that reduces the potential value. This cor-
responds to selecting the action using (8.4). The process may be repeated from
any state until XG is reached. This example clearly illustrates how a navigation
function can be used as an alternative definition of a feedback plan. �

Example 8.3 (Airport Terminal) You may have found yourself using a navi-
gation function to find the exit after arriving in an unfamiliar airport terminal.
Many terminals are tree-structured, with increasing gate numbers as the distance

8.2. DISCRETE STATE SPACES 377

to the terminal exit increases. If you wish to leave the terminal, you should nor-
mally walk toward the lower numbered gates. �

Computing navigation functions There are many ways to compute naviga-
tion functions. The cost-to-go function determined by Dijkstra’s algorithm work-
ing backward from XG yields an optimal navigation function. The third condition
of a navigation function under the anisotropic case is exactly the stationary dy-
namic programming equation, (2.18), if the navigation function φ is defined as the
optimal cost-to-go G∗. It was mentioned previously that the optimal actions can
be recovered using only the cost-to-go. This was actually an example of using a
navigation function, and the resulting procedure could have been considered as a
feedback plan.

If optimality is not important, then virtually any backward search algorithm
from Section 2.2 can be used, provided that it records the distance to the goal
from every reached state. The distance does not have to be optimal. It merely
corresponds to the cost obtained if the current vertex in the search tree is traced
back to the root vertex (or back to any vertex in XG, if there are multiple goal
states).

If the planning problem does not even include a cost functional, as in Formu-
lation 2.1, then a cost functional can be invented for the purposes of constructing
a navigation function. At each x ∈ X from which XG is reachable, the number
of edges in the search graph that would be traversed from x to XG can be stored
as the cost. If Dijkstra’s algorithm is used to construct the navigation function,
then the resulting feedback plan yields executions that are shortest in terms of the
number of stages required to reach the goal.

The navigation function itself serves as the representation of the feedback plan,
by recovering the actions from the local operator. Thus, a function, π : X →
U , can be recovered from a navigation function, φ : X → [0,∞]. Likewise, a
navigation function, φ, can be constructed from π. Therefore, the π and φ can be
considered as interchangeable representations of feedback plans.

8.2.3 Grid-Based Navigation Functions for Motion Plan-
ning

To consider feedback plans for continuous spaces, vector fields and other basic
definitions from differential geometry will be needed. These will be covered in
Section 8.3; however, before handling such complications, we first will describe
how to use the ideas presented so far in Section 8.2 as a discrete approximation to
feedback motion planning.

Examples 8.1 and 8.2 have already defined feedback plans and navigation func-
tions for 2D grids that contain obstacles. Imagine that this model is used to ap-
proximate a motion planning problem for which C ⊂ R2. Section 5.4.2 showed
how to make a topological graph that approximates the motion planning problem

378 S. M. LaValle: Planning Algorithms

WAVEFRONT PROPAGATION ALGORITHM

1. Initialize W0 = XG; i = 0.

2. Initialize Wi+1 = ∅.

3. For every x ∈ Wi, assign φ(x) = i and insert all unexplored neighbors of x
into Wi+1.

4. If Wi+1 = ∅, then terminate; otherwise, let i := i+ 1 and go to Step 2.

Figure 8.4: The wavefront propagation algorithm is a specialized version of Dijk-
stra’s algorithm that optimizes the number of stages to reach the goal.

with a grid of samples. The motions used in Example 8.1 correspond to the 1-
neighborhood definition, (5.37). This idea was further refined in Section 7.7.1 to
model approximate optimal motion planning by moving on a grid; see Formulation
7.4. By choosing the Manhattan motion model, as defined in Example 7.4, a grid
with the same motions considered in Example 8.1 is produced.

To construct a navigation function that may be useful in mobile robotics, a
high-resolution (e.g., 50 to 100 points per axis) grid is usually required. In Section
5.4.2, only a few points per axis were needed because feedback was not assumed.
It was possible in some instances to find a collision-free path by investigating only
a few points per axis. During the execution of a feedback plan, it is assumed
that the future states of the robot are not necessarily predictable. Wherever the
robot may end up, the navigation function in combination with the local operator
must produce the appropriate action. If the current state (or configuration) is
approximated by a grid, then it is important to reduce the approximation error
as much as possible. This is accomplished by setting the grid resolution high. In
the feedback case, the grid can be viewed as “covering” the whole configuration
space, whereas in Section 5.4.2 the grid only represented a topological graph of
paths that cut across the space.3

Wavefront propagation algorithms Once the approximation has been made,
any of the methods discussed in Section 8.2.2 can be used to compute a navigation
function. An optimal navigation function can be easily computed using Dijkstra’s
algorithm from the goal. If each motion has unit cost, then a useful simplifica-
tion can be made. Figure 8.4 describes a wavefront propagation algorithm that
computes an optimal navigation function. It can be considered as a special case
of Dijkstra’s algorithm that avoids explicit construction of the priority queue. In
Dijkstra’s algorithm, the cost of the smallest element in the queue is monotonically

3Difficulty in distinguishing between these two caused researchers for many years to believe
that grids yield terrible performance for the open-loop path planning problems of Chapter 5.
This was mainly because it was assumed that a high-resolution grid was necessary. For many
problems, however, they could terminate early after only considering a few points per axis.

8.2. DISCRETE STATE SPACES 379

nondecreasing during the execution of the algorithm. In the case of each motion
having unit cost, there will be many states in the queue that have the same cost.
Dijkstra’s algorithm could remove in parallel all elements that have the same,
smallest cost. Suppose the common, smallest cost value is i. These states are
organized into a wavefront, Wi. The initial wavefront is W0, which represents the
states in XG. The algorithm can immediately assign an optimal cost-to-go value
of 1 to every state that can be reached in one stage from any state in W0. These
must be optimal because no other cost value is optimal. The states that receive
cost 1 can be organized into the wavefront W1. The unexplored neighbors of W1

are assigned cost 2, which also must be optimal. This process repeats inductively
from i to i+1 until all reachable states have been reached. In the end, the optimal
cost-to-go is computed in O(n) time, in which n is the number of reachable grid
states. For any states that were not reached, the value φ(x) =∞ can be assigned.
The navigation function shown in Figure 8.3 can actually be computed using the
wavefront propagation algorithm.

Maximum clearance One problem that typically arises in mobile robotics is
that optimal motion plans bring robots too close to obstacles. Recall from Section
6.2.4 that the shortest Euclidean paths for motion planning in a polygonal envi-
ronment must be allowed to touch obstacle vertices. This motivated the maximum
clearance roadmap, which was covered in Section 6.2.3. A grid-based approximate
version of the maximum clearance roadmap can be made. Furthermore, a naviga-
tion function can be defined that guides the robot onto the roadmap, then travels
along the roadmap, and finally deposits the robot at a specified goal. In [588], the
resulting navigation function is called NF2.

Assume that there is a single goal state, xG ∈ X. The computation of a
maximum clearance navigation function proceeds as follows:

1. Instead of XG, assign W0 to be the set of all states from which motion in at
least one direction is blocked. These are the states on the boundary of the
discretized collision-free space.

2. Perform wavefront iterations that propagate costs in waves outward from
the obstacle boundaries.

3. As the wavefronts propagate, they will meet approximately at the location of
the maximum clearance roadmap for the original, continuous problem. Mark
any state at which two wavefront points arrive from opposing directions as
a skeleton state. It may be the case that the wavefronts simply touch each
other, rather than arriving at a common state; in this case, one of the two
touching states is chosen as the skeleton state. Let S denote the set of all
skeleton states.

4. After the wavefront propagation ends, connect xG to the skeleton by inserting
xG and all states along the path to the skeleton into S. This path can be
found using any search algorithm.

380 S. M. LaValle: Planning Algorithms

5. Compute a navigation function φ1 over S by treating all other states as if
they were obstacles and using the wavefront propagation algorithm. This
navigation function guides any point in S to the goal.

6. Treat S as a goal region and compute a navigation function φ2 using the
wavefront propagation algorithm. This navigation function guides the state
to the nearest point on the skeleton.

7. Combine φ1 and φ2 as follows to obtain φ. For every x ∈ S, let φ(x) = φ1(x).
For every remaining state, the value φ(x) = φ1(x

′) + φ2(x) is assigned, in
which x′ is the nearest state to x such that x′ ∈ S. The state x′ can easily
be recorded while φ2 is computed.

If Cfree is multiply connected, then there may be multiple ways to each xG by
traveling around different obstacles (the paths are not homotopic). The method
described above does not take into account the problem that one route may have
a tighter clearance than another. The given approach only optimizes the distance
traveled along the skeleton; it does not, however, maximize the nearest approach
to an obstacle, if there are multiple routes.

Dial’s algorithm Now consider generalizing the wavefront propagation idea.
Wavefront propagation can be applied to any discrete planning problem if l(x, u) =
1 for any x ∈ X and u ∈ U(x) (except u = uT). It is most useful when the
transition graph is sparse (imagine representing the transition graph using an
adjacency matrix). The grid problem is a perfect example where this becomes
important. More generally, if the cost terms assume integer values, then Dial’s
algorithm [272] results, which is a generalization of wavefront propagation, and
a specialization of Dijkstra’s algorithm. The idea is that the priority queue can
be avoided by assigning the alive vertices to buckets that correspond to different
possible cost-to-go values. In the wavefront propagation case, there are never
more than two buckets needed at a time. Dial’s algorithm allows all states in the
smallest cost bucket to be processed in parallel. The scheme was enhanced in [939]
to yield a linear-time algorithm.

Other extensions Several ideas from this section can be generalized to produce
other navigation functions. One disadvantage of the methods discussed so far is
that undesirable staircase motions (as shown in Figure 7.40) are produced. If the
2-neighborhood, as defined in (5.38), is used to define the action spaces, then the
motions will generally be shorter. Dial’s algorithm can be applied to efficiently
compute an optimal navigation function in this case.

A grid approximation can be made to higher dimensional configuration spaces.
Since a high resolution is needed, however, it is practical only for a few dimensions
(e.g., 3 or 4). If the 1-neighborhood is used, then wavefront propagation can be
easily applied to compute navigation functions. Dial’s algorithm can be adapted
for general k-neighborhoods.

8.3. VECTOR FIELDS AND INTEGRAL CURVES 381

Constructing navigation functions over grids may provide a practical solution in
many applications. In other cases it may be unacceptable that staircase motions
occur. In many cases, it may not even be possible to compute the navigation
function quickly enough. Factors that influence this problem are 1) very high
accuracy, and a hence high-resolution grid may be necessary; 2) the dimension of
the configuration space may be high; and 3) the environment may be frequently
changing, and a real-time response is required. To address these issues, it is
appealing to abandon grid approximations. This will require defining potential
functions and velocities directly on the configuration space. Section 8.3 presents
the background mathematical concepts to make this transition.

8.3 Vector Fields and Integral Curves

To consider feedback motion plans over continuous state spaces, including con-
figuration spaces, we will need to define a vector field and the trajectory that is
obtained by integrating the vector field from an initial point. A vector field is ideal
for characterizing a feedback plan over a continuous state space. It can be viewed
as providing the continuous-space analog to the feedback plans on grids, as shown
in Figure 8.2b.

This section presents two alternative presentations of the background mathe-
matical concepts. Section 8.3.1 assumes that X = Rn, which leads to definitions
that appear very similar to those you may have learned in basic calculus and dif-
ferential equations courses. Section 8.3.2 covers the more general case of vector
fields on manifolds. This requires significantly more technical concepts and builds
on the manifold definitions of Section 4.1.2.

Some readers may have already had some background in differentiable man-
ifolds. If, however, you are seeing it for the first time, then it may be difficult
to comprehend on the first reading. In addition to rereading, here are two other
suggestions. First, try studying background material on this subject, which is
suggested at the end of the chapter. Second, disregard the manifold technicalities
in the subsequent sections and pretend that X = C = Rn. Nearly everything will
make sense without the additional technicalities. Imagine that a manifold is de-
fined as a cube, [0, 1]n, with some sides identified, as in Section 4.1.2. The concepts
that were presented for Rn can be applied everywhere except at the boundary of
the cube. For example, if S1 is defined as [0, 1]/ ∼, and a function f is defined on
S1, how can we define the derivative at f(0)? The technical definitions of Section
8.3.2 fix this problem. Sometimes, the technicalities can be avoided in practice by
cleverly handling the identification points.

8.3.1 Vector Fields on Rn

This section revisits some basic concepts from introductory courses such as calcu-
lus, linear algebra, and differential equations. You may have learned most of these
for R2 and R3. We eventually want to describe velocities in Rn and on manifolds,

382 S. M. LaValle: Planning Algorithms

and then use the notion of a vector field to express a feedback plan in Section
8.4.1.

Vector spaces Before defining a vector field, it is helpful to be precise about
what is meant by a vector. A vector space (or linear space) is defined as a set,
V , that is closed under two algebraic operations called vector addition and scalar
multiplication and satisfies several axioms, which will be given shortly. The vector
space used in this section is Rn, in which the scalars are real numbers, and a vector
is represented as a sequence of n real numbers. Scalar multiplication multiplies
each component of the vector by the scalar value. Vector addition forms a new
vector by adding each component of two vectors.

A vector space V can be defined over any field F (recall the definition from
Section 4.4.1). The field F represents the scalars, and V represents the vectors.
The concepts presented below generalize the familiar case of the vector space Rn.
In this case, V = Rn and F = R. In the definitions that follow, you may make
these substitutions, if desired. We will not develop vector spaces that are more
general than this; the definitions are nevertheless given in terms of V and F to
clearly separate scalars from vectors. The vector addition is denoted by +, and the
scalar multiplication is denoted by ·. These operations must satisfy the following
axioms (a good exercise is to verify these for the case of Rn treated as a vector
space over the field R):

1. (Commutative Group Under Vector Addition) The set V is a com-
mutative group with respect to vector addition, +.

2. (Associativity of Scalar Multiplication) For any v ∈ V and any α, β ∈
F, α(βv) = (αβ)v.

3. (Distributivity of Scalar Sums) For any v ∈ V and any α, β ∈ F, (α +
β)v = αv + βv.

4. (Distributivity of Vector Sums) For any v, w ∈ V and any α ∈ F,
α(v + w) = αv + αw.

5. (Scalar Multiplication Identity) For any v ∈ V , 1v = v for the multi-
plicative identity 1 ∈ F.

The first axiom allows vectors to be added in any order. The rest of the axioms
require that the scalar multiplication interacts with vectors in the way that we
would expect from the familiar vector space Rn over R.

A basis of a vector space V is defined as a set, v1,. . .,vn, of vectors for which
every v ∈ V can be uniquely written as a linear combination:

v = α1v1 + α2v2 + · · ·+ αnvn, (8.7)

for some α1, . . . , αn ∈ F. This means that every vector has a unique representation
as a linear combination of basis elements. In the case of R3, a familiar basis is

8.3. VECTOR FIELDS AND INTEGRAL CURVES 383

[0 0 1], [0 1 0], and [1 0 0]. All vectors can be expressed as a linear combination
of these three. Remember that a basis is not necessarily unique. From linear
algebra, recall that any three linearly independent vectors can be used as a basis
for R3. In general, the basis must only include linearly independent vectors. Even
though a basis is not necessarily unique, the number of vectors in a basis is the
same for any possible basis over the same vector space. This number, n, is called
the dimension of the vector space. Thus, we can call Rn an n-dimensional vector
space over R.

Example 8.4 (The Vector Space Rn Over R) As indicated already, Rn can
be considered as a vector space. A natural basis is the set of n vectors in which,
for each i ∈ {1, . . . , n}, a unit vector is constructed as follows. Let xi = 1 and
xj = 0 for all j 6= i. Since there are n basis vectors, Rn is an n-dimensional vector
space. The basis is not unique. Any set of n linearly independent vectors may be
used, which is familiar from linear algebra, in which nonsingular n × n matrices
are used to transform between them. �

To illustrate the power of these general vector space definitions, consider the
following example.

Example 8.5 (A Vector Space of Functions) The set of all continuous, real-
valued functions f : [0, 1]→ R, for which

∫ 1

0

f(x)dx (8.8)

is finite, forms a vector space over R. It is straightforward to verify that the vector
space axioms are satisfied. For example, if two functions f1 and f2 are added, the
integral remains finite. Furthermore, f1+f2 = f2+f1, and all of the group axioms
are satisfied with respect to addition. Any function f that satisfies (8.8) can be
multiplied by a scalar in R, and the integral remains finite. The axioms that
involve scalar multiplication can also be verified.

It turns out that this vector space is infinite-dimensional. One way to see this is
to restrict the functions to the set of all those for which the Taylor series exists and
converges to the function (these are called analytic functions). Each function can
be expressed via a Taylor series as a polynomial that may have an infinite number
of terms. The set of all monomials, x, x2, x3, and so on, represents a basis. Every
continuous function can be considered as an infinite vector of coefficients; each
coefficient is multiplied by one of the monomials to produce the function. This
provides a simple example of a function space; with some additional definitions,
this leads to a Hilbert space, which is crucial in functional analysis, a subject that
characterizes spaces of functions [836, 838]. �

384 S. M. LaValle: Planning Algorithms

The remainder of this chapter considers only finite-dimensional vector spaces
over R. It is important, however, to keep in mind the basic properties of vector
spaces that have been provided.

Vector fields A vector field looks like a “needle diagram” over Rn, as depicted
in Figure 8.5. The idea is to specify a direction at each point p ∈ Rn. When used
to represent a feedback plan, it indicates the direction that the robot needs to
move if it finds itself at p.

For every p ∈ Rn, associate an n-dimensional vector space called the tangent
space at p, which is denoted as Tp(R

n). Why not just call it a vector space at
p? The use of the word “tangent” here might seem odd; it is motivated by the
generalization to manifolds, for which the tangent spaces will be “tangent” to
points on the manifold.

A vector field4 ~V on Rn is a function that assigns a vector v ∈ Tp(R
n) to

every p ∈ Rn. What is the range of this function? The vector ~V (p) at each p ∈ Rn

actually belongs to a different tangent space. The range of the function is therefore
the union

T (Rn) =
⋃

p∈Rn

Tp(R
n), (8.9)

which is called the tangent bundle on Rn. Even though the way we describe vectors
from Tp(R

n) may appear the same for any p ∈ Rn, each tangent space is assumed to
produce distinct vectors. To maintain distinctness, a point in the tangent bundle
can be expressed with 2n coordinates, by specifying p and v together. This will
become important for defining phase space concepts in Part IV. In the present
setting, it is sufficient to think of the range of ~V as Rn because Tp(R

n) = Rn for
every p ∈ Rn.

A vector field can therefore be expressed using n real-valued functions on Rn.
Let fi(x1, . . . , xn) for i from 1 to n denote such functions. Using these, a vector
field is specified as

f(x) = [f1(x1, . . . , xn) f2(x1, . . . , xn) · · · fn(x1, . . . , xn)]. (8.10)

In this case, it appears that a vector field is a function f from Rn into Rn. There-
fore, standard function notation will be used from this point onward to denote a
vector field.

Now consider some examples of vector fields over R2. Let a point in R2 be
represented as p = (x, y). In standard vector calculus, a vector field is often
specified as [f1(x, y) f2(x, y)], in which f1 and f2 are functions on R2

Example 8.6 (Constant Vector Field) Figure 8.5a shows a constant vector
field, which assigns the vector [1 2] to every (x, y) ∈ R2. �

4Unfortunately, the term field appears in two unrelated places: in the definition of a vector
space and in the term vector field. Keep in mind that this is an accidental collision of terms.

8.3. VECTOR FIELDS AND INTEGRAL CURVES 385

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x_1

x2

x1

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x_1

x2

x1

(a) (b)

Figure 8.5: (a) A constant vector field, f(x, y) = [1 1]. (b) A vector field,
f(x, y) = [−x − y] in which all vectors point to the origin.

Example 8.7 (Inward Flow) Figure 8.5b depicts a vector field that assigns
[−x − y] to every (x, y) ∈ R2. This causes all vectors to point to the ori-
gin. �

Example 8.8 (Swirl) The vector field in Figure 8.6 assigns [(y − x) (−x− y)]
to every (x, y) ∈ R2. �

Due to obstacles that arise in planning problems, it will be convenient to some-
times restrict the domain of a vector field to an open subset of Rn. Thus, for any
open subset O ⊂ Rn, a vector field f : O → Rn can be defined.

Smoothness A function fi from a subset of Rn into R is called a smooth function
if derivatives of any order can be taken with respect to any variables, at any point
in the domain of fi. A vector field is said to be smooth if every one of its n defining
functions, f1, . . ., fn, is smooth. An alternative name for a smooth function is a
C∞ function. The superscript represents the order of differentiation that can be
taken. For a Ck function, its derivatives can be taken at least up to order k.
A C0 function is an alternative name for a continuous function. The notion of a
homeomorphism can be extended to a diffeomorphism, which is a homeomorphism
that is a smooth function. Two topological spaces are called diffeomorphic if there
exists a diffeomorphism between them.

386 S. M. LaValle: Planning Algorithms

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x_1

x2

x1

Figure 8.6: A swirling vector field, f(x, y) = [(y − x) (−x− y)].

Vector fields as velocity fields We now give a particular interpretation to
vector fields. A vector field expressed using (8.10) can be used to define a set of
first-order differential equations as

dx1
dt

= f1(x1, . . . , xn)

dx2
dt

= f2(x1, . . . , xn)

...

dxn
dt

= fn(x1, . . . , xn).

(8.11)

Each equation represents the derivative of one coordinate with respect to time.
For any point x ∈ Rn, a velocity vector is defined as

dx

dt
=

[
dx1
dt

dx2
dt
· · · dxn

dt

]

. (8.12)

This enables f to be interpreted as a velocity field.
It is customary to use the short notation ẋ = dx/dt. Each velocity component

can be shortened to ẋi = dxi/dt. Using f to denote the vector of functions f1, . . .,
fn, (8.11) can be shorted to

ẋ = f(x). (8.13)

The use of f here is an intentional coincidence with the use of f for the state
transition equation. In Part IV, we will allow vector fields to be parameterized by
actions. This leads to a continuous-time state transition equation that looks like

8.3. VECTOR FIELDS AND INTEGRAL CURVES 387

ẋ = f(x, u) and is very similar to the transition equations defined over discrete
stages in Chapter 2.

The differential equations expressed in (8.11) are often referred to as au-
tonomous or stationary because f does not depend on time. A time-varying vector
field could alternatively be defined, which yields ẋ = f(x(t), t). This will not be
covered, however, in this chapter.

An integral curve If a vector field f is given, then a velocity vector is defined at
each point using (8.10). Imagine a point that starts at some x0 ∈ Rn at time t = 0
and then moves according to the velocities expressed in f . Where should it travel?
Its trajectory starting from x0 can be expressed as a function τ : [0,∞) → Rn, in
which the domain is a time interval, [0,∞). A trajectory represents an integral
curve (or solution trajectory) of the differential equations with initial condition
τ(0) = x0 if

dτ

dt
(t) = f(τ(t)) (8.14)

for every time t ∈ [0,∞). This is sometimes expressed in integral form as

τ(t) = x0 +

∫ t

0

f(τ(s))ds (8.15)

and is called a solution to the differential equations in the sense of Caratheodory.
Intuitively, the integral curve starts at x0 and flows along the directions indicated
by the velocity vectors. This can be considered as the continuous-space analog of
following the arrows in the discrete case, as depicted in Figure 8.2b.

Example 8.9 (Integral Curve for a Constant Velocity Field) The simplest
case is a constant vector field. Suppose that a constant field x1 = 1 and x2 = 2
is defined on R2. The integral curve from (0, 0) is τ(t) = (t, 2t). It can be easily
seen that (8.14) holds for all t ≥ 0. �

Example 8.10 (Integral Curve for a Linear Velocity Field) Consider a ve-
locity field on R2. Let ẋ1 = −2x1 and ẋ2 = −x2. The function τ(t) = (e−2t, e−t)
represents the integral curve from (1, 1). At t = 0, τ(0) = (1, 1), which is the initial
state. If can be verified that for all t > 0, (8.14) holds. This is a simple example
of a linear velocity field. In general, if each fi is a linear function of the coordinate
variables x1, . . ., xn, then a linear velocity field is obtained. The integral curve is
generally found by determining the eigenvalues of the matrix A when the velocity
field is expressed as ẋ = Ax. See [192] for numerous examples. �

A basic result from differential equations is that a unique integral curve exists to
ẋ = f(x) if f is smooth. An alternative condition is that a unique solution exists

388 S. M. LaValle: Planning Algorithms

if f satisfies a Lipschitz condition. This means that there exists some constant
c ∈ (0,∞) such that

‖f(x)− f(x′)‖ ≤ c‖x− x′‖ (8.16)

for all x, x′ ∈ X, and ‖ · ‖ denotes the Euclidean norm (vector magnitude). The
constant c is often called a Lipschitz constant. Note that if f satisfies the Lipschitz
condition, then it is continuous. Also, if all partial derivatives of f over all of X
can be bounded by a constant, then f is Lipschitz. The expression in (8.16) is
preferred, however, because it is more general (it does not even imply that f is
differentiable everywhere).

Piecewise-smooth vector fields It will be important to allow vector fields
that are smooth only over a finite number of patches. At a switching boundary
between two patches, a discontinuous jump may occur. For example, suppose that
an (n− 1)-dimensional switching boundary, S ⊂ Rn, is defined as

S = {x ∈ Rn| s(x) = 0}, (8.17)

in which s is a function s : Rn → R. If Rn has dimension n and s is not singular,
then S has dimension n− 1. Define

S+ = {x ∈ Rn| s(x) > 0} (8.18)

and
S− = {x ∈ Rn| s(x) < 0}. (8.19)

The definitions are similar to the construction of implicit models using geometric
primitives in Section 3.1.2. Suppose that f(x) is smooth over S+ and S− but
experiences a discontinuous jump at S. Such differential equations model hybrid
systems in control theory [137, 409, 634]. The task there is to design a hybrid
control system. Can we still determine a solution trajectory in this case? Un-
der special conditions, we can obtain what is called a solution to the differential
equations in the sense of Filipov [338, 846].

Let B(x, δ) denote an open ball of radius δ centered at x. Let f(B(x, δ)) denote
the set

f(B(x, δ)) = {x′ ∈ X | ∃x′′ ∈ B(x, δ) for which x′ = f(x′′)}. (8.20)

Let X0 denote any subset of Rn that has measure zero (i.e., µ(X0) = 0). Let
hull(A) denote the convex hull of a set, A, of points in Rn. A path τ : [0, tf]→ Rn

is called a solution in the sense of Filipov if for almost all t ∈ [0, tf],

dτ

dt
(t) ∈

⋂

δ>0

{
⋂

X0

hull(f(B(τ(t), δ) \X0))

}

, (8.21)

in which the intersections are taken over all possible δ > 0 and sets, X0, of measure
zero. The expression (8.21) is actually called a differential inclusion [53] because

8.3. VECTOR FIELDS AND INTEGRAL CURVES 389

Consistent Flow Inward Flow

Outward flow Tangent flow

Figure 8.7: Different kinds of flows around a switching boundary.

a set of choices is possible for ẋ. The “for almost all” requirement means that the
condition can even fail to hold on a set of measure zero in [0, tf]. Intuitively, it
says that almost all of the velocity vectors produced by τ must point “between”
the velocity vectors given by f in the vicinity of τ(x(t)). The “between” part
comes from using the convex hull. Filipov’s sense of solution is an incredible
generalization of the solution concept in the sense of Caratheodory. In that case,
every velocity vector produced by τ must agree with f(x(t)), as given in (8.14).
The condition in (8.21) allows all sorts of sloppiness to appear in the solution,
even permitting f to be discontinuous.

Many bizarre vector fields can yield solutions in the sense of Filipov. The
switching boundary model is relatively simple among those permitted by Filipov’s
condition. Figure 8.7 shows various cases that can occur at the switching boundary
S. For the case of consistent flow, solutions occur as you may intuitively expect.
Filipov’s condition, (8.21), requires that at S the velocity vector of τ points be-
tween vectors before and after crossing S (for example, it can point down, which is
the average of the two directions). The magnitude must also be between the two
magnitudes. For the inward flow case, the integral curve moves along S, assuming
the vectors inside of S point in the same direction (within the convex hull) as
the vectors on either side of the boundary. In applications that involve physical
systems, this may lead to oscillations around S. This can be alleviated by regu-
larization, which thickens the boundary [846] (the subject of sliding-mode control
addresses this issue [303]). The outward flow case can lead to nonuniqueness if

390 S. M. LaValle: Planning Algorithms

the initial state lies in S. However, trajectories that start outside of S will not
cross S, and there will be no such troubles. If the flow is tangent on both sides of
a boundary, then other forms of nonuniqueness may occur. The tangent-flow case
will be avoided in this chapter.

8.3.2 Smooth Manifolds

The manifold definition given in Section 4.1.2 is often called a topological manifold.
A manifold defined in this way does not necessarily have enough axioms to ensure
that calculus operations, such as differentiation and integration, can be performed.
We would like to talk about velocities on the configuration space C or in general for
a continuous state space X. As seen in Chapter 4, the configuration space could
be a manifold such as RP3. Therefore, we need to define some more qualities that
a manifold should possess to enable calculus. This leads to the notion of a smooth
manifold.

M

Tp(M)

Figure 8.8: Intuitively, the tangent space is a linear approximation to the manifold
in a neighborhood around p.

Assume that M is a topological manifold, as defined in Section 4.1.2. For
example, M could represent SO(3), the set of all rotation matrices for R3. A
simpler example that will be helpful to keep in mind is M = S2, which is a sphere
in R3. We want to extend the concepts of Section 8.3.1 from Rn to manifolds.
One of the first definitions will be the tangent space Tp(M) at a point p ∈ M .
As you might imagine intuitively, the tangent vectors are tangent to a surface,
as shown in Figure 8.8. These will indicate possible velocities with which we can
move along the manifold from p. This is more difficult to define for a manifold
than for Rn because it is easy to express any point in Rn using n coordinates, and
all local coordinate frames for the tangent spaces at every p ∈ Rn are perfectly
aligned with each other. For a manifold such as S2, we must define tangent spaces
in a way that is not sensitive to coordinates and handles the fact that the tangent
plane rotates as we move around on S2.

8.3. VECTOR FIELDS AND INTEGRAL CURVES 391

First think carefully about what it means to assign coordinates to a manifold.
Suppose M has dimension n and is embedded in Rm. For M = SO(3), n = 3 and
m = 9. For M = S2, n = 2 and m = 3. The number of coordinates should be n,
the dimension of M ; however, manifolds embedded in Rm are often expressed as a
subset of Rm for which some equality constraints must be obeyed. We would like
to express some part of M in terms of coordinates in Rn.

Coordinates and parameterizations For any open set U ⊆ M and function
φ : U → Rn such that φ is a homeomorphism onto a subset of Rn, the pair (U, φ)
is called a coordinate neighborhood (or chart in some literature). The values φ(p)
for some p ∈ U are called the coordinates of p.

Example 8.11 (Coordinate Neighborhoods on S1) A simple example can be
obtained for the circle M = S1. Suppose M is expressed as the unit circle embed-
ded in R2 (the set of solutions to x2+y2 = 1). Let (x, y) denote a point in R2. Let
U be the subset of S1 for which x > 0. A coordinate function φ : U → (−π/2, π/2),
can be defined as φ(x, y) = tan−1(y/x).

LetW = φ(U) (the range of φ) for some coordinate neighborhood (U, φ). Since
U and W are homeomorphic via φ, the inverse function φ−1 can also be defined.
It turns out that the inverse is the familiar idea of a parameterization. Continuing
Example 8.11, φ−1 yields the mapping θ 7→ (cos θ, sin θ), which is the familiar
parameterization of the circle but restricted to θ ∈ (−π/2, π/2). �

To make differentiation work at a point p ∈M , it will be important to have a
coordinate neighborhood defined over an open subset ofM that contains p. This is
mainly because defining derivatives of a function at a point requires that an open
set exists around the point. If the coordinates appear to have no boundary, then
this will be possible. It is unfortunately not possible to cover all ofM with a single
coordinate neighborhood, unless M = Rn (or M is at least homeomorphic to Rn).
We must therefore define multiple neighborhoods for which the domains cover all of
M . Since every domain is an open set, some of these domains must overlap. What
happens in this case? We may have two or more alternative coordinates for the
same point. Moving from one set of coordinates to another is the familiar operation
used in calculus called a change of coordinates. This will now be formalized.

Suppose that (U, φ) and (V, ψ) are coordinate neighborhoods on some manifold
M , and U ∩ V 6= ∅. Figure 8.9 indicates how to change coordinates from φ to ψ.
This change of coordinates is expressed using function composition as ψ ◦ φ−1 :
Rn → Rn (φ−1 maps from Rn into M , and ψ maps from a subset of M to Rn).

Example 8.12 (Change of Coordinates) Consider changing from Euler an-
gles to quaternions for M = SO(3). Since SO(3) is a 3D manifold, n = 3. This
means that any coordinate neighborhood must map a point in SO(3) to a point in
R3. We can construct a coordinate function φ : SO(3)→ R3 by computing Euler
angles from a given rotation matrix. The functions are actually defined in (3.47),

392 S. M. LaValle: Planning Algorithms

R
n

R
n

U V

Mφ ψ

ψ ◦ φ−1

Figure 8.9: An illustration of a change of coordinates.

(3.48), and (3.49). To make this a coordinate neighborhood, an open subset U of
M must be specified.

We can construct another coordinate function ψ : SO(3)→ R3 by using quater-
nions. This may appear to be a problem because quaternions have four compo-
nents; however, the fourth component can be determined from the other three.
Using (4.24) to (4.26), the a, b, and c coordinates can be determined.

Now suppose that we would like to change from Euler angles to quaternions
in the overlap region U ∩ V , in which V is an open set on which the coordinate
neighborhood for quaternions is defined. The task is to construct a change of coor-
dinates, ψ◦φ−1. We first have to invert φ over U . This means that we instead need
a parameterization of M in terms of Euler angles. This is given by (3.42), which
yields a rotation matrix, φ−1(α, β, γ) ∈ SO(3) for α, β, and γ. Once this matrix is
determined, then ψ can be applied to it to determine the quaternion parameters,
a, b, and c. This means that we have constructed three real-valued functions,
f1, f2, and f3, which yield a = f1(α, β, γ), b = f2(α, β, γ), and c = f3(α, β, γ).
Together, these define ψ ◦ φ−1. �

There are several reasons for performing coordinate changes in various contexts.
Example 8.12 is motivated by a change that frequently occurs in motion planning.
Imagine, for example, that a graphics package displays objects using quaternions,
but a collision-detection algorithm uses Euler angles. It may be necessary in
such cases to frequently change coordinates. From studies of calculus, you may
recall changing coordinates to simplify an integral. In the definition of a smooth
manifold, another motivation arises. Since coordinate neighborhoods are based
on homeomorphisms of open sets, several may be required just to cover all of M .
For example, even if we decide to use quaternions for SO(3), several coordinate
neighborhoods that map to quaternions may be needed. On the intersections of
their domains, a change of coordinates is necessary.

Now we are ready to define a smooth manifold. Changes of coordinates will
appear in the manifold definition, and they must satisfy a smoothness condition.
A smooth structure5 on a (topological) manifold M is a family6 U = {Uα, φα} of

5Alternative names are differentiable structure and C∞ structure.
6In literature in which the coordinate neighborhoods are called charts, this family is called

8.3. VECTOR FIELDS AND INTEGRAL CURVES 393

coordinate neighborhoods such that:

1. The union of all Uα contains M . Thus, it is possible to obtain coordinates
in Rn for any point in M .

2. For any (U, φ) and (V, ψ) in U , if U ∩ V 6= ∅, then the changes of coordi-
nates, ψ ◦ φ−1 and φ ◦ ψ−1, are smooth functions on U ∩ V . The changes
of coordinates must produce diffeomorphisms on the intersections. In this
case, the coordinate neighborhoods are called compatible.

3. The family U is maximal in the sense that if some (U, φ) is compatible with
every coordinate neighborhood in U , then (U, φ) must be included in U .

A well-known theorem (see [133], p. 54) states that if a set of compatible neigh-
borhoods covers all of M , then a unique smooth structure exists that contains
them.7 This means that a differential structure can often be specified by a small
number of neighborhoods, and the remaining ones are implied.

A manifold, as defined in Section 4.1.2, together with a smooth structure is
called a smooth manifold.8

Example 8.13 (Rn as a Smooth Manifold) We should expect that the con-
cepts presented so far apply to Rn, which is the most straightforward family of
manifolds. A single coordinate neighborhood Rn → Rn can be used, which is the
identity map. For all integers n ∈ {1, 2, 3} and n > 4, this is the only possible
smooth structure on Rn. It is truly amazing that for R4, there are uncountably
many incompatible smooth structures, called exotic R4 [291]. There is no need to
worry, however; just use the one given by the identity map for R4. �

Example 8.14 (Sn as a Smooth Manifold) One way to define Sn as a smooth
manifold uses 2(n+1) coordinate neighborhoods and results in simple expressions.
Let Sn be defined as

Sn = {(x1, . . . , xn+1) ∈ Rn+1| x21 + · · ·+ x2n+1 = 1}. (8.22)

The domain of each coordinate neighborhood is defined as follows. For each i from
1 to n+ 1, there are two neighborhoods:

U+
i = {(x1, . . . , xn+1) ∈ Rn+1| xi > 0} (8.23)

and
U−
i = {(x1, . . . , xn+1) ∈ Rn+1| xi < 0}. (8.24)

an atlas.
7This is under the assumption that M is Hausdorff and has a countable basis of open sets,

which applies to the manifolds considered here.
8Alternative names are differentiable manifold and C∞ manifold.

394 S. M. LaValle: Planning Algorithms

Each neighborhood is an open set that covers half of Sn but misses the great circle
at xi = 0. The coordinate functions can be defined by projection down to the
(n− 1)-dimensional hyperplane that contains the great circle. For each i,

φ+
i (x1, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn) (8.25)

over U+
i . Each φ

−
i is defined the same way, but over U−

i . Each coordinate function
is a homeomorphism from an open subset of Sn to an open subset of Rn, as
required. On the subsets in which the neighborhoods overlap, the changes of
coordinate functions are smooth. For example, consider changing from φ+

i to φ−
j

for some i 6= j. The change of coordinates is a function φ−
j ◦ (φ+

i)
−1. The inverse

of φ+
i is expressed as

(φ+
i)

−1(x1, . . . , xi−1, xi+1, . . . , xn) =

(x1, . . . , xi−1, 1−
√

1− x21 − · · · − x2i−1 − x2i+1 − · · · − x2n, xi+1, . . . , xn+1).
(8.26)

When composed with φ−
j , the jth coordinate is dropped. This yields

φ−
k ◦ (φ+

i)
−1(x1, . . . , xi−1, xi+1, . . . , xn) =

(x1, . . . , xi−1, 1−
√

1− x21 − · · · − x2i−1 − x2i+1 − · · · − x2n,
xi+1, . . . , xj−1, xj+1, . . . , xn),

(8.27)

which is a smooth function over the domain U+
i . Try visualizing the changes of

coordinates for the circle S1 and sphere S2.
The smooth structure can alternatively be defined using only two coordinate

neighborhoods by using stereographic projection. For S2, one coordinate function
maps almost every point x ∈ S2 to R2 by drawing a ray from the north pole to
x and mapping to the point in the x3 = 0 plane that is crossed by the ray. The
only excluded point is the north pole itself. A similar mapping can be constructed
from the south pole. �

Example 8.15 (RPn as a Smooth Manifold) This example is particularly im-
portant because RP3 is the same manifold as SO(3), as established in Section 4.2.2.
Recall from Section 4.1.2 that RPn is defined as the set of all lines in Rn+1 that
pass through the origin. This means that for any α ∈ R such that α 6= 0, and
any x ∈ Rn+1, both x and αx are identified. In projective space, scale does not
matter.

A smooth structure can be specified by only n + 1 coordinate neighborhoods.
For each i from 1 to n+ 1, let

φi(x1, . . . , xn+1) = (x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi), (8.28)

over the open set of all points in Rn+1 for which xi 6= 0. The inverse coordinate
function is given by

φ−1
i (z1, . . . , zn) = (z1, . . . , zi−1, 1, zi, . . . , zn+1). (8.29)

8.3. VECTOR FIELDS AND INTEGRAL CURVES 395

It is not hard to verify that these simple transformations are smooth on overlapping
neighborhoods.

A smooth structure over SO(3) can be derived as a special case because SO(3)
is topologically equivalent to RP3. Suppose elements of SO(3) are expressed using
unit quaternions. Each (a, b, c, d) is considered as a point on S3. There are four
coordinate neighborhoods. For example, one of them is

φb(a, b, c, d) = (a/b, c/b, d/b), (8.30)

which is defined over the subset of R4 for which b 6= 0. The inverse of φb(a, b, c, d)
needs to be defined so that a point on SO(3) maps to a point in R4 that has unit
magnitude. �

Tangent spaces on manifolds Now consider defining tangent spaces on man-
ifolds. Intuitively, the tangent space Tp(M) at a point p on an n-dimensional
manifold M is an n-dimensional hyperplane in Rm that best approximates M
around p, when the hyperplane origin is translated to p. This is depicted in Figure
8.8. The notion of a tangent was actually used in Section 7.4.1 to describe local
motions for motion planning of closed kinematic chains (see Figure 7.22).

To define a tangent space on a manifold, we first consider a more complicated
definition of the tangent space at a point in Rn, in comparison to what was given
in Section 8.3.1. Suppose thatM = R2, and consider taking directional derivatives
of a smooth function f : R2 → R at a point p ∈ R2. For some (unnormalized)
direction vector, v ∈ R2, the directional derivative of f at p can be defined as

∇v(f)
∣
∣
∣
p
= v1

∂f

∂x1

∣
∣
∣
p
+ v2

∂f

∂x2

∣
∣
∣
p
. (8.31)

The directional derivative used here does not normalize the direction vector (con-
trary to basic calculus). Hence, ∇v(f) = ∇(f) · v, in which “·” denotes the inner
product or dot product, and ∇(f) denotes the gradient of f . The set of all possible
direction vectors that can be used in this construction forms a two-dimensional
vector space that happens to be the tangent space Tp(R

2), as defined previously.
This can be generalized to n dimensions to obtain

∇v(f)
∣
∣
∣
p
=

n∑

i=1

vi
∂f

∂xi

∣
∣
∣
p
, (8.32)

for which all possible direction vectors represent the tangent space Tp(R
n). The set

of all directions can be interpreted for our purposes as the set of possible velocity
vectors.

Now consider taking (unnormalized) directional derivatives of a smooth func-
tion, f :M → R, on a manifold. For an n-dimensional manifold, the tangent space
Tp(M) at a point p ∈M can be considered once again as the set of all unnormal-
ized directions. These directions must intuitively be tangent to the manifold, as

396 S. M. LaValle: Planning Algorithms

depicted in Figure 8.8. There exists a clever way to define them without even
referring to specific coordinate neighborhoods. This leads to a definition of Tp(M)
that is intrinsic to the manifold.

At this point, you may accept that Tp(M) is an n-dimensional vector space
that is affixed to M at p and oriented as shown in Figure 8.8. For the sake of
completeness, however, a technical definition of Tp(M) from differential geometry
will be given; more details appear in [133, 872]. The construction is based on
characterizing the set of all possible directional derivative operators. Let C∞(p)
denote the set of all smooth functions that have domains that include p. Now
make the following identification. Any two functions f, g ∈ C∞(p) are defined
to be equivalent if there exists an open set U ⊂ M such that for any p ∈ U ,
f(p) = g(p). There is no need to distinguish equivalent functions because their
derivatives must be the same at p. Let C̃∞(p) denote C∞ under this identification.
A directional derivative operator at p can be considered as a function that maps
from C̃∞(p) to R for some direction. In the case of Rn, the operator appears as
∇v for each direction v. Think about the set of all directional derivative operators
that can be made. Each one must assign a real value to every function in C̃∞(p),
and it must obey two axioms from calculus regarding directional derivatives. Let
∇v denote a directional derivative operator at some p ∈ M (be careful, however,
because here v is not explicitly represented since there are no coordinates). The
directional derivative operator must satisfy two axioms:

1. Linearity: For any α, β ∈ R and f, g ∈ C̃∞(p),

∇v(αf + βg) = α∇vf + β∇vg. (8.33)

2. Leibniz Rule (or Derivation): For any f, g ∈ C̃∞(p),

∇v(fg) = ∇vf g(p) + f(p)∇vg. (8.34)

You may recall these axioms from standard vector calculus as properties of the
directional derivative. It can be shown that the set of all possible operators that
satisfy these axioms forms an n-dimensional vector space [133]. This vector space
is called the tangent space, Tp(M), at p. This completes the definition of the
tangent space without referring to coordinates.

It is helpful, however, to have an explicit way to express vectors in Tp(M). A
basis for the tangent space can be obtained by using coordinate neighborhoods.
An important theorem from differential geometry states that if F : M → N is
a diffeomorphism onto an open set U ⊂ N , then the tangent space, Tp(M), is
isomorphic to TF (p)(N). This means that by using a parameterization (the inverse
of a coordinate neighborhood), there is a bijection between velocity vectors in
Tp(M) and velocity vectors in TF (p)(N). Small perturbations in the parameters
cause motions in the tangent directions on the manifold N . Imagine, for example,
making a small perturbation to three quaternion parameters that are used to
represent SO(3). If the perturbation is small enough, motions that are tangent to

8.3. VECTOR FIELDS AND INTEGRAL CURVES 397

SO(3) occur. In other words, the perturbed matrices will lie very close to SO(3)
(they will not lie in SO(3) because SO(3) is defined by nonlinear constraints on
R9, as discussed in Section 4.1.2).

Example 8.16 (The Tangent Space for S2) The discussion can be made more
concrete by developing the tangent space for S2, which is embedded in R3 as the set
of all points (x, y, z) ∈ R3 for which x2 + y2 + z2 = 1. A coordinate neighborhood
can be defined that covers most of S2 by using standard spherical coordinates. Let
f denote the coordinate function, which maps from (x, y, z) to angles (θ, φ). The
domain of f is the open set defined by θ ∈ (0, 2π) and φ ∈ (0, π) (this excludes
the poles). The standard formulas are θ = atan2(y, x) and φ = cos−1 z. The
inverse, f−1, yields a parameterization, which is x = cos θ sinφ, y = sin θ sinφ,
and z = cosφ.

Now consider different ways to express the tangent space at some point p ∈ S2,
other than the poles (a change of coordinates is needed to cover these). Using
the coordinates (θ, φ), velocities can be defined as vectors in R2. We can imagine
moving in the plane defined by θ and φ, provided that the limits θ ∈ (0, 2π) and
φ ∈ (0, π) are respected.

We can also use the parameterization to derive basis vectors for the tangent
space as vectors in R3. Since the tangent space has only two dimensions, we must
obtain a plane that is “tangent” to the sphere at p. These can be found by taking
derivatives. Let f−1 be denoted as x(θ, φ), y(θ, φ), and z(θ, φ). Two basis vectors
for the tangent plane at p are

[
dx(θ, φ)

dθ

dy(θ, φ)

dθ

dz(θ, φ)

dθ

]

(8.35)

and [
dx(θ, φ)

dφ

dy(θ, φ)

dφ

dz(θ, φ)

dφ

]

. (8.36)

Computing these derivatives and normalizing yields the vectors [− sin θ cos θ 0]
and [cos θ cosφ sin θ cosφ −sinφ]. These can be imagined as the result of making
small perturbations of θ and φ at p. The vector space obtained by taking all linear
combinations of these vectors is the tangent space at R2. Note that the direction
of the basis vectors depends on p ∈ S2, as expected.

The tangent vectors can now be imagined as lying in a plane that is tangent
to the surface, as shown in Figure 8.8. The normal vector to a surface specified
as g(x, y, z) = 0 is ∇g, which yields [x y z] after normalizing. This could
alternatively be obtained by taking the cross product of the two vectors above and
using the parameterization f−1 to express it in terms of x, y, and z. For a point
p = (x0, y0, z0), the plane equation is

x0(x− x0) + y0(y − y0) + z0(z − z0) = 0. (8.37)

�

398 S. M. LaValle: Planning Algorithms

Vector fields and velocity fields on manifolds The notation for a tangent
space on a manifold looks the same as for Rn. This enables the vector field defini-
tion and notation to extend naturally from Rn to smooth manifolds. A vector field
on a manifold M assigns a vector in Tp(M) for every p ∈ M . It can once again
be imagined as a needle diagram, but now the needle diagram is spread over the
manifold, rather than lying in Rn.

The velocity field interpretation of a vector field can also be extended to smooth
manifolds. This means that ẋ = f(x) now defines a set of n differential equations
over M and is usually expressed using a coordinate neighborhood of the smooth
structure. If f is a smooth vector field, then a solution trajectory, τ : [0,∞)→M ,
can be defined from any x0 ∈M . Solution trajectories in the sense of Filipov can
also be defined, for the case of piecewise-smooth vector fields.

8.4 Complete Methods for Continuous Spaces

A complete feedback planning algorithm must compute a feedback solution if one
exists; otherwise, it must report failure. Section 8.4.1 parallels Section 8.2 by
defining feedback plans and navigation functions for the case of a continuous state
space. Section 8.4.2 indicates how to define a feasible feedback plan from a cell
complex that was computed using cell decomposition techniques. Section 8.4.3
presents a combinatorial approach to computing an optimal navigation function
and corresponding feedback plan in R2. Sections 8.4.2 and 8.4.3 allow the feedback
plan to be a discontinuous vector field. In many applications, especially those in
which dynamics dominate, some conditions need to be enforced on the naviga-
tion functions and their resulting vector fields. Section 8.4.4 therefore considers
constraints on the allowable vector fields and navigation functions. This coverage
includes navigation functions in the sense of Rimon-Koditschek [829], from which
the term navigation function was introduced.

8.4.1 Feedback Motion Planning Definitions

Using the concepts from Section 8.3, we are now ready to define feedback mo-
tion planning over configuration spaces or other continuous state spaces. Recall
Formulation 4.1, which defined the basic motion planning problem in terms of con-
figuration space. The differences in the current setting are that there is no initial
condition, and the requirement of a solution path is replaced by a solution vector
field. The formulation here can be considered as a continuous-time adaptation to
Formulation 8.1.

Formulation 8.2 (Feedback Motion Planning)

1. A state space, X, which is a smooth manifold. The state space will most
often be Cfree, as defined in Section 4.3.1.9

9Note that X already excludes the obstacle region. For some problems in Part IV, the state

8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 399

2. For each state, x ∈ X, an action space, U(x) = Tx(X). The zero velocity,
0 ∈ Tx(X), is designated as the termination action, uT . Using this model,
the robot is capable of selecting its velocity at any state.10

3. An unbounded time interval, T = [0,∞).

4. A state transition (differential) equation,

ẋ = u, (8.38)

which is expressed using a coordinate neighborhood and yields the velocity, ẋ,
directly assigned by the action u. The velocity produced by uT is 0 ∈ Tx(X)
(which means “stop”).

5. A goal set, XG ⊂ X.

A feedback plan, π, for Formulation 8.2 is defined as a function π, which pro-
duces an action u ∈ U(x) for each x ∈ X. A feedback plan can equivalently be
considered as a vector field on X because each u ∈ U(x) specifies a velocity vector
(uT specifies zero velocity). Since the initial state is not fixed, it becomes slightly
more complicated to define what it means for a plan to be a solution to the prob-
lem. Let Xr ⊂ X denote the set of all states from which XG is reachable. More
precisely, a state xI belongs to Xr if and only if a continuous path τ : [0, 1] → X
exists for which τ(0) = xI and τ(1) = xG for some xG ∈ XG. This means that a
solution path exists from xI for the “open-loop” motion planning problem, which
was considered in Chapter 4.

8.4.1.1 Solution concepts

A feedback plan, π, is called a solution to the problem in Formulation 8.2 if from
all xI ∈ Xr, the integral curves of π (considered as a vector field) arrive in XG,
at which point the termination action is applied. Some words of caution must be
given about what it means to “arrive” in XG. Notions of stability from control
theory [523, 846] are useful for distinguishing different cases; see Section 15.1. If
XG is a small ball centered on xG, then the ball will be reached after finite time
using the inward vector field shown in Figure 8.5b. Now suppose that XG is a
single point, xG. The inward vector field produces velocities that bring the state
closer and closer to the origin, but when is it actually reached? It turns out that
convergence to the origin in this case is only asymptotic; the origin is reached in the
limit as the time approaches infinity. Such stability often arises in control theory
from smooth vector fields. We may allow such asymptotic convergence to the goal
(if the vector field is smooth and the goal is a point, then this is unavoidable).

space will be X = C, which includes the obstacle region.
10This allows discontinuous changes in velocity, which is unrealistic in many applications.

Additional constraints, such as imposing acceleration bounds, will also be discussed. For a
complete treatment of differential constraints, see Part IV.

400 S. M. LaValle: Planning Algorithms

If any integral curves result in only asymptotic convergence to the goal, then a
solution plan is called an asymptotic solution plan. Note that in general it may
be impossible to require that π is a smooth (or even continuous) nonzero vector
field. For example, due to the hairy ball theorem [834], it is known that no such
vector field exists for Sn for any even integer n. Therefore, the strongest possible
requirement is that π is smooth except on a set of measure zero; see Section 8.4.4.
We may also allow solutions π for which almost all integral curves arrive in XG.

However, it will be assumed by default in this chapter that a solution plan
converges to xG in finite time. For example, if the inward field is normalized to
produce unit speed everywhere except the origin, then the origin will be reached in
finite time. A constraint can be placed on the set of allowable vector fields without
affecting the existence of a solution plan. As in the basic motion planning problem,
the speed along the path is not important. Let a normalized vector field be any
vector field for which either ‖f(x)‖ = 1 or f(x) = 0, for all x ∈ X. This means that
all velocity vectors are either unit vectors or the zero vector, and the speed is no
longer a factor. A normalized vector field provides either a direction of motion or
no motion. Note that any vector field f can be converted into a normalized vector
field by dividing the velocity vector f(x) by its magnitude (unless the magnitude
is zero), for each x ∈ X.

In many cases, unit speed does not necessarily imply a constant speed in some
true physical sense. For example, if the robot is a floating rigid body, there are
many ways to parameterize position and orientation. The speed of the body is
sensitive to this parameterization. Therefore, other constraints may be preferable
instead of ‖f(x)‖ = 1; however, it is important to keep in mind that the constraint
is imposed so that f(x) provides a direction at x. The particular magnitude is
assumed unimportant.

So far, consideration has been given only to a feasible feedback motion planning
problem. An optimal feedback motion planning problem can be defined by intro-
ducing a cost functional. Let x̃t denote the function x̃t : [0, t]→ X, which is called
the state trajectory (or state history). This is a continuous-time version of the
state history, which was defined previously for problems that have discrete stages.
Similarly, let ũt denote the action trajectory (or action history), ũt : [0, t] → U .
Let L denote a cost functional, which may be applied from any xI to yield

L(x̃tF , ũtF) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF)), (8.39)

in which tF is the time at which the termination action is applied. The term
l(x(t), u(t)) can alternatively be expressed as l(x(t), ẋ(t)) by using the state tran-
sition equation (8.38). A normalized vector field that optimizes (8.39) from all
initial states that can reach the goal is considered as an optimal feedback motion
plan.

Note that the state trajectory can be determined from an action history and
initial state. In fact, we could have used action trajectories to define a solution
path to the motion planning problem of Chapter 4. Instead, a solution was defined

8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 401

there as a path τ : [0, 1] → Cfree to avoid having to introduce velocity fields on
smooth manifolds. That was the only place in the book in which the action
space seemed to disappear, and now you can see that it was only hiding to avoid
inessential notation.

8.4.1.2 Navigation functions

As in Section 8.2.2, potential functions can be used to represent feedback plans,
assuming that a local operator is developed that works for continuous state spaces.
In the discrete case, the local operator selects an action that reduces the potential
value. In the continuous case, the local operator must convert the potential func-
tion into a vector field. In other words, a velocity vector must be defined at each
state. By default, it will be assumed here that the vector fields derived from the
navigation function are not necessarily normalized.

Assume that π(x) = uT is defined for all x ∈ XG, regardless of the potential
function. Suppose that a potential function φ : X → R has been defined for which
the gradient

∇φ =

[
∂φ

∂x1

∂φ

∂x2
· · · ∂φ

∂xn

]

(8.40)

exists over all of X \ XG. The corresponding feedback plan can then be defined
as π(x) = −∇φ|x. This defines the local operator, which means that the velocity
is taken in the direction of the steepest descent of φ. The idea of using potential
functions in this way was proposed for robotics by Khatib [525, 526] and can be
considered as a form of gradient descent, which is a general optimization technique.

It is also possible to work with potential functions for which the gradient does
not exist everywhere. In these cases, a continuous-space version of (8.4) can be
defined for a small, fixed ∆t as

u∗ = argmin
u∈U(x)

{

φ(x′)
}

, (8.41)

in which x′ is the state obtained by integrating velocity u from x for time ∆t. One
problem is that ∆t should be chosen to use the smallest possible neighborhood
around φ. It is best to allow only potential functions for which ∆t can be made
arbitrarily small at every x without affecting the decision in (8.41). To be precise,
this means that an infinite sequence of u∗ values can be determined from a sequence
of ∆t values that converges to 0. A potential function should then be chosen to
ensure after some point in the sequence, u∗, exists and the same u∗ can be chosen
to satisfy (8.41) as ∆t approaches 0. A special case of this is if the gradient of φ
exists; the infinite sequence in this case converges to the negative gradient.

A potential function, φ, is called a navigation function if the vector field that
is derived from it is a solution plan. The optimal cost-to-go serves as an optimal
navigation function. If multiple vector fields can be derived from the same φ, then
every possible derived vector field must yield a solution feedback plan. If designed
appropriately, the potential function can be viewed as a kind of “ski slope” that

402 S. M. LaValle: Planning Algorithms

guides the state to XG. If there are extra local minima that cause the state to
become trapped, then XG will not be reached. To be a navigation function, such
local minima outside of XG are not allowed. Furthermore, there may be additional
requirements to ensure that the derived vector field satisfies additional constraints,
such as bounded acceleration.

Example 8.17 (Quadratic Potential Function) As a simple example, sup-
pose X = R2, there are no obstacles, and qgoal = (0, 0). A quadratic function
φ(x, y) = 1

2
x21 +

1
2
x22 serves as a good potential function to guide the state to the

goal. The feedback motion strategy is defined as f = −∇φ = [−x1 − x2], which
is the inward vector field shown in Figure 8.5b.

If the goal is instead at some (x′1, x
′
2) ∈ R2, then a potential function that

guides the state to the goal is φ(x1, x2) = (x1 − x′1)2 + (x2 − x′2)2. �

Suppose the state space represents a configuration space that contains point
obstacles. The previous function φ can be considered as an attractive potential
because the configuration is attracted to the goal. One can also construct a repul-
sive potential that repels the configuration from the obstacles to avoid collision.
Let φa denote the attractive component and φr denote a repulsive potential that is
summed over all obstacle points. A potential function of the form φ = φa+φr can
be defined to combine both effects. The robot should be guided to the goal while
avoiding obstacles. The problem is that it is difficult in general to ensure that the
potential function will not contain multiple local minima. The configuration could
become trapped at a local minimum that is not in the goal region. This was an
issue with the planner from Section 5.4.3.

8.4.2 Vector Fields Over Cell Complexes

This section describes how to construct a piecewise-smooth vector field over a cell
complex. Only normalized vector fields will be considered. It is assumed that each
cell in the complex has a simple shape over which it is easy to define a patch of the
vector field. In many cases, the cell decomposition techniques that were introduced
in Chapter 6 for motion planning can be applied to construct a feedback plan.

Suppose that an n-dimensional state space X has been decomposed into a cell
complex, such as a simplicial complex or singular complex, as defined in Section
6.3.1. Assume that the goal set is a single point, xG. Defining a feedback plan π
over X requires placing a vector field on X for which all integral curves lead to
xG (if xG is reachable). This is accomplished by defining a smooth vector field for
each n-cell. Each (n − 1)-cell is a switching boundary, as considered in Section
8.3.1. This leads directly to solution trajectories in the sense of Filipov. If π is
allowed to be discontinuous, then it is actually not important to specify values on
any of the cells of dimension n− 1 or less.

A hierarchical approach is taken to the construction of π:

8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 403

1. Define a discrete planning problem over the n-cells. The cell that contains
xG is designated as the goal, and a discrete navigation function is defined
over the cells.

2. Define a vector field over each n-cell. The field should cause all states in
the cell to flow into the next cell as prescribed by the discrete navigation
function.

One additional consideration that is important in applications is to try to reduce
the effect of the discontinuity across the boundary as much as possible. It may
be possible to eliminate the discontinuity, or even construct a smooth transition
between n-cells. This issue will not be considered here, but it is nevertheless quite
important [235, 643].

The approach will now be formalized. Suppose that a cell complex has been
defined over a continuous state space, X. Let X̌ denote the set of n-cells, which
can be interpreted as a finite state space. A discrete planning problem will be
defined over X̌. To avoid confusion with the original continuous problem, the
prefix super will be applied to the discrete planning components. Each superstate
x̌ ∈ X̌ corresponds to an n-cell. From each x̌, a superaction, ǔ ∈ Ǔ(x̌) exists for
each neighboring n-cell (to be neighboring, the two cells must share an (n − 1)-
dimensional boundary). Let the goal superstate x̌g be the n-cell that contains xG.
Assume that the cost functional is defined for the discrete problem so that every
action (other than uT) produces a unit cost. Now the concepts from Section 8.2
can be applied to the discrete problem. A discrete navigation function, φ̌ : X̌ → R,
can be computed using Dijkstra’s algorithm (or another algorithm, particularly if
optimality is not important). Using the discrete local operator from Section 8.2.2,
this results in a discrete feedback plan, π̌ : X̌ → Ǔ .

Based on the discrete feedback plan, there are two kinds of n-cells. The first
is the goal cell, x̌g, for which a vector field needs to be defined so that all integral
curves lead to Xg in finite time.11 A termination action can be applied when xG
is actually reached. The remaining n-cells are of the second kind. For each cell
x̌, the boundary that is shared with the cell reached by applying ǔ = π̌(x̌) is
called the exit face. The vector field over the n-cell x̌ must be defined so that all
integral curves lead to the exit face. When the exit face is reached, a transition will
occur into the next n-cell. If the n-cells are convex, then defining this transition
is straightforward (unless there are additional requirements on the field, such as
smoothness at the boundary). For more complicated cells, one possibility is to
define a vector field that retracts all points onto a single curve in the cell.

A simple example of the approach is illustrated for the case of X = Cfree ⊂ R2,
in which the boundary of Cfree is polygonal. This motion planning problem was
considered in Section 6.2, but without feedback. Suppose that a triangulation of
X has been computed, as described in Section 6.3.2. An example was shown in

11This is possible in finite time, even if Xg is a single point, because the vector field is not
continuous. Otherwise, only asymptotic convergence may be possible.

404 S. M. LaValle: Planning Algorithms

xG

Figure 8.10: A triangulation is used to define a vector field over X. All solution
trajectories lead to the goal.

Repulsive vertex

Exit edge

Figure 8.11: A vector field can be defined for each triangle by repelling from a
vertex that opposes the exit edge.

Figure 6.16. A discrete feedback plan is shown for a particular goal state in Figure
8.10. Each 2-cell (triangle) is labeled with an arrow that points to the next cell.

For the cell that contains xG, a normalized version of the inward vector field
shown in Figure 8.5b can be formed by dividing each nonzero vector by its magni-
tude. It can then be translated to move its origin to xG. For each remaining 2-cell,
a vector field must be constructed that flows into the appropriate neighboring cell.
Figure 8.11 illustrates a simple way to achieve this. An outward vector field can
be made by negating the field shown in Figure 8.5b to obtain f = [x y]. This field
can be normalized and translated to move the origin to the triangle vertex that
is not incident to the exit edge. This is called the repulsive vertex in Figure 8.11.
This generates a vector field that pushes all points in the triangle to the ext edge.
If the fields are constructed in this way for each triangle, then the global vector
field represents a solution feedback plan for the problem. Integral curves (in the
sense of Filipov) lead to xG in finite time.

8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 405

V (x)

way points
x

(a) (b)

Figure 8.12: (a) A point, x, in a simple polygon. (b) The visibility polygon, V (x).

8.4.3 Optimal Navigation Functions

The vector fields developed in the last section yield feasible trajectories, but not
necessarily optimal trajectories unless the initial and goal states are in the same
convex n-cell. If X = R2, then it is possible to make a continuous version of
Dijkstra’s algorithm [708]. This results in an exact cost-to-go function over X
based on the Euclidean shortest path to a goal, xG. The cost-to-go function serves
as the navigation function, from which the feedback plan is defined by using a
local steepest descent.

Suppose that X is bounded by a simple polygon (no holes). Assume that only
normalized vector fields are allowed. The cost functional is assumed to be the
Euclidean distance traveled along a state trajectory. Recall from Section 6.2.4
that for optimal path planning, X = cl(Cfree) must be used. Assume that Cfree
and cl(Cfree) have the same connectivity.12 This technically interferes with the
definition of tangent spaces from Section 8.3 because each point of X must be
contained in an open neighborhood. Nevertheless, we allow vectors along the
boundary, provided that they “point” in a direction tangent to the boundary. This
can be formally defined by considering boundary regions as separate manifolds.

Consider computing the optimal cost-to-go to a point xG for a problem such
as that shown in Figure 8.12a. For any x ∈ X, let the visibility polygon V (x) refer
to the set of all points visible from x, which is illustrated in Figure 8.12b. A point
x′ lies in V (x) if and only if the line segment from x′ to x is contained in X. This
implies that the cost-to-go from x′ to x is just the Euclidean distance from x′ to x.
The optimal navigation function can therefore be immediately defined over V (xG)
as

φ(x) = ‖x− xG‖. (8.42)

Level sets at regularly spaced values of this navigation function are shown in Figure

12This precludes a choice of Cfree for which adding the boundary point enables a homotopically
distinct path to be made through the boundary point. An example of this is when two square
obstacles in R2 contact each other only at a pair of corners.

406 S. M. LaValle: Planning Algorithms

(a) (b) (c) (d)

Figure 8.13: The optimal navigation function is computed in four iterations. In
each iteration, the navigation function is extended from a new way point.

8.13a.
How do we compute the optimal cost-to-go values for the points in X \V (xG)?

For the segments on the boundary of V (x) for any x ∈ X, some edges are contained
in the boundary ofX, and others cross the interior ofX. For the example in Figure
8.12b, there are two edges that cross the interior. For each segment that crosses
the interior, let the closer of the two vertices to x be referred to as a way point.
Two way points are indicated in Figure 8.12b. The way points of V (xG) are places
through which some optimal paths must cross. Let W (x) for any x ∈ X denote
the set of way points of V (x).

A straightforward algorithm proceeds as follows. Let Zi denote the set of points
over which φ has been defined, in the ith iteration of the algorithm. In the first
iteration, Z1 = V (xG), which is the case shown in Figure 8.13a. The way points
of V (xG) are placed in a queue, Q. In each following iteration, a way point x is
removed from Q. Let Zi denote the domain over which φ is defined so far. The
domain of φ is extended to include all new points visible from x. These new points
are V (x)\Zi. This yields Zi+1 = Zi∪V (x), the extended domain of φ. The values
of φ(x′) for x′ ∈ Zi+1 \ Zi are defined by

φ(x′) = φ(x) + ‖x′ − x‖, (8.43)

in which x is the way point that was removed from Q (the optimal cost-to-go value
of x was already computed). The way points of V (x) that do not lie in Zi+1 are
added to Q. Each of these will yield new portions of X that have not yet been
seen. The algorithm terminates when Q is empty, which implies that Zk = X for
some k. The execution of the algorithm is illustrated in Figure 8.13.

The visibility polygon can be computed in time O(n lg n) if X is described by
n edges. This is accomplished by performing a radial sweep, which is an adapta-
tion of the method applied in Section 6.2.2 for vertical cell decomposition. The
difference for computing V (x) is that a ray anchored at x is swept radially (like
a radar sweep). The segments that intersect the ray are sorted by their distance
from x. For the algorithm that constructs the navigation function, no more than

8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 407

O(n) visibility polygons are computed because each one is computed from a unique
way point. This implies O(n2 lg n) running time for the whole algorithm. Unfor-
tunately, there is no extension to higher dimensions; recall from Section 7.7.1 that
computing shortest paths in a 3D environment is NP-hard [172].

The algorithm given here is easy to describe, but it is not the most general,
nor the most efficient. If X has holes, then the level set curves can collide by
arriving from different directions when traveling around an obstacle. The queue,
Q, described above can be sorted as in Dijkstra’s algorithm, and special data
structures are needed to identify when critical events occur as the cost-to-go is
propagated outward. It was shown in [443] that this can be done in time O(n lg n)
and space O(n lg n).

8.4.4 A Step Toward Considering Dynamics

If dynamics is an important factor, then the discontinuous vector fields considered
so far are undesirable. Due to momentum, a mechanical system cannot instanta-
neously change its velocity (see Section 13.3). In this context, vector fields should
be required to satisfy additional constraints, such as smoothness or bounded ac-
celeration. This represents only a step toward considering dynamics. Full consid-
eration is given in Part IV, in which precise equations of motions of dynamical
systems are expressed as part of the model. The approach in this section is to
make vector fields that are “dynamics-ready” rather than carefully considering
particular equations of motion.

A framework has been developed by defining a navigation function that satisfies
some desired constraints over a simple region, such as a disc [829]. A set of
transformations is then designed that are proved to preserve the constraints while
adapting the navigation function to more complicated environments. For a given
problem, a complete algorithm for constructing navigation functions is obtained
by applying the appropriate series of transformations from some starting shape.

This section mostly focuses on constraints that are maintained under this
transformation-based framework. Sections 8.4.2 and 8.4.3 worked with normalized
vector fields. Under this constraint, virtually any vector field could be defined, pro-
vided that the resulting algorithm constructs fields for which integral curves exist
in the sense of Filipov. In this section, we remove the constraint that vector fields
must be normalized, and then consider other constraints. The velocity given by
the vector field is now assumed to represent the true speed that must be executed
when the vector field is applied as a feedback plan.

One implication of adding constraints to the vector field is that optimal so-
lutions may not satisfy them. For example, the optimal navigation functions of
Section 8.4.3 lead to discontinuous vector fields, which violate the constraints to
be considered in this section. The required constraints restrict the set of allowable
vector fields. Optimality must therefore be defined over the restricted set of vector
fields. In some cases, an optimal solution may not even exist (see the discussion
of open sets and optimality in Section 9.1.1). Therefore, this section focuses only

408 S. M. LaValle: Planning Algorithms

on feasible solutions.

8.4.4.1 An acceleration-based control model

To motivate the introduction of constraints, consider a control model proposed
in [235, 830]. The action space, defined as U(x) = Tx(X) in Formulation 8.2,
produces a velocity for each action u ∈ U(x). Therefore, ẋ = u. Suppose instead
that each action produces an acceleration. This can be expressed as ẍ = u, in
which ẍ is an acceleration vector,

ẍ =
dẋ

dt
=

[
d2x1
dt2

d2x2
dt2

· · · d2xn
dt2

]

. (8.44)

The velocity ẋ is obtained by integration over time. The state trajectory, x̃ : T →
X, is obtained by integrating (8.44) twice.

Suppose that a vector field is given in the form ẋ = f(x). How can a feedback
plan be derived? Consider how the velocity vectors specified by f(x) change as x
varies. Assume that f(x) is smooth (or at least C1), and let

∇ẋf(x) = [∇ẋf1(x) ∇ẋf2(x) · · · ∇ẋfn(x)] , (8.45)

in which ∇ẋ denotes the unnormalized directional derivative in the direction of ẋ:
∇fi · ẋ. Suppose that an initial state xI is given, and that the initial velocity is
ẋ = f(xI). The feedback plan can now be defined as

u = ∇ẋf(x). (8.46)

This is equivalent to the previous definition of a feedback plan from Section 8.4.1;
the only difference is that now two integrations are needed (which requires both
x and ẋ = f(xI) as initial conditions) and a differentiability condition must be
satisfied for the vector field.

Now the relationship between ẋ and f(x) will be redefined. Suppose that ẋ
is the true measured velocity during execution and that f(x) is the prescribed
velocity, obtained from the vector field f . During execution, it is assumed that ẋ
and f(x) are not necessarily the same, but the task is to keep them as close to each
other as possible. A discrepancy between them may occur due to dynamics that
have not been modeled. For example, if the field f(x) requests that the velocity
must suddenly change, a mobile robot may not be able to make a sharp turn due
to its momentum.

Using the new interpretation, the difference, f(x)− ẋ, can be considered as a
discrepancy or error. Suppose that a vector field f has been computed. A feedback
plan becomes the acceleration-based control model

u = K(f(x)− ẋ) +∇ẋf(x), (8.47)

in which K is a scalar gain constant. A larger value of K will make the control
system more aggressively attempt to reduce the error. If K is too large, then
acceleration or energy constraints may be violated. Note that if ẋ = f(x), then
u = ∇ẋf(x), which becomes equivalent to the earlier formulation.

8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 409

8.4.4.2 Velocity and acceleration constraints

Considering the acceleration-based control model, some constraints can be placed
on the set of allowable vector fields. A bounded-velocity model means that ‖ẋ‖ <
vmax, for some positive real value vmax called the maximum speed. This could
indicate, for example, that the robot has a maximum speed for safety reasons. It is
also possible to bound individual components of the velocity vector. For example,
there may be separate bounds for the maximum angular and linear velocities of
an aircraft. Intuitively, velocity bounds imply that the functions fi, which define
the vector field, cannot take on large values.

A bounded-acceleration model means that ‖ẍ‖ ≤ amax, in which amax is a pos-
itive real value called the maximum acceleration. Intuitively, acceleration bounds
imply that the velocity cannot change too quickly while traveling along an integral
curve. Using the control model ẍ = u, this implies that ‖u‖ ≤ amax. It also im-
poses the constraint that vector fields must satisfy ‖∇ẋf(x)‖ ≤ amax for all ẋ and
x ∈ X. The condition ‖u‖ ≤ amax is very important in practice because higher
accelerations are generally more expensive (bigger motors are required, more fuel
is consumed, etc.). The action u may correspond directly to the torques that are
applied to motors. In this case, each motor usually has an upper limit.

As has already been seen, setting an upper bound on velocity generally does
not affect the existence of a solution. Imagine that a robot can always decide to
travel more slowly. If there is also an upper bound on acceleration, then the robot
can attempt to travel more slowly to satisfy the bound. Imagine slowing down in
a car to make a sharp turn. If you would like to go faster, then it may be more
difficult to satisfy acceleration constraints. Nevertheless, in most situations, it is
preferable to go faster.

A discontinuous vector field fails to satisfy any acceleration bound because it
essentially requires infinite acceleration at the discontinuity to cause a discontinu-
ous jump in the velocity vector. If the vector field satisfies the Lipschitz condition
(8.16) for some constant C, then it satisfies the acceleration bound if C < amax.

In Chapter 13, we will precisely specify U(x) at every x ∈ X, which is more
general than imposing simple velocity and acceleration bounds. This enables vir-
tually any physical system to be modeled.

8.4.4.3 Navigation function in the sense of Rimon-Koditschek

Now consider constructing a navigation function from which a vector field can
be derived that satisfies constraints motivated by the acceleration-based control
model, (8.47). As usual, the definition of a navigation function begins with the
consideration of a potential function, φ : X → R. What properties does a potential
function need to have so that it may be considered as a navigation function as
defined in Section 8.4.1 and also yield a vector field that satisfies an acceleration
bound? Sufficient conditions will be given that imply that a potential function
will be a navigation function that satisfies the bound.

To give the conditions, it will first be important to characterize extrema of

410 S. M. LaValle: Planning Algorithms

multivariate functions. Recall from basic calculus that a function f : R → R has
a critical point when the first derivative is zero. At such points, the sign of the
second derivative indicates whether the critical point is a minimum or maximum.
These ideas can be generalized to higher dimensions. A critical point of φ is one
for which ∇φ = 0. The Hessian of φ is defined as the matrix

H(φ) =




















∂2φ

∂2x21

∂2φ

∂x1∂x2
· · · ∂2φ

∂x1∂xn

∂2φ

∂x2∂x1

∂2φ

∂x22
· · · ∂2φ

∂x2∂xn

...
...

...

∂2φ

∂xn∂x1

∂2φ

∂xn∂x2
· · · ∂2φ

∂x2n




















. (8.48)

At each critical point, the Hessian gives some information about the extremum.
If the rank of H(φ) at x is n, then the Hessian indicates the kind of extremum. If
(8.48) is positive definite,13 then the φ achieves a local minimum at x. If (8.48) is
negative definite,14 then the φ achieves a local maximum at x. In all other cases,
x is a saddle point. If the rank of H(φ) at x is less than n, then the Hessian is
degenerate. In this case the Hessian cannot classify the type of extremum. An
example of this occurs when x lies in a plateau (there is no direction in which
φ increases or decreases. Such behavior is obviously bad for a potential function
because the local operator would not be able to select a direction.

Suppose that the navigation function is required to be smooth, to ensure the
existence of a gradient at every point. This enables gradient descent to be per-
formed. If X is not contractible, then it turns out there must exist some critical
points other than xG at which ∇φ(x) = 0. The critical points can even be used
to infer the topology of X, which is the basic idea in the subject of Morse theory
[701, 234]. Unfortunately, this implies that there does not exist a solution naviga-
tion function for such spaces because the definition in Section 8.4.1 required that
the integral curve from any state that can reach xG must reach it using the vector
field derived from the navigation function. If the initial state is a critical point,
the integral curve is constant (the state remains at the critical point). Therefore,
under the smoothness constraint, the definition of a navigation function should be
modified to allow critical points at a small number of places (only on a set that
has measure zero). It is furthermore required that the set of states from which
the integral curves arrive at each critical point (i.e., the domain of attraction of

13Positive definite for an n × n matrix A means that for all x ∈ Rn, xTAx > 0. If A is
symmetric (which applies to H(φ)), then this is equivalent to A having all positive eigenvalues.

14Negative definite means that for all x ∈ Rn, xTAx < 0. If A is symmetric, then this is
equivalent to A having all negative eigenvalues.

8.4. COMPLETE METHODS FOR CONTINUOUS SPACES 411

each critical point) has measure zero. From all possible initial states, except from
a set of measure zero, the integral curves must reach xG, if it is reachable. This is
ensured in the following definition.

A function φ : X → R is called a navigation function in the sense of Rimon-
Koditschek if [829]:

1. It is smooth (or at least C2).

2. Among all values on the connected component of Cfree that contains xG,
there is only one local minimum, which is at xG.

15

3. It is maximal and constant on ∂Cfree, the boundary of Cfree.
4. It is a Morse function [701], which means that at each critical point x (i.e.,
∇φ|x = 0), the Hessian of φ is not degenerate.16 Such functions are known
to exist on any smooth manifold.

If φ is smooth in the C∞ sense, then by Sard’s Theorem [234] the set of critical
points has measure zero.

Methods for constructing navigation functions are outlined in [829] for a gen-
eral family of problems in which Cfree has a semi-algebraic description. The basic
idea is to start with simple shapes over which a navigation function can be easily
defined. One example of this is a spherical subset of Rn, which contains spheri-
cal obstacles. A set of distorting transformations is then developed to adapt the
navigation functions to other shapes while ensuring that the four properties above
are maintained. One such transformation extends a ball into any visibility region
(in the sense defined in Section 8.4.3). This is achieved by smoothly stretching
out the ball into the shape of the visibility region. (Such regions are sometimes
called star-shaped.) The transformations given in [829] can be combined to define
navigation functions for a large family of configuration spaces. The main problem
is that the configuration space obstacles and the connectivity of Cfree are repre-
sented only implicitly, which makes it difficult to correctly apply the method to
complicated high-dimensional problems. One of the advantages of the approach
is that proving convergence to the goal is simplified. In many cases, Lyapunov
stability analysis can be performed (see Section 15.1.1).

8.4.4.4 Harmonic potential functions

Another important family of navigation functions is constructed from harmonic
functions [236, 239, 240, 481, 529]. A function φ is called a harmonic function if
it satisfies the differential equation

∇2φ =
n∑

i=1

∂2φ

∂x2i
= 0. (8.49)

15Some authors do not include the global minimum as a local minimum. In this case, one
would say that there are no local minima.

16Technically, to be Morse, the values of the function must also be distinct at each critical
point.

412 S. M. LaValle: Planning Algorithms

There are many possible solutions to the equation, depending on the conditions
along the boundary of the domain over which φ is defined. A simple disc-based
example is given in [235] for which an analytical solution exists. Complicated
navigation functions are generally defined by imposing constraints on φ along the
boundary of Cfree. A Dirichlet boundary condition means that the boundary must
be held to a constant value. Using this condition, a harmonic navigation function
can be developed that guides the state into a goal region from anywhere in a simply
connected state space. If there are interior obstacles, then a Neumann boundary
condition forces the velocity vectors to be tangent to the obstacle boundary. By
solving (8.49) under a combination of both boundary conditions, a harmonic nav-
igation function can be constructed that avoids obstacles by moving parallel to
their boundaries and eventually landing in the goal. It has been shown under
general conditions that navigation functions can be produced [240, 239]; however,
the main problems are that the boundary of Cfree is usually not constructed ex-
plicitly (recall why this was avoided in Chapter 5) and that a numerical solution
to (8.49) is expensive to compute. This can be achieved, for example, by using
Gauss-Seidel iterations (as indicated in [240]), which are related to value iteration
(see [96] for the distinction). A sampling-based approach to constructing naviga-
tion functions via harmonic functions is presented in [124]. Value iteration will be
used to produce approximate, optimal navigation functions in Section 8.5.2.

8.5 Sampling-Based Methods for Continuous Spaces

The methods in Section 8.4 can be considered as the feedback-case analogs to
the combinatorial methods of Chapter 6. Although such methods provide elegant
solutions to the problem, the issue arises once again that they are either limited to
lower dimensional problems or problems that exhibit some special structure. This
motivates the introduction of sampling-based methods. This section presents the
feedback-case analog to Chapter 5.

8.5.1 Computing a Composition of Funnels

Mason introduced the concept of a funnel as a metaphor for motions that converge
to the same small region of the state space, regardless of the initial position [679].
As grains of sand in a funnel, they follow the slope of the funnel until they reach
the opening at the bottom. A navigation function can be imagined as a funnel
that guides the state into the goal. For example, the cost-to-go function depicted
in Figure 8.13d can be considered as a complicated funnel that sends each piece
of sand along an optimal path to the goal.

Rather than designing a single funnel, consider decomposing the state space
into a collection of simple, overlapping regions. Over each region, a funnel can be
designed that leads the state into another funnel; see Figure 8.14. As an example,
the approach in [162] places a Lyapunov function (such functions are covered in
Section 15.1.2) over each funnel to ensure convergence to the next funnel. A

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 413

1 2 3

1

3

2

Figure 8.14: A navigation function and corresponding vector field can be designed
as a composition of funnels.

X

X̂

Figure 8.15: An approximate cover is shown. Every point of X̃ is contained in at
least one neighborhood, and X̃ is a subset of X.

feedback plan can be constructed by composing several funnels. Starting from
some initial state in X, a sequence of funnels is visited until the goal is reached.
Each funnel essentially solves the subgoal of reaching the next funnel. Eventually,
a funnel is reached that contains the goal, and a navigation function on this funnel
causes the goal to be reached. In the context of sensing uncertainty, for which the
funnel metaphor was developed, the composition of funnels becomes the preimage
planning framework [659], which is covered in Section 12.5.1. In this section,
however, it is assumed that the current state is always known.

8.5.1.1 An approximate cover

Figure 8.15 illustrates the notion of an approximate cover, which will be used to
represent the funnel domains. Let X̃ denote a subset of a state space X. A cover
of X̃ is a collection O of sets for which

414 S. M. LaValle: Planning Algorithms

1. O ⊆ X for each O ∈ O.

2. X̃ is a subset of the union of all sets in the cover:

X̃ ⊆
⋃

O∈O
O. (8.50)

Let each O ∈ O be called a neighborhood. The notion of a cover was actually
used in Section 8.3.2 to define a smooth manifold using a cover of coordinate
neighborhoods.

In general, a cover allows the following:

1. Any number of neighborhoods may overlap (have nonempty intersection).

2. Any neighborhood may contain points that lie outside of X̃.

A cell decomposition, which was introduced in Section 6.3.1, is a special kind
of cover for which the neighborhoods form a partition of X̃, and they must fit
together nicely (recall Figure 6.15).

So far, no constraints have been placed on the neighborhoods. They should
be chosen in practice to greatly simplify the design of a navigation function over
each one. For the original motion planning problem, cell decompositions were
designed to make the determination of a collision-free path trivial in each cell.
The same idea applies here, except that we now want to construct a feedback
plan. Therefore, it is usually assumed that the cells have a simple shape.

A cover is called approximate if X̃ is a strict subset of X. Ideally, we would
like to develop an exact cover, which implies that X̃ = X and each neighborhood
has some nice property, such as being convex. Developing such covers is possible
in practice for state spaces that are either low-dimensional or exhibit some special
structure. This was observed for the cell decomposition methods of Chapter 6.

Consider constructing an approximate cover for X. The goal should be to cover
as much of X as possible. This means that µ(X \ X̃) should be made as small as
possible, in which µ denotes Lebesgue measure, as defined in Section 5.1.3. It is
also desirable to ensure that X̃ preserves the connectivity of X. In other words,
if a path between two points exists in X, then it should also exist in X̃.

8.5.1.2 Defining a feedback plan over a cover

The ideas from Section 8.4.2 can be adapted to define a feedback plan over X̃
using a cover. Let X̌ denote a discrete state space in which each superstate
is a neighborhood. Most of the components of the associated discrete planning
problems are the same as in Section 8.4.2. The only difference is in the definition of
superactions because neighborhoods can overlap in a cover. For each neighborhood
O ∈ O, a superaction exists for each other neighborhood, O′ ∈ O such that
O ∩O′ 6= ∅ (usually, their interiors overlap to yield int(O) ∩ int(O′) 6= ∅).

Note that in the case of a cell decomposition, this produces no superactions
because it is a partition. To follow the metaphor of composing funnels, the domains

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 415

O′O

Figure 8.16: A transition from O to O′ is caused by a vector field on O for which
all integral curves lead into O ∩O′.

of some funnels should overlap, as shown in Figure 8.14. A transition from one
neighborhood, O, to another, O′, is obtained by defining a vector field on O that
sends all states from O \O′ into O ∩ O′; see Figure 8.16. Once O′ is reached, the
vector field of O is no longer followed; instead, the vector field of O′ is used. Using
the vector field of O′, a transition may be applied to reach another neighborhood.
Note that the jump from the vector field of O to that of O′ may cause the feedback
plan to be a discontinuous vector field on X̃. If the cover is designed so that O∩O′

is large (if they intersect), then gradual transitions may be possible by blending
the vector fields from O and O′.

Once the discrete problem has been defined, a discrete feedback plan can be
computed over X̌, as defined in Section 8.2. This is converted into a feedback
plan over X by defining a vector field on each neighborhood that causes the ap-
propriate transitions. Each x̌ ∈ X̌ can be interpreted both as a superstate and
a neighborhood. For each x̌, the discrete feedback plan produces a superaction
ǔ = π(x̌), which yields a new neighborhood x̌′. The vector field over x̌ = O is
then designed to send all states into x̌′ = O′.

If desired, a navigation function φ overX can even be derived from a navigation
function, φ̌, over X̌. Suppose that φ̌ is constructed so that every φ̌(x̌) is distinct
for every x̌ ∈ X̌. Any navigation function can be easily transformed to satisfy
this constraint (because X̌ is finite). Let φO denote a navigation function over
some O ∈ O. Assume that XG is a point, xG (extensions can be made to more
general cases). For every neighborhood O ∈ O such that xG 6∈ O, φO is defined
so that performing gradient descent leads into the overlapping neighborhood for
which φ̌(x̌) is smallest. If O contains xG, the navigation function φO simply guides
the state to xG.

The navigation functions over each O ∈ O can be easily pieced together to
yield a navigation function over all of X. In places where multiple neighborhoods
overlap, φ is defined to be the navigation function associated with the neighbor-
hood for which φ̌(x̌) is smallest. This can be achieved by adding a large constant
to each φO. Let c denote a constant for which φO(x) < c over all O ∈ O and
x ∈ O (it is assumed that each φO is bounded). Suppose that φ̌ assumes only

416 S. M. LaValle: Planning Algorithms

INCREMENTAL COVER CONSTRUCTION

1. Initialize O = ∅ and i = 1.

2. Let x = α(i), and let d be the distance returned by the collision detection
algorithm applied at x.

3. If d > 0 (which implies that x ∈ Cfree) and x 6∈ O for all O ∈ O, then
insert a new neighborhood, On, into O. The neighborhood size and shape
are determined from x and d.

4. If the termination condition is not satisfied, then let i := i + 1, and go to
Step 1.

5. Remove any neighborhoods from O that are contained entirely inside of
another neighborhood.

Figure 8.17: The cover is incrementally extended by adding new neighborhoods
that are guaranteed to be collision-free.

integer values. Let O(x) denote the set of all O ∈ O such that x ∈ O. The
navigation function over X is defined as

φ(x) = min
O∈O(x)

{

φO(x) + c φ̌(O)
}

. (8.51)

8.5.1.3 A sampling-based approach

There are numerous alternative ways to construct a cover. To illustrate the ideas,
an approach called the sampling-based neighborhood graph is presented here [983].
Suppose that X = Cfree, which is a subset of some configuration space. As intro-
duced in Section 5.4, let α be a dense, infinite sequence of samples in X. Assume
that a collision detection algorithm is available that returns the distance, (5.28),
between the robot and obstacles in the world. Such algorithms were described in
Section 5.3.

An incremental algorithm is given in Figure 8.17. Initially, O is empty. In each
iteration, if α(i) ∈ Cfree and it is not already contained in some neighborhood, then
a new neighborhood is added to O. The two main concerns are 1) how to define
a new neighborhood, O, such that O ⊂ Cfree, and 2) when to terminate. At any

given time, the cover is approximate. The union of all neighborhoods is X̃, which
is a strict subset of X. In comparison to Figure 8.15, the cover is a special case in
which the neighborhoods do not extend beyond X̃.

Defining new neighborhoods For defining new neighborhoods, it is important
to keep them simple because during execution, the neighborhoods that contain the

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 417

state xmust be determined quickly. Suppose that all neighborhoods are open balls:

B(x, r) = {x′ ∈ X | ρ(x, x′) < r}, (8.52)

in which ρ is the metric on C. There are efficient algorithms for determining
whether x ∈ O for some O ∈ O, assuming all of the neighborhoods are balls [700].
In practice, methods based on Kd-trees yield good performance [47, 52] (recall
Section 5.5.2). A new ball, B(x, r), can be constructed in Step 3 for x = α(i),
but what radius can be assigned? For a point robot that translates in R2 or R3,
the Hausdorff distance d between the robot and obstacles in W is precisely the
distance to Cobs from α(i). This implies that we can set r = d, and B(x, r) is
guaranteed to be collision-free.

In a general configuration space, it is possible to find a value of r such that
B(x, r) ⊆ Cfree, but in general r < d. This issue arose in Section 5.3.4 for checking
path segments. The transformations of Sections 3.2 and 3.3 become important
in the determination of r. For illustrative purposes, suppose that C = R2 × S1,
which corresponds to a rigid robot, A, that can translate and rotate in W = R2.
Each point a ∈ A is transformed using (3.35). Now imagine starting with some
configuration q = (x, y, θ) and perturbing each coordinate by some ∆x, ∆y, and
∆θ. What is the maximum distance that a point on A could travel? Translation
affects all points on A the same way, but rotation affects points differently. Recall
Figure 5.12 from Section 5.3.4. Let ar ∈ A denote the point that is furthest from
the origin (0, 0). Let r denote the distance from ar to the origin. If the rotation is
perturbed by some small amount, ∆θ, then the displacement of any a ∈ A is no
more than r∆θ. If all three configuration parameters are perturbed, then

(∆x)2 + (∆y)2 + (r∆θ)2 < d2 (8.53)

is the constraint that must be satisfied to ensure that the resulting ball is contained
in Cfree. This is actually the equation of a solid ellipsoid, which becomes a ball if
r = 1. This can be made into a ball by reparameterizing SE(2) so that ∆θ has
the same affect as ∆x and ∆y. A transformation h : θ 7→ rθ maps θ into a new
domain Z = [0, 2πr). In this new space, the equation of the ball is

(∆x)2 + (∆y)2 + (∆z)2 < d2, (8.54)

in which ∆z represents the change in z ∈ Z. The reparameterized version of (3.35)
is

T =





cos(θ/r) − sin(θ/r) xt
sin(θ/r) cos(θ/r) yt

0 0 1



 . (8.55)

For a 3D rigid body, similar reparameterizations can be made to Euler angles or
quaternions to generate six-dimensional balls. Extensions can be made to chains
of bodies [983]. One of the main difficulties, however, is that the balls are not
the largest possible. In higher dimensions the problem becomes worse because
numerous balls are needed, and the radii constructed as described above tend to

418 S. M. LaValle: Planning Algorithms

be much smaller than what is possible. The number of balls can be reduced by also
allowing axis-aligned cylinders, but it still remains difficult to construct a cover
over a large fraction of Cfree in more than six dimensions.

Termination The sampling-based planning algorithms in Chapter 5 were de-
signed to terminate upon finding a solution path. In the current setting, ter-
mination is complicated by the fact that we are interested in solutions from all
initial configurations. Since α is dense, the volume of uncovered points in Cfree
tends to zero. After some finite number of iterations, it would be nice to measure
the quality of the approximation and then terminate when the desired quality is
achieved. This was also possible with the visibility sampling-based roadmap in
Section 5.6.2. Using random samples, an estimate of the fraction of Cfree can be
obtained by recording the percentage of failures in obtaining a sample in Cfree
that is outside of the cover. For example, if a new neighborhood is created only
once in 1000 iterations, then it can be estimated that 99.9 percent of Cfree is cov-
ered. High-probability bounds can also be determined. Termination conditions are
given in [983] that ensure with probability greater than Pc that at least a fraction
α ∈ (0, 1) of Cfree has been covered. The constants Pc and α are given as parame-
ters to the algorithm, and it will terminate when the condition has been satisfied
using rigorous statistical tests. If deterministic sampling is used, then termination
can be made to occur based on the dispersion, which indicates the largest ball
in Cfree that does not contain the center of another neighborhood. One problem
with volume-based criteria, such as those suggested here, is that there is no way
to ensure that the cover preserves the connectivity of Cfree. If two portions of Cfree
are connected by a narrow passage, the cover may miss a neighborhood that has
very small volume yet is needed to connect the two portions.

Example 8.18 (2D Example of Computed Funnels) Figure 8.18 shows a 2D
example that was computed using random samples and the algorithm in Figure
8.17. Note that once a cover is computed, it can be used to rapidly compute differ-
ent navigation functions and vector fields for various goals. This example is mainly
for illustrative purposes. For the case of a polygonal environment, constructing
covers based on convex polygons would be more efficient. �

8.5.2 Dynamic Programming with Interpolation

This section concludes Part II by solving the motion planning problem with value
iteration, which was introduced in Section 2.3. It has already been applied to
obtain discrete feedback plans in Section 8.2. It will now be adapted to continuous
spaces by allowing interpolation first over a continuous state space and then by
additionally allowing interpolation over a continuous action space. This yields a
numerical approach to computing optimal navigation functions and feedback plans
for motion planning. The focus will remain on backward value iteration; however,

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 419

(a) (b)

Figure 8.18: (a) A approximate cover for a 2D configuration space. (b) Level sets
of a navigation function
.

the interpolation concepts may also be applied in the forward direction. The
approach here views optimal feedback motion planning as a discrete-time optimal
control problem [28, 84, 151, 583].

8.5.2.1 Using interpolation for continuous state spaces

Consider a problem formulation that is identical to Formulation 8.1 except that
X is allowed to be continuous. Assume that X is bounded, and assume for now
that the action space, U(x), it finite for all x ∈ X. Backward value iteration can
be applied. The dynamic programming arguments and derivation are identical to
those in Section 2.3. The resulting recurrence is identical to (2.11) and is repeated
here for convenience:

G∗
k(xk) = min

uk∈U(xk)

{

l(xk, uk) +G∗
k+1(xk+1)

}

. (8.56)

The only difficulty is that G∗
k(xk) cannot be stored for every xk ∈ X because X

is continuous. There are two general approaches. One is to approximate G∗
k using

a parametric family of surfaces, such as polynomials or nonlinear basis functions
derived from neural networks [97]. The other is to store G∗

k only over a finite
set of sample points and use interpolation to obtain its value at all other points
[582, 583].

Suppose that a finite set S ⊂ X of samples is used to represent cost-to-go
functions overX. The evaluation of (8.56) using interpolation is depicted in Figure
8.19. In general, the samples should be chosen to reduce the dispersion (defined

420 S. M. LaValle: Planning Algorithms

xk

Stage k + 1

Stage k

Possible next states

Figure 8.19: Even though xk is a sample point, the next state, xk+1, may land
between sample points. For each uk ∈ U(xk), interpolation may be needed for the
resulting next state, xk+1 = f(xk, uk).

in Section 5.2.3) as much as possible. This prevents attempts to approximate
the cost-to-go function on large areas that contain no sample points. The rate
of convergence ultimately depends on the dispersion [92] (in combination with
Lipschitz conditions on the state transition equation and the cost functional). To
simplify notation and some other issues, assume that S is a grid of regularly spaced
points in Rn.

First, consider the case in which X = [0, 1] ⊂ R. Let S = {s0, s1, . . . , sr},
in which si = i/r. For example, if r = 3, then S = {0, 1/3, 2/3, 1}. Note that
this always yields points on the boundary of X, which ensures that for any point
in (0, 1) there are samples both above and below it. Let i be the largest integer
such that si < x. This implies that si+1 > x. The samples si and si+1 are called
interpolation neighbors of x.

The value of G∗
k+1 in (8.56) at any x ∈ [0, 1] can be obtained via linear inter-

polation as

G∗
k+1(x) ≈ αG∗

k+1(si) + (1− α)G∗
k+1(si+1), (8.57)

in which the coefficient α ∈ [0, 1] is computed as

α = 1− x− si
r

. (8.58)

If x = si, then α = 1, and (8.57) reduces to G∗
k+1(si), as expected. If x = si+1, then

α = 0, and (8.57) reduces to G∗
k+1(si+1). At all points in between, (8.57) blends

the cost-to-go values at si and si+1 using α to provide the appropriate weights.

The interpolation idea can be naturally extended to multiple dimensions. Let
X be a bounded subset of Rn. Let S represent an n-dimensional grid of points
in Rn. Each sample in S is denoted by s(i1, i2, . . . , in). For some x ∈ X, there
are 2n interpolation neighbors that “surround” it. These are the corners of an
n-dimensional cube that contains x. Let x = (x1, . . . , xn). Let ij denote the
largest integer for which the jth coordinate of s(i1, i2, . . . , in) is less than xj. The
2n samples are all those for which either ij or ij + 1 appears in the expression
s(·, ·, . . . , ·), for each j ∈ {1, . . . , n}. This requires that samples exist in S for all
of these cases. Note that X may be a complicated subset of Rn, provided that for
any x ∈ X, all of the required 2n interpolation neighbors are in S. Using the 2n

interpolation neighbors, the value of G∗
k+1 in (8.56) on any x ∈ X can be obtained

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 421

n = 2 n = 3

Figure 8.20: Barycentric subdivision can be used to partition each cube into sim-
plexes, which allows interpolation to be performed in O(n lg n) time, instead of
O(2n).

via multi-linear interpolation. In the case of n = 2, this is expressed as

G∗
k+1(x) ≈ α1α2 G

∗
k+1(s(i1, i2))+

α1(1− α2) G
∗
k+1(s(i1, i2 + 1))+

(1− α1)α2 G
∗
k+1(s(i1 + 1, i2))+

(1− α1)(1− α2) G
∗
k+1(s(i1 + 1, i2 + 1)),

(8.59)

in which α1 and α2 are defined similarly to α in (8.58) but are based on distances
along the x1 and x2 directions, respectively. The expressions for multi-linear in-
terpolation in higher dimensions are similar but are more cumbersome to express.
Higher order interpolation, such a quadratic interpolation may alternatively be
used [583].

Unfortunately, the number of interpolation neighbors grows exponentially with
the dimension, n. Instead of using all 2n interpolation neighbors, one improvement
is to decompose the cube defined by the 2n samples into simplexes. Each simplex
has only n + 1 samples as its vertices. Only the vertices of the simplex that con-
tains x are declared to be the interpolation neighbors of x; this reduces the cost
of evaluating G∗

k+1(x) to O(n) time. The problem, however, is that determining
the simplex that contains x may be a challenging point-location problem (a com-
mon problem in computational geometry [264]). If barycentric subdivision is used
to decompose the cube using the midpoints of all faces, then the point-location
problem can be solved in O(n lg n) time [263, 607, 721], which is an improve-
ment over the O(2n) scheme described above. Examples of this decomposition are
shown for two and three dimensions in Figure 8.20. This is sometimes called the
Coxeter-Freudenthal-Kuhn triangulation. Even though n is not too large due to

422 S. M. LaValle: Planning Algorithms

Cobs

∂Cfree

xg

(a) (b) (c)

Figure 8.21: (a) An interpolation region, R(S), is shown for a set of sample points,
S. (b) The interpolation region that arises due to obstacles. (c) The interpolation
region for goal points must not be empty.

practical performance considerations (typically, n ≤ 6), substantial savings occur
in implementations, even for n = 3.

It will be convenient to refer directly to the set of all points in X for which
all required interpolation neighbors exist. For any finite set S ⊆ X of sample
points, let the interpolation region R(S) be the set of all x ∈ X \ S for which
G∗(x) can be computed by interpolation. This means that x ∈ R(S) if and only
if all interpolation neighbors of x lie in S. Figure 8.21a shows an example. Note
that some sample points may not contribute any points to R. If a grid of samples
is used to approximate G∗, then the volume of X \ R(S) approaches zero as the
sampling resolution increases.

Continuous action spaces Now suppose that U(x) is continuous, in addition
to X. Assume that U(x) is both a closed and bounded subset of Rn. Once again,
the dynamic programming recurrence, (8.56), remains the same. The trouble now
is that the min represents an optimization problem over an uncountably infinite
number of choices. One possibility is to employ nonlinear optimization techniques
to select the optimal u ∈ U(x). The effectiveness of this depends heavily on U(x),
X, and the cost functional.

Another approach is to evaluate (8.56) over a finite set of samples drawn from
U(x). Again, it is best to choose samples that reduce the dispersion as much as
possible. In some contexts, it may be possible to eliminate some actions from
consideration by carefully utilizing the properties of the cost-to-go function and
its representation via interpolation.

8.5.2.2 The connection to feedback motion planning

The tools have now been provided to solve motion planning problems using value
iteration. The configuration space is a continuous state space; let X = Cfree. The
action space is also continuous, U(x) = Tx(X). For motion planning problems,
0 ∈ Tx(X) is only obtained only when uT is applied. Therefore, it does not need
to be represented separately. To compute optimal cost-to-go functions for motion
planning, the main concerns are as follows:

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 423

1. The action space must be bounded.

2. A discrete-time approximation must be made to derive a state transition
equation that works over stages.

3. The cost functional must be discretized.

4. The obstacle region, Cobs, must be taken into account.

5. At least some interpolation region must yield G∗(x) = 0, which represents
the goal region.

We now discuss each of these.

Bounding the action space Recall that using normalized vector fields does
not alter the existence of solutions. This is convenient because U(x) needs to be
bounded to approximate it with a finite set of samples. It is useful to restrict the
action set to obtain

U(x) = {u ∈ Rn | ‖u‖ ≤ 1}. (8.60)

To improve performance, it is sometimes possible to use only those u for which
‖u‖ = 1 or u = 0; however, numerical instability problems may arise. A finite
sample set for U(x) should have low dispersion and always include u = 0.

Obtaining a state transition equation Value iterations occur over discrete
stages; however, the integral curves of feedback plans occur over continuous time.
Therefore, the time interval T needs to be sampled. Let ∆t denote a small positive
constant that represents a fixed interval of time. Let the stage index k refer to time
(k − 1)∆t. Now consider representing a velocity field ẋ over Rn. By definition,

dx

dt
= lim

∆t→0

x(t+∆t)− x(t)
∆t

. (8.61)

In Section 8.3.1, a velocity field was defined by assigning some u ∈ U(x) to each
x ∈ X. If the velocity vector u is integrated from x(t) over a small ∆t, then a new
state, x(t+∆t), results. If u remains constant, then

x(t+∆t) = x(t) + ∆t u, (8.62)

which is called an Euler approximation. If a feedback plan is executed, then u is
determined from x via u = π(x(t)). In general, this means that u could vary as
the state is integrated forward. In this case, (8.62) is only approximate,

x(t+∆t) ≈ x(t) + ∆t π(x(t)). (8.63)

The expression in (8.62) can be considered as a state transition equation that
works over stages. Let xk+1 = x(t +∆t) and xk = x(t). The transitions can now
be expressed as

xk+1 = f(xk, u) = xk +∆t u. (8.64)

424 S. M. LaValle: Planning Algorithms

The quality of the approximation improves as ∆t decreases. Better approxi-
mations can be made by using more sample points along time. The most widely
known approximations are the Runge-Kutta family. For optimal motion planning,
it turns out that the direction vector almost always remains constant along the in-
tegral curve. For example, in Figure 8.13d, observe that piecewise-linear paths are
obtained by performing gradient descent of the optimal navigation function. The
direction vector is constant over most of the resulting integral curve (it changes
only as obstacles are contacted). Therefore, approximation problems tend not
to arise in motion planning problems. When approximating dynamical systems,
such as those presented in Chapter 13, then better approximations are needed; see
Section 14.3.2. One important concern is that ∆t is chosen in a way that is com-
patible with the grid resolution. If ∆t is so small that the actions do not change
the state enough to yield new interpolation neighbors, then the interpolated cost-
to-go values will remain constant. This implies that ∆t must be chosen to ensure
that x(t+∆t) has a different set of interpolation neighbors than x(t).

An interesting connection can be made to the approximate motion planning
problem that was developed in Section 7.7. Formulation 7.4 corresponds precisely
to the approximation defined here, except that ǫ was used instead of ∆t because
velocities were not yet considered (also, the initial condition was specified because
there was no feedback). Recall the different possible action spaces shown in Figure
7.41. As stated in Section 7.7, if the Manhattan or independent-joint models are
used, then the configurations remain on a grid of points. This enables discrete value
iterations to be performed. A discrete feedback plan and navigation function, as
considered in Section 8.2.3, can even be computed. If the Euclidean motion model
is used, which is more natural, then the transitions allow a continuum of possible
configurations. This case can finally be handled by using interpolation over the
configuration space, as described in this section.

Approximating the cost functional A discrete cost functional must be de-
rived from the continuous cost functional, (8.39). The final term is just assigned
as lF (xF) = lF (x(tf)). The cost at each stage is

ld(xk, uk) =

∫ ∆t

0

l(x(t), u(t))dt, (8.65)

and ld(xk, uk) is used in the place of l(xk, uk) in (8.56). For many problems, the
integral does not need to be computed repeatedly. To obtain Euclidean shortest
paths, ld(xk, uk) = ‖uk‖ can be safely assigned for all xk ∈ X and uk ∈ U(xk). A
reasonable approximation to (8.65) if ∆t is small is l(x(t), u(t))∆t.

Handling obstacles A simple way to handle obstacles is to determine for each
x ∈ S whether x ∈ Cobs. This can be computed and stored in an array before the
value iterations are performed. For rigid robots, this can be efficiently computed
using fast Fourier transforms [513]. For each x ∈ Cobs, G∗(x) = ∞. No value
iterations are performed on these states; their values must remain at infinity.

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 425

During the evaluation of (8.59) (or a higher dimensional version), different actions
are attempted. For each action, it is required that all of the interpolation neighbors
of xk+1 lie in Cfree. If one of them lies in Cobs, then that action produces infinite
cost. This has the effect of automatically reducing the interpolation region, R(S),
to all cubes whose vertices all lie in Cfree, as shown in Figure 8.21b. All samples in
Cobs are assumed to be deleted from S in the remainder of this section; however, the
full grid is still used for interpolation so that infinite values represent the obstacle
region.

Note that as expressed so far, it is possible that points in Cobs may lie in R(S)
because collision detection is performed only on the samples. In practice, either
the grid resolution must be made fine enough to minimize the chance of this error
occurring or distance information from a collision detection algorithm must be
used to infer that a sufficiently large ball around each sample is collision free. If
an interpolation region cannot be assured to lie in Cfree, then the resolution may
have to be increased, at least locally.

Handling the goal region Recall that backward value iterations start with
the final cost-to-go function and iterate backward. Initially, the final cost-to-go is
assigned as infinity at all states except those in the goal. To properly initialize the
final cost-to-go function, there must exist some subset of X over which the zero
value can be obtained by interpolation. Let G = S ∩XG. The requirement is that
the interpolation region R(G) must be nonempty. If this is not satisfied, then the
grid resolution needs to be increased or the goal set needs to be enlarged. If Xg is
a single point, then it needs to be enlarged, regardless of the resolution (unless an
alternative way to interpolate near a goal point is developed). In the interpolation
region shown in Figure 8.21c, all states in the vicinity of xG yield an interpolated
cost-to-go value of zero. If such a region did not exist, then all costs would remain
at infinity during the evaluation of (8.59) from any state. Note that ∆t must be
chosen large enough to ensure that new samples can reach G.

Using G∗ as a navigation function After the cost-to-go values stabilize, the
resulting cost-to-go function, G∗ can be used as a navigation function. Even though
G∗ is defined only over S ⊂ X, the value of the navigation function can be obtained
using interpolation over any point in R(S). The optimal action is selected as the
one that satisfies the min in (8.6). This means that the state trajectory does not
have to visit the grid points as in the Manhattan model. A trajectory can visit any
point in R(S), which enables trajectories to converge to the true optimal solution
as ∆t and the grid spacing tend to zero.

Topological considerations So far there has been no explicit consideration of
the topology of C. Assuming that C is a manifold, the concepts discussed so far can
be applied to any open set on which coordinates are defined. In practice, it is often
convenient to use the manifold representations of Section 4.1.2. The manifold can
be expressed as a cube, [0, 1]n, with some faces identified to obtain [0, 1]n/ ∼. Over

426 S. M. LaValle: Planning Algorithms

the interior of the cube, all of the concepts explained in this section work without
modification. At the boundary, the samples used for interpolation must take the
identification into account. Furthermore, actions, uk, and next states, xk+1, must
function correctly on the boundary. One must be careful, however, in declaring
that some solution is optimal, because Euclidean shortest paths depend on the
manifold parameterization. This ambiguity is usually resolved by formulating the
cost in terms of some physical quantity, such as time or energy. This often requires
modeling dynamics, which will be covered in Part IV.

Value iteration with interpolation is extremely general. It is a generic algorithm
for approximating the solution to optimal control problems. It can be applied to
solve many of the problems in Part IV by restricting U(x) to take into account
complicated differential constraints. The method can also be extended to problems
that involve explicit uncertainty in predictability. This version of value iteration
is covered in Section 10.6.

8.5.2.3 Obtaining Dijkstra-like algorithms

For motion planning problems, it is expected that x(t + ∆t), as computed from
(8.62), is always close to x(t) relative to the size of X. This suggests the use of
a Dijkstra-like algorithm to compute optimal feedback plans more efficiently. As
discussed for the finite case in Section 2.3.3, many values remain unchanged during
the value iterations, as indicated in Example 2.5. Dijkstra’s algorithm maintains a
data structure that focuses the computation on the part of the state space where
values are changing. The same can be done for the continuous case by carefully
considering the sample points [607].

During the value iterations, there are three kinds of sample points, just as in
the discrete case (recall from Section 2.3.3):

1. Dead: The cost-to-go has stabilized to its optimal value.

2. Alive: The current cost-to-go is finite, but it is not yet known whether the
value is optimal.

3. Unvisited: The cost-to-go value remains at infinity because the sample has
not been reached.

The sets are somewhat harder to maintain for the case of continuous state spaces
because of the interaction between the sample set S and the interpolated region
R(S).

Imagine the first value iteration. Initially, all points in G are set to zero values.
Among the collection of samples S, how many can reach R(G) in a single stage?
We expect that samples very far from G will not be able to reach R(G); this keeps
their values are infinity. The samples that are close to G should reach it. It would
be convenient to prune away from consideration all samples that are too far from
G to lower their value. In every iteration, we eliminate iterating over samples that

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 427

s

(a) (b)

Figure 8.22: An illustration of the frontier concept: (a) the shaded disc indicates
the set of all reachable points in one stage, from the sample on the left. The
sample cannot reach in one stage the shaded region on the right, which represents
R(S ′). (b) The frontier is the set of samples that can reach R(S ′). The inclusion
of the frontier increases the interpolation region beyond R(S ′).

are too far away from those already reached. It is also unnecessary to iterate over
the dead samples because their values no longer change.

To keep track of reachable samples, it will be convenient to introduce the
notion of a backprojection, which will be studied further in Section 10.1. For a
single state, x ∈ X, its backprojection is defined as

B(x) = {x′ ∈ X | ∃u′ ∈ U(x′) such that x = f(x′, u′)}. (8.66)

The backprojection of a set, X ′ ⊆ X, of points is just the union of backprojections
for each point:

B(X ′) =
⋃

x∈X′

B(x). (8.67)

Now consider a version of value iteration that uses backprojections to eliminate
some states from consideration because it is known that their values cannot change.
Let i refer to the number of stages considered by the current value iteration. During
the first iteration, i = 1, which means that all one-stage trajectories are considered.
Let S be the set of samples (assuming already that none lie in Cobs). Let Di and
Ai refer to the dead and alive samples, respectively. Initially, D1 = G, the set of
samples in the goal set. The first set, A1, of alive samples is assigned by using the
concept of a frontier. The frontier of a set S ′ ⊆ S of sample points is

Front(S ′) = (B(R(S ′)) \ S ′) ∩ S. (8.68)

This is the set of sample points that can reach R(S ′) in one stage, excluding those
already in S ′. Figure 8.22 illustrates the frontier. Using (8.68), A1 is defined as
A1 = Front(D1).

Now the approach is described for iteration i. The cost-to-go update (8.56) is
computed at all points in Ai. If G

∗
k+1(s) = G∗

k(s) for some s ∈ Ai, then s is declared
dead and moved to Di+1. Samples are never removed from the dead set; therefore,

428 S. M. LaValle: Planning Algorithms

all points in Di are also added to Di+1. The next active set, Ai+1, includes all
samples in Ai, excluding those that were moved to the dead set. Furthermore, all
samples in Front(Ai) are added to Ai+1 because these will produce a finite cost-to-
go value in the next iteration. The iterations continue as usual until some stage,
m, is reached for which Am is empty, and Dm includes all samples from which the
goal can be reached (under the approximation assumptions made in this section).

For efficiency purposes, an approximation to Front may be used, provided that
the true frontier is a proper subset of the approximate frontier. For example, the
frontier might add all new samples within a specified radius of points in S ′. In
this case, the updated cost-to-go value for some s ∈ Ai may remain infinite. If
this occurs, it is of course not added to Di+1. Furthermore, it is deleted from Ai
in the computation of the next frontier (the frontier should only be computed for
samples that have finite cost-to-go values).

The approach considered so far can be expected to reduce the amount of com-
putations in each value iteration by eliminating the evaluation of (8.56) on unnec-
essary samples. The same cost-to-go values are obtained in each iteration because
only samples for which the value cannot change are eliminated in each iteration.
The resulting algorithm still does not, however, resemble Dijkstra’s algorithm be-
cause value iterations are performed over all of Ai in each stage.

To make a version that behaves like Dijkstra’s algorithm, a queue Q will be
introduced. The algorithm removes the smallest element of Q in each iteration.
The interpolation version first assigns G∗(s) = 0 for each s ∈ G. It also maintains
a set D of dead samples, which is initialized to D = G. For each s ∈ Front(G), the
cost-to-go update (8.56) is computed. The priority Q is initialized to Front(G),
and elements are sorted by their current cost-to-go values (which may not be
optimal). The algorithm iteratively removes the smallest element from Q (because
its optimal cost-to-go is known to be the current value) and terminates when Q
is empty. Each time the smallest element, ss ∈ Q, is removed, it is inserted into
D. Two procedures are then performed: 1) Some elements in the queue need to
have their cost-to-go values recomputed using (8.56) because the value G∗(ss) is
known to be optimal, and their values may depend on it. These are the samples
in Q that lie in Front(D) (in which D just got extended to include ss). 2) Any
samples in B(R(D)) that are not in Q are inserted into Q after computing their
cost-to-go values using (8.56). This enables the active set of samples to grow as
the set of dead samples grows. Dijkstra’s algorithm with interpolation does not
compute values that are identical to those produced by value iterations because
G∗
k+1 is not explicitly stored when G∗

k is computed. Each computed value is some
cost-to-go, but it is only known to be the optimal when the sample is placed into
D. It can be shown, however, that the method converges because computed values
are no higher than what would have been computed in a value iteration. This is
also the basis of dynamic programming using Gauss-Seidel iterations [96].

A specialized, wavefront-propagation version of the algorithm can be made for
the special case of finding solutions that reach the goal in the smallest number of
stages. The algorithm is similar to the one shown in Figure 8.4. It starts with an

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 429

initial wavefront W0 = G in which G∗(s) = 0 for each s ∈ G. In each iteration,
the optimal cost-to-go value i is increased by one, and the wavefront, Wi+1, is
computed from Wi as Wi+1 = Front(Wi). The algorithm terminates at the first
iteration in which the wavefront is empty.

Further Reading

There is much less related literature for this chapter in comparison to previous chapters.
As explained in Section 8.1, there are historical reasons why feedback is usually separated
from motion planning. Navigation functions [541, 829] were one of the most influential
ideas in bringing feedback into motion planning; therefore, navigation functions were
a common theme throughout the chapter. For other works that use or develop navi-
gation functions, see [206, 274, 750]. The ideas of progress measures [317], Lyapunov
functions (covered in Section 15.1.1), and cost-to-go functions are all closely related.
For Lyapunov-based design of feedback control laws, see [278]. In the context of motion
planning, the Error Detection and Recovery (EDR) framework also contains feedback
ideas [284].

In [325], the topological complexity of C-spaces is studied by characterizing the min-
imum number of regions needed to cover C × C by defining a continuous path function
over each region. This indicates limits on navigation functions that can be constructed,
assuming that both qI and qG are variables (throughout this chapter, qG was instead
fixed). Further work in this direction includes [326, 327].

To gain better intuitions about properties of vector fields, [44] is a helpful reference,
filled with numerous insightful illustrations. A good introduction to smooth manifolds
that is particularly suited for control-theory concepts is [133]. Basic intuitions for 2D and
3D curves and surfaces can be obtained from [753]. Other sources for smooth manifolds
and differential geometry include [4, 107, 234, 279, 872, 906, 960]. For discussions of
piecewise-smooth vector fields, see [27, 634, 846, 998].

Sections 8.4.2 and 8.4.3 were inspired by [235, 643] and [708], respectively. Many
difficulties were avoided because discontinuous vector fields were allowed in these ap-
proaches. By requiring continuity or smoothness, the subject of Section 8.4.4 was ob-
tained. The material is based mainly on [829, 830]. Other work on navigation functions
includes [249, 651, 652].

Section 8.5.1 was inspired mainly by [162, 679], and the approach based on neigh-
borhood graphs is drawn from [983].

Value iteration with interpolation, the subject of Section 8.5.2, is sometimes forgot-
ten in motion planning because computers were not powerful enough at the time it was
developed [84, 85, 582, 583]. Presently, however, solutions can be computed for chal-
lenging problems with several dimensions (e.g., 3 or 4). Convergence of discretized value
iteration to solving the optimal continuous problem was first established in [92], based
on Lipschitz conditions on the state transition equation and cost functional. Analy-
ses that take interpolation into account, and general discretization issues, appear in
[168, 292, 400, 565, 567]. A multi-resolution variant of value iteration was proposed in
[722]. The discussion of Dijkstra-like versions of value iteration was based on [607, 946].
The level-set method is also closely related [532, 534, 533, 862].

430 S. M. LaValle: Planning Algorithms

XG

Figure 8.23: Consider designing a continuous vector field that flows into XG.

Exercises

1. Suppose that a very fast path planning algorithm runs on board of a mobile robot
(for example, it may find an answer in a few milliseconds, which is reasonable
using trapezoidal decomposition in R2). Explain how this method can be used
to simulate having a feedback plan on the robot. Explain the issues and trade-
offs between having a fast on-line algorithm that computes open-loop plans vs. a
better off-line algorithm that computes a feedback plan.

2. Use Dijkstra’s algorithm to construct navigation functions on a 2D grid with
obstacles. Experiment with adding a penalty to the cost functional for getting too
close to obstacles.

3. If there are alternative routes, the NF2 algorithm does not necessarily send the
state along the route that has the largest maximum clearance. Fix the NF2
algorithm so that it addresses this problem.

4. Tangent space problems:

(a) For the manifold of unit quaternions, find basis vectors for the tangent space
in R4 at any point.

(b) Find basis vectors for the tangent space in R9, assuming that matrices in
SO(3) are parameterized with quaternions, as shown in (4.20).

5. Extend the algorithm described in Section 8.4.3 to make it work for polygons that
have holes. See Example 8.16 for a similar problem.

6. Give a complete algorithm that uses the vertical cell decomposition for a polygonal
obstacle region in R2 to construct a vector field that serves as a feedback plan.
The vector field may be discontinuous.

7. Figure 8.23 depicts a 2D example for which Xfree is an open annulus. Consider
designing a vector field for which all integral curves flow into XG and the vector
field is continuous outside of XG. Either give a vector field that achieves this or
explain why it is not possible.

8.5. SAMPLING-BASED METHODS FOR CONTINUOUS SPACES 431

8. Use the maximum-clearance roadmap idea from Section 6.2.3 to define a cell de-
composition and feedback motion plan (vector field) that maximizes clearance.
The vector field may be discontinuous.

9. Develop an algorithm that computes an exact cover for a polygonal configuration
space and ensures that if two neighborhoods intersect, then their intersection
always contains an open set (i.e., the overlap region is two-dimensional). The
neighborhoods in the cover should be polygonal.

10. Using a distance measurement and Euler angles, determine the expression for a
collision-free ball that can be inferred (make the ball as large as possible). This
should generalize (8.54).

11. Using a distance measurement and quaternions, determine the expression for a
collision-free ball (once again, make it as large as possible).

12. Generalize the multi-linear interpolation scheme in (8.59) from 2 to n dimensions.

13. Explain the convergence problems for value iteration that can result if ‖u‖ = 1 is
used to constraint the set of allowable actions, instead of ‖u‖ ≤ 1.

Implementations

14. Experiment with numerical methods for solving the function (8.49) in two dimen-
sions under various boundary conditions. Report on the efficiency and accuracy
of the methods. How well can they be applied in higher dimensions?

15. Implement value iteration with interpolation (it is not necessary to use the method
in Figure 8.20) for a polygonal robot that translates and rotates among polygonal
obstacles in W = R2. Define the cost functional so that the distance traveled is
obtained with respect to a weighted Euclidean metric (the weights that compare
rotation to translation can be set arbitrarily).

16. Evaluate the efficiency of the interpolation method shown in Figure 8.20 applied
to multi-linear interpolation given by generalizing (8.59) as in Exercise 12. You do
not need to implement the full value iteration approach (alternatively, this could
be done, which provides a better comparison of the overall performance).

17. Implement the method of Section 8.4.2 of computing vector fields on a triangula-
tion. For given input polygons, have your program draw a needle diagram of the
computed vector field. Determine how fast the vector field can be recomputed as
the goal changes.

18. Optimal navigation function problems:

(a) Implement the algorithm illustrated in Figure 8.13. Show the level sets of
the optimal cost-to-go function.

(b) Extend the algorithm and implementation to the case in which there are
polygonal holes in Xfree.

432 S. M. LaValle: Planning Algorithms

19. Adapt value iteration with interpolation so that a point robot moving in the plane
can keep track of a predictable moving point called a target. The cost functional
should cause a small penalty to be added if the target is not visible. Optimizing
this should minimize the amount of time that the target is not visible. Assume
that the initial configuration of the robot is given. Compute optimal feedback
plans for the robot.

20. Try to experimentally construct navigation functions by adding potential functions
that repel the state away from obstacles and attract the state toward xG. For
simplicity, you may assume that X = R2 and the obstacles are discs. Start with a
single disc and then gradually construct more complicated obstacle regions. How
difficult is it to ensure that the resulting potential function has no local minima
outside of xG?

Part III

Decision-Theoretic Planning

433

435

Overview of Part III:

Decision-Theoretic Planning

Planning Under Uncertainty

As in Part II, it also seems appropriate to give two names to Part III. It is officially
called decision-theoretic planning, but it can also be considered as planning under
uncertainty. All of the concepts in Parts I and II avoided models of uncertainties.
Chapter 8 considered plans that can overcome some uncertainties, but there was
no explicit modeling of uncertainty.

In this part, uncertainties generally interfere with two aspects of planning:

1. Predictability: Due to uncertainties, it is not known what will happen in
the future when certain actions are applied. This means that future states
are not necessarily predictable.

2. Sensing: Due to uncertainties, the current state is not necessarily known.
Information regarding the state is obtained from initial conditions, sensors,
and the memory of previously applied actions.

These two kinds of uncertainty are independent in many ways. Each has a different
effect on the planning problem.

Making a single decision Chapter 9 provides an introduction to Part III by
presenting ways to represent uncertainty in the process of making a single de-
cision. The view taken in this chapter is that uncertainty can be modeled as
interference from another decision maker. A special decision maker called nature
will be introduced. The task is to make good decisions, in spite of actions applied
by nature. Either worst-case or probabilistic models can be used to characterize
nature’s decision-making process. Some planning problems might involve multiple
rational decision makers. This leads to game theory, which arises from the uncer-
tainty about how other players will behave when they have conflicting goals. All
of the concepts in Chapter 9 involve making a single decision; therefore, a state
space is generally not necessary because there would only be one application of the
state transition equation. One purpose of the chapter is to introduce and carefully
evaluate the assumptions that are typically made in different forms of decision
theory. This forms the basis of more complicated problems that follow, especially
sequential decision making and control theory.

Uncertainty in predictability Chapter 10 takes the concepts from Chapter 9
and iterates them over multiple stages. This brings in the notions of states and
state transitions, and can be considered as a blending of discrete planning concepts
from Chapter 2 with the uncertainty concepts of Chapter 9. Some coverage of
continuous state spaces and continuous time is also given, which extends ideas
from Part II. The state transition equation is generally extended to allow future

436

states to depend on unknown actions taken by nature. In a game-theoretic setting,
the state transitions may even depend on the actions of more than two decision
makers.

For all of the models in Chapter 10, only uncertainty in predictability exists;
the current state is always known. A plan is defined as a function that indicates
the appropriate action to take from any current state. Plans are not formulated
as a sequence of actions because future states are unpredictable, and responses
to the future states may be required at the time they are achieved. Thus, for a
fixed plan, the execution may be different each time: Different actions are applied
and different states are reached. Plans are generally evaluated using worst-case,
expected-case, or game-equilibrium analysis.

Uncertainty in sensing: The information space Chapter 11 introduces per-
haps the most important concept of this book: the information space. If there is
uncertainty in sensing the current state, then the planning problem naturally lives
in an information space. An analogy can be made to the configuration space and
motion planning. Before efforts to unify motion planning by using configuration
space concepts [588, 657, 852], most algorithms were developed on a case-by-case
basis. For example, robot manipulators and mobile robots have very different
characteristics when defined in the world. However, once viewed in the configura-
tion space, it is easier to consider general algorithms, such as those from Chapters
5 and 6.

A similar kind of unification should be possible for planning problems that
involve sensing uncertainties (i.e., are unable to determine the current state).
Presently, the methods in the literature are developed mainly around individual
models and problems, as basic motion planning once was. Therefore, it is diffi-
cult to provide a perspective as unified as the techniques in Part II. Nevertheless,
the concepts from Chapter 11 are used to provide a unified introduction to many
planning problems that involve sensing uncertainties in Chapter 12. As in the case
of the configuration space, some effort is required to learn the information space
concepts; however, it will pay great dividends if the investment is made.

Chapter 12 presents several different problems and solutions for planning un-
der sensing uncertainty. The problems include exploring new environments with
robots, playing a pursuit-evasion game with cameras, and manipulating objects
with little or no sensing. The chapter provides many interesting applications of in-
formation space concepts, but it should also leave you with the feeling that much
more remains to be done. Planning in information spaces remains a challeng-
ing research problem throughout much of robotics, control theory, and artificial
intelligence.

Chapter 9

Basic Decision Theory

This chapter serves as a building block for modeling and solving planning problems
that involve more than one decision maker. The focus is on making a single decision
in the presence of other decision makers that may interfere with the outcome. The
planning problems in Chapters 10 to 12 will be viewed as a sequence of decision-
making problems. The ideas presented in this chapter can be viewed as making
a one-stage plan. With respect to Chapter 2, the present chapter reduces the
number of stages down to one and then introduces more sophisticated ways to
model a single stage. Upon returning to multiple stages in Chapter 10, it will
quickly be seen that many algorithms from Chapter 2 extend nicely to incorporate
the decision-theoretic concepts of this chapter.

Since there is no information to carry across stages, there will be no need for
a state space. Instead of designing a plan for a robot, in this chapter we will
refer to designing a strategy for a decision maker (DM). The planning problem
reduces down to a decision-making problem. In later chapters, which describe
sequential decision making, planning terminology will once again be used. It does
not seem appropriate yet in this chapter because making a single decision appears
too degenerate to be referred to as planning.

A consistent theme throughout Part III will be the interaction of multiple DMs.
In addition to the primary DM, which has been referred to as the robot, there will
be one or more other DMs that cannot be predicted or controlled by the robot. A
special DM called nature will be used as a universal way to model uncertainties.
Nature will usually be fictitious in the sense that it is not a true entity that makes
intelligent, rational decisions for its own benefit. The introduction of nature merely
serves as a convenient modeling tool to express many different forms of uncertainty.
In some settings, however, the DMs may actually be intelligent opponents who
make decisions out of their own self-interest. This leads to game theory, in which
all decision makers (including the robot) can be called players.

Section 9.1 provides some basic review and perspective that will help in under-
standing and relating later concepts in the chapter. Section 9.2 covers making a
single decision under uncertainty, which is typically referred to as decision theory.
Sections 9.3 and 9.4 address game theory, in which two or more DMs make their

437

438 S. M. LaValle: Planning Algorithms

decisions simultaneously and have conflicting interests. In zero-sum game theory,
which is covered in Section 9.3, there are two DMs that have diametrically opposed
interests. In nonzero-sum game theory, covered in Section 9.4, any number of DMs
come together to form a noncooperative game, in which any degree of conflict or
competition is allowable among them. Section 9.5 concludes the chapter by cover-
ing justifications and criticisms of the general models formulated in this chapter.
It useful when trying to apply decision-theoretic models to planning problems in
general.

This chapter was written without any strong dependencies on Part II. In fact,
even the concepts from Chapter 2 are not needed because there are no stages or
state spaces. Occasional references to Part II will be given, but these are not vital
to the understanding. Most of the focus in this chapter is on discrete spaces.

9.1 Preliminary Concepts

9.1.1 Optimization

9.1.1.1 Optimizing a single objective

Before progressing to complicated decision-making models, first consider the sim-
ple case of a single decision maker that must make the best decision. This leads
to a familiar optimization problem, which is formulated as follows.

Formulation 9.1 (Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. A function L : U → R ∪ {∞} called the cost function.

Compare Formulation 9.1 to Formulation 2.2. State space, X, and state transition
concepts are no longer needed because there is only one decision. Since there is
no state space, there is also no notion of initial and goal states. A strategy simply
consists of selecting the best action.

What does it mean to be the “best” action? If U is finite, then the best action,
u∗ ∈ U is

u∗ = argmin
u∈U

{

L(u)
}

. (9.1)

If U is infinite, then there are different cases. Suppose that U = (−1, 1) and
L(u) = u. Which action produces the lowest cost? We would like to declare that
−1 is the lowest cost, but −1 6∈ U . If we had instead defined U = [−1, 1], then this
would work. However, if U = (−1, 1) and L(u) = u, then there is no action that
produces minimum cost. For any action u ∈ U , a second one, u′ ∈ U , can always
be chosen for which L(u′) < L(u). However, if U = (−1, 1) and L(u) = |u|, then
(9.1) correctly reports that u = 0 is the best action. There is no problem in this

9.1. PRELIMINARY CONCEPTS 439

case because the minimum occurs in the interior, as opposed to on the boundary
of U . In general it is important to be aware that an optimal value may not exist.

There are two ways to fix this frustrating behavior. One is to require that U
is a closed set and is bounded (both were defined in Section 4.1). Since closed
sets include their boundary, this problem will be avoided. The bounded condition
prevents a problem such as optimizing U = R, and L(u) = u. What is the best
u ∈ U? Smaller and smaller values can be chosen for u to produce a lower cost,
even though R is a closed set.

The alternative way to fix this problem is to define and use the notion of an
infimum, denoted by inf. This is defined as the largest lower bound that can be
placed on the cost. In the case of U = (−1, 1) and L(u) = u, this is

inf
u∈(−1,1)

{

L(u)
}

= −1. (9.2)

The only difficulty is that there is no action u ∈ U that produces this cost. The
infimum essentially uses the closure of U to evaluate (9.2). If U happened to be
closed already, then u would be included in U . Unbounded problems can also be
handled. The infimum for the case of U = R and L(u) = u is −∞.

As a general rule, if you are not sure which to use, it is safer to write inf in
the place were you would use min. The infimum happens to yield the minimum
whenever a minimum exists. In addition, it gives a reasonable answer when no
minimum exists. It may look embarrassing, however, to use inf in cases where it
is obviously not needed (i.e., in the case of a finite U).

It is always possible to make an “upside-down” version of an optimization
problem by multiplying L by −1. There is no fundamental change in the result,
but sometimes it is more natural to formulate a problem as one of maximization
instead of minimization. This will be done, for example, in the discussion of utility
theory in Section 9.5.1. In such cases, a reward function, R, is defined instead of
a cost function. The task is to select an action u ∈ U that maximizes the reward.
It will be understood that a maximization problem can easily be converted into a
minimization problem by setting L(u) = −R(u) for all u ∈ U . For maximization
problems, the infimum can be replaced by the supremum, sup, which is the least
upper bound on R(u) over all u ∈ U .

For most problems in this book, the selection of an optimal u ∈ U in a single
decision stage is straightforward; planning problems are instead complicated by
many other aspects. It is important to realize, however, that optimization itself
is an extremely challenging if U and L are complicated. For example, U may be
finite but extremely large, or U may be a high-dimensional (e.g., 1000) subset
of Rn. Also, the cost function may be extremely difficult or even impossible to
express in a simple closed form. If the function is simple enough, then standard
calculus tools based on first and second derivatives may apply. It most real-world
applications, however, more sophisticated techniques are needed. Many involve
a form of gradient descent and therefore only ensure that a local minimum is
found. In many cases, sampling-based techniques are needed. In fact, many of the

440 S. M. LaValle: Planning Algorithms

sampling ideas of Section 5.2, such as dispersion, were developed in the context
of optimization. For some classes of problems, combinatorial solutions may exist.
For example, linear programming involves finding the min or max of a collection
of linear functions, and many combinatorial approaches exist [259, 264, 664, 731].
This optimization problem will appear in Section 9.4.

Given the importance of sampling-based and combinatorial methods in opti-
mization, there are interesting parallels to motion planning. Chapters 5 and 6 each
followed these two philosophies, respectively. Optimal motion planning actually
corresponds to an optimization problem on the space of paths, which is extremely
difficult to characterize. In some special cases, as in Section 6.2.4, it is possible to
find optimal solutions, but in general, such problems are extremely challenging.
Calculus of variations is a general approach for addressing optimization problems
over a space of paths that must satisfy differential constraints [841]; this will be
covered in Section 13.4.1.

9.1.1.2 Multiobjective optimization

Suppose that there is a collection of cost functions, each of which evaluates an
action. This leads to a generalization of Formulation 9.1 to multiobjective opti-
mization.

Formulation 9.2 (Multiobjective Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. A vector-valued cost function of the form L : U → Rd for some integer d. If
desired, ∞ may also be allowed for any of the cost components.

A version of this problem was considered in Section 7.7.2, which involved the
optimal coordination of multiple robots. Two actions, u and u′, are called equiva-
lent if L(u) = L(u′). An action u is said to dominate an action u′ if they are not
equivalent and Li(u) ≤ Li(u

′) for all i such that 1 ≤ i ≤ d. This defines a partial
ordering, ≤, on the set of actions. Note that many actions may be incomparable.
An action is called Pareto optimal if it is not dominated by any others. This means
that it is minimal with respect to the partial ordering.

Example 9.1 (Simple Example of Pareto Optimality) Suppose that U =
{1, 2, 3, 4, 5} and d = 2. The costs are assigned as L(1) = (4, 0), L(2) = (3, 3),
L(3) = (2, 2), L(4) = (5, 7), and L(5) = (9, 0). The actions 2, 4, and 5 can be
eliminated because they are dominated by other actions. For example, (3, 3) is
dominated by (2, 2); hence, action u = 3 is preferable to u = 2. The remaining
two actions, u = 1 and u = 3, are Pareto optimal. �

9.1. PRELIMINARY CONCEPTS 441

Based on this simple example, the notion of Pareto optimality seems mostly
aimed at discarding dominated actions. Although there may be multiple Pareto-
optimal solutions, it at least narrows down U to a collection of the best alternatives.

Example 9.2 (Pennsylvania Turnpike) Imagine driving across the state of
Pennsylvania and being confronted with the Pennsylvania Turnpike, which is a toll
highway that once posted threatening signs about speed limits and the according
fines for speeding. Let U = {50, 51, . . . , 100} represent possible integer speeds,
expressed in miles per hour (mph). A posted sign indicates that the speeding fines
are 1) $50 for being caught driving between 56 and 65 mph, 2) $100 for being
caught between 66 and 75, 3) $200 between 76 and 85, and 4) $500 between 86
and 100. Beyond 100 mph, it is assumed that the penalty includes jail time, which
is so severe that it will not be considered.

The two criteria for a driver are 1) the time to cross the state, and 2) the
amount of money spent on tickets. It is assumed that you will be caught violating
the speed limit. The goal is to minimize both. What are the resulting Pareto-
optimal driving speeds? Compare driving 56 mph to driving 57 mph. Both cost
the same amount of money, but driving 57 mph takes less time. Therefore, 57
mph dominates 56 mph. In fact, 65 mph dominates all speeds down to 56 mph
because the cost is the same, and it reduces the time the most. Based on this
argument, the Pareto-optimal driving speeds are 55, 65, 75, 85, and 100. It is up
to the individual drivers to decide on the particular best action for them; however,
it is clear that no speeds outside of the Pareto-optimal set are sensible. �

The following example illustrates the main frustration with Pareto optimal-
ity. Removing nondominated solutions may not be useful enough. In come cases,
there may even be a continuum of Pareto-optimal solutions. Therefore, the Pareto-
optimal concept is not always useful. Its value depends on the particular applica-
tion.

Example 9.3 (A Continuum of Pareto-Optimal Solutions) Let U = [0, 1]
and d = 2. Let L(u) = (u, 1 − u). In this case, every element of U is Pareto
optimal. This can be seen by noting that a slight reduction in one criterion causes
an increase in the other. Thus, any two actions are incomparable. �

9.1.2 Probability Theory Review

This section reviews some basic probability concepts and introduces notation that
will be used throughout Part III.

Probability space A probability space is a three-tuple, (S,F , P), in which the
three components are

442 S. M. LaValle: Planning Algorithms

1. Sample space: A nonempty set S called the sample space, which represents
all possible outcomes.

2. Event space: A collection F of subsets of S, called the event space. If S is
discrete, then usually F = pow(S). If S is continuous, then F is usually a
sigma-algebra on S, as defined in Section 5.1.3.

3. Probability function: A function, P : F → R, that assigns probabili-
ties to the events in F . This will sometimes be referred to as a probability
distribution over S.

The probability function, P , must satisfy several basic axioms:

1. P (E) ≥ 0 for all E ∈ F .

2. P (S) = 1.

3. P (E ∪ F) = P (E) + P (F) if E ∩ F = ∅, for all E,F ∈ F .

If S is discrete, then the definition of P over all of F can be inferred from its
definition on single elements of S by using the axioms. It is common in this case
to write P (s) for some s ∈ S, which is slightly abusive because s is not an event.
It technically should be P ({s}) for some {s} ∈ F .

Example 9.4 (Tossing a Die) Consider tossing a six-sided cube or die that has
numbers 1 to 6 painted on its sides. When the die comes to rest, it will always show
one number. In this case, S = {1, 2, 3, 4, 5, 6} is the sample space. The event space
is pow(S), which is all 26 subsets of S. Suppose that the probability function is
assigned to indicate that all numbers are equally likely. For any individual s ∈ S,
P ({s}) = 1/6. The events include all subsets so that any probability statement
can be formulated. For example, what is the probability that an even number is
obtained? The event E = {2, 4, 6} has probability P (E) = 1/2 of occurring. �

The third probability axiom looks similar to the last axiom in the definition of
a measure space in Section 5.1.3. In fact, P is technically a special kind of measure
space as mentioned in Example 5.12. If S is continuous, however, this measure
cannot be captured by defining probabilities over the singleton sets. The proba-
bilities of singleton sets are usually zero. Instead, a probability density function,
p : S → R, is used to define the probability measure. The probability function, P ,
for any event E ∈ F can then be determined via integration:

P (E) =

∫

E

p(x)dx, (9.3)

in which x ∈ E is the variable of integration. Intuitively, P indicates the total
probability mass that accumulates over E.

9.1. PRELIMINARY CONCEPTS 443

Conditional probability A conditional probability is expressed as P (E|F) for
any two events E,F ∈ F and is called the “probability of E, given F .” Its
definition is

P (E|F) = P (E ∩ F)
P (F)

. (9.4)

Two events, E and F , are called independent if and only if P (E∩F) = P (E)P (F);
otherwise, they are called dependent. An important and sometimes misleading con-
cept is conditional independence. Consider some third event, G ∈ F . It might be
the case that E and F are dependent, but when G is given, they become indepen-
dent. Thus, P (E ∩ F) 6= P (E)P (F); however, P (E ∩ F |G) = P (E|G)P (F |G).
Such examples occur frequently in practice. For example, E might indicate some-
one’s height, and F is their reading level. These will generally be dependent events
because children are generally shorter and have a lower reading level. If we are
given the person’s age as an event G, then height is no longer important. It seems
intuitive that there should be no correlation between height and reading level once
the age is given.

The definition of conditional probability, (9.4), imposes the constraint that

P (E ∩ F) = P (F)P (E|F) = P (E)P (F |E), (9.5)

which nicely relates P (E|F) to P (F |E). This results in Bayes’ rule, which is a
convenient way to swap E and F :

P (F |E) = P (E|F)P (F)
P (E)

. (9.6)

The probability distribution, P (F), is referred to as the prior, and P (F |E) is the
posterior. These terms indicate that the probabilities come before and after E is
considered, respectively.

If all probabilities are conditioned on some event, G ∈ F , then conditional
Bayes’ rule arises, which only differs from (9.6) by placing the condition G on all
probabilities:

P (F |E,G) = P (E|F,G)P (F |G)
P (E|G) . (9.7)

Marginalization Let the events F1, F2, . . . , Fn be any partition of S. The prob-
ability of an event E can be obtained through marginalization as

P (E) =
n∑

i=1

P (E|Fi)P (Fi). (9.8)

One of the most useful applications of marginalization is in the denominator of
Bayes’ rule. A substitution of (9.8) into the denominator of (9.6) yields

P (F |E) = P (E|F)P (F)
n∑

i=1

P (E|Fi)P (Fi)
. (9.9)

444 S. M. LaValle: Planning Algorithms

This form is sometimes easier to work with because P (E) appears to be eliminated.

Random variables Assume that a probability space (S,F , P) is given. A ran-
dom variable1 X is a function that maps S into R. Thus, X assigns a real value
to every element of the sample space. This enables statistics to be conveniently
computed over a probability space. If S is already a subset of R, X may by default
represent the identity function.

Expectation The expectation or expected value of a random variable X is de-
noted by E[X]. It can be considered as a kind of weighted average for X, in which
the weights are obtained from the probability distribution. If S is discrete, then

E[X] =
∑

s∈S
X(s)P (s). (9.10)

If S is continuous, then2

E[X] =

∫

S

X(s)p(s)ds. (9.11)

One can then define conditional expectation, which applies a given condition to
the probability distribution. For example, if S is discrete and an event F is given,
then

E[X|F] =
∑

s∈S
X(s)P (s|F). (9.12)

Example 9.5 (Tossing Dice) Returning to Example 9.4, the elements of S are
already real numbers. Hence, a random variableX can be defined by simply letting
X(s) = s. Using (9.11), the expected value, E[X], is 3.5. Note that the expected
value is not necessarily a value that is “expected” in practice. It is impossible
to actually obtain 3.5, even though it is not contained in S. Suppose that the
expected value of X is desired only over trials that result in numbers greater then
3. This can be described by the event F = {4, 5, 6}. Using conditional expectation,
(9.12), the expected value is E[X|F] = 5.

Now consider tossing two dice in succession. Each element s ∈ S is expressed
as s = (i, j) in which i, j ∈ {1, 2, 3, 4, 5, 6}. Since S 6⊂ R, the random variable
needs to be slightly more interesting. One common approach is to count the sum
of the dice, which yields X(s) = i+ j for any s ∈ S. In this case, E[X] = 7. �

1This is a terrible name, which often causes confusion. A random variable is not “random,”
nor is it a “variable.” It is simply a function, X : S → R. To make matters worse, a capital
letter is usually used to denote it, whereas lowercase letters are usually used to denote functions.

2Using the language of measure theory, both definitions are just special cases of the Lebesgue
integral. Measure theory nicely unifies discrete and continuous probability theory, thereby avoid-
ing the specification of separate cases. See [346, 546, 836].

9.1. PRELIMINARY CONCEPTS 445

9.1.3 Randomized Strategies

Up until now, any actions taken in a plan have been deterministic. The plans in
Chapter 2 specified actions with complete certainty. Formulation 9.1 was solved
by specifying the best action. It can be viewed as a strategy that trivially makes
the same decision every time.

In some applications, the decision maker may not want to be predictable. To
achieve this, randomization can be incorporated into the strategy. If U is discrete,
a randomized strategy, w, is specified by a probability distribution, P (u), over U .
Let W denote the set of all possible randomized strategies. When the strategy
is applied, an action u ∈ U is chosen by sampling according to the probability
distribution, P (u). We now have to make a clear distinction between defining the
strategy and applying the strategy. So far, the two have been equivalent; however,
a randomized strategy must be executed to determine the resulting action. If the
strategy is executed repeatedly, it is assumed that each trial is independent of
the actions obtained in previous trials. In other words, P (uk|ui) = P (uk), in
which P (uk|ui) represents the probability that the strategy chooses action uk in
trial k, given that ui was chosen in trial i for some i < k. If U is continuous,
then a randomized strategy may be specified by a probability density function,
p(u). In decision-theory and game-theory literature, deterministic and randomized
strategies are often referred to as pure and mixed, respectively.

Example 9.6 (Basing Decisions on a Coin Toss) Let U = {a, b}. A ran-
domized strategy w can be defined as

1. Flip a fair coin, which has two possible outcomes: heads (H) or tails (T).

2. If the outcome is H, choose a; otherwise, choose b.

Since the coin is fair, w is defined by assigning P (a) = P (b) = 1/2. Each time the
strategy is applied, it not known what action will be chosen. Over many trials,
however, it converges to choosing a half of the time. �

A deterministic strategy can always be viewed as a special case of a randomized
strategy, if you are not bothered by events that have probability zero. A deter-
ministic strategy, ui ∈ U , can be simulated by a random strategy by assigning
P (u) = 1 if u = ui, and P (u) = 0 otherwise. Only with probability zero can
different actions be chosen (possible, but not probable!).

Imagine using a randomized strategy to solve a problem expressed using For-
mulation 9.1. The first difficulty appears to be that the cost cannot be predicted.
If the strategy is applied numerous times, then we can define the average cost. As
the number of times tends to infinity, this average would converge to the expected
cost, denoted by L̄(w), if L is treated as a random variable (in addition to the cost
function). If U is discrete, the expected cost of a randomized strategy w is

L̄(w) =
∑

u∈U
L(u)P (u) =

∑

u∈U
L(u)wi, (9.13)

446 S. M. LaValle: Planning Algorithms

in which wi is the component of w corresponding to the particular u ∈ U .
An interesting question is whether there exists some w ∈ W such that L̄(w) <

L(u), for all u ∈ U . In other words, do there exist randomized strategies that are
better than all deterministic strategies, using Formulation 9.1? The answer is no
because the best strategy is always to assign probability one to the action, u∗, that
minimizes L. This is equivalent to using a deterministic strategy. If there are two
or more actions that obtain the optimal cost, then a randomized strategy could
arbitrarily distribute all of the probability mass between these. However, there
would be no further reduction in cost. Therefore, randomization seems pointless
in this context, unless there are other considerations.

One important example in which a randomized strategy is of critical importance
is when making decisions in competition with an intelligent adversary. If the
problem is repeated many times, an opponent could easily learn any deterministic
strategy. Randomization can be used to weaken the prediction capabilities of an
opponent. This idea will be used in Section 9.3 to obtain better ways to play
zero-sum games.

Following is an example that illustrates the advantage of randomization when
repeatedly playing against an intelligent opponent.

Example 9.7 (Matching Pennies) Consider a game in which two players re-
peatedly play a simple game of placing pennies on the table. In each trial, the
players must place their coins simultaneously with either heads (H) facing up or
tails (T) facing up. Let a two-letter string denote the outcome. If the outcome is
HH or TT (the players choose the same), then Player 1 pays Player 2 one Peso; if
the outcome is HT or TH, then Player 2 pays Player 1 one Peso. What happens if
Player 1 uses a deterministic strategy? If Player 2 can determine the strategy, then
he can choose his strategy so that he always wins the game. However, if Player
1 chooses the best randomized strategy, then he can expect at best to break even
on average. What randomized strategy achieves this?

A generalization of this to three actions is the famous game of Rock-Paper-
Scissors [958]. If you want to design a computer program that repeatedly plays
this game against smart opponents, it seems best to incorporate randomization.
�

9.2 A Game Against Nature

9.2.1 Modeling Nature

For the first time in this book, uncertainty will be directly modeled. There are
two DMs:

Robot: This is the name given to the primary DM throughout the book.
So far, there has been only one DM. Now that there are two, the name is

9.2. A GAME AGAINST NATURE 447

more important because it will be used to distinguish the DMs from each
other.

Nature: This DM is a mysterious force that is unpredictable to the robot.
It has its own set of actions, and it can choose them in a way that interferes
with the achievements of the robot. Nature can be considered as a synthetic
DM that is constructed for the purposes of modeling uncertainty in the
decision-making or planning process.

Imagine that the robot and nature each make a decision. Each has a set of
actions to choose from. Suppose that the cost depends on which actions are chosen
by each. The cost still represents the effect of the outcome on the robot; however,
the robot must now take into account the influence of nature on the cost. Since
nature is unpredictable, the robot must formulate a model of its behavior. Assume
that the robot has a set, U , of actions, as before. It is now assumed that nature
also has a set of actions. This is referred to as the nature action space and is
denoted by Θ. A nature action is denoted as θ ∈ Θ. It now seems appropriate to
call U the robot action space; however, for convenience, it will often be referred to
as the action space, in which the robot is implied.

This leads to the following formulation, which extends Formulation 9.1.

Formulation 9.3 (A Game Against Nature)

1. A nonempty set U called the (robot) action space. Each u ∈ U is referred to
as an action.

2. A nonempty set Θ called the nature action space. Each θ ∈ Θ is referred to
as a nature action.

3. A function L : U ×Θ→ R ∪ {∞}, called the cost function.

The cost function, L, now depends on u ∈ U and θ ∈ Θ. If U and Θ are finite,
then it is convenient to specify L as a |U | × |Θ| matrix called the cost matrix.

Example 9.8 (A Simple Game Against Nature) Suppose that U and Θ each
contain three actions. This results in nine possible outcomes, which can be speci-
fied by the following cost matrix:

Θ

U

1 −1 0
−1 2 −2
2 −1 1

The robot action, u ∈ U , selects a row, and the nature action, θ ∈ Θ, selects a
column. The resulting cost, L(u, θ), is given by the corresponding matrix entry. �

448 S. M. LaValle: Planning Algorithms

In Formulation 9.3, it appears that both DMs act at the same time; nature
does not know the robot action before deciding. In many contexts, nature may
know the robot action. In this case, a different nature action space can be defined
for every u ∈ U . This generalizes Formulation 9.3 to obtain:

Formulation 9.4 (Nature Knows the Robot Action)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. For each u ∈ U , a nonempty set Θ(u) called the nature action space.

3. A function L : U ×Θ→ R ∪ {∞}, called the cost function.

If the robot chooses an action u ∈ U , then nature chooses from Θ(u).

9.2.2 Nondeterministic vs. Probabilistic Models

What is the best decision for the robot, given that it is engaged in a game against
nature? This depends on what information the robot has regarding how nature
chooses its actions. It will always be assumed that the robot does not know the
precise nature action to be chosen; otherwise, it is pointless to define nature. Two
alternative models that the robot can use for nature will be considered. From the
robot’s perspective, the possible models are

Nondeterministic: I have no idea what nature will do.

Probabilistic: I have been observing nature and gathering statistics.

Under both models, it is assumed that the robot knows Θ in Formulation 9.3 or
Θ(u) for all u ∈ U in Formulation 9.4. The nondeterministic and probabilistic
terminology are borrowed from Erdmann [313]. In some literature, the term pos-
sibilistic is used instead of nondeterministic. This is an excellent term, but it is
unfortunately too similar to probabilistic in English.

Assume first that Formulation 9.3 is used and that U and Θ are finite. Under
the nondeterministic model, there is no additional information. One reasonable
approach in this case is to make a decision by assuming the worst. It can even be
imagined that nature knows what action the robot will take, and it will spitefully
choose a nature action that drives the cost as high as possible. This pessimistic
view is sometimes humorously referred to as Murphy’s Law (“If anything can go
wrong, it will.”) [111] or Sod’s Law. In this case, the best action, u∗ ∈ U , is
selected as

u∗ = argmin
u∈U

{

max
θ∈Θ

{

L(u, θ)
}}

. (9.14)

The action u∗ is the lowest cost choice using worst-case analysis. This is sometimes
referred to as a minimax solution because of the min and max in (9.14). If U or

9.2. A GAME AGAINST NATURE 449

Θ is infinite, then the min or max may not exist and should be replaced by inf or
sup, respectively.

Worst-case analysis may seem too pessimistic in some applications. Perhaps
the assumption that all actions in Θ are equally likely may be preferable. This can
be handled as a special case of the probabilistic model, which is described next.

Under the probabilistic model, it is assumed that the robot has gathered enough
data to reliably estimate P (θ) (or p(θ) if Θ is continuous). In this case, it is
imagined that nature applies a randomized strategy, as defined in Section 9.1.3.
It assumed that the applied nature actions have been observed over many trials,
and in the future they will continue to be chosen in the same manner, as predicted
by the distribution P (θ). Instead of worst-case analysis, expected-case analysis is
used. This optimizes the average cost to be received over numerous independent
trials. In this case, the best action, u∗ ∈ U , is

u∗ = argmin
u∈U

{

Eθ

[

L(u, θ)
]}

, (9.15)

in which Eθ indicates that the expectation is taken according to the probability
distribution (or density) over θ. Since Θ and P (θ) together form a probability
space, L(u, θ) can be considered as a random variable for each value of u (it assigns
a real value to each element of the sample space).3 Using P (θ), the expectation
in (9.15) can be expressed as

Eθ[L(u, θ)] =
∑

θ∈Θ
L(u, θ)P (θ). (9.16)

Example 9.9 (Nondeterministic vs. Probabilistic) Return to Example 9.8.
Let U = {u1, u2, u3} represent the robot actions, and let Θ = {θ1, θ2, θ3} represent
the nature actions.

Under the nondeterministic model of nature, u∗ = u1, which results in L(u∗, θ) =
1 in the worst case using (9.14). Under the probabilistic model, let P (θ1) = 1/5,
P (θ2) = 1/5, and P (θ3) = 3/5. To find the optimal action, (9.15) can be used.
This involves computing the expected cost for each action:

Eθ[L(u1, θ)] = (1)1/5 + (−1)1/5 + (0)3/5 = 0

Eθ[L(u2, θ)] = (−1)1/5 + (2)1/5 + (−2)3/5 = −1
Eθ[L(u3, θ)] = (2)1/5 + (−1)1/5 + (1)3/5 = 4/5.

(9.17)

The best action is u∗ = u2, which produces the lowest expected cost, −1.
If the probability distribution had instead been P = [1/10 4/5 1/10], then

u∗ = u1 would have been obtained. Hence the best decision depends on P (θ); if
this information is statistically valid, then it enables more informed decisions to
be made. If such information is not available, then the nondeterministic model
may be more suitable.

3Alternatively, a random variable may be defined over U × Θ, and conditional expectation
would be taken, in which u is given.

450 S. M. LaValle: Planning Algorithms

It is possible, however, to assign P (θ) as a uniform distribution in the absence
of data. This means that all nature actions are equally likely; however, conclusions
based on this are dangerous; see Section 9.5. �

In Formulation 9.4, the nature action space Θ(u) depends on u ∈ U , the robot
action. Under the nondeterministic model, (9.14) simply becomes

u∗ = argmin
u∈U

{

max
θ∈Θ(u)

L(u, θ)
}

. (9.18)

Unfortunately, these problems do not have a nice matrix representation because
the size of Θ(u) can vary for different u ∈ U . In the probabilistic case, P (θ) is
replaced by a conditional probability distribution P (θ|u). Estimating this distri-
bution requires observing numerous independent trials for each possible u ∈ U .
The behavior of nature can now depend on the robot action; however, nature is
still characterized by a randomized strategy. It does not adapt its strategy across
multiple trials. The expectation in (9.16) now becomes

Eθ

[

L(u, θ)
]

=
∑

θ∈Θ(u)

L(u, θ)P (θ|u), (9.19)

which replaces P (θ) by P (θ|u).

Regret It is important to note that the models presented here are not the only
accepted ways to make good decisions. In game theory, the key idea is to minimize
“regret.” This is the feeling you get after making a bad decision and wishing that
you could change it after the game is finished. Suppose that after you choose some
u ∈ U , you are told which θ ∈ Θ was applied by nature. The regret is the amount
of cost that you could have saved by picking a different action, given the nature
action that was applied.

For each combination of u ∈ U and θ ∈ Θ, the regret, T , is defined as

T (u, θ) = max
u′∈U

{

L(u, θ)− L(u′, θ)
}

. (9.20)

For Formulation 9.3, if U and Θ are finite, then a |Θ| × |U | regret matrix can be
defined.

Suppose that minimizing regret is the primary concern, as opposed to the actual
cost received. Under the nondeterministic model, the action that minimizes the
worst-case regret is

u∗ = argmin
u∈U

{

max
θ∈Θ

{

T (u, θ)
}}

. (9.21)

In the probabilistic model, the action that minimizes the expected regret is

u∗ = argmin
u∈U

{

Eθ

[

T (u, θ)
]}

. (9.22)

9.2. A GAME AGAINST NATURE 451

The only difference with respect to (9.14) and (9.15) is that L has been replaced
by T . In Section 9.3.2, regret will be discussed in more detail because it forms the
basis of optimality concepts in game theory.

Example 9.10 (Regret Matrix) The regret matrix for Example 9.8 is

Θ

U
2 0 2
0 3 0
3 0 3

Using the nondeterministic model, u∗ = u1, which results in a worst-case regret of
2 using (9.21). Under the probabilistic model, let P (θ1) = P (θ2) = P (θ3) = 1/3.
In this case, u∗ = u1, which yields the optimal expected regret, calculated as 1
using (9.22).

9.2.3 Making Use of Observations

Formulations 9.3 and 9.4 do not allow the robot to receive any information (other
than L) prior to making its decision. Now suppose that the robot has a sensor that
it can check just prior to choosing the best action. This sensor provides an obser-
vation or measurement that contains information about which nature action might
be chosen. In some contexts, the nature action can be imagined as a kind of state
that has already been selected. The observation then provides information about
this. For example, nature might select the current temperature in Bangkok. An
observation could correspond to a thermometer in Bangkok that takes a reading.

Formulating the problem Let Y denote the observation space, which is the
set of all possible observations, y ∈ Y . For convenience, suppose that Y , U , and
Θ are all discrete. It will be assumed as part of the model that some constraints
on θ are known once y is given. Under the nondeterministic model a set Y (θ) ⊆ Y
is specified for every θ ∈ Θ. The set Y (θ) indicates the possible observations,
given that the nature action is θ. Under the probabilistic model a conditional
probability distribution, P (y|θ), is specified. Examples of sensing models will be
given in Section 9.2.4. Many others appear in Sections 11.1.1 and 11.5.1, although
they are expressed with respect to a state space X that reduces to Θ in this
section. As before, the probabilistic case also requires a prior distribution, P (Θ),
to be given. This results in the following formulation.

Formulation 9.5 (A Game Against Nature with an Observation)

1. A finite, nonempty set U called the action space. Each u ∈ U is referred to
as an action.

2. A finite, nonempty set Θ called the nature action space.

452 S. M. LaValle: Planning Algorithms

3. A finite, nonempty set Y called the observation space.

4. A set Y (θ) ⊆ Y or probability distribution P (y|θ) specified for every θ ∈ Θ.
This indicates which observations are possible or probable, respectively, if θ
is the nature action. In the probabilistic case a prior, P (θ), must also be
specified.

5. A function L : U ×Θ→ R ∪ {∞}, called the cost function.

Consider solving Formulation 9.5. A strategy is now more complicated than
simply specifying an action because we want to completely characterize the be-
havior of the robot before the observation has been received. This is accomplished
by defining a strategy as a function, π : Y → U . For each possible observation,
y ∈ Y , the strategy provides an action. We now want to search the space of
possible strategies to find the one that makes the best decisions over all possible
observations. In this section, Y is actually a special case of an information space,
which is the main topic of Chapters 11 and 12. Eventually, a strategy (or plan)
will be conditioned on an information state, which generalizes an observation.

Optimal strategies Now consider finding the optimal strategy, denoted by π∗,
under the nondeterministic model. The sets Y (θ) for each θ ∈ Θ must be used
to determine which nature actions are possible for each observation, y ∈ Y . Let
Θ(y) denote this, which is obtained as

Θ(y) = {θ ∈ Θ | y ∈ Y (θ)}. (9.23)

The optimal strategy, π∗, is defined by setting

π∗(y) = argmin
u∈U

{

max
θ∈Θ(y)

{

L(u, θ)
}}

, (9.24)

for each y ∈ Y . Compare this to (9.14), in which the maximum was taken over
all Θ. The advantage of having the observation, y, is that the set is restricted to
Θ(y) ⊆ Θ.

Under the probabilistic model, an operation analogous to (9.23) must be per-
formed. This involves computing P (θ|y) from P (y|θ) to determine the information
that y contains regarding θ. Using Bayes’ rule, (9.9), with marginalization on the
denominator, the result is

P (θ|y) = P (y|θ)P (θ)
∑

θ∈Θ
P (y|θ)P (θ)

. (9.25)

To see the connection between the nondeterministic and probabilistic cases, define
a probability distribution, P (y|θ), that is nonzero only if y ∈ Y (θ) and use a
uniform distribution for P (θ). In this case, (9.25) assigns nonzero probability
to precisely the elements of Θ(y) as given in (9.23). Thus, (9.25) is just the

9.2. A GAME AGAINST NATURE 453

probabilistic version of (9.23). The optimal strategy, π∗, is specified for each
y ∈ Y as

π∗(y) = argmin
u∈U

{

Eθ

[

L(u, θ)
∣
∣
∣ y
]}

= argmin
u∈U

{
∑

θ∈Θ
L(u, θ)P (θ|y)

}

. (9.26)

This differs from (9.15) and (9.16) by replacing P (θ) with P (θ|y). For each u, the
expectation in (9.26) is called the conditional Bayes’ risk. The optimal strategy,
π∗, always selects the strategy that minimizes this risk. Note that P (θ|y) in (9.26)
can be expressed using (9.25), for which the denominator (9.26) represents P (y)
and does not depend on u; therefore, it does not affect the optimization. Due to
this, P (y|θ)P (θ) can be used in the place of P (θ|y) in (9.26), and the same π∗ will
be obtained. If the spaces are continuous, then probability densities are used in
the place of all probability distributions, and the method otherwise remains the
same.

Nature acts twice A convenient, alternative formulation can be given by al-
lowing nature to act twice:

1. First, a nature action, θ ∈ Θ, is chosen but is unknown to the robot.

2. Following this, a nature observation action is chosen to interfere with the
robot’s ability to sense θ.

Let ψ denote a nature observation action, which is chosen from a nature observation
action space, Ψ(θ). A sensor mapping, h, can now be defined that yields y =
h(θ, ψ) for each θ ∈ Θ and ψ ∈ Ψ(θ). Thus, for each of the two kinds of nature
actions, θ ∈ Θ and ψ ∈ Ψ, an observation, y = h(θ, ψ), is given. This yields an
alternative way to express Formulation 9.5:

Formulation 9.6 (Nature Interferes with the Observation)

1. A nonempty, finite set U called the action space.

2. A nonempty, finite set Θ called the nature action space.

3. A nonempty, finite set Y called the observation space.

4. For each θ ∈ Θ, a nonempty set Ψ(θ) called the nature observation action
space.

5. A sensor mapping h : Θ×Ψ→ Y .

6. A function L : U ×Θ→ R ∪ {∞} called the cost function.

454 S. M. LaValle: Planning Algorithms

This nicely unifies the nondeterministic and probabilistic models with a single
function h. To express a nondeterministic model, it is assumed that any ψ ∈ Ψ(θ)
is possible. Using h,

Θ(y) = {θ ∈ Θ | ∃ψ ∈ Ψ(θ) such that y = h(θ, ψ)}. (9.27)

For a probabilistic model, a distribution P (ψ|θ) is specified (often, this may reduce
to P (ψ)). Suppose that when the domain of h is restricted to some θ ∈ Θ, then it
forms an injective mapping from Ψ to Y . In other words, every nature observation
action leads to a unique observation, assuming θ is fixed. Using P (ψ) and h, P (y|θ)
is derived as

P (y|θ) =
{
P (ψ|θ) for the unique ψ such that y = h(θ, ψ).
0 if no such ψ exists.

(9.28)

If the injective assumption is lifted, then P (ψ|θ) is replaced by a sum over all ψ
for which y = h(θ, ψ). In Formulation 9.6, the only difference between the nonde-
terministic and probabilistic models is the characterization of ψ, which represents
a kind of measurement interference. A strategy still takes the form π : Θ → U .
A hybrid model is even possible in which one nature action is modeled nondeter-
ministically and the other probabilistically.

Receiving multiple observations Another extension of Formulation 9.5 is to
allow multiple observations, y1, y2, . . ., yn, before making a decision. Each yi is
assumed to belong to an observation space, Yi. A strategy, π, now depends on all
observations:

π : Y1 × Y2 × · · · × Yn → U. (9.29)

Under the nondeterministic model, Yi(θ) is specified for each i and θ ∈ Θ. The
set Θ(y) is replaced by

Θ(y1) ∩Θ(y2) ∩ · · · ∩Θ(yn) (9.30)

in (9.24) to obtain the optimal action, π∗(y1, . . . , yn).
Under the probabilistic model, P (yi|θ) is specified instead. It is often assumed

that the observations are conditionally independent given θ. This means for any
yi, θ, and yj such that i 6= j, P (yi|θ, yj) = P (yi|θ). The condition P (θ|y) in (9.26)
is replaced by P (θ|y1, . . . , yn). Applying Bayes’ rule, and using the conditional
independence of the yi’s given θ, yields

P (θ|y1, . . . , yn) =
P (y1|θ)P (y2|θ) · · ·P (yn|θ)P (θ)

P (y1, . . . , yn)
. (9.31)

The denominator can be treated as a constant factor that does not affect the
optimization. Therefore, it does not need to be explicitly computed unless the
optimal expected cost is needed in addition to the optimal action.

Conditional independence allows a dramatic simplification that avoids the full
specification of P (y|θ). Sometimes the conditional independence assumption is
used when it is incorrect, just to exploit this simplification. Therefore, a method
that uses conditional independence of observations is often called naive Bayes.

9.2. A GAME AGAINST NATURE 455

9.2.4 Examples of Optimal Decision Making

The framework presented so far characterizes statistical decision theory, which
covers a broad range of applications and research issues. Virtually any context in
which a decision must be made automatically, by a machine or a person following
specified rules, is a candidate for using these concepts. In Chapters 10 through
12, this decision problem will be repeatedly embedded into complicated planning
problems. Planning will be viewed as a sequential decision-making process that
iteratively modifies states in a state space. Most often, each decision step will be
simpler than what usually arises in common applications of decision theory. This is
because planning problems are complicated by many other factors. If the decision
step in a particular application is already too hard to solve, then an extension to
planning appears hopeless.

It is nevertheless important to recognize the challenges in general that arise
when modeling and solving decision problems under the framework of this section.
Some examples are presented here to help illustrate its enormous power and scope.

9.2.4.1 Pattern classification

An active field over the past several decades in computer vision and machine learn-
ing has been pattern classification [271, 295, 711]. The general problem involves
using a set of data to perform classifications. For example, in computer vision, the
data correspond to information extracted from an image. These indicate observed
features of an object that are used by a vision system to try to classify the object
(e.g., “I am looking at a bowl of Vietnamese noodle soup”).

The presentation here represents a highly idealized version of pattern classi-
fication. We will assume that all of the appropriate model details, including the
required probability distributions, are available. In some contexts, these can be ob-
tained by gathering statistics over large data sets. In many applications, however,
obtaining such data is expensive or inaccessible, and classification techniques must
be developed in lieu of good information. Some problems are even unsupervised,
which means that the set of possible classes must also be discovered automatically.
Due to issues such as these, pattern classification remains a challenging research
field.

The general model is that nature first determines the class, then observations
are obtained regarding the class, and finally the robot action attempts to guess
the correct class based on the observations. The problem fits under Formulation
9.5. Let Θ denote a finite set of classes. Since the robot must guess the class,
U = Θ. A simple cost function is defined to measure the mismatch between u and
θ:

L(u, θ) =

{

0 if u = θ (correct classification

1 if u 6= θ (incorrect classification) .
(9.32)

The nondeterministic model yields a cost of 1 if it is possible that a classification
error can be made using action u. Under the probabilistic model, the expectation

456 S. M. LaValle: Planning Algorithms

of (9.32) gives the probability that a classification error will be made given an
action u.

The next part of the formulation considers information that is used to make
the classification decision. Let Y denote a feature space, in which each y ∈ Y is
called a feature or feature vector (often y ∈ Rn). The feature in this context is just
an observation, as given in Formulation 9.5. The best classifier or classification
rule is a strategy π : Y → U that provides the smallest classification error in the
worst case or expected case, depending on the model.

A Bayesian classifier The probabilistic approach is most common in pattern
classification. This results in a Bayesian classifier. Here it is assumed that P (y|θ)
and P (θ) are given. The distribution of features for a given class is indicated by
P (y|θ). The overall frequency of class occurrences is given by P (θ). If large, pre-
classified data sets are available, then these distributions can be reliably learned.
The feature space is often continuous, which results in a density p(y|θ), even
though P (θ) remains a discrete probability distribution. An optimal classifier, π∗,
is designed according to (9.26). It performs classification by receiving a feature
vector, y, and then declaring that the class is u = π∗(y). The expected cost using
(9.32) is the probability of error.

Example 9.11 (Optical Character Recognition) An example of classification
is given by a simplified optical character recognition (OCR) problem. Suppose that
a camera creates a digital image of a page of text. Segmentation is first performed
to determine the location of each letter. Following this, the individual letters must
be classified correctly. Let Θ = {A,B,C,D,E, F,G,H}, which would ordinarily
include all of the letters of the alphabet.

Suppose that there are three different image processing algorithms:

Shape extractor: This returns s = 0 if the letter is composed of straight
edges only, and s = 1 if it contains at least one curve.

End counter: This returns e, the number of segment ends. For example,
O has none and X has four.

Hole counter: This returns h, the number of holes enclosed by the charac-
ter. For example, X has none and O has one.

The feature vector is y = (s, e, h). The values that should be reported under ideal
conditions are shown in Figure 9.1. These indicate Θ(s), Θ(e), and Θ(h). The
intersection of these yields Θ(y) for any combination of s, e, and h.

Imagine doing classification under the nondeterministic model, with the as-
sumption that the features always provide correct information. For y = (0, 2, 1),
the only possible letter is A. For y = (1, 0, 2), the only letter is B. If each (s, e, h) is
consistent with only one or no letters, then a perfect classifier can be constructed.
Unfortunately, (0, 3, 0) is consistent with both E and F . In the worst case, the
cost of using (9.32) is 1.

9.2. A GAME AGAINST NATURE 457

Shape 0 A E F H
1 B C D G

Ends 0 B D
1
2 A C G
3 F E
4 H

Holes 0 C E F G H
1 A D
2 B

Figure 9.1: A mapping from letters to feature values.

One way to fix this is to introduce a new feature. Suppose that an image pro-
cessing algorithm is used to detect corners. These are places at which two segments
meet at a right (90 degrees) angle. Let c denote the number of corners, and let the
new feature vector be y = (s, e, h, c). The new algorithm nicely distinguishes E
from F , for which c = 2 and c = 1, respectively. Now all letters can be correctly
classified without errors.

Of course, in practice, the image processing algorithms occasionally make mis-
takes. A Bayesian classifier can be designed to maximize the probability of success.
Assume conditional independence of the observations, which means that the classi-
fier can be considered naive. Suppose that the four image processing algorithms are
run over a training data set and the results are recorded. In each case, the correct
classification is determined by hand to obtain probabilities P (s|θ), P (e|θ), P (h|θ),
and P (c|θ). For example, suppose that the hole counter receives the letter A as
input. After running the algorithm over many occurrences of A in text, it may be
determined that P (h = 1| θ = A) = 0.9, which is the correct answer. With smaller
probabilities, perhaps P (h = 0| θ = A) = 0.09 and P (h = 2| θ = A) = 0.01. As-
suming that the output of each image processing algorithm is independent given
the input letter, a joint probability can be assigned as

P (y|θ) = P (s, e, h, c| θ) = P (s|θ)P (e|θ)P (h|θ)P (c|θ). (9.33)

The value of the prior P (θ) can be obtained by running the classifier over large
amounts of hand-classified text and recording the relative numbers of occurrences
of each letter. It is interesting to note that some context-specific information can
be incorporated. If the text is known to be written in Spanish, then P (θ) should
be different than from text written in English. Tailoring P (θ) to the type of text
that will appear improves the performance of the resulting classifier.

The classifier makes its decisions by choosing the action that minimizes the
probability of error. This error is proportional to

∑

θ∈Θ
P (s|θ)P (e|θ)P (h|θ)P (c|θ)P (θ), (9.34)

458 S. M. LaValle: Planning Algorithms

by neglecting the constant P (y) in the denominator of Bayes’ rule in (9.26). �

9.2.4.2 Parameter estimation

Another important application of the decision-making framework of this section is
parameter estimation [89, 268]. In this case, nature selects a parameter, θ ∈ Θ, and
Θ represents a parameter space. Through one or more independent trials, some
observations are obtained. Each observation should ideally be a direct measure-
ment of Θ, but imperfections in the measurement process distort the observation.
Usually, Θ ⊆ Y , and in many cases, Y = Θ. The robot action is to guess the
parameter that was chosen by nature. Hence, U = Θ. In most applications, all of
the spaces are continuous subsets of Rn. The cost function is designed to increase
as the error, ‖u− θ‖, becomes larger.

Example 9.12 (Parameter Estimation) Suppose that U = Y = Θ = R. Na-
ture therefore chooses a real-valued parameter, which is estimated. The cost of
making a mistake is

L(u, θ) = (u− θ)2. (9.35)

Suppose that a Bayesian approach is taken. The prior probability density p(θ)
is given as uniform over an interval [a, b] ⊂ R. An observation is received, but it
is noisy. The noise can be modeled as a second action of nature, as described in
Section 9.2.3. This leads to a density p(y|θ). Suppose that the noise is modeled
with a Gaussian, which results in

p(y|θ) = 1√
2πσ2

e−(y−θ)2/2σ2

, (9.36)

in which the mean is θ and the standard deviation is σ.
The optimal parameter estimate based on y is obtained by selecting u ∈ R to

minimize
∫ ∞

−∞
L(u, θ)p(θ|y)dθ, (9.37)

in which

p(θ|y) = p(y|θ)p(θ)
p(y)

, (9.38)

by Bayes’ rule. The term p(y) does not depend on θ, and it can therefore be ignored
in the optimization. Using the prior density, p(θ) = 0 outside of [a, b]; hence, the
domain of integration can be restricted to [a, b]. The value of p(θ) = 1/(b − a) is
also a constant that can be ignored in the optimization. Using (9.36), this means
that u is selected to optimize

∫ b

a

L(u, θ)p(y|θ)dθ, (9.39)

9.3. TWO-PLAYER ZERO-SUM GAMES 459

which can be expressed in terms of the standard error function, erf(x) (the integral
from 0 to a constant, of a Gaussian density over an interval).

If a sequence, y1, . . ., yk, of independent observations is obtained, then (9.39)
is replaced by

∫ b

a

L(u, θ)p(y1|θ) · · · p(yk|θ)dθ. (9.40)

�

9.3 Two-Player Zero-Sum Games

Section 9.2 involved one real decision maker (DM), the robot, playing against a
fictitious DM called nature. Now suppose that the second DM is a clever opponent
that makes decisions in the same way that the robot would. This leads to a
symmetric situation in which two decision makers simultaneously make a decision,
without knowing how the other will act. It is assumed in this section that the DMs
have diametrically opposing interests. They are two players engaged in a game in
which a loss for one player is a gain for the other, and vice versa. This results in
the most basic form of game theory, which is referred to as a zero-sum game.

9.3.1 Game Formulation

Suppose there are two players, P1 and P2, that each have to make a decision.
Each has a finite set of actions, U and V , respectively. The set V can be viewed as
the “replacement” of Θ from Formulation 9.3 by a set of actions chosen by a true
opponent. Each player has a cost function, which is denoted as Li : U × V → R

for i = 1, 2. An important constraint for zero-sum games is

L1(u, v) = −L2(u, v), (9.41)

which means that a cost for one player is a reward for the other. This is the basis
of the term zero sum, which means that the two costs can be added to obtain zero.
In zero-sum games the interests of the players are completely opposed. In Section
9.4 this constraint will be lifted to obtain more general games.

In light of (9.41) it is pointless to represent two cost functions. Instead, the
superscript will be dropped, and L will refer to the cost, L1, of P1. The goal of P1

is to minimize L. Due to (9.41), the goal of P2 is to maximize L. Thus, L can be
considered as a reward for P2, but a cost for P1.

A formulation can now be given:

Formulation 9.7 (A Zero-Sum Game)

1. Two players, P1 and P2.

460 S. M. LaValle: Planning Algorithms

2. A nonempty, finite set U called the action space for P1. For convenience in
describing examples, assume that U is a set of consecutive integers from 1
to |U |. Each u ∈ U is referred to as an action of P1.

3. A nonempty, finite set V called the action space for P2. Assume that V is
a set of consecutive integers from 1 to |V |. Each v ∈ V is referred to as an
action of P2.

4. A function L : U × V → R ∪ {−∞,∞} called the cost function for P1. This
also serves as a reward function for P2 because of (9.41).

Before discussing what it means to solve a zero-sum game, some additional
assumptions are needed. Assume that the players know each other’s cost functions.
This implies that the motivation of the opponent is completely understood. The
other assumption is that the players are rational, which means that they will try
to obtain the best cost whenever possible. P1 will not choose an action that leads
to higher cost when a lower cost action is available. Likewise, P2 will not choose
an action that leads to lower cost. Finally, it is assumed that both players make
their decisions simultaneously. There is no information regarding the decision of
P1 that can be exploited by P2, and vice versa.

Formulation 9.7 is often referred to as a matrix game because L can be ex-
pressed with a cost matrix, as was done in Section 9.2. Here the matrix indicates
costs for P1 and P2, instead of the robot and nature. All of the required in-
formation from Formulation 9.7 is specified by a single matrix; therefore, it is a
convenient form for expressing zero-sum games.

Example 9.13 (Matrix Representation of a Zero-Sum Game) Suppose that
U , the action set for P1, contains three actions and V contains four actions. There
should be 3× 4 = 12 values in the specification of the cost function, L. This can
be expressed as a cost matrix,

V

U

1 3 3 2
0 -1 2 1
-2 2 0 1

, (9.42)

in which each row corresponds to some u ∈ U , and each column corresponds to
some v ∈ V . Each entry yields L(u, v), which is the cost for P1. This representa-
tion is similar to that shown in Example 9.8, except that the nature action space,
Θ, is replaced by V . The cost for P2 is −L(u, v). �

9.3.2 Deterministic Strategies

What constitutes a good solution to Formulation 9.7? Consider the game from the
perspective of P1. It seems reasonable to apply worst-case analysis when trying

9.3. TWO-PLAYER ZERO-SUM GAMES 461

to account for the action that will be taken by P2. This results in a choice that
is equivalent to assuming that P2 is nature acting under the nondeterministic
model, as considered in Section 9.2.2. For a matrix game, this is computed by first
determining the maximum cost over each row. Selecting the action that produces
the minimum among these represents the lowest cost that P1 can guarantee for
itself. Let this selection be referred to as a security strategy for P1.

For the matrix game in (9.42), the security strategy is illustrated as

V

U

1 3 3 2 → 3
0 -1 2 1 → 2
-2 2 0 1 → 2

, (9.43)

in which u = 2 and u = 3 are the best actions. Each yields a cost no worse than
2, regardless of the action chosen by P2.

This can be formalized using the existing notation. A security strategy, u∗, for
P1 is defined in general as

u∗ = argmin
u∈U

{

max
v∈V

{

L(u, v)
}}

. (9.44)

There may be multiple security strategies that satisfy the argmin; however, this
does not cause trouble, as will be explained shortly. Let the resulting worst-case
cost be denoted by L

∗
, and let it be called the upper value of the game. This is

defined as
L
∗
= max

v∈V

{

L(u∗, v)
}

. (9.45)

Now swap roles, and consider the game from the perspective of P2, which would
like to maximize L. It can also use worst-case analysis, which means that it would
like to select an action that guarantees a high cost, in spite of the action of P1 to
potentially reduce it. A security strategy, v∗, for P2 is defined as

v∗ = argmax
v∈V

{

min
u∈U

{

L(u, v)
}}

. (9.46)

Note the symmetry with respect to (9.44). There may be multiple security strate-
gies for P2. A security strategy v∗ is just an “upside-down” version of the worst-
case analysis applied in Section 9.2.2. The lower value, L∗, is defined as

L∗ = min
u∈U

{

L(u, v∗)
}

. (9.47)

Returning to the matrix game in (9.42), the last column is selected by applying
(9.46):

V

U

1 3 3 2
0 -1 2 1
-2 2 0 1
↓ ↓ ↓ ↓
-2 -1 0 1

. (9.48)

462 S. M. LaValle: Planning Algorithms

An interesting relationship between the upper and lower values is that L∗ ≤ L
∗

for any game using Formulation 9.7. This is shown by observing that

L∗ = min
u∈U

{

L(u, v∗)
}

≤ L(u∗, v∗) ≤ max
v∈V

{

L(u∗, v)
}

= L
∗
, (9.49)

in which L(u∗, v∗) is the cost received when the players apply their respective
security strategies. If the game is played by rational DMs, then the resulting cost
always lies between L∗ and L

∗
.

Regret Suppose that the players apply security strategies, u∗ = 2 and v∗ = 4.
This results in a cost of L(2, 4) = 1. How do the players feel after the outcome?
P1 may feel satisfied because given that P2 selected v∗ = 4, it received the lowest
cost possible. On the other hand, P2 may regret its decision in light of the action
chosen by P1. If it had known that u = 2 would be chosen, then it could have
picked v = 2 to receive cost L(2, 2) = 2, which is better than L(2, 4) = 1. If the
game were to be repeated, then P2 would want to change its strategy in hopes of
tricking P1 to obtain a higher reward.

Is there a way to keep both players satisfied? Any time there is a gap between
L∗ and L

∗
, there is regret for one or both players. If r1 and r2 denote the amount

of regret experienced by P1 and P2, respectively, then the total regret is

r1 + r2 = L
∗ − L∗. (9.50)

Thus, the only way to satisfy both players is to obtain upper and lower values
such that L∗ = L

∗
. These are properties of the game, however, and they are not

up to the players to decide. For some games, the values are equal, but for many
L∗ < L

∗
. Fortunately, by using randomized strategies, the upper and lower values

always coincide; this is covered in Section 9.3.3.

Saddle points If L∗ = L
∗
, the security strategies are called a saddle point, and

L∗ = L∗ = L
∗
is called the value of the game. If this occurs, the order of the max

and min can be swapped without changing the value:

L∗ = min
u∈U

{

max
v∈V

{

L(u, v)
}}

= max
v∈V

{

min
u∈U

{

L(u, v)
}}

. (9.51)

A saddle point is sometimes referred to as an equilibrium because the players
have no incentive to change their choices (because there is no regret). A saddle
point is defined as any u∗ ∈ U and v∗ ∈ V such that

L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗) (9.52)

for all u ∈ U and v ∈ V . Note that L∗ = L(u∗, v∗). When looking at a matrix
game, a saddle point is found by finding the simple pattern shown in Figure 9.2.

9.3. TWO-PLAYER ZERO-SUM GAMES 463

≥

≤ L∗ ≤

≥

Figure 9.2: A saddle point can be detected in a matrix by finding a value L∗ that
is lowest among all elements in its column and greatest among all elements in its
row.

Example 9.14 (A Deterministic Saddle Point) Here is a matrix game that
has a saddle point:

V

U
3 3 5
1 -1 7
0 -2 4

. (9.53)

By applying (9.52) (or using Figure 9.2), the saddle point is obtained when u = 3
and v = 3. The result is that L∗ = 4. In this case, neither player has regret
after the game is finished. P1 is satisfied because 4 is the lowest cost it could have
received, given that P2 chose the third column. Likewise, 4 is the highest cost that
P2 could have received, given that P1 chose the bottom row. �

What if there are multiple saddle points in the same game? This may appear
to be a problem because the players have no way to coordinate their decisions.
What if P1 tries to achieve one saddle point while P2 tries to achieve another? It
turns out that if there is more than one saddle point, then there must at least be
four, as shown in Figure 9.3. As soon as we try to make two “+” patterns like
the one shown in Figure 9.2, they intersect, and four saddle points are created.
Similar behavior occurs as more saddle points are added.

Example 9.15 (Multiple Saddle Points) This game has multiple saddle points
and follows the pattern in Figure 9.3:

V

U

4 3 5 1 2
-1 0 -2 0 -1
-4 1 4 3 5
-3 0 -1 0 -2
3 2 -7 3 8

. (9.54)

Let (i, j) denote the pair of choices for P1 and P2, respectively. Both (2, 2) and
(4, 4) are saddle points with value V = 0. What if P1 chooses u = 2 and P2 chooses

464 S. M. LaValle: Planning Algorithms

≥ ≥
≤ L∗ ≤ L∗ ≤
≥ ≥

≤ L∗ ≤ L∗ ≤
≥ ≥

Figure 9.3: A matrix could have more than one saddle point, which may seem
to lead to a coordination problem between the players. Fortunately, there is no
problem, because the same value will be received regardless of which saddle point
is selected by each player.

v = 4? This is not a problem because (2, 4) is also a saddle point. Likewise, (4, 2)
is another saddle point. In general, no problems are caused by the existence of
multiple saddle points because the resulting cost is independent of which saddle
point is attempted by each player. �

9.3.3 Randomized Strategies

The fact that some zero-sum games do not have a saddle point is disappointing
because regret is unavoidable in these cases. Suppose we slightly change the rules.
Assume that the same game is repeatedly played by P1 and P2 over numerous
trials. If they use a deterministic strategy, they will choose the same actions every
time, resulting in the same costs. They may instead switch between alternative
security strategies, which causes fluctuations in the costs. What happens if they
each implement a randomized strategy? Using the idea from Section 9.1.3, each
strategy is specified as a probability distribution over the actions. In the limit,
as the number of times the game is played tends to infinity, an expected cost is
obtained. One of the most famous results in game theory is that on the space of
randomized strategies, a saddle point always exists for any zero-sum matrix game;
however, expected costs must be used. Thus, if randomization is used, there will
be no regrets. In an individual trial, regret may be possible; however, as the costs
are averaged over all trials, both players will be satisfied.

9.3.3.1 Extending the formulation

Since a game under Formulation 9.7 can be nicely expressed as a matrix, it is
tempting to use linear algebra to conveniently express expected costs. Let |U | = m
and |V | = n. As in Section 9.1.3, a randomized strategy for P1 can be represented
as an m-dimensional vector,

w = [w1 w2 . . . wm]. (9.55)

9.3. TWO-PLAYER ZERO-SUM GAMES 465

The probability axioms of Section 9.1.2 must be satisfied: 1) wi ≥ 0 for all i ∈
{1, . . . ,m}, and 2) w1+ · · ·+wm = 1. If w is considered as a point in Rm, then the
two constraints imply that it must lie on an (m − 1)-dimensional simplex (recall
Section 6.3.1). If m = 3, this means that w lies in a triangular subset of R3.
Similarly, let z represent a randomized strategy for P2 as an n-dimensional vector,

z = [z1 z2 . . . zn]
T , (9.56)

that also satisfies the probability axioms. In (9.56), T denotes transpose, which
yields a column vector that satisfies the dimensional constraints required for an
upcoming matrix multiplication.

Let L̄(w, z) denote the expected cost that will be received if P1 plays w and
P2 plays z. This can be computed as

L̄(w, z) =
m∑

i=1

n∑

j=1

L(i, j)wizj. (9.57)

Note that the cost, L(i, j), makes use of the assumption in Formulation 9.7 that the
actions are consecutive integers. The expected cost can be alternatively expressed
using the cost matrix, A. In this case

L̄(w, z) = wAz, (9.58)

in which the product wAz yields a scalar value that is precisely (9.57). To see this,
first consider the product Az. This yields an m-dimensional vector in which the
ith element is the expected cost that P1 would receive if it tries u = i. Thus, it
appears that P1 views P2 as a nature player under the probabilistic model. Once
w and Az are multiplied, a scalar value is obtained, which averages the costs in
the vector Az according the probabilities of w.

Let W and Z denote the set of all randomized strategies for P1 and P2, re-
spectively. These spaces include strategies that are equivalent to the deterministic
strategies considered in Section 9.3.2 by assigning probability one to a single action.
Thus, W and Z can be considered as expansions of the set of possible strategies
in comparison to what was available in the deterministic setting. Using W and Z,
randomized security strategies for P1 and P2 are defined as

w∗ = argmin
w∈W

{

max
z∈Z

{

L̄(w, z)
}}

(9.59)

and
z∗ = argmax

z∈Z

{

min
w∈W

{

L̄(w, z)
}}

, (9.60)

respectively. These should be compared to (9.44) and (9.46). The differences are
that the space of strategies has been expanded, and expected cost is now used.

The randomized upper value is defined as

L∗
= max

z∈Z

{

L̄(w∗, z)
}

, (9.61)

466 S. M. LaValle: Planning Algorithms

and the randomized lower value is

L∗ = min
w∈W

{

L̄(w, z∗)
}

. (9.62)

SinceW and Z include the deterministic security strategies, L∗ ≤ L
∗
and L∗ ≥ L∗.

These inequalities imply that the randomized security strategies may have some
hope in closing the gap between the two values in general.

The most fundamental result in zero-sum game theory was shown by von Neu-
mann [956, 957], and it states that L∗ = L∗

for any game in Formulation 9.7. This
yields the randomized value L∗ = L∗ = L∗

for the game. This means that there
will never be expected regret if the players stay with their security strategies. If
the players apply their randomized security strategies, then a randomized saddle
point is obtained. This saddle point cannot be seen as a simple pattern in the
matrix A because it instead exists over W and Z.

The guaranteed existence of a randomized saddle point is an important result
because it demonstrates the value of randomization when making decisions against
an intelligent opponent. In Example 9.7, it was intuitively argued that random-
ization seems to help when playing against an intelligent adversary. When playing
the game repeatedly with a deterministic strategy, the other player could learn
the strategy and win every time. Once a randomized strategy is used, the players
will not experience regret.

9.3.3.2 Computation of randomized saddle points

So far it has been established that a randomized saddle point always exists, but
how can one be found? Two key observations enable a combinatorial solution to
the problem:

1. The security strategy for each player can be found by considering only de-
terministic strategies for the opposing player.

2. If the strategy for the other player is fixed, then the expected cost is a linear
function of the undetermined probabilities.

First consider the problem of determining the security strategy for P1. The first
observation means that (9.59) does not need to consider randomized strategies for
P2. Inside of the argmin, w is fixed. What randomized strategy, z ∈ Z, maximizes
L̄(w, z) = wAz? If w is fixed, then wA can be treated as a constant n-dimensional
vector, s. This means L̄(w, z) = s · z, in which · is the inner (dot) product. Now
the task is to select z to maximize s · z. This involves selecting the largest element
of s; suppose this is si. The maximum cost over all z ∈ Z is obtained by placing
all of the probability mass at action i. Thus, the strategy zi = 1 and zj = 0 for
i 6= j gives the highest cost, and it is deterministic.

Using the first observation, for each w ∈ W , only n possible responses by P2

need to be considered. These are the n deterministic strategies, each of which
assigns zi = 1 for a unique i ∈ {1, . . . , n}.

9.3. TWO-PLAYER ZERO-SUM GAMES 467

Now consider the second observation. The expected cost, L̄(w, z) = wAz, is
a linear function of w, if z is fixed. Since z only needs to be fixed at n different
values due to the first observation, w is selected at the point at which the smallest
maximum value among the n linear functions occurs. This is the minimum value
of the upper envelope of the collection of linear functions. Such envelopes were
mentioned in Section 6.5.2. Example 9.16 will illustrate this. The domain for
this optimization can conveniently be set as a triangle in Rm−1. Even though
W ⊂ Rm, the last coordinate, wm, is not needed because it is always wm =
1− (w1 + · · ·+wm−1). The resulting optimization falls under linear programming,
for which many combinatorial algorithms exist [259, 264, 664, 731].

In the explanation above, there is nothing particular to P1 when trying to find
its security strategy. The same method can be applied to determine the security
strategy for P2; however, every minimization is replaced by a maximization, and
vice versa. In summary, the min in (9.60) needs only to consider the deterministic
strategies in W . If w becomes fixed, then L̄(w, z) = wAz is once again a linear
function, but this time it is linear in z. The best randomized action is chosen by
finding the point z ∈ Z that gives the highest minimum value among m linear
functions. This is the minimum value of the lower envelope of the collection of
linear functions. The optimization occurs over Rn−1 because the last coordinate,
zn, is obtained directly from zn = 1− (z1 + · · ·+ zn−1).

This computation method is best understood through an example.

Example 9.16 (Computing a Randomized Saddle Point) The simplest case
is when both players have only two actions. Let the cost matrix be defined as

V

U
3 0
-1 1

. (9.63)

Consider computing the security strategy for P1. Note that W and Z are only
one-dimensional subsets of R2. A randomized strategy for P1 is w = [w1 w2],
with w1 ≥ 0, w2 ≥ 0, and w1 + w2 = 1. Therefore, the domain over which
the optimization is performed is w1 ∈ [0, 1] because w2 can always be derived
as w2 = 1 − w1. Using the first observation above, only the two deterministic
strategies for P2 need to be considered. When considered as linear functions of w,
these are

(3)w1 + (−1)(1− w1) = 4w1 − 1 (9.64)

for z1 = 1 and
(0)w1 + (1)(1− w1) = 1− w1 (9.65)

for z2 = 1. The lines are plotted in Figure 9.4a. The security strategy is determined
by the minimum point along the upper envelope shown in the figure. This is
indicated by the thickened line, and it is always a piecewise-linear function in
general. The lowest point occurs at w1 = 2/5, and the resulting value is L∗ = 3/5.
Therefore, w∗ = [2/5 3/5].

468 S. M. LaValle: Planning Algorithms

0 1

w1

2/5

z1 = 1

z2 = 1

L∗ = 3/5

−1

0

2

3

1

z1

0 11/5

L∗ = 3/5

w1 = 1

3

1

0

−1

2

w2 = 1

(a) (b)

Figure 9.4: (a) Computing the randomized security strategy, w∗, for P1. (b)
Computing the randomized security strategy, z∗, for P2.

A similar procedure can be used to obtain z∗. The lines that correspond to
the deterministic strategies of P1 are shown in Figure 9.4b. The security strategy
is obtained by finding the maximum value along the lower envelope of the lines,
which is shown as the thickened line in the figure. This results in z∗ = [1/5 4/5]T ,
and once again, the value is observed as L∗ = 3/5 (this must coincide with the
previous one because the randomized upper and lower values are the same!). �

This procedure appears quite simple if there are only two actions per player.
If n = m = 100, then the upper and lower envelopes are piecewise-linear functions
in R99. This may be computationally impractical because all existing linear pro-
gramming algorithms have running time at least exponential in dimension [264].

9.4 Nonzero-Sum Games

This section parallels the development of Section 9.3, except that the more general
case of nonzero-sum games is considered. This enables games with any desired
degree of conflict to be modeled. Some decisions may even benefit all players.
One of the main applications of the subject is in economics, where it helps to
explain the behavior of businesses in competition.

The saddle-point solution will be replaced by the Nash equilibrium, which again
is based on eliminating regret. Since the players do not necessarily oppose each
other, it is possible to model a game that involves any number of players. For
nonzero games, new difficulties arise, such as the nonuniqueness of Nash equilibria
and the computation of randomized Nash equilibria does not generally fit into

9.4. NONZERO-SUM GAMES 469

linear programming.

9.4.1 Two-Player Games

To help make the connection to Section 9.3 smoother, two-player games will be
considered first. This case is also easier to understand because the notation is
simpler. The ideas are then extended without difficulty from two players to many
players. The game is formulated as follows.

Formulation 9.8 (A Two-Player Nonzero-Sum Game)

1. The same components as in Formulation 9.7, except the cost function.

2. A function, L1 : U × V → R ∪ {∞}, called the cost function for P1.

3. A function, L2 : U × V → R ∪ {∞}, called the cost function for P2.

The only difference with respect to Formulation 9.7 is that now there are two,
independent cost functions, L1 and L2, one for each player. Each player would
like to minimize its cost. There is no maximization in this problem; that appeared
in zero-sum games because P2 had opposing interests from P1. A zero-sum game
can be modeled under Formulation 9.7 by setting L1 = L and L2 = −L.

Paralleling Section 9.3, first consider applying deterministic strategies to solve
the game. As before, one possibility is that a player can apply its security strategy.
To accomplish this, it does not even need to look at the cost function of the other
player. It seems somewhat inappropriate, however, to neglect the consideration of
both cost functions when making a decision. In most cases, the security strategy
results in regret, which makes it inappropriate for nonzero-sum games.

A strategy that avoids regret will now be given. A pair (u∗, v∗) of actions is
defined to be a Nash equilibrium if

L1(u
∗, v∗) = min

u∈U

{

L1(u, v
∗)
}

(9.66)

and
L2(u

∗, v∗) = min
v∈V

{

L2(u
∗, v)

}

. (9.67)

These expressions imply that neither P1 nor P2 has regret. Equation (9.66) indi-
cates that P1 is satisfied with its action, u∗, given the action, v∗, chosen by P2.
P1 cannot reduce its cost any further by changing its action. Likewise, (9.67)
indicates that P2 is satisfied with its action v∗.

The game in Formulation 9.8 can be completely represented using two cost
matrices. Let A and B denote the cost matrices for P1 and P2, respectively.
Recall that Figure 9.2 showed a pattern for detecting a saddle point. A Nash
equilibrium can be detected as shown in Figure 9.5. Think about the relationship
between the two. If A = −B, then B can be negated and superimposed on top
of A. This will yield the pattern in Figure 9.2 (each ≥ becomes ≤ because of

470 S. M. LaValle: Planning Algorithms

A:

≥

L∗
a

≥

B: ≥ L∗
b ≥

Figure 9.5: A Nash equilibrium can be detected in a pair of matrices by finding
some (i, j) such that L∗

a = L1(i, j) is the lowest among all elements in column j
of A, and L∗

b = L2(i, j) is the lowest among all elements in row i of B. Compare
this with Figure 9.2.

negation). The values L∗
a and L∗

b coincide in this case. This observation implies
that if A = −B, then the Nash equilibrium is actually the same concept as a
saddle point. It applies, however, to much more general games.

Example 9.17 (A Deterministic Nash Equlibrium) Consider the game spec-
ified by the cost matrices A and B:

A :

V

U
9 4 7
6 -1 5
1 4 2

B :

V

U
2 1 6
5 0 2
2 2 5

. (9.68)

By applying (9.66) and (9.67), or by using the patterns in Figure 9.5, it can be
seen that u = 3 and v = 1 is a Nash equilibrium. The resulting costs are L1 = 1
and L2 = 2. Another Nash equilibrium appears at u = 2 and v = 2. This yields
costs L1 = −1 and L2 = 0, which is better for both players.

For zero-sum games, the existence of multiple saddle points did not cause any
problem; however, for nonzero-sum games, there are great troubles. In the ex-
ample shown here, one Nash equilibrium is clearly better than the other for both
players. Therefore, it may seem reasonable that a rational DM would choose the
better one. The issue of multiple Nash equilibria will be discussed next. �

9.4.1.1 Dealing with multiple Nash equilibria

Example 9.17 was somewhat disheartening due to the existence of multiple Nash
equilibria. In general, there could be any number of equilibria. How can each
player know which one to play? If they each choose a different one, they are not
guaranteed to fall into another equilibrium as in the case of saddle points of zero-
sum games. Many of the equilibria can be eliminated by using Pareto optimality,
which was explained in Section 9.1.1 and also appeared in Section 7.7.2 as a way

9.4. NONZERO-SUM GAMES 471

to optimally coordinate multiple robots. The idea is to formulate the selection as
a multi-objective optimization problem, which fits into Formulation 9.2.

Consider two-dimensional vectors of the form (xi, yi), in which x and y repre-
sent the costs L1 and L2 obtained under the implementation of a Nash equilibrium
denoted by πi. For two different equilibria π1 and π2, the cost vectors (x1, y1) and
(x2, y2) are obtained. In Example 9.17, these were (1, 2) and (−1, 0). In general, π1
is said to be better than π2 if x1 ≤ x2, y1 ≤ y2, and at least one of the inequalities
is strict. In Example 9.17, the equilibrium that produces (−1, 0) is clearly better
than obtaining (1, 2) because both players benefit.

The definition of “better” induces a partial ordering on the space of Nash
equilibria. It is only partial because some vectors are incomparable. Consider, for
example, (−1, 1) and (1,−1). The first one is preferable to P1, and the second is
preferred by P2. In game theory, the Nash equilibria that are minimal with respect
to this partial ordering are called admissible. They could alternatively be called
Pareto optimal.

The best situation is when a game has one Nash equilibrium. If there are
multiple Nash equilibria, then there is some hope that only one of them is admis-
sible. In this case, it is hoped that the rational players are intelligent enough to
figure out that any nonadmissible equilibria should be discarded. Unfortunately,
there are many games that have multiple admissible Nash equilibria. In this case,
analysis of the game indicates that the players must communicate or collaborate
in some way to eliminate the possibility of regret. Otherwise, regret is unavoid-
able in the worst case. It is also possible that there are no Nash equilibria, but,
fortunately, by allowing randomized strategies, a randomized Nash equilibrium is
always guaranteed to exist. This will be covered after the following two examples.

Example 9.18 (The Battle of the Sexes) Consider a game specified by the
cost matrices A and B:

A :

V

U
-2 0
0 -1

B :

V

U
-1 0
0 -2

. (9.69)

This is a famous game called the “Battle of the Sexes.” Suppose that a man and
a woman have a relationship, and they each have different preferences on how to
spend the evening. The man prefers to go shopping, and the woman prefers to
watch a football match. The game involves selecting one of these two activities.
The best case for either one is to do what they prefer while still remaining together.
The worst case is to select different activities, which separates the couple. This
game is somewhat unrealistic because in most situations some cooperation between
them is expected.

Both u = v = 1 and u = v = 2 are Nash equilibria, which yield cost vectors
(−2,−1) and (−1,−2), respectively. Neither solution is better than the other;
therefore, they are both admissible. There is no way to avoid the possibility of
regret unless the players cooperate (you probably already knew this). �

472 S. M. LaValle: Planning Algorithms

The following is one of the most famous nonzero-sum games.

Example 9.19 (The Prisoner’s Dilemma) The following game is very simple
to express, yet it illustrates many interesting issues. Imagine that a heinous crime
has been committed by two people. The authorities know they are guilty, but they
do not have enough evidence to convict them. Therefore, they develop a plan to
try to trick the suspects. Each suspect (or player) is placed in an isolated prison
cell and given two choices. Each player can cooperate with the authorities, u = 1
or v = 1, or refuse, u = 2 or v = 2. By cooperating, the player admits guilt and
turns over evidence to the authorities. By refusing, the player claims innocence
and refuses to help the authorities.

The cost Li represents the number of years that the player will be sentenced
to prison. The cost matrices are assigned as

A :

V

U
8 0
30 2

B :

V

U
8 30
0 2

. (9.70)

The motivation is that both players receive 8 years if they both cooperate, which is
the sentence for being convicted of the crime and being rewarded for cooperating
with the authorities. If they both refuse, then they receive 2 years because the
authorities have insufficient evidence for a longer term. The interesting cases occur
if one refuses and the other cooperates. The one who refuses is in big trouble
because the evidence provided by the other will be used against him. The one
who cooperates gets to go free (the cost is 0); however, the other is convicted on
the evidence and spends 30 years in prison.

What should the players do? What would you do? If they could make a
coordinated decision, then it seems that a good choice would be for both to refuse,
which results in costs (2, 2). In this case, however, there would be regret because
each player would think that he had a chance to go free (receiving cost 0 by
refusing). If they were to play the game a second time, they might be inclined to
change their decisions.

The Nash equilibrium for this problem is for both of them to cooperate, which
results in (8, 8). Thus, they pay a price for not being able to communicate and
coordinate their strategy. This solution is also a security strategy for the players,
because it achieves the lowest cost using worst-case analysis. �

9.4.1.2 Randomized Nash equilibria

What happens if a game has no Nash equilibrium over the space of deterministic
strategies? Once again the problem can be alleviated by expanding the strategy
space to include randomized strategies. In Section 9.3.3 it was explained that ev-
ery zero-sum game under Formulation 9.7 has a randomized saddle point on the
space of randomized strategies. It was shown by Nash that every nonzero-sum

9.4. NONZERO-SUM GAMES 473

game under Formulation 9.8 has a randomized Nash equilibrium [730]. This is a
nice result; however, there are a couple of concerns. There may still exist other
admissible equilibria, which means that there is no reliable way to avoid regret un-
less the players collaborate. The other concern is that randomized Nash equilibria
unfortunately cannot be computed using the linear programming approach of Sec-
tion 9.3.3. The required optimization is instead a form of nonlinear programming
[94, 664, 731], which does not necessarily admit a nice, combinatorial solution.

Recall the definition of randomized strategies from Section 9.3.3. For a pair
(w, z) of randomized strategies, the expected costs, L̄1(w, z) and L̄2(w, z), can be
computed using (9.57). A pair (w∗, z∗) of strategies is said to be a randomized
Nash equilibrium if

L̄1(w∗, z∗) = min
w∈W

{

L̄1(w, z∗)
}

(9.71)

and

L̄2(w∗, z∗) = min
z∈Z

{

L̄2(w∗, z)
}

. (9.72)

In game-theory literature, this is usually referred to as a mixed Nash equilibrium.
Note that (9.71) and (9.72) are just generalizations of (9.66) and (9.67) from the
space of deterministic strategies to the space of randomized strategies.

Using the cost matrices A and B, the Nash equilibrium conditions can be
written as

w∗Az∗ = min
w∈W

{

wAz∗
}

(9.73)

and

w∗Bz∗ = min
z∈Z

{

w∗Bz
}

. (9.74)

Unfortunately, the computation of randomized Nash equilibria is considerably
more challenging than computing saddle points. The main difficulty is that Nash
equilibria are not necessarily security strategies. By using security strategies, it is
possible to decouple the decisions of the players into separate linear programming
problems, as was seen in Example 9.16. For the randomized Nash equilibrium, the
optimization between the players remains coupled. The resulting optimization is
often referred to as the linear complementarity problem. This can be formulated
as a nonlinear programming problem [664, 731], which means that it is a nonlinear
optimization that involves both equality and inequality constraints on the domain
(in this particular case, a bilinear programming problem is obtained [59]).

Example 9.20 (Finding a Randomized Nash Equilibrium) To get an idea
of the kind of optimization that is required, recall Example 9.18. A randomized
Nash equilibrium that is distinct from the two deterministic equilibria can be
found. Using the cost matrices from Example 9.18, the expected cost for P1 given

474 S. M. LaValle: Planning Algorithms

randomized strategies w and z is

L̄1(w, z) = wAz

=
(
w1 w2

)
(
−2 0
0 −1

)(
z1
z2

)

=− 2w1z1 − w2z2

=− 3w1z1 + w1 + z1,

(9.75)

in which the final step uses the fact that w2 = 1− w1 and z2 = 1− z1. Similarly,
the expected cost for P2 is

L̄2(w, z) = wBz

=
(
w1 w2

)
(
−1 0
0 −2

)(
z1
z2

)

=− w1z1 − 2w2z2

=− 3w1z1 + 2w1 + 2z1.

(9.76)

If z is fixed, then the final equation in (9.75) is linear in w; likewise, if w is
fixed, then (9.76) is linear in z. In the case of computing saddle points for zero-
sum games, we were allowed to make this assumption; however, it is not possible
here. We must choose (w∗, z∗) to simultaneously optimize (9.75) while z = z∗ and
(9.76) while w = w∗.

It turns out that this problem is simple enough to solve with calculus. Using
the classical optimization method of taking derivatives, a candidate solution can
be found by computing

∂L̄1(w1, z1)

∂w1

= 1− 3z1 (9.77)

and
∂L̄2(w1, z1)

∂z1
= 2− 3w1. (9.78)

Extrema occur when both of these simultaneously become 0. Solving 1− 3z1 = 0
and 2− 3w1 = 0 yields (w∗, z∗) = (2/3, 1/3), which is a randomized Nash equilib-
rium. The deterministic Nash equilibria are not detected by this method because
they occur on the boundary of W and Z, where the derivative is not defined. �

The computation method in Example 9.20 did not appear too difficult because
there were only two actions per player, and half of the matrix costs were 0. In gen-
eral, two complicated equations must be solved simultaneously. The expressions,
however, are always second-degree polynomials. Furthermore, they each become
linear with respect to the other variables if w or z is held fixed.

9.4. NONZERO-SUM GAMES 475

Summary of possible solutions The solution possibilities to remember for a
nonzero-sum game under Formulation 9.8 are as follows.

1. There may be multiple, admissible (deterministic) Nash equilibria.

2. There may be no (deterministic) Nash equilibria.

3. There is always at least one randomized Nash equilibrium.

9.4.2 More Than Two Players

The ideas of Section 9.4.1 easily generalize to any number of players. The main
difficulty is that complicated notation makes the concepts appear more difficult.
Keep in mind, however, that there are no fundamental differences. A nonzero-sum
game with n players is formulated as follows.

Formulation 9.9 (An n-Player Nonzero-Sum Game)

1. A set of n players, P1, P2, . . ., Pn.

2. For each player Pi, a finite, nonempty set U i called the action space for Pi.
For convenience, assume that each U i is a set of consecutive integers from 1
to |U i|. Each ui ∈ U i is referred to as an action of Pi.

3. For each player Pi, a function, Li : U
1 × U2 × · · · × Un → R ∪ {∞} called

the cost function for Pi.

A matrix formulation of the costs is no longer possible because there are too many
dimensions. For example, if n = 3 and |U i| = 2 for each player, then Li(u

1, u2, u3)
is specified by a 2 × 2 × 2 cube of 8 entries. Three of these cubes are needed to
specify the game. Thus, it may be helpful to just think of Li as a multivariate
function and avoid using matrices.4

The Nash equilibrium idea generalizes by requiring that each Pi experiences
no regret, given the actions chosen by the other n − 1 players. Formally, a set
(u1∗, . . . , un∗) of actions is said to be a (deterministic) Nash equilibrium if

Li(u
1∗, . . . , ui∗, . . . , un∗) = min

ui∈U i

{

Li(u
1∗, . . . , u(i−1)∗, ui, u(i+1)∗, . . . , un∗)

}

(9.79)

for every i ∈ {1, . . . , n}.
For n > 2, any of the situations summarized at the end of Section 9.4.1 can

occur. There may be no deterministic Nash equilibria or multiple Nash equilib-
ria. The definition of an admissible Nash equilibrium is extended by defining the
notion of better over n-dimensional cost vectors. Once again, the minimal vectors

4If you enjoy working with tensors, these could be used to capture n-player cost functions
[107].

476 S. M. LaValle: Planning Algorithms

with respect to the resulting partial ordering are considered admissible (or Pareto
optimal). Unfortunately, multiple admissible Nash equilibria may still exist.

It turns out that for any game under Formulation 9.9, there exists a randomized
Nash equilibrium. Let zi denote a randomized strategy for Pi. The expected cost
for each Pi can be expressed as

L̄i(z1, z2, . . . , zn) =

m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

Li(i1, i2, . . . , in)z
1
i1
z2i2 · · · znin . (9.80)

Let Zi denote the space of randomized strategies for Pi. An assignment,
(z1∗, . . . , zn∗), of randomized strategies to all of the players is called a random-
ized Nash equilibrium if

L̄i(z1∗, . . . , zi∗, . . . , zn∗) = min
zi∈Zi

{

L̄i(z1∗, . . . , z(i−1)∗, zi, z(i+1)∗, . . . , zn∗)
}

(9.81)

for all i ∈ {1, . . . , n}.
As might be expected, computing a randomized Nash equilibrium for n >

2 is even more challenging than for n = 2. The method of Example 9.20 can
be generalized to n-player games; however, the expressions become even more
complicated. There are n equations, each of which appears linear if the randomized
strategies are fixed for the other n−1 players. The result is a collection of n-degree
polynomials over which n optimization problems must be solved simultaneously.

Example 9.21 (A Three-Player Nonzero-Sum Game) Suppose there are three
players, P1, P2, and P3, each of which has two actions, 1 and 2. A deterministic
strategy is specified by a vector such as (1, 2, 1), which indicates u1 = 1, u2 = 2,
and u3 = 1.

Now some costs will be defined. For convenience, let

L(i, j, k) =
(

L1(i, j, k), L2(i, j, k), L3(i, j, k)
)

(9.82)

for each i, j, k ∈ {1, 2}. Let the costs be

L(1, 1, 1) = (1, 1,−2) L(1, 1, 2) = (−4, 3, 1)
L(1, 2, 1) = (2,−4, 2) L(1, 2, 2) = (−5,−5, 10) (9.83)

L(2, 1, 1) = (3,−2,−1) L(2, 1, 2) = (−6,−6, 12)
L(2, 2, 1) = (2, 2,−4) L(2, 2, 2) = (−2, 3,−1).

There are two deterministic Nash equilibria, which yield the costs (2,−4, 2) and
(3,−2,−1). These can be verified using (9.79). Each player is satisfied with the
outcome given the actions chosen by the other players. Unfortunately, both Nash
equilibria are both admissible. Therefore, some collaboration would be needed
between the players to ensure that no regret will occur. �

9.5. DECISION THEORY UNDER SCRUTINY 477

9.5 Decision Theory Under Scrutiny

Numerous models for decision making were introduced in this chapter. These pro-
vide a foundation for planning under uncertainty, which is the main focus of Part
III. Before constructing planning models with this foundation, it is important to
critically assess how appropriate it may be in applications. You may have had
many questions while reading Sections 9.1 to 9.4. How are the costs determined?
Why should we believe that optimizing the expected cost is the right thing to do?
What happens if prior probability distributions are not available? Is worst-case
analysis too conservative? Can we be sure that players in a game will follow the
assumed rational behavior? Is it realistic that players know each other’s cost func-
tions? The purpose of this section is to help shed some light on these questions. A
building is only as good as its foundation. Any mistakes made by misunderstand-
ing the limitations of decision theory will ultimately work their way into planning
formulations that are constructed from them.

9.5.1 Utility Theory and Rationality

This section provides some justification for using cost functions and then minimiz-
ing their expected value under Formulations 9.3 and 9.4. The resulting framework
is called utility theory, which is usually formulated using rewards instead of costs.
As stated in Section 9.1.1, a cost can be converted into a reward by multiplying by
−1 and then swapping each maximization with minimization. We will therefore
talk about a reward R with the intuition that a higher reward is better.

9.5.1.1 Comparing rewards

Imagine assigning reward values to various outcomes of a decision-making process.
In some applications numerical values may come naturally. For example, the re-
ward might be the amount of money earned in a financial investment. In robotics
applications, one could negate time to execute a task or the amount of energy con-
sumed. For example, the reward could indicate the amount of remaining battery
life after a mobile robot builds a map.

In some applications the source of rewards may be subjective. For example,
what is the reward for washing dishes, in comparison to sweeping the floor? Each
person would probably assign different rewards, which may even vary from day
to day. It may be based on their enjoyment or misery in performing the task,
the amount of time each task would take, the perceptions of others, and so on.
If decision theory is used to automate the decision process for a human “client,”
then it is best to consult carefully with the client to make sure you know their
preferences. In this situation, it may be possible to sort their preferences and then
assign rewards that are consistent with the ordering.

Once the rewards are assigned, consider making a decision under Formulation
9.1, which does not involve nature. Each outcome corresponds directly to an
action, u ∈ U . If the rewards are given by R : U → R, then the cost, L, can be

478 S. M. LaValle: Planning Algorithms

defined as L(u) = −R(u) for every u ∈ U . Satisfying the client is then a matter
of choosing u to minimize L.

Now consider a game against nature. The decision now involves comparing
probability distributions over the outcomes. The space of all probability distri-
butions may be enormous, but this is simplified by using expectation to map
each probability distribution (or density) to a real value. The concern should be
whether this projection of distributions onto real numbers will fail to reflect the
true preferences of the client. The following example illustrates the effect of this.

Example 9.22 (Do You Like to Gamble?) Suppose you are given three choices:

1. You can have 1000 Euros.

2. We will toss an unbiased coin, and if the result is heads, then you will receive
2000 Euros. Otherwise, you receive nothing.

3. With probability 2/3, you can have 3000 Euros; however, with probability
1/3, you have to give me 3000 Euros.

The expected reward for each of these choices is 1000 Euros, but would you really
consider these to be equivalent? Your love or disdain for gambling is not being
taken into account by the expectation. How should such an issue be considered in
games against nature? �

To begin to fix this problem, it is helpful to consider another scenario. Many
people would probably agree that having more money is preferable (if having too
much worries you, then you can always give away the surplus to your favorite char-
ities). What is interesting, however, is that being wealthy decreases the perceived
value of money. This is illustrated in the next example.

Example 9.23 (Reality Television) Suppose you are lucky enough to appear
on a popular reality television program. The point of the show is to test how far
you will go in making a fool out of yourself, or perhaps even torturing yourself,
to earn some money. You are asked to do some unpleasant task (such as eating
cockroaches, or holding your head under water for a long time, and so on.). Let
u1 be the action to agree to do the task, and let u2 mean that you decline the
opportunity. The prizes are expressed in U.S. dollars. Imagine that you are a
starving student on a tight budget.

Below are several possible scenarios that could be presented on the television
program. Consider how you would react to each one.

1. Suppose that u1 earns you $1 and u2 earns you nothing. Purely optimizing
the reward would lead to choosing u1, which means performing the unpleas-
ant task. However, is this worth $1? The problem so far is that we are not
taking into account the amount of discomfort in completing a task. Perhaps
it might make sense to make a reward function that shifts the dollar values

9.5. DECISION THEORY UNDER SCRUTINY 479

by subtracting the amount for which you would be just barely willing to
perform the task.

2. Suppose that u1 earns you $10,000 and u2 earns you nothing. $10,000 is
assumed to be an enormous amount of money, clearly worth enduring any
torture inflicted by the television program. Thus, u1 is preferable.

3. Now imagine that the television host first gives you $10 million just for
appearing on the program. Are you still willing to perform the unpleasant
task for an extra $10,000? Probably not. What is happening here? Your
sense of value assigned to money seems to decrease as you get more of it,
right? It would not be too interesting to watch the program if the contestants
were all wealthy oil executives.

4. Suppose that you have performed the task and are about to win the prize.
Just to add to the drama, the host offers you a gambling opportunity. You
can select action u1 and receive $10,000, or be a gambler by selecting u2
and have probability 1/2 of winning $25,000 by the tossing of a fair coin.
In terms of the expected reward, the clear choice is u2. However, you just
completed the unpleasant task and expect to earn money. The risk of losing
it all may be intolerable. Different people will have different preferences in
this situation.

5. Now suppose once again that you performed the task. This time your choices
are u1, to receive $100, or u2, to have probability 1/2 of receiving $250 by
tossing a fair coin. The host is kind enough, though, to let you play 100
times. In this case, the expected totals for the two actions are $10,000 and
$12,500, respectively. This time it seems clear that the best choice is to
gamble. After 100 independent trials, we would expect that, with extremely
high probability, over $10,000 would be earned. Thus, reasoning by expected-
case analysis seems valid if we are allowed numerous, independent trials. In
this case, with high probability a value close to the expected reward should
be received.

�

Based on these examples, it seems that the client or evaluator of the decision-
making system must indicate preferences between probability distributions over
outcomes. There is a formal way to ensure that once these preferences are assigned,
a cost function can be designed for which its expectation faithfully reflects the
preferences over distributions. This results in utility theory, which involves the
following steps:

1. Require that the client is rational when assigning preferences. This notion
is defined through axioms.

480 S. M. LaValle: Planning Algorithms

2. If the preferences are assigned in a way that is consistent with the axioms,
then a utility function is guaranteed to exist. When expected utility is
optimized, the preferences match exactly those of the client.

3. The cost function can be derived from the utility function.

The client must specify preferences among probability distributions of out-
comes. Suppose that Formulation 9.2 is used. For convenience, assume that U and
Θ are finite. Let X denote a state space based on outcomes.5 Let f : U ×Θ→ X
denote a mapping that assigns a state to every outcome. A simple example is to
declare that X = U × Θ and make f the identity map. This makes the outcome
space and state space coincide. It may be convenient, though, to use f to collapse
the space of outcomes down to a smaller set. If two outcomes map to the same
state using f , then it means that the outcomes are indistinguishable as far as
rewards or costs are concerned.

Let z denote a probability distribution over X, and let Z denote the set of all
probability distributions over X. Every z ∈ Z is represented as an n-dimensional
vector of probabilities in which n = |X|; hence, it is considered as an element of Rn.
This makes it convenient to “blend” two probability distributions. For example,
let α ∈ (0, 1) be a constant, and let z1 and z2 be any two probability distributions.
Using scalar multiplication, a new probability distribution, αz1 + (1 − α)z2, is
obtained, which is a blend of z1 and z2. Conveniently, there is no need to normalize
the result. It is assumed that z1 and z2 initially have unit magnitude. The blend
has magnitude α + (1− α) = 1.

The modeler of the decision process must consult the client to represent prefer-
ences among elements of Z. Let z1 ≺ z2 mean that z2 is strictly preferred over z1.
Let z1 ≈ z2 mean that z1 and z2 are equivalent in preference. Let z1 � z2 mean
that either z1 ≺ z2 or z1 ≈ z2. The following example illustrates the assignment
of preferences.

Example 9.24 (Indicating Preferences) Suppose that U = Θ = {1, 2}, which
leads to four possible outcomes: (1, 1), (1, 2), (2, 1), and (2, 2). Imagine that nature
represents a machine that generates 1 or 2 according to a probability distribution.
The action is to guess the number that will be generated by the machine. If you
pick the same number, then you win that number of gold pieces. If you do not
pick the same number, then you win nothing, but also lose nothing.

Consider the construction of the state space X by using f . The outcomes
(2, 1) and (1, 2) are identical concerning any conceivable reward. Therefore, these
should map to the same state. The other two outcomes are distinct. The state
space therefore needs only three elements and can be defined as X = {0, 1, 2}.
Let f(2, 1) = f(1, 2) = 0, f(1, 1) = 1, and f(2, 2) = 2. Thus, the last two states
indicate that some gold will be earned.

The set Z of probability distributions over X is now considered. Each z ∈ Z is
a three-dimensional vector. As an example, z1 = [1/2 1/4 1/4] indicates that the

5In most utility theory literature, this is referred to as a reward space, R [89].

9.5. DECISION THEORY UNDER SCRUTINY 481

state will be 0 with probability 1/2, 1 with probability 1/4, and 2 with probability
1/4. Suppose z2 = [1/3 1/3 1/3]. Which distribution would you prefer? It seems
in this case that z2 is uniformly better than z1 because there is a greater chance
of winning gold. Thus, we declare z1 ≺ z2. The distribution z3 = [1 0 0] seems
to be the worst imaginable. Hence, we can safely declare z3 ≺ z1 and z1 ≺ z2.

The procedure of determining the preferences can become quite tedious for
complicated problems. In the current example, Z is a 2D subset of R3. This
subset can be partitioned into a finite set of regions over which the client may be
able to clearly indicate preferences. One of the major criticisms of this framework
is the impracticality of determining preferences over Z [831].

After the preferences are determined, is there a way to ensure that a real-value
function on X exists for which the expected value exactly reflects the preferences?
If the axioms of rationality are satisfied by the assignment of preferences, then the
answer is yes. These axioms are covered next. �

9.5.1.2 Axioms of rationality

To meet the goal of designing a utility function, it turns out that the preferences
must follow rules called the axioms of rationality. They are sensible statements of
consistency among the preferences. As long as these are followed, then a utility
function is guaranteed to exist (detailed arguments appear in [268, 831]). The
decision maker is considered rational if the following axioms are followed when
defining ≺ and ≈:6

1. If z1, z2 ∈ Z, then either z1 � z2 or z2 � z1.
“You must be able to make up your mind.”

2. If z1 � z2 and z2 � z3, then z1 � z3.
“Preferences must be transitive.”

3. If z1 ≺ z2, then
αz1 + (1− α)z3 ≺ αz2 + (1− α)z3, (9.84)

for any z3 ∈ Z and α ∈ (0, 1).
“Evenly blending in a new distribution does not alter preference.”

4. If z1 ≺ z2 ≺ z3, then there exists some α ∈ (0, 1) and β ∈ (0, 1) such that

αz1 + (1− α)z3 ≺ z2 (9.85)

and
z2 ≺ βz1 + (1− β)z3. (9.86)

“There is no heaven or hell.”

6Alternative axiom systems exist [268, 839].

482 S. M. LaValle: Planning Algorithms

Each axiom has an intuitive interpretation that makes practical sense. The first
one simply indicates that the preference direction can always be inferred for a pair
of distributions. The second axiom indicates that preferences must be transitive.7

The last two axioms are somewhat more complicated. In the third axiom, z2 is
strictly preferred to z1. An attempt is made to cause confusion by blending in
a third distribution, z3. If the same “amount” of z3 is blended into both z1 and
z2, then the preference should not be affected. The final axiom involves z1, z2,
and z3, each of which is strictly better than its predecessor. The first equation,
(9.85), indicates that if z2 is strictly better than z1, then a tiny amount of z3 can
be blended into z1, with z2 remaining preferable. If z3 had been like “heaven” (i.e.,
infinite reward), then this would not be possible. Similarly, (9.86) indicates that
a tiny amount of z1 can be blended into z3, and the result remains better than z2.
This means that z1 cannot be “hell,” which would have infinite negative reward.8

9.5.1.3 Constructing a utility function

If the preferences have been determined in a way consistent with the axioms, then
it can be shown that a utility function always exists. This means that there exists
a function U : X → R such that, for all z1, z2 ∈ Z,

z1 ≺ z2 if and only if Ez1 [U] < Ez2 [U], (9.87)

in which Ezi denotes the expected value of U , which is being treated as a random
variable under the probability distribution zi. The existence of U implies that it
is safe to determine the best action by maximizing the expected utility.

A reward function can be defined using a utility function, U , as R(u, θ) =
U(f(u, θ)). The utility function can be converted to a cost function as L(u, θ) =
−R(u, θ) = −U(f(u, θ)). Minimizing the expected cost, as was recommended
under Formulations 9.3 and 9.4 with probabilistic uncertainty, now seems justified
under the assumption that U was constructed correctly to preserve preferences.

Unfortunately, establishing the existence of a utility function does not produce
a systematic way to construct it. In most circumstances, one is forced to design U
by a trial-and-error process that involves repeatedly checking the preferences. In
the vast majority of applications, people create utility and cost functions without
regard to the implications discussed in this section. Thus, undesirable conclusions
may be reached in practice. Therefore, it is important not to be too confident
about the quality of an optimal decision rule.

Note that if worst-case analysis had been used, then most of the problems
discussed here could have been avoided. Worst-case analysis, however, has its
weaknesses, which will be discussed in Section 9.5.3.

7For some reasonable problems, however, transitivity is not desirable. See the Candorcet and
Simpson paradoxes in [831].

8Some axiom systems allow infinite rewards, which lead to utility and cost functions with
infinite values, but this is not considered here.

9.5. DECISION THEORY UNDER SCRUTINY 483

U(x)

x

Figure 9.6: The utility of new amounts of money decreases as the total accumula-
tion of wealth increases. The utility function may even bounded.

Example 9.25 (The Utility of Money) We conclude the section by depicting
a utility function that is often applied to money. Suppose that the state space
X = R, which corresponds to the amount of U.S. dollars earned. The utility of
money applied by most people indicates that the value of new increments of money
decreases as the total accumulated wealth increases. The utility function may even
be bounded. Imagine there is some maximum dollar amount, such as $10100, after
which additional money has no value. A typical utility curve is shown in Figure
9.6 [89]. �

9.5.2 Concerns Regarding the Probabilistic Model

Section 9.5.1 addressed the source of cost functions and the validity of taking
their expectations. This section raises concerns over the validity of the probability
distributions used in Section 9.2. The two main topics are criticisms of Bayesian
methods in general and problems with constructing probability distributions.

9.5.2.1 Bayesians vs. frequentists

For the past century and a half, there has been a fundamental debate among
statisticians on the meaning of probabilities. Virtually everyone is satisfied with
the axioms of probability, but beyond this, what is their meaning when making
inferences? The two main camps are the frequentists and the Bayesians. A form
of Bayes’ rule was published in 1763 after the death of Bayes [80]. During most of
the nineteenth century Bayesian analysis tended to dominate literature; however,
during the twentieth century, the frequentist philosophy became more popular as
a more rigorous interpretation of probabilities. In recent years, the credibility of
Bayesian methods has been on the rise again.

As seen so far, a Bayesian interprets probabilities as the degree of belief in
a hypothesis. Under this philosophy, it is perfectly valid to begin with a prior

484 S. M. LaValle: Planning Algorithms

distribution, gather a few observations, and then make decisions based on the
resulting posterior distribution from applying Bayes’ rule.

From a frequentist perspective, Bayesian analysis makes far too liberal use
of probabilities. The frequentist believes that probabilities are only defined as
the quantities obtained in the limit after the number of independent trials tends
to infinity. For example, if an unbiased coin is tossed over numerous trials, the
probability 1/2 represents the value to which the ratio between heads and the total
number of trials will converge as the number of trials tends to infinity. On the
other hand, a Bayesian might say that the probability that the next trial results
in heads is 1/2. To a frequentist, this interpretation of probability is too strong.

Frequentists have developed a version of decision theory based on their philos-
ophy; comparisons between the two appear in [831]. As an example, a frequentist
would advocate optimizing the following frequentist risk to obtain a decision rule:

R(θ, π) =

∫

y

L(π(y), θ)P (y|θ)dy, (9.88)

in which π represents the strategy, π : Y → U . The frequentist risk averages over
all data, rather than making a decision based on a single observation, as advocated
by Bayesians in (9.26). The probability P (y|θ) is assumed to be obtained in
the limit as the number of independent data trials tends to infinity. The main
drawback in using (9.88) is that the optimization depends on θ. The resulting
best decision rule must depend on θ, which is unknown. In some limited cases, it
may be possible to select some π that optimizes (9.88) for all θ, but this rarely
occurs. Thus, the frequentist risk can be viewed as a constraint on the desirability
of strategies, but it usually is not powerful enough to select a single one. This
problem is reminiscent of Pareto optimality, which was discussed in Section 9.1.1.
The frequentist approach attempts to be more conservative and rigorous, with the
result being that weaker statements are made regarding decisions.

9.5.2.2 The source of prior distributions

Suppose that the Bayesian method has been adopted. The most widespread con-
cern in all Bayesian analyses is the source of the prior distribution. In Section
9.2, this is represented as P (θ) (or p(θ)), which represents a distribution (or den-
sity) over the nature action space. The best way to obtain P (θ) is by estimating
the distribution over numerous independent trials. This brings its definition into
alignment with frequentist views. This was possible with Example 9.11, in which
P (θ) could be reliably estimated from the frequency of occurrence of letters across
numerous pages of text. The distribution could even be adapted to a particular
language or theme.

In most applications that use decision theory, however, it is impossible or too
costly to perform such experiments. What should be done in this case? If a prior
distribution is simply “made up,” then the resulting posterior probabilities may
be suspect. In fact, it may be invalid to call them probabilities at all. Sometimes

9.5. DECISION THEORY UNDER SCRUTINY 485

the term subjective probabilities is used in this case. Nevertheless, this is com-
monly done because there are few other options. One of these options is to resort
to frequentist decision theory, but, as mentioned, it does not work with single
observations.

Fortunately, as the number of observations increases, the influence of the prior
on the Bayesian posterior distributions diminishes. If there is only one observation,
or even none as in Formulation 9.3, then the prior becomes very influential. If there
is little or no information regarding P (θ), the distribution should be designed as
carefully as possible. It should also be understood that whatever conclusions are
made with this assumption, they are biased by the prior. Suppose this model is
used as the basis of a planning approach. You might feel satisfied computing the
“optimal” plan, but this notion of optimality could still depend on some arbitrary
initial bias due to the assignment of prior values.

If there is no information available, then it seems reasonable that P (θ) should
be as uniform as possible over Θ. This was referred to by Laplace as the “principle
of insufficient reason” [581]. If there is no reason to believe that one element is
more likely than another, then they should be assigned equal values. This can
also be justified by using Shannon’s entropy measure from information theory
[49, 248, 864]. In the discrete case, this is

−
∑

θ∈Θ
P (θ) lgP (θ), (9.89)

and in the continuous case it is

−
∫

Θ

p(θ) lg p(θ)dθ. (9.90)

This entropy measure was developed in the context of communication systems to
estimate the minimum number of bits needed to encode messages delivered through
a noisy medium. It generally indicates the amount of uncertainty associated with
the distribution. A larger value of entropy implies a greater amount of uncertainty.

It turns out that the entropy function is maximized when P (θ) is a uniform
distribution, which seems to justify the principle of insufficient reason. This can
be considered as a noninformative prior. The idea is even applied quite frequently
when Θ = R, which leads to an improper prior. The density function cannot
maintain a constant, nonzero value over all of R because its integral would be
infinite. Since the decisions made in Section 9.2 do not depend on any normalizing
factors, a constant value can be assigned for p(θ) and the decisions are not affected
by the fact that the prior is improper.

The main difficulty with applying the entropy argument in the selection of a
prior is that Θ itself may be chosen in a number of arbitrary ways. Uniform as-
signments to different choices of Θ ultimately yield different information regarding
the priors. Consider the following example.

486 S. M. LaValle: Planning Algorithms

Example 9.26 (A Problem with Noninformative Priors) Consider a deci-
sion about what activities to do based on the weather. Imagine that there is
absolutely no information about what kind of weather is possible. One possible
assignment is Θ = {p, c}, in which p means “precipitation” and c means “clear.”
Maximizing (9.89) suggests assigning P (p) = P (c) = 1/2.

After thinking more carefully, perhaps we would like to distinguish between dif-
ferent kinds of precipitation. A better set of nature actions would be Θ = {r, s, c},
in which c still means “clear,” but precipitation p has been divided into r for
“rain” and s for “snow.” Now maximizing (9.89) assigns probability 1/3 to each
nature action. This is clearly different from the original assignment. Now that we
distinguish between different kinds of precipitation, it seems that precipitation is
much more likely to occur. Does our preference to distinguish between different
forms of precipitation really affect the weather? �

Example 9.27 (Noninformitive Priors for Continuous Spaces) Similar trou-
bles can result in continuous spaces. Recall the parameter estimation problem
described in Example 9.12. Suppose instead that the task is to estimate a line
based on some data points that were supposed to fall on the line but missed due
to noise in the measurement process.

What initial probability density should be assigned to Θ, the set of all lines?
Suppose that the line lives in Z = R2. The line equation can be expressed as

θ1z1 + θ2z2 + θ3 = 0. (9.91)

The problem is that if the parameter vector, θ = [θ1 θ2 θ3], is multiplied by
a scalar constant, then the same line is obtained. Thus, even though θ ∈ R3, a
constraint must be added. Suppose we require that

θ21 + θ22 + θ13 = 1 (9.92)

and θ1 ≥ 0. This mostly fixes the problem and ensures that each parameter value
corresponds to a unique line (except for some duplicate cases at θ1 = 0, but these
can be safely neglected here). Thus, the parameter space is the upper half of a
sphere, S2. The maximum-entropy prior suggests assigning a uniform probability
density to Θ. This may feel like the right thing to do, but this notion of uniformity
is biased by the particular constraint applied to the parameter space to ensure
uniqueness. There are many other choices. For example, we could replace (9.92)
by constraints that force the points to lie on the upper half of the surface of cube,
instead of a sphere. A uniform probability density assigned in this new parameter
space certainly differs from one over the sphere.

In some settings, there is a natural representation of the parameter space that
is invariant to certain transformations. Section 5.1.4 introduced the notion of Haar
measure. If the Haar measure is used as a noninformative prior, then a meaningful
notion of uniformity may be obtained. For example, suppose that the parameter
space is SO(3). Uniform probability mass over the space of unit quaternions,

9.5. DECISION THEORY UNDER SCRUTINY 487

as suggested in Example 5.14, is an excellent choice for a noninformative prior
because it is consistent with the Haar measure, which is invariant to group op-
erations applied to the events. Unfortunately, a Haar measure does not exist for
most spaces that arise in practice.9 �

9.5.2.3 Incorrect assumptions on conditional distributions

One final concern is that many times even the distribution P (y|θ) is incorrectly
estimated because it is assumed arbitrarily to belong to a family of distributions.
For example, it is often very easy to work with Gaussian densities. Therefore, it
is tempting to assume that p(y|θ) is Gaussian. Experiments can be performed to
estimate the mean and variance parameters. Even though some best fit will be
found, it does not necessarily imply that a Gaussian is a good representation. Con-
clusions based on this model may be incorrect, especially if the true distribution
has a different shape, such as having a larger tail or being multimodal. In many
cases, nonparametric methods may be needed to avoid such biases. Such methods
do not assume a particular family of distributions. For example, imagine estimat-
ing a probability distribution by making a histogram that records the frequency
of y occurrences for a fixed value of θ. The histogram can then be normalized
to contain a representation of the probability distribution without assuming an
initial form.

9.5.3 Concerns Regarding the Nondeterministic Model

Given all of the problems with probabilistic modeling, it is tempting to abandon
the whole framework and work strictly with the nondeterministic model. This only
requires specifying Θ, without indicating anything about the relative likelihoods
of various actions. Therefore, most of the complicated issues presented in Sections
9.5.1 and 9.5.2 vanish. Unfortunately, this advantage comes at a substantial price.
Making decisions with worst-case analysis under the nondeterministic model has
its own shortcomings. After considering the trade-offs, you can decide which is
most appropriate for a particular application of interest.

The first difficulty is to ensure that Θ is sufficiently large to cover all possi-
bilities. Consider Formulation 9.6, in which nature acts twice. Through a nature
observation action space, Ψ(θ), interference is caused in the measurement process.
Suppose that Θ = R and h(θ, ψ) = θ + ψ. In this case, Ψ(θ) can be interpreted
as the measurement error. What is the maximum amount of error that can oc-
cur? Perhaps a sonar is measuring the distance from the robot to a wall. Based
on the sensor specifications, it may be possible to construct a nice bound on the
error. Occasionally, however, the error may be larger than this bound. Sonars
sometimes fail to hear the required echo to compute the distance. In this case the

9A locally compact topological group is required [346, 836].

488 S. M. LaValle: Planning Algorithms

reported distance is ∞. Due to reflections, extremely large errors can sometimes
occur. Although such errors may be infrequent, if we want guaranteed perfor-
mance, then large or even infinite errors should be included in Ψ(θ). The problem
is that worst-case reasoning could always conclude that the sensor is useless by
reporting ∞. Any statistically valid information that could be gained from the
sensor would be ignored. Under the probabilistic model, it is easy to make Ψ(θ)
quite large and then assign very small probabilities to larger errors. The problem
with nondeterministic uncertainty is that Ψ(θ) needs to be smaller to make appro-
priate decisions; however, theoretically “guaranteed” performance may not truly
be guaranteed in practice.

Once a nondeterministic model is formulated, the optimal decision rule may
produce results that seem absurd for the intended application. The problem is
that the DM cannot tolerate any risk. An action is applied only if the result can
be guaranteed. The hope of doing better than the worst case is not taken into
account. Consider the following example:

Example 9.28 (A Problem with Conservative Decision Making) Suppose
that a friend offers you the choice of either a check for 1000 Euros or 1 Euro in
cash. With the check, you must take it to the bank, and there is a small chance
that your friend will have insufficient funds in the account. In this case, you will
receive nothing. If you select the 1 Euro in cash, then you are guaranteed to earn
something.

The following cost matrix reflects the outcomes (ignoring utility theory):

U

Θ
1 1000
1 0

. (9.93)

Using probabilistic analysis, we might conclude that it is best to take the check.
Perhaps the friend is even known to be very wealthy and responsible with bank-
ing accounts. This information, however, cannot be taken into account in the
decision-making process. Using worst-case analysis, the optimal action is to take
the 1 Euro in cash. You may not feel too good about it, though. Imagine the
regret if you later learn that the account had sufficient funds to cash the check for
1000 Euros. �

Thus, it is important to remember the price that one must pay for wanting
results that are absolutely guaranteed. The probabilistic model offers the flexibility
of incorporating statistical information. Sometimes the probabilistic model can be
viewed as a generalization of the nondeterministic model. If it is assumed that
nature acts after the robot, then the nature action can take this into account, as
incorporated into Formulation 9.4. In the nondeterministic case, Θ(u) is specified,
and in the probabilistic case, P (θ|u) is specified. The distribution P (θ|u) can
be designed so that nature selects with very high probability the θ ∈ Θ that
maximizes L(u, θ). In Example 9.28, this would mean that the probability that

9.5. DECISION THEORY UNDER SCRUTINY 489

the check would bounce (resulting in no earnings) would by very high, such as
0.999999. In this case, even the optimal action under the probabilistic model is
to select the 1 Euro in cash. For virtually any decision problem that is modeled
using worst-case analysis, it is possible to work backward and derive possible
priors for which the same decision would be made using probabilistic analysis. In
Example 9.4, it seemed as if the decision was based on assuming that with very
high probability, the check would bounce, even though there were no probabilistic
models.

This means that worst-case analysis under the nondeterministic model can be
considered as a special case of a probabilistic model in which the prior distribution
assigns high probabilities to the worst-case outcomes. The justification for this
could be criticized in the same way that other prior assignments are criticized in
Bayesian analysis. What is the basis of this particular assignment?

9.5.4 Concerns Regarding Game Theory

One of the most basic limitations of game theory is that each player must know the
cost functions of the other players. As established in Section 9.5.1, it is even quite
difficult to determine an appropriate cost function for a single decision maker.
It is even more difficult to determine costs and motivations of other players. In
most practical settings this information is not available. One possibility is to
model uncertainty associated with knowledge of the cost function of another player.
Bayesian analysis could be used to reason about the cost based on observations of
actions chosen by the player. Issues of assigning priors once again arise. One of
the greatest difficulties in allowing uncertainties in the cost functions is that a kind
of “infinite reflection” occurs [392]. For example, if I am playing a game, does the
other player know my cost function? I may be uncertain about this. Furthermore,
does the other player know that I do not completely know its cost function? This
kind of second-guessing can occur indefinitely, leading to a nightmare of nested
reasoning and assignments of prior distributions.10

The existence of saddle points or Nash equilibria was assured by using random-
ized strategies. Mathematically, this appears to be a clean solution to a frustrat-
ing problem; however, it also represents a substantial change to the model. Many
games are played just once. For the expected-case results to converge, the game
must be played an infinite number of times. If a game is played once, or only a
few times, then the players are very likely to experience regret, even though the
theory based on expected-case analysis indicates that regret is eliminated.

Another issue is that intelligent human players may fundamentally alter their
strategies after playing a game several times. It is very difficult for humans to
simulate a randomized strategy (assuming they even want to, which is unlikely).
There are even international tournaments in which the players repeatedly engage

10Readers familiar with the movie The Princess Bride may remember the humorous dialog
between Vizzini and the Dread Pirate Roberts about which goblet contains the deadly Iocane
powder.

490 S. M. LaValle: Planning Algorithms

in classic games such as Rock-Paper-Scissors or the Prisoner’s Dilemma. For an
interesting discussion of a tournament in which people designed programs that
repeatedly compete on the Prisoner’s Dilemma, see [917]. It was observed that even
some cooperation often occurs after many iterations, which secures greater rewards
for both players, even though they cannot communicate. A famous strategy arose
in this context called Tit-for-Tat (written by Anatol Rapoport), which in each
stage repeated the action chosen by the other player in the last stage. The approach
is simple yet surprisingly successful.

In the case of nonzero-sum games, it is particularly disheartening that multiple
Nash equilibria may exist. Suppose there is only one admissible equilibrium among
several Nash equilibria. Does it really seem plausible that an adversary would
think very carefully about the various Nash equilibria and pick the admissible
one? Perhaps some players are conservative and even play security strategies,
which completely destroys the assumptions of minimizing regret. If there are
multiple admissible Nash equilibria, it appears that regret is unavoidable unless
there is some collaboration between players. This result is unfortunate if such
collaboration is impossible.

Further Reading

Section 9.1 covered very basic concepts, which can be found in numerous books and
on the Internet. For more on Pareto optimality, see [847, 909, 953, 1005]. Section 9.2
is inspired mainly by decision theory books. An excellent introduction is [89]. Other
sources include [268, 271, 673, 831]. The “game against nature” view is based mainly on
[109]. Pattern classification, which is an important form of decision theory, is covered
in [19, 271, 295, 711]. Bayesian networks [778] are a popular representation in artificial
intelligence research and often provide compact encodings of information for complicated
decision-making problems.

Further reading on the game theory concepts of Sections 9.3 and 9.4 can be found in
many books (e.g., [59, 759]). A fun book that has many examples and intuitions is [917].
For games that have infinite action sets, see [59]. The computation of randomized Nash
equilibria remains a topic of active research. A survey of methods appears in [691]; see
also [545, 699]. The coupled polynomial equations that appear in computing randomized
Nash equilibria may seem to suggest applying algorithms from computational algebraic
geometry, as were needed in Section 6.4 to solve this kind of problem in combinatorial
motion planning. An approach that uses such tools is given in [261]. Contrary to the
noncooperative games defined in Section 9.4, cooperative game theory investigates ways
in which various players can form coalitions to improve their rewards [779].

Parts of Section 9.5 were inspired by [89]. Utility theory appears in most decision
theory books (e.g., [89]) and in some artificial intelligence books (e.g., [839]). An in-
depth discussion of Bayesian vs. frequentist issues appears in [831]. For a thorough
introduction to constructing cost models for decision making, see [539].

9.5. DECISION THEORY UNDER SCRUTINY 491

Exercises

1. Suppose that a single-stage two-objective decision-making problem is defined in
which there are two objectives and a continuous set of actions, U = [−10, 10]. The
cost vector is L = [u2 u− 1]. Determine the set of Pareto-optimal actions.

2. Let

Θ

U

−1 3 2 −1
−1 0 7 −1
1 5 5 −2

define the cost for each combination of choices by the decision maker and nature.
Let nature’s randomized strategy be [1/5 2/5 1/10 3/10].

(a) Use nondeterministic reasoning to find the minimax decision and worst-case
cost.

(b) Use probabilistic reasoning to find the best expected-case decision and ex-
pected cost.

3. Many reasonable decision rules are possible, other than those considered in this
chapter.

(a) Exercise 2(a) reflects extreme pessimism. Suppose instead that extreme op-
timism is used. Select the choice that optimizes the best-case cost for the
matrix in Exercise 2.

(b) One approach is to develop a coefficient of optimism, α ∈ [0, 1], which allows
one to interpolate between the two extreme scenarios. Thus, a decision,
u ∈ U , is chosen by minimizing

α max
θ∈Θ

{

L(u, θ)
}

+ (1− α) min
θ∈Θ

{

L(u, θ)
}

. (9.94)

Determine the optimal decision for this scenario under all possible choices
for α ∈ [0, 1]. Give your answer as a list of choices, each with a specified
range of α.

4. Suppose that after making a decision, you observe the choice made by nature.
How does the cost that you received compare with the best cost that could have
been obtained if you chose something else, given this choice by nature? This
difference in costs can be considered as regret or minimum “Doh!”11 Psychologists
have argued that some people make choices based on minimizing regret. It reflects
how badly you wish you had done something else after making the decision.

(a) Develop an expression for the worst-case regret, and use it to make a minimax
regret decision using the matrix from Exercise 2.

11In 2001, the Homer Simpson term“Doh!” was added to the Oxford English Dictionary as an
expression of regret.

492 S. M. LaValle: Planning Algorithms

(b) Develop an expression for the expected regret, and use it to make a minimum
expected regret decision.

5. Using the matrix from Exercise 2, consider the set of all probability distributions
for nature. Characterize the set of all distributions for which the minimax decision
and the best expected decision results in the same choice. This indicates how to
provide reverse justification for priors.

6. Consider a Bayesian decision-theory scenario with cost function L. Show that the
decision rule never changes if L(u, θ) is replaced by aL(u, θ)+ b, for any a > 0 and
b ∈ R.

7. Suppose that there are two classes, Ω = {ω1, ω2}, with P (ω1) = P (ω2) =
1
2 . The

observation space, Y , is R. Recall from probability theory that the normal (or
Gaussian) probability density function is

p(y) =
1

σ
√
2π
e−(y−µ)2/2σ2

, (9.95)

in which µ denotes the mean and σ2 denotes the variance. Suppose that p(y|ω1)
is a normal density in which µ = 0 and σ2 = 1. Suppose that p(y|ω2) is a normal
density in which µ = 6 and σ2 = 4. Find the optimal classification rule, γ : Y → Ω.
You are welcome to solve the problem numerically (by computer) or graphically
(by careful function plotting). Carefully explain how you arrived at the answer in
any case.

8. Let

Θ

U

2 −2 −2 1

−1 −2 −2 6

4 0 −3 4

give the cost for each combination of choices by the decision maker and nature.
Let nature’s randomized strategy be [1/4 1/2 1/8 1/8].

(a) Use nondeterministic reasoning to find the minimax decision and worst-case
cost.

(b) Use probabilistic reasoning to find the best expected-case decision and ex-
pected cost.

(c) Characterize the set of all probability distributions for which the minimax
decision and the best expected decision results in the same choice.

9. In a constant-sum game, the costs for any u ∈ U and v ∈ V add to yield

L1(u, v) + L2(u, v) = c (9.96)

for some constant c that is independent of u and v. Show that any constant-sum
game can be transformed into a zero-sum game, and that saddle point solutions
can be found using techniques for the zero-sum formulation.

9.5. DECISION THEORY UNDER SCRUTINY 493

10. Formalize Example 9.7 as a zero-sum game, and compute security strategies for
the players. What is the expected value of the game?

11. Suppose that for two zero-sum games, there exists some nonzero c ∈ R for which
the cost matrix of one game is obtained by multiplying all entries by c in the cost
matrix of the other. Prove that these two games must have the same deterministic
and randomized saddle points.

12. In the same spirit as Exercise 11, prove that two zero-sum games have the same
deterministic and randomized saddle points if c is added to all matrix entries.

13. Prove that multiple Nash equilibria of a nonzero-sum game specified by matrices
A and B are interchangeable if (A,B) as a game yields the same Nash equilibria
as the game (A,−A).

14. Analyze the game of Rock-Paper-Scissors for three players. For each player, assign
a cost of 1 for losing, 0 for a tie, and −1 for winning. Specify the cost functions.
Is it possible to avoid regret? Does it have a deterministic Nash equilibrium? Can
you find a randomized Nash equilibrium?

15. Compute the randomized equilibrium point for the following zero-sum game:

V

U
0 -1

-1 2

. (9.97)

Indicate the randomized strategies for the players and the resulting expected value
of the game.

Implementations

16. Consider estimating the value of an unknown parameter, θ ∈ R. The prior prob-
ability density is a normal,

p(θ) =
1

σ
√
2π
e−(θ−µ)2/2σ2

, (9.98)

with µ = 0 and σ = 4. Suppose that a sequence, y1, y2, . . ., yk, of k observations
is made and that each p(yi|θ) is a normal density with µ = θ and σ = 9. Suppose
that u represents your guess of the parameter value. The task is select u to
minimize the expectation of the cost, L(u, θ) = (u− θ)2. Suppose that the “true”
value of θ is 4. Determine the u∗, the minimal action with respect to the expected
cost after observing: yi = 4 for every i ∈ {1, . . . , k}.

(a) Determine u∗ for k = 1.

(b) Determine u∗ for k = 10.

(c) Determine u∗ for k = 1000.

494 S. M. LaValle: Planning Algorithms

This experiment is not very realistic because the observations should be generated
by sampling from the normal density, p(yi|θ). Repeat the exercise using values
drawn with the normal density, instead of yk = 4, for each k.

17. Implement an algorithm that computes a randomized saddle point for zero-sum
games. Assume that one player has no more than two actions and the other may
have any finite number of actions.

18. Suppose that a K-stage decision-making problem is defined using multiple objec-
tives. There is a finite state space X and a finite action set U(x) for each x ∈ X.
A state transition equation, xk+1 = f(xk, uk), gives the next state from a current
state and input. There are N cost functionals of the form

Li(u1, . . . , uK) =
K∑

k=1

l(xk, uk) + lF (xF), (9.99)

in which F = K+1. Assume that lF (xF) =∞ if xF ∈ Xgoal (for some goal region
Xgoal ⊂ X) and lF (xF) = 0 otherwise. Assume that there is no termination action
(which simplifies the problem). Develop a value-iteration approach that finds the
complete set of Pareto-optimal plans efficiently as possible. If two or more plans
produce the same cost vector, then only one representative needs to be returned.

Chapter 10

Sequential Decision Theory

Chapter 9 essentially took a break from planning by indicating how to make a sin-
gle decision in the presence of uncertainty. In this chapter, we return to planning
by formulating a sequence of decision problems. This is achieved by extending
the discrete planning concepts from Chapter 2 to incorporate the effects of mul-
tiple decision makers. The most important new decision maker is nature, which
causes unpredictable outcomes when actions are applied during the execution of
a plan. State spaces and state transition equations reappear in this chapter; how-
ever, in contrast to Chapter 2, additional decision makers interfere with the state
transitions. As a result of this effect, a plan needs to incorporate state feedback,
which enables it to choose an action based on the current state. When the plan is
determined, it is not known what future states will arise. Therefore, feedback is
required, as opposed to specifying a plan as a sequence of actions, which sufficed
in Chapter 2. This was only possible because actions were predictable.

Keep in mind throughout this chapter that the current state is always known.
The only uncertainty that exists is with respect to predicting future states. Chap-
ters 11 and 12 will address the important and challenging case in which the current
state is not known. This requires defining sensing models that attempt to measure
the state. The main result is that planning occurs in an information space, as op-
posed to the state space. Most of the ideas of this chapter extend into information
spaces when uncertainties in prediction and in the current state exist together.

The problems considered in this chapter have a wide range of applicability.
Most of the ideas were developed in the context of stochastic control theory
[93, 564, 567]. The concepts can be useful for modeling problems in mobile robotics
because future states are usually unpredictable and can sometimes be modeled
probabilistically [1004] or using worst-case analysis [590]. Many other applica-
tions exist throughout engineering, operations research, and economics. Examples
include process scheduling, gambling strategies, and investment planning.

As usual, the focus here is mainly on arriving in a goal state. Both non-
deterministic and probabilistic forms of uncertainty will be considered. In the
nondeterministic case, the task is to find plans that are guaranteed to work in
spite of nature. In some cases, a plan can be computed that has optimal worst-

495

496 S. M. LaValle: Planning Algorithms

case performance while achieving the goal. In the probabilistic case, the task is
to find a plan that yields optimal expected-case performance. Even though the
outcome is not predictable in a single-plan execution, the idea is to reduce the
average cost, if the plan is executed numerous times on the same problem.

10.1 Introducing Sequential Games Against Na-

ture

This section extends many ideas from Chapter 2 to the case in which nature in-
terferes with the outcome of actions. Section 10.1.1 defines the planning problem
in this context, which is a direct extension of Section 2.1. Due to unpredictabil-
ity, forward projections and backprojections are introduced in Section 10.1.2 to
characterize possible future and past states, respectively. Forward projections
characterize the future states that will be obtained under the application of a plan
or a sequence of actions. In Chapter 2 this concept was not needed because the
sequence of future states could always be derived from a plan and initial state.
Section 10.1.3 defines the notion of a plan and uses forward projections to indicate
how its execution may differ every time the plan is applied.

10.1.1 Model Definition

The formulation presented in this section is an extension of Formulation 2.3 that
incorporates the effects of nature at every stage. Let X denote a discrete state
space, and let U(x) denote the set of actions available to the decision maker (or
robot) from state x ∈ X. At each stage k it is assumed that a nature action θk is
chosen from a set Θ(xk, uk). This can be considered as a multi-stage generalization
of Formulation 9.4, which introduced Θ(u). Now Θ may depend on the state in
addition to the action because both xk and uk are available in the current setting.
This implies that nature acts with the knowledge of the action selected by the
decision maker. It is always assumed that during stage k, the decision maker does
not know the particular nature action that will be chosen. It does, however, know
the set Θ(xk, uk) for all xk ∈ X and uk ∈ U(xk).

As in Section 9.2, there are two alternative nature models: nondeterministic
or probabilistic. If the nondeterministic model is used, then it is only known that
nature will make a choice from Θ(xk, uk). In this case, making decisions using
worst-case analysis is appropriate.

If the probabilistic model is used, then a probability distribution over Θ(xk, uk)
is specified as part of the model. The most important assumption to keep in
mind for this case is that nature is Markovian. In general, this means that the
probability depends only on local information. In most applications, this locality
is with respect to time. In our formulation, it means that the distribution over
Θ(xk, uk) depends only on information obtained at the current stage. In other
settings, Markovian could mean a dependency on a small number of stages, or

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 497

even a local dependency in terms of spatial relationships, as in a Markov random
field [231, 377].

To make the Markov assumption more precise, the state and action histories
as defined in Section 8.2.1 will be used again here. Let

x̃k = (x1, x2, . . . , xk) (10.1)

and
ũk = (u1, u2, . . . , uk). (10.2)

These represent all information that is available up to stage k. Without the Markov
assumption, it could be possible that the probability distribution for nature is
conditioned on all of x̃k and ũk, to obtain P (θk|x̃k, ũk). The Markov assumption
declares that for all θk ∈ Θ(xk, uk),

P (θk|x̃k, ũk) = P (θk|xk, uk), (10.3)

which drops all history except the current state and action. Once these two are
known, there is no extra information regarding the nature action that could be
gained from any portion of the histories.

The effect of nature is defined in the state transition equation, which produces
a new state, xk+1, once xk, uk, and θk are given:

xk+1 = f(xk, uk, θk). (10.4)

From the perspective of the decision maker, θk is not given. Therefore, it can only
infer that a particular set of states will result from applying uk and xk:

Xk+1(xk, uk) = {xk+1 ∈ X | ∃θk ∈ Θ(xk, uk) such that xk+1 = f(xk, uk, θk)}.
(10.5)

In (10.5), the notationXk+1(xk, uk) indicates a set of possible values for xk+1, given
xk and uk. The notation Xk(·) will generally be used to indicate the possible values
for xk that can be derived using the information that appears in the argument.

In the probabilistic case, a probability distribution over X can be derived
for stage k + 1, under the application of uk from xk. As part of the problem,
P (θk|xk, uk) is given. Using the state transition equation, xk+1 = f(xk, uk, θk),

P (xk+1|xk, uk) =
∑

θk∈Θ′

P (θk|xk, uk) (10.6)

can be derived, in which

Θ′ = {θk ∈ Θ(xk, uk) | xk+1 = f(xk, uk, θk)}. (10.7)

The calculation of P (xk+1|xk, uk) simply involves accumulating all of the proba-
bility mass that could lead to xk+1 from the application of various nature actions.

Putting these parts of the model together and adding some of the components
from Formulation 2.3, leads to the following formulation:

498 S. M. LaValle: Planning Algorithms

Formulation 10.1 (Discrete Planning with Nature)

1. A nonempty state space X which is a finite or countably infinite set of states.

2. For each state, x ∈ X, a finite, nonempty action space U(x). It is assumed
that U contains a special termination action, which has the same effect as
the one defined in Formulation 2.3.

3. A finite, nonempty nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely. Alternatively, there may be a fixed, maximum stage k = K+1 =
F .

6. An initial state xI ∈ X. For some problems, this may not be specified, in
which case a solution plan must be found from all initial states.

7. A goal set XG ⊂ X.

8. A stage-additive cost functional L. Let θ̃K denote the history of nature ac-
tions up to stage K. The cost functional may be applied to any combination
of state, action, and nature histories to yield

L(x̃F , ũK , θ̃K) =
K∑

k=1

l(xk, uk, θk) + lF (xF), (10.8)

in which F = K + 1. If the termination action uT is applied at some stage
k, then for all i ≥ k, ui = uT , xi = xk, and l(xi, uT , θi) = 0.

Using Formulation 10.1, either a feasible or optimal planning problem can be
defined. To obtain a feasible planning problem, let l(xk, uk, θk) = 0 for all xk ∈ X,
uk ∈ U , and θk ∈ Θk(uk). Furthermore, let

lF (xF) =

{
0 if xF ∈ XG

∞ otherwise.
(10.9)

To obtain an optimal planning problem, in general l(xk, uk, θk) may assume any
nonnegative, finite value if xk 6∈ XG. For problems that involve probabilistic
uncertainty, it is sometimes appropriate to assign a high, finite value for lF (xF) if
xF 6∈ XG, as opposed to assigning an infinite cost for failing to achieve the goal.

Note that in each stage, the cost term is generally allowed to depend on the
nature action θk. If probabilistic uncertainty is used, then Formulation 10.1 is often
referred to as a controlled Markov process orMarkov decision process (MDP). If the
actions are removed from the formulation, then it is simply referred to as a Markov
process. In most statistical literature, the name Markov chain is used instead of

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 499

Markov process when there are discrete stages (as opposed to continuous-time
Markov processes). Thus, the terms controlled Markov chain and Markov decision
chain may be preferable.

In some applications, it may be convenient to avoid the explicit characterization
of nature. Suppose that l(xk, uk, θk) = l(xk, uk). If nondeterministic uncertainty
is used, then Xk+1(xk, uk) can be specified for all xk ∈ X and uk ∈ U(xk) as a
substitute for the state transition equation; this avoids having to refer to nature.
The application of an action uk from a state xk directly leads to a specified subset
of X. If probabilistic uncertainty is used, then P (xk+1|xk, uk) can be directly
defined as the alternative to the state transition equation. This yields a probability
distribution over X, if uk is applied from some xk, once again avoiding explicit
reference to nature. Most of the time we will use a state transition equation that
refers to nature; however, it is important to keep these alternatives in mind. They
arise in many related books and research articles.

As used throughout Chapter 2, a directed state transition graph is sometimes
convenient for expressing the planning problem. The same idea can be applied
in the current setting. As in Section 2.1, X is the vertex set; however, the edge
definition must change to reflect nature. A directed edge exists from state x to x′

if there exists some u ∈ U(x) and θ ∈ Θ(x, u) such that x′ = f(x, u, θ). A weighted
graph can be made by associating the cost term l(xk, uk, θk) with each edge. In
the case of a probabilistic model, the probability of the transition occurring may
also be associated with each edge.

Note that both the decision maker and nature are needed to determine which
vertex will be reached. As the decision maker contemplates applying an action u
from the state x, it sees that there may be several outgoing edges due to nature. If
a different action is contemplated, then this set of possible outgoing edges changes.
Once nature applies its action, then the particular edge is traversed to arrive at
the new state; however, this is not completely controlled by the decision maker.

Example 10.1 (Traversing the Number Line) Let X = Z, U = {−2, 2, uT},
and Θ = {−1, 0, 1}. The action sets of the decision maker and nature are the same
for all states. For the state transition equation, xk+1 = f(xk, uk, θk) = xk+uk+θk.
For each stage, unit cost is received. Hence l(x, u, θ) = 1 for all x, θ, and u 6= uT .
The initial state is xI = 100, and the goal set is XG = {−1, 0, 1}.

Consider executing a sequence of actions, (−2,−2, . . . ,−2), under the non-
deterministic uncertainty model. This means that we attempt to move left two
units in each stage. After the first −2 is applied, the set of possible next states is
{97, 98, 99}. Nature may slow down the progress to be only one unit per stage, or
it may speed up the progress so that XG is three units closer per stage. Note that
after 100 stages, the goal is guaranteed to be achieved, in spite of any possible
actions of nature. Once XG is reached, uT should be applied. If the problem is
changed so that XG = {0}, it becomes impossible to guarantee that the goal will
be reached because nature may cause the goal to be overshot.

Now let U = {−1, 1, uT} and Θ = {−2,−1, 0, 1, 2}. Under nondeterministic
uncertainty, the problem can no longer be solved because nature is now powerful

500 S. M. LaValle: Planning Algorithms

XG

xI

Figure 10.1: A grid-based shortest path problem with interference from nature.

enough to move the state completely in the wrong direction in the worst case. A
reasonable probabilistic version of the problem can, however, be defined and solved.
Suppose that P (θ) = 1/5 for each θ ∈ Θ. The transition probabilities can be de-
fined from P (θ). For example, if xk = 100 and uk = −1, then P (xk+1|xk, uk) = 1/5
if 97 ≤ xk ≤ 101, and P (xk+1|xk, uk) = 0 otherwise. With the probabilistic for-
mulation, there is a nonzero probability that the goal, XG = {−1, 0, 1}, will be
reached, even though in the worst-case reaching the goal is not guaranteed. �

Example 10.2 (Moving on a Grid) A grid-based robot planning model can
be made. A simple example is shown in Figure 10.1. The state space is a subset
of a 15 × 15 integer grid in the plane. A state is represented as (i, j), in which
1 ≤ i, j ≤ 15; however, the points in the center region (shown in Figure 10.1) are
not included in X.

Let A = {0, 1, 2, 3, 4} be a set of actions, which denote “stay,” “right,” “up,”
“left,” and “down,” respectively. Let U = A ∪ uT . For each x ∈ X, let U(x)
contain uT and whichever actions are applicable from x (some are not applicable
along the boundaries).

Let Θ(x, u) represent the set of all actions in A that are applicable after per-
forming the move implied by u. For example, if x = (2, 2) and u = 3, then the
robot is attempting to move to (1, 2). From this state, there are three neighboring
states, each of which corresponds to an action of nature. Thus, Θ(x, u) in this case
is {0, 1, 2, 4}. The action θ = 3 does not appear because there is no state to the
left of (1, 2). Suppose that the probabilistic model is used, and that every nature
action is equally likely.

The state transition function f is formed by adding the effect of both uk and
θk. For example, if xk = (i, j), uk = 1, and θk = 2, then xk+1 = (i+1, j +1). If θk
had been 3, then the two actions would cancel and xk+1 = (i, j). Without nature,
it would have been assumed that θk = 0. As always, the state never changes once
uT is applied, regardless of nature’s actions.

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 501

For the cost functional, let l(xk, uk) = 1 (unless uk = uT ; in this case, l(xk, uT) =
0). For the final stage, let lF (xF) = 0 if xF ∈ XG; otherwise, let lF (xF) = ∞. A
reasonable task is to get the robot to terminate in XG in the minimum expected
number of stages. A feedback plan is needed, which will be introduced in Section
10.1.3, and the optimal plan for this problem can be efficiently computed using
the methods of Section 10.2.1.

This example can be easily generalized to moving through a complicated labyrinth
in two or more dimensions. If the grid resolution is high, then an approximation to
motion planning is obtained. Rather than forcing motions in only four directions,
it may be preferable to allow any direction. This case is covered in Section 10.6,
which addresses planning in continuous state spaces. �

10.1.2 Forward Projections and Backprojections

A forward projection is a useful concept for characterizing the behavior of plans
during execution. Before uncertainties were considered, a plan was executed ex-
actly as expected. When a sequence of actions was applied to an initial state, the
resulting sequence of states could be computed using the state transition equation.
Now that the state transitions are unpredictable, we would like to imagine what
states are possible several stages into the future. In the case of nondeterministic
uncertainty, this involves computing a set of possible future states, given a current
state and plan. In the probabilistic case, a probability distribution over states is
computed instead.

Nondeterministic forward projections To facilitate the notation, suppose
in this section that U(x) = U for all x ∈ X. In Section 10.1.3 this will be lifted.

Suppose that the initial state, x1 = xI , is known. If the action u1 ∈ U is
applied, then the set of possible next states is

X2(x1, u1) = {x2 ∈ X | ∃θ1 ∈ Θ(x1, u1) such that x2 = f(x1, u1, θ1)}, (10.10)

which is just a special version of (10.5). Now suppose that an action u2 ∈ U will
be applied. The forward projection must determine which states could be reached
from x1 by applying u1 followed by u2. This can be expressed as

X3(x1, u1, u2) = {x3 ∈ X | ∃θ1 ∈ Θ(x1, u1) and ∃θ2 ∈ Θ(x2, u2)

such that x2 = f(x1, u1, θ1) and x3 = f(x2, u2, θ2)}.
(10.11)

This idea can be repeated for any number of iterations but becomes quite cum-
bersome in the current notation. It is helpful to formulate the forward projection
recursively. Suppose that an action history ũk is fixed. Let Xk+1(Xk, uk) denote
the forward projection at stage k + 1, given that Xk is the forward projection at

502 S. M. LaValle: Planning Algorithms

stage k. This can be computed as

Xk+1(Xk, uk) = {xk+1 ∈ X | ∃xk ∈ Xk and ∃θk ∈ Θ(xk, uk)

such that xk+1 = f(xk, uk, θk)}.
(10.12)

This may be applied any number of times to compute Xk+1 from an initial condi-
tion X1 = {x1}.

Example 10.3 (Nondeterministic Forward Projections) Recall the first model
given in Example 10.1, in which U = {−2, 2, uT} and Θ = {−1, 0, 1}. Sup-
pose that x1 = 0, and u = 2 is applied. The one-stage forward projection is
X2(0, 2) = {1, 2, 3}. If u = 2 is applied again, the two-stage forward projection is
X3(0, 2, 2) = {2, 3, 4, 5, 6}. Repeating this process, the k-stage forward projection
is {k, . . . , 3k}. �

Probabilistic forward projections The probabilistic forward projection can
be considered as a Markov process because the “decision” part is removed once
the actions are given. Suppose that xk is given and uk is applied. What is the
probability distribution over xk+1? This was already specified in (10.6) and is the
one-stage forward projection. Now consider the two-stage probabilistic forward
projection, P (xk+2|xk, uk, uk+1). This can be computed by marginalization as

P (xk+2|xk, uk, uk+1) =
∑

xk+1∈X
P (xk+2|xk+1, uk+1)P (xk+1|xk, uk). (10.13)

Computing further forward projections requires nested summations, which marginal-
ize all of the intermediate states. For example, the three-stage forward projection
is

P (xk+3|xk, uk,uk+1, uk+2) =
∑

xk+1∈X

∑

xk+2∈X
P (xk+3|xk+2, uk+2)P (xk+2|xk+1, uk+1)P (xk+1|xk, uk).

(10.14)

A convenient expression of the probabilistic forward projections can be obtained
by borrowing nice algebraic properties from linear algebra. For each action u ∈ U ,
let its state transition matrix Mu be an n×n matrix, for n = |X|, of probabilities.
The matrix is defined as

Mu =








m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n
...

...
...

mn,1 mn,2 · · · mn,n







, (10.15)

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 503

in which
mi,j = P (xk+1 = i | xk = j, u). (10.16)

For each j, the jth column of Mu must sum to one and can be interpreted as the
probability distribution over X that is obtained if uk is applied from state xk = j.

Let v denote an n-dimensional column vector that represents any probability
distribution over X. The product Muv yields a column vector that represents
the probability distribution over X that is obtained after starting with v and
applying u. The matrix multiplication performs n inner products, each of which
is a marginalization as shown in (10.13). The forward projection at any stage, k,
can now be expressed using a product of k− 1 state transition matrices. Suppose
that ũk−1 is fixed. Let v = [0 0 · · · 0 1 0 · · · 0], which indicates that x1 is known
(with probability one). The forward projection can be computed as

v′ =Muk−1
Muk−2

· · ·Mu2Mu1v. (10.17)

The ith element of v′ is P (xk = i | x1, ũk−1).

Example 10.4 (Probabilistic Forward Projections) Once again, use the first
model from Example 10.1; however, now assign probability 1/3 to each nature ac-
tion. Assume that, initially, x1 = 0, and u = 2 is applied in every stage. The
one-stage forward projection yields probabilities

[1/3 1/3 1/3] (10.18)

over the sequence of states (1, 2, 3). The two-stage forward projection yields

[1/9 2/9 3/9 2/9 1/9] (10.19)

over (2, 3, 4, 5, 6). �

Backprojections Sometimes it is helpful to define the set of possible previous
states from which one or more current states could be obtained. For example, they
will become useful in defining graph-based planning algorithms in Section 10.2.3.
This involves maintaining a backprojection, which is a counterpart to the forward
projection that runs in the opposite direction. Backprojections were considered
in Section 8.5.2 to keep track of the active states in a Dijkstra-like algorithm over
continuous state spaces. In the current setting, backprojections need to address
uncertainty.

Consider the case of nondeterministic uncertainty. Let a state x ∈ X be given.
Under a fixed action u, what previous states, x′ ∈ X, could possibly lead to x?
This depends only on the possible choices of nature and is expressed as

WB(x, u) = {x′ ∈ X | ∃θ ∈ Θ(x′, u) such that x = f(x′, u, θ)}. (10.20)

504 S. M. LaValle: Planning Algorithms

The notation WB(x, u) refers to the weak backprojection of x under u, and gives
the set of all states from which x may possibly be reached in one stage.

The backprojection is called “weak” because it does not guarantee that x is
reached, which is a stronger condition. By guaranteeing that x is reached, a strong
backprojection of x under u is defined as

SB(x, u) = {x′ ∈ X | ∀θ ∈ Θ(x′, u), x = f(x′, u, θ)}. (10.21)

The difference between (10.20) and (10.21) is either there exists an action of nature
that enables x to be reached, or x is reached for all actions of nature. Note that
SB(x, u) ⊆WB(x, u). In many cases, SB(x, u) = ∅, and WB(x, u) is rarely empty.
The backprojection that was introduced in (8.66) of Section 8.5.2 did not involve
uncertainty; hence, the distinction between weak and strong backprojections did
not arise.

Two useful generalizations will now be made: 1) A backprojection can be
defined from a set of states; 2) the action does not need to be fixed. Instead of a
fixed state, x, consider a set S ⊆ X of states. What are the states from which an
element of S could possibly be reached in one stage under the application of u?
This is the weak backprojection of S under u:

WB(S, u) = {x′ ∈ X | ∃θ ∈ Θ(x′, u) such that f(x′, u, θ) ∈ S}, (10.22)

which can also be expressed as

WB(S, u) =
⋃

x∈S
WB(x, u). (10.23)

Similarly, the strong backprojection of S under u is defined as

SB(S, u) = {x′ ∈ X | ∀θ ∈ Θ(x′, u), f(x′, u, θ) ∈ S}. (10.24)

Note that SB(S, u) cannot be formed by the union of SB(x, u) over all x ∈ S.
Another observation is that for each xk ∈ SB(S, uk), we have Xk+1(xk, uk) ⊆ S.

Now the dependency on u will be removed. This yields a backprojection of a
set S. These are states from which there exists an action that possibly reaches S.
The weak backprojection of S is

WB(S) = {x′ ∈ X | ∃u ∈ U(x) such that x ∈WB(S, u)}, (10.25)

and the strong backprojection of S is

SB(S) = {x′ ∈ X | ∃u ∈ U(x) such that x ∈ SB(S, u)}. (10.26)

Note that SB(S) ⊆WB(S).

Example 10.5 (Backprojections) Once again, consider the model from the
first part of Example 10.1. The backprojection WB(0, 2) represents the set of

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 505

all states from which u = 2 can be applied and x = 0 is possibly reached; the
result is WB(0, 2) = {−3,−2,−1}. The state 0 cannot be reached with certainty
from any state in WB(0, 2). Therefore, SB(0, 2) = ∅.

Now consider backprojections from the goal, XG = {−1, 0, 1}, under the action
u = 2. The weak backprojection is

WB(XG, 2) = WB(−1, 2) ∪WB(0, 2) ∪WB(1, 2) = {−4,−3,−2,−1, 0}. (10.27)
The strong backprojection is SB(XG, 2) = {−2}. From any of the other states
in WB(XG, 2), nature could cause the goal to be missed. Note that SB(XG, 2)
cannot be constructed by taking the union of SB(x, 2) over every x ∈ XG.

Finally, consider backprojections that do not depend on an action. These are
WB(XG) = {−4,−3, . . . , 4} and SB(XG) = XG. In the latter case, all states in
XG lie in SB(XG) because uT can be applied. Without allowing uT , we would
obtain SB(XG) = {−2, 2}. �

Other kinds of backprojections are possible, but we will not define them. One
possibility is to make backprojections over multiple stages, as was done for forward
projections. Another possibility is to define them for the probabilistic case. This
is considerably more complicated. An example of a probabilistic backprojection is
to find the set of all states from which a state in S will be reached with at least
probability p.

10.1.3 A Plan and Its Execution

In Chapter 2, a plan was specified by a sequence of actions. This was possible
because the effect of actions was completely predictable. Throughout most of
Part II, a plan was specified as a path, which is a continuous-stage version of the
action sequence. Section 8.2.1 introduced plans that are expressed as a function on
the state space. This was optional because uncertainty was not explicitly modeled
(except perhaps in the initial state).

As a result of unpredictability caused by nature, it is now important to separate
the definition of a plan from its execution. The same plan may be executed many
times from the same initial state; however, because of nature, different future
states will be obtained. This requires the use of feedback in the form of a plan
that maps states to actions.

Defining a plan Let a (feedback) plan for Formulation 10.1 be defined as a
function π : X → U that produces an action π(x) ∈ U(x), for each x ∈ X.
Although the future state may not be known due to nature, if π is given, then it
will at least be known what action will be taken from any future state. In other
works, π has been called a feedback policy, feedback control law, reactive plan [340],
and conditional plan.

For some problems, particularly when K is fixed at some finite value, a stage-
dependent plan may be necessary. This enables a different action to be chosen for

506 S. M. LaValle: Planning Algorithms

every stage, even from the same state. Let K denote the set {1, . . . , K} of stages.
A stage-dependent plan is defined as π : X ×K → U . Thus, an action is given by
u = π(x, k). Note that the definition of a K-step plan, which was given Section
2.3, is a special case of the current definition. In that setting, the action depended
only on the stage because future states were always predictable. Here they are
no longer predictable and must be included in the domain of π. Unless otherwise
mentioned, it will be assumed by default that π is not stage-dependent.

Note that once π is formulated, the state transitions appear to be a function
of only the current state and nature. The next state is given by f(x, π(x), θ). The
same is true for the cost term, l(x, π(x), θ).

Forward projections under a fixed plan Forward projections can now be
defined under the constraint that a particular plan is executed. The specific ex-
pression of actions is replaced by π. Each time an action is needed from a state
x ∈ X, it is obtained as π(x). In this formulation, a different U(x) may be used
for each x ∈ X, assuming that π is correctly defined to use whatever actions are
actually available in U(x) for each x ∈ X.

First we will consider the nondeterministic case. Suppose that the initial state
x1 and a plan π are known. This means that u1 = π(x1), which can be sub-
stituted into (10.10) to compute the one-stage forward projection. To compute
the two-stage forward projection, u2 is determined from π(x2) for use in (10.11).
A recursive formulation of the nondeterministic forward projection under a fixed
plan is

Xk+1(x1, π) = {xk+1 ∈ X | ∃θk ∈ Θ(xk, π(xk)) such that

xk ∈ Xk(x1, π) and xk+1 = f(xk, π(xk), θk)}.
(10.28)

The probabilistic forward projection in (10.10) can be adapted to use π, which
results in

P (xk+2|xk, π) =
∑

xk+1∈X
P (xk+2|xk+1, π(xk+1))P (xk+1|xk, π(xk)). (10.29)

The basic idea can be applied k − 1 times to compute P (xk|x1, π).
A state transition matrix can be used once again to express the probabilistic

forward projection. In (10.15), all columns correspond to the application of the
action u. Let Mπ, be the forward projection due to a fixed plan π. Each column
of Mπ may represent a different action because each column represents a different
state xk. Each entry of Mπ is

mi,j = P (xk+1 = i | xk = j, π(xk)). (10.30)

The resulting Mπ defines a Markov process that is induced under the application
of the plan π.

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 507

Graph representations of a plan The game against nature involves two de-
cision makers: nature and the robot. Once the plan is formulated, the decisions of
the robot become fixed, which leaves nature as the only remaining decision maker.
Using this interpretation, a directed graph can be defined in the same way as in
Section 2.1, except nature actions are used instead of the robot’s actions. It can
even be imagined that nature itself faces a discrete feasible planning problem as in
Formulation 2.1, in which Θ(x, π(x)) replaces U(x), and there is no goal set. Let
Gπ denote a plan-based state transition graph, which arises under the constraint
that π is executed. The vertex set of Gπ is X. A directed edge in Gπ exists from x
to x′ if there exists some θ ∈ Θ(x, π(x)) such that x′ = f(x, π(x), θ). Thus, from
each vertex in Gπ, the set of outgoing edges represents all possible transitions to
next states that are possible, given that the action is applied according to π. In
the case of probabilistic uncertainty, Gπ becomes a weighted graph in which each
edge is assigned the probability P (x′|x, π(x), θ). In this case, Gπ corresponds to
the graph representation commonly used to depict a Markov chain.

A nondeterministic forward projection can easily be derived from Gπ by follow-
ing the edges outward from the current state. The outward edges lead to the states
of the one-stage forward projection. The outward edges of these states lead to the
two-stage forward projection, and so on. The probabilistic forward projection can
also be derived from Gπ.

The cost of a feedback plan Consider the cost-to-go of executing a plan π
from a state x1 ∈ X. The resulting cost depends on the sequences of states that
are visited, actions that are applied by the plan, and the applied nature actions.
In Chapter 2 this was obtained by adding the cost terms, but now there is a
dependency on nature. Both worst-case and expected-case analyses are possible,
which generalize the treatment of Section 9.2 to state spaces and multiple stages.

Let H(π, x1) denote the set of state-action-nature histories that could arise
from π when applied using x1 as the initial state. The cost-to-go, Gπ(x1), under
a given plan π from x1 can be measured using worst-case analysis as

Gπ(x1) = max
(x̃,ũ,θ̃)∈H(π,x1)

{

L(x̃, ũ, θ̃)
}

, (10.31)

which is the maximum cost over all possible trajectories from x1 under the plan
π. If any of these fail to terminate in the goal, then the cost becomes infinity. In
(10.31), x̃, ũ, and θ̃ are infinite histories, although their influence on the cost is
expected to terminate early due to the application of uT .

An optimal plan using worst-case analysis is any plan for which Gπ(x1) is
minimized over all possible plans (all ways to assign actions to the states). In
the case of feasible planning, there are usually numerous equivalent alternatives.
Sometimes the task may be only to find a feasible plan, which means that all
trajectories must reach the goal, but the cost does not need to be optimized.

Using probabilistic uncertainty, the cost of a plan can be measured using

508 S. M. LaValle: Planning Algorithms

expected-case analysis as

Gπ(x1) = EH(π,x1)

[

L(x̃, ũ, θ̃)
]

, (10.32)

in which E denotes the mathematical expectation taken over H(π, x1) (i.e., the
plan is evaluated in terms of a weighted sum, in which each term has a weight for
the probability of a state-action-nature history and its associated cost, L(x̃, ũ, θ̃)).
This can also be interpreted as the expected cost over trajectories from x1. If
any of these have nonzero probability and fail to terminate in the goal, then
Gπ(x1) = ∞. In the probabilistic setting, the task is usually to find a plan that
minimizes Gπ(x1).

An interesting question now emerges: Can the same plan, π, be optimal from
every initial state x1 ∈ X, or do we need to potentially find a different optimal
plan for each initial state? Fortunately, a single plan will suffice to be optimal
over all initial states. Why? This behavior was also observed in Section 8.2.1. If
π is optimal from some x1, then it must also be optimal from every other state
that is potentially visited by executing π from x1. Let x denote some visited state.
If π was not optimal from x, then a better plan would exist, and the goal could
be reached from x with lower cost. This contradicts the optimality of π because
solutions must travel through x. Let π∗ denote a plan that is optimal from every
initial state.

10.2 Algorithms for Computing Feedback Plans

10.2.1 Value Iteration

Fortunately, the value iteration method of Section 2.3.1.1 extends nicely to handle
uncertainty in prediction. This was the main reason why value iteration was
introduced in Chapter 2. Value iteration was easier to describe in Section 2.3.1.1
because the complications of nature were avoided. In the current setting, value
iteration retains most of its efficiency and can easily solve problems that involve
thousands or even millions of states.

The state space, X, is assumed to be finite throughout Section 10.2.1. An
extension to the case of a countably infinite state space can be developed if cost-
to-go values over the entire space do not need to be computed incrementally.

Only backward value iteration is considered here. Forward versions can be
defined alternatively.

Nondeterministic case Suppose that the nondeterministic model of nature is
used. A dynamic programming recurrence, (10.39), will be derived. This directly
yields an iterative approach that computes a plan that minimizes the worst-case
cost. The following presentation shadows that of Section 2.3.1.1; therefore, it may
be helpful to refer back to this periodically.

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 509

An optimal plan π∗ will be found by computing optimal cost-to-go functions.
For 1 ≤ k ≤ F , let G∗

k denote the worst-case cost that could accumulate from
stage k to F under the execution of the optimal plan (compare to (2.5))

G∗
k(xk) = min

uk
max
θk

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{
K∑

i=k

l(xi, ui, θi) + lF (xF)

}

. (10.33)

Inside of the min’s and max’s of (10.33) are the last F − k terms of the cost
functional, (10.8). For simplicity, the ranges of each ui and θi in the min’s and
max’s of (10.33) have not been indicated. The optimal cost-to-go for k = F is

G∗
F (xF) = lF (xF), (10.34)

which is the same as (2.6) for the predictable case.
Now consider making K passes over X, each time computing G∗

k from G∗
k+1,

as k ranges from F down to 1. In the first iteration, G∗
F is copied from lF . In the

second iteration, G∗
K is computed for each xK ∈ X as (compare to (2.7))

G∗
K(xK) = min

uK
max
θK

{

l(xK , uK , θK) + lF (xF)
}

, (10.35)

in which uK ∈ U(xK) and θK ∈ Θ(xK , uK). Since lF = G∗
F and xF = f(xK , uK , θK),

substitutions are made into (10.35) to obtain (compare to (2.8))

G∗
K(xK) = min

uK
max
θK

{

l(xK , uK , θK) +G∗
F (f(xK , uK , θK))

}

, (10.36)

which computes the costs of all optimal one-step plans from stage K to stage
F = K + 1.

More generally, G∗
k can be computed once G∗

k+1 is given. Carefully study
(10.33), and note that it can be written as (compare to (2.9))

G∗
k(xk) = min

uk
max
θk

{

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{

l(xk, uk, θk)+

K∑

i=k+1

l(xi, ui, θi) + lF (xF)

}}

(10.37)

by pulling the first cost term out of the sum and by separating the minimization
over uk from the rest, which range from uk+1 to uK . The second min and max do
not affect the l(xk, uk, θk) term; thus, l(xk, uk, θk) can be pulled outside to obtain
(compare to (2.10))

G∗
k(xk) = min

uk
max
θk

{

l(xk, uk, θk)+

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{
K∑

i=k+1

l(xi, ui, θi) + l(xF)

}}

.

(10.38)

510 S. M. LaValle: Planning Algorithms

The inner min’s and max’s represent G∗
k+1, which yields the recurrence (compare

to (2.11))

G∗
k(xk) = min

uk∈U(xk)

{

max
θk

{

l(xk, uk, θk) +G∗
k+1(xk+1)

}}

. (10.39)

Probabilistic case Now consider the probabilistic case. A value iteration method
can be obtained by once again shadowing the presentation in Section 2.3.1.1. For k
from 1 to F , let G∗

k denote the expected cost from stage k to F under the execution
of the optimal plan (compare to (2.5)):

G∗
k(xk) = min

uk,...,uK

{

Eθk,...,θK

[
K∑

i=k

l(xi, ui, θi) + lF (xF)

]}

. (10.40)

The optimal cost-to-go for the boundary condition of k = F again reduces to
(10.34).

Once again, the algorithm makes K passes over X, each time computing G∗
k

from G∗
k+1, as k ranges from F down to 1. As before, G∗

F is copied from lF . In the
second iteration, G∗

K is computed for each xK ∈ X as (compare to (2.7))

G∗
K(xK) = min

uK

{

EθK

[

l(xK , uK , θK) + lF (xF)
]}

, (10.41)

in which uK ∈ U(xK) and the expectation occurs over θK . Substitutions are made
into (10.41) to obtain (compare to (2.8))

G∗
K(xK) = min

uK

{

EθK

[

l(xK , uK , θK) +G∗
F (f(xK , uK , θK))

]}

. (10.42)

The general iteration is

G∗
k(xk) =min

uk

{

Eθk

[

min
uk+1,...,uK

{

Eθk+1,...,θK

[

l(xk, uk, θk)+

K∑

i=k+1

l(xi, ui, θi) + lF (xF)

]}]}

,

(10.43)

which is obtained once again by pulling the first cost term out of the sum and by
separating the minimization over uk from the rest. The second min and expectation
do not affect the l(xk, uk, θk) term, which is pulled outside to obtain (compare to
(2.10))

G∗
k(xk) =min

uk

{

Eθk

[

l(xk, uk, θk)+

min
uk+1,...,uK

{

Eθk+1,...,θK

[
K∑

i=k+1

l(xi, ui, θi) + l(xF)

]}]}

.

(10.44)

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 511

The inner min and expectation define G∗
k+1, yielding the recurrence (compare to

(2.11) and (10.39))

G∗
k(xk) = min

uk∈U(xk)

{

Eθk

[

l(xk, uk, θk) +G∗
k+1(xk+1)

]}

= min
uk∈U(xk)

{ ∑

θk∈Θ(xk,uk)

(

l(xk, uk, θk) +G∗
k+1(f(xk, uk, θk))

)

P (θk|xk, uk)
}

.

(10.45)

If the cost term does not depend on θk, it can be written as l(xk, uk), and
(10.45) simplifies to

G∗
k(xk) = min

uk∈U(xk)

{

l(xk, uk) +
∑

xk+1∈X
G∗
k+1(xk+1)P (xk+1|xk, uk)

}

. (10.46)

The dependency of state transitions on θk is implicit through the expression of
P (xk+1|xk, uk), for which the definition uses P (θk|xk, uk) and the state transition
equation f . The form given in (10.46) may be more convenient than (10.45) in
implementations.

Convergence issues If the maximum number of stages is fixed in the problem
definition, then convergence is assured. Suppose, however, that there is no limit on
the number of stages. Recall from Section 2.3.2 that each value iteration increases
the total path length by one. The actual stage indices were not important in
backward dynamic programming because arbitrary shifting of indices does not
affect the values. Eventually, the algorithm terminated because optimal cost-to-
go values had been computed for all reachable states from the goal. This resulted
in a stationary cost-to-go function because the values no longer changed. States
that are reachable from the goal converged to finite values, and the rest remained
at infinity. The only problem that prevents the existence of a stationary cost-to-go
function, as mentioned in Section 2.3.2, is negative cycles in the graph. In this
case, the best plan would be to loop around the cycle forever, which would reduce
the cost to −∞.

In the current setting, a stationary cost-to-go function once again arises, but
cycles once again cause difficulty in convergence. The situation is, however, more
complicated due to the influence of nature. It is helpful to consider a plan-based
state transition graph, Gπ. First consider the nondeterministic case. If there
exists a plan π from some state x1 for which all possible actions of nature cause
the traversal of cycles that accumulate negative cost, then the optimal cost-to-
go at x1 converges to −∞, which prevents the value iterations from terminating.
These cases can be detected in advance, and each such initial state can be avoided
(some may even be in a different connected component of the state space).

It is also possible that there are unavoidable positive cycles. In Section 2.3.2,
the cost-to-go function behaved differently depending on whether the goal set was

512 S. M. LaValle: Planning Algorithms

xI xG xI xG

(a) (b)

Figure 10.2: Plan-based state transition graphs. (a) The goal is possibly reachable,
but not guaranteed reachable because an infinite cycle could occur. (b) The goal
is guaranteed reachable because all flows lead to the goal.

reachable. Due to nature, the goal set may be possibly reachable or guaranteed
reachable, as illustrated in Figure 10.2. To be possibly reachable from some initial
state, there must exist a plan, π, for which there exists a sequence of nature
actions that will lead the state into the goal set. To be guaranteed reachable, the
goal must be reached in spite of all possible sequences of nature actions. If the
goal is possibly reachable, but not guaranteed reachable, from some state x1 and
all edges have positive cost, then the cost-to-go value of x1 tends to infinity as the
value iterations are repeated. For example, every plan-based state transition graph
may contain a cycle of positive cost, and in the worst case, nature may cause the
state to cycle indefinitely. If convergence of the value iterations is only evaluated
at states from which the goal set is guaranteed to be reachable, and if there are
no negative cycles, then the algorithm should terminate when all cost-to-go values
remain unchanged.

For the probabilistic case, there are three situations:

1. The value iterations arrive at a stationary cost-to-go function after a finite
number of iterations.

2. The value iterations do not converge in any sense.

3. The value iterations converge only asymptotically to a stationary cost-to-go
function. The number of iterations tends to infinity as the values converge.

The first two situations have already occurred. The first one occurs if there exists
a plan, π, for which Gπ has no cycles. The second situation occurs if there are neg-
ative or positive cycles for which all edges in the cycle have probability one. This
situation is essentially equivalent to that for the nondeterministic case. Worst-case
analysis assumes that the worst possible nature actions will be applied. For the
probabilistic case, the nature actions are forced by setting their probabilities to
one.

The third situation is unique to the probabilistic setting. This is caused by
positive or negative cycles in Gπ for which the edges have probabilities in (0, 1).
The optimal plan may even have such cycles. As the value iterations consider

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 513

xI xG

1 1/2

1/211

1

Figure 10.3: A plan-based state transition graph that causes asymptotic conver-
gence. The probabilities of the transitions are shown on the edges. Longer and
longer paths exist by traversing the cycle, but the probabilities become smaller.

longer and longer paths, a cycle may be traversed more times. However, each
time the cycle is traversed, the probability diminishes. The probabilities diminish
exponentially in terms of the number of stages, whereas the costs only accumulate
linearly. The changes in the cost-to-go function gradually decrease and converge
only to stationary values as the number of iterations tends to infinity. If some
approximation error is acceptable, then the iterations can be terminated once
the maximum change over all of X is within some ǫ threshold. The required
number of value iterations to obtain a solution of the desired quality depends on
the probabilities of following the cycles and on their costs. If the probabilities are
lower, then the algorithm converges sooner.

Example 10.6 (A Cycle in the Transition Graph) Suppose that a plan, π,
is chosen that yields the plan-based state transition graph shown in Figure 10.3.
A probabilistic model is used, and the probabilities are shown on each edge. For
simplicity, assume that each transition results in unit cost, l(x, u, θ) = 1, over all
x, u, and θ.

The expected cost from xI is straightforward to compute. With probability 1/2,
the cost to reach xG is 3. With probability 1/4, the cost is 7. With probability
1/8, the cost is 11. Each time another cycle is taken, the cost increases by 4, but
the probability is cut in half. This leads to the infinite series

Gπ(xI) = 3 + 4
∞∑

i=1

1

2i
= 7. (10.47)

The infinite sum is the standard geometric series and converges to 1; hence (10.47)
converges to 7.

Even though the cost converges to a finite value, this only occurs in the limit.
An infinite number of value iterations would theoretically be required to obtain
this result. For most applications, an approximate solution suffices, and very
high precision can be obtained with a small number of iterations (e.g., after 20
iterations, the change is on the order of one-billionth). Thus, in general, it is
sensible to terminate the value iterations after the maximum cost-to-go change is
less than a threshold based directly on precision.

514 S. M. LaValle: Planning Algorithms

Note that if nondeterministic uncertainty is used, then the value iterations do
not converge because, in the worst case, nature will cause the state to cycle forever.
Even though the goal is not guaranteed reachable, the probabilistic uncertainty
model allows reasonable solutions. �

Using the plan Assume that there is no limit on the number of stages. After
the value iterations terminate, cost-to-go functions are determined over X. This
is not exactly a plan, because an action is required for each x ∈ X. The actions
can be obtained by recording the u ∈ U(x) that produced the minimum cost value
in (10.45) or (10.39).

Assume that the value iterations have converged to a stationary cost-to-go
function. Before uncertainty was introduced, the optimal actions were determined
by (2.19). The nondeterministic and probabilistic versions of (2.19) are

π∗(x) = argmin
u∈U(x)

{

max
θ∈Θ(x,u)

{

l(x, u, θ) +G∗(f(x, u, θ))
}}

(10.48)

and
π∗(x) = argmin

u∈U(x)

{

Eθ

[

l(x, u, θ) +G∗(f(x, u, θ))
]}

, (10.49)

respectively. For each x ∈ X at which the optimal cost-to-go value is known, one
evaluation of (10.45) yields the best action.

Conveniently, the optimal action can be recovered directly during execution
of the plan, rather than storing actions. Each time a state xk is obtained during
execution, the appropriate action uk = π∗(xk) is selected by evaluating (10.48) or
(10.49) at xk. This means that the cost-to-go function itself can be interpreted as
a representation of the optimal plan, once it is understood that a local operator is
required to recover the action. It may seem strange that such a local computation
yields the global optimum; however, this works because the cost-to-go function
already encodes the global costs. This behavior was also observed for continuous
state spaces in Section 8.4.1, in which a navigation function served to define a
feedback motion plan. In that context, a gradient operator was needed to recover
the direction of motion. In the current setting, (10.48) and (10.49) serve the same
purpose.

10.2.2 Policy Iteration

The value iterations of Section 10.2.1 work by iteratively updating cost-to-go values
on the state space. The optimal plan can alternatively be obtained by iteratively
searching in the space of plans. This leads to a method called policy iteration [84];
the term policy is synonymous with plan. The method will be explained for the
case of probabilistic uncertainty, and it is assumed that X is finite. With minor
adaptations, a version for nondeterministic uncertainty can also be developed.

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 515

Policy iteration repeatedly requires computing the cost-to-go for a given plan,
π. Recall the definition of Gπ from (10.32). First suppose that there are no
uncertainties, and that the state transition equation is x′ = f(x, u). The dynamic
programming equation (2.18) from Section 2.3.2 can be used to derive the cost-
to-go for each state x ∈ X under the application of π. Make a copy of (2.18) for
each x ∈ X, and instead of the min, use the given action u = π(x), to yield

Gπ(x) = l(x, π(x)) +Gπ(f(x, π(x))). (10.50)

In (10.50), the G∗ has been replaced by Gπ because there are no variables to
optimize (it is simply the cost of applying π). Equation (10.50) can be thought
of as a trivial form of dynamic programming in which the choice of possible plans
has been restricted to a single plan, π. If the dynamic programming recurrence
(2.18) holds over the space of all plans, it must certainly hold over a space that
consists of a single plan; this is reflected in (10.50).

If there are n states, (10.50) yields n equations, each of which gives an expres-
sion of Gπ(x) for a different state. For the states in which x ∈ XG, it is known that
Gπ(x) = 0. Now that this is known, the cost-to-go for all states from which XG can
be reached in one stage can be computed using (10.50) with Gπ(f(x, π(x))) = 0.
Once these cost-to-go values are computed, another wave of values can be com-
puted from states that can reach these in one stage. This process continues until
the cost-to-go values are computed for all states. This is similar to the behavior
of Dijkstra’s algorithm.

This process of determining the cost-to-go should not seem too mysterious.
Equation (10.50) indicates how the costs differ between neighboring states in the
state transition graph. Since all of the differences are specified and an initial
condition is given for XG, all others can be derived by adding up the differences
expressed in (10.50). Similar ideas appear in the Hamilton-Jacobi-Bellman equa-
tion and Pontryagin’s minimum principle, which are covered in Section 15.2.

Now we turn to the case in which there are probabilistic uncertainties. The
probabilistic analog of (2.18) is (10.49). For simplicity, consider the special case
in which l(x, u, θ) does not depend on θ, which results in

π∗(x) = argmin
u∈U(x)

{

l(x, u) +
∑

x′∈X
G∗(x′)P (x′|x, u)

}

, (10.51)

in which x′ = f(x, u). The cost-to-go function, G∗, satisfies the dynamic program-
ming recurrence

G∗(x) = min
u∈U(x)

{

l(x, u) +
∑

x′∈X
G∗(x′)P (x′|x, u)

}

. (10.52)

The probabilistic analog to (10.50) can be made from (10.52) by restricting the
set of actions to a single plan, π, to obtain

Gπ(x) = l(x, π(x)) +
∑

x′∈X
Gπ(x

′)P (x′|x, π(x)), (10.53)

516 S. M. LaValle: Planning Algorithms

POLICY ITERATION ALGORITHM

1. Pick an initial plan π, in which uT is applied at each x ∈ XG and all other
actions are chosen arbitrarily.

2. Use (10.53) to compute Gπ for each x ∈ X under the plan π.

3. Substituting the computed Gπ values for G
∗, use (10.51) to compute a better

plan, π′:

π′(x) = argmin
u∈U(x)

{

l(x, u) +
∑

x′∈X
Gπ(x

′)P (x′|x, u)
}

. (10.54)

4. If π′ produces at least one lower cost-to-go value than π, then let π = π′ and
repeat Steps 2 and 3. Otherwise, declare π to be the optimal plan, π∗.

Figure 10.4: The policy iteration algorithm iteratively searches the space of plans
by evaluating and improving plans.

in which x′ is the next state.
The cost-to-go for each x ∈ X under the application of π can be determined by

writing (10.53) for each state. Note that all quantities except Gπ are known. This
means that if there are n states, then there are n linear equations and n unknowns
(Gπ(x) for each x ∈ X). The same was true when (10.50) was used, except the
equations were much simpler. In the probabilistic setting, a system of n linear
equations must be solved to determine Gπ. This may be performed using classical
linear algebra techniques, such as singular value decomposition (SVD) [399, 961].

Now that we have a method for evaluating the cost of a plan, the policy iteration
method is straightforward, as specified in Figure 10.4. Note that in Step 3, the
cost-to-go Gπ, which was developed for one plan, π, is used to evaluate other
plans. The result is the cost that will be obtained if a new action is tried in the
first stage and then π is used for all remaining stages. If a new action cannot
reduce the cost, then π must have already been optimal because it means that
(10.54) has become equivalent to the stationary dynamic programming equation,
(10.49). If it is possible to improve π, then a new plan is obtained. The new plan
must be strictly better than the previous plan, and there is only a finite number
of possible plans in total. Therefore, the policy iteration method converges after
a finite number of iterations.

Example 10.7 (An Illustration of Policy Iteration) A simple example will
now be used to illustrate policy iteration. Let X = {a, b, c} and U = {1, 2, uT}.
Let XG = {c}. Let l(x, u) = 1 for all x ∈ X and u ∈ U \ {uT} (if uT is applied,
there is no cost). The probabilistic state transition graphs for each action are
shown in Figure 10.5. The first step is to pick an initial plan. Let π(a) = 1 and
π(b) = 1; let π(c) = uT because c ∈ XG.

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 517

ba c

1/3

1/3

1/3

1/3

1/3
1/3

xG
ba c

3/4

1/2

1/4

1/2

xG

u=1 u=2

Figure 10.5: The probabilistic state transition graphs for u = 1 and u = 2.
Transitions out of c are not shown because it is assumed that a termination action
is always applied from xg.

Now use (10.53) to compute Gπ. This yields three equations:

Gπ(a) = 1 +Gπ(a)P (a | a, 1) +Gπ(b)P (b | a, 1) +Gπ(c)P (c | a, 1) (10.55)

Gπ(b) = 1 +Gπ(a)P (a | b, 1) +Gπ(b)P (b | b, 1) +Gπ(c)P (c | b, 1) (10.56)

Gπ(c) = 0 +Gπ(a)P (a | c, uT) +Gπ(b)P (b | c, uT) +Gπ(c)P (c | c, uT). (10.57)

Each equation represents a different state and uses the appropriate action from π.
The final equation reduces to Gπ(c) = 0 because of the basic rules of applying a
termination condition. After substituting values for P (x′|x, u) and using Gπ(c) =
0, the other two equations become

Gπ(a) = 1 + 1
3
Gπ(a) +

1
3
Gπ(b) (10.58)

and
Gπ(b) = 1 + 1

3
Gπ(a) +

1
3
Gπ(b). (10.59)

The solutions are Gπ(a) = Gπ(b) = 3.
Now use (10.54) for each state with Gπ(a) = Gπ(b) = 3 and Gπ(c) = 0 to find

a better plan, π′. At state a, it is found by solving

π′(a) = argmin
u∈U

{

l(x, a) +
∑

x′∈X
Gπ(x

′)P (x′|x, a)
}

. (10.60)

The best action is u = 2, which produces cost 5/2 and is computed as

l(x, 2) +
∑

x′∈X
Gπ(x

′)P (x′|x, 2) = 1 + 0 + (3)1
2
+ (0)1

4
= 5

2
. (10.61)

Thus, π′(a) = 2. Similarly, π′(b) = 2 can be computed, which produces cost 7/4.
Once again, π′(c) = uT , which completes the determination of an improved plan.

Since an improved plan has been found, replace π with π′ and return to Step
2. The new plan yields the equations

Gπ(a) = 1 + 1
2
Gπ(b) (10.62)

518 S. M. LaValle: Planning Algorithms

and

Gπ(b) = 1 + 1
4
Gπ(a). (10.63)

Solving these yields Gπ(a) = 12/7 and Gπ(b) = 10/7. The next step attempts to
find a better plan using (10.54), but it is determined that the current plan cannot
be improved. The policy iteration method terminates by correctly reporting that
π∗ = π. �

Policy iteration may appear preferable to value iteration, especially because it
usually converges in fewer iterations than value iteration. The equation solving
that determines the cost of a plan effectively considers multiple stages at once.
However, for most planning problems, X is large and the large linear system
of equations that must be solved at every iteration can become unwieldy. In
some applications, either the state space may be small enough or sparse matrix
techniques may allow efficient solutions over larger state spaces. In general, value-
based methods seem preferable for most planning problems.

10.2.3 Graph Search Methods

Value iteration is quite general; however, in many instances, most of the time is
wasted on states that do not update their values because either the optimal cost-
to-go is already known or the goal is not yet reached. Policy iteration seems to
alleviate this problem, but it is limited to small state spaces. These shortcomings
motivate the consideration of alternatives, such as extending the graph search
methods of Section 2.2. In some cases, Dijkstra’s algorithm can even be extended
to quickly obtain optimal solutions, but a strong assumption is required on the
structure of solutions. In the nondeterministic setting, search methods can be
developed that produce only feasible solutions, without regard for optimality. For
the methods in this section, X need not be finite, as long as the search method is
systematic, in the sense defined in Section 2.2.

Backward search with backprojections A backward search can be con-
ducted by incrementally growing a plan outward from XG by using backprojec-
tions. A complete algorithm for computing feasible plans under nondeterministic
uncertainty is outlined in Figure 10.6. Let S denote the set of states for which
the plan has been computed. Initially, S = XG and, if possible, S may grow
until S = X. The plan definition starts with π(x) = uT for each x ∈ XG and is
incrementally extended to new states during execution.

Step 2 takes every state x that is not already in S and checks whether it should
be added. This requires determining whether some action, u, can be applied from
x, with the next state guaranteed to lie in S, as shown in Figure 10.7. If so, then
π(x) = u is assigned and S is extended to include x. If no such progress can be
made, then the algorithm must terminate. Otherwise, every state is checked again

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 519

BACKPROJECTION ALGORITHM

1. Initialize S = XG, and let π(x) = uT for each x ∈ XG.

2. For each x ∈ X \ S, if there exists some u ∈ U(x) such that x ∈ SB(S, u)
then: 1) let π(x) = u, and 2) insert x into S.

3. If Step 2 failed to extend S, then exit. This implies that SB(S) = S, which
means no more progress can be made. Otherwise, go to Step 2.

Figure 10.6: A general algorithm for computing a feasible plan under nondeter-
ministic uncertainty.

S

x

Forward projection
under u

Figure 10.7: A state x can be added to S if there exists an action u ∈ U(x) such
that the one-stage forward projection is contained in S.

by returning to Step 2. This is necessary because S has grown, and in the next
iteration new states may lie in its strong backprojection.

For efficiency reasons, the X \ S set in Step 2 may be safely replaced with
the smaller set, WB(S) \ S, because it is impossible for other states in X to be
affected. Depending on the problem, this condition may provide a quick way to
prune many hopeless states from consideration. As an example, consider a grid-
like environment in which a maximum of two steps in any direction is possible at
a given time. A simple distance test can be implemented to eliminate many states
from possible inclusion into S in Step 2.

As long as the consideration of states to include in S is systematic, as considered
in Section 2.2, numerous variations of the algorithm in Figure 10.6 are possible.
One possibility is to keep track of the cost-to-go and grow S based on incrementally
inserting minimal-cost states. This leads to a nondeterministic version of Dijkstra’s
algorithm, which is covered next.

Nondeterministic Dijkstra Figure 10.8 shows an extension of Dijkstra’s al-
gorithm for solving the problem of Formulation 10.1 under nondeterministic un-
certainty. It can also be considered as a variant of the algorithm in Figure 10.6

520 S. M. LaValle: Planning Algorithms

NONDETERMINISTIC DIJKSTRA

1. Initialize S = ∅ and A = XG. Associate uT with every x ∈ A. Assign
G(x) = 0 for all x ∈ A and G(x) =∞ for all other states.

2. Unless A is empty, remove the xs ∈ A and its corresponding u, for which G
is smallest. If A was empty, then exit (no further progress is possible).

3. Designate π∗(xs) = u as part of the optimal plan and insert xs into S.
Declare G∗(xs) = G(xs).

4. Compute G(x) using (10.64) for any x in the frontier set, Front(xs, S), and
insert Front(xs, S) into A and with associated actions for each inserted state.
For states already in A, retain whichever G value is lower, either its original
value or the new computed value. Go to Step 2.

Figure 10.8: A Dijkstra-based algorithm for computing an optimal feasible plan
under nondeterministic uncertainty.

because it grows S by using backprojections. The algorithm in Figure 10.8 rep-
resents a backward-search version of Dijkstra’s algorithm; therefore, it maintains
the worst-case cost-to-go, G, which sometimes becomes the optimal, worst-case
cost-to-go, G∗. Initially, G = 0 for states in the goal, and G =∞ for all others.

Step 1 performs the initialization. Step 2 selects the state in A that has the
smallest value. As in Dijkstra’s algorithm for deterministic problems, it is known
that the cost-to-go for this state is the smallest possible. It is therefore declared
in Step 3 that G∗(xs) = G(xs), and π

∗ is extended to include xs.
Step 4 updates the costs for some states and expands the active set, A. Which

costs could be immediately affected by the insertion of xs into S? These are
states xk ∈ X \ S for which there exists some uk ∈ U(xk) that produces a one-
stage forward projection, Xk+1(xk, uk), such that: 1) xs ∈ Xk+1(xk, uk) and 2)
Xk+1(xk, uk) ⊆ S. This is depicted in Figure 10.9. Let the set of states that
satisfy these constraints be called the frontier set, denoted by Front(xs, S). For
each x ∈ Front(xs, S), let Uf (x) ⊆ U(x) denote the set of all actions for which the
forward projection satisfies the two previous conditions.

The frontier set can be interpreted in terms of backprojections. The weak
backprojection WB(xs) yields all states that can possibly reach xs in one step.
However, the cost-to-go is only finite for states in SB(S) (here S already includes
xs). The states in S should certainly be excluded because their optimal costs are
already known. These considerations reduce the set of candidate frontier states to
(WB(xs)∩ SB(S)) \S. This set is still too large because the same action, u, must
produce a one-stage forward projection that includes xs and is a subset of S.

The worst-case cost-to-go is computed for all x ∈ Front(xs, S) as

G(x) = min
u∈Uf (x)

{

max
θ∈Θ(x,u)

{

l(x, u, θ) +G(f(x, u, θ))
}}

, (10.64)

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 521

x

Original S

xs

Forward projection
under u

Expanded S

Figure 10.9: The worst-case cost-to-go is computed for any state x such that there
exists a u ∈ U(x) for which the one-stage forward projection is contained in the
updated S and one state in the forward projection is xs.

in which the restricted action set, Uf (x), is used. If x was already in A and a
previous G(x) was computed, then the minimum of its previous value and (10.64)
is kept.

Probabilistic Dijkstra A probabilistic version of Dijkstra’s algorithm does not
exist in general; however, for some problems, it can be made to work. The algo-
rithm in Figure 10.8 is adapted to the probabilistic case by using

G(x) = min
u∈Uf (x)

{

Eθ

[

l(x, u, θ) +G(f(x, u, θ))
]}

(10.65)

in the place of (10.64). The definition of Front remains the same, and the nonde-
terministic forward projections are still applied to the probabilistic problem. Only
edges in the transition graph that have nonzero probability are actually consid-
ered as possible future states. Edges with zero probability are precluded from the
forward projection because they cannot affect the computed cost values.

The probabilistic version of Dijkstra’s algorithm can be successfully applied if
there exists a plan, π, for which from any xk ∈ X there is probability one that
Gπ(xk+1) < Gπ(xk). What does this condition mean? From any xk, all possible
next states that have nonzero probability of occurring must have a lower cost value.
If all edge costs are positive, this means that all paths in the multi-stage forward
projection will make monotonic progress toward the goal. In the deterministic
case, this always occurs if l(x, u) is always positive. If nonmonotonic paths are
possible, then Dijkstra’s algorithm breaks down because the region in which cost-
to-go values change is no longer contained within a propagating band, which arises
in Dijkstra’s algorithm for deterministic problems.

522 S. M. LaValle: Planning Algorithms

10.3 Infinite-Horizon Problems

In stochastic control theory and artificial intelligence research, most problems con-
sidered to date do not specify a goal set. Therefore, there are no associated termi-
nation actions. The task is to develop a plan that minimizes the expected cost (or
maximize expected reward) over some number of stages. If the number of stages
is finite, then it is straightforward to apply the value iteration method of Section
10.2.1. The adapted version of backward value iteration simply terminates when
the first stage is reached. The problem becomes more challenging if the number
of stages is infinite. This is called an infinite-horizon problem.

The number of stages for the planning problems considered in Section 10.1 is
also infinite; however, it was expected that if the goal could be reached, termination
would occur in a finite number of iterations. If there is no termination condition,
then the costs tend to infinity. There are two alternative cost models that force
the costs to become finite. The discounted cost model shrinks the per-stage costs
as the stages extend into the future; this yields a geometric series for the total
cost that converges to a finite value. The average cost-per-stage model divides the
total cost by the number of stages. This essentially normalizes the accumulating
cost, once again preventing its divergence to infinity. Some of the computation
methods of Section 10.2 can be adapted to these models. This section formulates
these two infinite-horizon cost models and presents computational solutions.

10.3.1 Problem Formulation

Both of the cost models presented in this section were designed to force the cumu-
lative cost to become finite, even though there is an infinite number of stages. Each
can be considered as a minor adaptation of cost functional used in Formulation
10.1.

The following formulation will be used throughout Section 10.3.

Formulation 10.2 (Infinite-Horizon Problems)

1. A nonempty, finite state space X.

2. For each state x ∈ X, a finite action space U(x) (there is no termination
action, contrary to Formulation 10.1).

3. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U(x), and θ ∈ Θ(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely.

10.3. INFINITE-HORIZON PROBLEMS 523

6. A stage-additive cost functional, L(x̃, ũ, θ̃), in which x̃, ũ, and θ̃ are infinite
state, action, and nature histories, respectively. Two alternative forms of L
will be given shortly.

In comparison to Formulation 10.1, note that here there is no initial or goal state.
Therefore, there are no termination actions. Without the specification of a goal
set, this may appear to be a strange form of planning. A feedback plan, π, still
takes the same form; π(x) produces an action u ∈ U(x) for each x ∈ X.

As a possible application, imagine a robot that delivers materials in a factory
from several possible source locations to several destinations. The robot operates
over a long work shift and has a probabilistic model of when requests to deliver
materials will arrive. Formulation 10.2 can be used to define a problem in which
the goal is to minimize the average amount of time that materials wait to be
delivered. This strategy should not depend on the length of the shift; therefore,
an infinite number of stages is reasonable. If the shift is too short, the robot may
focus only on one delivery, or it may not even have enough time to accomplish
that.

Discounted cost In Formulation 10.2, the cost functional in Item 6 must be
defined carefully to ensure that finite values are always obtained, even though the
number of stages tends to infinity. The discounted cost model provides one simple
way to achieve this by rapidly decreasing costs in future stages. Its definition is
based on the standard geometric series. For any real parameter α ∈ (0, 1),

lim
K→∞

(
K∑

k=0

αk

)

=
1

1− α. (10.66)

The simplest case, α = 1/2, yields 1+1/2+1/4+1/8+· · · , which clearly converges
to 2.

Now let α ∈ (0, 1) denote a discount factor, which is applied in the definition
of a cost functional:

L(x̃, ũ, θ̃) = lim
K→∞

(
K∑

k=0

αkl(xk, uk, θk)

)

. (10.67)

Let lk denote the cost, l(xk, uk, θk), received at stage k. For convenience in this
setting, the first stage is k = 0, as opposed to k = 1, which has been used
previously. As the maximum stage, K, increases, the diminished importance of
costs far in the future can easily be observed, as indicated in Figure 10.10.

The rate of cost decrease depends strongly on α. For example, if α = 1/2,
the costs decrease very rapidly. If α = 0.999, the convergence to zero is much
slower. The trade-off is that with a large value of α, more stages are taken into
account, and the designed plan is usually of higher quality. If a small value of α is
used, methods such as value iteration converge much more quickly; however, the
solution quality may be poor because of “short sightedness.”

524 S. M. LaValle: Planning Algorithms

Stage L∗
K

K = 0 l0
K = 1 l0 + αl1
K = 2 l0 + αl1 + α2l2
K = 3 l0 + αl1 + α2l2 + α3l3
K = 4 l0 + αl1 + α2l2 + α3l3 + α4l4

...

Figure 10.10: The cost magnitudes decease exponentially over the stages.

The term l(xk, uk, θk) in (10.67) assumes different values depending on xk, uk,
and θk. Since there are only a finite number of possibilities, they must be bounded
by some positive constant c.1 Hence,

lim
K→∞

(
K∑

k=0

αkl(xk, uk, θk)

)

≤ lim
K→∞

(
K∑

k=0

αkc

)

≤ c

1− α, (10.68)

which means that L(x̃, ũ, θ̃) is bounded from above, as desired. A similar lower
bound can be constructed, which ensures that the resulting total cost is always
finite.

Average cost-per-stage An alternative to discounted cost is to use the average
cost-per-stage model, which keeps the cumulative cost finite by dividing out the
total number of stages:

L(x̃, ũ, θ̃) = lim
K→∞

(

1

K

K−1∑

k=0

l(xk, uk, θk)

)

. (10.69)

Using the maximum per-stage cost bound c, it is clear that (10.69) grows no larger
than c, even as K →∞. This model is sometimes preferable because the cost does
not depend on an arbitrary parameter, α.

10.3.2 Solution Techniques

Straightforward adaptations of the value and policy iteration methods of Section
10.2 exist for infinite-horizon problems. These will be presented here; however,
it is important to note that many other important issues exist regarding their
convergence and numerical stability [96]. There are several other variants of these
algorithms that are too involved to cover here but nevertheless are important
because they address many of these additional issues. The main point in this
section is to understand the simple relationship to the problems considered so far
in Sections 10.1 and 10.2.

1The state space X may even be infinite, but this requires that the set of possible costs is
bounded.

10.3. INFINITE-HORIZON PROBLEMS 525

Value iteration for discounted cost A backward value iteration solution will
be presented that follows naturally from the method given in Section 10.2.1. For
notational convenience, let the first stage be designated as k = 0 so that αk−1 may
be replaced by αk. In the probabilistic case, the expected optimal cost-to-go is

G∗(x) = lim
K→∞

(

min
ũ

{

Eθ̃

[
K∑

k=1

αkl(xk, uk, θk)

]})

. (10.70)

The expectation is taken over all nature histories, each of which is an infinite
sequence of nature actions. The corresponding expression for the nondeterministic
case is

G∗(x) = lim
K→∞

(

min
ũ

{

max
θ̃

{
K∑

k=1

αkl(xk, uk, θk)

}})

. (10.71)

Since the probabilistic case is more common, it will be covered here. The
nondeterministic version is handled in a similar way (see Exercise 17). As before,
backward value iterations will be performed because they are simpler to express.
The discount factor causes a minor complication that must be fixed to make the
dynamic programming recurrence work properly.

One difficulty is that the stage index now appears in the cost function, in the
form of αk. This means that the shift-invariant property from Section 2.3.1.1 is
no longer preserved. We must therefore be careful about assigning stage indices.
This is a problem because for backward value iteration the final stage index has
been unknown and unimportant.

Consider a sequence of discounted decision-making problems, by increasing the
maximum stage index: K = 0, K = 1, K = 2, Look at the neighboring cost
expressions in Figure 10.10. What is the difference between finding the optimal
cost-to-go for the K +1-stage problem and the K-stage problem? In Figure 10.10
the last four terms of the cost for K = 4 can be obtained by multiplying all terms
for K = 3 by α and adding a new term, l0. The only difference is that the stage
indices need to be shifted by one on each li that was borrowed from the K = 3
case. In general, the optimal costs of a K-stage optimization problem can serve
as the optimal costs of the K + 1-stage problem if they are first multiplied by α.
The K + 1-stage optimization problem can be solved by optimizing over the sum
of the first-stage cost plus the optimal cost for the K-stage problem, discounted
by α.

This can be derived using straightforward dynamic programming arguments
as follows. Suppose that K is fixed. The cost-to-go can be expressed recursively
for k from 0 to K as

G∗
k(xk) = min

uk∈U(xk)

{

Eθk

[

αkl(xk, uk, θk) +G∗
k+1(xk+1)

]}

, (10.72)

in which xk+1 = f(xk, uk, θk). The problem, however, is that the recursion depends
on k through αk, which makes it appear nonstationary.

526 S. M. LaValle: Planning Algorithms

The idea of using neighboring cost values as shown in Figure 10.10 can be
applied by making a notational change. Let J∗

K−k(xk) = α−kG∗
k(xk). This reverses

the direction of the stage indices to avoid specifying the final stage and also scales
by α−k to correctly compensate for the index change. Substitution into (10.72)
yields

αkJ∗
K−k(xk) = min

uk∈U(xk)

{

Eθk

[

αkl(xk, uk, θk) + αk+1J∗
K−k−1(xk+1)

]}

. (10.73)

Dividing by αk and then letting i = K − k yields

J∗
i (xk) = min

uk∈U(xk)

{

Eθk

[

l(xk, uk, θk) + αJ∗
i−1(xk+1)

]}

, (10.74)

in which J∗
i represents the expected cost for a finite-horizon discounted problem in

which K = i. Note that (10.74) expresses J∗
i in terms of J∗

i−1, but xk is given, and
the right-hand side uses xk+1. The indices appear to run in opposite directions
because this is simply backward value iteration with a notational change that
reverses some of the indices. The particular stage indices of xk and xk+1 are not
important in (10.74), as long as xk+1 = f(xk, uk, θk) (for example, the substitutions
x = xk, x

′ = xk+1, u = uk, and θ = θk can be safely made).
Value iteration proceeds by first letting J∗

0 (x0) = 0 for all x ∈ X. Successive
cost-to-go functions are computed by iterating (10.74) over the state space. Un-
der the cycle-avoiding assumptions of Section 10.2.1, the convergence is usually
asymptotic due to the infinite horizon. The discounting gradually causes the cost
differences to diminish until they are within the desired tolerance. The stationary
form of the dynamic programming recurrence, which is obtained in the limit as i
tends to infinity, is

J∗(x) = min
u∈U(x)

{

Eθk

[

l(x, u, θ) + αJ∗(f(x, u, θ))
]}

. (10.75)

If the cost terms do not depend on nature, then the simplified form is

J∗(x) = min
u∈U(x)

{

l(x, u) + α
∑

x′∈X
J∗(x′)P (x′|x, u)

}

. (10.76)

As explained in Section 10.2.1, the optimal action, π∗(x), is assigned as the u ∈
U(x) that satisfies (10.75) or (10.76) at x.

Policy iteration for discounted cost The policy iteration method may al-
ternatively be applied to the probabilistic discounted-cost problem. Recall the
method given in Figure 10.4. The general approach remains the same: A search is
conducted over the space of plans by solving a linear system of equations in each
iteration. In Step 2, (10.53) is replaced by

Jπ(x) = l(x, u) + α
∑

x′∈X
Jπ(x

′)P (x′|x, u), (10.77)

10.4. REINFORCEMENT LEARNING 527

which is a special form of (10.76) for evaluating a fixed plan. In Step 3, (10.54) is
replaced by

π′(x) = argmin
u∈U(x)

{

l(x, u) + α
∑

x′∈X
Jπ(x

′)P (x′|x, u)
}

. (10.78)

Using these alterations, the policy iteration algorithm proceeds in the same way
as in Section 10.2.2.

Solutions for the average cost-per-stage model A value iteration algorithm
for the average cost model can be obtained by simply neglecting to divide by K.
Selecting actions that optimize the total cost also optimizes the average cost as
the number of stages approaches infinity. This may cause costs to increase toward
±∞; however, only a finite number of iterations can be executed in practice.

The backward value iterations of Section 10.2.1 can be followed with very little
modification. Initially, let G∗(xF) = 0 for all xF ∈ X. The value iterations are
computed using the standard form

G∗
k(xk) = min

uk∈U(xk)

{
∑

θ∈Θ(xk,uk)

(

l(xk, uk, θk) +G∗
k+1(f(xk, uk, θk))

)

P (θk|xk, uk)
}

.

(10.79)
The iterations continue until convergence occurs. To determine whether a solution
of sufficient quality has been obtained, a reasonable criterion for is

max
x∈X

{∣
∣G∗

k(x)/N −G∗
k+1(x)/(N − 1)

∣
∣

}

< ǫ, (10.80)

in which ǫ is the error tolerance and N is the number of value iterations that have
been completed (it is required in (10.80) that N > 1). Once (10.80) has been
satisfied, the iterations can be terminated.

A numerical problem may exist with the growing values obtained for G∗(x).
This can be alleviated by periodically reducing all values by some constant factor
to ensure that the numbers fit within the allowable floating point range. In [96], a
method called relative value iteration is presented, which selects one state, s ∈ X,
arbitrarily and expresses the cost-to-go values by subtracting off the cost at s. This
trims down all values simultaneously to keep them bounded while still maintaining
the convergence properties of the algorithm.

Policy iteration can alternatively be performed by using the method given in
Figure 10.4 with only minor modification.

10.4 Reinforcement Learning

10.4.1 The General Philosophy

This section briefly introduces the basic ideas of a framework that has been highly
popular in the artificial intelligence community in recent years. It was developed

528 S. M. LaValle: Planning Algorithms

and used primarily by machine learning researchers [19, 930], and therefore this
section is called reinforcement learning. The problem generally involves comput-
ing optimal plans for probabilistic infinite-horizon problems. The basic idea is
to combine the problems of learning the probability distribution, P (θ|x, u), and
computing the optimal plan into the same algorithm.

Terminology Before detailing the method further, some explanation of existing
names seems required. Consider the term reinforcement learning. In machine
learning, most decision-theoretic models are expressed in terms of reward instead
of cost. Thus, the task is to make decisions or find plans that maximize a reward
functional. Choosing good actions under this model appears to provide positive
reinforcement in the form of a reward. Therefore, the term reinforcement is used.
Using cost and minimization instead, some alternative names may be decision-
theoretic learning or cost-based learning.

The term learning is associated with the problem because estimating the prob-
ability distribution P (θ|x, u) or P (x′|x, u) is clearly a learning problem. However,
it is important to remember that there is also the planning problem of computing
cost-to-go functions (or reward-to-go functions) and determining a plan that opti-
mizes the costs (or rewards). Therefore, the term reinforcement planning may be
just as reasonable.

The general framework is referred to as neuro-dynamic programming in [97]
because the formulation and resulting algorithms are based on dynamic program-
ming. Most often, a variant of value iteration is obtained. The neuro part refers
to a family of functions that can be used to approximate plans and cost-to-go
values. This term is fairly specific, however, because other function families may
be used. Furthermore, for some problems (e.g., over small, finite state spaces), the
cost values and plans are represented without approximation.

The name simulation-based methods is used in [95], which is perhaps one of
the most accurate names (when used in the context of dynamic programming).
Thus, simulation-based dynamic programming or simulation-based planning nicely
reflects the framework explained here. The term simulation comes from the fact
that a Monte Carlo simulator is used to generate samples for which the required
distributions are learned during planning. You are, of course, welcome to use your
favorite name, but keep in mind that under all of the names, the idea remains the
same. This will be helpful to remember if you intend to study related literature.

The general framework The framework is usually applied to infinite-horizon
problems under probabilistic uncertainty. The discounted-cost model is most pop-
ular; however, we will mostly work with Formulation 10.1 because it is closer to
the main theme of this book. It has been assumed so far that when planning un-
der Formulation 10.1, all model components are known, including P (xk+1|xk, uk).
This can be considered as a traditional framework, in which there are three general
phases:

10.4. REINFORCEMENT LEARNING 529

Apply action uk from xk

Next state, xk+1

Learning/Planning/Execution

Simulator

Monte Carlo

Algorithm

Cost value, l(xk, uk)

Figure 10.11: The general framework for reinforcement learning (or simulation-
based dynamic programming).

Learning phase: The transition probabilities are estimated by visiting
states in X, trying actions, and gathering statistics. When this phase con-
cludes, the model of the environment is completely known.

Planning phase: An algorithm computes a feedback plan using a method
such as value iteration or policy iteration.

Execution phase: The plan is executed on a machine that is connected to
the same environment on which the learning phase was applied.

The simulation-based framework combines all three of these phases into one.
Learning, planning, and execution are all conducted by a machine that initially
knows nothing about the state transitions or even the cost terms. Ideally, the ma-
chine should be connected to a physical environment for which the Markov model
holds. However, in nearly all implementations, the machine is instead connected
to a Monte Carlo simulator as shown in Figure 10.11. Based on the current state,
the algorithm sends an action, uk, to the simulator, and the simulator computes its
effect by sampling according to its internal probability distributions. Obviously,
the designer of the simulator knows the transition probabilities, but these are not
given directly to the planning algorithm. The simulator then sends the next state,
xk+1, and cost, l(xk, uk), back to the algorithm.

For simplicity, l(xk, uk) is used instead of allowing the cost to depend on the
particular nature action, which would yield l(xk, uk, θk). The explicit charac-
terization of nature is usually not needed in this framework. The probabilities
P (xk+1|xk, uk) are directly learned without specifying nature actions. It is com-
mon to generalize the cost term from l(xk, uk) to l(xk, uk, xk+1), but this is avoided
here for notational convenience. The basic ideas remain the same, and only slight
variations of the coming equations are needed to handle this generalization.

The simulator is intended to simulate “reality,” in which the machine interacts
with the physical world. It replaces the environment in Figure 1.16b from Section
1.4. Using the interpretation of that section, the algorithms presented in this
context can be considered as a plan as shown in Figure 1.18b. If the learning
component is terminated, then the resulting feedback plan can be programmed into

530 S. M. LaValle: Planning Algorithms

another machine, as shown in Figure 1.18a. This step is usually not performed,
however, because often it is assumed that the machine continues to learn over its
lifetime.

One of the main issues is exploration vs. exploitation [930]. Some repetitive
exploration of the state space is needed to gather enough data that reliably esti-
mate the model. For true theoretical convergence, each state-action pair must be
tried infinitely often. On the other hand, information regarding the model should
be exploited to efficiently accomplish tasks. These two goals are often in conflict.
Focusing too much on exploration will not optimize costs. Focusing too much
on exploitation may prevent useful solutions from being developed because better
alternatives have not yet been discovered.

10.4.2 Evaluating a Plan via Simulation

The simulation method is based on averaging the information gained incrementally
from samples. Suppose that you receive a sequence of costs, c1, c2, . . ., and would
like to incrementally compute their average. You are not told the total number
of samples in advance, and at any point you are required to report the current
average. Let mi denote the average of the first i samples,

mi =
1

i

i∑

j=1

cj. (10.81)

To efficiently compute mi from mi−1, multiply mi−1 by i− 1 to recover the total,
add ci, and then divide by i:

mi =
(i− 1)mi−1 + ci

i
. (10.82)

This can be manipulated into

mi = mi−1 +
1

i
(ci −mi−1). (10.83)

Now consider the problem of estimating the expected cost-to-go, Gπ(x), at
every x ∈ X for some fixed plan, π. If P (x′|x, u) and the costs l(x, u) were known,
then it could be computed by solving

Gπ(x) = l(x, u) +
∑

x′

P (x′|x, u)Gπ(x
′). (10.84)

However, without this information, we must rely on the simulator.
From each x ∈ X, suppose that 1000 trials are conducted, and the resulting

costs to get to the goal are recorded and averaged. Each trial is an iterative process
in which π selects the action, and the simulator indicates the next state and its
incremental cost. Once the goal state is reached, the costs are totaled to yield the

10.4. REINFORCEMENT LEARNING 531

measured cost-to-go for that trial (this assumes that π(x) = uT for all x ∈ XG).
If ci denotes this total cost at trial i, then the average, mi, over i trials provides
an estimate of Gπ(x). As i tends to infinity, we expect mi to converge to Gπ(x).
The update formula (10.83) can be conveniently used to maintain the improving

sequence of cost-to-go estimates. Let Ĝπ(x) denote the current estimate of Gπ(x).
The update formula based on (10.83) can be expressed as

Ĝπ(x) := Ĝπ(x) +
1

i
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(x)), (10.85)

in which := means assignment, in the sense used in some programming languages.
It turns out that a single trial can actually yield update values for multiple

states [930, 96]. Suppose that a trial is performed from x that results in the
sequence x1 = x, x2, . . ., xk, . . ., xK , xF of visited states. For every state, xk, in
the sequence, a cost-to-go value can be measured by recording the cost that was
accumulated from xk to xK :

ck(xk) =
K∑

j=k

l(xj , uj). (10.86)

It is much more efficient to make use of (10.85) on every state that is visited along
the path.

Temporal differences Rather than waiting until the end of each trial to com-
pute ci(xi), it is possible to update each state, xi, immediately after it is visited
and l(xi, ui) is received from the simulator. This leads to a well-known method
of estimating the cost-to-go called temporal differences [929]. It is very similar to
the method already given but somewhat more complicated. It will be introduced
here because the method frequently appears in reinforcement learning literature,
and an extension of it leads to a nice simulation-based method for updating the
estimated cost-to-go.

Once again, consider the sequence x1, . . ., xK , xF generated by a trial. Let dk
denote a temporal difference, which is defined as

dk = l(xk, uk) + Ĝπ(xk+1)− Ĝπ(xk). (10.87)

Note that both l(xk, uk) + Ĝπ(xk+1) and Ĝπ(xk) could each serve as an estimate
of Gπ(xk). The difference is that the right part of (10.87) utilizes the latest cost

obtained from the simulator for the first step and then uses Ĝπ(xk+1) for an esti-
mate of the remaining cost. In this and subsequent expressions, every action, uk,
is chosen using the plan: uk = π(xk).

Let vk denote the number of times that xk has been visited so far, for each
1 ≤ k ≤ K, including previous trials and the current visit. The following update
algorithm can be used during the trial. When x2 is reached, the value at x1 is
updated as

Ĝπ(x1) := Ĝπ(x1) +
1

v1
d1. (10.88)

532 S. M. LaValle: Planning Algorithms

When x3 is reached, the values at x1 and x2 are updated as

Ĝπ(x1) := Ĝπ(x1) +
1

v1
d2,

Ĝπ(x2) := Ĝπ(x2) +
1

v2
d2.

(10.89)

Now consider what has been done so far at x1. The temporal differences partly
collapse:

Ĝπ(x1) :=Ĝπ(x1) +
1

v1
d1 +

1

v1
d2

=Ĝπ(x1) +
1

v1
(l(x1, u1) + Ĝπ(x2)− Ĝπ(x1) + l(x2, u2) + Ĝπ(x3)− Ĝπ(x2))

=Ĝπ(x1) +
1

v1
(l(x1, u1) + l(x2, u2)− Ĝπ(x1) + Ĝπ(x3)).

(10.90)

When x4 is reached, similar updates are performed. At xk, the updates are

Ĝπ(x1) :=Ĝπ(x1) +
1

v1
dk,

Ĝπ(x2) :=Ĝπ(x2) +
1

v2
dk,

...

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk.

(10.91)

The updates are performed in this way until xF ∈ XG is reached. Now consider
what was actually computed for each xk. The temporal differences form a tele-
scoping sum that collapses, as shown in (10.90) after two iterations. After all
iterations have been completed, the value at xk has been updated as

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk +

1

vk+1

dk+1 + · · ·+
1

vK
dK +

1

vF
dF

=Ĝπ(xk) +
1

vk
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(xk) + Ĝπ(xF))

=Ĝπ(xk) +
1

vk
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(xk)).

(10.92)

The final Ĝπ(xF) was deleted because its value is zero, assuming that the termina-
tion action is applied by π. The resulting final expression is equivalent to (10.85) if
each visited state in the sequence was distinct. This is often not true, which makes
the method discussed above differ slightly from the method of (10.85) because the

10.4. REINFORCEMENT LEARNING 533

count, vk, may change during the trial in the temporal difference scheme. This
difference, however, is negligible, and the temporal difference method computes
estimates that converge to Ĝπ [96, 97].

The temporal difference method presented so far can be generalized in a way
that often leads to faster convergence in practice. Let λ ∈ [0, 1] be a specified pa-
rameter. The TD(λ) temporal difference method replaces the equations in (10.91)
with

Ĝπ(x1) :=Ĝπ(x1) + λk−1

(
1

v1
dk

)

,

Ĝπ(x2) :=Ĝπ(x2) + λk−2

(
1

v2
dk

)

,

...

Ĝπ(xk−1) :=Ĝπ(xk−1) + λ

(
1

vk−1

dk

)

,

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk.

(10.93)

This has the effect of discounting costs that are received far away from xk. The
method in (10.91) was the special case of λ = 1, yielding TD(1).

Another interesting special case is TD(0), which becomes

Ĝπ(xk) = Ĝπ(xk) +
1

vk

(

l(xk, uk) + Ĝπ(xk+1)− Ĝπ(xk)
)

. (10.94)

This form appears most often in reinforcement learning literature (although it is
applied to the discounted-cost model instead). Experimental evidence indicates
that lower values of λ help to improve the convergence rate. Convergence for all
values of λ is proved in [97].

One source of intuition about why (10.94) works is that it is a special case
of a stochastic iterative algorithm or the Robbins-Monro algorithm [88, 97, 566].
This is a general statistical estimation technique that is used for solving systems
of the form h(y) = y by using a sequence of samples. Each sample represents
a measurement of h(y) using Monte Carlo simulation. The general form of this
iterative approach is to update y as

y := (1− ρ)y + ρh(y), (10.95)

in which ρ ∈ [0, 1] is a parameter whose choice affects the convergence rate. In-
tuitively, (10.95) updates y by interpolating between its original value and the
most recent sample of h(y). Convergence proofs for this algorithm are not given
here; see [97] for details. The typical behavior is that a smaller value of ρ leads to
more reliable estimates when there is substantial noise in the simulation process,
but this comes at the cost of slowing the convergence rate. The convergence is
asymptotic, which requires that all edges (that have nonzero probability) in the
plan-based state transition graph should be visited infinitely often.

534 S. M. LaValle: Planning Algorithms

A general approach to obtaining Ĝπ can be derived within the stochastic iter-
ative framework by generalizing TD(0):

Ĝπ(x) := (1− ρ)Ĝπ(x) + ρ
(

l(x, u) + Ĝπ(x
′)
)

. (10.96)

The formulation of TD(0) in (10.94) essentially selects the ρ parameter by the way
it was derived, but in (10.96) any ρ ∈ (0, 1) may be used.

It may appear incorrect that the update equation does not take into account
the transition probabilities. It turns out that they are taken into account in
the simulation process because transitions that are more likely to occur have a
stronger effect on (10.96). The same thing occurs when the mean of a nonuniform
probability density function is estimated by using samples from the distribution.
The values that occur with higher frequency make stronger contributions to the
average, which automatically gives them the appropriate weight.

10.4.3 Q-Learning: Computing an Optimal Plan

This section moves from evaluating a plan to computing an optimal plan in the
simulation-based framework. The most important idea is the computation of Q-
factors, Q∗(x, u). This is an extension of the optimal cost-to-go, G∗, that records
optimal costs for each possible combination of a state, x ∈ X, and action u ∈ U(x).
The interpretation of Q∗(x, u) is the expected cost received by starting from state
x, applying u, and then following the optimal plan from the resulting next state,
x′ = f(x, u, θ). If u happens to be the same action as would be selected by the
optimal plan, π∗(x), then Q∗(x, u) = G∗(x). Thus, the Q-value can be thought
of as the cost of making an arbitrary choice in the first stage and then exhibiting
optimal decision making afterward.

Value iteration A simulation-based version of value iteration can be constructed
from Q-factors. The reason for their use instead of G∗ is that a minimization over
U(x) will be avoided in the dynamic programming. Avoiding this minimization
enables a sample-by-sample approach to estimating the optimal values and ulti-
mately obtaining the optimal plan. The optimal cost-to-go can be obtained from
the Q-factors as

G∗(x) = min
u∈U(x)

{

Q∗(x, u)
}

. (10.97)

This enables the dynamic programming recurrence in (10.46) to be expressed as

Q∗(x, u) = l(x, u) +
∑

x′∈X
P (x′|x, u) min

u′∈U(x′)

{

Q∗(x′, u′)
}

. (10.98)

By applying (10.97) to the right side of (10.98), it can also be expressed using G∗

as
Q∗(x, u) = l(x, u) +

∑

x′∈X
P (x′|x, u)G∗(x′). (10.99)

10.4. REINFORCEMENT LEARNING 535

If P (x′|x, u) and l(x, u) were known, then (10.98) would lead to an alternative,
storage-intensive way to perform value iteration. After convergence occurs, (10.97)
can be used to obtain the G∗ values. The optimal plan is constructed as

π∗(x) = argmin
u∈U(x)

{

Q∗(x, u)
}

. (10.100)

Since the costs and transition probabilities are unknown, a simulation-based
approach is needed. The stochastic iterative algorithm idea can be applied once
again. Recall that (10.96) estimated the cost of a plan by using individual sam-
ples and required a convergence-rate parameter, ρ. Using the same idea here, a
simulation-based version of value iteration can be derived as

Q̂∗(x, u) := (1− ρ)Q̂∗(x, u) + ρ

(

l(x, u) + min
u′∈U(x′)

{

Q̂∗(x′, u′)
})

, (10.101)

in which x′ is the next state and l(x, u) is the cost obtained from the simulator
when u is applied at x. Initially, all Q-factors are set to zero. Sample trajectories
that arrive at the goal can be generated using simulation, and (10.101) is applied
to the resulting states and costs in each stage. Once again, the update equation
may appear to be incorrect because the transition probabilities are not explicitly
mentioned, but this is taken into account automatically through the simulation.

In most literature, Q-learning is applied to the discounted cost model. This
yields a minor variant of (10.101):

Q̂∗(x, u) := (1− ρ)Q̂∗(x, u) + ρ

(

l(x, u) + α min
u′∈U(x′)

{

Q̂∗(x′, u′)
})

, (10.102)

in which the discount factor α appears because the update equation is derived
from (10.76).

Policy iteration A simulation-based policy iteration algorithm can be derived
using Q-factors. Recall from Section 10.2.2 that methods are needed to: 1) evaluate
a given plan, π, and 2) improve the plan by selecting better actions. The plan
evaluation previously involved linear equation solving. Now any plan, π, can be
evaluated without even knowing P (x′|x, u) by using the methods of Section 10.4.2.

Once Ĝπ is computed reliably from every x ∈ X, further simulation can be used
to compute Qπ(x, u) for each x ∈ X and u ∈ U . This can be achieved by defining
a version of (10.99) that is constrained to π:

Qπ(x, u) = l(x, u) +
∑

x′∈X
P (x′|x, u)Gπ(x

′). (10.103)

The transition probabilities do not need to be known. The Q-factors are computed
by simulation and averaging. The plan can be improved by setting

π′(x) = argmin
u∈U(x)

{

Q∗(x, u)
}

, (10.104)

which is based on (10.97).

536 S. M. LaValle: Planning Algorithms

Cost

P1 acts 21

1 2 3P2 acts 1 12 23 3

3

3 5 1 0 43 −1 7 −2

Figure 10.12: A 3× 3 matrix game expressed using a game tree.

10.5 Sequential Game Theory

So far in the chapter, the sequential decision-making process has only involved
a game against nature. In this section, other decision makers are introduced to
the game. The single-stage games and their equilibrium concepts from Sections
9.3 and 9.4 will be extended into a sequence of games. Section 10.5.1 introduces
sequential zero-sum games that are represented using game trees, which help vi-
sualize the concepts. Section 10.5.2 covers sequential zero-sum games using the
state-space representation. Section 10.5.3 briefly covers extensions to other games,
including nonzero-sum games and games that involve nature. The formulations in
this section will be called sequential game theory. Another common name for them
is dynamic game theory [59]. If there is a continuum of stages, which is briefly con-
sidered in Section 13.5, then differential game theory is obtained [59, 477, 783, 985].

10.5.1 Game Trees

In most literature, sequential games are formulated in terms of game trees. A
state-space representation, which is more in alignment with the representations
used in this chapter, will be presented in Section 10.5.2. The tree representation is
commonly referred to as the extensive form of a game (as opposed to the normal
form, which is the cost matrix representation used in Chapter 9). The represen-
tation is helpful for visualizing many issues in game theory. It is perhaps most
helpful for visualizing information states; this aspect of game trees will be deferred
until Section 11.7, after information spaces have been formally introduced. Here,
game trees are presented for cases that are simple to describe without going deeply
into information spaces.

Before a sequential game is introduced, consider representing a single-stage
game in a tree form. Recall Example 9.14, which is a zero-sum, 3 × 3 matrix
game. It can be represented as a game tree as shown in Figure 10.12. At the
root, P1 has three choices. At the next level, P2 has three choices. Based on the
choices by both, one of nine possible leaves will be reached. At this point, a cost
is obtained, which is written under the leaf. The entries of the cost matrix, (9.53),
appear across the leaves of the tree. Every nonleaf vertex is called a decision
vertex: One player must select an action.

There are two possible interpretations of the game depicted in Figure 10.12:

10.5. SEQUENTIAL GAME THEORY 537

1. Before it makes its decision, P2 knows which action was applied by P1. This
does not correspond to the zero-sum game formulation introduced in Section
9.3 because P2 seems as powerful as nature. In this case, it is not equivalent
to the game in Example 9.14.

2. P2 does not know the action applied by P1. This is equivalent to assum-
ing that both P1 and P2 make their decisions at the same time, which is
consistent with Formulation 9.7. The tree could have alternatively been
represented with P2 acting first.

Now imagine that P1 and P2 play a sequence of games. A sequential version
of the zero-sum game from Section 9.3 will be defined by extending the game tree
idea given so far to more levels. This will model the following sequential game:

Formulation 10.3 (Zero-Sum Sequential Game in Tree Form)

1. Two players, P1 and P2, take turns playing a game. A stage as considered
previously is now stretched into two substages, in which each player acts
individually. It is usually assumed that P1 always starts, followed by P2,
then P1 again, and so on. Player alternations continue until the game ends.
The model reflects the rules of many popular games such as chess or poker.
Let K = {1, . . . , K} denote the set of stages at which P1 and P2 both take
a turn.

2. As each player takes a turn, it chooses from a nonempty, finite set of actions.
The available set could depend on the decision vertex.

3. At the end of the game, a cost for P1 is incurred based on the sequence of
actions chosen by each player. The cost is interpreted as a reward for P2.

4. The amount of information that each player has when making its decision
must be specified. This is usually expressed by indicating what portions of
the action histories are known. For example, if P1 just acted, does P2 know
its choice? Does it know what action P1 chose in some previous stage?

The game tree can now be described in detail. Figure 10.13 shows a particular
example for two stages (hence, K = 2 and K = {1, 2}). Every vertex corresponds
to a point at which a decision needs to be made by one player. Each edge emanating
from a vertex represents an action. The root of the tree indicates the beginning of
the game, which usually means that P1 chooses an action. The leaves of the tree
represent the end of the game, which are the points at which a cost is received.
The cost is usually shown below each leaf. One final concern is to specify the
information available to each player, just prior to its decision. Which actions
among those previously applied by itself or other players are known?

For the game tree in Figure 10.13, there are two players and two stages. There-
fore, there are four levels of decision vertices. The action sets for the players are
U = V = {L,R}, for “left” and “right.” Since there are always two actions, a

538 S. M. LaValle: Planning Algorithms

2 0

P1 acts

P2 acts

L R

RRL L

LLL L RRRRP1 acts

P2 acts

Cost

RL L L L L L L LR R R R R R R

4 0 1 0 3 2 2 3 1 2 4 1 3 2

Figure 10.13: A two-player, two-stage game expressed using a game tree.

binary tree is obtained. There are 16 possible outcomes, which correspond to all
pairwise combinations of four possible two-stage plans for each player.

For a single-stage game, both deterministic and randomized strategies were de-
fined to obtain saddle points. Recall from Section 9.3.3 that randomized strategies
were needed to guarantee the existence of a saddle point. For a sequential game,
these are extended to deterministic and randomized plans, respectively. In Section
10.1.3, a (deterministic) plan was defined as a mapping from the state space to an
action space. This definition can be applied here for each player; however, we must
determine what is a “state” for the game tree. This depends on the information
that each player has available when it plays.

A general framework for representing information in game trees is covered in
Section 11.7. Three simple kinds of information will be discussed here. In every
case, each player knows its own actions that were applied in previous stages. The
differences correspond to knowledge of actions applied by the other player. These
define the “state” that is used to make the decisions in a plan.

The three information models considered here are as follows.

Alternating play: The players take turns playing, and all players know all
actions that have been previously applied. This is the situation obtained, for
example, in a game of chess. To define a plan, let N1 and N2 denote the set
of all vertices from which P1 and P2 must make a decision, respectively. In
Figure 10.13, N1 is the set of dark vertices and N2 is the set of white vertices.
Let U(n1) and V (n2) be the action spaces for P1 and P2, respectively, which
depend on the vertex. A (deterministic) plan for P1 is defined as a function,
π1, on N1 that yields an action u ∈ U(n1) for each n1 ∈ N1. Similarly, a
(deterministic) plan for P2 is defined as a function, π2, on N2 that yields an
action v ∈ V (n2) for each n2 ∈ N2. For the randomized case, let W (n1) and
Z(n2) denote the sets of all probability distributions over U(n1) and V (n2),
respectively. A randomized plan for P1 is defined as a function that yields
some w ∈ W (n1) for each n1 ∈ N1. Likewise, a randomized plan for P2 is
defined as a function that maps from N2 into Z(n2).

Stage-by-stage: Each player knows the actions applied by the other in all

10.5. SEQUENTIAL GAME THEORY 539

previous stages; however, there is no information about actions chosen by
others in the current stage. This effectively means that both players act
simultaneously in each stage. In this case, a deterministic or randomized
plan for P1 is defined as in the alternating play case; however, plans for P2

are defined as functions on N1, instead of N2. This is because at the time
it makes its decision, P2 has available precisely the same information as P1.
The action spaces for P2 must conform to be dependent on elements of N1,
instead of N2; otherwise, P2 would not know what actions are available.
Therefore, they are defined as V (n1) for each n1 ∈ N1.

Open loop: Each player has no knowledge of the previous actions of the
other. They only know how many actions have been applied so far, which
indicates the stage of the game. Plans are defined as functions on K, the set
of stages, because the particular vertex is not known. Note that an open-loop
plan is just a sequence of actions in the deterministic case (as in Section 2.3)
and a sequence of probability distributions in the randomized case. Again,
the action spaces must conform to the information. Thus, they are U(k) and
V (k) for each k ∈ K.

For a single-stage game, as in Figure 10.12, the stage-by-stage and open-loop
models are equivalent.

10.5.1.1 Determining a security plan

The notion of a security strategy from Section 9.3.2 extends in a natural way
to sequential games. This yields a security plan in which each player performs
worst-case analysis by treating the other player as nature under nondeterministic
uncertainty. A security plan and its resulting cost can be computed by propagating
costs from the leaves up to the root. The computation of the security plan for P1

for the game in Figure 10.13 is shown in Figure 10.14. The actions that would be
chosen by P2 are determined at all vertices in the second-to-last level of the tree.
Since P2 tries to maximize costs, the recorded costs at each of these vertices is the
maximum over the costs of its children. At the next higher level, the actions that
would be chosen by P1 are determined. At each vertex, the minimum cost among
its children is recorded. In the next level, P2 is considered, and so on, until the
root is reached. At this point, the lowest cost that P1 could secure is known. This
yields the upper value, L

∗
, for the sequential game. The security plan is defined

by providing the action that selects the lowest cost child vertex, for each n1 ∈ N1.
If P2 responds rationally to the security plan of P1, then the path shown in bold
in Figure 10.14d will be followed. The execution of P1’s security plan yields the
action sequence (L,L) for P1 and (R,L) for P2. The upper value is L

∗
= 1.

A security plan for P2 can be computed similarly; however, the order of the
decisions must be swapped. This is not easy to visualize, unless the order of the
players is swapped in the tree. If P2 acts first, then the resulting tree is as shown
in Figure 10.15. The costs on the leaves appear in different order; however, for

540 S. M. LaValle: Planning Algorithms

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

P2

P1

P2

P1

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

P2

P1

P2

P1

0 1 2 3

(a) P2 chooses (b) P1 chooses

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

1 2 3

P2

P1

P2

P1

0

31

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

0 1 2 3

1

P2

P1

P2

P1

31

(c) P2 chooses (d) P1 chooses

Figure 10.14: The security plan for P1 is determined by propagating costs upward
from the leaves. The choices involved in the security plan are shown in the last
picture. An upper value of 1 is obtained for the game.

the same action sequences chosen by P1 and P2, the costs obtained at the end of
the game are the same as those in Figure 10.14. The resulting lower value for the
game is found to be L∗ = 1. The resulting security plan is defined by assigning
the action to each n2 ∈ N2 that maximizes the cost value of its children. If P1

responds rationally to the security plan of P2, then the actions executed will be
(L,L) for P1 and (R,L) for P2. Note that these are the same as those obtained
from executing the security plan of P1, even though they appear different in the
trees because the player order was swapped. In many cases, however, different
action sequences will be obtained.

As in the case of a single-stage game, L∗ = L
∗
implies that the game has a

deterministic saddle point and the value of the sequential game is L∗ = L∗ =
L
∗
. This particular game has a unique, deterministic saddle point. This yields

predictable, identical choices for the players, even though they perform separate,
worst-case analyses.

A substantial reduction in the cost of computing the security strategies can be
obtained by recognizing when certain parts of the tree do not need to be explored
because they cannot yield improved costs. This idea is referred to as alpha-beta
pruning in AI literature (see [839], pp. 186-187 for references and a brief history).
Suppose that the tree is searched in depth-first order to determine the security
strategy for P1. At some decision vertex for P1, suppose it has been determined
that a cost c would be secured if a particular action, u, is applied; however, there

10.5. SEQUENTIAL GAME THEORY 541

P2 acts

Cost 4 0 4 2

P2 acts

P1 acts

P1 acts

2 3 112 3 2 1 3 0 20

0 0 1 2 1 0 3 1

0 2 1 3

1

1

0

Figure 10.15: The security plan can be found for P2 by swapping the order of P1

and P2 (the order of the costs on the leaves also become reshuffled).

Cost

P1 acts

P2 acts

1

u u′

0 −1 2

c′ ≥ 2

c = 1

No need to explore

Figure 10.16: If the tree is explored in depth-first order, there are situations in
which some children (and hence whole subtrees) do not need to be explored. This
is an example that eliminates children of P2. Another case exists, which eliminates
children of P1.

are still other actions for which it is not known what costs could be secured.
Consider determining the cost that could be secured for one of these remaining
actions, denoted by u′. This requires computing how P2 will maximize cost to
respond to u′. As soon as P2 has at least one option for which the cost, c′, is
greater than c, the other children of P2 do not need to be explored. Why? This
is because P1 would never choose u′ if P2 could respond in a way that leads to a
higher cost than what P1 can already secure by choosing u. Figure 10.16 shows
a simple example. This situation can occur at any level in the tree, and when an
action does not need to be considered, an entire subtree is eliminated. In other
situations, children of P1 can be eliminated because P2 would not make a choice
that allows P1 to improve the cost below a value that P2 can already secure for
itself.

542 S. M. LaValle: Planning Algorithms

P1 acts

P2 acts

L R

RRL L

2

0

4 1 0

3 2

2 3

1 2

4 1

3 20

Figure 10.17: Under the stage-by-stage model, the game in Figure 10.13 can in-
stead be represented as a tree in which each player acts once, and then they play
a matrix game to determine the cost.

10.5.1.2 Computing a saddle point

The security plan for P1 constitutes a valid solution to the game under the alter-
nating play model. P2 has only to choose an optimal response to the plan of P1

at each stage. Under the stage-by-stage model, the “solution” concept is a saddle
point, which occurs when the upper and lower values coincide. The procedure just
described could be used to determine the value and corresponding plans; however,
what happens when the values do not coincide? In this case, randomized security
plans should be developed for the players. As in the case of a single-stage game, a
randomized upper value L∗

and a randomized lower value L∗ are obtained. In the
space of randomized plans, it turns out that a saddle point always exists. This
implies that the game always has a randomized value, L∗ = L∗ = L∗

. This saddle
point can be computed from the bottom up, in a manner similar to the method
just used to compute security plans.

Return to the example in Figure 10.13. This game actually has a deterministic
saddle point, as indicated previously. It still, however, serves as a useful illustration
of the method because any deterministic plan can once again be interpreted as a
special case of a randomized plan (all of the probability mass is placed on a single
action). Consider the bottom four subtrees of Figure 10.13, which are obtained by
using only the last two levels of decision vertices. In each case, P1 and P2 must
act in parallel to end the sequential game. Each subtree can be considered as a
matrix game because the costs are immediately obtained after the two players act.

This leads to an alternative way to depict the game in Figure 10.13, which is
shown in Figure 10.17. The bottom two layers of decision vertices are replaced
by matrix games. Now compute the randomized value for each game and place it
at the corresponding leaf vertex, as shown in Figure 10.18. In the example, there
are only two layers of decision vertices remaining. This can be represented as the
game

V

U
0 1
2 3

, (10.105)

10.5. SEQUENTIAL GAME THEORY 543

P1 acts

P2 acts

L R

RRL L

0 1 2 3

Figure 10.18: Each matrix in Figure 10.17 can be replaced by its randomized
value. This clips one level from the original tree. For this particular example, the
randomized value is also a deterministic value. Note that these are exactly the
costs that appeared in Figure 10.14c. This occurred because each of the matrix
games has a deterministic value; if they do not, then the costs will not coincide.

which has a value of 1 and occurs if P1 applies L and P2 applies R. Thus, the
solution to the original sequential game has been determined by solving matrix
games as an alternative to the method applied to obtain the security plans. The
benefit of the new method is that if any matrix does not have a deterministic saddle
point, its randomized value can instead be computed. A randomized strategy must
be played by the players if the corresponding decision vertex is reached during
execution.

10.5.1.3 Converting the tree to a single-stage game

Up to this point, solutions have been determined for the alternating-play and the
stage-by-stage models. The open-loop model remains. In this case, there is no
exchange of information between the players until the game is finished and they
receive their costs. Therefore, imagine that players engaged in such a sequential
game are equivalently engaged in a large, single-stage game. Recall that a plan
under the open-loop model is a function over K. Let Π1 and Π2 represent the
sets of possible plans for P1 and P2, respectively. For the game in Figure 10.13,
Πi is a set of four possible plans for each player, which will be specified in the
following order: (L,L), (L,R), (R,L), and (R,R). These can be arranged into a
4× 4 matrix game:

Π2

Π1

4 2 1 0
0 0 3 2
2 3 4 1
1 2 3 2

. (10.106)

This matrix game does not have a deterministic saddle point. Unfortunately,
a four-dimensional linear programming problem must be solved to find the ran-
domized value and equilibrium. This is substantially different than the solution
obtained for the other two information models.

The matrix-game form can also be derived for sequential games defined under
the stage-by-stage model. In this case, however, the space of plans is even larger.

544 S. M. LaValle: Planning Algorithms

For the example in Figure 10.13, there are 32 possible plans for each player (there
are 5 decision vertices for each player, at which two different actions can be applied;
hence, |Πi| = 25 for i = 1 and i = 2). This results in a 32× 32 matrix game! This
game should admit the same saddle point solution that we already determined.
The advantage of using the tree representation is that this enormous game was
decomposed into many tiny matrix games. By treating the problem stage-by-stage,
substantial savings in computation results. This power arises because the dynamic
programming principle was implicitly used in the tree-based computation method
of decomposing the sequential game into small matrix games. The connection to
previous dynamic programming methods will be made clearer in the next section,
which considers sequential games that are defined over a state space.

10.5.2 Sequential Games on State Spaces

An apparent problem in the previous section is that the number of vertices grows
exponentially in the number of stages. In some games, however, there may be
multiple action sequences that lead to the same state. This is true of many popular
games, such as chess, checkers, and tic-tac-toe. In this case, it is convenient to
define a state space that captures the complete set of unique game configurations.
The player actions then transform the state. If there are different action sequences
that lead to the same state, then separate vertices are not needed. This converts
the game tree into a game graph by declaring vertices that represent the same
state to be equivalent. The game graph is similar in many ways to the transition
graphs discussed in Section 10.1, in the sequential game against nature. The same
idea can be applied when there are opposing players.

We will arrive at a sequential game that is played over a state space by collaps-
ing the game tree into a game graph. We will also allow the more general case of
costs occurring on any transition edges, as opposed to only the leaves of the orig-
inal game tree. Only the stage-by-stage model from the game tree is generalized
here. Generalizations that use other information models are considered in Section
11.7. In the formulation that follows, P2 can be can viewed as the replacement
for nature in Formulation 10.1. The new formulation is still a generalization of
Formulation 9.7, which was a single-stage, zero-sum game. To keep the concepts
simpler, all spaces are assumed to be finite. The formulation is as follows.

Formulation 10.4 (Sequential Zero-Sum Game on a State Space)

1. Two players, P1 and P2.

2. A finite, nonempty state space X.

3. For each state x ∈ X, a finite, nonempty action space U(x) for P1.

4. For each state x ∈ X, a finite, nonempty action space V (x) for P2. To allow
an extension of the alternating play model from Section 10.5.1, V (x, u) could

10.5. SEQUENTIAL GAME THEORY 545

alternatively be defined, to enable the set of actions available to P2 to depend
on the action u ∈ U of P1.

5. A state transition function f that produces a state, f(x, u, v), for every
x ∈ X, u ∈ U(x), and v ∈ V (x).

6. A set K of K stages, each denoted by k, which begins at k = 1 and ends
at k = K. Let F = K + 1, which is the final stage, after the last action is
applied.

7. An initial state xI ∈ X. For some problems, this may not be specified, in
which case a solution must be found from all initial states.

8. A stage-additive cost functional L. Let ṽK denote the history of P2’s actions
up to stage K. The cost functional may be applied to any combination of
state and action histories to yield

L(x̃F , ũK , ṽK) =
K∑

k=1

l(xk, uk, vk) + lF (xF). (10.107)

It will be assumed that both players always know the current state. Note that
there are no termination actions in the formulation. The game terminates after
each player has acted K times. There is also no direct formulation of a goal set.
Both termination actions and goal sets can be added to the formulation without
difficulty, but this is not considered here. The action sets can easily be extended
to allow a dependency on the stage, to yield U(x, k) and V (x, k). The methods
presented in this section can be adapted without trouble. This is avoided, however,
to make the notation simpler.

Defining a plan for each player Each player must now have its own plan.
As in Section 10.1, it seems best to define a plan as a mapping from states to
actions, because it may not be clear what actions will be taken by the other
decision maker. In Section 10.1, the other decision maker was nature, and here it
is a rational opponent. Let π1 and π2 denote plans for P1 and P2, respectively.
Since the number of stages in Formulation 10.4 is fixed, stage-dependent plans of
the form π1 : X × K → U and π2 : X × K → V are appropriate (recall that
stage-dependent plans were defined in Section 10.1.3). Each produces an action
π1(x, k) ∈ U(x) and π2(x, k) ∈ V (x), respectively.

Now consider different solution concepts for Formulation 10.4. For P1, a
deterministic plan is a function π1 : X × K → U , that produces an action
u = π(x) ∈ U(x), for each state x ∈ X and stage k ∈ K. For P2 it is in-
stead π2 : X×K → V , which produces an action v = π(x) ∈ V (x), for each x ∈ X
and k ∈ K. Now consider defining a randomized plan. Let W (x) and Z(x) denote
the sets of all probability distributions over U(x) and V (x), respectively. A ran-
domized plan for P1 yields some w ∈ W (x) for each x ∈ X and k ∈ K. Likewise,
a randomized plan for P2 yields some z ∈ Z(x) for each x ∈ X and k ∈ K.

546 S. M. LaValle: Planning Algorithms

Saddle points in a sequential game A saddle point will be obtained once
again by defining security strategies for each player. Each player treats the other
as nature, and if the same worst-case value is obtained, then the result is a saddle
point for the game. If the values are different, then a randomized plan is needed
to close the gap between the upper and lower values.

Upper and lower values now depend on the initial state, x1 ∈ X. There was no
equivalent for this in Section 10.5.1 because the root of the game tree is the only
possible starting point.

If sequences, ũK and ṽK , of actions are applied from x1, then the state history,
x̃F , can be derived by repeatedly using the state transition function, f . The upper
value from x1 is defined as

L
∗
(x1) = min

u1
max
v1

min
u2

max
v2
· · ·min

uK
max
vK

{

L(x̃F , ũK , ṽK)
}

, (10.108)

which is identical to (10.33) if P2 is replaced by nature. Also, (10.108) generalizes
(9.44) to multiple stages. The lower value from x1, which generalizes (9.46), is

L∗(x1) = max
v1

min
u1

max
v2

min
u2
· · ·max

vK
min
uK

{

L(x̃F , ũK , ṽK)
}

. (10.109)

If L
∗
(x1) = L∗(x2), then a deterministic saddle point exists from x1. This implies

that the order of max and min can be swapped inside of every stage.

Value iteration A value-iteration method can be derived by adapting the deriva-
tion that was applied to (10.33) to instead apply to (10.108). This leads to the
dynamic programming recurrence

L
∗
k(xk) = min

uk∈U(xk)

{

max
vk∈V (xk)

{

l(xk, uk, vk) + L
∗
k+1(xk+1)

}}

, (10.110)

which is analogous to (10.39). This can be used to iteratively compute a security
plan for P1. The security plan for P2 can be computed using

L∗
k(xk) = max

vk∈V (xk)

{

min
uk∈U(xk)

{

l(xk, uk, vk) + L∗
k+1(xk+1)

}}

, (10.111)

which is the dynamic programming equation derived from (10.109).
Starting from the final stage, F , the upper and lower values are determined

directly from the cost function:

L
∗
F (xF) = L∗

F (xF) = lF (xF). (10.112)

Now compute L
∗
K and L∗

K . From every state, xK , (10.110) and (10.111) are eval-
uated to determine whether L

∗
K(xK) = L∗

K(xK). If this occurs, then L∗
L(xK) =

L
∗
K(xK) = L∗

K(xK) is the value of the game from xK at stage K. If it is deter-
mined that from any particular state, xK ∈ X, the upper and lower values are not
equal, then there is no deterministic saddle point from xK . Furthermore, this will

10.5. SEQUENTIAL GAME THEORY 547

prevent the existence of deterministic saddle points from other states at earlier
stages; these are encountered in later value iterations. Such problems are avoided
by allowing randomized plans, but the optimization is more complicated because
linear programming is repeatedly involved.

Suppose for now that L
∗
K(xK) = L∗

K(xK) for all xK ∈ X. The value iterations
proceed in the usual way from k = K down to k = 1. Again, suppose that at
every stage, L

∗
k(xk) = L∗

k(xk) for all xk ∈ X. Note that L∗
k+1 can be written in

the place of L
∗
k+1 and L∗

k+1 in (10.110) and (10.111) because it is assumed that
the upper and lower values coincide. If they do not, then the method fails because
randomized plans are needed to obtain a randomized saddle point.

Once the resulting values are computed from each x1 ∈ X1, a security plan π∗
1

for P1 is defined for each k ∈ K and xk ∈ X as any action u that satisfies the min
in (10.110). A security plan π∗

2 is similarly defined for P2 by applying any action
v that satisfies the max in (10.111).

Now suppose that there exists no deterministic saddle point from one or more
initial states. To avoid regret, randomized security plans must be developed. These
follow by direct extension of the randomized security strategies from Section 9.3.3.
The vectors w and z will be used here to denote probability distributions over
U(x) and V (x), respectively. The probability vectors are selected from W (x) and
Z(x), which correspond to the set of all probability distributions over U(x) and
V (x), respectively. For notational convenience, assume U(x) = {1, . . . ,m(x)} and
V (x) = {1, . . . , n(x)}, in which m(x) and n(x) are positive integers.

Recall (9.61) and (9.62), which defined the randomized upper and lower values
of a single-stage game. This idea is generalized here to randomized upper and
lower value of a sequential game. Their definitions are similar to (10.108) and
(10.109), except that: 1) the alternating min’s and max’s are taken over probability
distributions on the space of actions, and 2) the expected cost is used.

The dynamic programming principle can be applied to the randomized upper
value to derive

L∗
k(xk) = min

w∈W (xk)

{

max
z∈Z(xk)

{
m(xk)∑

i=1

n(xk)∑

j=1

(

l(xk, i, j)+L∗
k+1(xk+1)

)

wizj

}}

, (10.113)

in which xk+1 = f(xk, i, j). The randomized lower value is similarly obtained as

L∗
k(xk) = max

z∈Z(xk)

{

min
w∈W (xk)

{
m(xk)∑

i=1

n(xk)∑

j=1

(

l(xk, i, j)+L∗
k+1(xk+1)

)

wizj

}}

. (10.114)

In many games, the cost term may depend only on the state: l(x, u, v) = l(x)
for all x ∈ X, u ∈ U(x) and v ∈ V (x). In this case, (10.113) and (10.114) simplify
to

L∗
k(xk) = min

w∈W (xk)

{

max
z∈Z(xk)

{

l(xk) +

m(xk)∑

i=1

n(xk)∑

j=1

L∗
k+1(xk+1)wizj

}}

(10.115)

548 S. M. LaValle: Planning Algorithms

and

L∗
k(xk) = max

z∈Z(xk)

{

min
w∈W (xk)

{

l(xk) +

m(xk)∑

i=1

n(xk)∑

j=1

L∗
k+1(xk+1)wizj

}}

, (10.116)

which is similar to the simplification obtained in (10.46), in which θk was assumed
not to appear in the cost term. The summations are essentially generalizations of
(9.57) to the multiple-stage case. If desired, these could even be written as matrix
multiplications, as was done in Section 9.3.3.

Value iteration can be performed over the equations above to obtain the ran-
domized values of the sequential game. Since the upper and lower values are always
the same, there is no need to check for discrepancies between the two. In practice,
it is best in every evaluation of (10.113) and (10.114) (or their simpler forms) to
first check whether a deterministic saddle exists from xk. Whenever one does not
exist, the linear programming problem formulated in Section 9.3.3 must be solved
to determine the value and the best randomized plan for each player. This can be
avoided if a deterministic saddle exists from the current state and stage.

10.5.3 Other Sequential Games

Most of the ideas presented so far in Section 10.5 extend naturally to other se-
quential game problems. This subsection briefly mentions some of these possible
extensions.

Nash equilibria in sequential games Formulations 10.3 and 10.4 can be ex-
tended to sequential nonzero-sum games. In the case of game trees, a cost vector,
with one element for each player, is written at each of the leaves. Under the
stage-by-stage model, deterministic and randomized Nash equilibria can be com-
puted using the bottom-up technique that was presented in Section 10.5.1. This
will result in the computation of a single Nash equilibrium. To represent all Nash
equilibria is considerably more challenging. As usual, the game tree is decomposed
into many matrix games; however, in each case, all Nash equilibria must be found
and recorded along with their corresponding costs. Instead of propagating a sin-
gle cost up the tree, a set of cost vectors, along with the actions associated with
each cost vector, must be propagated up the tree to the root. As in the case of
a single-stage game, nonadmissible Nash equilibria can be removed from consid-
eration. Thus, from every matrix game encountered in the computation, only the
admissible Nash equilibria and their costs should be propagated upward.

Formulation 10.4 can be extended by introducing the cost functions L1 and L2

for P1 and P2, respectively. The value-iteration approach can be extended in a
way similar to the extension of the game tree method. Multiple value vectors and
their corresponding actions must be maintained for each combination of state and
stage. These correspond to the admissible Nash equilibria.

The nonuniqueness of Nash equilibria causes the greatest difficulty in the se-
quential game setting. There are typically many more equilibria in a sequential

10.5. SEQUENTIAL GAME THEORY 549

LL RRP1 acts

P2 acts

Cost

RL L L LR R R

1/3Nature acts 2/3

3 −2 −6 3 3 −1 6 0

Figure 10.19: This is a single-stage, zero-sum game that involves nature. It is
assumed that all players act at the same time.

game than in a single-stage game. Therefore, the concept is not very useful in the
design of a planning approach. It may be more useful, for example, in modeling
the possible outcomes of a complicated economic system. A thorough treatment
of the subject appears in [59].

Introducing nature A nature player can easily be introduced into a game.
Suppose, for example, that nature is introduced into a zero-sum game. In this
case, there are three players: P1, P2, and nature. Figure 10.19 shows a game tree
for a single-stage, zero-sum game that involves nature. It is assumed that all three
players act at the same time, which fits the stage-by-stage model. Many other
information models are possible. Suppose that probabilistic uncertainty is used to
model nature, and it is known that nature chooses the left branch with probability
1/3 and the right branch with probability 2/3. Depending on the branch chosen
by nature, it appears that P1 and P2 will play a specific 2× 2 matrix game. With
probability 1/3, the cost matrix will be

V

U
3 -2
-6 3

, (10.117)

and with probability 2/3 it will be

V

U
3 -1
6 0

. (10.118)

Unfortunately, P1 and P2 do not know which matrix game they are actually play-
ing. The regret can be eliminated in the expected sense, if the game is played over
many independent trials. Let A1 and A2 denote (10.117) and (10.118), respec-
tively. Define a new cost matrix as A = (1/3)A1+(2/3)A2 (a scalar multiplied by

550 S. M. LaValle: Planning Algorithms

a matrix scales every value of the matrix). The resulting matrix is

V

U
3 0
2 1

. (10.119)

This matrix game has a deterministic saddle point in which P1 chooses L (row 2)
and P2 chooses R (column 1), which yields a cost of 2. This means that they can
play a deterministic strategy to obtain an expected cost of 2, if the game play is
averaged over many independent trials. If this matrix did not admit a deterministic
saddle point, then a randomized strategy would be needed. It is interesting to note
that randomization is not needed for this example, even though P1 and P2 each
play against both nature and an intelligent adversary.

Several other variations are possible. If nature is modeled nondeterministically,
then a matrix of worst-case regrets can be formed to determine whether it is
possible to eliminate regret. A sequential version of games such as the one in
Figure 10.19 can be considered. In each stage, there are three substages in which
nature, P1, and P2 all act. The bottom-up approach from Section 10.5.1 can be
applied to decompose the tree into many single-stage games. Their costs can be
propagated upward to the root in the same way to obtain an equilibrium solution.

Formulation 10.4 can be easily extended to include nature in games over state
spaces. For each x, a nature action set is defined as Θ(x). The state transition
equation is defined as

xk+1 = f(xk, uk, vk, θk), (10.120)

which means that the next state depends on all three player actions, in addition to
the current state. The value-iteration method can be extended to solve problems of
this type by properly considering the effect of nature in the dynamic programming
equations. In the probabilistic case, for example, an expectation over nature is
needed in every iteration. The resulting sequential game is often referred to as a
Markov game [774].

Introducing more players Involving more players poses no great difficulty,
other than complicating the notation. For example, suppose that a set of n play-
ers, P1, P2, . . ., Pn, takes turns playing a game. Consider using a game tree
representation. A stage is now stretched into n substages, in which each player
acts individually. Suppose that P1 always starts, followed by P2, and so on, until
Pn. After Pn acts, then the next stage is started, and P1 acts. The circular se-
quence of player alternations continues until the game ends. Again, many different
information models are possible. For example, in the stage-by-stage model, each
player does not know the action chosen by the other n− 1 players in the current
stage. The bottom-up computation method can be used to compute Nash equi-
libria; however, the problems with nonuniqueness must once again be confronted.

A state-space formulation that generalizes Formulation 10.4 can be made by
introducing action sets U i(x) for each player Pi and state x ∈ X. Let uik denote

10.6. CONTINUOUS STATE SPACES 551

the action chosen by Pi at stage k. The state transition becomes

xk+1 = f(xk, u
1
k, u

2
k, . . . , u

n
k). (10.121)

There is also a cost function, Li, for each Pi. Value iteration, adapted to maintain
multiple equilibria and cost vectors can be used to compute Nash equilibria.

10.6 Continuous State Spaces

Virtually all of the concepts covered in this chapter extend to continuous state
spaces. This enables them to at least theoretically be applied to configuration
spaces. Thus, a motion planning problem that involves uncertainty or noncoop-
erating robots can be modeled using the concepts of this chapter. Such problems
also inherit the feedback concepts from Chapter 8. This section covers feedback
motion planning problems that incorporate uncertainty due to nature. In partic-
ular contexts, it may be possible to extend some of the methods of Sections 8.4
and 8.5. Solution feedback plans must ensure that the goal is reached in spite
of nature’s efforts. Among the methods in Chapter 8, the easiest to generalize is
value iteration with interpolation, which was covered in Section 8.5.2. Therefore,
it is the main focus of the current section. For games in continuous state spaces,
see Section 13.5.

10.6.1 Extending the value-iteration method

The presentation follows in the same way as in Section 8.5.2, by beginning with
the discrete problem and making various components continuous. Begin with
Formulation 10.1 and let X be a bounded, open subset of Rn. Assume that U(x)
and Θ(x, u) are finite. The value-iteration methods of Section 10.2.1 can be directly
applied by using the interpolation concepts from Section 8.5.2 to compute the cost-
to-go values over X. In the nondeterministic case, the recurrence is (10.39), in
which G∗

k+1 is represented on a finite sample set S ⊂ X and is evaluated on all
other points in R(S) by interpolation (recall from Section 8.5.2 that R(S) is the
interpolation region of S). In the probabilistic case, (10.45) or (10.46) may once
again be used, but G∗

k+1 is evaluated by interpolation.

If U(x) is continuous, then it can be sampled to evaluate the min in each
recurrence, as suggested in Section 8.5.2. Now suppose Θ(x, u) is continuous. In
the nondeterministic case, Θ(x, u) can be sampled to evaluate the max in (10.39)
or it may be possible to employ a general optimization technique directly over
Θ(x, u). In the probabilistic case, the expectation must be taken over a continuous
probability space. A probability density function, p(θ|x, u), characterizes nature’s
action. A probabilistic state transition density function can be derived from this
as p(xk+1|xk, uk). Using these densities, the continuous versions of (10.45) and

552 S. M. LaValle: Planning Algorithms

(10.46) become

G∗
k(xk) = min

uk∈U(xk)

{∫

Θ(xk,uk)

(

l(xk, uk, θk) +G∗
k+1(f(xk, uk, θk))

)

p(θk|xk, uk)dθk
}

(10.122)
and

G∗
k(xk) = min

uk∈U(xk)

{

l(xk, uk) +

∫

X

G∗
k+1(xk+1)p(xk+1|xk, uk)dxk+1

}

, (10.123)

respectively. Sampling can be used to evaluate the integrals. One straightforward
method is to approximate p(θ|x, u) by a discrete distribution. For example, in one
dimension, this can be achieved by partitioning Θ(x, u) into intervals, in which
each interval is declared to be a discrete nature action. The probability associated
with the discrete nature action is just the integral of p(θ|x, u) over the associated
interval.

Section 8.5.2 concluded by describing Dijkstra-like algorithms for continuous
spaces. These were derived mainly by using backprojections, (8.66), to conclude
that some samples cannot change their values because they are too far from the
active set. The same principle can be applied in the current setting; however, the
weak backprojection, (10.20), must be used instead. Using the weak backprojec-
tion, the usual value iterations can be applied while removing all samples that are
not in the active set. For many problems, however, the size of the active set may
quickly become unmanageable because the weak backprojection often causes much
faster propagation than the original backprojection. Continuous-state generaliza-
tions of the Dijkstra-like algorithms in Section 10.2.3 can be made; however, this
requires the additional condition that in every iteration, it must be possible to
extend D by forcing the next state to lie in R(D), in spite of nature.

10.6.2 Motion planning with nature

Recall from Section 8.5.2 that value iteration with interpolation can be applied
to motion planning problems that are approximated in discrete time. Nature can
even be introduced into the discrete-time approximation. For example, (8.62) can
be replaced by

x(t+∆t) = x(t) + ∆t (u+ θ), (10.124)

in which θ is chosen from a bounded set, Θ(x, u). Using (10.124), value iterations
can be performed as described so far. An example of a 2D motion planning prob-
lem under this model using probabilistic uncertainty is shown in Figure 10.20. It
is interesting that when the plan is executed from a fixed initial state, a differ-
ent trajectory is obtained each time. The average cost over multiple executions,
however, is close to the expected optimum.

Interesting hybrid system examples can be made in which nature is only allowed
to interfere with the mode. Recall Formulation 7.3 from Section 7.3. Nature can
be added to yield the following formulation.

10.6. CONTINUOUS STATE SPACES 553

XG

xI

0 20 40 60 80 100

XG

(a) Motion planning game against nature (a) Optimal navigation function

XG XG

(c) Vector field (d) Simulated executions

Figure 10.20: (a) A 2D planning problem is shown in which nature is probabilistic
(uniform density over an interval of angles) and can interfere with the direction
of motion. Contact with obstacles is actually allowed in this problem. (b) Level
sets of the computed, optimal cost-to-go (navigation) function. (c) The vector
field derived from the navigation function. (d) Several dozen execution trials are
superimposed [605].

554 S. M. LaValle: Planning Algorithms

0 20 40 60 80 100

XG

0 20 40 60 80 100

XG

Cost-to-go, open mode Cost-to-go, closed mode

XG XG

Vector field, open mode Vector field, closed mode

Figure 10.21: Level sets of the optimal navigation function and resulting vector
field are shown for a stochastic, hybrid motion planning problem. There are two
modes, which correspond to whether a door is closed. The goal is to reach the
rectangle at the bottom left [613]

10.6. CONTINUOUS STATE SPACES 555

XG

Figure 10.22: Several executions from the same initial state are shown. A different
trajectory results each time because of the different times when the door is open
or closed.

Formulation 10.5 (Hybrid System Motion Planning with Nature)

1. Assume all of the definitions from Formulation 7.3, except for the transition
functions, fm and f . The state is represented as x = (q,m).

2. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

3. A mode transition function fm that produces a mode fm(x, u, θ) for every
x ∈ X, u ∈ U(x), and θ ∈ Θ(x, u).

4. A state transition function f that is derived from fm by changing the mode
and holding the configuration fixed. Thus, f((q,m), u, θ) = (q, fm(q,m, θ))
(the only difference with respect to Formulation 7.3 is that θ has been in-
cluded).

5. An unbounded time interval T = [0,∞).

6. A continuous-time cost-functional,

L(x̃tF , ũtF) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF)). (10.125)

Value iteration proceeds in the same way for such hybrid problems. Interpolation
only needs to be performed over the configuration space. Along the mode “axis”
no interpolation is needed because the mode set is already finite. The resulting
computation time grows linearly in the number of modes. A 2D motion planning
example for a point robot, taken from [613], is shown in Figures 10.21 and 10.22. In
this case, the environment contains a door that is modeled as a stationary Markov
process. The configuration space is sampled using a 40 × 40 grid. There are two

556 S. M. LaValle: Planning Algorithms

modes: door open or door closed. Thus, the configuration space has two layers,
one for each mode. The robot wishes to minimize the expected time to reach the
goal. The navigation function for each layer cannot be computed independently
because each takes into account the transition probabilities for the mode. For
example, if the door is almost always open, then its plan would be different from
one in which the door is almost always closed. If the door is almost always open,
then the robot should go toward the door, even if it is currently closed, because it
is highly likely that it will open soon. Numerous variations can be made on this
example. More modes could be added, and other interpretations are possible, such
as hazardous regions and shelters (the mode might be imagined as rain occurring
and the robot must run for shelter) or requests to deliver objects [613, 870, 871].

Further Reading

Since this chapter considers sequential versions of single-stage decision problems, the
suggested reading at the end of Chapter 9 is also relevant here. The probabilistic for-
mulation in Section 10.1 is a basic problem of stochastic control theory [95, 564]. The
framework is also popular in artificial intelligence [79, 267, 471, 839]. For an early, in-
fluential work on stochastic control, see [109], in which the notion of sequential games
against nature is developed. The forward projection and backprojection topics are not
as common in control theory and are instead inspired from [281, 313, 659]. The non-
deterministic formulation is obtained by eliminating probabilities from the formulation;
worst-case analysis also appears extensively in control theory [57, 58, 301]. A case for
using randomized strategies in robotics is made in [314].

Section 10.2 is based on classical dynamic programming work, but with emphasis
on the stochastic shortest-path problem. For more reading on value and policy iteration
in this context, see [95]. Section 10.2.3 is based on extending Dijkstra’s algorithm. For
convergence issues due to approximations of continuous problems, see [92, 567, 720]. For
complexity results for games against nature, see [764, 767].

Section 10.3 was inspired by coverage in [95]. For further reading on reinforcement
learning, the subject of Section 10.4, see [19, 74, 97, 895].

Section 10.5 was based on material in [59], but with an emphasis on unifying concepts
from previous sections. Also contained in [59] are sequential game formulations on
continuous spaces and even in continuous time. In continuous time, these are called
differential games, and they are introduced in Section 13.5. Dynamic programming
principles extend nicely into game theory. Furthermore, they extend to Pareto optimality
[242].

The main purpose of Section 10.6 is to return to motion planning by considering
continuous state spaces. Few works exist on combining stochastic optimal control with
motion planning. The presented material is based mainly on [599, 605, 613, 867, 868].

Exercises

1. Show that SB(S, u) cannot be expressed as the union of all SB(x, u) for x ∈ S.

2. Show that for any S ⊂ X and any state transition equation, x′ = f(x, u, θ), it

10.6. CONTINUOUS STATE SPACES 557

follows that SB(S) ⊆WB(S).

3. Generalize the strong and weak backprojections of Section 10.1.2 to work for
multiple stages.

4. Assume that nondeterministic uncertainty is used, and there is no limit on the
number of stages. Determine an expression for the forward projection at any
stage k > 1, given that π is applied.

5. Give an algorithm for computing nondeterministic forward projections that uses
matrices with binary entries. What is the asymptotic running time and space for
your algorithm?

6. Develop a variant of the algorithm in Figure 10.6 that is based on possibly achieving
the goal, as opposed to guaranteeing that it is achieved.

7. Develop a forward version of value iteration for nondeterministic uncertainty, by
paralleling the derivation in Section 10.2.1.

8. Do the same as in Exercise 7, but for probabilistic uncertainty.

9. Give an algorithm that computes probabilistic forward projections directly from
the plan-based state transition graph, Gπ.

10. Augment the nondeterministic value-iteration method of Section 10.2.1 to detect
and handle states from which the goal is possibly reachable but not guaranteed
reachable.

11. Derive a generalization of (10.39) for the case of stage-dependent state-transition
equations, xk+1 = f(xk, uk, θk, k), and cost terms, l(xk, uk, θk, k), under nondeter-
ministic uncertainty.

12. Do the same as in Exercise 11, but for probabilistic uncertainty.

13. Extend the policy-iteration method of Figure 10.4 to work for the more general
case of nature-dependent cost terms, l(xk, uk, θk).

14. Derive a policy-iteration method that is the nondeterministic analog to the method
in Figure 10.4. Assume that the cost terms do not depend on nature.

15. Can policy iteration be applied to solve problems under Formulation 2.3, which
involve no uncertainties? Explain what happens in this case.

16. Show that the probabilistic infinite-horizon problem under the discounted-cost
model is equivalent in terms of cost-to-go to a particular stochastic shortest-path
problem (under Formulation 10.1). [Hint: See page 378 of [95].]

17. Derive a value-iteration method for the infinite-horizon problem with the discounted-
cost model and nondeterministic uncertainty. This method should compute the
cost-to-go given in (10.71).

558 S. M. LaValle: Planning Algorithms

0

P1 acts

P2 acts

L R

RRL L

LLL L RRRRP1 acts

P2 acts

Cost

RL L L L L L L LR R R R R R R

5 7 1 3 12 1 2 4 1 0 2 4−1 −1

Figure 10.23: A two-player, two-stage game expressed using a game tree.

18. Figure 10.23 shows a two-stage, zero-sum game expressed as a game tree. Com-
pute the randomized value of this sequential game and give the corresponding
randomized security plans for each player.

19. Generalize alpha-beta pruning beyond game trees so that it works for sequential
games defined on a state space, starting from a fixed initial state.

20. Derive (10.110) and (10.111).

21. Extend Formulation 2.4 to allow nondeterministic uncertainty. This can be ac-
complished by specifying sets of possible effects of operators.

22. Extend Formulation 2.4 to allow probabilistic uncertainty. For this case, assign
probabilities to the possible operator effects.

Implementations

23. Implement probabilistic backward value iteration and study the convergence issue
depicted in Figure 10.3. How does this affect performance in problems for which
there are many cycles in the state transition graph? How does performance depend
on particular costs and transition probabilities?

24. Implement the nondeterministic version of Dijkstra’s algorithm and test it on a
few examples.

25. Implement and test the probabilistic version of Dijkstra’s algorithm. Make sure
that the condition Gπ(xk+1) < Gπ(xk) from 10.2.3 is satisfied. Study the perfor-
mance of the algorithm on problems for which the condition is almost violated.

26. Experiment with the simulation-based version of value iteration, which is given by
(10.101). For some simple examples, characterize how the performance depends
on the choice of ρ.

27. Implement a recursive algorithm that uses dynamic programming to determine
the upper and lower values for a sequential game expressed using a game tree
under the stage-by-stage model.

Chapter 11

Sensors and Information Spaces

Up until now it has been assumed everywhere that the current state is known.
What if the state is not known? In this case, information regarding the state
is obtained from sensors during the execution of a plan. This situation arises in
most applications that involve interaction with the physical world. For example, in
robotics it is virtually impossible for a robot to precisely know its state, except in
some limited cases. What should be done if there is limited information regarding
the state? A classical approach is to take all of the information available and try to
estimate the state. In robotics, the state may include both the map of the robot’s
environment and the robot configuration. If the estimates are sufficiently reliable,
then we may safely pretend that there is no uncertainty in state information. This
enables many of the planning methods introduced so far to be applied with little
or no adaptation.

The more interesting case occurs when state estimation is altogether avoided.
It may be surprising, but many important tasks can be defined and solved without
ever requiring that specific states are sensed, even though a state space is defined
for the planning problem. To achieve this, the planning problem will be expressed
in terms of an information space. Information spaces serve the same purpose for
sensing problems as the configuration spaces of Chapter 4 did for problems that
involve geometric transformations. Each information space represents the place
where a problem that involves sensing uncertainty naturally lives. Successfully
formulating and solving such problems depends on our ability to manipulate, sim-
plify, and control the information space. In some cases elegant solutions exist, and
in others there appears to be no hope at present of efficiently solving them. There
are many exciting open research problems associated with information spaces and
sensing uncertainty in general.

Recall the situation depicted in Figure 11.1, which was also shown in Section
1.4. It is assumed that the state of the environment is not known. There are three
general sources of information regarding the state:

1. The initial conditions can provide powerful information before any actions
are applied. It might even be the case that the initial state is given. At the
other extreme, the initial conditions might contain no information.

559

560 S. M. LaValle: Planning Algorithms

Sensing

Actuation

M E

Figure 11.1: The state of the environment is not known. The only information
available to make inferences is the history of sensor observations, actions that have
been applied, and the initial conditions. This history becomes the information
state.

2. The sensor observations provide measurements related to the state during
execution. These measurements are usually incomplete or involve distur-
bances that distort their values.

3. The actions already executed in the plan provide valuable information re-
garding the state. For example, if a robot is commanded to move east (with
no other uncertainties except an unknown state), then it is expected that
the state is further east than it was previously. Thus, the applied actions
provide important clues for deducing possible states.

Keep in mind that there are generally two ways to use the information space:

1. Take all of the information available, and try to estimate the state. This is
the classical approach. Pretend that there is no longer any uncertainty in
state, but prove (or hope) that the resulting plan works under reasonable
estimation error. A plan is generally expressed as π : X → U .

2. Solve the task entirely in terms of an information space. Many tasks may be
achieved without ever knowing the exact state. The goals and analysis are
formulated in the information space, without the need to achieve particular
states. For many problems this results in dramatic simplifications. A plan
is generally expressed as π : I → U for an information space, I.

The first approach may be considered somewhat traditional and can be handled
by the concepts of Chapter 8 once a good estimation technique is defined. Most
of the focus of the chapter is on the second approach, which represents a powerful
way to express and solve planning problems.

For brevity, “information” will be replaced by “I” in many terms. Hence, infor-
mation spaces and information states become I-spaces and I-states, respectively.
This is similar to the shortening of configuration spaces to C-spaces.

Sections 11.1 to 11.3 first cover information spaces for discrete state spaces.
This case is much easier to formulate than information spaces for continuous
spaces. In Sections 11.4 to 11.6, the ideas are extended from discrete state spaces
to continuous state spaces. It is helpful to have a good understanding of the
discrete case before proceeding to the continuous case. Section 11.7 extends the
formulation of information spaces to game theory, in which multiple players inter-
act over the same state space. In this case, each player in the game has its own
information space over which it makes decisions.

11.1. DISCRETE STATE SPACES 561

11.1 Discrete State Spaces

11.1.1 Sensors

As the name suggests, sensors are designed to sense the state. Throughout all of
this section it is assumed that the state space, X, is finite or countably infinite,
as in Formulations 2.1 and 2.3. A sensor is defined in terms of two components:
1) an observation space, which is the set of possible readings for the sensor, and
2) a sensor mapping, which characterizes the readings that can be expected if the
current state or other information is given. Be aware that in the planning model,
the state is not really given; it is only assumed to be given when modeling a sensor.
The sensing model given here generalizes the one given in Section 9.2.3. In that
case, the sensor provided information regarding θ instead of x because state spaces
were not needed in Chapter 9.

Let Y denote an observation space, which is a finite or countably infinite set.
Let h denote the sensor mapping. Three different kinds of sensor mappings will
be considered, each of which is more complicated and general than the previous
one:

1. State sensor mapping: In this case, h : X → Y , which means that given
the state, the observation is completely determined.

2. State-nature sensor mapping: In this case, a finite set, Ψ(x), of nature
sensing actions is defined for each x ∈ X. Each nature sensing action,
ψ ∈ Ψ(x), interferes with the sensor observation. Therefore, the state-nature
mapping, h, produces an observation, y = h(x, ψ) ∈ Y , for every x ∈ X and
ψ ∈ Ψ(x). The particular ψ chosen by nature is assumed to be unknown
during planning and execution. However, it is specified as part of the sensing
model.

3. History-based sensor mapping: In this case, the observation could be
based on the current state or any previous states. Furthermore, a nature
sensing action could be applied. Suppose that the current stage is k. The
set of nature sensing actions is denoted by Ψk(x), and the particular nature
sensing action is ψk ∈ Ψk(x). This yields a very general sensor mapping,

yk = hk(x1, . . . , xk, ψk), (11.1)

in which yk is the observation obtained in stage k. Note that the mapping is
denoted as hk because the domain is different for each k. In general, any of the
sensor mappings may be stage-dependent, if desired.

Many examples of sensors will now be given. These are provided to illustrate
the definitions and to provide building blocks that will be used in later examples
of I-spaces. Examples 11.1 to 11.6 all involve state sensor mappings.

562 S. M. LaValle: Planning Algorithms

Example 11.1 (Odd/Even Sensor) Let X = Z, the set of integers, and let
Y = {0, 1}. The sensor mapping is

y = h(x) =

{
0 if x is even
1 if x is odd.

(11.2)

The limitation of this sensor is that it only tells whether x ∈ X is odd or even.
When combined with other information, this might be enough to infer the state,
but in general it provides incomplete information. �

Example 11.2 (Mod Sensor) Example 11.1 can be easily generalized to yield
the remainder when x is divided by k for some fixed integer k. Let X = Z, and
let Y = {0, 1, . . . , k − 1}. The sensor mapping is

y = h(x) = xmod k. (11.3)

�

Example 11.3 (Sign Sensor) Let X = Z, and let Y = {−1, 0, 1}. The sensor
mapping is

y = h(x) = sgn x. (11.4)

This sensor provides very limited information because it only indicates on which
side of the boundary x = 0 the state may lie. It can, however, precisely determine
whether x = 0. �

Example 11.4 (Selective Sensor) Let X = Z × Z, and let (i, j) ∈ X denote
a state in which i, j ∈ Z. Suppose that only the first component of (i, j) can be
observed. This yields the sensor mapping

y = h(i, j) = i. (11.5)

An obvious generalization can be made for any state space that is formed from
Cartesian products. The sensor may reveal the values of one or more components,
and the rest remain hidden. �

Example 11.5 (Bijective Sensor) Let X be any state space, and let Y = X.
Let the sensor mapping be any bijective function h : X → Y . This sensor provides
information that is equivalent to knowing the state. Since h is bijective, it can be
inverted to obtain h−1 : Y → X. For any y ∈ Y , the state can be determined as
x = h−1(y).

A special case of the bijective sensor is the identity sensor, for which h is the
identity function. This was essentially assumed to exist for all planning problems
covered before this chapter because it immediately yields the state. However, any
bijective sensor could serve the same purpose. �

11.1. DISCRETE STATE SPACES 563

Example 11.6 (Null Sensor) Let X be any state space, and let Y = {0}. The
null sensor is obtained by defining the sensor mapping as h(x) = 0. The sensor
reading remains fixed and hence provides no information regarding the state. �

From the examples so far, it is tempting to think about partitioningX based on
sensor observations. Suppose that in general a state mapping, h, is not bijective,
and let H(y) denote the following subset of X:

H(y) = {x ∈ X | y = h(x)}, (11.6)

which is the preimage of y. The set of preimages, one for each y ∈ Y , forms a parti-
tion of X. In some sense, this indicates the “resolution” of the sensor. A bijective
sensor partitions X into singleton sets because it contains perfect information. At
the other extreme, the null sensor partitions X into a single set, X itself. The
sign sensor appears slightly more useful because it partitions X into three sets:
H(1) = {1, 2, . . .}, H(−1) = {. . . ,−2,−1}, and H(0) = {0}. The preimages of
the selective sensor are particularly interesting. For each i ∈ Z, H(i) = Z. The
partitions induced by the preimages may remind those with an algebra background
of the construction of quotient groups via homomorphisms [769].

Next consider some examples that involve a state-action sensor mapping. There
are two different possibilities regarding the model for the nature sensing action:

1. Nondeterministic: In this case, there is no additional information regard-
ing which ψ ∈ Ψ(x) will be chosen.

2. Probabilistic: A probability distribution is known. In this case, the prob-
ability, P (ψ|x), that ψ will be chosen is known for each ψ ∈ Ψ(x).

These two possibilities also appeared in Section 10.1.1, for nature actions that
interfere with the state transition equation.

It is sometimes useful to consider the state-action sensor model as a probability
distribution over Y for a given state. Recall the conversion from P (ψ|θ) to P (y|θ)
in (9.28). By replacing Θ by X, the same idea can be applied here. Assume that
if the domain of h is restricted to some x ∈ X, it forms an injective (one-to-one)
mapping from Ψ to Y . In this case,

P (y|x) =
{
P (ψ|x) for the unique ψ such that y = h(x, ψ).
0 if no such ψ exists.

(11.7)

If the injective assumption is lifted, then P (ψ|x) is replaced by a sum over all ψ
for which y = h(x, ψ).

Example 11.7 (Sensor Disturbance) Let X = Z, Y = Z, and Ψ = {−1, 0, 1}.
The idea is to construct a sensor that would be the identity sensor if it were not
for the interference of nature. The sensor mapping is

y = h(x, ψ) = x+ ψ. (11.8)

564 S. M. LaValle: Planning Algorithms

It is always known that |x− y| ≤ 1. Therefore, if y is received as a sensor reading,
one of the following must be true: x = y − 1, x = y, or x = y + 1. �

Example 11.8 (Disturbed Sign Sensor) LetX = Z, Y = {−1, 0, 1}, and Ψ =
{−1, 0, 1}. Let the sensor mapping be

y = h(x, ψ) = sgn(x+ ψ). (11.9)

In this case, if y = 0, it is no longer known for certain whether x = 0. It is possible
that x = −1 or x = 1. If x = 0, then it is possible for the sensor to read −1, 0, or
1. �

Example 11.9 (Disturbed Odd/Even Sensor) It is not hard to construct ex-
amples for which some mild interference from nature destroys all of the informa-
tion. Let X = Z, Y = {0, 1}, and Ψ = {0, 1}. Let the sensor mapping be

y = h(x, ψ) =

{
0 if x+ ψ is even.
1 if x+ ψ is odd.

(11.10)

Under the nondeterministic model for the nature sensing action, the sensor pro-
vides no useful information regarding the state. Regardless of the observation, it
is never known whether x is even or odd. Under a probabilistic model, however,
this sensor may provide some useful information. �

It is once again informative to consider preimages. For a state-action sensor
mapping, the preimage is

H(y) = {x ∈ X | ∃ψ ∈ Ψ(x) for which y = h(x, ψ)}. (11.11)

In comparison to state sensor mappings, the preimage sets are larger for state-
action sensor mappings. Also, they do not generally form a partition of X. For
example, the preimages of Example 11.8 are H(1) = {0, 1, . . .}, H(0) = {−1, 0, 1},
and H(−1) = {. . . ,−2,−1, 0}. This is not a partition because every preimage
contains 0. If desired, H(y) can be directly defined for each y ∈ Y , instead of
explicitly defining nature sensing actions.

Finally, one example of a history-based sensor mapping is given.

Example 11.10 (Delayed-Observation Sensor) Let X = Y = Z. A delayed-
observation sensor can be defined for some fixed positive integer i as yk = xk−i.
It indicates what the state was i stages ago. In this case, it gives a perfect mea-
surement of the old state value. Many other variants are possible. For example,
it might only give the sign of the state from i stages ago. �

11.1. DISCRETE STATE SPACES 565

y1 y2 y3

x1

OO

// u1 // x2

OO

// u2 // x3

OO

// . . .

Figure 11.2: In each stage, k, an observation, yk ∈ Y , is received and an action
uk ∈ U is applied. The state, xk, however, is hidden from the decision maker.

11.1.2 Defining the History Information Space

This section defines the most basic and natural I-space. Many others will be
derived from it, which is the topic of Section 11.2. Suppose that X, U , and f have
been defined as in Formulation 10.1, and the notion of stages has been defined
as in Formulation 2.2. This yields a state sequence x1, x2, . . ., and an action
sequence u1, u2, . . ., during the execution of a plan. However, in the current
setting, the state sequence is not known. Instead, at every stage, an observation,
yk, is obtained. The process depicted in Figure 11.2.

In previous formulations, the action space, U(x), was generally allowed to
depend on x. Since x is unknown in the current setting, it would seem strange to
allow the actions to depend on x. This would mean that inferences could be made
regarding the state by simply noticing which actions are available.1 Instead, it
will be assumed by default that U is fixed for all x ∈ X. In some special contexts,
however, U(x) may be allowed to vary.

Initial conditions As stated at the beginning of the chapter, the initial condi-
tions provide one of the three general sources of information regarding the state.
Therefore, three alternative types of initial conditions will be allowed:

1. Known State: The initial state, x1 ∈ X, is given. This initializes the
problem with perfect state information. Assuming nature actions interfere
with the state transition function, f , uncertainty in the current state will
generally develop.

2. Nondeterministic: A set of states, X1 ⊂ X, is given. In this case, the
initial state is only known to lie within a particular subset of X. This can be
considered as a generalization of the first type, which only allowed singleton
subsets.

3. Probabilistic: A probability distribution, P (x1), over X is given.

In general, let η0 denote the initial condition, which may be any one of the three
alternative types.

1Such a problem could be quite interesting to study, but it will not be considered here.

566 S. M. LaValle: Planning Algorithms

History Suppose that the kth stage has passed. What information is available?
It is assumed that at every stage, a sensor observation is made. This results in a
sensing history,

ỹk = (y1, y2, . . . , yk). (11.12)

At every stage an action can also be applied, which yields an action history,

ũk−1 = (u1, u2, . . . , uk−1). (11.13)

Note that the action history only runs to uk−1; if uk is applied, the state xk+1 and
stage k+1 are obtained, which lie beyond the current stage, k. By combining the
sensing and action histories, the history at stage k is (ũk−1, ỹk).

History information states The history, (ũk−1, ỹk), in combination with the
initial condition, η0, yields the history I-state, which is denoted by ηk. This cor-
responds to all information that is known up to stage k. In spite of the fact that
the states, x1, . . ., xk, might not be known, the history I-states are always known
because they are defined directly in terms of available information. Thus, the
history I-state is

ηk = (η0, ũk−1, ỹk). (11.14)

When representing I-spaces, we will generally ignore the problem of nesting paren-
theses. For example, (11.14) is treated a single sequence, instead of a sequence
that contains two sequences. This distinction is insignificant for the purposes of
decision making.

The history I-state, ηk, can also be expressed as

ηk = (ηk−1, uk−1, yk), (11.15)

by noticing that the history I-state at stage k contains all of the information from
the history I-state at stage k − 1. The only new information is the most recently
applied action, uk−1, and the current sensor observation, yk.

The history information space The history I-space is simply the set of all
possible history I-states. Although the history I-states appear to be quite compli-
cated, it is helpful to think of them abstractly as points in a new space. To define
the set of all possible history I-states, the sets of all initial conditions, actions, and
observations must be precisely defined.

The set of all observation histories is denoted as Ỹk and is obtained by a
Cartesian product of k copies of the observation space:

Ỹk = Y × Y . . .× Y
︸ ︷︷ ︸

k

. (11.16)

Similarly, the set of all action histories is Ũk−1, the Cartesian product of k − 1
copies of the action space U .

11.1. DISCRETE STATE SPACES 567

It is slightly more complicated to define the set of all possible initial conditions
because three different types of initial conditions are possible. Let I0 denote the
initial condition space. Depending on which of the three types of initial conditions
are used, one of the following three definitions of I0 is used:

1. Known State: If the initial state, x1, is given, then I0 ⊆ X. Typically,
I0 = X; however, it might be known in some instances that certain initial
states are impossible. Therefore, it is generally written that I0 ⊆ X.

2. Nondeterministic: If X1 is given, then I0 ⊆ pow(X) (the power set of X).
Again, a typical situation is I0 = pow(x); however, it might be known that
certain subsets of X are impossible as initial conditions.

3. Probabilistic: Finally, if P (x) is given, then I0 ⊆ P(X), in which P(x) is
the set of all probability distributions over X.

The history I-space at stage k is expressed as

Ik = I0 × Ũk−1 × Ỹk. (11.17)

Each ηk ∈ Ik yields an initial condition, an action history, and an observation
history. It will be convenient to consider I-spaces that do not depend on k. This
will be defined by taking a union (be careful not to mistakenly think of this con-
struction as a Cartesian product). If there are K stages, then the history I-space
is

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · ∪ IK . (11.18)

Most often, the number of stages is not fixed. In this case, Ihist is defined to be
the union of Ik over all k ∈ {0} ∪ N:

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · . (11.19)

This construction is related to the state space obtained for time-varying motion
planning in Section 7.1. The history I-space is stage-dependent because informa-
tion accumulates over time. In the discrete model, the reference to time is only
implicit through the use of stages. Therefore, stage-dependent I-spaces are defined.
Taking the union of all of these is similar to the state space that was formed in
Section 7.1 by making time be one axis of the state space. For the history I-space,
Ihist, the stage index k can be imagined as an “axis.”

One immediate concern regarding the history I-space Ihist is that its I-states
may be arbitrarily long because the history grows linearly with the number of
stages. For now, it is helpful to imagine Ihist abstractly as another kind of state
space, without paying close attention to how complicated each η ∈ Ihist may be
to represent. In many contexts, there are ways to simplify the I-space. This is the
topic of Section 11.2.

568 S. M. LaValle: Planning Algorithms

11.1.3 Defining a Planning Problem

Planning problems will be defined directly on the history I-space, which makes it
appear as an ordinary state space in many ways. Keep in mind, however, that it
was derived from another state space for which perfect state observations could
not be obtained. In Section 10.1, a feedback plan was defined as a function of the
state. Here, a feedback plan is instead a function of the I-state. Decisions cannot
be based on the state because it will be generally unknown during the execution of
the plan. However, the I-state is always known; thus, it is logical to base decisions
on it.

Let πK denote a K-step information-feedback plan, which is a sequence (π1,
π2, . . ., πK) of K functions, πk : Ik → U . Thus, at every stage k, the I-state
ηk ∈ Ik is used as a basis for choosing the action uk = πk(ηk). Due to interference
of nature through both the state transition equation and the sensor mapping, the
action sequence (u1, . . . , uK) produced by a plan, πK , will not be known until the
plan terminates.

As in Formulation 2.3, it will be convenient to assume that U contains a termi-
nation action, uT . If uT is applied at stage k, then it is repeatedly applied forever.
It is assumed once again that the state xk remains fixed after the termination con-
dition is applied. Remember, however, xk is still unknown in general; it becomes
fixed but unknown. Technically, based on the definition of the history I-space, the
I-state must change after uT is applied because the history grows. These changes
can be ignored, however, because no new decisions are made after uT is applied. A
plan that uses a termination condition can be specified as π = (π1, π2, . . .) because
the number of stages may vary each time the plan is executed. Using the history
I-space definition in (11.19), an information-feedback plan is expressed as

π : Ihist → U. (11.20)

We are almost ready to define the planning problem. This will require the spec-
ification of a cost functional. The cost depends on the histories of states x̃ and
actions ũ as in Section 10.1. The planning formulation involves the following com-
ponents, summarizing most of the concepts introduced so far in Section 11.1 (see
Formulation 10.1 for similarities):

Formulation 11.1 (Discrete Information Space Planning)

1. A nonempty state space X that is either finite or countably infinite.

2. A nonempty, finite action space U . It is assumed that U contains a special
termination action, which has the same effect as defined in Formulation 2.3.

3. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U .

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u).

11.1. DISCRETE STATE SPACES 569

5. A finite or countably infinite observation space Y .

6. A finite nature sensing action space Ψ(x) for each x ∈ X.

7. A sensor mapping h which produces an observation, y = h(x, ψ), for each x ∈
X and ψ ∈ Ψ(x). This definition assumes a state-nature sensor mappings. A
state sensor mapping or history-based sensor mapping, as defined in Section
11.1.1, could alternatively be used.

8. A set of stages, each denoted by k, which begins at k = 1 and continues
indefinitely.

9. An initial condition η0, which is an element of an initial condition space, I0.

10. A history I-space Ihist which is the union of I0 and Ik = I0 × Ũk−1 × Ỹk for
every stage k ∈ N.

11. Let L denote a stage-additive cost functional, which may be applied to any
pair (x̃K+1, ũK) of state and action histories to yield

L(x̃K+1, ũK) =
K∑

k=1

l(xk, uk) + lF (xK+1). (11.21)

If the termination action uT is applied at some stage k, then for all i ≥ k,
ui = uT , xi = xk, and l(xi, uT) = 0. Either a feasible or optimal planning
problem can be defined, as in Formulation 10.1; however, the plan here is
specified as π : I → U .

A goal set may be defined as XG ⊂ X. Alternatively, the goal could be expressed
as a desirable set of history I-states. After Section 11.2, it will be seen that the
goal can be expressed in terms of I-states that are derived from histories.

Some immediate extensions of Formulation 11.1 are possible, but we avoid them
here simplify notation in the coming concepts. One extension is to allow different
action sets, U(x), for each x ∈ X. Be careful, however, because information
regarding the current state can be inferred if the action set U(x) is given, and
it varies depending on x. Another extension is to allow the costs to depend on
nature, to obtain l(xk, uk, θk), instead of l(xk, uk) in (11.21).

The cost of a plan The next task is to extend the definition of the cost-to-go
under a fixed plan, which was given in Section 10.1.3, to the case of imperfect
state information. Consider evaluating the quality of a plan, so that the “best”
one might be selected. Suppose that the nondeterministic uncertainty is used to
model nature and that a nondeterministic initial condition is given. If a plan
π is fixed, some state and action trajectories are possible, and others are not.
It is impossible to know in general what histories will occur; however, the plan
constrains the choices substantially. Let H(π, η0) denote the set of state-action
histories that could arise from π applied to the initial condition η0.

570 S. M. LaValle: Planning Algorithms

The cost of a plan π from an initial condition η0 is measured using worst-case
analysis as

Gπ(η0) = max
(x̃,ũ)∈H(π,η0)

{

L(x̃, ũ)
}

. (11.22)

Note that x̃ includes x1, which is usually not known. It may be known only to lie
in X1, as specified by η0. Let Π denote the set of all possible plans. An optimal
plan using worst-case analysis is any plan for which (11.22) is minimized over all
π ∈ Π and η0 ∈ I0. In the case of feasible planning, there are usually numerous
equivalent alternatives.

Under probabilistic uncertainty, the cost of a plan can be measured using
expected-case analysis as

Gπ(η0) = EH(π,η0)

[

L(x̃, ũ)
]

, (11.23)

in which E denotes the mathematical expectation of the cost, with the probability
distribution taken over H(π, η0). The task is to find a plan π ∈ Π that minimizes
(11.23).

The information space is just another state space It will become important
throughout this chapter and Chapter 12 to view the I-space as an ordinary state
space. It only seems special because it is derived from another state space, but
once this is forgotten, it exhibits many properties of an ordinary state space in
planning. One nice feature is that the state in this special space is always known.
Thus, by converting from an original state space to its I-space, we also convert
from having imperfect state information to always knowing the state, albeit in a
larger state space.

One important consequence of this interpretation is that the state transition
equation can be lifted into the I-space to obtain an information transition function,
fI . Suppose that there are no sensors, and therefore no observations. In this case,
future I-states are predictable, which leads to

ηk+1 = fI(ηk, uk). (11.24)

The function fI generates ηk+1 by concatenating uk onto ηk.
Now suppose that there are observations, which are generally unpredictable. In

Section 10.1, the nature action θk ∈ Θ(x, u) was used to model the unpredictability.
In terms of the information transition equation, yk+1 serves the same purpose.
When the decision is made to apply uk, the observation yk+1 is not yet known
(just as θk is unknown in Section 10.1). In a sequential game against nature
with perfect state information, xk+1 is directly observed at the next stage. For
the information transition equation, yk+1 is instead observed, and ηk+1 can be
determined. Using the history I-state representation, (11.14), simply concatenate
uk and yk+1 onto the histories in ηk to obtain ηk+1. The information transition
equation is expressed as

ηk+1 = fI(ηk, uk, yk+1), (11.25)

11.2. DERIVED INFORMATION SPACES 571

Ihist Indet

Iprob

I2

I3

κndet

κprob

κ2

κ3

X I1

κ1κest

Figure 11.3: Many alternative information mappings may be proposed. Each leads
to a derived information space.

with the understanding that yk+1 plays the same role as θk in the case of perfect
state information and unpredictable future states. Even though nature causes
future I-states to be unpredictable, the current I-state is always known. A plan,
π : I → U , now seems like a state-feedback plan, if the I-space is viewed as a state
space. The transitions are all specified by fI .

The costs in this new state space can be derived from the original cost func-
tional, but a maximization or expectation is needed over all possible states given
the current information. This will be covered in Section 12.1.

11.2 Derived Information Spaces

The history I-space appears to be quite complicated. Every I-state corresponds
to a history of actions and observations. Unfortunately, the length of the I-state
sequence grows linearly with the number of stages. To overcome this difficultly, it
is common to map history I-states to some simpler space. In many applications,
the ability to perform this simplification is critical to finding a practical solution.
In some cases, the simplification fully preserves the history I-space, meaning that
completeness, and optimality if applicable, is not lost. In other cases, we are willing
to tolerate a simplification that destroys much of the structure of the history I-
space. This may be necessary to obtain a dramatic reduction in the size of the
I-space.

11.2.1 Information Mappings

Consider a function that maps the history I-space into a space that is simpler to
manage. Formally, let κ : Ihist → Ider denote a function from a history I-space,
Ihist, to a derived I-space, Ider. The function, κ, is called an information mapping,
or I-map. The derived I-space may be any set; hence, there is great flexibility in
defining an I-map.2 Figure 11.3 illustrates the idea. The starting place is Ihist,
and mappings are made to various derived I-spaces. Some generic mappings, κ1,

2Ideally, the mapping should be onto Ider; however, to facilitate some definitions, this will
not be required.

572 S. M. LaValle: Planning Algorithms

κ2, and κ3, are shown, along with some very important kinds, Iest, Indet and Iprob.
The last two are the subjects of Sections 11.2.2 and 11.2.3, respectively. The other
important I-map is κest, which uses the history to estimate the state; hence, the
derived I-space is X (see Example 11.11). In general, an I-map can even map any
derived I-space to another, yielding κ : Ider → I ′der, for any I-spaces Ider and I ′der.
Note that any composition of I-maps yields an I-map. The derived I-spaces I2 and
I3 from Figure 11.3 are obtained via compositions.

Making smaller information-feedback plans The primary use of an I-map
is to simplify the description of a plan. In Section 11.1.3, a plan was defined as a
function on the history I-space, Ihist. Suppose that an I-map, κ, is introduced that
maps from Ihist to Ider. A feedback plan on Ider is defined as π : Ider → U . To
execute a plan defined on Ider, the derived I-state is computed at each stage k by
applying κ to ηk to obtain κ(ηk) ∈ Ider. The action selected by π is π(κ(ηk)) ∈ U .

To understand the effect of using Ider instead of Ihist as the domain of π,
consider the set of possible plans that can be represented over Ider. Let Πhist and
Πder be the sets of all plans over Ihist and Ider, respectively. Any π ∈ Πder can be
converted into an equivalent plan, π′ ∈ Πhist, as follows: For each η ∈ Ihist, define
π′(η) = π(κ(η)).

It is not always possible, however, to construct a plan, π ∈ Πder, from some
π′ ∈ Ihist. The problem is that there may exist some η1, η2 ∈ Ihist for which
π′(η1) 6= π′(η2) and κ(η1) = κ(η2). In words, this means that the plan in Πhist

requires that two histories cause different actions, but in the derived I-space the
histories cannot be distinguished. For a plan in Πder, both histories must yield the
same action.

An I-map κ has the potential to collapse Ihist down to a smaller I-space by
inducing a partition of Ihist. For each ηder ∈ Ider, let the preimage κ−1(ηder) be
defined as

κ−1(ηder) = {η ∈ Ihist | ηder = κ(η)}. (11.26)

This yields the set of history I-states that map to ηder. The induced partition
can intuitively be considered as the “resolution” at which the history I-space is
characterized. If the sets in (11.26) are large, then the I-space is substantially
reduced. The goal is to select κ to make the sets in the partition as large as
possible; however, one must be careful to avoid collapsing the I-space so much
that the problem can no longer be solved.

Example 11.11 (State Estimation) In this example, the I-map is the classical
approach that is conveniently taken in numerous applications. Suppose that a
technique has been developed that uses the history I-state η ∈ Ihist to compute
an estimate of the current state. In this case, the I-map is κest : Ihist → X. The
derived I-space happens to be X in this case! This means that a plan is specified
as π : X → U , which is just a state-feedback plan.

Consider the partition of Ihist that is induced by κest. For each x ∈ X, the set
κ−1
est(x), as defined in (11.26), is the set of all histories that lead to the same state

11.2. DERIVED INFORMATION SPACES 573

estimate. A plan on X can no longer distinguish between various histories that
led to the same state estimate. One implication is that the ability to encode the
amount of uncertainty in the state estimate has been lost. For example, it might
be wise to make the action depend on the covariance in the estimate of x; however,
this is not possible because decisions are based only on the estimate itself. �

Example 11.12 (Stage Indices) Consider an I-map, κstage, that returns only
the current stage index. Thus, κstage(ηk) = k. The derived I-space is the set
of stages, which is N. A feedback plan on the derived I-space is specified as
π : N → U . This is equivalent to specifying a plan as an action sequence,
(u1, u2, . . . ,), as in Section 2.3.2. Since the feedback is trivial, this is precisely
the original case of planning without feedback, which is also refereed to as an
open-loop plan. �

Constructing a derived information transition equation As presented so
far, the full history I-state is needed to determine a derived I-state. It may be
preferable, however, to discard histories and work entirely in the derived I-space.
Without storing the histories on the machine or robot, a derived information
transition equation needs to be developed. The important requirement in this
case is as follows:

If ηk is replaced by κ(ηk), then κ(ηk+1) must be correctly determined
using only κ(ηk), uk, and yk+1.

Whether this requirement can be met depends on the particular I-map. An-
other way to express the requirement is that if κ(ηk) is given, then the full history
η does not contain any information that could further constrain κ(ηk+1). The
information provided by κ is sufficient for determining the next derived I-states.
This is similar to the concept of a sufficient statistic, which arises in decision
theory [89]. If the requirement is met, then κ is called a sufficient I-map. One
peculiarity is that the sufficiency is relative to Ider, as opposed to being absolute
in some sense. For example, any I-map that maps onto Ider = {0} is sufficient
because κ(ηk+1) is always known (it remains fixed at 0). Thus, the requirement
for sufficiency depends strongly on the particular derived I-space.

For a sufficient I-map, a derived information transition equation is determined
as

κ(ηk+1) = fIder(κ(ηk), uk, yk+1). (11.27)

The implication is that Ider is the new I-space in which the problem “lives.” There
is no reason for the decision maker to consider histories. This idea is crucial to
the success of many planning algorithms. Sections 11.2.2 and 11.2.3 introduce
nondeterministic I-spaces and probabilistic I-spaces, which are two of the most
important derived I-spaces and are obtained from sufficient I-maps. The I-map

574 S. M. LaValle: Planning Algorithms

Ihist Ihist

fI

Ider Ider

κ κ

fIder?

Stage k Stage k + 1

Ihist Ihist

fI

Ider Ider

κ

Stage k Stage k + 1

singleton?

κ−1

(a) (b)

Figure 11.4: (a) For an I-map to be sufficient, the same result must be reached in
the lower right, regardless of the path taken from the upper left. (b) The problem
is that κ images may contain many histories, which eventually map to multiple
derived I-states.

κstage from Example 11.12 is also sufficient. The estimation I-map from Example
11.11 is usually not sufficient because some history is needed to provide a better
estimate.

The diagram in Figure 11.4a indicates the problem of obtaining a sufficient
I-map. The top of the diagram shows the history I-state transitions before the
I-map was introduced. The bottom of the diagram shows the attempted derived
information transition equation, fIder. The requirement is that the derived I-state
obtained in the lower right must be the same regardless of which path is followed
from the upper left. Either fI can be applied to η, followed by κ, or κ can be
applied to η, followed by some fIder. The problem with the existence of fIder is
that κ is usually not invertible. The preimage κ−1(ηder) of some derived I-state
ηder ∈ Ider yields a set of histories in Ihist. Applying fI to all of these yields a set of
possible next-stage history I-states. Applying κ to these may yield a set of derived
I-states because of the ambiguity introduced by κ−1. This chain of mappings is
shown in Figure 11.4b. If a singleton is obtained under all circumstances, then this
yields the required values of fIder. Otherwise, new uncertainty arises about the
current derived I-state. This could be handled by defining an information space
over the information space, but this nastiness will be avoided here.

Since I-maps can be defined from any derived I-space to another, the concepts
presented in this section do not necessarily require Ihist as the starting point. For
example, an I-map, κ : Ider → I ′der, may be called sufficient with respect to Ider
rather than with respect to Ihist.

11.2.2 Nondeterministic Information Spaces

This section defines the I-map κndet from Figure 11.3, which converts each history
I-state into a subset of X that corresponds to all possible current states. Nature

11.2. DERIVED INFORMATION SPACES 575

is modeled nondeterministically, which means that there is no information about
what actions nature will choose, other than that they will be chosen from Θ and Ψ.
Assume that the state-action sensor mapping from Section 11.1.1 is used. Consider
what inferences may be drawn from a history I-state, ηk = (η0, ũk−1, ỹk). Since the
model does not involve probabilities, let η0 represent a set X1 ⊆ X. Let κndet(ηk)
be the minimal subset of X in which xk is known to lie given ηk. This subset is
referred to as a nondeterministic I-state. To remind you that κndet(ηk) is a subset
of X, it will now be denoted as Xk(ηk). It is important that Xk(ηk) be as small
as possible while consistent with ηk.

Recall from (11.6) that for every observation yk, a set H(yk) ⊆ X of possible
values for xk can be inferred. This could serve as a crude estimate of the nondeter-
ministic I-state. It is certainly known that Xk(ηk) ⊆ H(yk); otherwise, xk, would
not be consistent with the current sensor observation. If we carefully progress
from the initial conditions while applying constraints due to the state transition
equation, the appropriate subset of H(yk) will be obtained.

From the state transition function f , define a set-valued function F that yields
a subset of X for every x ∈ X and u ∈ U as

F (x, u) = {x′ ∈ X | ∃θ ∈ Θ(x, u) for which x′ = f(x, u, θ)}. (11.28)

Note that both F and H are set-valued functions that eliminate the direct ap-
pearance of nature actions. The effect of nature is taken into account in the set
that is obtained when these functions are applied. This will be very convenient
for computing the nondeterministic I-state.

An inductive process will now be described that results in computing the nonde-
terministic I-state, Xk(ηk), for any stage k. The base case, k = 1, of the induction
proceeds as

X1(η1) = X1(η0, y1) = X1 ∩H(y1). (11.29)

The first part of the equation replaces η1 with (η0, y1), which is a longer way to
write the history I-state. There are not yet any actions in the history. The second
part applies set intersection to make consistent the two pieces of information: 1)
The initial state lies in X1, which is the initial condition, and 2) the states in
H(y1) are possible given the observation y1.

Now assume inductively that Xk(ηk) ⊆ X has been computed and the task is
to compute Xk+1(ηk+1). From (11.15), ηk+1 = (ηk, uk, yk+1). Thus, the only new
pieces of information are that uk was applied and yk+1 was observed. These will
be considered one at a time.

Consider computing Xk+1(ηk, uk). If xk was known, then after applying uk, the
state could lie anywhere within F (xk, uk), using (11.28). Although xk is actually
not known, it is at least known that xk ∈ Xk(ηk). Therefore,

Xk+1(ηk, uk) =
⋃

xk∈Xk(ηk)

F (xk, uk). (11.30)

This can be considered as the set of all states that can be reached by starting from

576 S. M. LaValle: Planning Algorithms

some state in Xk(ηk) and applying any actions uk ∈ U and θk ∈ Θ(xk, uk). See
Figure 11.5.

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Xk+1(ηk, uk)
Xk(ηk)F (xk, uk)

xk

Figure 11.5: The first step in computing the nondeterministic I-state is to take
the union of F (xk, uk) over all possible xk ∈ Xk(ηk).

The next step is to take into account the observation yk+1. This information
alone indicates that xk+1 lies in H(yk+1). Therefore, an intersection is performed
to obtain the nondeterministic I-state,

Xk+1(ηk+1) = Xk+1(ηk, uk, yk+1) = Xk+1(ηk, uk) ∩H(yk+1). (11.31)

Thus, it has been shown how to compute Xk+1(ηk+1) from Xk(ηk). After start-
ing with (11.29), the nondeterministic I-states at any stage can be computed by
iterating (11.30) and (11.31) as many times as necessary.

Since the nondeterministic I-state is always a subset of X, the nondeterministic
I-space, Indet = pow(X), is obtained (shown in Figure 11.3). If X is finite, then
Indet is also finite, which was not the case with Ihist because the histories continued
to grow with the number of stages. Thus, if the number of stages is unbounded or
large in comparison to the size ofX, then nondeterministic I-states seem preferable.
It is also convenient that κndet is a sufficient I-map, as defined in Section 11.2.1.
This implies that a planning problem can be completely expressed in terms of Indet
without maintaining the histories. The goal region, XG, can be expressed directly
as a nondeterministic I-state. In this way, the planning task is to terminate in a
nondeterministic I-state, Xk(ηk), for which Xk(ηk) ⊆ XG.

The sufficiency of κndet is obtained because (11.30) and (11.31) show that
Xk+1(ηk+1) can be computed from Xk(ηk), uk, and yk+1. This implies that a
derived information transition equation can be formed. The nondeterministic I-
space can also be treated as “just another state space.” Although many history
I-states may map to the same nondeterministic I-state, it has been assumed for
decision-making purposes that particular history is irrelevant, onceXk(ηk) is given.

The following example is not very interesting in itself, but it is simple enough
to illustrate the concepts.

Example 11.13 (Three-State Example) Let X = {0, 1, 2}, U = {−1, 0, 1},
and Θ(x, u) = {0, 1} for all x ∈ X and u ∈ U . The state transitions are given

11.2. DERIVED INFORMATION SPACES 577

by f(x, u, θ) = (x + u + θ) mod 3. Regarding sensing, Y = {0, 1, 2, 3, 4} and
Ψ(x) = {0, 1, 2} for all x ∈ X. The sensor mapping is y = h(x, ψ) = x+ ψ.

The history I-space appears very cumbersome for this example, which only
involves three states. The nondeterministic I-space for this example is

Indet = {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}, (11.32)

which is the power set of X = {0, 1, 2}. Note, however, that the empty set, ∅, can
usually be deleted from Indet.3 Suppose that the initial condition is X1 = {0, 2}
and that the initial state is x1 = 0. The initial state is unknown to the decision
maker, but it is needed to ensure that valid observations are made in the example.

Now consider the execution over a number of stages. Suppose that the first
observation is y1 = 2. Based on the sensor mapping, H(y1) = H(2) = {0, 1, 2},
which is not very helpful because H(2) = X. Applying (11.29) yields X1(η1) =
{0, 2}. Now suppose that the decision maker applies the action u1 = 1 and nature
applies θ1 = 1. Using f , this yields x2 = 2. The decision maker does not know
θ1 and must therefore take into account any nature action that could have been
applied. It uses (11.30) to infer that

X2(η1, u1) = F (2, 1) ∪ F (0, 1) = {0, 1} ∪ {1, 2} = {0, 1, 2}. (11.33)

Now suppose that y2 = 3. From the sensor mapping, H(3) = {1, 2}. Applying
(11.31) yields

X2(η2) = X2(η1, u1) ∩H(y2) = {0, 1, 2} ∩ {1, 2} = {1, 2}. (11.34)

This process may be repeated for as many stages as desired. A path is generated
through Indet by visiting a sequence of nondeterministic I-states. If the observa-
tion yk = 4 is ever received, the state, xk, becomes immediately known because
H(4) = {2}. �

11.2.3 Probabilistic Information Spaces

This section defines the I-map κprob from Figure 11.3, which converts each history
I-state into a probability distribution over X. A Markov, probabilistic model is
assumed in the sense that the actions of nature only depend on the current state
and action, as opposed to state or action histories. The set union and intersection
of (11.30) and (11.31) are replaced in this section by marginalization and Bayes’
rule, respectively. In a sense, these are the probabilistic equivalents of union and
intersection. It will be very helpful to compare the expressions from this section
to those of Section 11.2.2.

3One notable exception is in the theory of nondeterministic finite automata, in which it is
possible that all copies of the machine die and there is no possible current state [891].

578 S. M. LaValle: Planning Algorithms

Rather than write κprob(η), standard probability notation will be applied to
obtain P (x|η). Most expressions in this section of the form P (xk|·) have an anal-
ogous expression in Section 11.2.2 of the form Xk(·). It is helpful to recognize the
similarities.

The first step is to construct probabilistic versions of H and F . These are
P (xk|yk) and P (xk+1|xk, uk), respectively. The latter term was given in Section
10.1.1. To obtain P (xk|yk), recall from Section 11.1.1 that P (yk|xk) is easily
derived from P (ψk|xk). To obtain P (xk|yk), Bayes’ rule is applied:

P (xk|yk) =
P (yk|xk)P (xk)

P (yk)
=

P (yk|xk)P (xk)
∑

xk∈X
P (yk|xk)P (xk)

. (11.35)

In the last step, P (yk) was rewritten using marginalization, (9.8). In this case xk
appears as the sum index; therefore, the denominator is only a function of yk, as
required. Bayes’ rule requires knowing the prior, P (xk). In the coming expressions,
this will be replaced by a probabilistic I-state.

Now consider defining probabilistic I-states. Each is a probability distribution
over X and is written as P (xk|ηk). The initial condition produces P (x1). As for
the nondeterministic case, probabilistic I-states can be computed inductively. For
the base case, the only new piece of information is y1. Thus, the probabilistic
I-state, P (x1|η1), is P (x1|y1). This is computed by letting k = 1 in (11.35) to
yield

P (x1|η1) = P (x1|y1) =
P (y1|x1)P (x1)
∑

x1∈X
P (y1|x1)P (x1)

. (11.36)

Now consider the inductive step by assuming that P (xk|ηk) is given. The task
is to determine P (xk+1|ηk+1), which is equivalent to P (xk+1|ηk, uk, yk+1). As in
Section 11.2.2, this will proceed in two parts by first considering the effect of uk,
followed by yk+1. The first step is to determine P (xk+1|ηk, uk) from P (xk|ηk).
First, note that

P (xk+1|ηk, xk, uk) = P (xk+1|xk, uk) (11.37)

because ηk contains no additional information regarding the prediction of xk+1 once
xk is given. Marginalization, (9.8), can be used to eliminate xk from P (xk+1|xk, uk).
This must be eliminated because it is not given. Putting these steps together yields

P (xk+1|ηk, uk) =
∑

xk∈X
P (xk+1|xk, uk, ηk)P (xk|ηk)

=
∑

xk∈X
P (xk+1|xk, uk)P (xk|ηk),

(11.38)

which expresses P (xk+1|ηk, uk) in terms of given quantities. Equation (11.38) can
be considered as the probabilistic counterpart of (11.30).

11.2. DERIVED INFORMATION SPACES 579

The next step is to take into account the observation yk+1. This is accomplished
by making a version of (11.35) that is conditioned on the information accumulated
so far: ηk and uk. Also, k is replaced with k + 1. The result is

P (xk+1|yk+1, ηk, uk) =
P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)
∑

xk+1∈X
P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)

. (11.39)

This can be considered as the probabilistic counterpart of (11.31). The left side
of (11.39) is equivalent to P (xk+1|ηk+1), which is the probabilistic I-state for stage
k + 1, as desired. There are two different kinds of terms on the right. The
expression for P (xk+1|ηk, uk) is given in (11.38). Therefore, the only remaining
term to calculate is P (yk+1|xk+1, ηk, uk). Note that

P (yk+1|xk+1, ηk, uk) = P (yk+1|xk+1) (11.40)

because the sensor mapping depends only on the state (and the probability model
for the nature sensing action, which also depends only on the state). Since
P (yk+1|xk+1) is specified as part of the sensor model, we have now determined
how to obtain P (xk+1|ηk+1) from P (xk|ηk), uk, and yk+1. Thus, Iprob is another
I-space that can be treated as just another state space.

The probabilistic I-space Iprob (shown in Figure 11.3) is the set of all probabil-
ity distributions over X. The update expressions, (11.38) and (11.39), establish
that the I-map κprob is sufficient, which means that the planning problem can be
expressed entirely in terms of Iprob, instead of maintaining histories. A goal re-
gion can be specified as constraints on the probabilities. For example, from some
particular x ∈ X, the goal might be to reach any probabilistic I-state for which
P (xk|ηk) > 1/2.

10
0

1

p0

p1

Iprob

Figure 11.6: The probabilistic I-space for the three-state example is a 2-simplex
embedded in R3. This simplex can be projected into R2 to yield the depicted
triangular region in R2.

Example 11.14 (Three-State Example Revisited) Now return to Example
11.13, but this time use probabilistic models. For a probabilistic I-state, let pi

580 S. M. LaValle: Planning Algorithms

denote the probability that the current state is i ∈ X. Any probabilistic I-state
can be expressed as (p0, p1, p2) ∈ R3. This implies that the I-space can be nicely
embedded in R3. By the axioms of probability (given in Section 9.1.2), p0+p1+p2 =
1, which can be interpreted as a plane equation in R3 that restricts Iprob to a 2D
set. Also following the axioms of probability, for each i ∈ {0, 1, 2}, 0 ≤ pi ≤ 1.
This means that Iprob is restricted to a triangular region in R3. The vertices of
this triangular region are (0, 0, 1), (0, 1, 0), and (1, 0, 0); these correspond to the
three different ways to have perfect state information. In a sense, the distance
away from these points corresponds to the amount of uncertainty in the state.
The uniform probability distribution (1/3, 1/3, 1/3) is equidistant from the three
vertices. A projection of the triangular region into R2 is shown in Figure 11.6.
The interpretation in this case is that p0 and p1 specify a point in R2, and p2 is
automatically determined from p2 = 1− p0 − p1.

The triangular region in R3 is an uncountably infinite set, even though the
history I-space is countably infinite for a fixed initial condition. This may seem
strange, but there is no mistake because for a fixed initial condition, it is generally
impossible to reach all of the points in Iprob. If the initial condition can be any
point in Iprob, then all of the probabilistic I-space is covered because I0 = Iprob,
in which I0 is the initial condition space.. �

11.2.4 Limited-Memory Information Spaces

Limiting the amount of memory provides one way to reduce the sizes of history
I-states. Except in special cases, this usually does not preserve the feasibility or
optimality of the original problem. Nevertheless, such I-maps are very useful in
practice when there appears to be no other way to reduce the size of the I-space.
Furthermore, they occasionally do preserve the desired properties of feasibility,
and sometimes even optimality.

Previous i stages Under this model, the history I-state is truncated. Any
actions or observations received earlier than i stages ago are dropped from memory.
An I-map, κi, is defined as

κi(ηk) = (uk−i, . . . , uk−1, yk−i+1, . . . , yk), (11.41)

for any integer i > 0 and k > i. If i ≤ k, then the derived I-state is the full history
I-state, (11.14). The advantage of this approach, if it leads to a solution, is that
the length of the I-state no longer grows with the number of stages. If X and
U are finite, then the derived I-space is also finite. Note that κi is sufficient in
the sense defined in Section 11.2.1 because enough history is passed from stage to
stage to determine the derived I-states.

Sensor feedback An interesting I-map is obtained by removing all but the last
sensor observation from the history I-state. This yields an I-map, κsf : Ihist → Y ,

11.3. EXAMPLES FOR DISCRETE STATE SPACES 581

which is defined as κsf (ηk) = yk. The model is referred to as sensor feedback. In
this case, all decisions are made directly in terms of the current sensor observation.
The derived I-space is Y , and a plan on the derived I-space is π : Y → U , which
is called a sensor-feedback plan. In some literature, this may be referred to as
a purely reactive plan. Many problems for which solutions exist in the history
I-space cannot be solved using sensor feedback. Neglecting history prevents the
complicated deductions that are often needed regarding the state. In some sense,
sensor feedback causes short-sightedness that could unavoidably lead to repeating
the same mistakes indefinitely. However, it may be worth determining whether
such a sensor-feedback solution plan exists for some particular problem. Such plans
tend to be simpler to implement in practice because the actions can be connected
directly to the sensor output. Certainly, if a sensor-feedback solution plan exists
for a problem, and feasibility is the only concern, then it is pointless to design and
implement a plan in terms of the history I-space or some larger derived I-space.
Note that this I-map is sufficient, even though it ignores the entire history.

11.3 Examples for Discrete State Spaces

11.3.1 Basic Nondeterministic Examples

First, we consider a simple example that uses the sign sensor of Example 11.3.

Example 11.15 (Using the Sign Sensor) This example is similar to Example
10.1, except that it involves sensing uncertainty instead of prediction uncertainty.
Let X = Z, U = {−1, 1, uT}, Y = {−1, 0, 1}, and y = h(x) = sgnx. For the state
transition equation, xk+1 = f(xk, uk) = xk + uk. No nature actions interfere with
the state transition equation or the sensor mapping. Therefore, future history
I-states are predictable. The information transition equation is ηk+1 = fI(ηk, uk).
Suppose that initially, η0 = X, which means that any initial state is possible. The
goal is to terminate at 0 ∈ X.

The general expression for a history I-state at stage k is

ηk = (X, u1, . . . , uk−1, y1, . . . , yk). (11.42)

A possible I-state is η5 = (X,−1, 1, 1,−1, 1, 1, 1, 1, 0). Using the nondeterministic
I-space from Section 11.2.2, Indet = pow(X), which is uncountably infinite. By
looking carefully at the problem, however, it can be seen that most of the nonde-
terministic I-states are not reachable. If yk = 0, it is known that xk = 0; hence,
Xk(ηk) = {0}. If yk = 1, it will always be the case that Xk(ηk) = {1, 2, . . .} unless
0 is observed. If yk = −1, then Xk(ηk) = {. . . ,−2,−1}. From this a plan, π,
can be specified over the three nondeterministic I-states mentioned above. For the
first one, π(Xk(ηk)) = uT . For the other two, π(Xk(ηk)) = −1 and π(Xk(ηk)) = 1,
respectively. Based on the sign, the plan tries to move toward 0. If different ini-
tial conditions are allowed, then more nondeterministic I-states can be reached,

582 S. M. LaValle: Planning Algorithms

but this was not required as the problem was defined. Note that optimal-length
solutions are produced by the plan.

The solution can even be implemented with sensor feedback because the action
depends only on the current sensor value. Let π : Y → U be defined as

π(y) =







−1 if y = 1
1 if y = −1
uT if y = 0.

(11.43)

This provides dramatic memory savings over defining a plan on Ihist. �

The next example provides a simple illustration of solving a problem without
ever knowing the current state. This leads to the goal recognizability problem [659]
(see Section 12.5.1).

Example 11.16 (Goal Recognizability) Let X = Z, U = {−1, 1, uT}, and
Y = Z. For the state transition equation, xk+1 = f(xk, uk) = xk+uk. Now suppose
that a variant of Example 11.7 is used to model sensing: y = h(x, ψ) = x + ψ
and Ψ = {−5,−4, . . . , 5}. Suppose that once again, η0 = X. In this case, it is
impossible to guarantee that a goal, XG = {0}, is reached because of the goal
recognizability problem. The disturbance in the sensor mapping does not allow
precise enough state measurements to deduce the precise achievement of the state.
If the goal region, XG, is enlarged to {−5,−4, . . . , 5}, then the problem can be
solved. Due to the disturbance, the nondeterministic I-state is always a subset
of a consecutive sequence of 11 states. It is simple to derive a plan that moves
this interval until the nondeterministic I-state becomes a subset of XG. When this
occurs, then the plan applies uT . In solving this problem, the exact state never
had to be known. �

The problem shown in Figure 11.7 serves two purposes. First, it is an example
of sensorless planning [321, 394], which means that there are no observations (see
Sections 11.5.4 and 12.5.2). This is an interesting class of problems because it
appears that no information can be gained regarding the state. Contrary to intu-
ition, it turns out for this example and many others that plans can be designed
that estimate the state. The second purpose is to illustrate how the I-space can
be dramatically collapsed using the I-map concepts of Section 11.2.1. The stan-
dard nondeterministic I-space for this example contains 219 I-states, but it can be
mapped to a much smaller derived I-space that contains only a few elements.

Example 11.17 (Moving in an L-shaped Corridor) The state space X for
the example shown in Figure 11.7 has 19 states, each of which corresponds to a
location on one of the white tiles. For convenience, let each state be denoted by
(i, j). There are 10 bottom states, denoted by (1, 1), (2, 1), . . ., (10, 1), and 10 left
states, denoted by (1, 1), (1, 2), . . ., (1, 10). Since (1, 1) is both a bottom state and
a left state, it is called the corner state.

11.3. EXAMPLES FOR DISCRETE STATE SPACES 583

1 2 3 4 5 6 7 8 109

1
2

3
4

5
6

7
8

10
9 xG

Figure 11.7: An example that involves 19 states. There are no sensor observations;
however, actions can be chosen that enable the state to be estimated. The example
provides an illustration of reducing the I-space via I-maps.

There are no sensor observations for this problem. However, nature interferes
with the state transitions, which leads to a form of nondeterministic uncertainty.
If an action is applied that tries to take one step, nature may cause two or three
steps to be taken. This can be modeled as follows. Let

U = {(1, 0), (−1, 0), (0, 1), (0,−1)} (11.44)

and let Θ = {1, 2, 3}. The state transition equation is defined as f(x, u, θ) = x+θu
whenever such motion is not blocked (by hitting a dead end). For example, if x =
(5, 1), u = (−1, 0), and θ = 2, then the resulting next state is (5, 1) + 2(−1, 0) =
(3, 1). If blocking is possible, the state changes as much as possible until it becomes
blocked. Due to blocking, it is even possible that f(x, u, θ) = x.

Since there are no sensor observations, the history I-state at stage k is

ηk = (η0, u1, . . . , uk−1). (11.45)

Now use the nondeterministic I-space, Indet = pow(X). The initial state, x1 =
(10, 1), is given, which means that the initial I-state, η0, is {(10, 1)}. The goal is
to arrive at the I-state, {(1, 10)}, which means that the task is to design a plan
that moves from the lower right to the upper left.

With perfect information, this would be trivial; however, without sensors
the uncertainty may grow very quickly. For example, after applying the ac-
tion u1 = (−1, 0) from the initial state, the nondeterministic I-state becomes
{(7, 1), (8, 1), (9, 1)}. After u2 = (−1, 0) it becomes {(4, 1), . . . , (8, 1)}. A nice

584 S. M. LaValle: Planning Algorithms

feature of this problem, however, is that uncertainty can be reduced without sens-
ing. Suppose that for 100 stages, we repeatedly apply uk = (−1, 0). What is the
resulting I-state? As the corner state is approached, the uncertainty is reduced be-
cause the state cannot be further changed by nature. It is known that each action,
uk = (−1, 0), decreases the X coordinate by at least one each time. Therefore,
after nine or more stages, it is known that ηk = {(1, 1)}. Once this is known, then
the action (0, 1) can be applied. This will again increase uncertainty as the state
moves through the set of left states. If (0, 1) is applied nine or more times, then
it is known for certain that xk = (1, 10), which is the required goal state.

A successful plan has now been obtained: 1) Apply (−1, 0) for nine stages, 2)
then apply (0, 1) for nine stages. This plan could be defined over Indet; however, it
is simpler to use the I-map κstage from Example 11.12 to define a plan as π : N→ U .
For k such that 1 ≤ k ≤ 9, π(k) = (−1, 0). For k such that 10 ≤ k ≤ 18,
π(k) = (0, 1). For k > 18, π(k) = uT . Note that the plan works even if the initial
condition is any subset of X. From this point onward, assume that any subset
may be given as the initial condition.

Some alternative plans will now be considered by making other derived I-spaces
from Indet. Let κ3 be an I-map from Indet to a set I3 of three derived I-states. Let
I3 = {g, l, a}, in which g denotes “goal,” l denotes “left,” and a denotes “any.”
The I-map, κ3, is

X(η) =







g if X(η) = {(1, 10)}
l if X(η) is a subset of the set of left states
a otherwise.

(11.46)

Based on the successful plan described so far, a solution on I3 is defined as π(g) =
uT , π(l) = (0, 1), and π(a) = (−1, 0). This plan is simpler to represent than
the one on N; however, there is one drawback. The I-map κ3 is not sufficient.
This implies that more of the nondeterministic I-state needs to be maintained
during execution. Otherwise, there is no way to know when certain transitions
occur. For example, if (−1, 0) is applied from a, how can the robot determine
whether l or a is reached in the next stage? This can be easily determined from
the nondeterministic I-state.

To address this problem, consider a new I-map, κ19 : Indet → I19, which is
sufficient. There are 19 derived I-states, which include g as defined previously,
li for 1 ≤ j ≤ 9, and ai for 2 ≤ i ≤ 10. The I-map is defined as κ19(X(η)) =
g if X(η) = {(1, 10)}. Otherwise, κ19(X(η)) = li for the smallest value of i
such that X(η) is a subset of {(1, i), . . . , (1, 10)}. If there is no such value for
i, then κ19(X(η)) = ai, for the smallest value of i such that X(η) is a subset
of {(1, 1), . . . , (1, 10), (2, 1), . . . , (i, 1)}. Now the plan is defined as π(g) = uT ,
π(li) = (0, 1), and π(ai) = (−1, 0). Although the plan is larger, the robot does not
need to represent the full nondeterministic I-state during execution. The correct
transitions occur. For example, if uk = (−1, 0) is applied at a5, then a4 is obtained.
If u = (−1, 0) is applied at a2, then l1 is obtained. From there, u = (0, 1) is applied
to yield l2. These actions can be repeated until eventually l9 and g are reached.

11.3. EXAMPLES FOR DISCRETE STATE SPACES 585

1 10 1 0 NFA

Input String 0

0,1

1

0

ǫ

b c

a

(a) (b)

Figure 11.8: (a) An nondeterministic finite automaton (NFA) is a state machine
that reads an input string and decides whether to accept it. (b) A graphical
depiction of an NFA.

The resulting plan, however, is not an improvement over the original open-loop
one. �

11.3.2 Nondeterministic Finite Automata

An interesting connection lies between the ideas of this chapter and the theory of
finite automata, which is part of the theory of computation (see [462, 891]). In
Section 2.1, it was mentioned that determining whether there exists some string
that is accepted by a DFA is equivalent to a discrete feasible planning problem. If
unpredictability is introduced into the model, then a nondeterministic finite au-
tomaton (NFA) is obtained, as depicted in Figure 11.8. This represents one of the
simplest examples of nondeterminism in theoretical computer science. Such non-
deterministic models serve as a powerful tool for defining models of computation
and their associated complexity classes. It turns out that these models give rise
to interesting examples of information spaces.

An NFA is typically described using a directed graph as shown in Figure 11.8b,
and is considered as a special kind of finite state machine. Each vertex of the graph
represents a state, and edges represent possible transitions. An input string of finite
length is read by the machine. Typically, the input string is a binary sequence
of 0’s and 1’s. The initial state is designated by an inward arrow that has no
source vertex, as shown pointing into state a in Figure 11.8b. The machine starts
in this state and reads the first symbol of the input string. Based on its value,
it makes appropriate transitions. For a DFA, the next state must be specified for
each of the two inputs 0 and 1 from each state. From a state in an NFA, there
may be any number of outgoing edges (including zero) that represent the response
to a single symbol. For example, there are two outgoing edges if 0 is read from
state c (the arrow from c to b actually corresponds to two directed edges, one for
0 and the other for 1). There are also edges designated with a special ǫ symbol.
If a state has an outgoing ǫ, the state may immediately transition along the edge

586 S. M. LaValle: Planning Algorithms

without reading another symbol. This may be iterated any number of times, for
any outgoing ǫ edges that may be encountered, without reading the next input
symbol. The nondeterminism arises from the fact that there are multiple choices
for possible next states due to multiple edges for the same input and ǫ transitions.
There is no sensor that indicates which state is actually chosen.

The interpretation often given in the theory of computation is that when there
are multiple choices, the machine clones itself and one copy runs each choice. It is
like having multiple universes in which each different possible action of nature is
occurring simultaneously. If there are no outgoing edges for a certain combination
of state and input, then the clone dies. Any states that are depicted with a double
boundary, such as state a in Figure 11.8, are called accept states. When the input
string ends, the NFA is said to accept the input string if there exists at least one
alternate universe in which the final machine state is an accept state.

The formulation usually given for NFAs seems very close to Formulation 2.1
for discrete feasible planning. Here is a typical NFA formulation [891], which
formalizes the ideas depicted in Figure 11.8:

Formulation 11.2 (Nondeterministic Finite Automaton)

1. A finite state space X.

2. A finite alphabet Σ which represents the possible input symbols. Let Σǫ =
Σ ∪ {ǫ}.

3. A transition function, δ : X × Σǫ → pow(X). For each state and symbol, a
set of outgoing edges is specified by indicating the states that are reached.

4. A start state x0 ∈ X.

5. A set A ⊆ X of accept states.

Example 11.18 (Three-State NFA) The example in Figure 11.8 can be ex-
pressed using Formulation 11.2. The components are X = {a, b, c}, Σ = {0, 1},
Σǫ = {0, 1, ǫ}, x0 = a, and A = {a}. The state transition equation requires the
specification of a state for every x ∈ X and symbol in Σǫ:

0 1 ǫ
a ∅ {c} {b}
b {a} ∅ ∅
c {b, c} {b} ∅ .

(11.47)

�

Now consider reformulating the NFA and its acceptance of strings as a kind of
planning problem. An input string can be considered as a plan that uses no form
of feedback; it is a fixed sequence of actions. The feasible planning problem is to
determine whether any string exists that is accepted by the NFA. Since there is

11.3. EXAMPLES FOR DISCRETE STATE SPACES 587

no feedback, there is no sensing model. The initial state is known, but subsequent
states cannot be measured. The history I-state ηk at stage k reduces to ηk =
ũk−1 = (u1, . . . , uk−1), the action history. The nondeterminism can be accounted
for by defining nature actions that interfere with the state transitions. This results
in the following formulation, which is described in terms of Formulation 11.2.

Formulation 11.3 (An NFA Planning Problem)

1. A finite state space X.

2. An action space U = Σ ∪ {uT}.

3. A state transition function, F : X × U → pow(X). For each state and
symbol, a set of outgoing edges is specified by indicating the states that are
reached.

4. An initial state x0 = x1.

5. A set XG = A of goal states.

The history I-space Ihist is defined using

Ik = Ũk−1 (11.48)

for each k ∈ N and taking the union as defined in (11.19). Assume that the initial
state of the NFA is always fixed; therefore, it does not appear in the definition of
Ihist.

For expressing the planning task, it is best to use the nondeterministic I-space
Indet = pow(X) from Section 11.2.2. Thus, each nondeterministic I-state, X(η) ∈
Indet, is the subset of X that corresponds to the possible current states of the
machine. The initial condition could be any subset of X because ǫ transitions can
occur from x1. Subsequent nondeterministic I-states follow directly from F . The
task is to compute a plan of the form

π = (u1, u2, . . . , uK , uT), (11.49)

which results in XK+1(ηK+1) ∈ Indet with XK+1(ηK+1)∩XG 6= ∅. This means that
at least one possible state of the NFA must lie in XG after the termination action is
applied. This condition is much weaker than a typical planning requirement. Using
worst-case analysis, a typical requirement would instead be that every possible
NFA state lies in XG.

The problem given in Formulation 11.3 is not precisely a specialization of For-
mulation 11.1 because of the state transition function. For convenience, F was
directly defined, instead of explicitly requiring that f be defined in terms of na-
ture actions, Θ(x, u), which in this context depend on both x and u for an NFA.
There is one other small issue regarding this formulation. In the planning prob-
lems considered in this book, it is always assumed that there is a current state.

588 S. M. LaValle: Planning Algorithms

For an NFA, it was already mentioned that if there are no outgoing edges for a
certain input, then the clone of the machine dies. This means that potential cur-
rent states cease to exist. It is even possible that every clone dies, which leaves
no current state for the machine. This can be easily enabled by directly defining
F ; however, planning problems must always have a current state. To resolve this
issue, we could augment X in Formulation 11.3 to include an extra dead state,
which signifies the death of a clone when there are no outgoing edges. A dead
state can never lie in XG, and once a transition to a dead state occurs, the state
remains dead for all time. In this section, the state space will not be augmented
in this way; however, it is important to note that the NFA formulation can easily
be made consistent with Formulation 11.3.

The planning model can now be compared to the standard use of NFAs in the
theory of computation. A language of an NFA is defined to be the set of all input
strings that it accepts. The planning problem formulated here determines whether
there exists a string (which is a plan that ends with termination actions) that is
accepted by the NFA. Equivalently, a planning algorithm determines whether the
language of an NFA is empty. Constructing the set of all successful plans is
equivalent to determining the language of the NFA.

Example 11.19 (Planning for the Three-State NFA) The example in Fig-
ure 11.8 can be expressed using Formulation 11.2. The components are X =
{a, b, c}, Σ = {0, 1}, Σǫ = {0, 1, ǫ}, x0 = a, and F = {a}. The function F (x, u) is
defined as

0 1
a ∅ {c}
b {a, b} ∅
c {b, c} {b}.

(11.50)

The nondeterministic I-space is

X(η) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, (11.51)

in which the initial condition is η0 = {a, b} because an ǫ transition occurs imme-
diately from a. An example plan that solves the problem is (1, 0, 0, uT , . . .). This
corresponds to sending an input string “100” through the NFA depicted in Figure
11.8. The sequence of nondeterministic I-states obtained during the execution of
the plan is

{a, b} 1→ {c} 0→ {b, c} 0→ {a, b, c} uT→ {a, b, c}. (11.52)

�

A basic theorem from the theory of finite automata states that for the set of
strings accepted by an NFA, there exists a DFA (deterministic) that accepts the
same set [891]. This is proved by constructing a DFA directly from the nondeter-
ministic I-space. Each nondeterministic I-state can be considered as a state of a
DFA. Thus, the DFA has 2n states, if the original NFA has n states. The state

11.4. CONTINUOUS STATE SPACES 589

transitions of the DFA are derived directly from the transitions between nondeter-
ministic I-states. When an input (or action) is given, then a transition occurs from
one subset of X to another. A transition is made between the two corresponding
states in the DFA. This construction is an interesting example of how the I-space
is a new state space that arises when the states of the original state space are
unknown. Even though the I-space is usually larger than the original state space,
its states are always known. Therefore, the behavior appears the same as in the
case of perfect state information. This idea is very general and may be applied to
many problems beyond DFAs and NFAs; see Section 12.1.2

11.3.3 The Probabilistic Case: POMDPs

Example 11.14 generalizes nicely to the case of n states. In operations research
and artificial intelligence literature, these are generally referred to as partially
observable Markov decision processes or POMDPs (pronounced “pom dee peez”).
For the case of three states, the probabilistic I-space, Iprob, is a 2-simplex embedded
in R3. In general, if |X| = n, then Iprob is an (n−1)-simplex embedded in Rn. The
coordinates of a point are expressed as (p0, p1, . . . , pn−1) ∈ Rn. By the axioms of
probability, p0 + · · ·+ pn−1 = 1, which implies that Iprob is an (n− 1)-dimensional
subspace of Rn. The vertices of the simplex correspond to the n cases in which the
state is known; hence, their coordinates are (0, 0, . . . , 0, 1), (0, 0, . . . , 0, 1, 0), . . .,
(1, 0, . . . , 0). For convenience, the simplex can be projected into Rn−1 by specifying
a point in Rn−1 for which p1+ · · ·+pn−2 ≤ 1 and then choosing the final coordinate
as pn−1 = 1− p1 + · · ·+ pn−2. Section 12.1.3 presents algorithms for planning for
POMDPs.

11.4 Continuous State Spaces

This section takes many of the concepts that have been developed in Sections
11.1 and 11.2 and generalizes them to continuous state spaces. This represents
an important generalization because the configuration space concepts, on which
motion planning was defined in Part II, are all based on continuous state spaces.
In this section, the state space might be a configuration space, X = C, as defined
in Chapter 4 or any other continuous state space. Since it may be a configuration
space, many interesting problems can be drawn from robotics.

During the presentation of the concepts of this section, it will be helpful to
recall analogous concepts that were already developed for discrete state spaces. In
many cases, the formulations appear identical. In others, the continuous case is
more complicated, but it usually maintains some of the properties from the discrete
case. It will be seen after introducing continuous sensing models in Section 11.5.1
that some problems formulated in continuous spaces are even more elegant and
easy to understand than their discrete counterparts.

590 S. M. LaValle: Planning Algorithms

11.4.1 Discrete-Stage Information Spaces

Assume here that there are discrete stages. Let X ⊆ Rm be an n-dimensional
manifold for n ≤ m called the state space.4 Let Y ⊆ Rm be an ny-dimensional
manifold for ny ≤ m called the observation space. For each x ∈ X, let Ψ(x) ⊆ Rm

be an nn-dimensional manifold for nn ≤ m called the set of nature sensing actions.
The three kinds of sensors mappings, h, defined in Section 11.1.1 are possible, to
yield either a state mapping, y = h(x), a state-nature mapping y = h(x, ψ), or a
history-based, y = hk(x1, . . . , xk, y). For the case of a state mapping, the preimages,
H(y), once again induce a partition of X. Preimages can also be defined for state-
action mappings, but they do not necessarily induce a partition of X.

Many interesting sensing models can be formulated in continuous state spaces.
Section 11.5.1 provides a kind of sensor catalog. There is once again the choice of
nondeterministic or probabilistic uncertainty if nature sensing actions are used. If
nondeterministic uncertainty is used, the expressions are the same as the discrete
case. Probabilistic models are defined in terms of a probability density function,
p : Ψ→ [0,∞),5 in which p(ψ) denotes the continuous-time replacement for P (ψ).
The model can also be expressed as p(y|x), in that same manner that P (y|x) was
obtained for discrete state spaces.

The usual three choices exist for the initial conditions: 1) Either x1 ∈ X is
given; 2) a subset X1 ∈ X is given; or 3) a probability density function, p(x), is
given. The initial condition spaces in the last two cases can be enormous. For
example, if X = [0, 1] and any subset is possible as an initial condition, then
I0 = pow(R), which has higher cardinality than R. If any probability density
function is possible, then I0 is a space of functions.6

The I-space definitions from Section 11.1.2 remain the same, with the under-
standing that all of the variables are continuous. Thus, (11.17) and (11.19) serve
as the definitions of Ik and I. Let U ⊆ Rm be an nu-dimensional manifold for
nu ≤ m. For each x ∈ X and u ∈ U , let Θ(x, u) be an nθ-dimensional manifold for
nθ ≤ m. A discrete-stage I-space planning problem over continuous state spaces
can be easily formulated by replacing each discrete variable in Formulation 11.1
by its continuous counterpart that uses the same notation. Therefore, the full
formulation is not given.

4If you did not read Chapter 4 and are not familiar with manifold concepts, then assume
X = Rn; it will not make much difference. Make similar assumptions for Y , Ψ(x), U , and
Θ(x, u).

5Assume that all continuous spaces are measure spaces and all probability density functions
are measurable functions over these spaces.

6To appreciate of the size of this space, it can generally be viewed as an infinite-dimensional
vector space (recall Example 8.5). Consider, for example, representing each function with a
series expansion. To represent any analytic function exactly over [0, 1], an infinite sequence of
real-valued coefficients may be needed. Each sequence can be considered as an infinitely long
vector, and the set of all such sequences forms an infinite-dimensional vector space. See [346, 836]
for more background on function spaces and functional analysis.

11.4. CONTINUOUS STATE SPACES 591

11.4.2 Continuous-Time Information Spaces

Now assume that there is a continuum of stages. Most of the components of
Section 11.4.1 remain the same. The spaces X, Y , Ψ(x), U , and Θ(x, u) remain
the same. The sensor mapping also remains the same. The main difference occurs
in the state transition equation because the effect of nature must be expressed in
terms of velocities. This was already introduced in Section 10.6. In that context,
there was only uncertainty in predictability. In the current context there may be
uncertainties in both predictability and in sensing the current state.

For the discrete-stage case, the history I-states were based on action and ob-
servation sequences. For the continuous-time case, the history instead becomes a
function of time. As defined in Section 7.1.1, let T denote a time interval, which
may be bounded or unbounded. Let ỹt : [0, t] → Y be called the observation
history up to time t ∈ T . Similarly, let ũt : [0, t)→ U and x̃t : [0, t]→ X be called
the action history and state history, respectively, up to time t ∈ T .

Thus, the three kinds of sensor mappings in the continuous-time case are as
follows:

1. A state-sensor mapping is expressed as y(t) = h(x(t)), in which x(t) and y(t)
are the state and observation, respectively, at time t ∈ T .

2. A state-nature mapping is expressed as y(t) = h(x(t), ψ(t)), which implies
that nature chooses some ψ(t) ∈ Ψ(x(t)) for each t ∈ T .

3. A history-based sensor mapping, which could depend on all of the states
obtained so far. Thus, it depends on the entire function x̃t. This could be
denoted as y(t) = h(x̃t, ψ(t)) if nature can also interfere with the observation.

If ũt and ỹt are combined with the initial condition η0, the history I-state at
time t is obtained as

ηt = (η0, ũt, ỹt). (11.53)

The history I-space at time t is the set of all possible ηt and is denoted as It. Note
that It is a space of functions because each ηt ∈ It is a function of time. Recall
that in the discrete-stage case, every Ik was combined into a single history I-space,
Ihist, using (11.18) or (11.19). The continuous-time analog is obtained as

Ihist =
⋃

t∈T
It, (11.54)

which is an irregular collection of functions because they have different domains;
this irregularity also occurred in the discrete-stage case, in which Ihist was com-
posed of sequences of varying lengths.

A continuous-time version of the cost functional in Formulation 11.1 can be
given to evaluate the execution of a plan. Let L denote a cost functional that may
be applied to any state-action history (x̃t, ũt) to yield

L(x̃t, ũt) =

∫ t

0

l(x(t′), u(t′))dt′ + lF (x(t)), (11.55)

592 S. M. LaValle: Planning Algorithms

in which l(x(t′), u(t′)) is the instantaneous cost and lF (x(t)) is a final cost.

11.4.3 Derived Information Spaces

For continuous state spaces, the motivation to construct derived I-spaces is even
stronger than in the discrete case because the I-space quickly becomes unwieldy.

11.4.3.1 Nondeterministic and probabilistic I-spaces for discrete stages

The concepts of I-maps and derived I-spaces from Section 11.2 extend directly to
continuous spaces. In the nondeterministic case, κndet once again transforms the
initial condition and history into a subset of X. In the probabilistic case, κprob
yields a probability density function over X. First, consider the discrete-stage
case.

The nondeterministic I-states are obtained exactly as defined in Section 11.2.2,
except that the discrete sets are replaced by their continuous counterparts. For ex-
ample, F (x, u) as defined in (11.28) is now a continuous set, as are X and Θ(x, u).
Since probabilistic I-states are probability density functions, the derivation in Sec-
tion 11.2.3 needs to be modified slightly. There are, however, no important con-
ceptual differences. Follow the derivation of Section 11.2.3 and consider which
parts need to be replaced.

The replacement for (11.35) is

p(xk|yk) =
p(yk|xk)p(xk)

∫

X

p(yk|xk)p(xk)dxk
, (11.56)

which is based in part on deriving p(yk|xk) from p(ψk|xk). The base of the induc-
tion, which replaces (11.36), is obtained by letting k = 1 in (11.56). By following
the explanation given from (11.37) to (11.40), but using instead probability density
functions, the following update equations are obtained:

p(xk+1|ηk, uk) =
∫

X

p(xk+1|xk, uk, ηk)p(xk|ηk)dxk

=

∫

X

p(xk+1|xk, uk)p(xk|ηk)dxk,
(11.57)

and

p(xk+1|yk+1, ηk, uk) =
p(yk+1|xk+1)p(xk+1|ηk, uk)

∫

X

p(yk+1|xk+1)p(xk+1|ηk, uk)dxk+1

. (11.58)

11.4.3.2 Approximating nondeterministic and probabilistic I-spaces

Many other derived I-spaces extend directly to continuous spaces, such as the
limited-memory models of Section 11.2.4 and Examples 11.11 and 11.12. In the

11.4. CONTINUOUS STATE SPACES 593

present context, it is extremely useful to try to collapse the I-space as much as
possible because it tends to be unmanageable in most practical applications. Recall
that an I-map, κ : Ihist → Ider, partitions Ihist into sets over which a constant
action must be applied. The main concern is that restricting plans to Ider does
not inhibit solutions.

Consider making derived I-spaces that approximate nondeterministic or prob-
abilistic I-states. Approximations make sense because X is usually a metric space
in the continuous setting. The aim is to dramatically simplify the I-space while
trying to avoid the loss of critical information. A trade-off occurs in which the
quality of the approximation is traded against the size of the resulting derived
I-space. For the case of nondeterministic I-states, conservative approximations are
formulated, which are sets that are guaranteed to contain the nondeterministic
I-state. For the probabilistic case, moment-based approximations are presented,
which are based on general techniques from probability and statistics to approxi-
mate probability densities. To avoid unnecessary complications, the presentation
will be confined to the discrete-stage model.

X2(η2) X3(η3)X1(η1)

Figure 11.9: The nondeterministic I-states may be complicated regions that are
difficult or impossible to compute.

X̂1 X̂2 X̂3

Figure 11.10: The nondeterministic I-states can be approximated by bounding
spheres.

Conservative approximations Suppose that nondeterministic uncertainty is
used and an approximation is made to the nondeterministic I-states. An I-map,
κapp : Indet → Iapp, will be defined in which Iapp is a particular family of subsets
of X. For example, Iapp could represent the set of all ball subsets of X. If
X = R2, then the balls become discs, and only three parameters (x, y, r) are
needed to parameterize Iapp (x, y for the center and r for the radius). This implies

594 S. M. LaValle: Planning Algorithms

that Iapp ⊂ R3; this appears to be much simpler than Indet, which could be
a complicated collection of regions in R2. To make Iapp even smaller, it could
be required that x, y, and r are integers (or are sampled with some specified
dispersion, as defined in Section 5.2.3). If Iapp is bounded, then the number of
derived I-states would become finite. Of course, this comes an at expense because
Indet may be poorly approximated.

For a fixed sequence of actions (u1, u2, . . .) consider the sequence of nondeter-
ministic I-states:

X1(η1)
u1,y2−→ X2(η2)

u2,y3−→ X3(η3)
u3,y4−→ · · · , (11.59)

which is also depicted in Figure 11.9. The I-map Iapp must select a bounding
region for every nondeterministic I-state. Starting with a history I-state, η, the
nondeterministic I-state Xk(ηk) can first be computed, followed by applying Iapp
to yield a bounding region. If there is a way to efficiently compute Xk(ηk) for any
ηk, then a plan on Iapp could be much simpler than those on Indet or Ihist.

If it is difficult to compute Xk(ηk), one possibility is to try to define a de-
rived information transition equation, as discussed in Section 11.2.1. The trouble,
however, is that Iapp is usually not a sufficient I-map. Imagine wanting to com-
pute κapp(Xk+1(ηk+1)), which is a bounding approximation to Xk+1(ηk+1). This
can be accomplished by starting with Xk(ηk), applying the update rules (11.30)
and (11.31), and then applying κapp to Xk+1(ηk+1). In general, this does not pro-
duce the same result as starting with the bounding volume Iapp(Xk(ηk)), applying
(11.30) and (11.31), and then applying κapp.

Thus, it is not possible to express the transitions entirely in Iapp without some
further loss of information. However, if this loss of information is tolerable, then
an information-destroying approximation may nevertheless be useful. The general
idea is to make a bounding region for the nondeterministic I-state in each iter-
ation. Let X̂k denote this bounding region at stage k. Be careful in using such
approximations. As depicted in Figures 11.9 and 11.10, the sequences of derived
I-states diverge. The sequence in Figure 11.10 is not obtained by simply bounding
each calculated I-state by an element of Iapp; the entire sequence is different.

Initially, X̂1 is chosen so that X1(η1) ⊆ X̂1. In each inductive step, X̂k is
treated as if it were the true nondeterministic I-state (not an approximation).
Using (11.30) and (11.31), the update for considering uk and yk+1 is

X̂ ′
k+1 =

(
⋃

xk∈X̂k

F (xk, uk)

)

∩H(yk+1). (11.60)

In general, X̂ ′
k+1(ηk+1) might not lie in Iapp. Therefore, a bounding region, X̂k+1 ∈

Iapp, must be selected to approximate X̂ ′ under the constraint that X̂ ′
k+1 ⊆ X̂k+1.

This completes the inductive step, which together with the base case yields a
sequence

X̂1
u1,y2−→ X̂2

u2,y3−→ X̂3
u3,y4−→ · · · , (11.61)

11.4. CONTINUOUS STATE SPACES 595

which is depicted in Figure 11.10.
Both a plan, π : Iapp → U , and information transitions can now be defined over

Iapp. To ensure that a plan is sound, the approximation must be conservative. If in

some iteration, X̂k+1(ηk+1) ⊂ X̂ ′
k+1(ηk+1), then the true state may not necessarily

be included in the approximate derived I-state. This could, for example, mean
that a robot is in a collision state, even though the derived I-state indicates that
this is impossible. This bad behavior is generally avoided by keeping conservative
approximations. At one extreme, the approximations can be made very conserva-
tive by always assigning X̂k+1(ηk+1) = X. This, however, is useless because the
only possible plans must apply a single, fixed action for every stage. Even if the
approximations are better, it might still be impossible to cause transitions in the
approximated I-state. To ensure that solutions exist to the planning problem, it
is therefore important to make the bounding volumes as close as possible to the
derived I-states.

This trade-off between the simplicity of bounding volumes and the computa-
tional expense of working with them was also observed in Section 5.3.2 for collision
detection. Dramatic improvement in performance can be obtained by working with
simpler shapes; however, in the present context this could come at the expense of
failing to solve the problem. Using balls as described so far might not seem to pro-
vide very tight bounds. Imagine instead using solid ellipsoids. This would provide
tighter approximations, but the dimension of Iapp grows quadratically with the
dimension of X. A sphere equation generally requires n + 1 parameters, whereas
the ellipsoid equation requires (n2) + 2n parameters. Thus, if the dimension of
X is high, it may be difficult or even impossible to use ellipsoid approximations.
Nonconvex bounding shapes could provide even better approximations, but the re-
quired number of parameters could easily become unmanageable, even if X = R2.
For very particular problems, however, it may be possible to design a family of
shapes that is both manageable and tightly approximates the nondeterministic
I-states. This leads to many interesting research issues.

Moment-based approximations Since the probabilistic I-states are functions,
it seems natural to use function approximation methods to approximate Iprob. One
possibility might be to use the firstm coefficients of a Taylor series expansion. The
derived I-space then becomes the space of possible Taylor coefficients. The quality
of the approximation is improved as m is increased, but also the dimension of the
derived I-space rises.

Since we are working with probability density functions, it is generally prefer-
able to use moments as approximations instead of Taylor series coefficients or
other generic function approximation methods. The first and second moments are
the familiar mean and covariance, respectively. These are preferable over other
approximations because the mean and covariance exactly represent the Gaussian
density, which is the most basic and fundamental density in probability theory.
Thus, approximating the probabilistic I-space with first and second moments is
equivalent to assuming that the resulting probability densities are always Gaus-

596 S. M. LaValle: Planning Algorithms

sian. Such approximations are frequently made in practice because of the conve-
nience of working with Gaussians. In general, higher order moments can be used
to obtain higher quality approximations at the expense of more coefficients. Let
κmom : Iprob → Imom denote a moment-based I-map.

The same issues arise for κmom as for κapp. In most cases, κmom is not a sufficient
I-map. The moments are computed in the same way as the conservative approx-
imations. The update equations (11.57) and (11.58) are applied for probabilistic
I-states; however, after each step, κmom is applied to the resulting probability
density function. This traps the derived I-states in Imom. The moments could
be computed after each of (11.57) and (11.58) or after both of them have been
applied (different results may be obtained). The later case may be more difficult
to compute, depending on the application.

First consider using the mean (first moment) to represent some probabilistic
I-state, p(x|η). Let xi denote the ith coordinate of x. The mean, x̄i, with respect
to xi is generally defined as

x̄i =

∫

X

xi p(x|η)dx. (11.62)

This leads to the vector mean x̄ = (x̄1, . . . , x̄n). Suppose that we would like to
construct Imom using only the mean. Since there is no information about the
covariance of the density, working with x̄ is very similar to estimating the state.
The mean value serves as the estimate, and Imom = X. This certainly helps
to simplify the I-space, but there is no way to infer the amount of uncertainty
associated with the I-state. Was the probability mass concentrated greatly around
x̄, or was the density function very diffuse over X?

Using second moments helps to alleviate this problem. The covariance with
respect to two variables, xi and xi, is

σi,j =

∫

X

xixj p(x|η)dx. (11.63)

Since σij = σji, the second moments can be organized into a symmetric covariance
matrix,

Σ =








σ1,1 σ1,2 · · · σ1,n
σ2,1 σ2,2 · · · σ2,n
...

...
...

σn,1 σn,2 · · · σn,n








(11.64)

for which there are (n2) + n unique elements, corresponding to every xi,i and every
way to pair xi with xj for each distinct i and j such that 1 ≤ i, j ≤ n. This
implies that if first and second moments are used, then the dimension of Imom
is (n2) + 2n. For some problems, it may turn out that all probabilistic I-states
are indeed Gaussians. In this case, the mean and covariance exactly capture the
probabilistic I-space. The I-map in this case is sufficient. This leads to a powerful
tool called the Kalman filter, which is the subject of Section 11.6.1.

11.4. CONTINUOUS STATE SPACES 597

Higher quality approximations can be made by taking higher order moments.
The rth moment is defined as

∫

X

xi1xi2 · · · xir p(x|η)dx, (11.65)

in which i1, i2, . . ., ir are r integers chosen with replacement from {1, . . . , n}.
The moment-based approximation is very similar to the conservative approxi-

mations for nondeterministic uncertainty. The use of mean and covariance appears
very similar to using ellipsoids for the nondeterministic case. The level sets of a
Gaussian density are ellipsoids. These level sets generalize the notion of confidence
intervals to confidence ellipsoids, which provides a close connection between the
nondeterministic and probabilistic cases. The domain of a Gaussian density is
Rn, which is not bounded, contrary to the nondeterministic case. However, for
a given confidence level, it can be approximated as a bounded set. For example,
an elliptical region can be computed in which 99.9% of the probability mass falls.
In general, it may be possible to combine the idea of moments and bounding vol-
umes to construct a derived I-space for the probabilistic case. This could yield
the guaranteed correctness of plans while also taking probabilities into account.
Unfortunately, this would once again increase the dimension of the derived I-space.

11.4.3.3 Derived I-spaces for continuous time

The continuous-time case is substantially more difficult, both to express and to
compute in general forms. In many special cases, however, there are elegant ways
to compute it. Some of these will be covered in Section 11.5 and Chapter 12.
To help complete the I-space framework, some general expressions are given here.
In general, I-maps and derived I-spaces can be constructed following the ideas of
Section 11.2.1.

Since there are no discrete transition rules, the derived I-states cannot be
expressed in terms of simple update rules. However, they can at least be expressed
as a function that indicates the state x(t) that will be obtained after ũt and θ̃t
are applied from an initial state x(0). Often, this is obtained via some form
of integration (see Section 14.1), although this may not be explicitly given. In
general, let Xt(ηt) ⊂ X denote a nondeterministic I-state at time t; this is the
replacement for Xk from the discrete-stage case. The initial condition is denoted
as X0, as opposed to X1, which was used in the discrete-stage case.

More definitions are needed to precisely characterize Xt(ηt). Let θ̃t : [0, t)→ Θ
denote the history of nature actions up to time t. Similarly, let ψ̃t : [0, t] → Ψ
denote the history of nature sensing actions. Suppose that the initial condition is
X0 ⊂ X. The nondeterministic I-state is defined as

Xt(ηt) = {x ∈ X | ∃x′ ∈ X0, ∃θ̃t, and ∃ψ̃t such that

x = Φ(x′, ũt, θ̃t) and ∀t′ ∈ [0, t], y(t′) = h(x(t′), ψ(t′))}.
(11.66)

598 S. M. LaValle: Planning Algorithms

In words, this means that a state x(t) lies in Xt(ηt) if and only if there exists an
initial state x′ ∈ X0, a nature history θ̃t, and a nature sensing action history, ψ̃t
such that the transition equation causes arrival at x(t) and the observation history
ỹt agrees with the sensor mapping over all time from 0 to t.

It is also possible to derive a probabilistic I-state, but this requires technical
details from continuous-time stochastic processes and stochastic differential equa-
tions. In some cases, the resulting expressions work out very nicely; however,
it is difficult to formulate a general expression for the derived I-state because it
depends on many technical assumptions regarding the behavior of the stochastic
processes. For details on such systems, see [567].

11.5 Examples for Continuous State Spaces

11.5.1 Sensor Models

A remarkable variety of sensing models arises in applications that involve continu-
ous state spaces. This section presents a catalog of different kinds of sensor models
that is inspired mainly by robotics problems. The models are gathered together in
one place to provide convenient reference. Some of them will be used in upcoming
sections, and others are included to help in the understanding of I-spaces. For each
sensor, there are usually two different versions, based on whether nature sensing
actions are included.

Linear sensing models Developed mainly in control theory literature, linear
sensing models are some of the most common and important. For all of the sensors
in this family, assume that X = Y = Rn (nonsingular linear transformations allow
the sensor space to effectively have lower dimension, if desired). The simplest case
in this family is the identity sensor, in which y = x. In this case, the state is
immediately known. If this sensor is available at every stage, then the I-space
collapses to X by the I-map κsf : Ihist → X.

Now nature sensing actions can be used to corrupt this perfect state observation
to obtain y = h(x, ψ) = x + ψ. Suppose that y is an estimate of x, the current
state, with error bounded by a constant r ∈ (0,∞). This can be modeled by
assigning for every x ∈ X, Ψ(x) as a closed ball of radius r, centered at the origin:

Ψ = {ψ ∈ Rn | ‖ψ‖ ≤ r}. (11.67)

Figure 11.11 illustrates the resulting nondeterministic sensing model. If the obser-
vation y is received, then it is known that the true state lies within a ball in X of
radius r, centered at y. This ball is the preimage, H(y), as defined in (11.11). To
make the model probabilistic, a probability density function can be defined over
Ψ. For example, it could be assumed that p(ψ) is a uniform density (although
this model is not very realistic in many applications because there is a boundary
at which the probability mass discontinuously jumps to zero).

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 599

r

Ψ

H(y)

y

X
(a) (b)

Figure 11.11: A simple sensing model in which the observation error is no more
than r: (a) the nature sensing action space; (b) the preimage in X based on
observation y.

A more typical probabilistic sensing model can be made by letting Ψ(x) =
Rn and defining a probability density function over all of Rn. (Note that the
nondeterministic version of this sensor is completely useless.) One of the easiest
choices to work with is the multivariate Gaussian probability density function,

p(ψ) =
1

√

(2π)n|Σ|
e−

1
2
ψTΣψ, (11.68)

in which Σ is the covariance matrix (11.64), |Σ| is its determinant, and ψTΣψ is a
quadratic form, which multiplies out to yield

ψTΣψ =
n∑

i=1

n∑

j=1

σi,jψiψj. (11.69)

If p(x) is a Gaussian and y is received, then p(y|x) must also be Gaussian under
this model. This will become very important in Section 11.6.1.

The sensing models presented so far can be generalized by applying linear
transformations. For example, let C denote a nonsingular n× n matrix with real-
valued entries. If the sensor mapping is y = h(x) = Cx, then the state can still
be determined immediately because the mapping y = Cx is bijective; each H(y)
contains a unique point of X. A linear transformation can also be formed on the
nature sensing action. Let W denote an n× n matrix. The sensor mapping is

y = h(x) = Cx+Wψ. (11.70)

In general, C and W may even be singular, and a linear sensing model is still
obtained. Suppose that W = 0. If C is singular, however, it is impossible to infer
the state directly from a single sensor observation. This generally corresponds to

600 S. M. LaValle: Planning Algorithms

a projection from an n-dimensional state space to a subset of Y whose dimension
is the rank of C. For example, if

C =

(
0 1
0 0

)

, (11.71)

then y = Cx yields y1 = x2 and y2 = 0. Only x2 of each (x1, x2) ∈ X can be
observed because C has rank 1. Thus, for some special cases, singular matrices
can measure some state variables while leaving others invisible. For a general sin-
gular matrix C, the interpretation is that X is projected into some k-dimensional
subspace by the sensor, in which k is the rank of C. If W is singular, this means
that the effect of nature is limited. The degrees of freedom with which nature
can distort the sensor observations is the rank of W . These concepts motivate the
next set of sensor models.

Simple projection sensors Several common sensor models can be defined by
observing particular coordinates of X while leaving others invisible. This is the
continuous version of the selective sensor from Example 11.4. Imagine, for exam-
ple, a mobile robot that rolls in a 2D world, W = R2, and is capable of rotation.
The state space (or configuration space) is X = R2 × S1. For visualization pur-
poses, it may be helpful to imagine that the robot is very tiny, so that it can be
interpreted as a point, to avoid the complicated configuration space constructions
of Section 4.3.7 Let p = (p1, p2) denote the coordinates of the point, and let s ∈ S1

denote its orientation. Thus, a state in R2 × S1 is specified as (p1, p2, s) (rather
than (x, y, θ), which may cause confusion with important spaces such as X, Y ,
and Θ).

Suppose that the robot can estimate its position but does not know its orienta-
tion. This leads to a position sensor defined as Y = R2, with y1 = p1 and y2 = p2
(also denoted as y = h(x) = p). The third state variable, s, of the state remains
unknown. Of course, any of the previously considered nature sensing action mod-
els can be added. For example, nature might cause errors that are modeled with
Gaussian probability densities.

A compass or orientation sensor can likewise be made by observing only the
final state variable, s. In this case, Y = S1 and y = s. Nature sensing actions
can be included. For example, the sensed orientation may be y, but it is only
known that |s− y| ≤ ǫ for some constant ǫ, which is the maximum sensor error. A
Gaussian model cannot exactly be applied because its domain is unbounded and
S1 is bounded. This can be fixed by truncating the Gaussian or by using a more
appropriate distribution.

The position and orientation sensors generalize nicely to a 3D world, W = R3.
Recall from Section 4.2 that in this case the state space isX = SE(3), which can be
represented as R3 × RP3. A position sensor measures the first three coordinates,
whereas an orientation sensor measures the last three coordinates. A physical

7This can also be handled, but it just adds unnecessary complication to the current discussion.

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 601

sensor that measures orientation in R3 is often called a gyroscope. These are usually
based on the principle of precession, which means that they contain a spinning
disc that is reluctant to change its orientation due to angular momentum. For the
case of a linkage of bodies that are connected by revolute joints, a point in the
state space gives the angles between each pair of attached links. A joint encoder
is a sensor that yields one of these angles.

Dynamics of mechanical systems will not be considered until Part IV; how-
ever, it is worth pointing out several sensors. In these problems, the state space
will be expanded to include velocity parameters and possibly even acceleration
parameters. In this case, a speedometer can sense a velocity vector or a scalar
speed. Sensors even exist to measure angular velocity, which indicates the speed
with which rotation occurs. Finally, an accelerometer can be used to sense accel-
eration parameters. With any of these models, nature sensing actions can be used
to account for measurement errors.

(a) (b) (c)

Figure 11.12: Boundary sensors indicate whether contact with the boundary has
occurred. In the latter case, a proximity sensor may indicate whether the boundary
is within a specified distance.

Boundary sensors If the state space has an interesting boundary, as in the case
of Cfree for motion planning problems, then many important boundary sensors can
be formulated based on the detection of the boundary. Figure 11.12 shows several
interesting cases on which sensors are based.

Suppose that the state space is a closed set with some well-defined boundary.
To provide a connection to motion planning, assume thatX = cl(Cfree), the closure
of Cfree. A contact sensor determines whether the boundary is being contacted.
In this case, Y = {0, 1} and h is defined as h(x) = 1 if x ∈ ∂X, and h(x) = 0
otherwise. These two cases are shown in Figures 11.12a and 11.12b, respectively.
Using this sensor, there is no information regarding where along the boundary the
contact may be occurring. In mobile robotics, it may be disastrous if the robot is
in contact with obstacles. Instead, a proximity sensor is often used, which yields
h(x) = 1 if the state or position is within some specified constant, r, of ∂X, and
h(x) = 0 otherwise. This is shown in Figure 11.12.

In robot manipulation, haptic interfaces, and other applications in which phys-
ical interaction occurs between machines and the environment, a force sensor may
be used. In addition to simply indicating contact, a force sensor can indicate the

602 S. M. LaValle: Planning Algorithms

magnitude and direction of the force. The robot model must be formulated so
that it is possible to derive the anticipated force value from a given state.

Landmark sensors Many important sensing models can be defined in terms
of landmarks. A landmark is a special point or region in the state space that
can be detected in some way by the sensor. The measurements of the landmark
can be used to make inferences about the current state. An ancient example is
using stars to navigate on the ocean. Based on the location of the stars relative
to a ship, its orientation can be inferred. You may have found landmarks useful
for trying to find your way through an unfamiliar city. For example, mountains
around the perimeter of Mexico City or the Eiffel Tower in Paris might be used
to infer your heading. Even though the streets of Paris are very complicated, it
might be possible to walk to the Eiffel Tower by walking toward it whenever it is
visible. Such models are common in the competitive ratio framework for analyzing
on-line algorithms [674].

Landmark

x

Figure 11.13: The most basic landmark sensor indicates only its direction.

In general, a set of states may serve as landmarks. A common model is to
make xG a single landmark. In robotics applications, these landmarks may be
instead considered as points in the world, W . Generalizations from points to
landmark regions are also possible. The ideas, here, however, will be kept simple
to illustrate the concept. Following this presentation, you can imagine a wide
variety of generalizations. Assume for all examples of landmarks that X = R2,
and let a state be denoted by x = (x1, x2).

For the first examples, suppose there is only one landmark, l ∈ X, with coor-
dinates (l1, l2). A homing sensor is depicted in Figure 11.13 and yields values in
Y = S1. The sensor mapping is h(x) = atan2(l1−x1, l2−x2), in which atan2 gives
the angle in the proper quadrant.

Another possibility is a Geiger counter sensor (radiation level), in which Y =
[0,∞) and h(x) = ‖x − l‖. In this case, only the distance to the landmark is
reported, but there is no directional information.

A contact sensor could also be combined with the landmark idea to yield a
sensor called a pebble. This sensor reports 1 if the pebble is “touched”; otherwise,
it reports 0. This idea can be generalized nicely to regions. Imagine that there is
a landmark region, Xl ⊂ X. If x ∈ Xl, then the landmark region detector reports
1; otherwise, it reports 0.

Many useful and interesting sensing models can be formulated by using the
ideas explained so far with multiple landmarks. For example, using three homing

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 603

sensors that are not collinear, it is possible to reconstruct the exact state. Many
interesting problems can be made by populating the state space with landmark
regions and their associated detectors. In mobile robotics applications, this can be
implemented by placing stationary cameras or other sensors in an environment.
The sensors can indicate which cameras can currently view the robot. They might
also provide the distance from each camera.

(a) (b)

Figure 11.14: (a) A mobile robot is dropped into an unknown environment. (b)
Four sonars are used to measure distances to the walls.

Depth-mapping sensors In many robotics applications, the robot may not
have a map of the obstacles in the world. In this case, sensing is used to both
learn the environment and to determine its position and orientation within the
environment. Suppose that a robot is dropped into an environment as shown in
Figure 11.14a. For problems such as this, the state represents both the position
of the robot and the obstacles themselves. This situation is explained in further
detail in Section 12.3. Here, some sensor models for problems of this type are
given. These are related to the boundary and proximity sensors of Figure 11.12,
but they yield more information when the robot is not at the boundary.

One of the oldest sensors used in mobile robotics is an acoustic sonar, which
emits a high-frequency sound wave in a specific direction and measures the time
that it takes for the wave to reflect off a wall and return to the sonar (often the
sonar serves as both a speaker and a microphone). Based on the speed of sound
and the time of flight, the distance to the wall can be estimated. Sometimes, the
wave never returns; this can be modeled with nature. Also, errors in the distance
estimate can be modeled with nature. In general, the observation space Y for a
single sonar is [0,∞], in which ∞ indicates that the wave did not return. The
interpretation of Y could be the time of flight, or it could already be transformed
into estimated distance. If there are k sonars, each pointing in a different direction,
then Y = [0,∞]k, which indicates that one reading can be obtained for each sonar.

604 S. M. LaValle: Planning Algorithms

For example, Figure 11.14b shows four sonars and the distances that they can
measure. Each observation therefore yields a point in R4.

(a) (b)

Figure 11.15: A range scanner or visibility sensor is like having a continuum of
sonars, even with much higher accuracy. A distance value is provided for each
s ∈ S1.

Modern laser scanning technology enables very accurate distance measurements
with very high angular density. For example, the SICK LMS-200 can obtain a
distance measurement for at least every 1/2 degree and sweep the full 360 degrees
at least 30 times a second. The measurement accuracy in an indoor environment
is often on the order of a few millimeters. Imagine the limiting case, which is like
having a continuum of sonars, one for every angle in S1. This results in a sensor
called a range scanner or visibility sensor, which provides a distance measurement
for each s ∈ S1, as shown in Figure 11.15.

A weaker sensor can be made by only indicating points in S1 at which dis-
continuities (or gaps) occur in the depth scan. Refer to this as a gap sensor; an
example is shown in Figure 11.16. It might even be the case that only the circular

Figure 11.16: A gap sensor indicates only the directions at which discontinuities
in depth occur, instead of providing distance information.

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 605

ordering of these gaps is given around S1, without knowing the relative angles
between them, or the distance to each gap. A planner based on this sensing model
is presented in Section 12.3.4.

Odometry sensors A final category will be given, which provides interesting
examples of history-based sensor mappings, as defined for discrete state spaces in
Section 11.1.1. Mobile robots often have odometry sensors, which indicate how
far the robot has traveled, based on the amount that the wheels have turned.
Such measurements are often inaccurate because of wheel slippage, surface imper-
fections, and small modeling errors. For a given state history, x̃t, a sensor can
estimate the total distance traveled. For this model, Y = [0,∞) and y = h(x̃t), in
which the argument, x̃t, to h is the entire state history up to time t. Another way
to model odometry is to have a sensor indicate the estimated distance traveled
since the last stage. This avoids the dependency on the entire history, but it may
be harder to model the resulting errors in distance estimation.

In some literature (e.g., [350]) the action history, ũk, is referred to as odometry.
This interpretation is appropriate in some applications. For example, each action
might correspond to turning the pedals one full revolution on a bicycle. The
number of times the pedals have been turned could serve as an odometry reading.
Since this information already appears in ηk, it is not modeled in this book as
part of the sensing process. For the bicycle example, there might be an odometry
sensor that bases its measurements on factors other than the pedal motions. It
would be appropriate to model this as a history-based sensor.

Another kind of history-based sensor is to observe a wall clock that indicates
how much time has passed since the initial stage. This, in combination with other
information, such as the speed of the robot, could enable strong inferences to be
made about the state.

11.5.2 Simple Projection Examples

This section gives examples of I-spaces for which the sensor mapping is y = h(x)
and h is a projection that reveals some of the state variables, while concealing
others. The examples all involve continuous time, and the focus is mainly on
the nondeterministic I-space Indet. It is assumed that there are no actions, which
means that U = ∅. Nature actions, Θ(x), however, will be allowed. Since there
are no robot actions and no nature sensing actions, all of the uncertainty arises
from the fact that h is a projection and the nature actions that affect the state
transition equation are not known. This is a very important and interesting class
of problems in itself. The examples can be further complicated by allowing some
control from the action set, U ; however, the purpose here is to illustrate I-space
concepts. Therefore, it will not be necessary.

Example 11.20 (Moving on a Sine Curve) Suppose that the state space is

606 S. M. LaValle: Planning Algorithms

Y X

Figure 11.17: The state space is the set of points traced out by a sine curve in R2.

Y X

Figure 11.18: The preimage, H(y), of an observation y is a countably infinite set
of points along X.

the set of points that lie on the sine curve in the plane:

X = {(x1, x2) ∈ R2 | x2 = sin x1}. (11.72)

Let U = ∅, which results in no action history. The observation space is Y = [−1, 1]
and the sensor mapping yields y = h(x) = x2, the height of the point on the sine
curve, as shown in Figure 11.17.

The nature action space is Θ = {−1, 1}, in which −1 means to move at unit
speed in the −x1 direction along the sine curve, and 1 means to move at unit
speed in the x1 direction along the curve. Thus, for some nature action history θ̃t,
a state trajectory x̃t that moves the point along the curve can be determined by
integration.

A history I-state takes the form ηt = (X0, ỹt), which includes the initial condi-
tion X0 ⊆ X and the observation history ỹt up to time t. The nondeterministic
I-states are very interesting for this problem. For each observation y, the preimage
H(y) is a countably infinite set of points that corresponds to the intersection of
X with a horizontal line at height y, as shown in Figure 11.18.

The uncertainty for this problem is always characterized by the number of
intersection points that might contain the true state. Suppose that X0 = X. In
this case, there is no state trajectory that can reduce the amount of uncertainty.
As the point moves along X, the height is always known because of the sensor,
but the x1 coordinate can only be narrowed down to being any of the intersection
points.

Suppose instead that X0 = {x0}, in which x0 is some particular point along
X. If y remains within (0, 1) over some any period of time starting at t = 0, then
x(t) is known because the exact segment of the sine curve that contains the state
is known. However, if the point reaches an extremum, which results in y = 0 or
y = 1, then it is not known which way the point will travel. From this point, the

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 607

XY

Figure 11.19: A bifurcation occurs when y = 1 or y = −1 is received. This
irreversibly increases the amount of uncertainty in the state.

Y

X

x

h(x)

X

Y

x

h(y)

(a) (b)

Figure 11.20: (a) Imagine trying to infer the location of a point on a planar graph
while observing only a single coordinate. (b) This simple example involves a point
moving along a graph that has four edges. When the point is on the rightmost
edge, there is no uncertainty; however, uncertainty exists when the point travels
along the other edges.

sensor cannot disambiguate moving in the −x1 direction from the x1 direction.
Therefore, the uncertainty grows, as shown in Figure 11.19. After the observation
y = 1 is obtained, there are two possibilities for the current state, depending on
which action was taken by nature when y = 1; hence, the nondeterministic I-state
contains two states. If the motion continues until y = −1, then there will be four
states in the nondeterministic I-state. Unfortunately, the uncertainty can only
grow in this example. There is no way to use the sensor to reduce the size of the
nondeterministic I-states. �

The previous example can be generalized to observing a single coordinate of a
point that moves around in a planar topological graph, as shown in Figure 11.20a.
Most of the model remains the same as for Example 11.20, except that the state
space is now a graph. The set of nature actions, Θ(x), needs to be extended so
that if x is a vertex of the graph, then there is one input for each incident edge.
These are the possible directions along which the point could move.

Example 11.21 (Observing a Point on a Graph) Consider the graph shown

608 S. M. LaValle: Planning Algorithms

Figure 11.21: Pieces of the nondeterministic I-space Indet are obtained by the
different possible sets of edges on which the point may lie.

in Figure 11.20b, in which there are four edges.8 When the point moves on the
interior of the rightmost edge of the graph, then the state can be inferred from the
sensor. The set H(y) contains a single point on the rightmost edge. If the point
moves in the interior of one of the other edges, thenH(y) contains three points, one
for each edge above y. This leads to seven possible cases for the nondeterministic
I-state, as shown in Figure 11.21. Any subset of these edges may be possible for
the nondeterministic I-state, except for the empty set.

The eight pieces of Indet depicted in Figure 11.21 are connected together in an
interesting way. Suppose that the point is on the rightmost edge and moves left.
After crossing the vertex, the I-state must be the case shown in the upper right
of Figure 11.21, which indicates that the point could be on one of two edges. If
the point travels right from one of the I-states of the left edges, then the I-state
shown in the bottom right of Figure 11.20 is always reached; however, it is not
necessarily possible to return to the same I-state on the left. Thus, in general,
there are directional constraints on Indet. Also, note that from the I-state on the
lower left of Figure 11.20, it is impossible to reach the I-state on the lower right
by moving straight right. This is because it is known from the structure of the
graph that this is impossible. �

The graph example can be generalized substantially to reflect a wide variety
of problems that occur in robotics and other areas. For example, Figure 11.22
shows a polygon in which a point can move. Only one coordinate is observed,
and the resulting nondeterministic I-space has layers similar to those obtained for
Example 11.21. These ideas can be generalized to any dimension. Interesting
models can be constructed using the simple projection sensors, such as a position
sensor or compass, from Section 11.5.1. In Section 12.4, such layers will appear in
a pursuit-evasion game that uses visibility sensors to find moving targets.

8This example was significantly refined after a helpful discussion with Rob Ghrist.

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 609

Y
h(x)

x
X

Figure 11.22: The graph can be generalized to a planar region, and layers in the
nondeterministic I-space will once again be obtained.

(a) (b)

Figure 11.23: (a) It is always possible to determine whether the state trajectory
went above or below the designated region. (b) Now the ability to determine
whether the trajectory went above or below the hole depends on the particular
observations. In some cases, it may not be possible.

11.5.3 Examples with Nature Sensing Actions

This section illustrates the effect of nature sensing actions, but only for the nonde-
terministic case. General methods for computing probabilistic I-states are covered
in Section 11.6.

Example 11.22 (Above or Below Disc?) This example involves continuous time.
Suppose that the task is to gather information and determine whether the state
trajectory travels above or below some designated region of the state space, as
shown in Figure 11.23.

Let X = R2. Motions are generated by integrating the velocity (ẋ, ẏ), which is
expressed as ẋ = cos(u(t) + θ(t)) and ẏ = sin(u(t) + θ(t)). For simplicity, assume
u(t) = 0 is applied for all time, which is a command to move right. The nature
action θ(t) ∈ Θ = [−π/4, π/4] interferes with the outcome. The robot tries to
make progress by moving in the positive x1 direction; however, the interference
of nature makes it difficult to predict the x2 direction. Without nature, there

610 S. M. LaValle: Planning Algorithms

x
u

Figure 11.24: Nature interferes with the commanded direction, so that the true
state could be anywhere within a circular section.

should be no change in the x2 coordinate; however, with nature, the error in the
x2 direction could be as much as t, after t seconds have passed. Figure 11.24
illustrates the possible resulting motions.

Sensor observations will be made that alleviate the growing cone of uncertainty;
use the sensing model from Figure 11.11, and suppose that the measurement error
r is 1. Suppose there is a disc in R2 of radius larger than 1, as shown in Figure
11.23a. Since the true state is never further than 1 from the measured state, it
is always possible to determine whether the state passed above or below the disc.
Multiple possible observation histories are shown in Figure 11.23a. The observa-
tion history need not even be continuous, but it is drawn that way for convenience.
For a disc with radius less than 1, there may exist some observation histories for
which it is impossible to determine whether the true state traveled above or below
the disc; see Figure 11.23b. For other observation histories, it may still be possible
to make the determination; for example, from the uppermost trajectory shown in
Figure 11.23b it is known for certain that the true state traveled above the disc. �

Example 11.23 (A Simple Mobile Robot Model) In this example, suppose
that a robot is modeled as a point that moves in X = R2. The sensing model
is the same as in Example 11.22, except that discrete stages are used instead of
continuous time. It can be imagined that each stage represents a constant interval
of time (e.g., 1 second).

To control the robot, a motion command is given in the form of an action
uk ∈ U = S1. Nature interferes with the motions in two ways: 1) The robot
tries to travel some distance d, but there is some error ǫd > 0, for which the true
distance traveled, d′, is known satisfy |d′ − d| < ǫd; and 2) the robot tries to move
in a direction u, but there is some error, ǫu > 0, for which the true direction u′ is
known to satisfy |u − u′| < ǫu. These two independent errors can be modeled by
defining a 2D nature action set, Θ(x). The transition equation is then defined so
that the forward projection F (x, u) is as shown in Figure 11.25.

Some nondeterministic I-states will now be constructed. Suppose that the

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 611

F (x, u)

u
x

H(y)

Figure 11.25: A simple mobile robot motion model in which the sensing model is
as given in Figure 11.11 and then nature interferes with commanded motions to
yield an uncertainty region that is a circular ring.

H(y2)

y2

X2(η1, u1)

X2(η2)

X2(η2) X2(η2, u2)

x2

u2

(a) (b) (c)

Figure 11.26: (a) Combining information from X2(η1, u1) and the observation y2;
(b) the intersection must be taken between X2(η1, u1) and H(y2). (c) The action
u2 leads to a complicated nondeterministic I-state that is the union of F (x2, u2)
over all x2 ∈ X2(η2).

initial state x1 is known, and history I-states take the form

ηk = (x1, u1, . . . , uk−1, y1, . . . , yk). (11.73)

The first sensor observation, y1, is useless because the initial state is known. Equa-
tion (11.29) is applied to yieldH(y1)∩{x1} = {x1}. Suppose that the action u1 = 0
is applied, indicating that the robot should move horizontally to the right. Equa-
tion (11.30) is applied to yield X2(η1, u1), which looks identical to the F (x, u)
shown in Figure 11.25. Suppose that an observation y2 is received as shown in
Figure 11.26a. Using this, X2(η2) is computed by taking the intersection of H(y2)
and X2(η1, u1), as shown in Figure 11.26b.

The next step is considerably more complicated. Suppose that u2 = 0 and that
(11.30) is applied to compute X3(η2, u2) from X2(η2). The shape shown in Figure
11.26c is obtained by taking the union of F (x2, u2) for all possible x2 ∈ X2(η2).
The resulting shape is composed of circular arcs and straight line segments (see
Exercise 13). Once y3 is obtained, an intersection is taken once again to yield
X3(η3) = X3(η2, u2)∩H(y3), as shown in Figure 11.27. The process repeats in the

612 S. M. LaValle: Planning Algorithms

H(y3)

X3(η2, u3)

X3(η3)

(a) (b)

Figure 11.27: After the sensor observation, y3, the intersection must be taken
between X3(η2, u2) and H(y3).

same way for the desired number of stages. The complexity of the region in Figure
11.26c provides motivation for the approximation methods of Section 11.4.3. For
example, the nondeterministic I-states could be nicely approximated by ellipsoidal
regions. �

11.5.4 Gaining Information Without Sensors

For some problems, it is remarkable that uncertainty may be reduced without even
using sensors. Recall Example 11.17. This is counterintuitive because it seems that
information regarding the state can only be gained from sensing. It is possible,
however, to also gain information from the knowledge that some actions have been
executed and the effect that should have in terms of the state transitions. The
example presented in this section is inspired by work on sensorless manipulation
planning [321, 396], which is covered in more detail in Section 12.5.2. This topic
underscores the advantages of reasoning in terms of an I-space, as opposed to
requiring that accurate state estimates can be made.

Example 11.24 (Tray Tilting) The state space, X ⊂ R2, indicates the position
of a ball that rolls on a flat surface, as shown Figure 11.28. The ball is confined to
roll within the polygonal region shown in the figure. It can be imagined that the
ball rolls in a tray on which several barriers have been glued to confine its motion
(try this experiment at home!). If the tray is tilted, it is assumed that the ball
rolls in a direction induced by gravity (in the same way that a ball rolls to the
bottom of a pinball machine).

The tilt of the tray is considered as an action that can be chosen by the robot.
It is assumed that the initial position of the ball (initial state) is unknown and
there are no sensors that can be used to estimate the state. The task is to find
some tilting motions that are guaranteed to place the ball in the position shown
in Figure 11.28, regardless of its initial position.

11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 613

Figure 11.28: A top view of a tray that must be tilted to roll the ball into the
desired corner.

The problem could be modeled with continuous time, but this complicates the
design. If the tray is tilted in a particular orientation, it is assumed that the ball
rolls in a direction, possibly following the boundary, until it comes to rest. This
can be considered as a discrete-stage transition: The ball is in some rest state, a
tilt action is applied, and a then it enters another rest state. Thus, a discrete-stage
state transition equation, xk+1 = f(xk, uk), is used.

To describe the tilting actions, we can formally pick directions for the upward
normal vector to the tray from the upper half of S2; however, this can be reduced
to a one-dimensional set because the steepness of the tilt is not important, as long
as the ball rolls to its new equilibrium state. Therefore, the set of actions can be
considered as U = S1, in which a direction u ∈ S1 indicates the direction that the
ball rolls due to gravity. Before any action is applied, it is assumed that the tray
is initially level (its normal is parallel to the direction of gravity). In practice,
one should be more careful and model the motion of the tray between a pair of
actions; this is neglected here because the example is only for illustrative purposes.
This extra level of detail could be achieved by introducing new state variables that
indicate the orientation of the tray or by using continuous-time actions. In the
latter case, the action is essentially providing the needed state information, which
means that the action function would have to be continuous. Here it is simply
assumed that a sequence of actions from S1 is applied.

The initial condition is X1 = X and the history I-state is

ηk = (X1, u1, u2, . . . , uk−1). (11.74)

Since there are no observations, the path through the I-space is predictable. There-
fore, a plan, π, is simply an action sequence, π = (u1, u2, . . . , uK), for any desired
K.

It is surprisingly simple to solve this task by reasoning in terms of nondeter-
ministic I-states, each of which corresponds to a set of possible locations for the
ball. A sequence of six actions, as shown in Figure 11.29, is sufficient to guarantee

614 S. M. LaValle: Planning Algorithms

1: down 2: down-left 3: down-right

4: up 5: up-left 6: down-left

Figure 11.29: A plan is shown that places the ball in the desired location using
a sequence of six tilts, regardless of its initial position and in spite of the fact
that there are no sensors. The thickened black lines and black dots indicate the
possible locations for the ball: the nondeterministic I-states. Under each picture,
the direction that the ball rolls due to the action is written.

that the ball will come to rest at the goal position, regardless of its initial position.
�

11.6 Computing Probabilistic Information States

The probabilistic I-states can be quite complicated in practice because each el-
ement of Iprob is a probability distribution or density function. Therefore, sub-
stantial effort has been invested in developing efficient techniques for computing
probabilistic I-states efficiently. This section can be considered as a continua-
tion of the presentations in Sections 11.2.3 (and part of Section 11.4, for the case
of continuous state spaces). Section 11.6.1 covers Kalman filtering, which pro-
vides elegant computations of probabilistic I-states. It is designed for problems in
which the state transitions and sensor mapping are linear, and all acts of nature
are modeled by multivariate Gaussian densities. Section 11.6.2 covers a general
sampling-based planning approach, which is approximate but applies to a broader
class of problems. One of these methods, called particle filtering, has become very
popular in recent years for mobile robot localization.

11.6. COMPUTING PROBABILISTIC INFORMATION STATES 615

11.6.1 Kalman Filtering

This section covers the most successful and widely used example of a derived I-
space that dramatically collapses the history I-space. In the special case in which
both f and h are linear functions, and p(θ), p(ψ), and p(x1) are Gaussian, all
probabilistic I-states become Gaussian. This means that the probabilistic I-space,
Iprob, does not need to represent every conceivable probability density function.
The probabilistic I-state is always trapped in the subspace of Iprob that corresponds
only to Gaussians. The subspace is denoted as Igauss. This implies that an I-map,
κmom : Iprob → Igauss, can be applied without any loss of information.

The model is called linear-Gaussian (or LG). Each Gaussian density on Rn

is fully specified by its n-dimensional mean vector µ and an n × n symmetric
covariance matrix, Σ. Therefore, Igauss can be considered as a subset of Rm

in which m = 2n+ (n2). For example, if X = R2, then Igauss ⊂ R5, because
two independent parameters specify the mean and three independent parameters
specify the covariance matrix (not four, because of symmetry). It was mentioned in
Section 11.4.3 that moment-based approximations can be used in general; however,
for an LG model it is important to remember that Igauss is an exact representation
of Iprob.

In addition to the fact that the Iprob collapses nicely, κmom is a sufficient I-map,
and convenient expressions exist for incrementally updating the derived I-states
entirely in terms of the computed means and covariance. This implies that we
can work directly with Igauss, without any regard for the original histories or even
the general formulas for the probabilistic I-states from Section 11.4.1. The update
expressions are given here without the full explanation, which is lengthy but not
difficult and can be found in virtually any textbook on stochastic control (e.g.,
[95, 564]).

For Kalman filtering, all of the required spaces are Euclidean, but they may
have different dimensions. Therefore, let X = Rn, U = Θ = Rm, and Y = Ψ = Rr.
Since Kalman filtering relies on linear models, everything can be expressed in terms
of matrix transformations. Let Ak, Bk, Ck, Gk, and Hk each denote a matrix
with constant real-valued entries and which may or may not be singular. The
dimensions of the matrices will be inferred from the equations in which they will
appear (the dimensions have to be defined correctly to make the multiplications
work out right). The k subscript is used to indicate that a different matrix may
be used in each stage. In many applications, the matrices will be the same in
each stage, in which case they can be denoted by A, B, C, G, and H. Since
Kalman filtering can handle the more general case, the subscripts are included
(even though they slightly complicate the expressions).

In general, the state transition equation, xk+1 = fk(xk, uk, θk), is defined as

xk+1 = Akxk + Bkuk +Gkθk, (11.75)

in which the matrices Ak, Bk, and Gk are of appropriate dimensions. The notation
fk is used instead of f , because the Kalman filter works even if f is different in
every stage.

616 S. M. LaValle: Planning Algorithms

Example 11.25 (Linear-Gaussian Example) For a simple example of (11.75),
suppose X = R3 and U = Θ = R2. A particular instance is

xk+1 =





0
√
2 1

1 −1 4
2 0 1



 xk +





1 0
0 1
1 1



uk +





1 1
0 −1
0 1



 θk. (11.76)

�

The general form of the sensor mapping yk = hk(xk, ψk) is

yk = Ckxk +Hkψk, (11.77)

in which the matrices Ck and Hk are of appropriate dimension. Once again, hk is
used instead of h because a different sensor mapping can be used in every stage.

So far the linear part of the model has been given. The next step is to specify
the Gaussian part. In each stage, both nature actions θk and ψk are modeled with
zero-mean Gaussians. Thus, each has an associated covariance matrix, denoted by
Σθ and Σψ, respectively. Using the model given so far and starting with an initial
Gaussian density over X, all resulting probabilistic I-states will be Gaussian [564].

Every derived I-state in Igauss can be represented by a mean and covariance.
Let µk and Σk denote the mean and covariance of P (xk|ηk). The expressions given
in the remainder of this section define a derived information transition equation
that computes µk+1 and Σk+1, given µk, Σk, uk, and yk+1. The process starts by
computing µ1 and Σ1 from the initial conditions.

Assume that an initial condition is given that represents a Gaussian density
over Rn. Let this be denoted by µ0, and Σ0. The first I-state, which incorporates
the first observation y1, is computed as µ1 = µ0 + L1(y1 − C1µ0) and

Σ1 = (I − L1C1)Σ0, (11.78)

in which I is the identity matrix and

L1 = Σ0C
T
1

(
C1Σ0C

T
1 +H1ΣψH1

)−1
. (11.79)

Although the expression for L1 is complicated, note that all matrices have been
specified as part of the model. The only unfortunate part is that a matrix inversion
is required, which sometimes leads to numerical instability in practice; see [564]
or other sources for an alternative formulation that alleviates this problem.

Now that µ1 and Σ1 have been expressed, the base case is completed. The next
part is to give the iterative updates from stage k to stage k + 1. Using µk, the
mean at the next stage is computed as

µk+1 = Akµk + Bkuk + Lk+1(yk+1 − Ck+1(Akµk +Bkuk)), (11.80)

11.6. COMPUTING PROBABILISTIC INFORMATION STATES 617

in which Lk+1 will be defined shortly. The covariance is computed in two steps;
one is based on applying uk, and the other arises from considering yk+1. Thus,
after uk is applied, the covariance becomes

Σ′
k+1 = AkΣkA

T
k +GkΣθG

T
k . (11.81)

After yk+1 is received, the covariance Σk+1 is computed from Σ′
k+1 as

Σk+1 = (I − Lk+1Ck+1)Σ
′
k+1. (11.82)

The expression for Lk is

Lk = Σ′
kC

T
k

(
CkΣ

′
kC

T
k +HkΣψHk

)−1
. (11.83)

To obtain Lk+1, substitute k+1 for k in (11.83). Note that to compute µk+1 using
(11.80), Σ′

k+1 must first be computed because (11.80) depends on Lk+1, which in
turn depends on Σ′

k+1.
The most common use of the Kalman filter is to provide reliable estimates of

the state xk by using µk. It turns out that the optimal expected-cost feedback
plan for a cost functional that is a quadratic form can be obtained for LG systems
in a closed-from expression; see Section 15.2.2. This model is often called LQG,
to reflect the fact that it is linear, quadratic-cost, and Gaussian. The optimal
feedback plan can even be expressed directly in terms of µk, without requiring
Σk. This indicates that the I-space may be collapsed down to X; however, the
corresponding I-map is not sufficient. The covariances are still needed to compute
the means, as is evident from (11.80) and (11.83). Thus, an optimal plan can be
specified as π : X → U , but the derived I-states in Igauss need to be represented
for the I-map to be sufficient.

The Kalman filter provides a beautiful solution to the class of linear Gaussian
models. It is even successfully applied quite often in practice for problems that do
not even satisfy these conditions. This is called the extended Kalman filter. The
success may be explained by recalling that the probabilistic I-space may be approx-
imated by mean and covariance in a second-order moment-based approximation.
In general, such an approximation may be inappropriate, but it is nevertheless
widely used in practice.

11.6.2 Sampling-Based Approaches

Since probabilistic I-space computations over continuous spaces involve the eval-
uation of complicated, possibly high-dimensional integrals, there is strong mo-
tivation for using sampling-based approaches. If a problem is nonlinear and/or
non-Gaussian, such approaches may provide the only practical way to compute
probabilistic I-states. Two approaches are considered here: grid-based sampling
and particle filtering. One of the most common applications of the techniques
described here is mobile robot localization, which is covered in Section 12.2.

618 S. M. LaValle: Planning Algorithms

A grid-based approach Perhaps the most straightforward way to numerically
compute probabilistic I-states is to approximate probability density functions over
a grid and use numerical integration to evaluate the integrals in (11.57) and (11.58).

A grid can be used to compute a discrete probability distribution that approx-
imates the continuous probability density function. Consider, for example, using
the Sukharev grid shown in Figure 5.5a, or a similar grid adapted to the state
space. Consider approximating some probability density function p(x) using a
finite set, S ⊂ X. The Voronoi region surrounding each point can be considered
as a “bucket” that holds probability mass. A probability is associated with each
sample and is defined as the integral of p(x) over the Voronoi region associated
with the point. In this way, the samples S and their discrete probability distribu-
tion, P (s) for all s ∈ S approximate p(x) over X. Let P (sk) denote the probability
distribution over Sk, the set of grid samples at stage k.

In the initial step, P (s) is computed from p(x) by numerically evaluating the
integrals of p(x1) over the Voronoi region of each sample. This can alternatively be
estimated by drawing random samples from the density p(x1) and then recording
the number of samples that fall into each bucket (Voronoi region). Normalizing
the counts for the buckets yields a probability distribution, P (s1). Buckets that
have little or no points can be eliminated from future computations, depending on
the desired accuracy. Let S1 denote the samples for which nonzero probabilities
are associated.

Now suppose that P (sk|ηk) has been computed over Sk and the task is to
compute P (sk+1|ηk+1) given uk and yk+1. A discrete approximation, P (sk+1|sk, uk),
to p(xk+1|xk, uk) can be computed using a grid and buckets in the manner described
above. At this point the densities needed for (11.57) have been approximated by
discrete distributions. In this case, (11.38) can be applied over Sk to obtain a
grid-based distribution over Sk+1 (again, any buckets that do not contain enough
probability mass can be discarded). The resulting distribution is P (sk+1|ηk, uk),
and the next step is to consider yk+1. Once again, a discrete distribution can be
computed; in this case, p(xk+1|yk+1) is approximated by P (sk+1|yk+1) by using
the grid samples. This enables (11.58) to be replaced by the discrete counterpart
(11.39), which is applied to the samples. The resulting distribution, P (sk+1|ηk+1),
represents the approximate probabilistic I-state.

Particle filtering As mentioned so far, the discrete distributions can be esti-
mated by using samples. In fact, it turns out that the Voronoi regions over the
samples do not even need to be carefully considered. One can work directly with
a collection of samples drawn randomly from the initial probability density, p(x1).
The general method is referred to as particle filtering and has yielded good per-
formance in applications to experimental mobile robotics. Recall Figure 1.7 and
see Section 12.2.3.

Let S ⊂ X denote a finite collection of samples. A probability distribution is
defined over S. The collection of samples, together with its probability distribu-
tion, is considered as an approximation of a probability density over X. Since S is

11.7. INFORMATION SPACES IN GAME THEORY 619

used to represent probabilistic I-states, let Pk denote the probability distribution
over Sk, which is computed at stage k using the history I-state ηk. Thus, at every
stage, there is a new sample set, Sk, and probability distribution, Pk.

The general method to compute the probabilistic I-state update proceeds as
follows. For some large number, m, of iterations, perform the following:

1. Select a state xk ∈ Sk according to the distribution Pk.

2. Generate a new sample, xk+1, for Sk+1 by generating a single sample accord-
ing to the density p(xk+1|xk, uk).

3. Assign the weight, w(xk+1) = p(yk+1|xk+1).

After the m iterations have completed, the weights over Sk+1 are normalized to
obtain a valid probability distribution, Pk+1. It turns out that this method provides
an approximation that converges to the true probabilistic I-states as m tends to
infinity. Other methods exist, which provide faster convergence [536]. One of the
main difficulties with using particle filtering is that for some problems it is difficult
to ensure that a sufficient concentration of samples exists in the places where they
are needed the most. This is a general issue that plagues many sampling-based
algorithms, including the motion planning algorithms of Chapter 5.

11.7 Information Spaces in Game Theory

This section unifies the sequential game theory concepts from Section 10.5 with
the I-space concepts from this chapter. Considerable attention is devoted to the
modeling of information in game theory. The problem is complicated by the fact
that each player has its own frame of reference, and hence its own I-space. Game
solution concepts, such as saddle points or Nash equilibria, depend critically on the
information available to each player as it makes it decisions. Paralleling Section
10.5, the current section first covers I-states in game trees, followed by I-states for
games on state spaces. The presentation in this section will be confined to the
case in which the state space and stages are finite. The formulation of I-spaces
extends naturally to countably infinite or continuous state spaces, action spaces,
and stages [59].

11.7.1 Information States in Game Trees

Recall from Section 10.5.1 that an important part of formulating a sequential
game in a game tree is specifying the information model. This was described in
Step 4 of Formulation 10.3. Three information models were considered in Section
10.5.1: alternating play, stage-by-stage, and open loop. These and many other
information models can be described using I-spaces.

From Section 11.1, it should be clear that an I-space is always defined with
respect to a state space. Even though Section 10.5.1 did not formally introduce a

620 S. M. LaValle: Planning Algorithms

P2

P1

P2

P1

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

P2

P1

P2

P1

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

(a) Alternating play (b) Stage-by-stage

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

P2

P1

P2

P1

P2

P1

P2

P1

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

(c) Open loop (d) Something else

Figure 11.30: Several different information models are illustrated for the game in
Figure 10.13.

state space, it is not difficult to define one. Let the state space X be N , the set of
all vertices in the game tree. Assume that two players are engaged in a sequential
zero-sum game. Using notation from Section 10.5.1, N1 and N2 are the decision
vertices of P1 and P2, respectively. Consider the nondeterministic I-space Indet
over N . Let η denote a nondeterministic I-state; thus, each η ∈ Indet is a subset
of N .

There are now many possible ways in which the players can be confused while
making their decisions. For example, if some η contains vertices from both N1

and N2, the player does not know whether it is even its turn to make a decision.
If η additionally contains some leaf vertices, the game may be finished without a
player even being aware of it. Most game tree formulations avoid these strange
situations. It is usually assumed that the players at least know when it is their
turn to make a decision. It is also usually assumed that they know the stage of
the game. This eliminates many sets from Indet.

While playing the game, each player has its own nondeterministic I-state be-
cause the players may hide their decisions from each other. Let η1 and η2 denote
the nondeterministic I-states for P1 and P2, respectively. For each player, many
sets in Indet are eliminated. Some are removed to avoid the confusions mentioned
above. We also impose the constraint that ηi ⊆ Ni for i = 1 and i = 2. We only
care about the I-state of a player when it is that player’s turn to make a deci-
sion. Thus, the nondeterministic I-state should tell us which decision vertices in
Ni are possible as Pi faces a decision. Let I1 and I2 represent the nondeterministic
I-spaces for P1 and P2, respectively, with all impossible I-states eliminated.

11.7. INFORMATION SPACES IN GAME THEORY 621

The I-spaces I1 and I2 are usually defined directly on the game tree by circling
vertices that belong to the same I-state. They form a partition of the vertices
in each level of the tree (except the leaves). In fact, Ii even forms a partition
of Ni for each player. Figure 11.30 shows four information models specified in
this way for the example in Figure 10.13. The first three correspond directly to
the models allowed in Section 10.5.1. In the alternating-play model, each player
always knows the decision vertex. This corresponds to a case of perfect state
information. In the stage-by-stage model, P1 always knows the decision vertex;
P2 knows the decision vertex from which P1 made its last decision, but it does not
know which branch was chosen. The open-loop model represents the case that has
the poorest information. Only P1 knows its decision vertex at the beginning of the
game. After that, there is no information about the actions chosen. In fact, the
players cannot even remember their own previous actions. Figure 11.30d shows
an information model that does not fit into any of the three previous ones. In this
model, very strange behavior results. If P1 and P2 initially choose right branches,
then the resulting decision vertex is known; however, if P2 instead chooses the left
branch, then P1 will forget which action it applied (as if the action of P2 caused
P1 to have amnesia!). Here is a single-stage example:

Example 11.26 (An Unusual Information Model) Figure 11.31 shows a game
that does not fit any of the information models in Section 10.5.1. It is actually
a variant of the game considered before in Figure 10.12. The game is a kind of
hybrid that partly looks like the alternating-play model and partly like the stage-
by-stage model. This particular problem can be solved in the usual way, from the
bottom up. A value is computed for each of the nondeterministic I-states, for the
level in which P2 makes a decision. The left I-state has value 5, which corresponds
to P1 choosing 1 and P2 responding with 3. The right I-state has value 4, which
results from the deterministic saddle point in a 2× 3 matrix game played between
P1 and P2. The overall game has a deterministic saddle point in which P1 chooses
3 and P2 chooses 3. This results in a value of 4 for the game. �

Cost

P1 acts 21

1 2 3P2 acts 1 12 23 3

3

3 5 1 0 43 −1 7 −2

Figure 11.31: A single-stage game that has an information model unlike those in
Section 10.5.1.

Plans are now defined directly as functions on the I-spaces. A (deterministic)
plan for P1 is defined as a function π1 on I1 that yields an action u ∈ U(η1) for

622 S. M. LaValle: Planning Algorithms

each η1 ∈ I1, and U(η1) is the set of actions that can be inferred from the I-state
η1; assume that this set is the same for all decision vertices in η1. Similarly, a
(deterministic) plan for P2 is defined as a function π2 on I2 that yields an action
v ∈ V (η2) for each η2 ∈ I2.

There are generally two alternative ways to define a randomized plan in terms
of I-spaces. The first choice is to define a globally randomized plan, which is a
probability distribution over the set of all deterministic plans. During execution,
this means that an entire deterministic plan will be sampled in advance according
to the probability distribution. An alternative is to sample actions as they are
needed at each I-state. This is defined as follows. For the randomized case, let
W (η1) and Z(η2) denote the sets of all probability distributions over U(η1) and
V (η2), respectively. A locally randomized plan for P1 is defined as a function that
yields some w ∈ W (η1) for each η1 ∈ I1. Likewise, a locally randomized plan for P2

is a function that maps from I2 into Z(η2). Locally randomized plans expressed as
functions of I-states are often called behavioral strategies in game theory literature.

A randomized saddle point on the space of locally randomized plans does not
exist for all sequential games [59]. This is unfortunate because this form of ran-
domization seems most natural for the way decisions are made during execution.
At least for the stage-by-stage model, a randomized saddle point always exists
on the space of locally randomized plans. For the open-loop model, randomized
saddle points are only guaranteed to exist using a globally randomized plan (this
was actually done in Section 10.5.1). To help understand the problem, suppose
that the game tree is a balanced, binary tree with k stages (hence, 2k levels). For
each player, there are 2k possible deterministic plans. This means that 2k − 1
probability values may be assigned independently (the last one is constrained to
force them to sum to 1) to define a globally randomized plan over the space of
deterministic plans. Defining a locally randomized plan, there are k I-states for
each player, one for each search stage. At each stage, a probability distribution is
defined over the action set, which contains only two elements. Thus, each of these
distributions has only one independent parameter. A randomized plan is specified
in this way using k − 1 independent parameters. Since k − 1 is much less than
2k − 1, there are many globally randomized plans that cannot be expressed as a
locally randomized plan. Unfortunately, in some games the locally randomized
representation removes the randomized saddle point.

This strange result arises mainly because players can forget information over
time. A player with perfect recall remembers its own actions and also never forgets
any information that it previously knew. It was shown by Kuhn that the space of
all globally randomized plans is equivalent to the space of all locally randomized
plans if and only if the players have perfect memory [562]. Thus, by sticking to
games in which all players have perfect recall, a randomized saddle point always
exists in the space locally randomized plans. The result of Kuhn even holds for
the more general case of the existence of randomized Nash equilibria on the space
of locally randomized plans.

The nondeterministic I-states can be used in game trees that involve more

11.7. INFORMATION SPACES IN GAME THEORY 623

players. Accordingly, deterministic, globally randomized, and locally randomized
plans can be defined. The result of Kuhn applies to any number of players, which
ensures the existence of a randomized Nash equilibrium on the space of locally
randomized strategies if (and only if) the players have perfect recall. It is generally
preferable to exploit this fact and decompose the game tree into smaller matrix
games, as described in Section 10.5.1. It turns out that the precise condition that
allows this is that it must be ladder-nested [59]. This means that there are decision
vertices, other than the root, at which 1) the player that must make a decision
knows it is at that vertex (the nondeterministic I-state is a singleton set), and
2) the nondeterministic I-state will not leave the subtree rooted at that vertex
(vertices outside of the subtree cannot be circled when drawing the game tree).
In this case, the game tree can be decomposed at these special decision vertices
and replaced with the game value(s). Unfortunately, there is still the nuisance of
multiple Nash equilibria.

It may seem odd that nondeterministic I-states were defined without being
derived from a history I-space. Without much difficulty, it is possible to define a
sensing model that leads to the nondeterministic I-states used in this section. In
many cases, the I-state can be expressed using only a subset of the action histories.
Let ũk and ṽk denote the action histories of P1 and P2, respectively. The history
I-state for the alternating-play model at stage k is (ũk−1, ṽk−1) for P1 and (ũk, ṽk−1)
for P2. The history I-state for the stage-by-stage model is (ũk−1, ṽk−1) for both
players. The nondeterministic I-states used in this section can be derived from
these histories. For other models, such as the one in Figure 11.31, a sensing model
is additionally needed because only partial information regarding some actions
appears. This leads into the formulation covered in the next section, which involves
both sensing models and a state space.

11.7.2 Information Spaces for Games on State Spaces

I-space concepts can also be incorporated into sequential games that are played
over state spaces. The resulting formulation naturally extends Formulation 11.1
of Section 11.1 to multiple players. Rather than starting with two players and
generalizing later, the full generality of having n players is assumed up front.
The focus in this section is primarily on characterizing I-spaces for such games,
rather than solving them. Solution approaches depend heavily on the particular
information models; therefore, they will not be covered here.

As in Section 11.7.1, each player has its own frame of reference and therefore
its own I-space. The I-state for each player indicates its information regarding a
common game state. This is the same state as introduced in Section 10.5; however,
each player may have different observations and may not know the actions of
others. Therefore, the I-state is different for each decision maker. In the case of
perfect state sensing, these I-spaces all collapse to X.

Suppose that there are n players. As presented in Section 10.5, each player
has its own action space, U i; however, here it is not allowed to depend on x,

624 S. M. LaValle: Planning Algorithms

because the state may generally be unknown. It can depend, however, on the
I-state. If nature actions may interfere with the state transition equation, then
(10.120) is used (if there are two players); otherwise, (10.121) is used, which leads
to predictable future states if the actions of all of the players are given. A single
nature action, θ ∈ Θ(x, u1, u2, . . . , un), is used to model the effect of nature across
all players when uncertainty in prediction exists.

Any of the sensor models from Section 11.1.1 may be defined in the case of
multiple players. Each has its own observation space Y i and sensor mapping hi.
For each player, nature may interfere with observations through nature sensing
actions, Ψi(x). A state-action sensor mapping appears as yi = hi(x, ψi); state
sensor mappings and history-based sensor mappings may also be defined.

Consider how the game appears to a single player at stage k. What information
might be available for making a decision? Each player produces the following in
the most general case: 1) an initial condition, ηi0; 2) an action history, ũik−1; and
3) and an observation history, ỹik. It must be specified whether one player knows
the previous actions that have been applied by other players. It might even be
possible for one player to receive the observations of other players. If Pi receives
all of this information, its history I-state at stage k is

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

1
k, ỹ

2
k, ..., ỹ

n
k). (11.84)

In most situations, however, ηik only includes a subset of the histories from (11.84).
A typical situation is

ηik = (ηi0, ũ
i
k−1, ỹ

i
k), (11.85)

which means that Pi knows only its own actions and observations. Another possi-
bility is that all players know all actions that have been applied, but they do not
receive the observations of other players. This results in

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

i
k). (11.86)

Of course, many special cases may be defined by generalizing many of the examples
in this chapter. For example, an intriguing sensorless game may be defined in which
the history I-state consists only of actions. This could yield

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1), (11.87)

or even a more secretive game in which the actions of other players are not known:

ηik = (ηi0, ũ
i
k−1). (11.88)

Once the I-state has been decided upon, a history I-space I ihist for each player is
defined as the set of all history I-states. In general, I-maps and derived I-spaces
can be defined to yield alternative simplifications of each history I-space.

Assuming all spaces are finite, the concepts given so far can be organized into
a sequential game formulation that is the imperfect state information counterpart
of Formulation 10.4:

11.7. INFORMATION SPACES IN GAME THEORY 625

Formulation 11.4 (Sequential Game with I-Spaces)

1. A set of n players, P1, P2, . . ., Pn.

2. A nonempty, finite state space X.

3. For each Pi, a finite action space U i. We also allow a more general definition,
in which the set of available choices depends on the history I-state; this can
be written as U i(ηi).

4. A finite nature action space Θ(x, u1, . . . , un) for each x ∈ X, and ui ∈ U i for
each i such that 1 ≤ i ≤ m.

5. A state transition function f that produces a state, f(x, u1, . . . , un, θ), for
every x ∈ X, θ ∈ Θ(x, u), and ui ∈ U i for each i such that 1 ≤ i ≤ n.

6. For each Pi, a finite observation space Y i.

7. For each Pi, a finite nature sensing action space Ψi(x) for each x ∈ X.

8. For each Pi, a sensor mapping hi which produces an observation, y =
hi(x, ψi), for each x ∈ X and ψi ∈ Ψi(x). This definition assumes a state-
nature sensor mapping. A state sensor mapping or history-based sensor
mapping, as defined in Section 11.1.1, may alternatively be used.

9. A set of K stages, each denoted by k, which begins at k = 1 and ends at
k = K. Let F = K + 1.

10. For each Pi, an initial condition ηi0, which is an element of an initial condition
space I i0.

11. For each Pi, a history I-space I ihist which is the set of all history I-states,
formed from action and observation histories, and may include the histories
of other players.

12. For each Pi, let L
i denote a stage-additive cost functional,

Li(x̃F , ũ
1
K , . . . , ũ

2
K) =

K∑

k=1

l(xk, u
1
k, . . . , u

n
k) + lF (xF). (11.89)

Extensions exist for cases in which one or more of the spaces are continuous; see
[59]. It is also not difficult to add goal sets and termination conditions and allow
the stages to run indefinitely.

An interesting specialization of Formulation 11.4 is when all players have iden-
tical cost functions. This is not equivalent to having a single player because the
players have different I-states. For example, a task may be for several robots to
search for a treasure, but they have limited communication between them. This
results in different I-states. They would all like to cooperate, but they are unable

626 S. M. LaValle: Planning Algorithms

Figure 11.32: In the Battleship game, each player places several ships on a grid.
The other player must guess the locations of ships by asking whether a particular
tile is occupied.

to do so without knowing the state. Such problems fall under the subject of team
theory [225, 450, 530].

As for the games considered in Formulation 10.4, each player has its own plan.
Since the players do not necessarily know the state, the decisions are based on
the I-state. The definitions of a deterministic plan, a globally randomized plan,
and a locally randomized plan are essentially the same as in Section 11.7.1. The
only difference is that more general I-spaces are defined in the current setting.
Various kinds of solution concepts, such as saddle points and Nash equilibria,
can be defined for the general game in Formulation 11.4. The existence of locally
randomized saddle points and Nash equilibria depends on general on the particular
information model [59].

Example 11.27 (Battleship Game) Many interesting I-spaces arise from clas-
sical board games. A brief illustration is provided here from Battleship, which is a
sequential game under the alternating-turn model. Two players, P1 and P2, each
having a collection of battleships that it arranges secretly on a 10 × 10 grid; see
Figure 11.32.

A state is the specification of the exact location of all ships on each player’s
grid. The state space yields the set of all possible ship locations for both players.
Each player always knows the location of its own ships. Once they are placed on
the grid, they are never allowed to move.

The players take turns guessing a single grid tile, expressed as a row and
column, that it suspects contains a ship. The possible observations are “hit” and
“miss,” depending on whether a ship was at that location. In each turn, a single

11.7. INFORMATION SPACES IN GAME THEORY 627

guess is made, and the players continue taking turns until one player has observed
a hit for every tile that was occupied by a ship.

This is an interesting game because once a “hit” is discovered, it is clear that
a player should search for other hits in the vicinity because there are going to be
several contiguous tiles covered by the same ship. The only problem is that the
precise ship position and orientation are unknown. A good player essentially uses
the nondeterministic I-state to improve the chances that a hit will occur next. �

Example 11.28 (The Princess and the Monster) This is a classic example
from game theory that involves no sensing. A princess and a monster move about
in a 2D environment. A simple motion model is assumed; for example, they take
single steps on a grid. The princess is trying not to be discovered by the monster,
and the game is played in complete darkness. The game ends when the monster
and the princess are on the same grid point. There is no form of feedback that
can be used during the game; however, it is possible to construct nondeterministic
I-states for the players. For most environments, it is impossible for the monster to
be guaranteed to win; however, for some environments it is guaranteed to succeed.
This example can be considered as a special kind of pursuit-evasion game. A
continuous-time pursuit-evasion game that involves I-spaces is covered in Section
12.4. �

Further Reading

The basic concept of an information space can be traced back to work of Kuhn [562] in
the context of game trees. There, the nondeterministic I-state is referred to as an infor-
mation set. After spreading throughout game theory, the concept was also borrowed into
stochastic control theory (see [95, 564]). The term information space is used extensively
in [59] in the context of sequential and differential game theory. For further reading on
I-spaces in game theory, see [59, 759]. In artificial intelligence literature, I-states are
referred to as belief states and are particularly important in the study of POMDPs; see
the literature suggested at the end of Chapter 12. The observability problem in control
theory also results in I-spaces [192, 308, 478, 912], in which observers are used to recon-
struct the current state from the history I-state. In robotics literature, they have been
called hyperstates [396] and knowledge states [315]. Concepts closely related to I-spaces
also appear as perceptual equivalence classes in [287] and also appear in the information
invariants framework of Donald [286]. I-spaces were proposed as a general way to repre-
sent planning under sensing uncertainty in [68, 604, 605]. For further reading on sensors
in general, see [352].

The Kalman filter is covered in great detail in numerous other texts; see for example,
[226, 564, 912]. The original reference is [500]. For more on particle filters, see [45, 293,
350, 536].

628 S. M. LaValle: Planning Algorithms

Exercises

1. Forward projections in Indet:

(a) Starting from a nondeterministic I-state, Xk(ηk), and applying an action uk,
derive an expression for the nondeterministic one-stage forward projection
by extending the presentation in Section 10.1.2.

(b) Determine an expression for the two-stage forward projection starting from
Xk(ηk) and applying uk and uk+1.

2. Forward projections in Iprob:

(a) Starting from a probabilistic I-state, P (xk|ηk), and applying an action uk,
derive an expression for the probabilistic one-stage forward projection.

(b) Determine an expression for the two-stage forward projection starting from
P (xk|ηk) and applying uk and uk+1.

3. Determine the strong and weak backprojections on Ihist for a given history I-state,
ηk. These should give sets of possible ηk−1 ∈ Ihist.

4. At the end of Section 11.3.2, it was mentioned that an equivalent DFA can be
constructed from an NFA.

(a) Give an explicit DFA that accepts the same set of strings as the NFA in
Figure 11.8b.

(b) Express the problem of determining whether the NFA in Figure 11.8b accepts
any strings as a planning problem using Formulation 2.1.

5. This problem involves computing probabilistic I-states for Example 11.14. Let the
initial I-state be

P (x1) = [1/3 1/3 1/3], (11.90)

in which the ith entry in the vector indicates P (x1 = i+ 1). Let U = {0, 1}. For
each action, a state transition matrix can be specified, which gives the probabilities
P (xk+1|xk, uk). For u = 0, let P (xk+1|xk, uk = 0) be





4/5 1/5 0
1/10 4/5 1/10
0 1/5 4/5



 . (11.91)

The jth entry of the ith row yields P (xk+1 = i | xk = j, uk = 0). For u = 1, let
P (xk+1 | xk, uk = 1) be





1/10 5/5 1/10
0 1/5 4/5
0 0 1



 . (11.92)

The sensing model is specified by three vectors:

P (yk|xk = 0) = [4/5 1/5], (11.93)

P (yk|xk = 1) = [1/2 1/2], (11.94)

11.7. INFORMATION SPACES IN GAME THEORY 629

Y

X

xG

(a) (b)

Figure 11.33: (a) A topological graph in which a point moves (note that two
vertices are vertically aligned). (b) An exercise that is a variant of Example 11.17.

and

P (yk|xk = 2) = [1/5 4/5], (11.95)

in which the ith component yields P (yk = i | xk). Suppose that k = 3 and the
history I-state obtained so far is

(η0, u1, u2, y1, y2, y3) = (η0, 1, 0, 1, 0, 0). (11.96)

The task is to compute the probabilistic I-state. Starting from P (x1), compute the
following distributions: P (x1|η1), P (x2|η1, u1), P (x2|η2), P (x3|η2, u2), P (x3|η3).

6. Explain why it is not possible to reach every nondeterministic I-state from every
other one for Example 11.7. Give an example of a nondeterministic I-state that
cannot be reached from the initial I-state. Completely characterize the reachability
of nondeterministic I-states from all possible initial conditions.

7. In the same spirit as Example 11.21, consider a point moving on the topological
graph shown in Figure 11.33. Fully characterize the connectivity of Indet (you
may exploit symmetries to simplify the answer).

8. Design an I-map for Example 11.17 that is not necessarily sufficient but leads to
a solution plan defined over only three derived I-states.

9. Consider the discrete problem in Figure 11.33b, using the same sensing and motion
model as in Example 11.17.

(a) Develop a sufficient I-map and a solution plan that uses as few derived I-
states as possible.

(b) Develop an I-map that is not necessarily sufficient, and a solution plan that
uses as few derived I-states as possible.

630 S. M. LaValle: Planning Algorithms

10. Suppose that there are two I-maps, κ1 : I1 → I2 and κ2 : I2 → I3, and it is given
that κ1 is sufficient with respect to I1, and κ2 is sufficient with respect to I2.
Determine whether the I-map κ2 ◦ κ1 is sufficient with respect to I1, and prove
your claim.

11. Propose a solution to Example 11.16 that uses fewer nondeterministic I-states.

12. Suppose that a point robot moves in R2 and receives observations from three
homing beacons that are not collinear and originate from known locations. Assume
that the robot can calibrate the three observations on S1.

(a) Prove that the robot can always recover its position in R2.

(b) What can the robot infer if there are only two beacons?

13. Nondeterministic I-state problems:

(a) Prove that the nondeterministic I-states for Example 11.23 are always a
single connected region whose boundary is composed only of circular arcs
and line segments.

(b) Design an algorithm for efficiently computing the nondeterministic I-states
from stage to stage.

14. Design an algorithm that takes as input a simply connected rectilinear region (i.e.,
described by a polygon that has all right angles) and a goal state, and designs
a sequence of tray tilts that guarantees the ball will come to rest at the goal.
Example 11.24 provides an illustration.

15. Extend the game-theoretic formulation from Section 11.7.2 of history I-spaces to
continuous time.

16. Consider the “where did I come from?” problem.

(a) Derive an expression for X1(ηk).

(b) Derive an expression for P (x1|ηk).

17. In the game of Example 11.27, could there exist a point in the game at which one
player has not yet observed every possible “hit” yet it knows the state of the game
(i.e., the exact location of all ships)? Explain.

18. When playing blackjack in casinos, many card-counting strategies involve remem-
bering simple statistics of the cards, rather than the entire history of cards seen
so far. Define a game of blackjack and card counting as an example of history
I-states and an I-map that dramatically reduces the size of the I-space, and an
information-feedback plan.

Implementations

11.7. INFORMATION SPACES IN GAME THEORY 631

19. Implement the Kalman filter for the case of a robot moving in the plane. Show
the confidence ellipsoids obtained during execution. Be careful of numerical issues
(see [564]).

20. Implement probabilistic I-state computations for a point robot moving in a 2D
polygonal environment. Compare the efficiency and accuracy of grid-based ap-
proximations to particle filtering.

21. Design and implement an algorithm that uses nondeterministic I-states to play a
good game of Battleship, as explained in Example 11.27.

632 S. M. LaValle: Planning Algorithms

Chapter 12

Planning Under Sensing
Uncertainty

The main purpose of Chapter 11 was to introduce information space (I-space) con-
cepts and to provide illustrative examples that aid in understanding. This chapter
addresses planning under sensing uncertainty, which amounts to planning in an
I-space. Section 12.1 covers general-purpose algorithms, for which it will quickly
be discovered that only problems with very few states can be solved because of the
explosive growth of the I-space. In Chapter 6, it was seen that general-purpose
motion planning algorithms apply only to simple problems. Ways to avoid this
were either to develop sampling-based techniques or to focus on a narrower class
of problems. It is intriguing to apply sampling-based planning ideas to I-spaces,
but as of yet this idea remains largely unexplored. Therefore, the majority of this
chapter focuses on planning algorithms designed for narrower classes of problems.
In each case, interesting algorithms have been developed that can solve problems
that are much more complicated than what could be solved by the general-purpose
algorithms. This is because they exploit some structure that is specific to the prob-
lem.

An important philosophy when dealing with an I-space is to develop an I-map
that reduces its size and complexity as much as possible by obtaining a simpler
derived I-space. Following this, it may be possible to design a special-purpose
algorithm that efficiently solves the new problem by relying on the fact that the
I-space does have the full generality. This idea will appear repeatedly throughout
the chapter. The most common derived I-space is Indet from Section 11.2.2; Iprob,
from Section 11.2.3, will also arise.

After Section 12.1, the problems considered in the remainder of the chapter are
inspired mainly by robotics applications. Section 12.2 addresses the localization
problem, which means that a robot must use sensing information to determine its
location. This is essentially a matter of maintaining derived I-states and computing
plans that lead to the desired derived I-space. Section 12.3 generalizes localization
to problems in which the robot does not even know its environment. In this case,
the state space and I-space take into account both the possible environments in

633

634 S. M. LaValle: Planning Algorithms

which the robot might be and the possible locations of the robot within each
environment. This section is fundamental to robotics because it is costly and
difficult to build precise maps of a robot’s environment. By careful consideration of
the I-space, a complete representation may be safely avoided in many applications.

Section 12.4 covers a kind of pursuit-evasion game that can be considered as
a formal version of the children’s game of “hide and seek.” The pursuer carries a
lantern and must illuminate an unpredictable evader that moves with unbounded
speed. The nondeterministic I-states for this problem characterize the set of pos-
sible evader locations. The problem is solved by performing a cell decomposition
of Indet to obtain a finite, graph-search problem. The method is based on finding
critical curves in the I-space, much like the critical-curve method in Section 6.3.4
for moving a line-segment robot.

Section 12.5 concludes the chapter with manipulation planning under imper-
fect state information. This differs from the manipulation planning considered in
Section 7.3.2 because it was assumed there that the state is always known. Sec-
tion 12.5.1 presents the preimage planning framework, which was introduced two
decades ago to address manipulation planning problems that have bounded uncer-
tainty models for the state transitions and the sensors. Many important I-space
ideas and complexity results were obtained from this framework and the body of
literature on which it was based; therefore, it will be covered here. Section 12.5.2
addresses problems in which the robots have very limited sensing information and
rely on the information gained from the physical interaction of objects. In some
cases, these methods surprisingly do not even require sensing.

12.1 General Methods

This section presents planning methods for the problems introduced in Section
11.1. They are based mainly on general-purpose dynamic programming, without
exploiting any particular structure to the problem. Therefore, their application
is limited to small state spaces; nevertheless, they are worth covering because of
their extreme generality. The basic idea is to use either the nondeterministic or
probabilistic I-map to express the problem entirely in terms of the derived I-space,
Indet or Iprob, respectively. Once the derived information transition equation (recall
Section 11.2.1) is defined, it can be imagined that Indet or Iprob is a state space
in which perfect state measurements are obtained during execution (because the
I-state is always known).

12.1.1 The Information Space as a Big State Space

Recall that any problem specified using Formulation 11.1 can be converted us-
ing derived I-states into a problem under Formulation 10.1. By building on the
discussion from the end of Section 11.1.3, this can be achieved by treating the I-
space as a big state space in which each state is an I-state in the original problem

12.1. GENERAL METHODS 635

Item Notation Explanation
State ~x = ηder Derived I-state

State space ~X = Ider Derived I-space

Action space ~U = U Original action space

Nature action space ~Θ ⊆ Y Original observation space

State transition equation ~f(~x, ~u, ~θ) Nature action is just y
Initial state ~xI = η0 Initial I-state, η0 ∈ Ider
Goal set ~XG Subsets of original XG

Cost functional ~L Derived from original L

Figure 12.1: The derived I-space can be treated as an ordinary state space on
which planning with perfect state information can be performed.

formulation. Some of the components were given previously, but here a complete
formulation is given.

Suppose that a problem has been specified using Formulation 11.1, resulting in
the usual components: X, U , Θ, f , Y , h, xI , XG, and L. The following concepts
will work for any sufficient I-map; however, the presentation will be limited to
two important cases: κndet and κprob, which yield derived I-spaces Indet and Iprob,
respectively (recall Sections 11.2.2 and 11.2.3).

The components of Formulation 10.1 will now be specified using components of
the original problem. To avoid confusion between the two formulations, an arrow
will be placed above all components of the new formulation. Figure 12.1 summa-
rizes the coming definitions. The new state space, ~X, is defined as ~X = Ider, and a
state, ~x ∈ ~X, is a derived I-state, ~x = ηder. Under nondeterministic uncertainty, ~xk
means Xk(ηk), in which ηk is the history I-state. Under probabilistic uncertainty,

~xk means P (xk|ηk). The action space remains the same: ~U = U .

The strangest part of the formulation is the new nature action space, ~Θ(~x, ~u).
The observations in Formulation 11.1 behave very much like nature actions because
they are not selected by the robot, and, as will be seen shortly, they are the only
unpredictable part of the new state transition equation. Therefore, ~Θ(~x, ~u) ⊆ Y ,

the original observation space. A new nature action, ~θ ∈ ~Θ, is just an observa-
tion, ~θ(~x, ~u) = y. The set ~Θ(~x, ~u) generally depends on ~x and ~u because some
observations may be impossible to receive from some states. For example, if a sen-
sor that measures a mobile robot position is never wrong by more than 1 meter,
then observations that are further than 1 meter from the true robot position are
impossible.

A derived state transition equation is defined with ~f(~xk, ~uk, ~θk) and yields a
new state, ~xk+1. Using the original notation, this is just a function that uses κ(ηk),
uk, and yk to compute the next derived I-state, κ(ηk+1), which is allowed because
we are working with sufficient I-maps, as described in Section 11.2.1.

Initial states and goal sets are optional and can be easily formulated in the new
representation. The initial I-state, η0, becomes the new initial state, ~xI = η0. It is

636 S. M. LaValle: Planning Algorithms

assumed that η0 is either a subset of X or a probability distribution, depending on
whether planning occurs in Indet or Iprob. In the nondeterministic case, the new

goal set ~XG can be derived as

~XG = {X(η) ∈ Indet | X(η) ⊆ XG}, (12.1)

which is the set of derived I-states for which it is guaranteed that the true state lies
in XG. A probabilistic version can be made by requiring that all states assigned
nonzero probability by P (x|η) lie in XG. Instead of being nonzero, a threshold
could be used. For example, the goal may require being only 98% certain that the
goal is reached.

The only remaining portion of Formulation 10.1 is the cost functional. We will
develop a cost model that uses only the state and action histories. A dependency
on nature would imply that the costs depend directly on the observation, y = ~θ,
which was not assumed in Formulation 11.1. The general K-stage cost functional
from Formulation 10.1 appears in this context as

~L(~xk, ~uk) =
K∑

k=1

~l(~xk, ~uk) +~lF (~xF), (12.2)

with the usual cost assumptions regarding the termination action.
The cost functional ~L must be derived from the cost functional L of the original

problem. This is expressed in terms of states, which are unknown. First consider
the case of Iprob. The state xk at stage k follows the probability distribution
P (xk|ηk), as derived in Section 11.2.3. Using ~xk, an expected cost is assigned as

~l(~xk, ~uk) = ~l(ηk, uk) =
∑

xk∈X
P (xk|ηk)l(xk, uk) (12.3)

and
~lF (~xF) = ~lF (ηF) =

∑

xF∈X
P (xF |ηK)lF (xF). (12.4)

Ideally, we would like to make analogous expressions for the case of Indet;
however, there is one problem. Formulating the worst-case cost for each stage is too
pessimistic. For example, it may be possible to obtain high costs in two consecutive
stages, but each of these may correspond to following different paths inX. There is
nothing to constrain the worst-case analysis to the same path. In the probabilistic
case there is no problem because probabilities can be assigned to paths. For the
nondeterministic case, a cost functional can be defined, but the stage-additive
property needed for dynamic programming is destroyed in general. Under some
restrictions on allowable costs, the stage-additive property is preserved.

The state xk at stage k is known to lie in Xk(ηk), as derived in Section 11.2.2.
For every history I-state, ηk = ~xk, and uk ∈ U , assume that l(xk, uk) is invariant
over all xk ∈ Xk(ηk). In this case,

~l(~xk, ~uk) = ~l(ηk, uk) = l(xk, uk), (12.5)

12.1. GENERAL METHODS 637

in which xk ∈ Xk(ηk), and

~lF (~xF) = ~lF (ηF) = lF (xF), (12.6)

in which xF ∈ XF (ηF).
A plan on the derived I-space, Indet or Iprob, can now also be considered as

a plan on the new state space ~X. Thus, state feedback is now possible, but in
a larger state space ~X instead of X. The outcomes of actions are still generally
unpredictable due to the observations. An interesting special case occurs when
there are no observations. In this case, the I-state is predictable because it is
derived only from actions that are chosen by the robot. In this case, the new
formulation does not need nature actions, which reduces it down to Formulation
2.3. Due to this, feedback is no longer needed if the initial I-state is given. A plan
can be expressed once again as a sequence of actions. Even though the original
states are not predictable, the future information states are! This means that the
state trajectory in the new state space is completely predictable as well.

12.1.2 Algorithms for Nondeterministic I-Spaces

Now that the problem of planning in Indet has been expressed using Formulation
10.1, the methods of Section 10.2 directly apply. The main limitation of their use is
that the new state space ~X is exponentially larger than X. If X contains n states,
then ~X contains 2n−1 states. Thus, even though some methods in Section 10.2 can
solve problems in practice that involve a million states, this would only be about 20
states in the original state space. Handling substantially larger problems requires
developing application-specific methods that exploit some special structure of the
I-space, possibly by defining an I-map that leads to a smaller derived I-space.

Value iteration The value-iteration method from Section 10.2.1 can be applied
without modification. In the first step, initialize G∗

F using (12.6). Using the nota-
tion for the new problem, the dynamic programming recurrence, (10.39), becomes

G∗
k(~xk) = min

~uk∈U

{

max
~θk

{

~l(~xk, ~uk) +G∗
k+1(~xk+1)

}}

, (12.7)

in which ~xk+1 = ~f(~xk, ~uk, ~θk).

The main difficulty in evaluating (12.7) is to determine the set ~Θ(~xk, ~uk), over
which the maximization occurs. Suppose that a state-nature sensor mapping is
used, as defined in Section 11.1.1. From the I-state ~xk = Xk(ηk), the action
~uk = uk is applied. This yields a forward projection Xk+1(ηk, uk). The set of all
possible observations is

~Θ(~xk, ~uk) = {yk+1 ∈ Y | ∃xk+1 ∈ Xk+1(ηk, uk) and ∃ψk+1 ∈ Ψ

such that yk+1 = h(xk+1, ψk+1)}.
(12.8)

638 S. M. LaValle: Planning Algorithms

Without using forward projections, a longer, equivalent expression is obtained:

~Θ(~xk, ~uk) = {yk+1 ∈ Y | ∃xk ∈ Xk(ηk), ∃θk ∈ Θ, and ∃ψk+1 ∈ Ψ

such that yk+1 = h(f(xk, uk, θk), ψk+1)}.
(12.9)

Other variants can be formulated for different sensing models.

Policy iteration The policy iteration method of Section 10.2.2 can be applied in
principle, but it is unlikely to solve challenging problems. For example, if |X| = 10,
then each iteration will require solving matrices that have 1 million entries! At
least they are likely to be sparse in many applications.

Graph-search methods The methods from Section 10.2.3, which are based on
backprojections, can also be applied to this formulation. These methods must
initially set S = ~XG. If S is initially nonempty, then backprojections can be
attempted using the general algorithm in Figure 10.6. Dijkstra’s algorithm, as
given in Figure 10.8, can be applied to yield a plan that is worst-case optimal.

The sensorless case If there are no sensors, then better methods can be applied
because the formulation reduces from Formulation 10.1 to Formulation 2.3. The
simpler value iterations of Section 2.3 or Dijkstra’s algorithm can be applied to
find a solution. If optimality is not required, then any of the search methods of
Section 2.2 can even be applied. For example, one can even imagine performing a
bidirectional search on ~X to attempt to connect ~xI to some ~xG.

12.1.3 Algorithms for Probabilistic I-Spaces (POMDPs)

For the probabilistic case, the methods of Section 10.2 cannot be applied because
Iprob is a continuous space. Dynamic programming methods for continuous state
spaces, as covered in Section 10.6, are needed. The main difficulty is that the
dimension of ~X grows linearly with the number of states in X. If there are n
states in X, the dimension of ~X is n− 1. Since the methods of Section 10.6 suffer
from the curse of dimensionality, the general dynamic programming techniques are
limited to problems in which X has only a few states.

Approximate value iteration The continuous-space methods from Section
10.6 can be directly applied to produce an approximate solution by interpolat-
ing over ~X to determine cost-to-go values. The initial cost-to-go value G∗

F over
the collection of samples is obtained by (12.6). Following (10.46), the dynamic
programming recurrence is

G∗
k(~xk) = min

~uk∈~U

{

~l(~xk, ~uk) +
∑

~xk+1∈ ~X

G∗
k+1(~xk+1)P (~xk+1|~xk, ~uk)

}

. (12.10)

12.1. GENERAL METHODS 639

If ~Θ(~x, ~u) is finite, the probability mass is distributed over a finite set of points,

y = ~θ ∈ ~Θ(~x, ~u). This in turn implies that P (~xk+1|~xk, ~uk) is also distributed

over a finite subset of ~X. This is somewhat unusual because ~X is a continuous
space, which ordinarily requires the specification of a probability density function.
Since the set of future states is finite, this enables a sum to be used in (12.10) as
opposed to an integral over a probability density function. This technically yields
a probability density over ~X, but this density must be expressed using Dirac
functions.1 An approximation is still needed, however, because the xk+1 points
may not be exactly the sample points on which the cost-to-go function G∗

k+1 is
represented.

Exact methods If the total number of stages is small, it is possible in practice
to compute exact representations. Some methods are based on an observation
that the cost-to-come is piecewise linear and convex [494]. A linear-programming
problem results, which can be solved using the techniques that were described
for finding randomized saddle points of zero-sum games in Section 9.3. Due to
the numerous constraints, methods have been proposed that dramatically reduce
the number that need to be considered in some circumstances (see the suggested
reading on POMDPs at the end of the chapter).

An exact, discrete representation can be computed as follows. Suppose that the
initial condition space I0 consists of one initial condition, η0 (or a finite number of
initial conditions), and that there are no more thanK stages at which decisions are
made. Since Θ(x, u) and Ψ(x) are assumed to be finite, there is a finite number
of possible final I-states, ηF = (η0, ũK , ỹF). For each of these, the distribution
P (xF |ηF) can be computed, which is alternatively represented as ~xF . Following
this, (12.4) is used to compute G∗(~xF) for each possible ~xF . The number of these
states is unfortunately exponential in the total number of stages, but at least there
are finitely many. The dynamic programming recurrence (12.10) can be applied
for k = K to roll back one stage. It is known that each possible ~xk+1 will be a point

in ~X at which a value was computed because values were computed for possible all
I-states. Therefore, interpolation is not necessary. Equation 12.10 can be applied
repeatedly until the first stage is reached. In each iteration, no interpolation is
needed because the cost-to-go G∗

k+1 was computed for each possible next I-state.
Given the enormous size of I, this method is practical only for very small problems.

The sensorless case In the case of having no observations, the path through
Iprob becomes predictable. Suppose that a feasible planning problem is formulated.
For example, there are complicated constraints on the probability distributions
over X that are permitted during the execution of the plan. Since ~X = Iprob is a
continuous space, it is tempting to apply motion planning techniques from Chapter
5 to find a successful path. The adaptation of such techniques may be possible,

1These are single points that are assigned a nonzero probability mass, which is not allowed,
for example, in the construction of a continuous probability density function.

640 S. M. LaValle: Planning Algorithms

but they must be formulated to use actions and state transition functions, which
was not done in Chapter 5. Such adaptations of these methods, however, will
be covered in Chapter 14. They could be applied to this problem to search the
I-space and produce a sequence of actions that traverses it while satisfying hard
constraints on the probabilities.

12.2 Localization

Localization is a fundamental problem in robotics. Using its sensors, a mobile
robot must determine its location within some map of the environment. There are
both passive and active versions of the localization problem:

Passive localization: The robot applies actions, and its position is inferred
by computing the nondeterministic or probabilistic I-state. For example, if
the Kalman filter is used, then probabilistic I-states are captured by mean
and covariance. The mean serves as an estimate of the robot position, and
the covariance indicates the amount of uncertainty.

Active localization: A plan must be designed that attempts to reduce the
localization uncertainty as much as possible. How should the robot move so
that it can figure out its location?

Both versions of localization will be considered in this section.
In many applications, localization is an incremental problem. The initial con-

figuration may be known, and the task is to maintain good estimates as motions
occur. A more extreme version is the kidnapped-robot problem, in which a robot
initially has no knowledge of its initial configuration. Either case can be mod-
eled by the appropriate initial conditions. The kidnapped-robot problem is more
difficult and is assumed by default in this section.

12.2.1 Discrete Localization

Many interesting lessons about realistic localization problems can be learned by
first studying a discrete version of localization. Problems that may or may not be
solvable can be embedded in more complicated problems, which may even involve
continuous state spaces. The discrete case is often easier to understand, which
motivates its presentation here. To simplify the presentation, only the nondeter-
ministic I-space Indet will be considered; see Section 12.2.3 for the probabilistic
case.

Suppose that a robot moves on a 2D grid, which was introduced in Example
2.1. It has a map of the grid but does not know its initial location or orientation
within the grid. An example is shown in Figure 12.2a.

To formulate the problem, it is helpful to include in the state both the position
of the robot and its orientation. Suppose that the robot may be oriented in one of
four directions, which are labeled N, E, W, and S, for “north,” “east,” “west,” and

12.2. LOCALIZATION 641

1 2

3

45

N

S

EW

B

L

F

Rxk

(a) (b)

Figure 12.2: (a) This map is given to the robot for localization purposes. (b)
The four possible actions each take one step, if possible, and reorient the robot as
shown.

xk

R

xk+1

N

S

W E

1 2

3

456

7

8

(a) (b)

Figure 12.3: (a) If a direction is blocked because of an obstacle, then the orientation
changes, but the position remains fixed. In this example, the R action is applied.
(b) Another map is given to the robot for localization purposes. In this case, the
robot cannot localize itself exactly.

“south,” respectively. Although the robot is treated as a point, its orientation is
important because it does not have a compass. If it chooses to move in a particular
direction, such as straight ahead, it does not necessarily know which direction it
will be heading with respect to the four directions.

Thus, a state, x ∈ X, is written as x = (p, d), in which p is a position and d
is one of the four directions. A set of states at the same position will be denoted

with special superscripts that point in the possible directions. For example, 3
indicates the set of states for which p = 3 and the direction may be north (N) or
east (E), because the superscript points in the north and east directions.

The robot is given four actions,

U = {F,B,R,L}, (12.11)

which represent “forward,” “backward,” “right motion,” and “left motion,” re-

642 S. M. LaValle: Planning Algorithms

spectively. These motions occur with respect to the current orientation of the
robot, which may be unknown. See Figure 12.2b. For the F action, the robot
moves forward one grid element and maintains its orientation. For the B action,
the robot changes its orientation by 180 degrees and then moves forward one grid
element. For the R action, the robot turns right by 90 degrees and then moves
forward one grid element. The L action behaves similarly. If it is not possible to
move because of an obstacle, it is assumed that the robot changes its orientation
(in the case of B, R, or L) but does not change its position. This is depicted in
Figure 12.3a.

The robot has one simple sensor that can only detect whether it was able to
move in the direction that was attempted. The sensor space is Y = {0, 1}, and
the sensor mapping is h : X×X → Y . This yields y = h(xk−1, xk) = 1 if xk−1 and
xk place the robot at different positions, and h(xk−1, xk) = 0 otherwise. Thus, the
sensor indicates whether the robot has moved after the application of an action.

Nondeterministic uncertainty will be used, and the initial I-state η0 is always
assumed to be X (this can easily be extended to allow starting with any nonempty
subset of X). A history I-state at stake k in its general form appears as

η0 = (X, ũk−1, y2, . . . , yk). (12.12)

One special adjustment was made in comparison to (11.14). There is no obser-
vation y1 because the sensor mapping requires a previous state to report a value.
Thus, the observation history starts with y2. An example history I-state for stage
k = 5 is

η5 = (X,R,R,F,L, 1, 0, 1, 1), (12.13)

in which η0 = X, ũ4 = (R,R,F,L), and (y2, y3, y4, y5) = (1, 0, 1, 1).
The passive localization problem starts with a given map, such as the one shown

in Figure 12.2a, and a history I-state, ηk, and computes the nondeterministic I-
state Xk(ηk) ⊆ X. The active localization problem is to compute some k and
sequence of actions, (u1, . . . , uk−1), such that the nondeterministic I-state is as
small as possible. In the best case, Xk(ηk) might become a singleton set, which
means that the robot knows its position and orientation on the map. However,
due to symmetries, which will be presented shortly in an example, it might not be
possible.

Solving the passive localization problem The passive problem requires only
that the nondeterministic I-states are computed correctly as the robot moves. A
couple of examples of this are given.

Example 12.1 (An Easy Localization Problem) Consider the example given
in Figure 12.2a. Suppose that the robot is initially placed in position 1 facing east.
The initial condition is η0 = X, which can be represented as

η0 = 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 , (12.14)

12.2. LOCALIZATION 643

the collection of all 20 states in X. Suppose that the action sequence (F,L,F,L)
is applied. In each case, a motion occurs, which results in the observation history
(y2, y3, y4, y5) = (1, 1, 1, 1).

After the first action, u1 = F, the history I-state is η2 = (X,F, 1). The
nondeterministic I-state is

X2(η2) = 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 , (12.15)

which means that any position is still possible, but the successful forward motion

removed some orientations from consideration. For example, 1 is not possible
because the previous state would have to be directly south of 1, which is an
obstacle.

After the second action, u2 = L,

X3(η3) = 3 ∪ 5 , (12.16)

which yields only two possible current states. This can be easily seen in Figure
12.2a by observing that there are only two states from which a forward motion

can be followed by a left motion. The initial state must have been either 1 or

3 .
After u3 = F is applied, the only possibility remaining is that x3 must have

been 3 . This yields

X4(η4) = 4 , (12.17)

which exactly localizes the robot: It is at position 4 facing north. After the final
action u4 = L is applied it is clear that

X5(η5) = 5 , (12.18)

which means that in the final state, x5, the robot is at position 1 facing west. Once
the exact robot state is known, no new uncertainty will accumulate because the
effects of all actions are predictable. Although it was not shown, it is also possi-
ble to prune the possible states by the execution of actions that do not produce
motions. �

Example 12.2 (A Problem that Involves Symmetries) Now extend the map
from Figure 12.2a so that it forms a loop as shown in Figure 12.2b. In this case,
it is impossible to determine the precise location of the robot. For simplicity, con-
sider only actions that produce motion (convince yourself that allowing the other
actions cannot fix the problem).

Suppose that the robot is initially in position 1 facing east. If the action
sequence (F,L,F,L, . . .) is executed, the robot will travel around in cycles. The
problem is that it is also possible to apply the same action sequence from position
3 facing north. Every action successfully moves the robot, which means that,

644 S. M. LaValle: Planning Algorithms

to the robot, the information appears identical. The other two cases in which
this sequence can be applied to travel in cycles are 1) from 5 heading west, and
2) from 7 heading south. A similar situation occurs from 2 facing east, if the
sequence (L,F,L,F, . . .) is applied. Can you find the other three starting states
from which this sequence moves the robot at every stage? Similar symmetries exist
when traveling in clockwise circles and making right turns instead of left turns.

The state space for this problem contains 32 states, obtained from four direc-
tions at each position. After executing some motions, the nondeterministic I-state
can be reduced down to a symmetry class of no more than four possible states.
How can this be proved? One way is to use the algorithm that is described next.
�

Solving the active localization problem From the previous two examples,
it should be clear how to compute nondeterministic I-states and therefore solve
the passive localization problem on a grid. Now consider constructing a plan that
solves the active localization problem. Imagine using a computer to help in this
task. There are two general approaches:

Precomputed Plan: In this approach, a planning algorithm running on a
computer accepts a map of the environment and computes an information-
feedback plan that immediately indicates which action to take based on all
possible I-states that could result (a derived I-space could be used). During
execution, the actions are immediately determined from the stored, precom-
puted plan.

Lazy Plan: In this case the map is still given, but the appropriate action is
computed just as it is needed during each stage of execution. The computer
runs on-board of the robot and must compute which action to take based on
the current I-state.

The issues are similar to those of the sampling-based roadmap in Section 5.6. If
faster execution is desired, then the precomputed plan may be preferable. If it
would consume too much time or space, then a lazy plan may be preferable.

Using either approach, it will be helpful to recall the formulation of Section
12.1.1, which considers Indet as a new state space, ~X, in which state feedback
can be used. Even though there are no nature sensing actions, the observations
are not predictable because the state is generally unknown. This means that ~θ is
unknown, and future new states, ~xk+1, are unpredictable once ~xk and ~uk are given.
A plan must therefore use feedback, which means that it needs information learned
during execution to solve the problem. The state transition function ~f on the new
state space was illustrated for the localization problem in Examples 12.1 and 12.2.
The initial state ~xI is the set of all original states. If there are no symmetries, the
goal set ~XG is the set of all singleton subsets of X; otherwise, it is the set of all
smallest possible I-states that are reachable (this does not need to be constructed

12.2. LOCALIZATION 645

in advance). If desired, cost terms can be defined to produce an optimal planning

problem. For example, ~l(~x, ~u) = 2 if a motion occurs, or ~l(~x, ~u) = 1 otherwise.
Consider the approach of precomputing a plan. The methods of Section 12.1.2

can generally be applied to compute a plan, π : ~X → U , that solves the localization
problem from any initial nondeterministic I-state. The approach may be space-
intensive because an action must be stored for every state in ~X. If there are n grid
tiles, then | ~X| = 2n − 1. If the initial I-state is always X, then it may be possible

to restrict π to a much smaller portion of ~X. From any ~x ∈ ~XG, a search based
on backprojections can be conducted. If the initial I-state is added to S, then the
partial plan will reliably localize the robot. Parts of ~X for which π is not specified
will never be reached and can therefore be ignored.

Now consider the lazy approach. An algorithm running on the robot can
perform a kind of search by executing actions and seeing which I-states result.
This leads to a directed graph over ~X that is incrementally revealed through the
robot’s motions. The graph is directed because the information regarding the state
generally improves. For example, once the robot knows its state (or symmetry class
of states), it cannot return to an I-state that represents greater uncertainty. In
many cases, the robot may get lucky during execution and localize itself using
much less memory than would be required for a precomputed plan.

The robot needs to recognize that the same positions have been reached in
different ways, to ensure a systematic search. Even though the robot does not
necessarily know its position on the map, it can usually deduce whether it has been
to some location previously. One way to achieve this is to assign (i, j) coordinates
to the positions already visited. It starts with (0, 0) assigned to the initial position.
If F is applied, then suppose that position (1, 0) is reached, assuming the robot
moves to a new grid cell. If R is applied, then (0, 1) is reached if the robot is not
blocked. The point (2, 1) may be reachable by (F,F,R) or (R,F,F). One way to
interpret this is that a local coordinate frame in R2 is attached to the robot’s initial
position. Let this be referred to as the odometric coordinates. The orientation
between this coordinate frame and the map is not known in the beginning, but a
transformation between the two can be computed if the robot is able to localize
itself exactly.

A variety of search algorithms can now be defined by starting in the initial
state ~xI and trying actions until a goal condition is satisfied (e.g., no smaller non-
deterministic I-states are reachable). There is, however, a key difference between
this search and the search conducted by the algorithms in Section 2.2.1. Previ-
ously, the search could continue from any state that has been explored previously
without any additional cost. In the current setting, there are two issues:

Reroute paths: Most search algorithms enable new states to be expanded
from any previously considered states at any time. For the lazy approach, the
robot must move to a state and apply an action to determine whether a new
state can be reached. The robot is capable of returning to any previously
considered state by using its odometric coordinates. This induces a cost
that does not exist in the previous search problem. Rather than being able

646 S. M. LaValle: Planning Algorithms

to jump from place to place in a search tree, the search is instead a long,
continuous path that is traversed by the robot. Let the jump be referred to
as a reroute path. This will become important in Section 12.3.2.

Information improvement: The robot may not even be able to return to a
previous nondeterministic I-state. For example, if the robot follows (F,F,R)
and then tries to return to the same state using (B,L,F), it will indeed know
that it returned to the same state, but the state remains unknown. It might
be the case, however, that after executing (F,F,R), it was able to narrow
down the possibilities for its current state. Upon returning using (B,L,F),
the nondeterministic I-state will be different.

The implication of these issues is that the search algorithm should take into account
the cost of moving the robot and that the search graph is directed. The second
issue is really not a problem because even though the I-state may be different when
returning to the same position, it will always be at least as good as the previous
one. This means that if η1 and η2 are the original and later history I-states from
the same position, it will always be true that X(η2) ⊆ X(η1). Information always
improves in this version of the localization problem. Thus, while trying to return
to a previous I-state, the robot will find an improved I-state.

Other information models The model given so far in this section is only one
of many interesting alternatives. Suppose, for example, that the robot carries a
compass that always indicates its direction. In this case, there is no need to keep
track of the direction as part of the state. The robot can use the compass to specify
actions directly with respect to global directions. Suppose that U = {N,E,W, S},
which denote the directions, “north,” “east,” “west,” and “south,” respectively.
Examples 12.1 and 12.2 now become trivial. The first one is solved by applying the
action sequence (E,N). The symmetry problems vanish for Example 12.2, which
can also be solved by the sequence (E,N) because (1, 2, 3) is the only sequence of
positions that is consistent with the actions and compass readings.

Other interesting models can be made by giving the robot less information.
In the models so far, the robot can easily infer its current position relative to its
starting position. Even though it is not necessarily known where this starting
position lies on the map, it can always be expressed in relative coordinates. This
is because the robot relies on different forms of odometry. For example, if the
direction is E and the robot executes the sequence (L,L, L), it is known that the
direction is S because three lefts make a right. Suppose that instead of a grid, the
robot must explore a graph. It moves discretely from vertex to vertex by applying
an action that traverses an edge. Let this be a planar graph that is embedded in
R2 and is drawn with straight line segments. The number of available actions can
vary at each vertex. We can generally define U = S1, with the behavior that the
robot only rotates without translating whenever a particular direction is blocked
(this is a generalization of the grid case). A sensor can be defined that indicates
which actions will lead to translations from the current vertex. In this case, the

12.2. LOCALIZATION 647

model nicely generalizes the original model for the grid. If the robot knows the
angles between the edges that arrive at a vertex, then it can use angular odometry
to make a local coordinate system in R2 that keeps track of its relative positions.

The situation can be made very confusing for the robot. Suppose that instead
of U = S1, the action set at each vertex indicates which edges can be traversed. The
robot can traverse an edge by applying an action, but it does not know anything
about the direction relative to other edges. In this case, angular odometry can no
longer be used. It could not, for example, tell the difference between traversing
a rhombus, trapezoid, or a rectangle. If angular odometry is possible, then some
symmetries can be avoided by noting the angles between the edges at each vertex.
However, the new model does not allow this. All vertices that have the same
degree would appear identical.

12.2.2 Combinatorial Methods for Continuous Localiza-
tion

Now consider localization for the case in which X is a continuous region in R2.
Assume that X is bounded by a simple polygon (a closed polygonal chain; there
are no interior holes). A map of X in R2 is given to the robot. The robot velocity
ẋ is directly commanded by the action u, yielding a motion model ẋ = u, for
which U is a unit ball centered at the origin. This enables a plan to be specified
as a continuous path in X, as was done throughout Part II. Therefore, instead
of specifying velocities using u, a path is directly specified, which is simpler. For
models of the form ẋ = u and the more general form ẋ = f(x, u), see Section 8.4
and Chapter 13, respectively.

The robot uses two different sensors:

1. Compass: A perfect compass solves all orientation problems that arose in
Section 12.2.1.

2. Visibility: The visibility sensor, which was shown in Figure 11.15, provides
perfect distance measurements in all directions.

There are no nature sensing actions for either sensor.
As in Section 12.2.1, localization involves computing nondeterministic I-states.

In the current setting there is no need to represent the orientation as part of the
state space because of the perfect compass and known orientation of the polygon
in R2. Therefore, the nondeterministic I-states are just subsets of X. Imagine
computing the nondeterministic I-state for the example shown in Figure 11.15,
but without any history. This is H(y) ⊆ X, which was defined in (11.6). Only
the current sensor reading is given. This requires computing states from which
the distance measurements shown in Figure 11.15b could be obtained. This means
that a translation must be found that perfectly overlays the edges shown in Figure
11.15b on top of the polygon edges that are shown in Figure 11.15a. Let ∂X
denote the boundary of X. The distance measurements from the visibility sensor

648 S. M. LaValle: Planning Algorithms

Figure 12.4: An example of the visibility cell decomposition. Inside of each cell,
the visibility polygon is composed of the same edges of ∂X.

Figure 12.5: Rays are extended outward, whenever possible, from each pair of
mutually visible vertices. The case on the right is a bitangent, as shown in Figure
6.10; however, here the edges extend outward instead of inward as required for the
visibility graph.

must correspond exactly to a subset of ∂X. For the example, these could only be
obtained from one state, which is shown in Figure 11.15a. Therefore, the robot
does not even have to move to localize itself for this example.

As in Section 8.4.3, let the visibility polygon V (x) refer to the set of all points
visible from x, which is shown in Figure 11.15a. To perform the required compu-
tations efficiently, the polygon must be processed to determine the different ways
in which the visibility polygon could appear from various points in X. This in-
volves carefully determining which edges of ∂X could appear on ∂V (x). The state
space X can be decomposed into a finite number of cells, and over each region
the invariant is that same set of edges is used to describe V (x) [136, 415]. An
example is shown in Figure 12.4. Two different kinds of rays must be extended to
make the decomposition. Figure 12.5 shows the case in which a pair of vertices
is mutually visible and an outward ray extension is possible. The other case is
shown in Figure 12.6, in which rays are extended outward at every reflex vertex

12.2. LOCALIZATION 649

Figure 12.6: A reflex vertex: If the interior angle at a vertex is greater than π,
then two outward rays are extended from the incident edges.

x1

Figure 12.7: Consider this example, in which the initial state is not known [298].

(a vertex whose interior angle is more than π, as considered in Section 6.2.4). The
resulting decomposition generates O(n2r) cells in the worse case, in which n is the
number of edges that form ∂X and r is the number of reflex vertices (note that
r < n). Once the measurements are obtained from the sensor, the cell or cells in
which the edges or distance measurements match perfectly need to be computed to
determine H(y) (the set of points in X from which the current distance measure-
ments could be obtained). An algorithm based on the idea of a visibility skeleton
is given in [415], which performs these computations in time O(m+ lg n+ s) and
uses O(n5) space, in which n is the number of vertices in ∂X, m is the number
of vertices in V (x), and s = |H(y)|, the size of the nondeterministic I-state. This
method assumes that the environment is preprocessed to perform rapid queries
during execution; without preprocessing, H(y) can be computed in time O(mn).

What happens if there are multiple states that match the distance data from
the visibility sensor? Since the method in [415] only computes H(y) ⊆ X, some
robot motions must be planned to further reduce the uncertainty. This provides
yet another interesting illustration of the power of I-spaces. Even though the state
space is continuous, an I-state in this case is used to disambiguate the state from
a finite collection of possibilities.

650 S. M. LaValle: Planning Algorithms

Figure 12.8: The four possible initial positions for the robot in Figure 12.7 based
on the visibility sensor.

Figure 12.9: These motions completely disambiguate the state.

The following example is taken from [298].

Example 12.3 (Visibility-Based Localization) Consider the environment shown
in Figure 12.7, with the initial state as shown. Based on the visibility sensor obser-
vation, the initial state could be any one of the four possibilities shown in Figure
12.8. Thus, H(y1) contains four states, in which y1 is the initial sensor observation.
Suppose that the motion sequence shown in Figure 12.9 is executed. After the first
step, the position of the robot is narrowed down to two possibilities, as shown in
Figure 12.10. This occurs because the corridor is longer for the remaining two
possibilities. After the second motion, the state is completely determined because
the short side corridor is detected. �

The localization problem can be solved in general by using the visibility cell
decomposition, as shown in Figure 12.4. Initially, X1(η1) = H(y1) is computed
from the initial visibility polygon, which can be efficiently performed using the
visibility skeleton [415]. Suppose that X1(η1) contains k states. In this case, k
translated copies of the map are overlaid so that all of the possible states in X1(η1)

12.2. LOCALIZATION 651

Figure 12.10: There are now only two possible states.

coincide. A motion is then executed that reduces the amount of uncertainty. This
could be performed, by example, by crossing a cell boundary in the overlay that
corresponds to one or more, but not all, of the k copies. This enables some possible
states to be eliminated from the next I-state, X2(η2). The overlay is used once
again to obtain another disambiguating motion, which results in X3(η3). This
process continues until the state is known. In [298], a motion plan is given that
enables the robot to localize itself by traveling no more than k times as far as the
optimal distance that would need to be traveled to verify the given state. This
particular localization problem might not seem too difficult after seeing Example
12.3, but it turns out that the problem of localizing using optimal motions is NP-
hard if any simple polygon is allowed. This was proved in [298] by showing that
every abstract decision tree can be realized as a localization problem, and the
abstract decision tree problem is already known to be NP-hard.

Many interesting variations of the localization problem in continuous spaces
can be constructed by changing the sensing model. For example, suppose that the
robot can only measure distances up to a limit; all points beyond the limit cannot
be seen. This corresponds to many realistic sensing systems, such as infrared
sensors, sonars, and range scanners on mobile robots. This may substantially
enlarge H(y). Suppose that the robot can take distance measurements only in
a limited number of directions, as shown in Figure 11.14b. Another interesting
variant can be made by removing the compass. This introduces the orientation
confusion effects observed in Section 12.2.1. One can even consider interesting
localization problems that have little or no sensing [751, 752], which yields I-spaces
that are similar to that for the tray tilting example in Figure 11.28.

12.2.3 Probabilistic Methods for Localization

The localization problems considered so far have involved only nondeterministic
uncertainty. Furthermore, it was assumed that nature does not interfere with the
state transition equation or the sensor mapping. If nature is involved in the sen-
sor mapping, then future I-states are not predictable. For the active localization
problem, this implies that a localization plan must use information feedback. In

652 S. M. LaValle: Planning Algorithms

other words, the actions must be conditioned on I-states so that the appropri-
ate decisions are taken after new observations are made. The passive localization
problem involves computing probabilistic I-states from the sensing and action his-
tories. The formulation and solution of localization problems that involve nature
and nondeterministic uncertainty will be left to the reader. Only the probabilistic
case will be covered here.

Discrete problems First consider adding probabilities to the discrete grid prob-
lem of Section 12.2.1. A state is once again expressed as x = (p, d). The initial
condition is a probability distribution, P (x1), over X. One reasonable choice is to
make P (x1) a uniform probability distribution, which makes each direction and
position equally likely. The robot is once again given four actions, but now assume
that nature interferes with state transitions. For example, if uk = F , then perhaps
with high probability the robot moves forward, but with low probability it may
move right, left, or possibly not move at all, even if it is not blocked.

The sensor mapping from Section 12.2.1 indicated whether the robot moved.
In the current setting, nature can interfere with this measurement. With low
probability, it may incorrectly indicate that the robot moved, when in fact it
remained stationary. Conversely, it may also indicate that the robot remained
still, when in fact it moved. Since the sensor depends on the previous two states,
the mapping is expressed as

yk = h(xk, xk−1, ψk). (12.19)

With a given probability model, P (ψk), this can be expressed as P (yk|xk, xk−1).
To solve the passive localization problem, the expressions from Section 11.2.3

for computing the derived I-states are applied. If the sensor mapping used only the
current state, then (11.36), (11.38), and (11.39) would apply without modification.
However, since h depends on both xk and xk−1, some modifications are needed.
Recall that the observations start with y2 for this sensor. Therefore, P (x1|η1) =
P (x1|y1) = P (x1), instead of applying (11.36).

After each stage, P (xk+1|ηk+1) is computed from P (xk|ηk) by first applying
(11.38) to take into account the action uk. Equation (11.39) takes into account
the sensor observation, yk+1, but P (yk+1|xk+1, ηk, uk) is not given because the
sensor mapping also depends on xk−1. It reduces using marginalization as

P (yk|ηk−1, uk−1, xk) =
∑

xk−1∈X
P (yk|ηk−1, uk−1, xk−1, xk)P (xk−1|ηk−1, uk−1, xk).

(12.20)
The first factor in the sum can be reduced to the sensor model,

P (yk|ηk−1, uk−1, xk−1, xk) = P (yk|xk−1, xk), (12.21)

because the observations depend only on xk−1, xk, and the nature sensing action,

12.2. LOCALIZATION 653

ψk. The second term in (12.20) can be computed using Bayes’ rule as

P (xk−1|ηk−1, uk−1, xk) =
P (xk|ηk−1, uk−1, xk−1)P (xk−1|ηk−1, uk−1)
∑

xk−1∈X
P (xk|ηk−1, uk−1, xk−1)P (xk−1|ηk−1, uk−1)

,

(12.22)
in which P (xk|ηk−1, uk−1, xk−1) simplifies to P (xk|uk−1, xk−1). This is directly ob-
tained from the state transition probability, which is expressed as P (xk+1|xk, uk)
by shifting the stage index forward. The term P (xk−1|ηk−1, uk−1) is given by
(11.38). The completes the computation of the probabilistic I-states, which solves
the passive localization problem.

Solving the active localization problem is substantially harder because a search
occurs on Iprob. The same choices exist as for the discrete localization problem.
Computing an information-feedback plan over the whole I-space Iprob is theoreti-
cally possible but impractical for most environments. The search-based idea that
was applied to incrementally grow a directed graph in Section 12.2.1 could also
be applied here. The success of the method depends on clever search heuristics
developed for this particular problem.

Continuous problems Localization in a continuous space using probabilistic
models has received substantial attention in recent years [258, 447, 622, 825, 887,
962]. It is often difficult to localize mobile robots because of noisy sensor data,
modeling errors, and high demands for robust operation over long time periods.
Probabilistic modeling and the computation of probabilistic I-states have been
quite successful in many experimental systems, both for indoor and outdoor mobile
robots. Figure 12.11 shows localization successfully being solved using sonars only.
The vast majority of work in this context involves passive localization because the
robot is often completing some other task, such as reaching a particular part of
the environment. Therefore, the focus is mainly on computing the probabilistic
I-states, rather than performing a difficult search on Iprob.

Probabilistic localization in continuous spaces most often involves the defini-
tion of the probability densities p(xk+1|xk, uk) and p(yk|xk) (in the case of a state
sensor mapping). If the stages represent equally spaced times, then these densities
usually remain fixed for every stage. The state space is usually X = SE(2) to
account for translation and rotation, but it may be X = R2 for translation only.
The density p(xk+1|xk, uk) accounts for the unpredictability that arises when con-
trolling a mobile robot over some fixed time interval. A method for estimating this
distribution for nonholonomic robots by solving stochastic differential equations
appears in [1004].

The density p(yk|xk) indicates the relative likelihood of various measurements
when given the state. Most often this models distance measurements that are
obtained from a laser range scanner, an array of sonars, or even infrared sensors.
Suppose that a robot moves around in a 2D environment and takes depth mea-
surements at various orientations. In the robot body frame, there are n angles at

654 S. M. LaValle: Planning Algorithms

(a) (b)

(c) (d)

Figure 12.11: Four frames from an animation that performs probabilistic localiza-
tion of an indoor mobile robot using sonars [350].

which a depth measurement is taken. Ideally, the measurements should look like
those in Figure 11.15b; however, in practice, the data contain substantial noise.
The observation y ∈ Y is an n-dimensional vector of noisy depth measurements.

One common way to define p(y|x) is to assume that the error in each distance
measurement follows a Gaussian density. The mean value of the measurement can
easily be calculated as the true distance value once x is given, and the variance
should be determined from experimental evaluation of the sensor. If it is assumed
that the vector of measurements is modeled as a set of independent, identically
distributed random variables, a simple product of Guassian densities is obtained
for p(y|x).

Once the models have been formulated, the computation of probabilistic I-
states directly follows from Sections 11.2.3 and 11.4.1. The initial condition is a
probability density function, p(x1), over X. The marginalization and Bayesian
update rules are then applied to construct a sequence of density functions of the
form p(xk|ηk) for every stage, k.

In some limited applications, the models used to express p(xk+1|xk, uk) and

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 655

p(yk|xk) may be linear and Gaussian. In this case, the Kalman filter of Section
11.6.1 can be easily applied. In most cases, however, the densities will not have
this form. Moment-based approximations, as discussed in Section 11.4.3, can be
used to approximate the densities. If second-order moments are used, then the so-
called extended Kalman filter is obtained, in which the Kalman filter update rules
can be applied to a linear-Gaussian approximation to the original problem. In
recent years, one of the most widely accepted approaches in experimental mobile
robotics is to use sampling-based techniques to directly compute and estimate
the probabilistic I-states. The particle-filtering approach, described in general in
Section 11.6.2, appears to provide good experimental performance when applied
to localization. The application of particle filtering in this context is often referred
to as Monte Carlo localization; see the references at the end of this chapter.

12.3 Environment Uncertainty and Mapping

After reading Section 12.2, you may have already wondered what happens if the
map is not given. This leads to a fascinating set of problems that are fundamental
to robotics. If the state represents configuration, then the I-space allows tasks
to be solved without knowing the exact configuration. If, however, the state also
represents the environment, then the I-space allows tasks to be solved without
even having a complete representation of the environment! This is obviously very
powerful because building a representation of a robot’s environment is very costly
and subject to errors. Furthermore, it is likely to become quickly outdated.

12.3.1 Grid Problems

To gain a clear understanding of the issues, it will once again be helpful to consider
discrete problems. The discussion here is a continuation of Section 12.2.1. In that
section, the state represented a position, p, and a direction, d. Now suppose that
the state is represented as (p, d, e), in which e represents the particular environment
that contains the robot. This will require defining a space of environments, which
is rarely represented explicitly. It is often expressed as a constraint on the types
of environments that can exist. For example, the set of environments could be
defined as all connected 2D grid-planning problems. The set of simply connected
grid-planning problems is even further constrained.

One question immediately arises: When are two maps of an environment equiv-
alent? Recall the maps shown in Figures 12.2a and 12.3b. The map in Figure 12.3b
appears the same for every 90-degree rotation; however, the map in Figure 12.2a
appears to be different. Even if it appears different, it should still be the same
environment, right? Imagine mapping a remote island without having a compass
that indicates the direction to the north pole. An orientation (which way is up?)
for the map can be chosen arbitrarily without any harm. If a map of the environ-
ment is made by “drawing” on R2, it should seem that two maps are equivalent if a

656 S. M. LaValle: Planning Algorithms

transformation in SE(2) (i.e., translation and rotation) can be applied to overlay
one perfectly on top of the other.

When defining an environment space, it is important to clearly define what it
means for two environments to be equivalent. For example, if we are required to
build a map by exploration, is it required to also provide the exact translation and
orientation? This may or may not be required, but it is important to specify this
in the problem description. Thus, we will allow any possibility: If the maps only
differ by a transformation in SE(2), they may or may not be defined as equivalent,
depending on the application.

To consider some examples, it will be convenient to define some finite or infinite
sets of environments. Suppose that planning on a 2D grid is once again considered.
In this section, assume that each grid point p has integer coordinates (i, j) ∈ Z×Z,
as defined in Section 2.1. Let E denote a set of environments. Once again, there
are four possible directions for the robot to face; let D denote this set. The state
space is

X = Z× Z×D × E. (12.23)

Assume in general that an environment, e ∈ E, is specified by indicating a subset of
Z×Z that corresponds to the positions of all of the white tiles on which the robot
can be placed. All other tiles are black, which means that they are obstacles.
If any subset of Z × Z is allowed, then E = pow(Z × Z). This includes many
useless maps, such as a checkerboard that spans the entire plane; this motivates
some restrictions on E. For example, E can be restricted to be the subset of
pow(Z × Z) that corresponds to all maps that include a white tile at the origin,
(0, 0), and for which all other white tiles are reachable from it and lie within a
bounded region.

Examples will be given shortly, but first think about the kinds of problems
that can be formulated:

1. Map building: The task is to visit every reachable tile and construct a map.
Depending on how E is defined, this may identify a particular environment
in E or a set of environments that are consistent with the exploration. This
may also be referred to as simultaneous localization and mapping, or SLAM,
because constructing a complete map usually implies that the robot position
and orientation are eventually known [483, 970]. Thus, the complete state,
x ∈ X, as given in (12.23) is determined by the map-building process. For
the grid problem considered here, this point is trivial, but the problem be-
comes more difficult for the case of probabilistic uncertainty in a continuous
environment. See Section 12.3.5 for this case.

2. Determining the environment: Imagine that a robot is placed into a
building at random and then is switched on. The robot is told that it is
in one of a fixed (i.e., 10) number of buildings. It must move to determine
which one. As the number of possible environments is increased, the problem
appears to be more like map building. In fact, map building can be consid-

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 657

e1 e2 e3

e4 e5 e6

Figure 12.12: A set of possible 2D grid environments. In each case, the “up”
direction represents north and the white circle represents the origin, p = (0, 0).

ered as a special case in which little or no constraints are initially imposed
on the set of possible environments.

3. Navigation: In this case, a goal position is to be reached, even though
the robot has no map. The location of the goal relative to the robot can
be specified through a sensor. The robot is allowed to solve this problem
without fully exploring the environment. Thus, the final nondeterministic
I-state after solving the task could contain numerous possible environments.
Only a part of the environment is needed to solve the problem.

4. Searching: In this case, a goal state can only be identified when it is reached
(or detected by a short-range sensor). There are no additional sensors to help
in the search. The environment must be systematically explored, but the
search may terminate early if the goal is found. A map does not necessarily
have to be constructed. Searching can be extended to pursuit-evasion, which
is covered in Section 12.4.

Simple examples of determining the environment and navigation will now be given.

658 S. M. LaValle: Planning Algorithms

e7 e8 e9

Figure 12.13: Add these environments to the set depicted in Figure 12.12. Each
is essentially equivalent to an environment already given and generally does not
affect the planning problem.

Example 12.4 (Determining the Environment) Suppose that the robot is
told that it was placed into one of the environments shown in Figure 12.12. Let
the initial position of the robot be (0, 0), which is shown as a white circle. Let the
initial direction be east and the environment be e3. These facts are unknown to the
robot. Use the same actions and state transition model as in Section 12.2.1. The
current state space includes the environment, but the environment never changes.
Only information regarding which environment the robot is in will change. The
sensing model again only indicates whether the robot has changed its position
from the application of the last action.

The initial condition is X, because any position, orientation, and environ-
ment are possible. Some nondeterministic I-states will now be determined. Let
(u1, u2, u3) = (F,R,R). From this sequence of actions, the sensor observations
(y2, y3, y4) report that the robot has not yet changed its position. The orientation
was changed to west, but this is not known to the robot (it does, however, know
that it is now pointing in the opposite direction with respect to its initial orienta-
tion). What can now be inferred? The robot has discovered that it is on a tile that
is bounded on three sides by obstacles. This means that e1 and e6 are ruled out
as possible environments. In the remaining four environments, the robot deduces
that it must be on one of the end tiles: 1) the upper left of e2, 2) the upper right
of e2, 3) the bottom of e3, 4) the rightmost of e3, 5) the top of e4, 6) the lower left
of e5, or 7) the upper left of e5. It can also make strong inferences regarding its
orientation. It even knows that the action u4 = R would cause it to move because
all four directions cannot be blocked.

Apply (u4, u5) = (R,F). The robot should move two times, to arrive in the
upper left of e3 facing north. In this case, any of e2, e3, e4, or e5 are still possible;
however, it now knows that its position at stage 4 could not have been in the upper
left of e5. If the robot is in e3, it knows that it must be in the upper left, but it
still does not know its orientation (it could be north or west). The robot could
also be in the lower left or lower right of e2.

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 659

Now let (u6, u7) = (R,F), which moves the robot twice. At this point, e4 and
e5 are ruled out, and the set of possible environments is {e2, e3} (one orientation
from e2 is also ruled out). If u8 = R is applied, then the sensor observation y9
reports that the robot does not move. This rules out e2. Finally, the robot can
deduce that it is in the upper right of e3 facing south. It can also deduce that in its
initial state it was in the lower left of e3 facing east. Thus, all of the uncertainty
has been eliminated through the construction of the nondeterministic I-states.

Now consider adding the environments shown in Figure 12.13 to the set and
starting the problem over again. Environment e7 is identical to e1, except that the
origin is moved, and e8 is identical to e2, except that it is rotated by 180 degrees. In
these two cases, there exist no inputs that enable the robot to distinguish between
e1 and e7 or between e2 and e8. It is reasonable to declare these environments to
be pairwise equivalent. The only distinction between them is the way that the
map is drawn.

If the robot executes the same action sequence as given previously, then it will
also not be able to distinguish e3 from e9. It is impossible for the robot to deduce
whether there is a white tile somewhere that is not reachable. A general envi-
ronment space may include such variations, and this will prevent the robot from
knowing the precise environment. However, this usually presents no additional
difficulty in solving a planning problem. Therefore, it might make sense to declare
e3 and e9 to be equivalent. The fact that tasks can be achieved without knowing
the precise environment is very important. In a sense, the environment is observed
at some “resolution” that is sufficient for solving a problem; further details beyond
that are unimportant. Since the robot can ignore unnecessary details, cheaper and
more reliable systems can often be built. �

Example 12.5 (Reaching a Goal State) Suppose once again that the set of
environments shown in Figure 12.12 is given. This time, also assume that the
position p = (0, 0) and orientation east are known. The environment is e4, but it
is unknown to the robot. The task is to reach the position (2, 0), which means that
the robot must move two tiles to the east. The plan (u1, u2) = (F,F) achieves the
goal without providing much information about the environment. After u1 = F
is applied, it is known that the environment is not e3; however, after this, no
additional information is gathered regarding the environment because it is not
relevant to solving the problem. If the goal had been to reach (2, 2), then more
information would be obtained regarding the environment. For example, if the
plan is (F,L,R,L), then it is known that the environment is e6. �

Algorithms for determining the environment To determine the environ-
ment (which includes the map-building problem), it is sufficient to reach and re-
member all of the tiles. If the robot must determine its environment from a small
set of possibilities, an optimal worst-case plan can be precomputed. This can be

660 S. M. LaValle: Planning Algorithms

computed on ~X = Indet by using value iteration or the nondeterministic version
of Dijkstra’s algorithm from Section 10.2.3. When the robot is dropped into the
environment, it applies the optimal plan to deduce its position, orientation, and
environment. If the set of possible environments is too large (possibly infinite),
then a lazy approach is most suitable. This includes the map-building problem,
for which there may be little or no assumptions about the environment. A lazy ap-
proach to the map-building problem simply has to ensure that every tile is visited.
One additional concern may be to minimize the amount of reroute paths, which
were mentioned in Section 12.2.1. A simple algorithm that solves the problem
while avoiding excessive rerouting is depth-first search, from Section 2.2.2.

Algorithms for navigation The navigation task is to reach a prescribed goal,
even though no environment map is given. It is assumed that the goal is expressed
in coordinates relative to the robot’s initial position and orientation (these are
odometric coordinates). If the goal can only be identified when the robot is on the
goal tile, then searching is required, which is covered next. As seen in Example
12.5, the robot is not required to learn the whole environment to solve a naviga-
tion problem. The search algorithms of Section 2.2 may be applied. For example,
the A∗ method will find the optimal route to the goal, and a reasonable heuris-
tic underestimate of the cost-to-go can be defined by assuming that all tiles are
empty. Although such a method will work, the reroute costs are not being taken
into account. Thus, the optimal path eventually computed by A∗ may be mean-
ingless unless other robots will later use this information to reach the same goal
in the same environment. For the unfortunate robot that went first, a substantial
amount of exploration steps might have been wasted because A∗ is not designed
for exploration during execution. Even though the search algorithms in Section
2.2 assumed that the search graph was gradually revealed during execution, as op-
posed to being given in advance, they allow the current state in the search to jump
around arbitrarily. In the current setting, this would require teleporting the robot
to different parts of the environment. Section 12.3.2 covers a navigation algorithm
that extends Dijkstra’s algorithm to work correctly when the costs are discovered
during execution. It can be nicely applied to the grid-based navigation problem
presented in this section, even when the environment is initially unknown.

Algorithms for maze searching A fascinating example of using an I-map to
dramatically reduce the I-space was given a long time ago by Blum and Kozen
[119]. Map building requires space that is linear in the number of tiles; however,
it is possible to ensure that the environment has been systematically searched
using much less space. For 2D grid environments, the searching problem can be
solved without maintaining a complete map. It must systematically visit every
tile; however, this does not imply that it must remember all of the places that
it has visited. It is important only to ensure that the robot does not become
trapped in an infinite loop before covering all tiles. It was shown in [119] that
any maze can be searched using space that is only logarithmic in the number of

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 661

tiles. This implies that many different environments have the same representation
in the machine. Essentially, an I-map was developed that severely collapses Indet
down to a smaller derived I-space.

Assume that the robot motion model is the same as has been given so far in this
section; however, no map of the environment is initially given. Whatever direction
the robot is facing initially can be declared to be north without any harm. It is
assumed that any planar 2D grid is possible; therefore, there are identical maps
for each of the four orientations. The north direction of one of these maps might
be mislabeled by arbitrarily declaring the initial direction to be north, but this
is not critical for the coming approach. It is assumed that the robot is a finite
automaton that carries a binary counter. The counter will be needed because it
can store values that are arbitrarily large, which is not possible for the automaton
alone.

To keep the robot from wandering around in circles forever, two important
pieces of information need to be maintained:

1. The latitude, which is the number of tiles in the north direction from the
robot’s initial position.

2. When a loop path is executed, it needs to know its orientation, which means
whether the loop travels clockwise or counterclockwise.

Both of these can be computed from the history I-state, which takes the same form
as in (12.12), except in the current setting, X is given by (12.23) and E is the set
of all bounded environments (bounded means that the white tiles can be contained
in a large rectangle). From the history I-state, let ũ′k denote the subsequence of
the action history that corresponds to actions that produce motions. The latitude,
l(ũ′k), can be computed by counting the number of actions that produce motions
in the north direction and subtracting those that produce motions in the south
direction. The loop orientation can be determined by angular odometry (which is
equivalent to having a compass in this problem [286]). Let the value r(ũ′k) give
the number of right turns in ũ′k minus the number of left turns in ũ′k. Note that
making four rights yields a clockwise loop and r(ũ′k) = 4. Making four lefts yields
a counterclockwise loop and r(ũ′k) = −4. In general, it can be shown that for
any loop path that does not intersect itself, either r(ũ′k) = 4, which means that it
travels clockwise, or r(ũ′k) = −4, which means that it travels counterclockwise.

It was stated that a finite automaton and a binary counter are needed. The
counter is used to keep track of l(ũ′k) as the robot moves. It turns out that an
additional counter is not needed to measure the angular odometry because the
robot can instead perform mod-3 arithmetic when counting right and left turns. If
the result is r(ũ′k) = 1 mod 3 after forming a loop, then the robot traveled coun-
terclockwise. If the result is r(ũ′k) = 2 mod 3, then the robot traveled clockwise.
This observation avoids using an unlimited number of bits, contrary to the case of
maintaining latitude. The construction so far can be viewed as part of an I-map
that maps the history I-states into a much smaller derived I-space.

662 S. M. LaValle: Planning Algorithms

The plan will be described in terms of the example shown in Figure 12.14.
For any environment, there are obstacles in the interior (this example has six),
and there is an outer boundary. Using the latitude and orientation information,
a unique point can be determined on the boundary of each obstacle and on the
outer boundary. The unique point is defined as the westernmost vertex among the
southernmost vertices of the obstacle. These are shown by small discs in Figure
12.15. By using the latitude and orientation information, the unique point can
always be found (see Exercise 4).

To solve the problem, the robot moves to a boundary and traverses it by
performing wall following. The robot can use its sensing information to move
in a way that keeps the wall to its left. Assuming that the robot can always
detect a unique point along the boundary, it can imagine that the obstacles are
connected as shown in Figure 12.15. There is a fictitious thin obstacle that extends
southward from each unique point. This connects the obstacles together in a way
that appears to be an extension of the outer boundary. In other words, imagine
that the obstacles are protruding from the walls, as opposed to “floating” in the
interior. By refusing to cross these fictitious obstacles, the robot moves around
the boundary of all obstacles in a single closed-loop path. The strategy so far
does not ensure that every cell will be visited. Therefore, the modification shown
in Figure 12.16 is needed to ensure that every tile is visited by zig-zag motions.
It is interesting to compare the solution to the spanning-tree coverage planning
approach in Section 7.6, which assumed a complete map was given and the goal
was to optimize the distance traveled.

If there is some special object in the environment that can be detected when
reached by the robot, then the given strategy is always guaranteed to find it, even
though at the end, it does not even have a map!

The resulting approach can be considered as an information-feedback plan on
the I-space. In this sense, Blum and Kozen were the “planner” that found a plan
that solves any problem. Alternative plans do not need to be computed from
the problem data because the plan can handle all possible environments without
modification. This is the power of working directly with an I-space over the set of
environments, as opposed to requiring state estimation.

12.3.2 Stentz’s Algorithm (D∗)

Imagine exploring an unknown planet using a robotic vehicle. The robot moves
along the rugged terrain while using a range scanner to make precise measurements
of the ground in its vicinity. As the robot moves, it may discover that some parts
were easier to traverse than it originally thought. In other cases, it might realize
that some direction it was intending to go is impassable due to a large bolder or
a ravine. If the goal is to arrive at some specified coordinates, this problem can
be viewed as a navigation problem in an unknown environment. The resulting
solution is a lazy approach, as discussed in Section 12.2.1.

This section presents Stentz’s algorithm [913], which has been used in many

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 663

Figure 12.14: An example that has six obstacles.

Figure 12.15: The obstacles are connected together by extending a thin obstacle
downward from their unique points.

outdoor vehicle navigation applications, such as the vehicle shown in Figure 12.17.
The algorithm can be considered as a dynamic version of the backward variant of
Dijkstra’s algorithm. Thus, it maintains cost-to-go values, and the search grows
outward from the goal, as opposed to cost-to-come values from xI in the version of
Dijkstra’s algorithm in Section 2.3.3. The method applies to any optimal planning
problem. In terms of the state transition graph, it is assumed that the costs of
edge transitions are unknown (equivalently, each cost l(x, u) is unknown). In the
navigation problem, a positive cost indicates the difficulty of traveling from state
x to state x′ = f(x, u).

To work with a concrete problem, imagine that a planet surface is partitioned
into a high-resolution grid. The state space is simply a bounded set of grid tiles;
hence, X ⊆ Z × Z. Each grid tile is assigned a positive, real value, c(x), that
indicates the difficulty of its traversal. The actions U(x) at each grid point can
be chosen using standard grid neighbors (e.g., four-neighbors or eight-neighbors).
This now defines a state transition graph over X. From any x′ ∈ X and u′ ∈ U(x′)
such that x = f(x′, u′), the cost term is assigned using c as l(x′, u′) = c(x). This
model is a generalization of the grid in Section 12.3.1, in which the tiles were

664 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 12.16: (a) A clockwise loop produced by wall following. (b) An alternative
loop that visits all of the tiles in the interior.

Figure 12.17: The Automated Cross-Country Unmanned Vehicle (XUV) is
equipped with laser radar and other sensors, and uses Stentz’s algorithm to navi-
gate (courtesy of General Dynamics Robotic Systems).

either empty or occupied; here any positive real value is allowed. In the coming
explanation, the costs may be more general than what is permitted by starting
from c(x), and the state transition graph does not need to be derived from a
grid. Some initial values are assigned arbitrarily for all l(x, u). For example, in
the planetary exploration application, the cost of traversing a level, unobstructed
surface may be uniformly assumed.

The task is to navigate to some goal state, xG. The method works by initially
constructing a feedback plan, π, on a subset of X that includes both xI and xG.
The plan, π, is computed by iteratively applying the procedure in Figure 12.18
until the optimal cost-to-go is known at xI . A priority queue, Q, is maintained as
in Dijkstra’s algorithm; however, Stentz’s algorithm allows the costs of elements in
Q to be modified due to information sensed during execution. Let Gbest(x) denote
the lowest cost-to-go associated with x during the time it spends in Q. Assume
that Q is sorted according to Gbest. Let Gcur(x) denote its current cost-to-go
value, which may actually be more than Gbest(x) if some cost updates caused it to
increase. Suppose that some u ∈ U(x) can be applied to reach a state x′ = f(x, u).

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 665

Let Gvia(x, x
′) denote the cost-to-go from x by traveling via x′,

Gvia(x, x
′) = Gcur(x

′) + l(x, u). (12.24)

If Gvia(x, x
′) < Gcur(x), then it indicates that Gcur(x) could be reduced. If

Gcur(x
′) ≤ Gbest(x), then it is furthermore known that Gcur(x

′) is optimal. If
both of these conditions are met, then Gcur(x) is updated to Gvia(x, x

′).
After the iterations of Figure 12.18 finish, the robot executes π, which generates

a sequence of visited states. Let xk denote the current state during execution. If
it is discovered that if π(xk) = uk would be applied, the received cost would not
match the cost l(xk, uk) in the current model, then the costs need to be updated.
More generally, the robot may have to be able to update costs within a region
around xk that corresponds to the sensor field of view. For the description below,
assume that an update, l(xk, uk), is obtained for xk only (the more general case is
handled similarly). First, l(xk, uk) is updated to the newly measured value. If xk
happened to be dead (visited, but no longer in Q), then it is inserted again into
Q, with cost Gcur(xk). The steps in Figure 12.18 are performed until Gcur(xk) ≤
Gbest(x) for all x ∈ Q. Following this, the plan execution continues until either
the goal is reached or another cost mismatch is discovered. At any time during
execution, the robot motions are optimal given the current information about the
costs [913].

Figure 12.19 illustrates the execution of the algorithm. Figure 12.19a shows a
synthetic terrain that was generated by a stochastic fractal. Darker gray values
indicate higher cost. In the center, very costly terrain acts as a barrier, for which
an escape route exists in the downward direction. The initial state is the middle
of the left edge of the environment, and the goal state is the right edge. The robot
initially plans a straight-line path and then incrementally updates the path in each
step as it moves. In Figure 12.19b, the robot has encountered the costly center
and begins to search for a way around. Finally, the goal is reached, as shown in
Figure 12.19c. The executed path is actually the result of executing a series of
optimal paths, each of which is based on the known information at the time a
single action is applied.

Interpretation in terms of I-spaces An alternative formulation will now be
given to help understand the connection to I-spaces of a set of environments. The
state space, as defined previously, could instead be defined as a configuration space,
C = Z×Z. Let q ∈ C denote a configuration. Suppose that each possible environ-
ment corresponds to one way to assign costs to all of the edges in a configuration
transition graph. The set E of all possible environments for this problem seems
to be all possible ways to assign costs, l(q, u). The state space can now be defined
as C × E, and for each state, x = (q, e) ∈ X, the configuration and complete set
of costs are specified. Initially, it is guessed that the robot is in some particular
e ∈ E. If a cost mismatch is discovered, this means that a different environment
model is now assumed because a transition cost is different from what was ex-
pected. The costs should actually be written as l(x, u) = l(q, e, u), which indicates

666 S. M. LaValle: Planning Algorithms

STENTZ’S ALGORITHM

1. Remove x from Q, which is the state with the lowest Gbest(x) value.

2. If Gbest(x) < Gcur(x), then x has increased its value while on Q. If x can
improve its cost by traveling via a neighboring state for which the optimal
cost-to-go is known, it should do so. Thus, for every u ∈ U(x), test for
x′ = f(x, u) whether Gvia(x, x

′) < Gcur(x) and Gcur(x
′) ≤ Gbest(x). If so,

then update Gcur(x) := Gvia(x, x
′) and π(x) := u.

3. This and the remaining steps are repeated for each x′ such that there exists
u′ ∈ U(x′) for which x = f(x′, u′). If x′ is unvisited, then assign π(x′) := u′,
and place x′ onto Q with cost Gvia(x

′, x).

4. If the cost-to-go from x′ appears incorrect because π(x′) = u′ but
Gvia(x

′, x) 6= Gcur(x
′), then an update is needed. Place x′ onto Q with

cost Gvia(x
′, x).

5. If π(x′) 6= u′ but Gvia(x
′, x) < Gcur(x

′), then from x′ it is better to travel via
x than to use π(x′). If Gcur(x) = Gbest(x), then π(x

′) := u′ and x′ is inserted
into Q because the optimal cost-to-go for x is known. Otherwise, x (instead
of x′) is inserted into Q with its current value, Gcur(x).

6. One final condition is needed to avoid generating cycles in π. If x′ is dead
(visited, but no longer in Q), it may need to be inserted back into Q with
cost Gcur(x

′). This must be done if π(x′) 6= u′, Gvia(x, x
′) < Gcur(x), and

Gcur(x) > Gbest(x)

Figure 12.18: Stentz’s algorithm, often called D∗ (pronounced “dee star”), is a
variant of Dijkstra’s algorithm that dynamically updates cost values as the cost
terms are learned during execution. The steps here are only one iteration of
updating the costs after a removal of a state from Q.

the dependency of the costs on the particular environment is assumed.

A nondeterministic I-state corresponds to a set of possible cost assignments,
along with their corresponding configurations. Since the method requires assigning
costs that have not yet been observed, it takes a guess and assumes that one
particular environment in the nondeterministic I-state is the correct one. As cost
mismatches are discovered, it is realized that the previous guess lies outside of the
updated nondeterministic I-state. Therefore, the guess is changed to incorporate
the new cost information. As this process evolves, the nondeterministic I-state
continues to shrink. Note, however, that in the end, the robot may solve the
problem while being incorrect about the precise e ∈ E. Some tiles are never
visited, and their true costs are therefore unknown. A default assumption about
their costs was made to solve the problem; however, the true e ∈ E can only be

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 667

(a) (b) (c)

Figure 12.19: An example of executing Stentz’s algorithm (courtesy of Tony
Stentz).

known if all tiles are visited. It is only true that the final assumed default values
lie within the final nondeterministic I-state.

12.3.3 Planning in Unknown Continuous Environments

We now move from discrete to continuous environments but continue to use nonde-
terministic uncertainty. First, several bug algorithms [504, 667, 505] are presented,
which represent a family of motion plans that solve planning problems using ideas
that are related in many ways to the maze exploration ideas of Section 12.3.1.
In addition to bug algorithms, the concept of competitive ratios is also briefly
covered.

The following model will be used for bug algorithms. Suppose that a point
robot is placed into an unknown 2D environment that may contain any finite
number of bounded obstacles. It is assumed that the boundary of each obstacle and
the outer boundary (if it exists) are piecewise-analytic (here, analytic implies that
each piece is smooth and switches its curvature sign only a finite number of times).
Thus, the obstacles could be polygons, smooth curves, or some combination of
curved and linear parts. The set E of possible environments is overwhelming, but
it will be managed by avoiding its explicit construction. The robot configuration
is characterized by its position and orientation.

There are two main sensors:2

1. A goal sensor indicates the current Euclidean distance to the goal and the
direction to the goal, expressed with respect to an absolute “north.”

2. A local visibility sensor provides the exact shape of the boundary within a
small distance from the robot. The robot must be in contact or almost in

2This is just one possible sensing model. Alternative combinations of sensors may be used,
provided that they enable the required motions and decisions to be executed in the coming
motion strategies.

668 S. M. LaValle: Planning Algorithms

xGxI

Figure 12.20: An illustration of the Bug1 strategy.

contact to observe part of the boundary; otherwise, the sensor provides no
useful information.

The goal sensor essentially encodes the robot’s position in polar coordinates (the
goal is the origin). Therefore, unique (x, y) coordinates can be assigned to any
position visited by the robot. This enables it to incrementally trace out obstacle
boundaries that it has already traversed. The local visibility sensor provides just
enough information to allow wall-following motions; the range of the sensor is
very short so that the robot cannot learn anything more about the structure of
the environment.

Some strategies will now be considered for the robot. Each of these can be
considered as an information-feedback plan on a nondeterministic I-space.

The Bug1 strategy A strategy called Bug1 was developed in [667] and is illus-
trated in Figure 12.20. The execution is as follows:

1. Move toward the goal until an obstacle or the goal is encountered. If the
goal is reached, then stop.

2. Turn left and follow the entire perimeter of the contacted obstacle. Once the
full perimeter has been visited, then return to the point at which the goal
was closest, and go to Step 1.

Determining that the entire perimeter has been traversed may seem to require a
pebble or marker; however, this can be inferred by finding the point at which the
goal sensor reading repeats.

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 669

xI xG

Figure 12.21: A bad example for Bug1. The perimeter of each obstacle is spanned
one and a half times.

The worst case is conceptually simple to understand. The total distance trav-
eled by the robot is no greater than

d+
3

2

M∑

i=1

pi, (12.25)

in which d is the Euclidean distance from the initial position to the goal position,
pi is the perimeter of the ith obstacle, and M is the number of obstacles. This
means that the boundary of each obstacle is followed no more than 3/2 times.
Figure 12.21 shows an example in which each obstacle is traversed 3/2 times. This
bound relies on the fact that the robot can always recall the shortest path along
the boundary to the point from which it needs to leave. This seems reasonable
because the robot can infer its distance traveled along the boundary from the goal
sensor. If this was not possible, then the 3/2 would have to be replaced by 2
because the robot could nearly traverse the full boundary twice in the worst case.

The Bug2 strategy An alternative to Bug1 is the Bug2 strategy, which is il-
lustrated in Figure 12.22. The robot always attempts to move along a line that
connects the initial and goal positions. When the robot is on this line, the goal
direction will be either the same as from the initial state or it will differ by π
radians (if the robot is on the other side of the goal). The first step is the same as
for Bug1. In the second step, the robot follows the perimeter only until the line is
reached and it is able to move in the direction toward the goal. From there, it goes
to Step 1. As expressed so far, it is possible that infinite cycles occur. Therefore, a
small modification is needed. The robot remembers the distance to the goal from
the last point at which it departed from the boundary, and only departs from the
boundary again if the candidate point that is closer to the goal. This is applied
iteratively until the goal is reached or it is deemed to be impossible.

For the Bug2 strategy, the total distance traveled is no more than

d+
1

2

M∑

i=1

nipi, (12.26)

670 S. M. LaValle: Planning Algorithms

xGxI

Figure 12.22: An illustration of the Bug2 strategy.

xI xG

Figure 12.23: A bad case for Bug2. Only part of the resulting path is shown.
Points from which the robot can leave the boundary are indicated.

in which ni is the number of times the ith obstacle crosses the line segment between
the initial position and the goal position. An example that illustrates the trouble
caused by the crossings is shown in Figure 12.23.

Using range data The VisBug [666] and TangentBug [505, 592] strategies in-
corporate distance measurements made by a range or visibility sensor to improve
the efficiency. The TangentBug strategy will be described here and is illustrated
in Figure 12.24. Suppose that in addition to the sensors described previously, it
is also equipped with a sensor that produces measurements as shown in Figure
12.25. The strategy is as follows:

1. Move toward the goal, either through the interior of the space or by wall
following, until it is realized that the robot is trapped in a local minimum
or the goal is reached. This is similar to the gradient-descent motion of the

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 671

xI xG

Figure 12.24: An illustration of the VisBug strategy with unlimited radius.

potential-field planner of Section 5.4.3. If the goal is reached, then stop;
otherwise, go to the next step.

2. Execute motions along the boundary. First, pick a direction by comparing
the previous heading to the goal direction. While moving along the bound-
ary, keep track of two distances: df and dr. The distance df is the minimal
distance from the goal, observed while traveling along the boundary. The
distance dr is the length of the shortest path from the current position to
the goal, assuming that the only obstacles are those visible by the range sen-
sor. The robot stops following the boundary if dr < df . In this case, go to
Step 1. If the robot loops around the entire obstacle without this condition
occurring, then the algorithm reports that the goal is not reachable.

A one-parameter family of TangentBug algorithms can be made by setting a depth
limit for the range sensor. As the maximum depth is decreased, the robot becomes
more short-sighted and performance degrades. It is shown in [505] that the distance
traveled is no greater than

d+
M∑

i=1

pi +
M∑

i=1

pimi, (12.27)

in which mi is the number of local minima for the ith obstacle and d is the initial
distance to the goal. The bound is taken over M obstacles, which are assumed
to intersect a disc of radius d, centered at the goal (all others can be ignored). A
variant of the TangentBug, called WedgeBug, was developed in [592] for planetary
rovers that have a limited field of view.

672 S. M. LaValle: Planning Algorithms

Figure 12.25: The candidate motions with respect to the range sensor are the
directions in which there is a discontinuity in the depth map. The distances from
the robot to the small circles are used to select the desired motion.

Competitive ratios A popular way to evaluate algorithms that utilize different
information has emerged from the algorithms community. The idea is to compute
a competitive ratio, which places an on-line algorithm in competition with an
algorithm that receives more information [674, 892]. The idea can generally be
applied to plans. First a cost is formulated, such as the total distance that the
robot travels to solve a navigation task. A competitive ratio can then be defined
as

max
e∈E

Cost of executing the plan that does not know e in advance.

Cost of executing the plan that knows e in advance
. (12.28)

The maximum is taken over all e ∈ E, which is usually an infinite set, as in the
case of the bug algorithms. A competitive ratio for a navigation problem can be
made by comparing the optimal distance to the total distance traveled by the robot
during the execution of the on-line algorithm. Since E is infinite, many plans fail
to produce a finite competitive ratio. The bug algorithms, while elegant, represent
such an example. Imagine a goal that is very close, but a large obstacle boundary
needs to be explored. An obstacle boundary can be made arbitrarily large while
making the optimal distance to the goal very small. When evaluated in (12.28),
the result over all environments is unbounded. In some contexts, the ratio may
still be useful if expressed as a function of the representation. For example, if E
is a polygon with n edges, then an O(

√
n) competitive ratio means that (12.28) is

bounded over all n by c
√
n for some c ∈ R. For competitive ratio analysis in the

context of bug algorithms, see [375].
A nice illustration of competitive ratio analysis and issues is provided by the

lost-cow problem [60]. As shown in Figure 12.26a, a short-sighted cow is following

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 673

(a) (b)

Figure 12.26: (a) A lost cow must find its way to the gate, but it does not know in
which direction the gate lies. (b) If there is no bound on the distance to the gate,
then a doubling spiral strategy works well, producing a competitive ratio of 9.

along an infinite fence and wants to find the gate. This makes a convenient one-
dimensional planning problem. If the location of the gate is given, then the cow
can reach it by traveling directly. If the cow is told that the gate is exactly distance
1 away, then it can move one unit in one direction and return to try the other
direction if the gate has not been found. The competitive ratio in this case (the
set of environments corresponds to all gate placements) is 3. What if the cow is
told only that the gate is at least distance 1 away? In this case, the best strategy
is a spiral search, which is to zig-zag back and forth while iteratively doubling the
distance traveled in each direction, as shown in Figure 12.26b. In other words: left
one unit, right one unit, left two units, right two units, left four units, and so on.
The competitive ratio for this strategy turns out to be 9, which is optimal. This
approach resembles iterative deepening, which was covered in Section 2.2.2.

12.3.4 Optimal Navigation Without a Geometric Model

This section presents gap navigation trees (GNTs) [943, 945], which are a data
structure and associated planning algorithm for performing optimal navigation in
the continuous environments that were considered in Section 12.3.3. It is assumed
in this section that the robot is equipped with a gap sensor, as depicted in Figure
11.16 of Section 11.5.1. At every instant in time, the robot has available one
action for each gap that is visible in the gap sensor. If an action is applied,
then the robot moves toward the corresponding gap. This can be applied over
continuous time, which enables the robot to “chase” a particular gap. The robot
has no other sensing information: It has no compass and no ability to measure
distances. Therefore, it is impossible to construct a map of the environment that
contains metric information.

Assume that the robot is placed into an unknown but simply connected planar
environment, X. The GNT can be extended to the case of multiply connected
environments; however, in this case there are subtle issues with distinguishability,
and it is only possible to guarantee optimality within a homotopy class of paths
[944]. By analyzing the way that critical events occur in the gap sensor, a tree rep-
resentation can be built that indicates how to move optimally in the environment,
even though precise measurements cannot be taken. Since a gap sensor cannot

674 S. M. LaValle: Planning Algorithms

Gap

Gap chasing action

Point of boundary contact

Robot position

Figure 12.27: A gap-chasing action is applied, which moves the robot straight in
the direction of the gap until the boundary is contacted. Once this occurs, a new
part of the environment becomes visible.

even measure distances, it may seem unusual that the robot can move along short-
est paths without receiving any distance (or metric) information. This will once
again illustrate the power of I-spaces.

The appearance of the environment relative to the position of the robot is en-
coded as a tree that indicates how the gaps change as the robot moves. It provides
the robot with sufficient information to move to any part of the environment while
traveling along the shortest path. It is important to understand that the tree does
not correspond to some static map of the environment. It expresses how the en-
vironment appears relative to the robot and may therefore change as the robot
moves in the environment.

The root of the tree represents the gap sensor. For each gap that currently
appears in the sensor, an edge is connected to the root. Let these edges be called
root edges. Each root edge corresponds to an action that can be applied by the
robot. By selecting a root edge, the action moves the robot along a straight line
toward that gap. Thus, there is a simple control model that enables the robot
to move precisely toward a particular point along the boundary, ∂X, as shown in
Figure 12.27.

Let V (x) be the visibility region, which is the set of all points in X that are
visible from x. Let X \ V (x) be called the shadow region, which is the set of all
points not visible from x. Let each connected component of the shadow region
be called a shadow component. Every gap in the gap sensor corresponds to a line
segment in X that touches ∂X in two places (for example, see Figure 11.15a).
Each of these segments forms a boundary between the visibility region and a
shadow component. If the robot would like to travel to this shadow component,
the shortest way is to move directly to the gap. When moving toward a gap, the
robot eventually reaches ∂X, at which point a new action must be selected.

Critical gap events As the robot moves, several important events can occur in
the gap sensor:

1. Disappear: A gap disappears because the robot crosses an inflection ray as
shown in Figure 12.28. This means that some previous shadow component

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 675

Disappear

Appear

(a) (b)

Figure 12.28: (a) The robot crosses a ray that extends from an inflectional tangent.
(b) A gap appears or disappears from the gap sensor, depending on the direction.

is now visible.

2. Appear: A gap appears because the robot crosses an inflection ray in the
opposite direction. This means that a new shadow component exists, which
represents a freshly hidden portion of the environment.

3. Split: A gap splits into two gaps because the robot crosses a bitangent ray,
as shown in Figure 12.29 (this was also shown in Figure 12.5). This means
that one shadow component splits into two shadow components.

4. Merge: Two gaps merge into one because the robot crosses a bitangent ray
in the oppose direction. In this case, two shadow components merge into
one.

This is a complete list of possible events, under a general position assumption that
precludes environments that cause degeneracies, such as three gaps that merge
into one or the appearance of a gap precisely where two other gaps split.

As each of these gap events occurs, it needs to be reflected in the tree. If a gap
disappears, as shown in Figure 12.30, then the corresponding edge and vertex are
simply removed. If a merge event occurs, then an intermediate vertex is inserted
as shown in Figure 12.31. This indicates that if that gap is chased, it will split
into the two original gaps. If a split occurs, as shown in Figure 12.32, then the
intermediate vertex is removed. The appearance of a gap is an important case,
which generates a primitive vertex in the tree, as shown in Figure 12.33. Note that
a primitive vertex can never split because chasing it will result in its disappearance.

A simple example will now be considered.

Example 12.6 (Gap Navigation Tree) Suppose that the robot does not know
the environment in Figure 12.34. It moves from cells 1 to 7 in order and then re-
turns to cell 1. The following sequence of trees occurs: T1, . . ., T7, T

′
6, . . ., T

′
1, as

shown in Figure 12.35. The root vertex is shown as a solid black disc. Vertices

676 S. M. LaValle: Planning Algorithms

Merge

Split

(a) (b)

Figure 12.29: (a) The robot crosses a ray that extends from a bitangent. (b) Gaps
split or merge, depending on the direction.

a b

c

a b

a b

c

a b

a

b
c

a

b

Figure 12.30: If a gap disappears, it is simply removed from the GNT.

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 677

a b

c

a b

a b

c

a

b
c

a
b

c

a

b
c

d
c

c

d

c

a

b
cd

Figure 12.31: If two gaps merge, an intermediate vertex is inserted into the tree.

that are not known to be primitive are shown as circles; primitive vertices are
squares. Note that if any leaf vertex is a circle, then it means that the shadow
region of R that is hidden by that gap has not been completely explored. Note
that once the robot reaches cell 5, it has seen the whole environment. This occurs
precisely when all leaf vertices are primitive. When the robot returns to the first
region, the tree is larger because it knows that the region on the right is composed
of two smaller regions to the right. If all leaves are squares, this means that the
environment has been completely explored. �

In the example, all of the interesting parts of the environment were explored.
From this point onward, all leaf vertices will be primitive vertices because all pos-
sible splits have been discovered. In a sense, the environment has been completely
learned, at the level of resolution possible with the gap sensor. A simple strategy
for exploring the environment is to chase any gaps that themselves are nonprimi-
tive leaf vertices or that have children that are nonprimitive leaf vertices. A leaf
vertex in the tree can be chased by repeatedly applying actions that chase its corre-
sponding gap in the gap sensor. This may cause the tree to incrementally change;
however, there is no problem if the action is selected to chase whichever gap hides
the desired leaf vertex, as shown in Figure 12.36. Every nonprimitive leaf vertex
will either split or disappear. After all nonprimitive leaf vertices have been chased,
all possible splits have been performed and only primitive leaves remain. In this
case, the environment has been completely learned.

678 S. M. LaValle: Planning Algorithms

a b

a

b
c

d
c

c

a

b
cd

cd

Figure 12.32: If two gaps split, the intermediate vertex is removed.

a

a

ba

a

b

b

Figure 12.33: The appearance of a gap results in a primitive vertex, which is
denoted by a square.

Using the GNTs for optimal navigation Since there is no precise map of
the environment, it is impossible to express a goal state using coordinates in R2.
However, a goal can be expressed in terms of the vertex that must be chased to
make the state visible. For example, imagine showing the robot an object while it
explores. At first, the object is visible, but a gap may appear that hides the object.
After several merges, a vertex deep in the tree may correspond to the location from
which the object is visible. The robot can navigate back to the object optimally
by chasing the vertex that first hid the object by its appearance. Once this vertex
and its corresponding gap disappear, the object becomes visible. At this time
the robot can move straight toward the object (assuming an additional sensor
that indicates the direction of the object). It was argued in [945] that when the
robot chases a vertex in the GNT, it precisely follows the paths of the shortest-

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 679

1

2

3

4

5
6

7

Figure 12.34: A simple environment for illustrating the gap navigation tree.

path roadmap, which was introduced in Section 6.2.4. Each pair of successive gap
events corresponds to the traversal of a bitangent edge.

I-space interpretation In terms of an I-space over the set of environments, the
GNT considers large sets of environments to be equivalent. This means that an
I-map was constructed on which the derived I-space is the set of possible GNTs.
Under this I-map, many environments correspond to the same GNT. Due to this,
the robot can accomplish interesting tasks without requesting further informa-
tion. For example, if two environments differ only by rotation or scale, the GNT
representations are identical. Surprisingly, the robot does not even need to be con-
cerned about whether the environment boundary is polygonal or curved. The only
important concern is how the gaps events occur. For example, the environments
in Figure 12.37 all produce the same GNTs and are therefore indistinguishable to
the robot. In the same way that the maze exploring algorithm of Section 12.3.1
did not need a complete map to locate an object, the GNT does not need one to
perform optimal navigation.

12.3.5 Probabilistic Localization and Mapping

The problems considered so far in Section 12.3 have avoided probabilistic model-
ing. Suppose here that probabilistic models exist for the state transitions and the
observations. Many problems can be formulated by replacing the nondeterministic
models in Section 12.3.1 by probabilistic models. This would lead to probabilistic
I-states that represent distributions over a set of possible grids and a configura-
tion within each grid. If the problem is left in its full generality, the I-space is
enormous to the point that is seems hopeless to approach problems in the manner
used to far. If optimality is not required, then in some special cases progress may
be possible.

The current problem is to construct a map of the environment while simul-
taneously localizing the robot with the respect to the map. Recall Figure 1.7
from Section 1.2. The section covers a general framework that has been popular
in mobile robotics in recent years (see the literature suggested at the end of the
chapter). The discussion presented here can be considered as a generalization of

680 S. M. LaValle: Planning Algorithms

R R

R

R RL L

T1 T2 T3 T4 T5

L
L

L
L

L

L
L

L RL

T6 T7 T ′
6 T ′

5 T ′
4

R R

R

R

R

R

T ′
3 T ′

2 T ′
1

Figure 12.35: Building a representation of the environment in Figure 12.34 us-
ing the gap navigation tree. The sequence is followed from left to right. For
convenience, the “R” or “L” inside of each vertex indicates whether the shadow
component is to the right or left of the gap, respectively. This information is not
needed by the algorithm, but it helps in understanding the representation.

the discussion from Section 12.2.3, which was only concerned with the localization
portion of the current problem. Now the environment is not even known. The
current problem can be interpreted as localization in a state space defined as

X = C × E, (12.29)

in which C is a configuration space and E is the environment space. A state, xk, is
represented as xk = (qk, e); there is no k subscript for e because the environment is
assumed to be static). The history I-state provides the data to use in the process
of determining the state. As for localization in Section 12.2, there are both passive
and active versions of the problem. An incremental version of the active problem
is sometimes called the next-best-view problem [66, 238, 793]. The difficulty is that
the robot has opposing goals of: 1) trying to turn on the sensor at places that will
gain as much new data as possible, and 2) this minimization of redundancy can
make it difficult to fuse all of the measurements into a global map. The passive
problem will be described here; the methods can be used to provide information
for solving the active problem.

Suppose that the robot is a point that translates and rotates in R2. According
to Section 4.2, this yields C = R2×S1, which represents SE(2). Let q ∈ C denote a

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 681

a

fe

h

b

dc

g

f

hg

h

f

gap h disappeared

Figure 12.36: Optimal navigation to a specified part of the environment is achieved
by “chasing” the desired vertex in the GNT until it disappears. This will make a
portion of the environment visible. In the example, the gap labeled “h” is chased.

Figure 12.37: These environments yield the same GNTs and are therefore equiva-
lent at the resolution of the derived I-space. The robot cannot measure distances
and does not even care whether walls are straight or curved; it is not relevant
to the navigation task. Nevertheless, it executes optimal motions in terms of the
Euclidean distance traveled.

configuration, which yields the position and orientation of the robot. Assume that
configuration transitions are modeled probabilistically, which requires specifying a
probability density, p(qk+1|qk, uk). This can be lifted to the state space to obtain
p(xk+1|xk, uk) by assuming that the configuration transitions are independent of
the environment (assuming no collisions ever occur). This replaces qk and qk+1 by
xk and xk+1, respectively, in which xk = (qk, e) and xk+1 = (qk+1, e) for any e ∈ E.

Suppose that observations are obtained from a depth sensor, which ideally
would produce measurements like those shown in Figure 11.15b; however, the
data are assumed to be noisy. The probabilistic model discussed in Section 12.2.3
can be used to define p(y|x). Now imagine that the robot moves to several parts
of the environment, such as those shown in Figure 11.15a, and performs a sensor
sweep in each place. If the configuration qk is not known from which each sweep
yk was performed, how can the data sets be sewn together to build a correct,

682 S. M. LaValle: Planning Algorithms

global map of the environment? This is trivial after considering the knowledge of
the configurations, but without it the problem is like putting together pieces of a
jigsaw puzzle. Thus, the important data in each stage form a vector, (yk, qk). If
the sensor observations, yk, are not tagged with a configuration, qk, from which
they are taken, then the jigsaw problem arises. If information is used to tightly
constrain the possibilities for qk, then it becomes easier to put the pieces together.
This intuition leads to the following approach.

The EM algorithm The problem is often solved in practice by applying the
expectation-maximization (EM) algorithm [106]. In the general framework, there
are three different spaces:

1. A set of parameters, which are to be determined through some measurement
and estimation process. In our problem, this represents E, because the main
goal is to determine the environment.

2. A set of data, which provide information that can be used to estimate the
parameter. In the localization and mapping problem, this corresponds to the
history I-space IK . Each history I-state ηK ∈ IK is ηK = (p(x), ũK−1, ỹK),
in which p(x) is a prior probability density over X.

3. A set of hidden variables, which are unknown but need to be estimated to
complete the process of determining the parameters. In the localization and
mapping problem, this is the configuration space C.

Since both the parameters and the hidden variables are unknown, the choice be-
tween the two may seem arbitrary. It will turn out that expressions can be derived
to nicely express the probability density for the hidden variables, but the param-
eters are much more complicated.

The EM algorithm involves an expectation step followed by a maximization
step. The two steps are repeated as necessary until a solution with the desired
accuracy is obtained. The method is guaranteed to converge under general con-
ditions [269, 977, 978]. In practice, it appears to work well even under cases that
are not theoretically guaranteed to converge [940].

From this point onward, let E, IK , and C denote the three spaces for the EM
algorithm because they pertain directly to the problem. Suppose that a robot has
moved in the environment for K − 1 stages, resulting in a final stage, K. At each
stage, k ∈ {1, . . . , K}, an observation, yk, is made using its sensor. This could,
for example, represent a set of distance measurements made by sonars or a range
scanner. Furthermore, an action, uk, is applied for k = 1 to k = K. A prior
probability density function, p(x), is initially assumed over X. This leads to the
history I-state, ηk, as defined in (11.14).

Now imagine that K stages have been executed, and the task is to estimate e.
From each qk, a measurement, yk, of part of the environment is taken. The EM
algorithm generates a sequence of improved estimates of e. In each execution of
the two EM steps, a new estimate of e ∈ E is produced. Let êi denote this estimate

12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 683

after the ith iteration. Let q̃K denote the configuration history from stage 1 to
stage K. The expectation step computes the expected likelihood of ηK given êi.
This can be expressed as3

Q(e, êi−1) =E [p(ηK , q̃K | e)| ηK , êi−1]

=

∫

C
p(ηK , q̃K | e)p(q̃K | ηK , êi−1)dq̃K ,

(12.30)

in which the expectation is taken over the configuration histories. Since ηK is
given and the expectation removes q̃k, (12.30) is a function only of e and êi−1. The
term p(ηK , q̃K | e) can be expressed as

p(ηK , q̃K | e) = p(q̃K | ηK , e)p(ηK |e), (12.31)

in which p(ηK) is a prior density over the I-space, given nothing but the environ-
ment e. The factor p(q̃K | ηK , e) differs from the second factor of the integrand in
(12.30) only by using e or êi−1. The main difficulty in evaluating (12.30) is to eval-
uate p(q̃k| ηK , êi−1) (or the version that uses e). This is essentially a localization
problem with a given map, as considered in Section 12.2.3. The information up
to stage k can be applied to yield the probabilistic I-state p(qk| ηk, êi−1) for each
qk; however, this neglects the information from the remaining stages. This new
information can be used to make inferences about old configurations. For example,
based on current measurements and memory of the actions that were applied, we
have better information regarding the configuration several stages ago. In [941]
a method of computing p(qk| ηk, êi−1) is given that computes two terms: One is
p(qk|ηk), and the other is a backward probabilistic I-state that starts at stage K
and runs down to k + 1.

Note that once determined, (12.30) is a function only of e and êi−1. The
maximization step involves selecting an êi that minimizes (12.30):

êi = argmax
e∈E

Q(e, êi−1). (12.32)

This optimization is often too difficult, and convergence conditions exist if êi is
chosen such that Q(êi, êi−1) > Q(êi−1, êi−1). Repeated iterations of the EM al-
gorithm result in a kind of gradient descent that arrives at a local minimum in
E.

One important factor in the success of the method is in the representation of E.
In the EM computations, one common approach is to use a set of landmarks, which
were mentioned in Section 11.5.1. These are special places in the environment that
can be identified by sensors, and if correctly classified, they dramatically improve
localization. In [941], the landmarks are indicated by a user as the robot travels.
Classification and positioning errors can both be modeled probabilistically and

3In practice, a logarithm is applied to p(ηK , qk| e) because densities that contain exponentials
usually arise. Taking the logarithm makes the expressions simpler without affecting the result
of the optimization. The log is not applied here because this level of detail is not covered.

684 S. M. LaValle: Planning Algorithms

incorporated into the EM approach. Another idea that dramatically simplifies the
representation of E is to approximate environments with a fine-resolution grid.
Probabilities are associated with grid cells, which leads to a data structure called
an occupancy grid [307, 685, 850]. In any case, E must be carefully defined to
ensure that reasonable prior distributions can be made for p(e) to initialize the
EM algorithm as the robot first moves.

12.4 Visibility-Based Pursuit-Evasion

This section considers visibility-based pursuit-evasion [612, 932], which was de-
scribed in Section 1.2 as a game of hide-and-seek. The topic provides an excellent
illustration of the power of I-space concepts.

12.4.1 Problem Formulation

The problem considered in this section is formulated as follows.

Formulation 12.1 (Visibility-Based Pursuit-Evasion)

1. A given, continuous environment region R ⊂ R2, which is an open set that
is bounded by a simple closed curve. The boundary ∂R is often a polygon,
but it may be any piecewise-analytic closed curve.

2. An unbounded time interval T = [0,∞).

3. An evader, which is a moving point in R. The evader position e(t) at time
t ∈ T is determined by a continuous position function, ẽ : [0, 1]→ R.4

4. A pursuer, which is a moving point in R. The evader position function ẽ is
unknown to the pursuer.

5. A visibility sensor, which defines a set V (r) ⊆ R for each r ∈ R.

The task is to find a path, p̃ : [0, 1] → R, for the pursuer for which the evader
is guaranteed to be detected, regardless of its position function. This means that
∃t ∈ T such that e(t) ∈ V (p(t)). The speed of the pursuer is not important;
therefore, the time domain may be lengthened as desired, if the pursuer is slow.

It will be convenient to solve the problem by verifying that there is no evader.
In other words, find a path for the pursuer that upon completion guarantees that
there are no remaining places where the evader could be hiding. This ensures that
during execution of the plan, the pursuer will encounter any evader. In fact, there
can be any number of evaders, and the pursuer will find all of them. The approach
systematically eliminates any possible places where evaders could hide.

4Following from standard function notation, it is better to use ẽ(t) instead of e(t) to denote
the position at time t; however, this will not be followed.

12.4. VISIBILITY-BASED PURSUIT-EVASION 685

The state yields the positions of the pursuer and the evader, x = (p, e), which
results in the state space X = R×R ⊂ R4. Since the evader position is unknown,
the current state is unknown, and I-spaces arise. The observation space Y is a
collection of subsets of R. For each p ∈ R, the sensor yields a visibility poly-
gon, V (p) ⊆ R (this is denoted by y = h(p, e) using notation of Section 11.1.1).
Consider the history I-state at time t. The initial pursuer position p(0) is given
(any position can be chosen arbitrarily, if it is not given), and the evader may lie
anywhere in R. The input history ũt can be expressed as the pursuer history p̃t.

5

Thus, the history I-state is

ηt = ((p(0), R), p̃t, ỹt), (12.33)

in which (p(0), R) ⊂ X reflects the initial condition in which p(0) is known, and
the evader position e(0) may lie anywhere in R.

Consider the nondeterministic I-space, Indet. Since the pursuer position is al-
ways known, the interesting part of R is the subset in which the evader may lie.
Thus, the nondeterministic I-state can be expressed as Xt(ηt) = (p(t), E(ηt)), in
which E(ηt) is the set of possible evader positions given ηt. As usual for non-
deterministic I-states, E(ηt) is the smallest set that is consistent with all of the
information in ηt.

Consider how E(ηt) varies over time. After the first instant of time, V (p(0))
is observed, and it is known that the evader lies in R \ V (p(0)), which is the
shadow region (defined in Section 12.3.4) from p(0). As the pursuer moves, E(ηt)
varies. Suppose you are told that the pursuer is now at position p(t), but you
are not yet told ηt. What options seem possible for E(ηt)? These depend on
the history, but the only interesting possibilities are that each shadow component
may or may not contain the evader. For some of these components, we may be
certain that it does not. For example, consider Figure 12.38. Suppose that the
pursuer initially believes that the end of the corridor may contain the evader. If it
moves along the smaller closed-loop path, the nondeterministic I-state gradually
varies but returns to the same value when the loop is completed. However, if the
pursuer traverses the larger loop, it becomes certain upon completing the loop
that the corridor does not contain the evader. The dashed line that was crossed in
this example may inspire you to think about cell decompositions based on critical
boundaries, as in the algorithm in Section 6.3.4. This idea will be pursued shortly
to develop a complete algorithm for solving this problem. Before presenting a
complete algorithm, however, first consider some interesting examples.

Example 12.7 (When Is a Problem Solvable?) Figure 12.39 shows four sim-
ilar problems. The evader position is never shown because the problem is solved by

5To follow the notation of Section 11.4 more closely, the motion model ṗ = u can be used, in
which u represents the velocity of the pursuer. Nature actions can be used to model the velocity
of the evader to obtain ė. By integrating ṗ over time, p(t) can be obtained for any t. This means
that p̃t can be used as a simpler representation of the input history, instead of directly referring
to velocities.

686 S. M. LaValle: Planning Algorithms

V (p) p

(a) (b) (c)

Figure 12.38: (a) Suppose the pursuer comes near the end of a contaminated
corridor. (b) If the pursuer moves in a loop path, the nondeterministic I-state
gradually changes, but returns to its original value. (c) However, if a critical
boundary is crossed, then the nondeterministic I-state fundamentally changes.

ensuring that no evader could be left hiding. Note that the speed of the pursuer is
not relevant to the nondeterministic I-states. Therefore, a solution can be defined
by simply showing the pursuer path. The first three examples are straightforward
to solve. However, the fourth example does not have a solution because there are
at least three distinct hiding places (can you find them?). Let V (V (p)) denote
the set of all points visible from at least one point in V (p). The condition that
prevents the problem from being solved is that there exist three positions, p1, p2,
p3, such that V (V (pi)) ∩ V (V (pj)) = ∅ for each i, j ∈ {1, 2, 3} with i 6= j. As one
hiding place is reached, the evader can sneak between the other two. In the worst
case, this could result in an endless chase with the evader always eluding discov-
ery. We would like an algorithm that systematically searches Indet and determines
whether a solution exists. �

Since one pursuer is incapable of solving some problems, it is tempting to
wonder whether two pursuers can solve any problem. The next example gives an
interesting sequence of environments that implies that for any positive integer k,
there is an environment that requires exactly k pursuers to solve.

Example 12.8 (A Sequence of Hard Problems) Each environment in the se-
quence shown in Figure 12.40 requires one more pursuer than the previous one
[414]. The construction is based on recursively ensuring there are three isolated
hiding places, as in the last problem of Figure 12.39. Each time this occurs, an-
other pursuer is needed. The sequence recursively appends three environments
that require k pursuers, to obtain a problem that requires k+1. An extra pursuer
is always needed to guard the junction where the three environments are attached
together. The construction is based on the notion of 3-separability, from pursuit-
evasion on a graph, which was developed in [773]. �

The problem can be made more challenging by considering multiply connected
environments (environments with holes). A single pursuer cannot solve any of the
these problems. Determining the minimum number of pursuers required to solve

12.4. VISIBILITY-BASED PURSUIT-EVASION 687

Figure 12.39: Three problems that can be easily solved with one pursuer, and a
minor variant for which no solution exists.

Figure 12.40: Each collection of corridors requires one more pursuer than the one
before it because a new pursuer must guard the junction.

such a problem is NP-hard [414].

12.4.2 A Complete Algorithm

Now consider designing a complete algorithm that solves the problem in the case
of a single pursuer. To be complete, it must find a solution if one exists; otherwise,
it correctly reports that no solution is possible. Recall from Figure 12.38 that
the nondeterministic I-state changed in an interesting way only after a critical
boundary was crossed. The pursuit-evasion problem can be solved by carefully
analyzing all of the cases in which these critical changes can occur. It turns out
that these are exactly the same cases as considered in Section 12.3.4: crossing
inflection rays and bitangent rays. Figure 12.38 is an example of crossing an
inflection ray. Figure 12.41 indicates the connection between the gaps of Section
12.3.4 and the parts of the environment that may contain the evader.

Recall that the shadow region is the set of all points not visible from some

688 S. M. LaValle: Planning Algorithms

P

e?

e?

e?

e?
e?

e?

wall

wall

wall

wallwallwall

(a) (b)

Figure 12.41: Recall Figure 11.15. Beyond each gap is a portion of the environment
that may or may not contain the evader.

p(t); this is expressed as R \ V (p(t)). Every critical event changes the number
of shadow components. If an inflection ray is crossed, then a shadow component
either appears or disappears, depending on the direction. If a bitangent ray is
crossed, then either two components merge into one or one component splits into
two. To keep track of the nondeterministic I-state, it must be determined whether
each component of the shadow region is cleared, which means it certainly does not
contain the evader, or contaminated, which means that it might contain the evader.
Initially, all components are labeled as contaminated, and as the pursuer moves,
cleared components can emerge. Solving the pursuit-evasion problem amounts to
moving the pursuer until all shadow components are cleared. At this point, it is
known that there are no places left where the evader could be hiding.

If the pursuer crosses an inflection ray and a new shadow component appears, it
must always be labeled as cleared because this is a portion of the environment that
was just visible. If the pursuer crosses a bitangent ray and a split occurs, then the
labels are distributed across the two components: A contaminated shadow com-
ponent splits into two contaminated components, and a cleared component splits
into two cleared components. If the bitangent ray is crossed in the other direction,
resulting in a merge of components, then the situation is more complicated. If one
component is cleared and the other is contaminated, then the merged component
is contaminated. The merged component may only be labeled as cleared if both
of the original components are already cleared. Note that among the four critical
cases, only the merge has the potential to undo the work of the pursuer. In other
words, it may lead to recontamination.

Consider decomposing R into cells based on inflection rays and bitangent rays,
as shown in Figure 12.42. These cells have the following information-conservative
property: If the pursuer travels along any loop path that stays within a 2D cell,
then the I-state remains the same upon returning to the start. This implies that

12.4. VISIBILITY-BASED PURSUIT-EVASION 689

Environment Inflection rays

Bitangent rays Cell decomposition

Figure 12.42: The environment is decomposed into cells based on inflections and
bitangents, which are the only critical visibility events.

the particular path taken by the pursuer through a cell is not important. A solution
to the pursuit-evasion problem can be described as a sequence of adjacent 2D cells
that must be visited. Due to the information-conservative property, the particular
path through a sequence of cells can be chosen arbitrarily.

Searching the cells for a solution is more complicated than searching for paths in
Chapter 6 because the search must be conducted in the I-space. The pursuer may
visit the same cell in R on different occasions but with different knowledge about
which components are cleared and contaminated. A directed graph, GI , can be
constructed as follows. For each 2D cell in R and each possible labeling of shadow
components, a vertex is defined in GI . For example, if the shadow region of a cell
has three components, then there are 23 = 8 corresponding vertices in GI . An edge
exists in GI between two vertices if: 1) their corresponding cells are adjacent, and
2) the labels of the components are consistent with the changes induced by crossing
the boundary between the two cells. The second condition means that the labeling
rules for an appear, disappear, split, or merge must be followed. For example, if

690 S. M. LaValle: Planning Algorithms

crossing the boundary causes a split of a contaminated shadow component, then
the new components must be labeled contaminated and all other components must
retain the same label. Note that GI is directed because many motions in the Indet
are not reversible. For example, if a contaminated region disappears, it cannot
reappear as contaminated by reversing the path. Note that the information in
this directed graph does not improve monotonically as in the case of lazy discrete
localization from Section 12.2.1. In the current setting, information is potentially
worse when shadow components merge because contamination can spread.

To search GI , start with any vertex for which all shadow region components
are labeled as contaminated. The particular starting cell is not important. Any of
the search algorithms from Section 2.2 may be applied to find a goal vertex, which
is any vertex of GI for which all shadow components are labeled as cleared. If no
such vertices are reachable from the initial state, then the algorithm can correctly
declare that no solution exists. If a goal vertex is found, then the path in GI
gives the sequence of cells that must be visited to solve the problem. The actual
path through R is then constructed from the sequence of cells. Some of the cells
may not be convex; however, their shape is simple enough that a sophisticated
motion planning algorithm is not needed to construct a path that traverses the
cell sequence.

The algorithm presented here is conceptually straightforward and performs well
in practice; however, its worst-case running time is exponential in the number of
inflection rays. Consider a polygonal environment that is expressed with n edges.
There can be as many as O(n) inflections and O(n2) bitangents. The number of
cells is bounded by O(n3) [412]. Unfortunately, GI has an exponential number of
vertices because there can be as many as O(n) shadow components, and there are
2n possible labelings if there are n components. Note that GI does not need to be
computed prior to the search. It can be revealed incrementally during the planning
process. The most efficient complete algorithm, which is more complicated, solves
the pursuit-evasion problem in time O(n2) and was derived by first proving that
any problem that can be solved by a pursuer using the visibility polygon can
be solved by a pursuer that uses only two beams of light [770]. This simplifies
V (p(t)) from a 2D region in R to two rotatable rays that emanate from p(t) and
dramatically reduces the complexity of the I-space.

12.4.3 Other Variations

Numerous variations of the pursuit-evasion problem presented in this section can
be considered. The problem becomes much more difficult if there are multiple pur-
suers. A cell decomposition can be made based on changing shadow components;
however, some of the cell boundaries are algebraic surfaces due to complicated
interactions between the visibility polygons of different pursuers. Thus, it is dif-
ficult to implement a complete algorithm. On the other hand, straightforward
heuristics can be used to guide multiple pursuers. A single pursuer can use the
complete algorithm described in this section. When this pursuer fails, it can move

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 691

(a) (b) (c) (d) (e)

Figure 12.43: Several evader detection models: (a) omnidirectional sensing with
unlimited distance; (b) visibility with a limited field of view; (c) a single visibility
ray that is capable of rotating; (d) limited distance and a rotating viewing cone,
which corresponds closely to a camera model; and (e) three visibility rays that are
capable of rotating.

to some part of the environment and then wait while a second pursuer applies the
complete single-pursuer algorithm on each shadow component. This idea can be
applied recursively for any number of robots.

The problem can be made more complicated by placing a velocity bound on
the evader. Even though this makes the pursuer more powerful, it is more difficult
to design a complete algorithm that correctly exploits this additional information.
No complete algorithms currently exist for this case.

Figure 12.43 shows several alternative detection models that yield different
definitions of V (p(t)). Each requires different pursuit-evasion algorithms because
the structure of the I-space varies dramatically across different sensing models. For
example, using the model in Figure 12.43c, a single pursuer is required to move
along the ∂X. Once it moves into the interior, the shadow region always becomes
a single connected component. This model is sometimes referred to as a flashlight.
If there are two flashlights, then one flashlight may move into the interior while
the other protects previous work. The case of limited depth, as shown in Figure
12.43, is very realistic in practice, but unfortunately it is the most challenging.
The number of required pursuers generally depends on metric properties of the
environment, such as its minimum “thickness.” The method presented in this
section was extended to the case of a limited field of view in [381]; critical curves
are obtained that are similar to those in Section 6.3.4. See the literature overview
at the end of the chapter for more related material.

12.5 Manipulation Planning with Sensing Un-

certainty

One of the richest sources of interesting I-spaces is manipulation planning. As
robots interact with obstacles or objects in the world, the burden of estimating
the state becomes greater. The classical way to address this problem is to highly
restrict the way in which the robot can interact with obstacles. Within the manip-

692 S. M. LaValle: Planning Algorithms

ulation planning framework of Section 7.3.2, this means that a robot must grasp
and carry objects to their desired destinations. Any object must be lying in a sta-
ble configuration upon grasping, and it must be returned to a stable configuration
after grasping.

As the assumptions on the classical manipulation planning framework are
lifted, it becomes more difficult to predict how the robot and other bodies will
behave. This immediately leads to the challenges of uncertainty in predictability,
which was the basis of Chapter 10. The next problem is to design sensors that
enable plans to be achieved in spite of this uncertainty. For each sensing model,
an I-space arises.

Section 12.5.1 covers the preimage planning framework [311, 659], under which
many interesting issues covered in Chapters 10 and 11 are addressed for a specific
manipulation planning problem. I-states, forward projections, backprojections,
and termination actions were characterized in this context. Furthermore, several
algorithmic complexity results regarding planning under uncertainty have been
proved within this framework.

Section 12.5.2 covers methods that clearly illustrate the power of reasoning
directly in terms of the I-space. The philosophy is to allow nonprehensile forms
of manipulation (e.g., pushing, squeezing, throwing) and to design simple sensors,
or even to avoid sensing altogether. This dramatically reduces the I-space while
still allowing feasible plans to exist. This contradicts the intuition that more
information is better. Using less information leads to greater uncertainty in the
state, but this is not important in some problems. It is only important is that the
I-space becomes simpler.

12.5.1 Preimage Planning

The preimage planning framework (or LMT framework, named after its developers,
Lozano-Pérez, Mason, and Taylor) was developed as a general way to perform
manipulation planning under uncertainty [311, 659]. Although the concepts apply
to general configuration spaces, they will be covered here for the case in which
C = R2 and Cobs is polygonal. This is a common assumption throughout most of
the work done within this framework. This could correspond to a simplified model
of a robot hand that translates in W = R2, while possibly carrying a part. A
popular illustrative task is the peg-in-hole problem, in which the part is a peg that
must be inserted into a hole that is slightly larger. This operation is frequently
performed as manufacturing robots assemble products. Using the configuration
space representation of Section 4.3.2, the robot becomes a point moving in R2

among polygonal obstacles.

The distinctive features of the models used in preimage planning are as follows:

1. The robot can execute compliant motions, which means that it can slide
along the boundary of Cobs. This differs from the usual requirement in Part
II that the robot must avoid obstacles.

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 693

2. There is nondeterministic uncertainty in prediction. An action determines a
motion direction, but nature determines how much error will occur during
execution. A bounded error model is assumed.

3. There is nondeterministic uncertainty in sensing, and the true state cannot
be reliably estimated.

4. The goal region is usually an edge of Cobs, but it may more generally be any
subset of cl(Cfree), the closure of Cfree.

5. A hierarchical planning model is used, in which the robot is issued a sequence
of motion commands, each of which is terminated by applying uT based on
the I-state.

Each of these will now be explained in more detail.

Compliant motions It will be seen shortly that the possibility of executing
compliant motions is crucial for reducing uncertainty in the robot position. Let
Ccon denote the obstacle boundary, ∂Cobs (also, Ccon = ∂Cfree). A model of robot
motion while q ∈ Ccon needs to be formulated. In general, this is complicated
by friction. A simple Coulomb friction model is assumed here; see [681] for more
details on modeling friction in the context of manipulation planning. Suppose
that the net force F is applied by a robot at some q ∈ Ccon. The force could be
maintained by using the generalized damper model of robot control [966].

The resulting motion is characterized using a friction cone, as shown in Figure
12.44a. A basic principle of Newtonian mechanics is that the obstacle applies a
reaction force (it may be helpful to look ahead to Section 13.3, which introduces
mechanics). If F points into the surface and is normal to it, then the reaction
force provided by the obstacle will cancel F , and there will be no motion. If F
is not perpendicular to the surface, then sliding may occur. At one extreme, F
may be parallel to the surface. In this case, it must slide along the boundary. In
general, F can be decomposed into parallel and perpendicular components. If the
parallel component is too small relative to the perpendicular component, then the
robot becomes stuck. The friction cone shown in Figure 12.44a indicates precisely
the conditions under which motion occurs. The parameter α captures the amount
of friction (more friction leads to larger α). Figure 12.44b indicates the behaviors
that occur for various directions of F . The diagram is obtained by inverting the
friction cone. If F points into the bottom region, then sticking occurs, which
means that the robot cannot move. If F points away from the obstacle boundary,
then contact is broken (this is reasonable, unless the boundary is sticky). For the
remaining two cases, the robot slides along the boundary.

Sources of uncertainty Nature interferes with both the configuration transi-
tions and with the sensor. Let U = [0, 2π), which indicates the direction in R2

that the robot is commanded to head. Nature interferes with this command, and

694 S. M. LaValle: Planning Algorithms

F

α α

α α

Slide RightSlide Left

Break Contact

Stick

F

(a) (b)

Figure 12.44: The compliant motion model. If a force F is applied by the robot
at q ∈ Ccon, then it moves along the boundary only if −F points outside of the
friction cone.

q

q

(a) (b)

Figure 12.45: Nature interferes with both the configuration transitions and the
sensor observations.

the actual direction lies within an interval of S1. As shown in Figure 12.45a, the
forward projection (recall from Section 10.1.2) for a fixed action u ∈ U yields a
cone of possible future configurations. (A precise specification of the motion model
is given using differential equations in Example 13.15.) The sensing model, shown
in Figure 12.45b, was already given in Section 11.5.1. The nature sensing actions
form a disc given by (11.67), and y = q + ψ, in which q is the true configuration,
ψ is the nature sensing action, and y is the observation. The result appears in
Figure 11.11.

Goal region Since contact with the obstacle is allowed, the goal region can be
defined to include edges of Cobs in addition to points in Cfree. Most often, a single
edge of Cobs is chosen as the goal region.

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 695

Motion commands The planning problem can now be described. It may be
tempting to express the model using continuous time, as opposed to discrete
stages. This is a viable approach, but leads to planning under differential con-
straints, which is the topic of Part IV and is considerably more complicated. In
the preimage-planning framework, a hierarchical approach is taken. A restricted
kind of plan called a motion command, µ, will be defined, and the goal is achieved
by constructing a sequence of motion commands. This has the effect of convert-
ing the continuous-time decision-making problem into a planning problem that
involves discrete stages. Each time a motion command is applied, the robot must
apply a termination action to end it. At that point another motion command can
be issued. Thus, imagine that a high-level module issues motion commands, and
a low-level module executes each until a termination condition is met.

For some action u ∈ U , let Mu = {u, uT}, in which uT is the termination
action. A motion command is a feedback plan, µ : Ihist → Mu, in which Ihist is
the standard history I-space, based on initial conditions, the action history, and
the sensing history. The motion command is executed over continuous time. At
t = 0, µ(η0) = u. Using a history I-state η gathered during execution, the motion
command will eventually yield µ(η) = uT , which terminates it. If the goal was not
achieved, then the high-level module can apply another motion command.

Preimages Now consider how to construct motion commands. Using the hier-
archical approach, the main task of terminating in the goal region can be decom-
posed into achieving intermediate subgoals. The preimage P (µ,G) of a motion
command µ and subgoal G ⊂ cl(Cfree) is the set of all history I-states from which
µ is guaranteed to be achieved in spite of all interference from nature. Each motion
command must recognize that the subgoal has been achieved so that it can apply
its termination action. Once a subgoal is achieved, the resulting history I-state
must lie within the required set of history I-states for the next motion command
in the plan. Let M denote the set of all allowable motion commands that can
be defined. This can actually be considered as an action space for the high-level
module.

Planning with motion commands A high-level open-loop plan,6

π = (µ1, µ2, . . . , µk), (12.34)

can be constructed, which is a sequence of k motion commands. Although the
precise path executed by the robot is unpredictable, the sequence of motion com-
mands is assumed to be predictable. Each motion command µi for 1 < i < k must
terminate with an I-state η ∈ P (µi+1, Gi+1). The preimage of µ1 must include η0,
the initial I-state. The goal is achieved by the last motion command, µk.

More generally, the particular motion command chosen need not be predictable,
and may depend on the I-state during execution. In this case, the high-level

6Note that this open-loop plan is composed of closed-loop motion commands. This is perfectly
acceptable using hierarchical modeling.

696 S. M. LaValle: Planning Algorithms

feedback plan π : Ihist → M can be developed, in which a motion command
µ = π(η) is chosen based on the history I-state η that results after the previous
motion command terminates. Such variations are covered in [281, 311, 588].

The high-level planning problem can be solved using discrete planning algo-
rithms from Chapters 2 and 10. The most popular method within the preimage
planning framework is to perform a backward search from the goal. Although this
sounds simple enough, the set of possible motion commands is infinite, and it is
difficult to sample µ in a way that leads to completeness. Another complication
is that termination is based on the history I-state. Planning is therefore quite
challenging. It was even shown in [311], by a reduction from the Turing machine
halting problem [891], that the preimage in general is uncomputable by any algo-
rithm. It was shown in [732] that the 3D version of preimage planning, in which
the obstacles are polyhedral, is PSPACE-hard. It was then shown in [172] that it
is even NEXPTIME-hard.7

Backprojections Erdmann proposed a practical way to compute effective mo-
tion commands by separating the reachability and recognizability issues [311, 312].
Reachability refers to characterizing the set of points that are guaranteed to be
reachable. Recognizability refers to knowing that the subgoal has been reached
based on the history I-state. Another way to interpret the separation is that the
effects of nature on the configuration transitions is separated from the effects of
nature on sensing.

For reachability analysis, the sensing uncertainty is neglected. The notions
of forward projections and backprojections from Section 10.1.2 can then be used.
The only difference here is that they are applied to continuous spaces and mo-
tion commands (instead of u). Let S denote a subset of cl(Cfree). Both weak
backprojections, WB(S, µ), and strong backprojections, SB(S, µ), can be defined.
Furthermore, nondirectional backprojections [283], WB(S) and SB(S), can be de-
fined, which are analogous to (10.25) and (10.26), respectively.

Figure 12.46 shows a simple problem in which the task is to reach a goal edge
with a motion command that points downward. This is inspired by the peg-in-
hole problem. Figure 12.47 illustrates several backprojections from the goal region
for the problem in Figure 12.46. The action is u = 3π/2; however, the actual
motion lies within the shown cone due to nature. First suppose that contact with
the obstacle is not allowed, except at the goal region. The strong backprojection
is given in Figure 12.47a. Starting from any point in the triangular region, the
goal is guaranteed to be reached in spite of nature. The weak backprojection
is the unbounded region shown in Figure 12.47b. This indicates configurations
from which it is possible to reach the goal. The weak backprojection will not
be considered further because it is important here to guarantee that the goal is
reached. This is accomplished by the strong backprojection. From here onward,
it will be assumed that backprojection by default means a strong backprojection.

7NEXPTIME is the complexity class of all problems that can be solved in nondeterministic
exponential time. This is beyond the complexity classes shown in Figure 6.40.

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 697

Goal edge

Figure 12.46: A simple example that resembles the peg-in-hole problem.

Using weak backprojections, it is possible to develop an alternative framework of
error detection and recovery (EDR), which was introduced by Donald in [281].

Now assume that compliant motions are possible along the obstacle boundary.
This has the effect of enlarging the backprojections. Suppose for simplicity that
there is no friction (α = 0 in Figure 12.44a). The backprojection is shown in Figure
12.47c. As the robot comes into contact with the side walls, it slides down until
the goal is reached. It is not important to keep track of the exact configuration
while this occurs. This illustrates the power of compliant motions in reducing
uncertainty. This point will be pursued further in Section 12.5.2. Figure 12.47d
shows the backprojection for a different motion command.

Now consider computing backprojections in a more general setting. The back-
projection can be defined from any subset of cl(Cfree) and may allow a friction cone
with parameter α. To be included in a backprojection, points from which sticking
is possible must be avoided. Note that sticking is possible even if α = 0. For ex-
ample, in Figure 12.46, nature may allow the motion to be exactly perpendicular
to the obstacle boundary. In this case, sticking occurs on horizontal edges because
there is no tangential motion. In general, it must be determined whether sticking
is possible at each edge and vertex of Cobs. Possible sticking from an edge depends
on u, α, and the maximum directional error contributed by nature. The robot can
become stuck at a vertex if it is possible to become stuck at either incident edge.

Computing backprojections Many algorithms have been developed to com-
pute backprojections. The first algorithm was given in [311, 312]. Assume that
the goal region is one or more segments contained in edges of Ccon. The algorithm
proceeds for a fixed motion command, µ, which is based on a direction u ∈ U as
follows:

1. Mark every obstacle vertex at which sticking is possible. Also mark any
point on the boundary of the goal region if it is possible to slide away from
the goal.

698 S. M. LaValle: Planning Algorithms

(a) (b)

(c) (d)

Figure 12.47: Several backprojections are shown for the peg-in-hole problem.

2. For every marked vertex, extend two rays with directions based on the max-
imum possible deviations allowed by nature when executing u. This inverts
the cone shown in Figure 12.45a. The extended rays are shown in Figure
12.48 for the frictionless case (α = 0).

3. Starting at every goal edge, trace out the boundary of the backprojection
region. Every edge encountered defines a half-plane of configurations from
which the robot is guaranteed to move into. In Figure 12.48, this corresponds
to being below a ray. When tracing out the backprojection boundary, the
direction at each intersection vertex is determined based on including the
points in the half-plane.

The resulting backprojection is shown in Figure 12.49. A more general algorithm
that applies to goal regions that include polygonal regions in Cfree was given in
[283] (some details are also covered in [588]). It uses the plane-sweep principle
(presented in Section 6.2.2) to yield an algorithm that computes the backprojection
in time O(n lg n), in which n is the number of edges used to define Cobs. The
backprojection itself has no more than O(n) edges. Algorithms for computing

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 699

Goal edge

Figure 12.48: Erdmann’s backprojection algorithm traces out the boundary after
constructing cones based on friction.

nondirectional backprojections are given in [140, 283]. One difficulty in this case
is that the backprojection boundary may be quite complicated. An incremental
algorithm for computing a nondirectional backprojection of size O(n2) in time
O(n2 lg n) is given in [140].

Once an algorithm that computes backprojections has been obtained, it needs
to be adapted to compute preimages. Using the sensing model shown in Figure
12.45b, a preimage can be obtained by shrinking the subgoal region G. Let ǫ
denote the radius of the ball in Figure 12.45b. Let G′ ⊂ G denote a subset of the
subgoal in which a strip of thickness ǫ has been removed. If the sensor returns
y ∈ G′, then it is guaranteed that q ∈ G. This yields a method of obtaining
preimages by shrinking the subgoals. If ǫ is too large, however, this may fail to
yield a successful plan, even though one exists.

The high-level plan can be found by performing a backward search that com-
putes backprojections from the goal region (reduced by ǫ). There is still the
difficulty ofM being too large, which controls the branching factor in the search.
One possibility is to compute nondirectional backprojections. Another possibility
is to discretize M. For example, in [588, 590], M is reduced to four principle
directions, and plans are computed for complicated environments by using stick-
ing edges as subgoals. Using discretization, however, it becomes more difficult to
ensure the completeness of the planning algorithm.

The preimage planning framework may seem to apply only to a very specific
model, but it can be extended and adapted to a much more general setting. It
was extended to semi-algebraic obstacle models in [174], which gives a planning
method that runs in time doubly exponential in the C-space dimension (based on
cylindrical algebraic decomposition, which was covered in Section 6.4.2). In [147],

700 S. M. LaValle: Planning Algorithms

Figure 12.49: The computed backprojection. Sliding is guaranteed from the
steeper edge of the triangle; hence, it is included in the backprojection. From
the other top edge, sticking is possible.

probabilistic backprojections were introduced by assigning a uniform probability
density function to the nature action spaces considered in this section. This was
in turn generalized further to define backprojections and preimages as the level
sets of optimal cost-to-go functions in [597, 605]. Dynamic programming methods
can then be applied to compute plans.

12.5.2 Nonprehensile Manipulation

Manipulation by grasping is very restrictive. People manipulate objects in many
interesting ways that do not involve grasping. Objects may be pushed, flipped,
thrown, squeezed, twirled, smacked, blown, and so on. A classic example from the
kitchen is flipping a pancake over by a flick of the wrist while holding the skillet.
These are all examples of nonprehensile manipulation, which means manipulation
without grasping.

The temptation to make robots grasp objects arises from the obsession with
estimating and controlling the state. This task is more daunting for nonprehen-
sile manipulation because there are times at which the object appears to be out
of direct control. This leads to greater uncertainty in predictability and a larger
sensing burden. By planning in the I-space, however, it may be possible to avoid
all of these problems. Several works have emerged which show that manipulation
goals can be achieved with little or no sensing at all. This leads to a form of
minimalism [175, 321, 681], in which the sensors are designed in a way that sim-
plifies the I-space, as opposed to worrying about accurate estimation. The search
for minimalist robotic systems is completely aligned with trying to find derived
I-spaces that are as small as possible, as mentioned in Section 11.2.1. Sensing
systems should be simple, yet still able to achieve the task. Preferably, com-
pleteness should not be lost. Most work in this area is concerned primarily with
finding feasible solutions, as opposed to optimal solutions. This enables further
simplifications of the I-space.

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 701

This section gives an example that represents an extreme version of this min-
imalism. A sensorless manipulation system is developed. At first this may seem
absurd. From the forward projections in Section 10.1.2, it may seem that uncer-
tainty can only grow if nature causes uncertainty in the configuration transitions
and there are no sensors. To counter the intuition, compliant motions have the
ability to reduce uncertainty. This is consistent with the discussion in Section
11.5.4. Simply knowing that some motion commands have been successfully ap-
plied may reduce the amount of uncertainty. In an early demonstration of sensor-
less manipulation, it was shown that an Allen wrench (L-shaped wrench) resting
in a tray can be placed into a known orientation by simply tilting the tray in a
few directions [321]. The same orientation is achieved in the end, regardless of the
initial wrench configuration. Also, no sensors are needed. This can be considered
as a more complicated extension of the ball rolling in a tray that was shown in
Figure 11.29. This is also an example of compliant motions, as shown in Figure
12.44; however, in the present setting F is caused by gravity.

Squeezing parts Another example of sensorless manipulation will now be de-
scribed, which was developed by Goldberg and Mason in [394, 395, 396]; see also
[681]. A Java implementation of the algorithm appears in [131]. Suppose that con-
vex, polygonal parts arrive individually along a conveyor belt in a factory. They
are to be used in an assembly operation and need to be placed into a given ori-
entation. Figure 12.50 shows a top view of a parallel-jaw gripper. The robot can
perform a squeeze operation by bringing the jaws together. Figure 12.50a shows
the part before squeezing, and Figure 12.50b shows it afterward. A simple model
is assumed for the mechanics. The jaws move at constant velocity toward each
other, and it is assumed that they move slowly enough so that dynamics can be
neglected. To help slide the part into place, one of the jaws may be considered
as a frictionless contact (this is a real device; see [175]). The robot can perform
a squeeze operation at any orientation in [0, 2π) (actually, only [0, π) is needed
due to symmetry). Let U = [0, 2π) denote the set of all squeezing actions. Each
squeezing action terminates on its own after the part can be squeezed no further
(without crushing the part).

The planning problem can be modeled as a game against nature. The initial
orientation, x ∈ [0, 2π), of the part is chosen by nature and is unknown. The state
space is S1. For a given part, the task is to design a sequence,

π = (u1, u2, . . . , un), (12.35)

of squeeze operations that leads to a known orientation for the part, regardless of
its initial state. Note that there is no specific requirement on the final state. After
i motion commands have terminated, the history I-state is the sequence

η = (u1, u2, . . . , ui) (12.36)

of squeezes applied so far. The nondeterministic I-space Indet will now be used.
The requirement can be stated as obtaining a singleton, nondeterministic I-state

702 S. M. LaValle: Planning Algorithms

d(θ)

(a) (b)

Figure 12.50: A parallel-jaw gripper can orient a part without using sensors.

(includes only one possible orientation). If the part has symmetries, then the
task is instead to determine a single symmetry class (which includes only a finite
number of orientations)

Consider how a part in an unknown orientation behaves. Due to rotational
symmetry, it will be convenient to describe the effect of a squeeze operation based
on the relative angle between the part and the robot. Therefore, let α = u − x,
assuming arithmetic modulo 2π. Initially, α may assume any value in [0, 2π). It
turns out that after one squeeze, α is always forced into one of a finite number of
values. This can be explained by representing the diameter function d(α), which
indicates the maximum thickness that can be obtained by taking a slice of the part
at orientation α. Figure 12.51 shows the slice for a rectangle. The local minima
of the distance function indicate orientations at which the part will stabilize as
shown in Figure 12.50b. As the part changes its orientation during the squeeze
operation, the α value changes in a way that gradually decreases d(α). Thus,
[0, 2π) can be divided into regions of attraction, as shown in Figure 12.52. These
behave much like the funnels in Section 8.5.1.

The critical observation to solve the problem without sensors is that with each
squeeze the uncertainty can grow no worse, and is usually reduced. Assume u is
fixed. For the state transition equation x′ = f(x, u), the same x′ will be produced
for an interval of values for x. Due to rotational symmetry, it is best to express this
in terms of α. Let s(α) denote relative orientation obtained after a squeeze. Since
α is a function of x and u, this can be expressed as a squeeze function, s : S1 → S1,
defined as

s(α) = f(x, u)− u. (12.37)

The forward projection with respect to an interval, A, of α values can also be

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 703

b

aa

b

0 π/2 π 3π/2 2π

d(α)

α

Figure 12.51: The diameter function for a rectangle.

a

b

0 π/2 π 3π/2 2π

1 2 3 4 1

α

d(α)

Figure 12.52: There are four regions of attraction, each of which represents an
interval of orientations.

defined:
S(A) =

⋃

α∈A
s(α). (12.38)

Any interval A ⊂ [0, 2π) can be interpreted as a nondeterministic I-state,
based on the history of squeezes that have been performed. It is defined, however,
with respect to relative orientations, instead of the original states. The algorithms
discussed in Section 12.1.2 can be applied to Indet. A backward search algorithm is
given in [395] that starts with a singleton, nondeterministic I-state. The planning
proceeds by performing a backward search on Indet. In each iteration, the interval,
A, of possible relative orientations increases until eventually all of S1 is reached
(or the period of symmetry, if symmetries exist).

The algorithm is greedy in the sense that it attempts to force A to be as large
as possible in every step. Note from Figure 12.52 that the regions of attraction
are maximal at the minima of the diameter function. Therefore, only the minima
values are worth considering as choices for α. Let B denote the preimage of the
function s. In the first step, the algorithm finds the α for which B(α) is largest (in
terms of length in S1). Let α0 denote this relative orientation, and let A0 = B(α0).
For each subsequent iteration, let Ai denote the largest interval in [0, 2π) that
satisfies

|S(Ai−1)| < |Ai|, (12.39)

704 S. M. LaValle: Planning Algorithms

in which | · | denotes interval length. This implies that there exists a squeeze
operation for which any relative orientation in S(Ai−1) can be forced into Ai by a
single squeeze. This iteration is repeated, generating A−1, A−2, and so on, until
the condition in (12.39) can no longer be satisfied. It was shown in [395] that
for any polygonal part, the Ai intervals increase until all of S1 (or the period of
symmetry) is obtained.

Suppose that the sequence (A−k, . . . , A0) has been computed. This must be
transformed into a plan that is expressed in terms of a fixed coordinate frame for
the robot. The k-step action sequence (u1, . . . , uk) is recovered from

ui = s(βi−1)− ai − 1
2
(|Ai−k| − |S(Ai−k−1)|) + ui−1 (12.40)

and u−k = 0 [395]. Each ai in (12.40) is the left endpoint of Ai. There is some
freedom of choice in the alignment, and the third term in (12.40) selects actions in
the middle to improve robustness with respect to orientation errors. By exploiting
a proof in [195] that no more than O(n) squeeze operations are needed for a part
with n edges, the complete algorithm runs in time O(n2).

Example 12.9 (Squeezing a Rectangle) Figure 12.53 shows a simple example
of a plan that requires two squeezes to orient the rectangular part when placed
in any initial orientation. Four different executions of the plan are shown, one in
each column. After the first squeeze, the part orientation is a multiple of π/2.
After the second squeeze, the orientation is known. Even though the execution
looks different every time, no feedback is necessary because the I-state contains
no sensor information. �

Further Reading

The material from this chapter could easily be expanded into an entire book on planning
under sensing uncertainty. Several key topics were covered, but numerous others remain.
An incomplete set of suggestions for further reading is given here.

Since Section 12.1 involved converting the I-space into an ordinary state space, many
methods and references in Chapter 10 are applicable. For POMDPs, a substantial
body of work has been developed in operations research and stochastic control theory
[564, 655, 714, 899] and more recently in artificial intelligence [494, 647, 648, 737, 772,
791, 803, 805, 835, 1002, 1003]. Many of these algorithms compress or approximate
Iprob, possibly yielding nonoptimal solutions, but handling problems that involve dozens
of states.

Localization, the subject of Section 12.2, is one of the most fundamental problems
in robotics; therefore, there are hundreds of related references. Localization in a graph
has been considered [297, 342]. The combinatorial localization presentation was based
on [298, 415]. Ambiguities due to symmetry also appeared in [78]. Combinatorial local-
ization with very little sensing is presented in [752]. For further reading on probabilistic
localization, see [43, 258, 421, 447, 485, 493, 549, 621, 622, 754, 825, 887, 888, 962]. In

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 705

Figure 12.53: A two-step squeeze plan [395].

[935, 936], localization uncertainty is expressed in terms of a sensor-uncertainty field,
which is a derived I-space.

Section 12.3 was synthesized from many sources. For more on the maze searching
method from Section 12.3.1 and its extension to exploring a graph, see [119]. The
issue of distinguishability and pebbles arises again in [87, 286, 287, 668, 840, 944]. For
more on competitive ratios and combinatorial approaches to on-line navigation, see
[116, 260, 270, 332, 375, 507, 537, 674, 768, 811].

For more on Stentz’s algorithm and related work, see [543, 913]. A multi-resolution
approach to terrain exploration appears in [761]. For material on bug algorithms, see
[505, 568, 592, 666, 667, 809, 882]. Related sensor-based planning work based on gen-
eralized Voronoi diagrams appears in [218, 219]; also related is [828]. Gap navigation
trees were introduced in [943, 944, 945]. For other work on minimal mapping, see
[484, 824, 873]. Landmark-based navigation is considered in [369, 590, 884].

There is a vast body of literature on probabilistic methods for mapping and localiza-
tion, much of which is referred to as SLAM [942]; see also [182, 221, 275, 717, 771, 982].
One of the earliest works is [897]. An early application of dynamic programming in this
context appears in [584]. A well-known demonstration of SLAM techniques is described
in [159]. For an introduction to the EM algorithm, see [106]; its convergence is addressed
in [269, 977, 978]. For more on mobile robotics in general, see [134, 296].

The presentation of Section 12.4 was based mainly on [414, 612]. Pursuit-evasion
problems in general were first studied in differential game theory [59, 422, 477]. Pursuit-
evasion in a graph was introduced in [773], and related theoretical analysis appears
in [105, 580, 715]. Visibility-based pursuit-evasion was introduced in [932], and the
first complete algorithm appeared in [612]. An algorithm that runs in O(n2) for a
single pursuer in a simple polygon was given in [770]. Variations that consider curved

706 S. M. LaValle: Planning Algorithms

N

S

W E

21

3

4 5

6

7

Figure 12.54: An environment for grid-based localization.

environments, beams of light, and other considerations appear in [208, 254, 304, 603,
618, 745, 889, 890, 931, 933, 981]. Pursuit-evasion in three dimensions is discussed in
[614]. For versions that involve minimal sensing and no prior given map, see [416, 503,
809, 840, 988]. The problem of visually tracking a moving target both with [81, 401,
402, 602, 723, 728] and without [323, 470, 869] obstacles is closely related to pursuit-
evasion. For a survey of combinatorial algorithms for computing visibility information,
see [756]. Art gallery and sensor placement problems are also related [141, 755, 874].
The bitangent events also arise in the visibility complex [796] and in aspect graphs [782],
which are related visibility-based data structures.

Section 12.5 was inspired mostly by the works in [283, 311, 321, 396, 659, 967].
Many works are surveyed in [681]. A probabilistic version of preimage planning was
considered in [148, 149, 605]. Visual preimages are considered in [349]. Careful analysis of
manipulation uncertainty appears in [145, 146]. For more on preimage planning, see [588,
590]. The error detection and recovery (EDR) framework uses many preimage planning
ideas but allows more problems to be solved by permitting fixable errors to occur during
execution [281, 284, 285]. Compliant motions are also considered in [140, 283, 486, 678,
680, 776]. The effects of friction in the C-space are studied in [316]. For more work
on orienting parts, see [175, 322, 394, 395, 810, 969]. For more forms of nonprehensile
manipulation, see [12, 14, 110, 318, 670, 671, 921]. A humorous paper, which introduces
the concept of the “principle of virtual dirt,” is [679]; the idea later appears in [839] and
in the Roomba autonomous vacuum cleaner from the iRobot Corporation.

Exercises

1. For the environment in Figure 12.1a, give the nondeterministic I-states for the
action sequence (L,L,F,B,F,R,F,F), if the initial state is the robot in position 3
facing north and the initial I-state is η0 = X.

2. Describe how to apply the algorithm from Figure 10.6 to design an information-
feedback plan that takes a map of a grid and performs localization.

3. Suppose that a robot operates in the environment shown in Figure 12.54 using
the same motion and sensing model as in Example 12.1. Design an information-
feedback plan that is as simple as possible and successfully localizes the robot,
regardless of its initial state. Assume the initial condition η0 = X.

4. Prove that the robot can use the latitude and orientation information to detect
the unique point of each obstacle boundary in the maze searching algorithm of
Section 12.3.1.

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 707

Figure 12.55: A path followed by the robot in an initially unknown environment.
The robot finishes in the lower right.

5. Suppose once again that a robot is placed into one of the six environments shown in
Figure 12.12. It is initially in the upper right cell facing north; however, the initial
condition is η0 = X. Determine the sequence of sensor observations and nonde-
terministic I-states as the robot executes the action sequence (F,R,B,F,L,L,F).

6. Prove that the counter in the maze searching algorithm of Section 12.3.1 can be
replaced by two pebbles, and the robot can still solve the problem by simulating
the counter. The robot can place either pebble on a tile, detect them when the
robot is on the same tile, and can pick them up to move them to other tiles.

7. Continue the trajectory shown in Figure 12.23 until the goal is reached using the
Bug2 strategy.

8. Show that the competitive ratio for the doubling spiral motion applied to the
lost-cow problem of Figure 12.26 is 9.

9. Generalize the lost-cow problem so that there are n fences that emanate from the
current cow location (n = 2 for the original problem).

(a) If the cow is told that the gate is along only one unknown fence and is no
more than one unit away, what is the competitive ratio of the best plan that
you can think of?

(b) Suppose the cow does not know the maximum distance to the gate. Propose
a plan that solves the problem and establish its competitive ratio.

10. Suppose a point robot is dropped into the environment shown in Figure 12.42.
Indicate the gap navigation trees that are obtained as the robot moves along the
path shown in Figure 12.55.

11. Construct an example for which the worst case bound, (12.25), for Bug1 is ob-
tained.

708 S. M. LaValle: Planning Algorithms

a

b c

d

e

fg

(a) (b)

Figure 12.56: Two pursuit-evasion problems that involve recontamination.

12. Some environments are so complicated that in the pursuit-evasion problem they
require the same region to be visited multiple times. Find a solution for a single
pursuer with omnidirectional visibility to the problem in Figure 12.56a.

13. Find a pursuit-evasion solution for a single pursuer with omnidirectional visibility
to the problem in Figure 12.56b, in which any number of pairs of “feet” may
appear on the bottom of the polygon.

14. Prove that for a polygonal environment, if there are three points, p1, p2, and
p3, for which V (V (p1)), V (V (p2)), and V (V (p3)) are pairwise-disjoint, then the
problem requires more than one pursuer.

15. Prove that the diameter function for the squeezing algorithm in Section 12.5.2
has no more than O(n2) vertices. Give a sequence of polygons that achieves this
bound. What happens for a regular polygon?

16. Develop versions of (12.8) and (12.9) for state-nature sensor mappings.

17. Develop versions of (12.8) and (12.9) for history-based sensor mappings.

18. Describe in detail the I-map used for maze searching in Section 12.3.1. Indicate
how this is an example of dramatically reducing the size of the I-space, as described
in Section 11.2. Is a sufficient I-map obtained?

19. Describe in detail the I-map used in the Bug1 algorithm. Is a sufficient I-map
obtained?

20. Suppose that several teams of point robots move around in a simple polygon.
Each robot has an omnidirectional visibility sensor and would like to keep track of
information for each shadow region. For each team and shadow region, it would
like to record one of three possibilities: 1) There are definitely no team members
in the region; 2) there may possibly be one or more; 3) there is definitely at least
one.

12.5. MANIPULATION PLANNING WITH SENSING UNCERTAINTY 709

(a) Define a nondeterministic I-space based on labeling gaps that captures the
appropriate information. The I-space should be defined with respect to one
robot (each will have its own).

(b) Design an algorithm that keeps track of the nondeterministic I-state as the
robot moves through the environments and observes others.

21. Recall the sequence of connected corridors shown in Figure 12.40. Try to adapt
the polygons so that the same number of pursuers is needed, but there are fewer
polygon edges. Try to use as few edges as possible.

Implementations

22. Solve the probabilistic passive localization problem of Section 12.2.3 for 2D grids.
Implement your solution and demonstrate it on several interesting examples.

23. Implement the exact value-iteration method described in Section 12.1.3 to compute
optimal cost-to-go functions. Test the implementation on several small examples.
How large can you make K, Θ, and Ψ?

24. Develop and implement a graph search algorithm that searches on Indet to perform
robot localization on a 2D grid. Test the algorithm on several interesting examples.
Try developing search heuristics that improve the performance.

25. Implement the Bug1, Bug2, and VisBug (with unlimited radius) algorithms. De-
sign a good set of examples for illustrating their relative strengths and weaknesses.

26. Implement software that computes probabilistic I-states for localization as the
robot moves in a grid.

27. Implement the method of Section 12.3.4 for simply connected environments and
demonstrate it in simulation for polygonal environments.

28. Implement the pursuit-evasion algorithm for a single pursuer in a simple polygon.

29. Implement the part-squeezing algorithm presented in Section 12.5.2.

710 S. M. LaValle: Planning Algorithms

Part IV

Planning Under Differential
Constraints

711

713

Overview of Part IV:

Planning Under Differential Constraints

Part IV is a continuation of Part II. It is generally not necessary to read Part
III before starting Part IV. In the models and methods studied in Part II, it was
assumed that a path can be easily determined between any two configurations
in the absence of obstacles. For example, the sampling-based roadmap approach
assumed that two nearby configurations could be connected by a “straight line” in
the configuration space. The constraints on the path are global in the sense that
the restrictions are on the set of allowable configurations.

The next few chapters introduce differential constraints, which restrict the al-
lowable velocities at each point. These can be considered as local constraints, in
contrast to the global constraints that arise due to obstacles. Some weak differ-
ential constraints, such as smoothness requirements, arose in Chapter 8. Part IV
goes much further by covering differential consraints in full detail and generality.

Differential constraints arise everywhere. In robotics, most problems involve
differential constraints that arise from the kinematics and dynamics of a robot.
One approach is to ignore them in the planning process and hope that the dif-
ferential constraints can be appropriately handled in making refinements. This
corresponds to applying the techniques of Part II in robotics applications and then
using control techniques to ensure that a computed path is executed as closely as
possible. If it is practical, a better approach is to consider differential constraints
in the planning process. This yields plans that directly comply with the natural
motions of a mechanical system.

Chapter 13 is similar in spirit to Chapter 3. It explains how to construct
and represent models that have differential constraints, whereas Chapter 3 did
the same for geometric models. It also provides background and motivation for
Part IV by giving a catalog of numerous models that can be used in planning
algorithms. Differential models are generally expressed as ẋ = f(x, u), which is
the continuous-time counterpart of the state transition equation, xk+1 = f(xk, uk).
Thus, the focus of Chapter 13 it to define transition functions.

Chapter 14 covers sampling-based planning algorithms for problems that in-
volve differential constraints. There is no chapter on combinatorial algorithms
in this context because they exist only in extremely limited cases. Differential
constraints seem to destroy most of the nice properties that are needed by com-
binatorial approaches. Rather than develop complete algorithms, the focus is on
resolution-complete planning algorithms. This is complicated by the discretiza-
tion of three spaces (state space, action space, and time), whereas in Chapter
5 resolution completeness only involved discretization of the C-space. The main
topics are extending the incremental sampling and searching framework of Section
5.4, extending feedback motion planning of Chapter 8, and developing decoupled
methods for trajectory planning.

Chapter 15 overviews powerful ideas and tools that come mainly from control
theory. The planning methods of Chapter 14 can be greatly enhanced by utilizing

714

the material from Chapter 15. The two chapters are complementary in that Chap-
ter 14 is mainly algorithmic and Chapter 15 is mainly about mathematical tech-
niques. The main topics of Chapter 15 are system stability, optimality concepts
(Hamilton-Jacobi-Bellman equation and Pontryagin’s minimum principle), short-
est paths for wheeled vehicles, nonholonomic system theory, and nonholonomic
steering methods. The term nonholonomic comes from mechanics and refers to
differential constraints that cannot be fully integrated to remove time derivatives
of the state variables.

Chapter 13

Differential Models

This chapter provides a continuous-time counterpart to the state transition equa-
tion, xk+1 = f(xk, uk), which was crucial in Chapter 2. On a continuous state
space, X (assumed to be a smooth manifold), it will be defined as ẋ = f(x, u),
which intentionally looks similar to the discrete version. It will still be referred
to as a state transition equation. It will also be called a system (short for control
system), which is a term used in control theory. There are no obstacle regions in
this chapter. Obstacles will appear again when planning algorithms are covered
in Chapter 14. In continuous time, the state transition function f(x, u) yields a
velocity as opposed to the next state. Since the transitions are no longer discrete,
it does not make sense to talk about a “next” state. Future states that satisfy the
differential constraints are obtained by integration of the velocity. Therefore, it is
natural to specify only velocities. This relies on the notions of tangent spaces and
vector fields, as covered in Section 8.3.

This chapter presents many example models that can be used in the planning
algorithms of Chapter 14. Section 13.1 develops differential constraints for the case
in which X is the C-space of one or more bodies. These constraints commonly
occur for wheeled vehicles (e.g., a car cannot move sideways). To represent dynam-
ics, constraints on acceleration are needed. Section 13.2 therefore introduces the
phase space, which enables any problem with dynamics to be expressed as velocity
constraints on an enlarged state space. This collapses the higher order derivatives
down to being only first-order, but it comes at the cost of increasing the dimension
of the state space. Section 13.3 introduces the basics of Newton-Euler mechanics
and concludes with expressing the dynamics of a free-floating rigid body. Section
13.4 introduces some concepts from advanced mechanics, including the Lagrangian
and Hamiltonian. It also provides a model of the dynamics of a kinematic chain
of bodies, which applies to typical robot manipulators. Section 13.5 introduces
differential models that have more than one decision maker.

715

716 S. M. LaValle: Planning Algorithms

13.1 Velocity Constraints on the Configuration

Space

In this section, it will be assumed that X = C, which is a C-space of one or more
rigid bodies, as defined in Section 4.2. Differential models in this section are all
expressed as constraints on the set of allowable velocities at each point in C. This
results in first-order differential equations because only velocities are constrained,
as opposed to accelerations or higher order derivatives.

To carefully discuss velocities, it will be assumed that C is a smooth manifold,
as defined in Section 8.3.2, in addition to a topological manifold, as defined in
Section 4.1.2. It may be helpful to keep the cases C = R2 and C = R3 in mind. The
velocities are straightforward to define without resorting to manifold technicalities,
and the dimension is low enough that the concepts can be visualized.

13.1.1 Implicit vs. Parametric Representations

There are two general ways to represent differential constraints: parametric and
implicit. Many parallels can be drawn to the parametric and implicit ways of
specifying functions in general. Parametric representations are generally easier to
understand and are simpler to use in applications. Implicit representations are
more general but are often more difficult to utilize. The intuitive difference is that
implicit representations express velocities that are prohibited, whereas parametric
representations directly express the velocities that are allowed. In this chapter, a
parametric representation is obtained wherever possible; nevertheless, it is impor-
tant to understand both.

13.1.1.1 Implicit representation

The planar case For purposes of illustration, suppose that C = R2. A configu-
ration is expressed as q = (x, y) ∈ R2, and a velocity is expressed as (ẋ, ẏ). Each
(ẋ, ẏ) is an element of the tangent space Tq(R

2), which is a two-dimensional vector
space at every (x, y). Think about the kinds of constraints that could be imposed.
At each q ∈ R2, restricting the set of velocities yields some set U(q) ⊂ Tq(R

2).
The parametric and implicit representations will be alternative ways to express
U(q) for all q ∈ R2.

Here are some interesting, simple constraints. Each yields a definition of U(q)
as the subset of Tq(R

2) that satisfies the constraints.

1. ẋ > 0: In this case, imagine that you are paddling a boat on a swift river
that flows in the positive x direction. You can obtain any velocity you like
in the y direction, but you can never flow against the current. This means
that all integral curves increase monotonically in x over time.

2. ẋ ≥ 0: This constraint allows you to stop moving in the x direction. A
velocity perpendicular to the current can be obtained (for example, (0, 1)

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 717

causes motion with unit speed in the positive y direction).

3. ẋ > 0, ẏ > 0: Under this constraint, integral curves must monotonically
increase in both x and y.

4. ẋ = 0: In the previous three examples, the set of allowable velocities re-
mained two-dimensional. Under the constraint ẋ = 0, the set of allowable
velocities is only one-dimensional. All vectors of the form (0, ẏ) for any ẏ ∈ R

are allowed. This means that no motion in the x direction is allowed. Start-
ing at any (x0, y0), the integral curves will be of the form (x0, y(t)) for all
t ∈ [0,∞), which confines each one to a vertical line.

5. aẋ+ bẏ = 0: This constraint is qualitatively the same as the previous one.
The difference is that now the motions can be restricted along any collection
of parallel lines by choosing a and b. For example, if a = b = 1, then only
diagonal motions are allowed.

6. aẋ + bẏ + c = 0: This constraint is similar to the previous one, however
the behavior is quite different because the integral curves do not coincide.
An entire half plane is reached. It also impossible to stop becasue ẋ = ẏ = 0
violates the constraint.

7. ẋ2 + ẏ2 ≤ 1: This constraint was used in Chapter 8. It has no effect
on the existence of solutions to the feasible motion planning problem be-
cause motion in any direction is still allowed. The constraint only enforces
a maximum speed.

8. ẋ2 + ẏ2 ≥ 1: This constraint allows motions in any direction and at any
speed greater than 1. It is impossible to stop or slow down below unit speed.

Many other constraints can be imagined, including some that define very com-
plicated regions in R2 for each U(q). Ignoring the fact that ẋ and ẏ represent
derivatives, the geometric modeling concepts from Section 3.1 can even be used to
define complicated constraints at each q. In fact, the constraints expressed above
in terms of ẋ and ẏ are simple examples of the semi-algebraic model, which was
introduced in Section 3.1.2. Just replace x and y from that section by ẋ and ẏ
here.

If at every q there exists some open set O such that (0, 0) ∈ O and O ⊆ U(q),
then there is no effect on the existence of solutions to the feasible motion planning
problem. Velocities in all directions are still allowed. This holds true for velocity
constraints on any smooth manifold [924].

So far, the velocities have been constrained in the same way at every q ∈ R2,
which means that U(q) is the same for all q ∈ R2. Constraints of this kind are of
the form g(ẋ, ẏ) ⊲⊳ 0, in which ⊲⊳ could be =, <, >, ≤, or ≥, and gi is a function
from R2 to R. Typically, the = relation drops the dimension of U(x) by one, and
the others usually leave it unchanged.

718 S. M. LaValle: Planning Algorithms

Now consider the constraint ẋ = x. This results in a different one-dimensional
set, U(q), of allowable velocities at each q ∈ R2. At each q = (x, y), the set of
allowable velocities must be of the form (x, ẏ) for any ẏ ∈ R. This means that as
x increases, the velocity in the x direction must increase proportionally. Starting
at any positive x value, there is no way to travel to the y-axis. However, starting
on the y-axis, the integral curves will always remain on it! Constraints of this kind
can generally be expressed as g(x, y, ẋ, ẏ) ⊲⊳ 0, which allows the dependency on x
or y.

General configuration spaces Velocity constraints can be considered in the
same way on a general C-space. Assume that C is a smooth manifold (a man-
ifold was not required to be smooth in Chapter 4 because derivatives were not
needed there). All constraints are expressed using a coordinate neighborhood, as
defined in Section 8.3.2. For expressing differential models, this actually makes
an n-dimensional manifold look very much like Rn. It is implicitly understood
that a change of coordinates may occasionally be needed; however, this does not
complicate the expression of constraints. This makes it possible to ignore many of
the manifold technicalities and think about the constraints as if they are applied
to Rn.

Now consider placing velocity constraints on C. Imagine how complicated
velocity constraints could become if any semi-algebraic model is allowed. Velocity
constraints on C could be as complicated as any Cobs. It is not even necessary to
use algebraic primitives. In general, the constraints can be expressed as

g(q, q̇) ⊲⊳ 0, (13.1)

in which ⊲⊳ could once again be =, <, >, ≤, or ≥. The same expressive power can
be maintained even after eliminating some of these relations. For example, any
constraint of the form (13.1) can be expressed as a combination of constraints of
the form g(q, q̇) = 0 and g(q, q̇) < 0. All of the relations are allowed here, however,
to make the formulations simpler.

Constraints expressed in the form shown in (13.1) are called implicit. As ex-
plained in Chapters 3 and 4, it can be very complicated to obtain a parametric
representation of the solutions of implicit equations. This was seen, for example,
in Section 4.4, in which it was difficult to characterize the set of configurations
that satisfy closure constraints. Nevertheless, we will be in a much better position
in terms of developing planning algorithms if a parametric representation of the
constraints can be obtained. Fortunately, most constraints that are derived from
robots, vehicles, and other mechanical systems can be expressed in parametric
form.

13.1.1.2 Parametric constraints

The parametric way of expressing velocity constraints gives a different interpre-
tation to U(q). Rather than directly corresponding to a velocity, each u ∈ U(q)

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 719

is interpreted as an abstract action vector. The set of allowable velocities is then
obtained through a function that maps an action vector into Tq(C). This yields
the configuration transition equation (or system)

q̇ = f(q, u), (13.2)

in which f is a continuous-time version of the state transition function that was
developed in Section 2.1. Note that (13.2) actually represents n scalar equations,
in which n is the dimension of C. The system will nevertheless be referred to as a
single equation in the vector sense. Usually, U(q) is fixed for all q ∈ C. This will
be assumed unless otherwise stated. In this case, the fixed action set is denoted
as U .

There are two interesting ways to interpret (13.2):

1. Subspace of the tangent space: If q is fixed, then f maps from U into
Tq(C). This parameterizes the set of allowable velocities at q because a
velocity vector, f(q, u), is obtained for every u ∈ U(q).

2. Vector field: If u is fixed, then f can be considered as a function that maps
each q ∈ C into Tq(C). This means that f defines a vector field over C for
every fixed u ∈ U .

Example 13.1 (Two Interpetations of q̇ = f(q, u)) Suppose that C = R2,
which yields a two-dimensional velocity vector space at every q = (x, y) ∈ R2. Let
U = R, and q̇ = f(q, u) be defined as ẋ = u and ẏ = x.

To obtain the first interpretation of q̇ = f(q, u), hold q = (x, y) fixed; for each
u ∈ U , a velocity vector (ẋ, ẏ) = (u, x) is obtained. The set of all allowable velocity
vectors at q = (x, y) is

{(ẋ, ẏ) ∈ R2 | ẏ = x}. (13.3)

Suppose that q = (1, 2). In this case, any vector of the form (u, 1) for any u ∈ R

is allowable.
To obtain the second interpretation, hold u fixed. For example, let u = 1. The

vector field (ẋ, ẏ) = (1, x) over R2 is obtained. �

It is important to specify U when defining the configuration transition equation.
We previously allowed, but discouraged, the action set to depend on q. Any
differential constraints expressed as q̇ = f(q, u) for any U can be alternatively
expressed as q̇ = u by defining

U(q) = {q̇ ∈ Rn | ∃u ∈ U such that q̇ = f(q, u)} (13.4)

for each q ∈ C. In this definition, U(q) is not necessarily a subset of U . It is
usually more convenient, however, to use the form q̇ = f(q, u) and keep the same
U for all q. The common interpretation of U is that it is a set of fixed actions that
can be applied from any point in the C-space.

720 S. M. LaValle: Planning Algorithms

In the context of ordinary motion planning, a configuration transition equation
did not need to be specifically mentioned. This issue was discussed in Section
8.4. Provided that U contains an open subset that contains the origin, motion in
any direction is allowed. The configuration transition equation for basic motion
planning was simply q̇ = u. Since this does not impose constraints on the direction,
it was not explicitly mentioned. For the coming models in this chapter, constraints
will be imposed on the velocities that restrict the possible directions. This requires
planning algorithms that handle differential models and is the subject of Chapter
14.

13.1.1.3 Conversion from implicit to parametric form

There are trade-offs between the implicit and parametric ways to express dif-
ferential constraints. The implicit representation is more general; however, the
parametric form is more useful because it explicitly gives the possible actions. For
this reason, it is often desirable to derive a parametric representation from an
implicit one. Under very general conditions, it is theoretically possible. As will be
explained shortly, this is a result of the implicit function theorem. Unfortunately,
the theoretical existence of such a conversion does not help in actually perform-
ing the transformations. In many cases, it may not be practical to determine a
parametric representation.

To model a mechanical system, it is simplest to express constraints in the
implicit form and then derive the parametric representation q̇ = f(q, u). So far
there has been no appearance of u in the implicit representation. Since u is
interpreted as an action, it needs to be specified while deriving the parametric
representation. To understand the issues, it is helpful to first assume that all
constraints in implicit form are linear equations in q̇ of the form

g1(q)q̇1 + g2(q)q̇2 + · · ·+ gn(q)q̇n = 0, (13.5)

which are called Pfaffian constraints. These constraints are linear only under the
assumption that q is known. It is helpful in the current discussion to imagine that
q is fixed at some known value, which means that each of the gi(q) coefficients in
(13.5) is a constant.

Suppose that k Pfaffian constraints are given for k ≤ n and that they are
linearly independent.1 Recall the standard techniques for solving linear equations.
If k = n, then a unique solution exists. If k < n, then a continuum of solutions
exists, which forms an (n − k)-dimensional hyperplane. It is impossible to have
k > n because there can be no more than n linearly independent equations.

If k = n, only one velocity vector satisfies the constraints for each q ∈ C. A
vector field can therefore be derived from the constraints, and the problem is not
interesting from a planning perspective because there is no choice of velocities.
If k < n, then n − k components of q̇ can be chosen independently, and then

1If the coefficients are placed into an k × n matrix, its rank is k.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 721

the remaining k are computed to satisfy the Pfaffian constraints (this can be ac-
complished using linear algebra techniques such as singular value decomposition
[399, 961]). The components of q̇ that can be chosen independently can be con-
sidered as n− k scalar actions. Together these form an (n− k)-dimensional action
vector, u = (u1, . . . , un−k). Suppose without loss of generality that the first n− k
components of q̇ are specified by u. The configuration transition equation can then
be written as

q̇1 = u1 q̇n−k+1 = fn−k+1(q, u)

q̇2 = u2 q̇n−k+2 = fn−k+2(q, u)

...
... (13.6)

q̇n−k = un−k q̇n = fn(q, u),

in which each fi is a linear function of u and is derived from the Pfaffian constraints
after substituting ui for q̇i for each i from 1 to n − k and then solving for the
remaining components of q̇. For some values of q, the constraints may become
linearly dependent. This only weakens the constraints, which means the dimension
of u can be increased at any q for which independence is lost. Such points are
usually isolated and will not be considered further.

Example 13.2 (Pfaffian Constraints) Suppose that C = R3, and there is one
constraint of the form (13.5)

2q̇1 − q̇2 − q̇3 = 0. (13.7)

For this problem, n = 3 and k = 1. There are two action variables because
n− k = 2. The configuration transition equation is

q̇1 = u1

q̇2 = u2

q̇3 = 2u1 − u2,
(13.8)

in which the last component was obtained by substituting u1 and u2, respectively,
for q̇1 and q̇2 in (13.7) and then solving for q̇3.

The constraint given in (13.7) does not even depend on q. The same ideas
apply for more general Pfaffian constraints, such as

(cos q3)q̇1 − (sin q3)q̇2 − q̇3 = 0. (13.9)

Following the same procedure, the configuration transition equation becomes

q̇1 = u1

q̇2 = u2

q̇3 = (cos q3)u1 − (sin q3)u2.

(13.10)

�

722 S. M. LaValle: Planning Algorithms

The ideas presented so far naturally extend to equality constraints that are not
linear in ẋ. At each q, an (n − k)-dimensional set of actions, U(q), is guaranteed
to exist if the Jacobian ∂(g1, . . . , gk)/∂(q̇1, . . . , q̇n) (recall (6.28) or see [508]) of
the constraint functions has rank k at q. This follows from the implicit function
theorem [508].

Suppose that there are inequality constraints of the form g(q, q̇) ≤ 0, in addition
to equality constraints. Using the previous concepts, the actions may once again
be assigned directly as q̇i = ui for all i such that 1 ≤ i ≤ n−k. Without inequality
constraints, there are no constraints on u, which means that U = Rn. Since u is
interpreted as an input to some physical system, U will often be constrained. In a
physical system, for example, the amount of energy consumed may be proportional
to u. After performing the q̇i = ui substitutions, the inequality constraints indicate
limits on u. These limits are expressed in terms of q and the remaining components
of q̇, which are the variables q̇n−k+1, . . ., q̇n. For many problems, the inequality
constraints are simple enough that constraints directly on U can be derived. For
example, if u1 represents scalar acceleration applied to a car, then it may have a
simple bound such as |u1| ≤ 1.

One final complication that sometimes occurs is that the action variables may
already be specified in the equality constraints: g(q, q̇, u) = 0. In this case, imagine
once again that q is fixed. If there are k independent constraints, then by the im-
plicit function theorem, q̇ can be solved to yield q̇ = f(q, u) (although theoretically
possible, it may be difficult in practice). If the Jacobian ∂(f1, . . . , fn)/∂(u1, . . . , uk)
has rank k at q, then actions can be applied to yield any velocity on a k-dimensional
hyperplane in Tq(C). If k = n, then there are enough independent action variables
to overcome the constraints. Any velocity in Tq(C) can be achieved through a
choice of u. This is true only if there are no inequality constraints on U .

13.1.2 Kinematics for Wheeled Systems

The most common family of examples in robotics arises from wheels that are
required to roll in the direction they are pointing. Most wheels are not designed
to slide sideways. This imposes velocity constraints on rolling vehicles. As a result,
there are usually less action variables than degrees of freedom. Such systems are
therefore called underactuated. It is interesting that, in many cases, vehicles can
execute motions that overcome the constraint. For example, a car can parallel park
itself anywhere that it could reach if all four wheels could turn to any orientation.
This leads to formal concepts such as nonholonomic constraints and small-time
local controllability, which are covered in Section 15.4.

13.1.2.1 A simple car

One of the easiest examples to understand is the simple car, which is shown in
Figure 13.1. We all know that a car cannot drive sideways because the back wheels
would have to slide instead of roll. This is why parallel parking is challenging. If
all four wheels could be turned simultaneously toward the curb, it would be trivial

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 723

L

ρ

φ

θ

(x, y)

Figure 13.1: The simple car has three degrees of freedom, but the velocity space
at any configuration is only two-dimensional.

to park a car. The complicated maneuvers for parking a simple car arise because
of rolling constraints.

The car can be imagined as a rigid body that moves in the plane. Therefore,
its C-space is C = R2 × S1. Figure 13.1 indicates several parameters associated
with the car. A configuration is denoted by q = (x, y, θ). The body frame of the
car places the origin at the center of rear axle, and the x-axis points along the
main axis of the car. Let s denote the (signed) speed2 of the car. Let φ denote
the steering angle (it is negative for the wheel orientations shown in Figure 13.1).
The distance between the front and rear axles is represented as L. If the steering
angle is fixed at φ, the car travels in a circular motion, in which the radius of the
circle is ρ. Note that ρ can be determined from the intersection of the two axes
shown in Figure 13.1 (the angle between these axes is |φ|).

Using the current notation, the task is to represent the motion of the car as a
set of equations of the form

ẋ = f1(x, y, θ, s, φ)

ẏ = f2(x, y, θ, s, φ)

θ̇ = f3(x, y, θ, s, φ).

(13.11)

In a small time interval, ∆t, the car must move approximately in the direction
that the rear wheels are pointing. In the limit as ∆t tends to zero, this implies
that dy/dx = tan θ. Since dy/dx = ẏ/ẋ and tan θ = sin θ/ cos θ, this condition can

2Having a signed speed is somewhat unorthodox. If the car moves in reverse, then s is
negative. A more correct name for s would be velocity in the x direction of the body frame, but
this is too cumbersome.

724 S. M. LaValle: Planning Algorithms

be written as a Pfaffian constraint (recall (13.5)):

− ẋ sin θ + ẏ cos θ = 0. (13.12)

The constraint is satisfied if ẋ = cos θ and ẏ = sin θ. Furthermore, any scalar
multiple of this solution is also a solution; the scaling factor corresponds directly
to the speed s of the car. Thus, the first two scalar components of the configuration
transition equation are ẋ = s cos θ and ẏ = s sin θ.

The next task is to derive the equation for θ̇. Let w denote the distance traveled
by the car (the integral of speed). As shown in Figure 13.1, ρ represents the radius
of a circle that is traversed by the center of the rear axle, if the steering angle is
fixed. Note that dw = ρdθ. From trigonometry, ρ = L/ tanφ, which implies

dθ =
tanφ

L
dw. (13.13)

Dividing both sides by dt and using the fact that ẇ = s yields

θ̇ =
s

L
tanφ. (13.14)

So far, the motion of the car has been modeled, but no action variables have
been specified. Suppose that the speed s and steering angle φ are directly specified
by the action variables us and uφ, respectively. The convention of using a u variable
with the old variable name appearing as a subscript will be followed. This makes
it easy to identify the actions in a configuration transition equation. A two-
dimensional action vector, u = (us, uφ), is obtained. The configuration transition
equation for the simple car is

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
L

tan uφ.

(13.15)

As expressed in (13.15), the transition equation is not yet complete without
specifying U , the set of actions of the form u = (us, uφ). First suppose that any
us ∈ R is possible. What steering angles are possible? The interval [−π/2, π/2]
is sufficiently large for the steering angle uφ because any other value is equivalent
to one between −π/2 and π/2. Steering angles of π/2 and −π/2 are problematic.
To derive the expressions for ẋ and ẏ, it was assumed that the car moves in the
direction that the rear wheels are pointing. Imagine you are sitting on a tricycle
and turn the front wheel perpendicular to the rear wheels (assigning uφ = π/2).
If you are able to pedal, then the tricycle should rotate in place. This means that
ẋ = ẏ = 0 because the center of the rear axle does not translate.

This strange behavior is not allowed for a standard automobile. A car with
rear-wheel drive would probably skid the front wheels across the pavement. If a
car with front-wheel drive attempted this, it should behave as a tricycle; however,

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 725

this is usually not possible because the front wheels would collide with the front
axle when turned to φ = π/2. Therefore, the simple car should have a maximum
steering angle, φmax < π/2, and we require that |φ| ≤ φmax. Observe from Figure
13.1 that a maximum steering angle implies a minimum turning radius, ρmin. For
the case of a tricycle, ρmin = 0. You may have encountered the problem of a
minimum turning radius while trying to make an illegal U-turn. It is sometimes
difficult to turn a car around without driving it off of the road.

Now return to the speed us. On level pavement, a real vehicle has a top speed,
and its behavior should change dramatically depending on the speed. For example,
if you want to drive along the minimum turning radius, you should not drive at
140km/hr. It seems that the maximum steering angle should reduce at higher
speeds. This enters the realm of dynamics, which will be allowed after phase
spaces are introduced in Section 13.2. Following this, some models of cars with
dynamics will be covered in Sections 13.2.4 and 13.3.3.

It has been assumed implicitly that the simple car is moving slowly to safely
neglect dynamics. A bound such as |us| ≤ 1 can be placed on the speed without
affecting the configurations that it can reach. The speed can even be constrained
as us ∈ {−1, 0, 1} without destroying reachability. Be careful, however, about a
bound such as 0 ≤ us ≤ 1. In this case, the car cannot drive in reverse! This
clearly affects the set of reachable configurations. Imagine a car that is facing a
wall and is unable to move in reverse. It may be forced to hit the wall as it moves.

Based on these considerations regarding the speed and steering angle, several
interesting variations are possible:

Tricycle: U = [−1, 1]× [−π/2, π/2]. Assuming front-wheel drive, the “car”
can rotate in place if uφ = π/2 or uφ = π/2. This is unrealistic for a simple
car. The resulting model is similar to that of the simple unicycle, which
appears later in (13.18).

Simple Car [596]: U = [−1, 1]× (−φmax, φmax). By requiring that |uφ| ≤
φmax < π/2, a car with minimum turning radius ρmin = L/ tanφmax is
obtained.

Reeds-Shepp Car [814, 923]: Further restrict the speed of the simple
car so that us ∈ {−1, 0, 1}.3 This model intuitively makes us correspond to
three discrete “gears”: reverse, park, or forward. An interesting question
under this model is: What is the shortest possible path (traversed in R2

by the center of the rear axle) between two configurations in the absence of
obstacles? This is answered in Section 15.3.

Dubins Car [294]: Remove the reverse speed us = −1 from the Reeds-
Shepp car to obtain us ∈ {0, 1} as the only possible speeds. The shortest
paths in R2 for this car are quite different than for the Reeds-Shepp car; see
Section 15.3.

3In many works, the speed us = 0 is not included. It appears here so that a proper termination
condition can be defined.

726 S. M. LaValle: Planning Algorithms

The car that was shown in Figure 1.12a of Section 1.2 is even more restricted than
the Dubins car because it is additionally forced to turn left.

Basic controllability issues have been studied thoroughly for the simple car.
These will be covered in Section 15.4, but it is helpful to develop intuitive notions
here to assist in understanding the planning algorithms of Chapter 14. The sim-
ple car is considered nonholonomic because there are differential constraints that
cannot be completely integrated. This means that the car configurations are not
restricted to a lower dimensional subspace of C. The Reeds-Shepp car can be ma-
neuvered into an arbitrarily small parking space, provided that a small amount of
clearance exists. This property is called small-time local controllability and is pre-
sented in Section 15.1.3. The Dubins car is nonholonomic, but it does not possess
this property. Imagine the difficulty of parallel parking without using the reverse
gear. In an infinitely large parking lot without obstacles, however, the Dubins car
can reach any configuration.

13.1.2.2 A differential drive

Most indoor mobile robots do not move like a car. For example, consider the
mobile robotics platform shown in Figure 13.2a. This is an example of the most
popular way to drive indoor mobile robots. There are two main wheels, each of
which is attached to its own motor. A third wheel (not visible in Figure 13.2a) is
placed in the rear to passively roll along while preventing the robot from falling
over.

To construct a simple model of the constraints that arise from the differential
drive, only the distance L between the two wheels, and the wheel radius, r, are
necessary. See Figure 13.2b. The action vector u = (ur, ul) directly specifies the
two angular wheel velocities (e.g., in radians per second). Consider how the robot
moves as different actions are applied. See Figure 13.3. If ul = ur > 0, then the
robot moves forward in the direction that the wheels are pointing. The speed is
proportional to r. In general, if ul = ur, then the distance traveled over a duration
t of time is rtul (because tul is the total angular displacement of the wheels). If
ul = −ur 6= 0, then the robot rotates clockwise because the wheels are turning in
opposite directions. This motivates the placement of the body-frame origin at the
center of the axle between the wheels. By this assignment, no translation occurs
if the wheels rotate at the same rate but in opposite directions.

Based on these observations, the configuration transition equation is

ẋ =
r

2
(ul + ur) cos θ

ẏ =
r

2
(ul + ur) sin θ

θ̇ =
r

L
(ur − ul).

(13.16)

The translational part contains cos θ and sin θ parts, just like the simple car be-
cause the differential drive moves in the direction that its drive wheels are pointing.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 727

r

L

x

y

(a) (b)

Figure 13.2: (a) The Pioneer 3-DX8 (courtesy of ActivMedia Robotics: MobileR-
obots.com), and many other mobile robots use a differential drive. In addition to
the two drive wheels, a caster wheel (as on the bottom of an office chair) is placed
in the rear center to prevent the robot from toppling over. (b) The parameters of
a generic differential-drive robot.

(a) (b)

Figure 13.3: (a) Pure translation occurs when both wheels move at the same angu-
lar velocity; (b) pure rotation occurs when the wheels move at opposite velocities.

728 S. M. LaValle: Planning Algorithms

Figure 13.4: The shortest path traversed by the center of the axle is simply the
line segment that connects the initial and goal positions in the plane. Rotations
appear to be cost-free.

The translation speed depends on the average of the angular wheel velocities. To
see this, consider the case in which one wheel is fixed and the other rotates. This
initially causes the robot to translate at 1/2 of the speed in comparison to both
wheels rotating. The rotational speed θ̇ is proportional to the change in angular
wheel speeds. The robot’s rotation rate grows linearly with the wheel radius but
reduces linearly with respect to the distance between the wheels.

It is sometimes preferable to transform the action space. Let uω = (ur + ul)/2
and uψ = ur − ul. In this case, uω can be interpreted as an action variable that
means “translate,” and uψ means “rotate.” Using these actions, the configuration
transition equation becomes

ẋ = ruω cos θ

ẏ = ruω sin θ

θ̇ =
r

L
uψ.

(13.17)

In this form, the configuration transition equation resembles (13.15) for the simple
car (try setting uψ = tan uφ and us = ruω). A differential drive can easily simulate
the motions of the simple car. For the differential drive, the rotation rate can be
set independently of the translational velocity. The simple car, however, has the
speed us appearing in the θ̇ expression. Therefore, the rotation rate depends on
the translational velocity.

Recall the question asked about shortest paths for the Reeds-Shepp and Dubins
cars. The same question for the differential drive turns out to be uninteresting
because the differential drive can cause the center of its axle to follow any con-
tinuous path in R2. As depicted in Figure 13.4, it can move between any two
configurations by: 1) first rotating itself to point the wheels to the goal position,
which causes no translation; 2) translating itself to the goal position; and 3) rotat-
ing itself to the desired orientation, which again causes no translation. The total
distance traveled by the center of the axle is always the Euclidean distance in R2

between the two desired positions.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 729

θ
r

y

x

Figure 13.5: Viewed from above, the unicycle model has an action uω that changes
the wheel orientation θ.

This may seem like a strange effect due to the placement of the coordinate
origin. Rotations seem to have no cost. This can be fixed by optimizing the
total amount of wheel rotation or time required, if the speed is held fixed [64].
Suppose that ur, ul ∈ {−1, 0, 1}. Determining the minimum time required to
travel between two configurations is quite interesting and is covered in Section
15.3. This properly takes into account the cost of rotating the robot, even if it
does not cause a translation.

13.1.2.3 A simple unicycle

Consider the simple model of a unicycle, which is shown in Figure 13.5. Ignoring
balancing concerns, there are two action variables. The rider of the unicycle can
set the pedaling speed and the orientation of the wheel with respect to the z-axis.
Let σ denote the pedaling angular velocity, and let r be the wheel radius. The
speed of the unicycle is s = rσ. In this model, the speed is set directly by an
action variable us (alternatively, the pedaling rate could be an action variable uσ,
and the speed is derived as s = ruσ). Let ω be the angular velocity of the unicycle
orientation in the xy plane (hence, ω = θ̇). Let ω be directly set by an action
variable uω. The configuration transition equation is

ẋ = us cos θ

ẏ = us sin θ

θ̇ = uω.

(13.18)

This is just the differential drive equation (13.17) with L = 1 and the substitution
us = ruσ. Thus, a differential drive can simulate a unicycle. This may seem
strange; however, it is possible because these models do not consider dynamics.

730 S. M. LaValle: Planning Algorithms

d1 (x, y)

θ2

θ1

d2

θ0

L
φ

Figure 13.6: The parameters for a car pulling trailers.

Note that the unicycle can also simulate the simple-car model. Therefore, the
tricycle and unicycle models are similar.

13.1.2.4 A car pulling trailers

An interesting extension of the simple car can be made by attaching one or more
trailers. You may have seen a train of luggage carts on the tarmac at airports.
There are many subtle issues for modeling the constraints for these models. The
form of equations is very sensitive to the precise point at which the trailer is
attached and also on the choice of body frames. One possibility for expressing
the kinematics is to use the expressions in Section 3.3; however, these may lead to
complications when analyzing the constraints. It is somewhat of an art to find a
simple expression of the constraints. The model given here is adapted from [727].4

Consider a simple car that pulls k trailers as shown in Figure 13.6. Each trailer
is attached to the center of the rear axle of the body in front of it. The important
new parameter is the hitch length di which is the distance from the center of the
rear axle of trailer i to the point at which the trailer is hitched to the next body.
Using concepts from Section 3.3.1, the car itself contributes R2×S1 to C, and each
trailer contributes an S1 component to C. The dimension of C is therefore k + 3.
Let θi denote the orientation of the ith trailer, expressed with respect to the world
frame.

4The original model required a continuous steering angle.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 731

The configuration transition equation is

ẋ = s cos θ0

ẏ = s sin θ0

θ̇0 =
s

L
tanφ

θ̇1 =
s

d1
sin(θ0 − θ1)

...

θ̇i =
s

di

(
i−1∏

j=1

cos(θj−1 − θj)
)

sin(θi−1 − θi)

...

θ̇k =
s

dk

(
k−1∏

j=1

cos(θj−1 − θj)
)

sin(θk−1 − θk).

(13.19)

An interesting variation of this model is to allow the trailer wheels to be steered.
For a single trailer, this leads to a model that resembles a firetruck [163].

13.1.3 Other Examples of Velocity Constraints

The differential models seen so far were obtained from wheels that roll along a
planar surface. Many generalizations are possible by considering other ways in
which bodies can contact each other. In robotics, many interesting differential
models arise in the context of manipulation. This section briefly covers some
other examples of velocity constraints on the C-space. Once again, dynamics is
neglected for now. Such models are sometimes classified as quasi-static because
even though motions occur, some aspects of the model treat the bodies as if they
were static. Such models are often realistic when moving at slow enough speeds.

13.1.3.1 Pushing a box

Imagine using a differential drive robot to push a box around on the floor, as
shown in Figure 13.7a. It is assumed that the box is a convex polygon, one edge
of which contacts the front of the robot. There are frictional contacts between
the box and floor and also between the box and robot. Suppose that the robot is
moving slowly enough so that dynamics are insignificant. It is assumed that the
box cannot move unless the robot is moving. This prohibits manipulations such
as “kicking” the box across the room. The term stable pushing [12, 671, 681] refers
to the case in which the robot moves the box as if the box were rigidly attached
to the robot.

As the robot pushes the box, the box may slide or rotate, as shown in Figures
13.7b and 13.7c, respectively. These cases are considered illegal because they do

732 S. M. LaValle: Planning Algorithms

Robot Box

(a) Stable pushing (b) Illegal sliding (c) Illegal rotation

Figure 13.7: Lynch and Mason showed that pushing a box is very much like driving
the simple car: (a) With careful motions, the box will act as if it is attached to
the robot. b) If it turns too sharply, however, the box will slide away; this induces
limits on the steering angle. c) The box may alternatively rotate from sharp turns
[671].

not constitute stable pushing. What motions of the robot are possible? Begin
with the configuration transition equation of the differential drive robot, and then
determine which constraints need to be placed on U to maintain stable pushing.
Suppose that (13.17) is used. It is clear that only forward motion is possible
because the robot immediately breaks contact with the box if the robot moves
in the opposite direction. Thus, s must be positive (also, to fit the quasi-static
model, s should be small enough so that dynamical effects become insignificant).
How should the rotation rate ψ be constrained? Constraints on ψ depend on the
friction model (e.g., Coulomb), the shape of the box, and the particular edge that
is being pushed. Details on these constraints are given in [671, 681]. This leads
to an interval [a, b] ⊆ [−π/2, π/2], in which a < 0 and b > 0, and it is required
that ψ ∈ [a, b]. This combination of constraints produces a motion model that
is similar to the Dubins car. The main difference is that the maximum steering
angle in the left and right directions may be different.

To apply this model for planning, it seems that the C-space should be R2×S1×
R2×S1 because there are two rigid bodies. The manipulation planning framework
of Section 7.3.2 can be applied to obtain a hybrid system and manipulation graph
that expresses the various ways in which the robot can contact the box or fail to
contact the box. For example, the robot may be able to push the box along one
of several possible edges. If the robot becomes stuck, it can change the pushing
edge to move the box in a new direction.

13.1.3.2 Flying an airplane

The Dubins car model from Section 13.1.2 can be extended to 3D worlds to provide
a simple aircraft flight model that may be reasonable for air traffic analysis. First
suppose that the aircraft maintains a fixed altitude and is capable only of yaw
rotations. In this case, (13.15) could be used directly by imposing the constraint

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 733

that s = 1 (or some suitable positive speed). This is equivalent to the Dubins
car, except that s = 0 is prohibited because it would imply that the aircraft can
instantaneously stop in the air. This model assumes that the aircraft is small
relative to the C-space. A more precise model should take into account pitch and
roll rotations, disturbances, and dynamic effects. These would become important,
for example, in studying the flight stability of an aircraft design. Such concerns
are neglected here.

Now consider an aircraft that can change its altitude, in addition to executing
motions like the Dubins car. In this case let C = R3 × S1, in which the extra R

represents the altitude with respect to flying over a flat surface. A configuration
is represented as q = (x, y, z, θ). Let uz denote an action that directly causes a
change in the altitude: ż = uz. The steering action uφ is the same as in the Dubins
car model. The configuration transition equation is

ẋ = cos θ ż = uz

ẏ = sin θ θ̇ = uω. (13.20)

For a fixed value of u = (uz, uω) such that uz 6= 0 and uω 6= 0, a helical path
results. The central axis of the helix is parallel to the z-axis, and projection of the
path down to the xy plane is a circle or circular arc. Maximum absolute values
should be set for uz and uω based on the maximum possible altitude and yaw rate
changes of the aircraft.

13.1.3.3 Rolling a ball

Instead of a wheel, consider rolling a ball in the plane. Place a ball on a table
and try rolling it with your palm placed flat on top of it. It should feel like
there are two degrees of freedom: rolling forward and rolling side to side. The
ball should not be able to spin in place. The directions can be considered as two
action variables. The total degrees of freedom of the ball is five, however, because
it can achieve any orientation in SO(3) and any (x, y) position in the plane; thus,
C = R2 × SO(3). Given that there are only two action variables, is it possible to
roll the ball into any configuration? It is shown in [632, 491] that this is possible,
even for the more general problem of one sphere rolling on another (the plane is
a special case of a sphere with infinite radius). This problem can actually arise
in robotic manipulation when a spherical object come into contact (e.g., a robot
hand may have fingers with spherical tips); see [103, 676, 725, 729].

The resulting transition equation was shown in [716] (also see [725]) to be

θ̇ = −u2
φ̇ =

u1
cos θ

ẋ = −u1ρ sinψ − u2ρ cosψ
ẏ = −u1ρ cosψ + u2ρ sinψ

ψ̇ = −u1 tan θ.

(13.21)

734 S. M. LaValle: Planning Algorithms

In these equations, x and y are the position on the contact point in the plane, and
θ and φ are the position of the contact point in the ball frame and are expressed
using spherical coordinates. The radius of the ball is ρ. Finally, ψ expresses the
orientation of the ball with respect to the contact point.

13.1.3.4 Trapped on a surface

It is possible that the constraints cause the configuration to be trapped on a lower
dimensional surface. Let C = R2, and consider the system

ẋ = yu ẏ = −xu, (13.22)

for (x, y) ∈ R2 and u ∈ U = R. What are the integral curves for a constant
action u 6= 0? From any point (x, y) ∈ R2, the trajectory follows a circle of radius
√

x2 + y2 centered at the origin. The speed along the circle is determined by |u|,
and the direction is determined by the sign of u. Therefore, (13.22) indicates that
the configuration is confined to a circle. Other than that, there are no further
constraints.

Suppose that the initial configuration is given as (x0, y0). Since the configura-
tion is confined to a circle, the C-space could alternatively be defined as C = S1.
Each point on S1 can be mapped to the circle that has radius r =

√

x20 + y20
and center at (0, 0). In this case, there are no differential constraints on the ve-
locities, provided that motions are trapped on the circle. Any velocity in the
one-dimensional tangent space at points on the circle is allowed. This model is
equivalent to (13.22).

Now consider the possible trajectories that are constrained to traverse a circle,

h(x, y) = x2 + y2 − r2 = 0. (13.23)

This means that for all time t,

h(x(t), y(t)) = x(t)2 + y(t)2 − r2 = 0. (13.24)

To derive a constraint on velocities, take the derivative with respect to time, which
yields

dh(x, y)

dt
= 2xẋ+ 2yẏ = 0. (13.25)

This is an example of a Pfaffian constraint, as given in (13.5). The parametric form
of this differential constraint happens to be (13.22). Any velocity vector that is a
multiple of (y,−x) satisfies (13.25). When expressed as a differential constraint,
the radius r does not matter. This is because it is determined from the initial
configuration.

What just occurred here is a special case of a completely integrable differential
model. In general, if the model q̇ = f(q, u) can be expressed as the time derivative
of constraints of the form h(q) = 0, then the configuration transition equation
is said to be completely integrable. Obtaining an implicit differential model from

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 735

constraints of the form hi(q) = 0 is not difficult. Each constraint is differentiated
to obtain

dhi(q)

dt
= 0. (13.26)

For example, such constraints arise from closed kinematic chains, as in Section
4.4, and the implicit differential model just expresses the condition that velocities
must lie in the tangent space to the constraints. It may be difficult, however, to
obtain a parametric form of the differential model. Possible velocity vectors can
be computed at any particular q, however, by using the linear algebra techniques
described in Section 7.4.1.

It is even quite difficult to determine whether a differential model is completely
integrable, which means that the configurations are trapped on a lower dimensional
surface. For some systems, to be described by (13.41), this will be solved by the
Frobenius Theorem in 15.4.2. If such systems are not completely integrable, they
are called nonholonomic; otherwise, they are called holonomic. In general, even if
a model is theoretically integrable, actually performing the integration is another
issue. In most cases, it is difficult or impossible to integrate the model.

Therefore, it is sometimes important to work directly with constraints in dif-
ferential form, even if they are integrable. Furthermore, methods for planning
under differential constraints can be applied to problems that have constraints of
the form h(q) = 0. This, for example, implies that motion planning for closed
kinematic chains can be performed by planning algorithms designed to handle
differential constraints.

13.2 Phase Space Representation of Dynamical

Systems

The differential constraints defined in Section 13.1 are often called kinematic be-
cause they can be expressed in terms of velocities on the C-space. This formulation
is useful for many problems, such as modeling the possible directions of motions
for a wheeled mobile robot. It does not, however, enable dynamics to be expressed.
For example, suppose that the simple car is traveling quickly. Taking dynamics
into account, it should not be able to instantaneously start and stop. For example,
if it is heading straight for a wall at full speed, any reasonable model should not
allow it to apply its brakes from only one millimeter away and expect it to avoid
collision. Due to momentum, the required stopping distance depends on the speed.
You may have learned this from a drivers education course.

To account for momentum and other aspects of dynamics, higher order differ-
ential equations are needed. There are usually constraints on acceleration q̈, which
is defined as dq̇/dt. For example, the car may only be able to decelerate at some
maximum rate without skidding the wheels (or tumbling the vehicle). Most often,
the actions are even expressed in terms of higher order derivatives. For example,
the floor pedal of a car may directly set the acceleration. It may be reasonable

736 S. M. LaValle: Planning Algorithms

to consider the amount that the pedal is pressed as an action variable. In this
case, the configuration must be obtained by two integrations. The first yields the
velocity, and the second yields the configuration.

The models for dynamics therefore involve acceleration q̈ in addition to velocity
q̇ and configuration q. Once again, both implicit and parametric models exist. For
an implicit model, the constraints are expressed as

gi(q̈, q̇, q) = 0. (13.27)

For a parametric model, they are expressed as

q̈ = f(q̇, q, u). (13.28)

13.2.1 Reducing Degree by Increasing Dimension

Taking into account constraints on higher order derivatives seems substantially
more complicated. This section explains a convenient trick that converts con-
straints that have higher order derivatives into a new set of constraints that has
only first-order derivatives. This involves the introduction of a phase space, which
has more dimensions than the original C-space. Thus, there is a trade-off because
the dimension is increased; however, it is widely accepted that increasing the di-
mension of the space is often easier than dealing with higher order derivatives. In
general, the term state space will refer to either C-spaces or phase spaces derived
from them.

13.2.1.1 The scalar case

To make the discussion concrete, consider the following differential equation:

ÿ − 3ẏ + y = 0, (13.29)

in which y is a scalar variable, y ∈ R. This is a second-order differential equation
because of ÿ. A phase space can be defined as follows. Let x = (x1, x2) denote
a two-dimensional phase vector, which is defined by assigning x1 = y and x2 =
ẏ. The terms state space and state vector will be used interchangeably with
phase space and phase vector, respectively, in contexts in which the phase space
is defined. Substituting the equations into (13.29) yields

ÿ − 3x2 + x1 = 0. (13.30)

So far, this does not seem to have helped. However, ÿ can be expressed as either
ẋ2 or ẍ1. The first choice is better because it is a lower order derivative. Using
ẋ2 = ÿ, the differential equation becomes

ẋ2 − 3x2 + x1 = 0. (13.31)

Is this expression equivalent to (13.29)? By itself it is not. There is one more
constraint, x2 = ẋ1. In implicit form, ẋ1 − x2 = 0. The key to making the

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 737

phase space approach work correctly is to relate some of the phase variables by
derivatives.

Using the phase space, we just converted the second-order differential equation
(13.29) into two first-order differential equations,

ẋ1 = x2

ẋ2 = 3x2 − x1,
(13.32)

which are obtained by solving for ẋ1 and ẋ2. Note that (13.32) can be expressed
as ẋ = f(x), in which f is a function that maps from R2 into R2.

The same approach can be used for any differential equation in implicit form,
g(ÿ, ẏ, y) = 0. Let x1 = y, x2 = ẏ, and ẋ2 = ÿ. This results in the implicit
equations g(ẋ2, x2, x1) = 0 and ẋ1 = x2. Now suppose that there is a scalar
action u ∈ U = R represented in the differential equations. Once again, the
same approach applies. In implicit form, g(ÿ, ẏ, y, u) = 0 can be expressed as
g(ẋ2, x2, x1, u) = 0.

Suppose that a given acceleration constraint is expressed in parametric form
as ÿ = h(ẏ, y, u). This often occurs in the dynamics models of Section 13.3. This
can be converted into a phase transition equation or state transition equation of
the form ẋ = f(x, u), in which f : R2 × R→ R2. The expression is

ẋ1 = x2

ẋ2 = h(x2, x1, u).
(13.33)

For a second-order differential equation, two initial conditions are usually given.
The values of y(0) and ẏ(0) are needed to determine the exact position y(t) for
any t ≥ 0. Using the phase space representation, no higher order initial conditions
are needed because any point in phase space indicates both y and ẏ. Thus, given
an initial point in the phase and u(t) for all t ≥ 0, y(t) can be determined.

Example 13.3 (Double Integrator) The double integrator is a simple yet im-
portant example that nicely illustrates the phase space. Suppose that a second-
order differential equation is given as q̈ = u, in which q and u are chosen from R.
In words, this means that the action directly specifies acceleration. Integrating5

once yields the velocity q̇ and performing a double integration yields the position
q. If q(0) and q̇(0) are given, and u(t′) is specified for all t′ ∈ [0, t), then q̇(t) and
q(t) can be determined for any t > 0.

A two-dimensional phase space X = R2 is defined in which

x = (x1, x2) = (q, q̇). (13.34)

The state (or phase) transition equation ẋ = f(x, u) is

ẋ1 = x2

ẋ2 = u.
(13.35)

5Wherever integrals are performed, it will be assumed that the integrands are integrable.

738 S. M. LaValle: Planning Algorithms

To determine the state trajectory, initial values x1(0) = q0 (position) and x2(0) =
q̇0 (velocity) must be given in addition to the action history. If u is constant, then
the state trajectory is quadratic because it is obtained by two integrations of a
constant function. �

13.2.1.2 The vector case

The transformation to the phase space can be extended to differential equations
in which there are time derivatives in more than one variable. Suppose that q
represents a configuration, expressed using a coordinate neighborhood on a smooth
n-dimensional manifold C. Second-order constraints of the form g(q̈, q̇, q) = 0 or
g(q̈, q̇, q, u) = 0 can be expressed as first-order constraints in a 2n-dimensional
state space. Let x denote the 2n-dimensional phase vector. By extending the
method that was applied to the scalar case, x is defined as x = (q, q̇). For each
integer i such that 1 ≤ i ≤ n, xi = qi. For each i such that n + 1 ≤ i ≤ 2n,
xi = q̇i−n. These substitutions can be made directly into an implicit constraint to
reduce the order to one.

Suppose that a set of n differential equations is expressed in parametric form as
q̈ = h(q, q̇, u). In the phase space, there are 2n differential equations. The first n
correspond to the phase space definition ẋi = xn+i, for each i such that 1 ≤ i ≤ n.
These hold because xn+i = q̇i and ẋi is the time derivative of q̇i for i ≤ n. The
remaining n components of ẋ = f(x, u) follow directly from h by substituting the
first n components of x in the place of q and the remaining n in the place of q̇ in
the expression h(q, q̇, u). The result can be denoted as h(x, u) (obtained directly
from h(q, q̇, u)). This yields the final n equations as ẋi = hi−n(x, u), for each i
such that n+ 1 ≤ i ≤ 2n. These 2n equations define a phase (or state) transition
equation of the form ẋ = f(x, u). Now it is clear that constraints on acceleration
can be manipulated into velocity constraints on the phase space. This enables
the tangent space concepts from Section 8.3 to express constraints that involve
acceleration. Furthermore, the state space X is the tangent bundle (defined in
(8.9) for Rn and later in (15.67) for any smooth manifold) of C because q and q̇
together indicate a tangent space Tq(C) and a particular tangent vector q̇ ∈ Tq(C).

13.2.1.3 Higher order differential constraints

The phase space idea can even be applied to differential equations with order higher
than two. For example, a constraint may involve the time derivative of acceleration
q(3), which is often called jerk. If the differential equations involve jerk variables,
then a 3n-dimensional phase space can be defined to obtain first-order constraints.
In this case, each qi, q̇i, and q̈i in a constraint such as g(q(3), q̈, q̇, q, u) = 0 is defined
as a phase variable. Similarly, kth-order differential constraints can be reduced to
first-order constraints by introducing a kn-dimensional phase space.

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 739

Example 13.4 (Chain of Integrators) A simple example of higher order dif-
ferential constraints is the chain of integrators.6 This is a higher order generaliza-
tion of Example 13.3. Suppose that a kth-order differential equation is given as
q(k) = u, in which q and u are scalars, and q(k) denotes the kth derivative of q with
respect to time.

A k-dimensional phase space X is defined in which

x = (q, q̇, q̈, q(3), . . . , q(k−1)). (13.36)

The state (or phase) transition equation ẋ = f(x, u) is ẋi = xi+1 for each i such
that 1 ≤ i ≤ n − 1, and ẋn = u. Together, these n individual equations are
equivalent to q(k) = u.

The initial state specifies the initial position and all time derivatives up to
order k− 1. Using these and the action u, the state trajectory can be obtained by
a chain of integrations. �

You might be wondering whether derivatives can be eliminated completely by
introducing a phase space that has high enough dimension. This does actually
work. For example, if there are second-order constraints, then a 3n-dimensional
phase space can be introduced in which x = (q, q̇, q̈). This enables constraints such
as g(q, q̇, q̈) = 0 to appear as g(x) = 0. The trouble with using such formulations
is that the state must follow the constraint surface in a way that is similar to
traversing the solution set of a closed kinematic chain, as considered in Section
4.4. This is why tangent spaces arose in that context. In either case, the set of
allowable velocities becomes constrained at every point in the space.

Problems defined using phase spaces typically have an interesting property
known as drift. This means that for some x ∈ X, there does not exist any u ∈ U
such that f(x, u) = 0. For the examples in Section 13.1.2, such an action always
existed. These were examples of driftless systems. This was possible because the
constraints did not involve dynamics. In a dynamical system, it is impossible to
instantaneously stop due to momentum, which is a form of drift. For example,
a car will “drift” into a brick wall if it is 3 meters way and traveling 100 km/hr
in the direction of the wall. There exists no action (e.g., stepping firmly on the
brakes) that could instantaneously stop the car. In general, there is no way to
instantaneously stop in the phase space.

13.2.2 Linear Systems

Now that the phase space has been defined as a special kind of state space that
can handle dynamics, it is convenient to classify the kinds of differential models
that can be defined based on their mathematical form. The class of linear systems
has been most widely studied, particularly in the context of control theory. The

6It is called this because in block diagram representations of systems it is depicted as a chain
of integrator blocks.

740 S. M. LaValle: Planning Algorithms

reason is that many powerful techniques from linear algebra can be applied to
yield good control laws [192]. The ideas can also be generalized to linear systems
that involve optimality criteria [28, 570], nature [95, 564], or multiple players [59].

Let X = Rn be a phase space, and let U = Rm be an action space for m ≤ n.
A linear system is a differential model for which the state transition equation can
be expressed as

ẋ = f(x, u) = Ax+ Bu, (13.37)

in which A and B are constant, real-valued matrices of dimensions n × n and
n×m, respectively.

Example 13.5 (Linear System Example) For a simple example of (13.37),
suppose X = R3, U = R2, and let





ẋ1
ẋ2
ẋ3



 =





0
√
2 1

1 −1 4
2 0 1









x1
x2
x3



+





1 0
0 1
1 1





(
u1
u2

)

. (13.38)

Performing the matrix multiplications reveals that all three equations are linear in
the state and action variables. Compare this to the discrete-time linear Gaussian
system shown in Example 11.25. �

Recall from Section 13.1.1 that k linear constraints restrict the velocity to an
(n − k)-dimensional hyperplane. The linear model in (13.37) is in parametric
form, which means that each action variable may allow an independent degree of
freedom. In this case, m = n − k. In the extreme case of m = 0, there are no
actions, which results in ẋ = Ax. The phase velocity ẋ is fixed for every point
x ∈ X. If m = 1, then at every x ∈ X a one-dimensional set of velocities may
be chosen using u. Note that the direction is not fixed because bu is added to all
components of ẋ. In general, the set of allowable velocities at a point x ∈ Rn is
an m-dimensional hyperplane in the tangent space Tx(R

n) (if B is nonsingular).
In spite of (13.37), it may still be possible to reach all of the state space from

any initial state. It may be costly, however, to reach a nearby point because of the
restriction on the tangent space; it is impossible to command a velocity in some
directions. For the case of nonlinear systems, it is sometimes possible to quickly
reach any point in a small neighborhood of a state, while remaining in a small
region around the state. Such issues fall under the general topic of controllability,
which will be covered in Sections 15.1.3 and 15.4.3.

Although not covered here, the observability of the system is an important
topic in control [192, 478]. In terms of the I-space concepts of Chapter 11, this
means that a sensor of the form y = h(x) is defined, and the task is to determine
the current state, given the history I-state. If the system is observable, this means
that the nondeterministic I-state is a single point. Otherwise, the system may
only be partially observable. In the case of linear systems, if the sensing model is
also linear,

y = h(x) = Cy, (13.39)

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 741

then simple matrix conditions can be used to determine whether the system is
observable [192]. Nonlinear observability theory also exists [478].

As in the case of discrete planning problems, it is possible to define differential
models that depend on time. In the discrete case, this involves a dependency on
stages. For the continuous-stage case, a time-varying linear system is defined as

ẋ = f(x(t), u(t), t) = A(t)x(t) + B(t)u(t). (13.40)

In this case, the matrix entries are allowed to be functions of time. Many powerful
control techniques can be easily adapted to this case, but it will not be considered
here because most planning problems are time-invariant (or stationary).

13.2.3 Nonlinear Systems

Although many powerful control laws can be developed for linear systems, the
vast majority of systems that occur in the physical world fail to be linear. Any
differential models that do not fit (13.37) or (13.40) are called nonlinear systems.
All of the models given in Section 13.1.2 are nonlinear systems for the special case
in which X = C.

One important family of nonlinear systems actually appears to be linear in
some sense. Let X be a smooth n-dimensional manifold, and let U = Rm for some
m ≤ n. Using a coordinate neighborhood, a nonlinear system of the form

ẋ = f(x) +
m∑

i=1

gi(x)ui (13.41)

for smooth functions f and gi is called a control-affine system or affine-in-control
system.7 These have been studied extensively in nonlinear control theory [478,
846]. They are linear in the actions but nonlinear with respect to the state. See
Section 15.4.1 for further reading on control-affine systems.

For a control-affine system it is not necessarily possible to obtain zero velocity
because f causes drift. The important special case of a driftless control-affine
system occurs if f ≡ 0. This is written as

ẋ =
m∑

i=1

gi(x)ui. (13.42)

By setting ui = 0 for each i from 1 to m, zero velocity, ẋ = 0, is obtained.

Example 13.6 (Nonholonomic Integrator) One of the simplest examples of a
driftless control-affine system is the nonholonomic integrator introduced in control
literature by Brockett in [142]. It is sometimes referred to as Brockett’s system,
or the Heisenberg system because it arises in quantum mechanics [112]. Let X =

7Be careful not to confuse control-affine systems with affine control systems, which are of the
form ẋ = Ax+Bu+ w, for some constant matrices A,B and a constant vector w.

742 S. M. LaValle: Planning Algorithms

R3, and let the set of actions U = R2. The state transition equation for the
nonholonomic integrator is

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1.
(13.43)

�

Many nonlinear systems can be expressed implicitly using Pfaffian constraints,
which appeared in Section 13.1.1, and can be generalized from C-spaces to phase
spaces. In terms of X, a Pfaffian constraint is expressed as

g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0. (13.44)

Even though the equation is linear in ẋ, a nonlinear dependency on x is allowed.
Both holonomic and nonholonomic models may exist for phase spaces, just

as in the case of C-spaces in Section 13.1.3. The Frobenius Theorem, which is
covered in Section 15.4.2, can be used to determine whether control-affine systems
are completely integrable.

13.2.4 Extending Models by Adding Integrators

The differential models from Section 13.1 may seem unrealistic in many applica-
tions because actions are required to undergo instantaneous changes. For example,
in the simple car, the steering angle and speed may be instantaneously changed
to any value. This implies that the car is capable of instantaneous acceleration
changes. This may be a reasonable approximation if the car is moving slowly
(for example, to analyze parallel-parking maneuvers). The model is ridiculous,
however, at high speeds.

Suppose a state transition equation of the form ẋ = f(x, u) is given in which
the dimension of X is n. The model can be enhanced as follows:

1. Select an action variable ui.

2. Rename the action variable as a new state variable, xn+1 = ui.

3. Define a new action variable u′i that takes the place of ui.

4. Extend the state transition equation by one dimension by introducing ẋn+1 =
u′i.

This enhancement will be referred to as placing an integrator in front of ui. This
procedure can be applied incrementally as many times as desired, to create a chain
of integrators from any action variable. It can also be applied to different action
variables.

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 743

13.2.4.1 Better unicycle models

Improvements to the models in Section 13.1 can be made by placing integrators
in front of action variables. For example, consider the unicycle model (13.18).
Instead of directly setting the speed using us, suppose that the speed is obtained
by integration of an action ua that represents acceleration. The equation ṡ = ua
is used instead of s = us, which means that the action sets the change in speed. If
ua is chosen from some bounded interval, then the speed is a continuous function
of time.

How should the transition equation be represented in this case? The set of
possible values for ua imposes a second-order constraint on x and y because double
integration is needed to determine their values. By applying the phase space idea,
s can be considered as a phase variable. This results in a four-dimensional phase
space, in which each state is (x, y, θ, s). The state (or phase) transition equation
is

ẋ = s cos θ θ̇ = uω

ẏ = s sin θ ṡ = ua, (13.45)

which should be compared to (13.18). The action us was replaced by s because
now speed is a phase variable, and an extra equation was added to reflect the
connection between speed and acceleration.

The integrator idea can be applied again to make the unicycle orientations
a continuous function of time. Let uα denote an angular acceleration action.
Let ω denote the angular velocity, which is introduced as a new state variable.
This results in a five-dimensional phase space and a model called the second-order
unicycle:

ẋ = s cos θ ṡ = ua

ẏ = s sin θ ω̇ = uα (13.46)

θ̇ = ω,

in which u = (ua, uα) is a two-dimensional action vector. In some contexts, s may
be fixed at a constant value, which implies that ua is fixed to ua = 0.

13.2.4.2 A continuous-steering car

As another example, consider the simple car. As formulated in (13.15), the steering
angle is allowed to change discontinuously. For simplicity, suppose that the speed
is fixed at s = 1. To make the steering angle vary continuously over time, let uω
be an action that represents the velocity of the steering angle: φ̇ = uω. The result
is a four-dimensional state space, in which each state is represented as (x, y, θ, φ).
This yields a continuous-steering car,

ẋ = cos θ θ̇ =
tanφ

L

ẏ = sin θ φ̇ = uω, (13.47)

744 S. M. LaValle: Planning Algorithms

in which there are two action variables, us and uω. This model was used for
planning in [849].

A second integrator can be applied to make the steering angle a C1 smooth
function of time. Let ω be a state variable, and let uα denote the angular acceler-
ation of the steering angle. In this case, the state vector is (x, y, θ, φ, ω), and the
state transition equation is

ẋ = cos θ φ̇ = ω

ẏ = sin θ ω̇ = uα (13.48)

θ̇ =
tanφ

L
.

Integrators can be applied any number of times to make any variables as smooth
as desired. Furthermore, the rate of change in each case can be bounded due to
limits on the phase variables and on the action set.

13.2.4.3 Smooth differential drive

A second-order differential drive model can be made by defining actions ul and ur
that accelerate the motors, instead of directly setting their velocities. Let ωl and
ωr denote the left and right motor angular velocities, respectively. The resulting
state transition equation is

ẋ =
r

2
(ωl + ωr) cos θ ω̇l = ul

ẏ =
r

2
(ωl + ωr) sin θ ω̇r = ur (13.49)

θ̇ =
r

L
(ωr − ωl).

In summary, an important technique for making existing models somewhat
more realistic is to insert one or more integrators in front of any action variables.
The dimension of the phase space increases with the introduction of each integra-
tor. A single integrator forces an original action to become continuous over time.
If the new action is bounded, then the rate of change of the original action is
bounded in places where it is differentiable (it is Lipschitz in general, as expressed
in (8.16)). Using a double integrator, the original action is forced to be C1 smooth.
Chaining more integrators on an action variable further constrains its values. In
general, k integrators can be chained in front of an original action to force it to be
Ck−1 smooth and respect Lipschitz bounds.

One important limitation, however, is that to make realistic models, other
variables may depend on the new phase variables. For example, if the simple car
is traveling fast, then we should not be able to turn as sharply as in the case of a
slow-moving car (think about how sharply you can turn the wheel while parallel
parking in comparison to driving on the highway). The development of better
differential models ultimately requires careful consideration of mechanics. This
provides motivation for Sections 13.3 and 13.4.

13.3. BASIC NEWTON-EULER MECHANICS 745

13.3 Basic Newton-Euler Mechanics

Mechanics is a vast and difficult subject. It is virtually impossible to provide a
thorough introduction in a couple of sections. Here, the purpose instead is to
overview some of the main concepts and to provide some models that may be used
with the planning algorithms in Chapter 14. The presentation in this section and
in Section 13.4 should hopefully stimulate some further studies in mechanics (see
the suggested literature at the end of the chapter). On the other hand, if you
are only interested in using the differential models, then you can safely skip their
derivations. Just keep in mind that all differential models produced in this section
end with the form ẋ = f(x, u), which is ready to use in planning algorithms.

There are two important points to keep in mind while studying mechanics:

1. The models are based on maintaining consistency with experimental obser-
vations about how bodies behave in the physical world. These observations
depend on the kind of experiment. In a particular application, many effects
may be insignificant or might not even be detectable by an experiment. For
example, it is difficult to detect relativistic effects using a radar gun that
measures automobile speed. It is therefore important to specify any simpli-
fying assumptions regarding the world and the kind of experiments that will
be performed in it.

2. The approach is usually to express some laws that translate into constraints
on the allowable velocities in the phase space. This means that implicit rep-
resentations are usually obtained in mechanics, and they must be converted
into parametric form. Furthermore, most treatments of mechanics do not ex-
plicitly mention action variables; these arise from the intention of controlling
the physical world. From the perspective of mechanics, the actions can be
assumed to be already determined. Thus, constraints appear as g(ẋ, x) = 0,
instead of g(ẋ, x, u) = 0.

Several formulations of mechanics arrive at the same differential constraints,
but from different mathematical reasoning. The remainder of this chapter overviews
three schools of thought, each of which is more elegant and modern than the one
before. The easiest to understand is Newton-Euler mechanics, which follows from
Newton’s famous laws of physics and is covered in this section. Lagrangian me-
chanics is covered in Section 13.4.1 and arrives at the differential constraints using
very general principles of optimization on a space of functions (i.e., calculus of
variations). Hamiltonian mechanics, covered in Section 13.4.4, defines a higher
dimensional state space on which the differential constraints can once again be
obtained by optimization.

13.3.1 The Newtonian Model

The most basic formulation of mechanics goes back to Newton and Euler, and
parts of it are commonly studied in basic physics courses. Consider a world W

746 S. M. LaValle: Planning Algorithms

defined as in Section 3.1, except here a 1D world W = R is allowed, in addition
to 2D and 3D worlds. A notion of time is also needed. The space of motions
that can be obtained in the space-time continuum can be formalized as a Galilean
group [39]; however, the presentation here will utilize standard intuitive notions
of time and Euclidean space. It is also assumed that any relativistic effects due to
curvature of the time-space continuum are nonexistent (Newton and Euler did not
know about this, and it is insignificant for most small-scale mechanical systems
on or near the earth).

Inertial coordinate frames Central to Newton-Euler mechanics is the idea
that points inW are expressed using an inertial coordinate frame. Imagine locating
the origin and axes of W somewhere in our universe. They need to be fixed in
a way that does not interfere with our observations of the basic laws of motion.
Imagine that we are playing racquetball in an indoor court and want to model
the motion of the ball as it bounces from wall to wall. If the coordinate frame
is rigidly attached to the ball, it will appear that the ball never moves; however,
the walls, earth, and the rest of the universe will appear to spin wildly around the
ball (imagine we have camera that points along some axis of the ball frame – you
could quickly become ill trying to follow the movie). If the coordinate frame is
fixed with respect to the court, then sensible measurements of the ball positions
would result (the movie would also be easier to watch). For all practical purposes,
we can consider this fixed coordinate frame to be inertial. Note, however, that the
ball will dance around wildly if the coordinate frame is instead fixed with respect
to the sun. The rotation and revolution of the earth would cause the ball to move
at incredible speeds. In reality, inertial frames do not exist; nevertheless, it is a
reasonable assumption for earth-based mechanical systems that an inertial frame
may be fixed to the earth.

The properties that inertial frames should technically possess are 1) the laws
of motions appear the same in any inertial frame, and 2) any frame that moves at
constant speed without rotation with respect to an inertial frame is itself inertial.
As an example of the second condition, suppose that the racquetball experiment is
performed inside of a big truck that is driving along a highway. Ignoring vibrations,
if the truck moves at constant speed on a straight stretch of road, then an inertial
coordinate frame can be fixed to the truck itself, and the ball will appear to bounce
as if the court was not moving. If, however, the road curves or the truck changes
its speed, the ball will not bounce the right way. If we still believe that the frame
attached to the truck is inertial, then the laws of motion will appear strange. The
inertial frame must be attached to the earth in this case to correctly model the
behavior of the truck and ball together.

Closed system Another important aspect of the Newton-Euler model is that
the system of bodies for which motions are modeled is closed, which means that
no bodies other than those that are explicitly modeled can have any affect on the
motions (imagine, for example, the effect if we forget to account for a black hole

13.3. BASIC NEWTON-EULER MECHANICS 747

that is a few hundred meters away from the racquetball court).

Newton’s laws The motions of bodies are based on three laws that were exper-
imentally verified by Newton and should hold in any inertial frame:

1. An object at rest tends to stay at rest, and an object in motion tends to stay
in motion with fixed speed, unless a nonzero resultant8 force acts upon it.

2. The relationship between a body mass m, its acceleration a, and an applied
force f is f = ma.

3. The interaction forces between two bodies are of equal magnitude and in
opposite directions.

Based on these laws, the differential constraints on a system of moving bodies can
be modeled.

13.3.2 Motions of Particles

The Newton-Euler model is described in terms of particles. Each particle is con-
sidered as a point that has an associated mass m. Forces may act on any particle.
The motion of a rigid body, covered in Section 13.3.3, is actually determined by
modeling the body as a collection of particles that are stuck together. Therefore,
it is helpful to first understand how particles behave.

13.3.2.1 Motion of a single particle

Consider the case of a single particle of mass m that moves in W = R. The force
becomes a scalar, f ∈ R. Let q(t) denote the position of the particle in W at
time t. Using this notation, acceleration is q̈, and Newton’s second law becomes
f = mq̈. This can be solved for q̈ to yield

q̈ = f/m. (13.50)

If f is interpreted as an action variable u, and if m = 1, then (13.50) is precisely
the double integrator q̈ = u from Example 13.3. Phase variables x1 = q and x2 = q̇
can be introduced to obtain a state vector x = (q, q̇). This means that for a fixed
u, the motion of the particle from any initial state can be captured by a vector
field on R2. The state transition equation is

ẋ1 = x2

ẋ2 =
u

m
,

(13.51)

in which x1 = q, x2 = q̇, and u = f . Let U = [−fmax, fmax], in which fmax repre-
sents the maximum magnitude of force that can be applied to the particle. Forces

8This is the sum of all forces acting on the point.

748 S. M. LaValle: Planning Algorithms

of arbitrarily high magnitude are not allowed because this would be physically
unrealistic.

Now generalize the particle motion to W = R2 and W = R3. Let n denote
the dimension of W , which may be n = 2 or n = 3. Let q denote the position
of the particle in W . Once again, Newton’s second law yields f = mq̈, but in
this case there are n independent equations of the form fi = mq̈i. Each of these
may be considered as an independent example of the double integrator, scaled by
m. Each component fi of the force can be considered as an action variable ui.
A 2n-dimensional state space can be defined as x = (q, q̇). The state transition
equation for n = 2 becomes

ẋ1 = x3 ẋ3 = u1/m (13.52)

ẋ2 = x4 ẋ4 = u2/m,

and for n = 3 it becomes

ẋ1 = x4 ẋ4 = u1/m

ẋ2 = x5 ẋ5 = u2/m (13.53)

ẋ3 = x6 ẋ6 = u3/m.

For a fixed action, these equations define vector fields on R4 and R6, respectively.
The action set should also be bounded, as in the one-dimensional case. Suppose
that

U = {u ∈ Rn | ‖u‖ ≤ fmax}. (13.54)

Now suppose that multiple forces act on the same particle. In this case, the
vector sum

F =
∑

f (13.55)

yields the resultant force over all f taken from a collection of forces. The resultant
force F represents a single force that is equivalent, in terms of its effect on the
particle, to the combined forces in the collection. This enables Newton’s second
law to be formulated as F = mq̈. The next two examples illustrate state transi-
tion equations that arise from a collection of forces, some of which correspond to
actions.

Example 13.7 (Lunar Lander) Using the Newton-Euler model of a particle,
an example will be constructed for which X = R4. A lunar lander is modeled as
a particle with mass m in a 2D world shown in Figure 13.8. It is not allowed to
rotate, implying that C = R2. There are three thrusters on the lander, which are
on the left, right, and bottom of the lander. The forces acting on the lander are
shown in Figure 13.8. The activation of each thruster is considered as a binary
switch. Each has its own associated binary action variable, in which the value 1
means that the thruster is firing and 0 means the thruster is dormant. The left and
right lateral thrusters provide forces of magnitude fl and fr, respectively, when
activated (note that the left thruster provides a force to the right, and vice versa).

13.3. BASIC NEWTON-EULER MECHANICS 749

mg

fu

flfr

Figure 13.8: There are three thrusters on the lunar lander, and it is under the
influence of lunar gravity. It is treated as a particle; therefore, no rotations are
possible. Four orthogonal forces may act on the lander: Three arise from thrusters
that can be switched on or off, and the remaining arises from the acceleration of
gravity.

The upward thruster, mounted to the bottom of the lander, provides a force of
magnitude fu when activated. Let g denote the scalar acceleration constant for
gravity (this is approximately 1.622 m/s2 for the moon).

From (13.55) and Newton’s second law, F = mq̈. In the horizontal direction,
this becomes

mq̈1 = ulfl − urfr, (13.56)

and in the vertical direction,

mq̈2 = uufu −mg. (13.57)

Opposing forces are subtracted because only the magnitudes are given by fl, fr,
fu, and g. If they were instead expressed as vectors in R2, then they would be
added.

The lunar lander model can be transformed into a four-dimensional phase space
in which x = (q1, q2, q̇1, q̇2). By replacing q̈1 and q̈2 with ẋ3 and ẋ4, respectively,
(13.56) and (13.57) can be written as

ẋ3 =
1

m
(ulfl − urfr) (13.58)

and

ẋ4 =
uufu
m
− g. (13.59)

750 S. M. LaValle: Planning Algorithms

mg

θ

L

Figure 13.9: The pendulum is a simple and important example of a nonlinear
system.

Using ẋ1 = x3 and ẋ2 = x4, the state transition equation becomes

ẋ1 = x3 ẋ3 =
1

m
(ulfl − urfr)

ẋ2 = x4 ẋ4 =
uufu
m
− g, (13.60)

which is in the desired form, ẋ = f(x, u). The action space U consists of eight
elements, which indicate whether each of the three thrusters is turned on or off.
Each action vector is of the form (ul, ur, uu), in which each component is 0 or 1.
�

The next example illustrates the importance of Newton’s third law.

Example 13.8 (Pendulum) A simple and very important model is the pendu-
lum shown in Figure 13.9. Let m denote the mass of the attached particle (the
string is assumed to have no mass). Let g denote the acceleration constant due to
gravity. Let L denote the length of the pendulum string. Let θ denote the angular
displacement of the pendulum, which characterizes the pendulum configuration.
Using Newton’s second law and assuming the pendulum moves in a vacuum (no
wind resistance), the constraint

mLθ̈ = −mg sin θ (13.61)

is obtained. A 2D state space can be formulated in which x1 = θ and x2 = θ̇. This
leads to

ẋ1 = x2

ẋ2 = −
g

L
sin x1,

(13.62)

13.3. BASIC NEWTON-EULER MECHANICS 751

which has no actions (the form of (13.62) is ẋ = f(x)).
A linear drag term kLθ̇ can be added to the model to account for wind resis-

tance. This yields
mLθ̈ = −mg sin θ − kLθ̇, (13.63)

which becomes

ẋ1 = x2

ẋ2 = −
g

L
sin x1 −

k

m
x2

(13.64)

in the state space form.
Now consider applying a force uf on the particle, in a direction perpendicular

to the string. This action can be imagined as having a thruster attached to the
side of the particle. This adds the term uf to (13.63). Its sign depends on the
choice of the perpendicular vector (thrust to the left or to the right). The state
transition equation ẋ = f(x, u) then becomes

ẋ1 = x2

ẋ2 = −
g

L
sin x1 −

k

m
x2 +

1

mL
uf .

(13.65)

�

Although sufficient information has been given to specify differential models for
a particle, several other concepts are useful to introduce, especially in the extension
to multiple particles and rigid bodies. The main idea is that conservation laws
can be derived from Newton’s laws. The linear momentum (or just momentum) d
of the particle is defined as

d = mq̇. (13.66)

This is obtained by integrating f = mq̈ with respect to time.
It will be convenient when rigid-body rotations are covered to work with the

moment of momentum (or angular momentum). A version of momentum that
is based on moments can be obtained by first defining the moment of force (or
torque) for a force f acting at a point q ∈ W as

n = q × f, (13.67)

in which × denotes the vector cross product in R3. For a particle that has linear
momentum d, the moment of momentum e is defined as

e = q × d. (13.68)

It can be shown that
de

dt
= n, (13.69)

752 S. M. LaValle: Planning Algorithms

which is equivalent to Newton’s second law but is expressed in terms of momentum.
For the motion of a particle in a closed system, the linear momentum and moment
of momentum are conserved if there are no external forces acting on it. This is
essentially a restatement of Newton’s first law.

This idea can alternatively be expressed in terms of energy, which depends on
the same variables as linear momentum. The kinetic energy of a particle is

T =
1

2
mq̇ · q̇, (13.70)

in which · is the familiar inner product (or dot product). The total kinetic energy of
a system of particles is obtained by summing the kinetic energies of the individual
particles.

13.3.2.2 Motion of a set of particles

The concepts expressed so far naturally extend to a set of particles that move
in a closed system. This provides a smooth transition to rigid bodies, which are
modeled as a collection of infinitesimal particles that are “stuck together,” causing
forces between neighboring particles to cancel. In the present model, the particles
are independently moving. If a pair of particles collides, then, by Newton’s third
law, they receive forces of equal magnitude and opposite directions at the instant
of impact.

It can be shown that all momentum expressions extend to sums over the par-
ticles [681]. For a set of particles, the linear momentum of each can be summed
to yield the linear momentum of the system as

D =
∑

d. (13.71)

The total external force can be determined as

F =
∑

fi, (13.72)

which is a kind of resultant force for the whole system. The relationship dD/dt = F
holds, which extends the case of a single particle. The total mass can be summed
to yield

M =
∑

m, (13.73)

and the center of mass of the system is

p =
1

M

∑

mq, (13.74)

in which m and q are the mass and position of each particle, respectively. The
expressions D = Mṗ and F = Mp̈ hold, which are the analogs of d = mq̇ and
f = mq̈ for a single particle.

13.3. BASIC NEWTON-EULER MECHANICS 753

So far the translational part of the motion has been captured; however, rotation
of the system is also important. This was the motivation for introducing the
moment concepts. Let the total moment of force (or total torque) be

N =
∑

q × f, (13.75)

and let the moment of momentum of the system be

E =
∑

q × d. (13.76)

It can be shown that dE/dt = N , which behaves in the same way as in the single-
particle case.

The ideas given so far make a system of particles appear very much as a single
particle. It is important, however, when conducting a simulation of their behavior
to consider the collisions between the particles. Detecting these collisions and
calculating the resulting impact forces ensures that correct motions are obtained.

As the number of particles tends to infinity, consider the limiting case of a rigid
body. In this case, the particles are “sewn” together, which cancels their internal
forces. It will be sufficient only to handle the forces that act on the boundary of
the rigid body. The expressions for the motion of a rigid body are given in Section
13.3.3. The expressions can alternatively be obtained using other concepts, such
as those in Section 13.4.

13.3.3 Motion of a Rigid Body

For a free-floating 3D rigid body, recall from Section 4.2.2 that its C-space C has six
dimensions. Suppose that actions are applied to the body as external forces. These
directly cause accelerations that result in second-order differential equations. By
defining a state to be (q, q̇), first-order differential equations can be obtained in a
twelve-dimensional phase space X.

Let A ⊆ R3 denote a free-floating rigid body. Let σ(r) denote the body density
at r ∈ A. Let m denote the total mass of A, which is defined using the density as

m =

∫

A
σ(r)dr, (13.77)

in which dr = dr1dr2dr3 represents a volume element in R3. Let p ∈ R3 denote
the center of mass of A, which is defined for p = (p1, p2, p3) as

pi =
1

m

∫

A
riσ(r)dr. (13.78)

Suppose that a collection of external forces acts on A (it is assumed that all
internal forces in A cancel each other out). Each force f acts at a point on the
boundary, as shown in Figure 13.10 (note that any point along the line of force
may alternatively be used). The set of forces can be combined into a single force

754 S. M. LaValle: Planning Algorithms

r

p

fA

Figure 13.10: A force f acting on A at r produces a moment about p of r × f .

and moment that both act about the center of mass p. Let F denote the total
external force acting on A. Let N denote the total external moment about the
center of mass of A. These are given by

F =
∑

f (13.79)

and
N =

∑

r × f (13.80)

for the collection of external forces. The terms F and N are often called the
resultant force and resultant moment of a collection of forces. It was shown by
Poinsot that every system of forces is equivalent to a single force and a moment
parallel to the line of action of the force. The result is called a wrench, which is
the force-based analog of a screw; see [681] for a nice discussion.

Actions of the form u ∈ U can be expressed as external forces and/or moments
that act on the rigid body. For example, a thruster may exert a force on the body
when activated. For a given u, the total force and moment can be resolved to
obtain F (u) and N(u).

Important frames Three different coordinate frames will become important
during the presentation:

1. Inertial frame: The global coordinate frame that is fixed with respect to
all motions of interest.

2. Translating frame: A moving frame that has its origin at the center of
mass of A and its axes aligned with the inertial frame.

3. Body frame: A frame that again has its origin at the center of mass of A,
but its axes are rigidly attached to A. This is the same frame that was used
to define bodies in Chapter 3.

13.3. BASIC NEWTON-EULER MECHANICS 755

The translational part The state transition equation involves 12 scalar equa-
tions. Six of these are straightforward to obtain by characterizing the linear veloc-
ity. For this case, it can be imagined that the body does not rotate with respect
to the inertial frame. The linear momentum is D = mṗ, and Newton’s second law
implies that

F (u) =
dD

dt
= mp̈. (13.81)

This immediately yields half of the state transition equation by solving for p̈. This
yields a 3D version of the double integrator in Example 13.3, scaled by m. Let
(p1, p2, p3) denote the coordinates of p. Let (v1, v2, v3) denote the linear velocity
the center of mass. Three scalar equations of the state transition equation are
ṗi = vi for i = 1, 2, 3. Three more are obtained as v̇i = Fi(u)/m for i = 1, 2, 3.
If there are no moments and the body is not rotating with respect to the inertial
frame, then these six equations are sufficient to describe its motion. This may
occur for a spacecraft that is initially at rest, and its thrusters apply a total force
only through the center of mass.

The rotational part The six equations derived so far are valid even if A rotates
with respect to the inertial frame. They are just the translational part of the
motion. The rotational part can be decoupled from the translational part by
using the translating frame. All translational aspects of the motion have already
been considered. Imagine that A is only rotating while its center of mass remains
fixed. Once the rotational part of the motion has been determined, it can be
combined with the translational part by simply viewing things from the inertial
frame. Therefore, the motion ofA is now considered with respect to the translating
frame, which makes it appear to be pure rotation.

Unfortunately, characterizing the rotational part of the motion is substantially
more complicated than the translation case and the 2D rotation case. This should
not be surprising in light of the difficulties associated with 3D rotations in Chapters
3 and 4.

Following from Newton’s second law, the change in the moment of momentum
is

N(u) =
dE

dt
. (13.82)

The remaining challenge is to express the right-hand side of (13.82) in a form that
can be inserted into the state transition equation.

Differential rotations To express the change in the moment of momentum in
detail, the concept of a differential rotation is needed. In the plane, it is straight-
forward to define ω = θ̇; however, for SO(3), it is more complicated. One choice
is to define derivatives with respect to yaw-pitch-roll variables, but this leads to
distortions and singularities, which are problematic for the Newton-Euler formu-
lation. Instead, a differential rotation is defined as shown in Figure 13.11. Let v

756 S. M. LaValle: Planning Algorithms

x

z

θ v

y

Figure 13.11: The angular velocity is defined as a rotation rate of the coordinate
frame about an axis.

denote a unit vector in R3, and let θ denote a rotation that is analogous to the 2D
case. Let ω denote the angular velocity vector,

ω = v
dθ

dt
. (13.83)

This provides a natural expression for angular velocity.9 The change in a rotation
matrix R with respect to time is

Ṙ = ω ×R. (13.84)

This relationship can be used to derive expressions that relate ω to yaw-pitch-roll
angles or quaternions. For example, using the yaw-pitch-roll matrix (3.42) the
conversion from ω to the change yaw, pitch, and roll angles is





γ̇

β̇
α̇



 =
1

cos β





cosα sinα 0
− sinα cos β cosα cos β 0
cosα sin β sinα sin β − cos β









ω1

ω2

ω3



 . (13.85)

Inertia matrix An inertia matrix (also called an inertia tensor or inertia oper-
ator) will be derived by considering A as a collection of particles that are rigidly
attached together (all contact forces between them cancel due to Newton’s third

9One important issue to be aware of is that the integral of ω is not path-invariant (see Example
2.15 of [994]).

13.3. BASIC NEWTON-EULER MECHANICS 757

law). The expression σ(r)dr in (13.77) represents the mass of an infinitesimal par-
ticle of A. The moment of momentum of the infinitesimal particle is r × ṙσ(r)dr.
This means that the total moment of momentum of A is

E =

∫

A(q)

(r × ṙ) σ(r)dr. (13.86)

By using the fact that ṙ = ω × r, the expression becomes

E =

∫

A(q)

r × (ω × r) σ(r)dr. (13.87)

Observe that r now appears twice in the integrand. By doing some algebraic ma-
nipulations, ω can be removed from the integrand, and a function that is quadratic
in the r variables is obtained (since r is a vector, the function is technically a
quadratic form). The first step is to apply the identity a×(b×c) = (a ·c)b−(a ·b)c
to obtain

E =

∫

A(q)

(
(r · r)ω − (r · ω)r

)
σ(r)dr. (13.88)

The angular velocity can be moved to the right to obtain

E =

(∫

A(q)

(
(r · r)I3 − rrT

)
σ(r)dr

)

ω, (13.89)

in which the integral now occurs over a 3 × 3 matrix and I3 is the 3 × 3 identity
matrix.

Let I be called the inertia matrix and be defined as

I(q) =

(∫

A(q)

(
(r · r)I3 − rrT

)
σ(r)dr

)

. (13.90)

Using the definition,
E = Iω. (13.91)

This simplification enables a concise expression of (13.82) as

N(u) =
dE

dt
=
d(Iω)

dt
= I

dω

dt
+
dI

dt
ω, (13.92)

which makes use of the chain rule.

Simplifying the inertia matrix Now the inertia matrix will be considered
more carefully. It is a symmetric 3× 3 matrix, which can be expressed as

I(q) =





I11(q) I12(q) I13(q)
I12(q) I22(q) I23(q)
I13(q) I23(q) I33(q)



 . (13.93)

758 S. M. LaValle: Planning Algorithms

For each i ∈ {1, 2, 3}, the entry Iii(q) is called a moment of inertia. The three
cases are

I11(q) =

∫

A(q)

(r22 + r23)σ(r)dr, (13.94)

I22(q) =

∫

A(q)

(r21 + r23)σ(r)dr, (13.95)

and

I33(q) =

∫

A(q)

(r21 + r22)σ(r)dr. (13.96)

The remaining entries are defined as follows. For each i, j ∈ {1, 2, 3} such that
i 6= j, the product of inertia is

Hij(q) =

∫

A(q)

rirjσ(r)dr, (13.97)

and Iij(q) = −Hij(q).
One problem with the formulation so far is that the inertia matrix changes

as the body rotates because all entries depend on the orientation q. Recall that
it was derived by considering A as a collection of infinitesimal particles in the
translating frame. It is possible, however, to express the inertia matrix in the
body frame of A. In this case, the inertia matrix can be denoted as I because it
does not depend on the orientation of A with respect to the translational frame.
The original inertia matrix is then recovered by applying a rotation that relates
the body frame to the translational frame: I(q) = RI, in which R is a rotation
matrix. It can be shown (see Equation (2.91) and Section 3.2 of [994]) that after
performing this substitution, (13.92) simplifies to

N(u) = I
dω

dt
+ ω × (Iω). (13.98)

The body frame of A must have its origin at the center of mass p; however, its
orientation has not been constrained. For different orientations, different inertia
matrices will be obtained. Since I captures the physical characteristics of A, any
two inertia matrices differ only by a rotation. This means for a given A, all
inertia matrices that can be defined by different body frame orientations have the
same eigenvalues and eigenvectors. Consider the positive definite quadratic form
xT Ix = 1, which represents the equation of an ellipsoid. A standard technique in
linear algebra is to compute the principle axes of an ellipsoid, which turn out to be
the eigenvectors of I. The lengths of the ellipsoid axes are given by the eigenvalues.
An axis-aligned expression of the ellipsoid can be obtained by defining x′ = Rx, in
which R is the matrix formed by columns of eigenvectors. Therefore, there exists
an orientation of the body frame in which the inertia matrix simplifies to

I =





I11 0 0
0 I22 0
0 0 I33



 (13.99)

13.3. BASIC NEWTON-EULER MECHANICS 759

and the diagonal elements are the eigenvalues. If the body happens to be an
ellipsoid, the principle axes correspond to the ellipsoid axes. Moment of inertia
tables are given in many texts [690]; in these cases, the principle axes are usually
chosen as the axis of the body frame because they result in the simplest expression
of I.

Completing the state transition equation Assume that the body frame of
A aligns with the principle axes. The remaining six equations of motion can finally
be given in a nice form. Using (13.99), the expression (13.98) reduces to [681]





N1(u)
N2(u)
N3(u)



 =





I11 0 0
0 I22 0
0 0 I33









ω̇1

ω̇2

ω̇3



+





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









I11 0 0
0 I22 0
0 0 I33









ω1

ω2

ω3



 .

(13.100)

Multiplying out (13.100) yields

N1(u) = I11ω̇1 + (I33 − I22)ω2ω3

N2(u) = I22ω̇2 + (I11 − I33)ω3ω1

N3(u) = I33ω̇3 + (I22 − I11)ω1ω2.

(13.101)

To prepare for the state transition equation form, solving for ω̇ yields

ω̇1 =
(
N1(u) + (I22 − I33)ω2ω3

)
/I11

ω̇2 =
(
N2(u) + (I33 − I11)ω3ω1

)
/I22

ω̇3 =
(
N3(u) + (I11 − I22)ω1ω2

)
/I33.

(13.102)

One final complication is that ω needs to be related to angles that are used to
express an element of SO(3). The mapping between these depends on the particu-
lar parameterization of SO(3). Suppose that quaternions of the form (a, b, c, d) are
used to express rotation. Recall that a can be recovered once b, c, and d are given
using a2 + b2 + c2 + d2 = 1. The relationship between ω and the time derivatives
of the quaternion components is obtained by using (13.84) (see [690], p. 433):

ḃ = ω3c− ω2d

ċ = ω1d− ω3b

ḋ = ω2b− ω1c.

(13.103)

This finally completes the specification of ẋ = f(x, u), in which

x = (p1, p2, p3, v1, v2, v3, b, c, d, ω1, ω2, ω3) (13.104)

760 S. M. LaValle: Planning Algorithms

is a twelve-dimensional phase vector. For convenience, the full specification of the
state transition equation is

ṗ1 = v1 ḃ = ω3c− ω2d

ṗ2 = v2 ċ = ω1d− ω3b

ṗ3 = v3 ḋ = ω2b− ω1c (13.105)

v̇1 = F1(u)/m ω̇1 =
(
N1(u) + (I22 − I33)ω2ω3

)
/I11

v̇2 = F2(u)/m ω̇2 =
(
N2(u) + (I33 − I11)ω3ω1

)
/I22

v̇3 = F3(u)/m ω̇3 =
(
N3(u) + (I11 − I22)ω1ω2

)
/I33.

The relationship between inertia matrices and ellipsoids is actually much deeper
than presented here. The kinetic energy due to rotation only is elegantly expressed
as

T = 1
2
ωT Iω. (13.106)

A fascinating interpretation of rotational motion in the absence of external forces
was given by Poinsot [39, 681]. As the body rotates, its motion is equivalent to
that of the inertia ellipsoid, given by (13.106), rolling (without sliding) down a
plane with normal vector Iω in R3.

The 2D case The dynamics of a 2D rigid body that moves in the plane can be
handled as a special case of a 3D body. Let A ⊂ R2 be a 2D body, expressed in
its body frame. The total external forces acting on A can be expressed in terms of
a two-dimensional total force through the center of mass and a moment through
the center of mass. The phase space for this model has six dimensions. Three
come from the degrees of freedom of SE(2), two come from linear velocity, and
one comes from angular velocity.

The translational part is once again expressed as

F (u) =
dD

dt
= mp̈. (13.107)

This provides four components of the state transition equation.
All rotations must occur with respect to the z-axis in the 2D formulation. This

means that the angular velocity ω is a scalar value. Let θ denote the orientation
of A. The relationship between ω and θ is given by θ̇ = ω, which yields one more
component of the state transition equation.

At this point, only one component remains. Recall (13.92). By inspecting
(13.101) it can be seen that the inertia-based terms vanish. In that formulation,
ω3 is equivalent to the scalar ω for the 2D case. The final terms of all three
equations vanish because ω1 = ω2 = 0. The first terms of the first two equations
also vanish because ω̇1 = ω̇2 = 0. This leaves N3(u) = I33ω̇3. In the 2D case, this
can be notationally simplified to

N(u) =
dE

dt
=
d(Iω)

dt
= I

dω

dt
= Iω̇, (13.108)

13.3. BASIC NEWTON-EULER MECHANICS 761

in which I is now a scalar. Note that for the 3D case, the angular velocity can
change, even when N(u) = 0. In the 2D case, however, this is not possible. In
both cases, the moment of momentum is conserved; in the 2D case, this happens
to imply that ω is fixed. The sixth component of the state transition equation is
obtained by solving (13.108) for ω̇.

The state transition equation for a 2D rigid body in the plane is therefore

ṗ1 = v1 v̇1 = F1(u)/m

ṗ2 = v2 v̇2 = F2(u)/m (13.109)

θ̇ = ω ω̇ = N(u)/I.

A car with tire skidding This section concludes by introducing a car model
that considers it as a skidding rigid body in the plane. This model was suggested
by Jim Bernard. The C-space is C = R2× S1, in which q = (x, y, θ). Suppose that
as the car moves at high speeds, the tires are able to skid laterally in a direction
perpendicular to the main axis of the car (i.e., parallel to the rear axle). Let ω
denote the angular velocity of the car. Let v denote the lateral skidding velocity,
which is another state variable. This results in a five-dimensional state space in
which each state is a vector of the form (x, y, θ, ω, v).

The position of the rear axle center can be expressed as

ẋ = s cos θ − v sin θ
ẏ = s sin θ + v cos θ,

(13.110)

which yields two components of the state transition equation. Let ω = θ̇ denote
the angular velocity, which yields one more component of the state transition
equation. This leaves only two equations, which are derived from 2D rigid body
mechanics (which will be covered in Section 13.3.3). The state transition is

ẋ = s cos θ − v sin θ
ẏ = s sin θ + v cos θ

θ̇ = ω

ω̇ = (aff − bfr)/I
v̇ = −sω + (ff + fr)/m,

(13.111)

in which ff and fr are the front and rear tire forces, m is the mass, I is the moment
of inertia, and a and b are the distances from the center of mass to the front and
rear axles, respectively. The first force is

ff = cf
(
(v + aω)/s+ φ

)
, (13.112)

in which cf is the front cornering stiffness, and φ is the steering angle. The second
force is

fr = cr(v − bω)/s, (13.113)

762 S. M. LaValle: Planning Algorithms

in which cr is the rear cornering stiffness. The steering angle can be designated as
an action variable: uφ = φ. An integrator can be placed in front of the speed to
allow accelerations. This increases the state space dimension by one.

Reasonable values for the parameters for an automotive application are: m =
1460 kg, cf = 17000, cr = 20000, a = 1.2 m, b = 1.5 m, I = 2170 kg/m2,
and s = 27 m/sec. This state transition equation involves a linear tire skidding
model, which is a poor approximation in many applications. Nonlinear tire models
provide better approximations to the actual behavior of cars [91]. For a thorough
introduction to the dynamics of cars, see [822].

13.4 Advanced Mechanics Concepts

Newton-Euler mechanics has the advantage that it starts with very basic prin-
ciples, but it has frustrating restrictions that make modeling more difficult for
complicated mechanical systems. One of the main limitations is that all laws must
be expressed in terms of an inertial frame with orthogonal axes. This section in-
troduces the basic ideas of Lagrangian and Hamiltonian mechanics, which remove
these restrictions by reducing mechanics to finding an optimal path using any coor-
dinate neighborhood of the C-space. The optimality criterion is expressed in terms
of energy. The resulting techniques can be applied on any coordinate neighborhood
of a smooth manifold. The Lagrangian formulation is usually best for determining
the motions of one or more bodies. Section 13.4.1 introduces the basic Lagrangian
concepts based on the calculus of variations. Section 13.4.2 presents a general
form of the Euler-Lagrange equations, which is useful for determining the motions
of numerous dynamical systems, including chains of bodies. The Lagrangian is
also convenient for systems that involve additional differential constraints, such as
friction or rolling wheels. These cases are briefly covered in Section 13.4.3. The
Hamiltonian formulation in Section 13.4.4 is based on a special phase space and
provides an alternative to the Lagrangian formulation. The technique generalizes
to Pontryagin’s minimum principle, a powerful optimal control technique that is
covered in Section 15.2.3.

13.4.1 Lagrangian Mechanics

13.4.1.1 Calculus of variations

Lagrangian mechanics is based on the calculus of variations, which is the subject of
optimization over a space of paths. One of the most famous variational problems
involves constraining a particle to travel along a curve (imagine that the particle
slides along a frictionless track). The problem is to find the curve for which the
ball travels from one point to the other, starting at rest, and being accelerated
only by gravity. The solution is a cycloid function called the Brachistochrone curve
[841]. Before this problem is described further, recall the classical optimization
problem from calculus in which the task is to find extremal values (minima and

13.4. ADVANCED MECHANICS CONCEPTS 763

t

x(t)

Figure 13.12: The variation is a “small” function that is added to x̃ to perturb it.

maxima) of a function. Let x̃ denote a smooth function from R to R, and let x(t)
denote its value for any t ∈ R. From standard calculus, the extremal values of x̃
are all t ∈ R for which ẋ = 0. Suppose that at some t′ ∈ R, x̃ achieves a local
minimum. To serve as a local minimum, tiny perturbations of t′ should result in
larger function values. Thus, there exists some d > 0 such that x(t′ + ǫ) > x(t′)
for any ǫ ∈ [−d, d]. Each ǫ represents a possible perturbation of t′.

The calculus of variations addresses a harder problem in which optimization
occurs over a space of functions. For each function, a value is assigned by a
criterion called a functional.10 A procedure analogous to taking the derivative
of the function and setting it to zero will be performed. This will be arrived
at by considering tiny perturbations of an entire function, as opposed to the ǫ
perturbations mentioned above. Each perturbation is itself a function, which is
called a variation. For a function to minimize a functional, any small enough
perturbation of it must yield a larger functional value. In the case of optimizing a
function of one variable, there are only two directions for the perturbation: ±ǫ. See
Figure 13.12. In the calculus of variations, there are many different “directions”
because of the uncountably infinite number of ways to construct a small variation
function that perturbs the original function (the set of all variations is an infinite-
dimensional function space; recall Example 8.5).

Let x̃ denote a smooth function from T = [t0, t1] into R. The functional is
defined by integrating a function over the domain of x̃. Let L be a smooth, real-
valued function of three variables, a, b, and c.11 The arguments of L may be any
a, b ∈ R and c ∈ T to yield L(a, b, c), but each has a special interpretation. For
some smooth function x̃, L is used to evaluate it at a particular t ∈ T to obtain
L(x, ẋ, t). A functional Φ is constructed using L to evaluate the whole function x̃

10This is the reason why a cost functional has been used throughout the book. It is a function
on a space of functions.

11Unfortunately, L is used here to represent a cost function, on which a functional Φ will
be based. This conflicts with using l as a cost function and L as the functional in motion
planning formulations. This notational collision remains because L is standard notation for the
Lagrangian. Be careful to avoid confusion.

764 S. M. LaValle: Planning Algorithms

as

Φ(x̃) =

∫

T

L(x(t), ẋ(t), t)dt. (13.114)

The problem is to select an x̃ that optimizes Φ. The approach is to take the
derivative of Φ and set it equal to zero, just as in standard calculus; however,
differentiating Φ with respect to x̃ is not standard calculus. This usually requires
special conditions on the class of possible functions (e.g., smoothness) and on the
vector space of variations, which are implicitly assumed to hold for the problems
considered in this section.

Example 13.9 (Shortest-Path Functional) As an example of a functional,
consider

L(x, ẋ, t) =
√
1 + ẋ2. (13.115)

When evaluated on a function x̃, this yields the arc length of the path. �

Another example of a functional has already been seen in the context of motion
planning. The cost functional (8.39) assigns a cost to a path taken through the
state space. This provided a natural way to formulate optimal path planning. A
discrete, approximate version was given by (7.26).

Let h be a smooth function over T , and let ǫ ∈ R be a small constant. Consider
the function defined as x(t)+ǫh(t) for all t ∈ [0, 1]. If ǫ = 0, then (13.114) remains
the same. As ǫ is increased or decreased, then Φ(x̃+ǫh) may change. The function
h is like the “direction” in a directional derivative. If for any smooth function h,
their exists some ǫ > 0 such that the value Φ(x̃ + ǫh) increases, then x̃ is called
an extremal of Φ. Any small perturbation to x̃ causes the value of Φ to increase.
Therefore, x̃ behaves like a local minimum in a standard optimization problem.

Let g = ǫh for some ǫ > 0 and function h. The differential of a functional can
be approximated as [39]

Φ(x̃+ g)− Φ(x̃) =

∫

T

(

L(x(t) + g(t), ẋ(t) + ġ(t), t)− L(x(t), ẋ(t), t)
)

dt+ · · ·

=

∫

T

(
∂L

∂x
g +

∂L

∂ẋ
ġ

)

dt+ · · ·

=

∫

T

(
∂L

∂x
g − d

dt

∂L

∂ẋ
g

)

dt+

(
∂L

∂ẋ
g

)
∣
∣
∣
∣
∣

t1

t0

+ · · · ,

(13.116)

in which · · · represents higher order terms that will vanish in the limit. The last
step follows from integration by parts:

(
∂L

∂ẋ
g

)
∣
∣
∣
∣
∣

t1

t0

=

∫

T

∂L

∂ẋ
ġdt+

∫

T

d

dt

∂L

∂ẋ
hdt, (13.117)

13.4. ADVANCED MECHANICS CONCEPTS 765

which is just uv =
∫
vdu +

∫
udv. Consider the value of (13.116) as ǫ becomes

small, and assume that h(t0) = h(t1) = 0. For x̃ to be an extremal function, the
change expressed in (13.116) should tend to zero as the variations approach zero.
Based on further technical assumptions, including the Fundamental Lemma of the
Calculus of Variations (see Section 12 of [39]), the Euler-Lagrange equation,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (13.118)

is obtained as a necessary condition for x̃ to be an extremum. Intuition can be
gained by studying the last line of (13.116). The integral attains a zero value pre-
cisely when (13.118) is satisfied. The other terms vanish because h(t0) = h(t1) = 0,
and higher order terms disappear in the limit process.

The partial derivatives of L with respect to ẋ and x are defined using standard
calculus. The derivative ∂L/∂ẋ is evaluated by treating ẋ as an ordinary variable
(i.e., as ∂L/∂b when the variables are named as in L(a, b, c)). Following this, the
derivative of ∂L/∂ẋ with respect to t is taken. To illustrate this process, consider
the following example.

Example 13.10 (A Simple Variational Problem) Let L be a functional de-
fined as

L(x, ẋ, t) = x3 + ẋ2. (13.119)

The partial derivatives with respect to x and ẋ are

∂L

∂x
= 3x2 (13.120)

and
∂L

∂ẋ
= 2ẋ. (13.121)

Taking the time derivative of (13.121) yields

d

dt

∂L

∂ẋ
= 2ẍ (13.122)

Substituting these into the Euler-Lagrange equation (13.118) yields

d

dt

∂L

∂ẋ
− ∂L

∂x
= 2ẍ− 3x2 = 0. (13.123)

This represents a second-order differential constraint that constrains the acceler-
ation as ẍ = 3x2/2. By constructing a 2D phase space, the constraint could be
expressed using first-order differential equations. �

766 S. M. LaValle: Planning Algorithms

13.4.1.2 Hamilton’s principle of least action

Now sufficient background has been given to return to the dynamics of mechanical
systems. The path through the C-space of a system of bodies can be expressed as
the solution to a calculus of variations problem that optimizes the difference be-
tween kinetic and potential energy. The calculus of variations principles generalize
to any coordinate neighborhood of C. In this case, the Euler-Lagrange equation is

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (13.124)

in which q is a vector of n coordinates. It is actually n scalar equations of the form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (13.125)

The coming presentation will use (13.124) to obtain a phase transition equation.
This will be derived by optimizing a functional defined as the change in kinetic
and potential energy. Kinetic energy for particles and rigid bodies was defined in
Section 13.3.1. In general, the kinetic energy function must be a quadratic function
of q̇. Its definition can be interpreted as an inner product on C, which causes C
to become a Riemannian manifold [156]. This gives the manifold a notion of the
“angle” between velocity vectors and leads to well-defined notions of curvature and
shortest paths called geodesics. Let K(q, q̇) denote the kinetic energy, expressed
using the manifold coordinates, which always takes the form

K(q, q̇) = 1
2
q̇TM(q)q̇, (13.126)

in which M(q) is an n× n matrix called the mass matrix or inertia matrix.
The next step is to define potential energy. A system is called conservative

if the forces acting on a point depend only on the point’s location, and the work
done by the force along a path depends only on the endpoints of the path. The
total energy is conserved under the motion of a conservative system. In this case,
there exists a potential function φ : W → R such that F = ∂φ/∂p, for any p ∈ W .
Let V (q) denote the total potential energy of a collection of bodies, placed at
configuration q.

It will be assumed that the dynamics are time-invariant. Hamilton’s principle
of least action states that the trajectory, q̃ : T → C, of a mechanical system
coincides with extremals of the functional,

Φ(q̃) =

∫

T

(

K(q(t), q̇(t))− V (q(t))
)

dt, (13.127)

using any coordinate neighborhood of C. The principle can be seen for the case of
C = R3 by expressing Newton’s second law in a way that looks like (13.124) [39]:

d

dt
(mq̇)− ∂V

∂q
= 0, (13.128)

13.4. ADVANCED MECHANICS CONCEPTS 767

in which the force is replaced by the derivative of potential energy. This suggests
applying the Euler-Lagrange equation to the functional

L(q, q̇) = K(q, q̇)− V (q), (13.129)

in which it has been assumed that the dynamics are time-invariant; hence, L(q, q̇, t) =
L(q, q̇). Applying the Euler-Lagrange equation to (13.127) yields the extremals.

The advantage of the Lagrangian formulation is that the C-space does not
have to be C = R3, described in an inertial frame. The Euler-Lagrange equation
gives a necessary condition for the motions in any C-space of a mechanical system.
The conditions can be expressed in terms of any coordinate neighborhood, as op-
posed to orthogonal coordinate systems, which are required by the Newton-Euler
formulation. In mechanics literature, the q variables are often referred to as gen-
eralized coordinates. This simply means the coordinates given by any coordinate
neighborhood of a smooth manifold.

Thus, the special form of (13.124) that uses (13.129) yields the appropriate
constraints on the motion:

d

dt

∂L

∂q̇
− ∂L

∂q
=

d

dt

∂K(q, q̇)

∂q̇
− ∂K(q, q̇)

∂q
+
∂V (q)

∂q
= 0. (13.130)

Recall that this represents n equations, one for each coordinate qi. Since K(q, q̇)
does not depend on time, the d/dt operator simply replaces q̇ by q̈ in the calculated
expression for ∂K(q, q̇)/∂q̇. The appearance of q̈ seems appropriate because the
resulting differential equations are second-order, which is consistent with Newton-
Euler mechanics.

Example 13.11 (A Falling Particle) Suppose that a particle with mass m is
falling in R3. Let (q1, q2, q3) denote the position of the particle. Let g denote
the acceleration constant of gravity in the −q3 direction. The potential energy is
V (q) = mgq3. The kinetic energy is

K(q, q̇) = 1
2
mq̇ · q̇ = 1

2
m(q̇21 + q̇22 + q̇23). (13.131)

The Lagrangian is

L(q, q̇) = K(q, q̇)− V (q) = 1
2
m(q̇21 + q̇22 + q̇23)−mgq3 = 0. (13.132)

To obtain the differential constraints on the motion of the particle, use (13.130).
For each i from 1 to 3,

d

dt

∂L

∂q̇
=

d

dt
(mq̇i) = mq̈i (13.133)

Since K(q, q̇) does not depend on q, the derivative ∂K/∂qi = 0 for each i. The
derivatives with respect to potential energy are

∂V

∂q1
= 0

∂V

∂q2
= 0

∂V

∂q3
= mg. (13.134)

768 S. M. LaValle: Planning Algorithms

Substitution into (13.130) yields three equations:

mq̈1 = 0 mq̈2 = 0 mq̈3 +mg = 0. (13.135)

These indicate that acceleration only occurs in the −q3 direction, and this is due
to gravity. The equations are consistent with Newton’s laws. As usual, a six-
dimensional phase space can be defined to obtain first-order differential constraints.
�

The “least” part of Hamilton’s principle is actually a misnomer. It is technically
only a principle of “extremal” action because (13.130) can also yield motions that
maximize the functional.

13.4.1.3 Applying actions

Up to this point, it has been assumed that no actions are applied to the mechanical
system. This is the way the Euler-Lagrange equation usually appears in physics
because the goal is to predict motion, rather than control it. Let u ∈ Rn denote an
action vector. Actions can be applied to the Lagrangian formulation as generalized
forces that “act” on the right side of the Euler-Lagrange equation. This results in

d

dt

∂L

∂q̇
− ∂L

∂q
= u. (13.136)

The actions force the mechanical system to deviate from its usual behavior. In
some instances, the true actions may be expressed in terms of other variables, and
then u is obtained by a transformation (recall transforming action variables for
the differential drive vehicle of Section 13.1.2). In this case, u may be replaced in
(13.136) by φ(u) for some transformation φ. In this case, the dimension of u need
not be n.

13.4.1.4 Procedure for deriving the state transition equation

The following general procedure can be followed to derive the differential model us-
ing Lagrangian mechanics on a coordinate neighborhood of a smooth n-dimensional
manifold:

1. Determine the degrees of freedom of the system and define the appropriate
n-dimensional smooth manifold C.

2. Express the kinetic energy as a quadratic form in the configuration velocity
components:

K(q, q̇) =
1

2
q̇TM(q)q̇ =

1

2

n∑

i=1

n∑

j=1

mij(q)q̇iq̇j. (13.137)

13.4. ADVANCED MECHANICS CONCEPTS 769

3. Express the potential energy V (q).

4. Let L(q, q̇) = K(q, q̇)− V (q) be the Lagrangian function, and use the Euler-
Lagrange equation (13.130) to determine the differential constraints.

5. Convert to phase space form by letting x = (q, q̇). If possible, solve for ẋ to
obtain ẋ = f(x, u).

Example 13.12 (2D Rigid Body Revisited) The equations in (13.109) can
be alternatively derived using the Euler-Lagrange equation. Let C = R2× S1, and
let (q1, q2, q3) = (x, y, θ) to conform to the notation used to express the Lagrangian.

The kinetic energy is the sum of kinetic energies due to linear and angular
velocities, respectively. This yields

K(q, q̇) = 1
2
mq̇ · q̇ + 1

2
Iq̇23, (13.138)

in which m and I are the mass and moment of inertia, respectively. Assume there
is no gravity; hence, V (q) = 0 and L(q, q̇) = K(q, q̇).

Suppose that generalized forces u1, u2, and u3 can be applied to the configu-
ration variables. Applying the Euler-Lagrange equation to L(q, q̇) yields

d

dt

∂L

∂q̇1
− ∂L

∂q1
=

d

dt
(mq̇1) = mq̈1 = u1

d

dt

∂L

∂q̇2
− ∂L

∂q2
=

d

dt
(mq̇2) = mq̈2 = u2

d

dt

∂L

∂q̇3
− ∂L

∂q3
=

d

dt
(Iq̇3) = Iq̈3 = u3.

(13.139)

These expressions are equivalent to those given in (13.109). One difference is that
conversion to the phase space is needed. The second difference is that the action
variables in (13.139) do not refer directly to forces and moments. They are in-
stead interpreted as generalized forces that act on the configuration variables. A
conversion should be performed if the original actions in (13.109) are required. �

13.4.2 General Lagrangian Expressions

As more complicated mechanics problems are considered, it is convenient to express
the differential constraints in a general form. For example, evaluating (13.130) for
a kinematic chain of bodies leads to very complicated expressions. The terms
of these expressions, however, can be organized into standard forms that appear
simpler and give some intuitive meanings to the components.

Suppose that the kinetic energy is expressed using (13.126), and let mij(q)
denote an entry of M(q). Suppose that the potential energy is V (q). By per-
forming the derivatives expressed in (13.136), the Euler-Lagrange equation can be

770 S. M. LaValle: Planning Algorithms

expressed as n scalar equations of the form [856]

n∑

j=1

mij(q)q̈j +
n∑

j=1

n∑

k=1

hijk(q)q̇j q̇k + gi(q) = ui (13.140)

in which

hijk =
∂mij

∂qk
− 1

2

∂mjk

∂qi
. (13.141)

There is one equation for each i from 1 to n. The components of (13.140) have
physical interpretations. The mii coefficients represent the inertia with respect
to qi. The mij represent the affect on qj of accelerating qi. The hijj q̇

2
j terms

represent the centrifugal effect induced on qi by the velocity of qj. The hijkq̇j q̇k
terms represent the Coriolis effect induced on qi by the velocities of qj and qk. The
gi term usually arises from gravity.

An alternative to (13.140) is often given in terms of matrices. It can be shown
that the Euler-Lagrange equation reduces to

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (13.142)

which represents n scalar equations. This introduces C(q, q̇), which is an n × n
Coriolis matrix. It turns out that many possible Coriolis matrices may produce
equivalent different constraints. With respect to (13.140), the Coriolis matrix must
be chosen so that

n∑

j=1

cij q̇j =
n∑

j=1

n∑

k=1

hijkq̇j q̇k. (13.143)

Using (13.141),

n∑

j=1

cij q̇j =
n∑

j=1

n∑

k=1

(
∂mij

∂qk
− 1

2

∂mjk

∂qi

)

q̇j q̇k. (13.144)

A standard way to determine C(q, q̇) is by computing Christoffel symbols. By

subtracting 1
2

∂mjk

∂qi
from the inside of the nested sums in (13.144), the equation can

be rewritten as

n∑

j=1

cij q̇j =
1

2

n∑

j=1

n∑

k=1

∂mij

∂qk
q̇j q̇k +

1

2

n∑

j=1

n∑

k=1

(
∂mij

∂qk
− ∂mjk

∂qi

)

q̇j q̇k. (13.145)

This enables an element of C(q, q̇) to be written as

cij =
n∑

k=1

cijkq̇k, (13.146)

in which

cijk =
1

2

(
∂mij

∂qk
+
∂mik

∂qj
− ∂mjk

∂qi

)

. (13.147)

13.4. ADVANCED MECHANICS CONCEPTS 771

θ1

θ2

ℓ1

d1

ℓ2

A1

A2

p

x

y

Figure 13.13: Parameter values for a two-link robot with two revolute joints.

This is called a Christoffel symbol, and it is obtained from (13.145). Note that
cijk = cikj. Christoffel symbols arise in the study of affine connections in differential
geometry and are usually denoted as Γijk. Affine connections provide a way to
express acceleration without coordinates, in the same way that the tangent space
was expressed without coordinates in Section 8.3.2. For affine connections in
differential geometry, see [133]; for their application to mechanics, see [156].

13.4.2.1 Conversion to a phase transition equation

The final step is to convert the equations into phase space form. A 2n-dimensional
phase vector is introduced as x = (q, q̇). The task is to obtain ẋ = f(x, u), which
represents 2n scalar equations. The first n equations are ẋi = xn+i for i from 1 to
n. The final n equations are obtained by solving for q̈.

Suppose that the general form in (13.142) is used. Solving for q̈ yields

q̈ =M(q)−1(u− C(q, q̇)q̇ − g(q)). (13.148)

The phase variables are then substituted in a straightforward manner. Each q̈i for
i from 1 to n becomes ẋn+i, and M(q), C(q, q̇), and g(q) are expressed in terms of
x. This completes the specification of the phase transition equation.

Example 13.13 (Two-Link Manipulator) Figure 13.13 shows a two-link ma-
nipulator for which there are two revolute joints and two links, A1 and A2. Hence,
C = S1 × S1. Let q = (θ1, θ2) denote a configuration. Each of the two joints is
controlled by a motor that applies a torque ui. Let u1 apply to the base, and let
u2 apply to the joint between A1 and A2. Let d1 be the link length of A1. Let ℓi
be the distance from the Ai origin to its center of mass. For each Ai, let mi and
Ii be its mass and moment of inertia, respectively.

772 S. M. LaValle: Planning Algorithms

The kinetic energy of A1 is

K1(q̇) =
1
2
m1ℓ1θ̇

2
1 +

1
2
I1θ̇

2
1, (13.149)

and the potential energy of A1 is

V1(q) = m1gℓ1 sin θ1. (13.150)

The kinetic energy of A2 is

K2(q̇) =
1
2
p · p+ 1

2
I2(θ̇1 + θ̇2)

2, (13.151)

in which p denotes the position of the center of mass of A1 and is given from (3.53)
as

p1 = d1 cos θ1 + ℓ2 cos θ2

p2 = d1 sin θ1 + ℓ2 sin θ2.
(13.152)

The potential energy of A2 is

V2(q) = m2g(d1 sin θ1 + ℓ2 sin θ2). (13.153)

At this point, the Lagrangian function can be formed as

L(q, q̇) = K1(θ̇1) +K2(θ̇1, θ̇2)− V1(θ1)− V2(θ1, θ2) (13.154)

and inserted into (13.118) to obtain the differential constraints in implicit form,
expressed in terms of q̈, q̇, and q. Conversion to the phase space is performed
by solving the implicit constraints for q̈ and assigning x = (q, q̇), in which x is a
four-dimensional phase vector.

Rather than performing the computations directly using (13.118), the con-
straints can be directly determined using (13.140). The terms are

M(q) =

(
m11 m12

m21 m22

)

, (13.155)

in which

m11 = I1 +m1ℓ
2
1 + I2 +m2(d

2
1 + ℓ22 + 2d1ℓ2 cos θ2)

m12 = m21 = I2 +m2(ℓ
2
2 + d1ℓ2 cos θ2)

m22 = I2 +m2ℓ
2
2,

(13.156)

13.4. ADVANCED MECHANICS CONCEPTS 773

and

c111 =
1

2

∂m11

∂θ1
= 0

c112 = c121 =
1

2

∂m11

∂θ2
= −m2ℓ1ℓ2p2

c122 =
∂m12

∂θ2
− 1

2

∂m22

∂θ1
= −m2ℓ1ℓ2p2

c211 =
∂m21

∂θ1
− 1

2

∂m11

∂θ2
= m2ℓ1ℓ2p2

c212 = c221 =
1

2

∂m22

∂θ1
= 0

c222 =
1

2

∂m22

∂θ2
= 0.

(13.157)

The final term is defined as

g1 = (m1ℓ1 +m2d1)gp1 +m1ℓ2p2

g2 = m2ℓ2gp2.
(13.158)

The dynamics can alternatively be expressed using M(q), C(q, q̇), and g(q) in
(13.142). The Coriolis matrix is defined using (13.143) to obtain

C(q, q̇) = −m2ℓ1ℓ2p2

(
θ̇2 θ̇1 + θ̇2
θ̇1 0

)

, (13.159)

in which p2 is defined in (13.152) and is a function of q. For convenience, let

r = m2ℓ1ℓ2p2. (13.160)

The resulting expression, which is now a special form of (13.142), is

m11θ̈1 +m12θ̈2 − 2rθ̇1θ̇2 − rθ̇22 + g1(q) = u1

m22θ̈1 +m21θ̈2 + rθ̇21 + g2(q) = u2.
(13.161)

The phase transition equation is obtained by letting x = (θ1, θ2, θ̇1, θ̇2) and
substituting the state variables into (13.161). The variables θ̈1 and θ̈2 become ẋ3
and ẋ4, respectively. The equations must be solved for ẋ3 and ẋ4. An extension
of this model to motors that have gear ratios and nonnegligible mass appears in
[856]. �

The example provided here barely scratches the surface on the possible systems
that can be elegantly modeled. Many robotics texts cover cases in which there are
more links, different kinds of joints, and frictional forces [366, 725, 856, 907, 994].

The phase transition equation for chains of bodies could alternatively be de-
rived using the Newton-Euler formulation of mechanics. Even though the La-
grangian form is more elegant, the Newton-Euler equations, when expressed re-
cursively, are far more efficient for simulations of multibody dynamical systems
[366, 863, 994].

774 S. M. LaValle: Planning Algorithms

13.4.3 Extensions of the Euler-Lagrange Equations

Several extensions of the Euler-Lagrange equation can be constructed to handle
complications that arise in addition to kinetic energy and potential energy in a
conservative field. Each extension usually involves adding more terms to (13.129)
to account for the new complication. Problems that can be handled in this way
are closed kinematic chains, nonholonomic constraints, and nonconservative forces
(such as friction).

13.4.3.1 Incorporating velocity constraints

The Lagrangian formulation of Section 13.4.1 can be extended to allow additional
constraints placed on q and q̇. This is very powerful for developing state transition
equations for robots that have closed kinematic chains or wheeled bodies. If there
are closed chains, then the configurations may be restricted to lie in a subset of
C. If a parameterization of the solution set is possible, then C can be redefined
over the reduced C-space. This is usually not possible, however, because such a
parametrization is difficult to obtain, as mentioned in Section 4.4. If there are
wheels or other contact-based constraints, such as those in Section 13.1.3, then
extra constraints on q and q̇ exist. Dynamics can be incorporated into the models
of Section 13.1 by extending the Euler-Lagrange equation.

The coming method will be based on Lagrange multipliers. Recall from stan-
dard calculus that to optimize a function h defined over Rn, subject to an implicit
constraint g(x) = 0, it is sufficient to consider only the extrema of

h(x) + λg(x), (13.162)

in which λ ∈ R represents a Lagrange multiplier [508]. The extrema are found by
solving

∇h(x) + λ∇g(x) = 0, (13.163)

which expresses n equations of the form

∂h

∂xi
+ λ

∂g

∂xi
= 0. (13.164)

The same principle applies for handling velocity constraints on C.
Suppose that there are velocity constraints on C as considered in Section 13.1.

Consider implicit constraints, in which there are k equations of the form gi(q, q̇) = 0
for i from 1 to k. Parametric constraints can be handled as a special case of implicit
constraints by writing

gi(q, q̇) = q̇i − fi(q, u) = 0. (13.165)

For any constraints that contain actions u, no extra difficulties arise. Each ui is
treated as a constant in the following analysis. Therefore, action variables will not
be explicitly named in the expressions.

13.4. ADVANCED MECHANICS CONCEPTS 775

As before, assume time-invariant dynamics (see [789] for the time-varying case).
Starting with L(q, q̇) defined using (13.130), let the new criterion be

Lc(q, q̇, λ) = L(q, q̇) +
k∑

i=1

λigi(q, q̇). (13.166)

A functional Φc is defined by substituting Lc for L in (13.114).
The extremals of Φc are given by n equations,

d

dt

∂Lc
∂q̇i
− ∂Lc
∂qi

= 0, (13.167)

and k equations,
d

dt

∂Lc

∂λ̇i
− ∂Lc
∂λi

= 0. (13.168)

The justification for this is the same as for (13.124), except now λ is included.
The equations of (13.168) are equivalent to the constraints gi(q, q̇) = 0. The first
term of each is zero because λ̇ does not appear in the constraints, which reduces
them to

∂Lc
∂λi

= 0. (13.169)

This already follows from the constraints on extremals of L and the constraints
gi(q, q̇) = 0. In (13.167), there are n equations in n+k unknowns. The k Lagrange
multipliers can be eliminated by using the k constraints gi(q, q̇) = 0. This cor-
responds to Lagrange multiplier elimination in standard constrained optimization
[508].

The expressions in (13.167) and the constraints gi(q, q̇) may be quite compli-
cated, which makes the determination of a state transition equation challenging.
General forms are given in Section 3.8 of [789]. An important special case will be
considered here. Suppose that the constraints are Pfaffian,

gi(q, q̇) =
n∑

j=1

gij(q)q̇j = 0, (13.170)

as introduced in Section 13.1. This includes the nonholonomic velocity constraints
due to wheeled vehicles, which were presented in Section 13.1.2. Furthermore, this
includes the special case of constraints of the form gi(q) = 0, which models closed
kinematic chains. Such constraints can be differentiated with respect to time to
obtain

d

dt
gi(q) =

n∑

j=1

∂gi
∂qj

q̇j =
n∑

j=1

gij(q)q̇j = 0, (13.171)

which is in the Pfaffian form. This enables the dynamics of closed chains, con-
sidered in Section 4.4, to be expressed without even having a parametrization of

776 S. M. LaValle: Planning Algorithms

the subset of C that satisfies the closure constraints. Starting in implicit form,
differentiation is required to convert them into the Pfaffian form.

For the important case of Pfaffian constraints, (13.167) simplifies to

d

dt

∂L

∂q̇i
− ∂L

∂qi
+

k∑

j=1

λjgji(q) = 0, (13.172)

The Pfaffian constraints can be used to eliminate the Lagrange multipliers, if
desired. Note that gji represents the ith term of the jth Pfaffian constraint. An
action variable ui can be placed on the right side of each constraint, if desired.

Equation (13.172) often appears instead as

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

k∑

l=1

λjgji(q, q̇), (13.173)

which is an alternative but equivalent expression of constraints because the La-
grange multipliers can be negated without affecting the existence of extremals.
In this case, a nice interpretation due to D’Alembert can be given. Expressions
that appear on the right of (13.173) can be considered as actions, as mentioned in
Section 13.4.1. As stated previously, such actions are called generalized forces in
mechanics. The principle of virtual work is obtained by integrating the reaction
forces needed to maintain the constraints. These reaction forces are precisely given
on the right side of (13.173). Due to the cancellation of forces, no true work is
done by the constraints (if there is no friction).

Example 13.14 (A Particle on a Sphere) Suppose that a particle travels on
a unit sphere without friction or gravity. Let (q1, q2, q3) ∈ R3 denote the position
of the point. The Lagrangian function is the kinetic energy,

L(q, q̇) = 1
2
m(q̇21 + q̇22 + q̇23), (13.174)

in which m is the particle mass. For simplicity, assume that m = 2.
The constraint that the particle must travel on a sphere yields

g1(q) = q21 + q22 + q23 − 1 = 0. (13.175)

This can be put into Pfaffian form by time differentiation to obtain

2q1q̇1 + 2q2q̇2 + 2q3q̇3 = 0. (13.176)

Since k = 1, there is a single Lagrange multiplier λ1. Applying (13.172) yields
three equations,

q̈i − 2qiλ1 = 0, (13.177)

for i from 1 to 3. The generic form of the solution is

c1q1 + c2q2 + c3q3 = 0, (13.178)

13.4. ADVANCED MECHANICS CONCEPTS 777

in which the ci are real-valued constants that can be determined from the initial
position of the particle. This represents the equation of a plane through the origin.
The intersection of the plane with the sphere is a great circle. This implies that
the particle moves between two points by traveling along the great circle. These
are the shortest paths (geodesics) on the sphere. �

The general forms in Section 13.4.2 can be extended to the constrained case.
For example, (13.142) generalizes to

M(q)q̈ + C(q, q̇)q̇ + g(q) +G(q)Tλ = u, (13.179)

in which G is a n× k matrix that represents all of the gji Pfaffian coefficients. In
this case, the Lagrange multipliers can be computed as [725]

λ =
(
G(q)M(q)−1G(q)T

)−1
G(q)M(q)−1

(
u− C(q, q̇)q̇

)
, (13.180)

assuming G is time-invariant.
The phase transition equation can be determined in the usual way by perform-

ing the required differentiations, defining the 2n phase variables, and solving for
ẋ. The result generalizes (13.148).

13.4.3.2 Nonconservative forces

The Lagrangian formulation has been extended so far to handle constraints on
C that lower the dimension of the tangent space. The formulation can also be
extended to allow nonconservative forces. The most common and important ex-
ample in mechanical systems is friction. The details of friction models will not be
covered here; see [681]. As examples, friction can arise when bodies come into con-
tact, as in the joints of a robot manipulator, and as bodies move through a fluid,
such as air or water. The nonconservative forces can be expressed as additional
generalized forces, expressed in an n× 1 vector of the form B(q, q̇). Suppose that
an action vector is also permitted. The modified Euler-Lagrange equation then
becomes

d

dt

∂L

∂q̇
− ∂L

∂q
= u− B(q̇, q). (13.181)

A common extension to (13.142) is

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = u, (13.182)

in which N(q, q̇) generalizes g(q) to include nonconservative forces. This can be
generalized even further to include Pfaffian constraints and Lagrange multipliers,

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) +G(q)Tλ = u. (13.183)

The Lagrange multipliers become [725]

λ =
(
G(q)M(q)−1G(q)T

)−1
G(q)M(q)−1

(
u− C(q, q̇)q̇ −N(q, q̇)

)
. (13.184)

Once again, the phase transition equation can be derived in terms of 2n phase
variables and generalizes (13.148).

778 S. M. LaValle: Planning Algorithms

13.4.4 Hamiltonian Mechanics

The Lagrangian formulation of mechanics is the most convenient for determin-
ing a state transition equation for a collection of bodies. Once the kinetic and
potential energies are determined, the remaining efforts are straightforward com-
putation of derivatives and algebraic manipulation. Hamiltonian mechanics pro-
vides an alternative formulation that is closely related to the Lagrangian. Instead
of expressing second-order differential constraints on an n-dimensional C-space,
it expresses first-order constraints on a 2n-dimensional phase space. This idea
should be familiar from Section 13.2. The new phase space considered here is an
example of a symplectic manifold, which has many important properties, such as
being orientable and having an even number of dimensions [39]. The standard
phase vector is defined as x = (q, q̇); however, instead of q̇, n variables will be
introduced and denoted as p. Thus, a transformation exists between (q, q̇) and
(p, q). The p variables are related to the configuration variables through a special
function over the phase space called the Hamiltonian. Although the Hamiltonian
formulation usually does not help in the determination of ẋ = f(x, u), it is covered
here because its generalization to optimal control problems is quite powerful. This
generalization is called Pontryagin’s minimum principle and is covered in Section
15.2.3. In the context of mechanics, it provides a general expression of energy
conservation laws, which aids in proving many theoretical results [39, 397].

The relationship between (q, q̇) and (p, q) can be obtained by using the Legendre
transformation [39, 397]. Consider a real-valued function f of two variables, x, y ∈
R. Its total differential [508] is

df = u dx+ v dy, (13.185)

in which

u =
∂f

∂x
and v =

∂f

∂y
. (13.186)

Consider constructing a total differential that depends on du and dy, instead of
dx and dy. Let g be a function of u and y defined as

g(u, y) = ux− f. (13.187)

The total differential of g is

dg = x du+ u dx− df. (13.188)

Using (13.185) to express df , this simplifies to

dg = x du− v dy. (13.189)

The x and v variables are now interpreted as

x =
∂g

∂u
v = −∂g

∂y
, (13.190)

13.4. ADVANCED MECHANICS CONCEPTS 779

which appear to be a kind of inversion of (13.186). This idea will be extended to
vector form to arrive the Hamiltonian formulation.

Assume that the dynamics do not depend on the particular time (the exten-
sion to time-varying dynamics is not difficult; see [39, 397]). Let L(q, q̇) be the
Lagrangian function defined (13.129). Let p ∈ Rn represent a generalized momen-
tum vector (or adjoint variables), which serves the same purpose as u in (13.185).
Each pi is defined as

pi =
∂L

∂q̇i
. (13.191)

In some literature, p is instead denoted as λ because it can also be interpreted as
a vector of Lagrange multipliers. The Hamiltonian function is defined as

H(p, q) = p · q̇ − L(q, q̇) =
n∑

i=1

piq̇i − L(q, q̇) (13.192)

and can be interpreted as the total energy of a conservative system [397]. This is a
vector-based extension of (13.187) in which L and H replace f and g, respectively.
Also, p and q are the vector versions of u and x, respectively.

Considered as a function of p and q only, the total differential of H is

dH =
n∑

i=1

∂H

∂pi
dpi +

n∑

i=1

∂H

∂qi
dqi. (13.193)

Using (13.192), dH can be expressed as

dH =
n∑

i=1

q̇i dpi +
n∑

i=1

pi dq̇i −
n∑

i=1

∂L

∂q̇i
dq̇i −

n∑

i=1

∂L

∂qi
dqi. (13.194)

The dq̇i terms all cancel by using (13.191), to obtain

dH =
n∑

i=1

q̇i dpi −
n∑

i=1

∂L

∂qi
dqi. (13.195)

Using (13.118),

ṗ =
∂L

∂qi
. (13.196)

This implies that

dH =
n∑

i=1

q̇i dpi −
n∑

i=1

ṗi dqi. (13.197)

Equating (13.197) and (13.193) yields 2n equations called Hamilton’s equations:

q̇i =
∂H

∂pi
ṗi =

∂H

∂qi
, (13.198)

780 S. M. LaValle: Planning Algorithms

for each i from 1 to n. These equations are analogous to (13.190).
Hamilton’s equations are equivalent to the Euler-Lagrange equation. Extremals

in both cases yield equivalent differential constraints. The difference is that the
Lagrangian formulation uses (q, q̇) and the Hamiltonian uses (p, q). The Hamilto-
nian results in first-order partial differential equations. It was assumed here that
the dynamics are time-invariant and the motions occur in a conservative field.
In this case, dH = 0, which corresponds to conservation of total energy. In the
time-varying case, the additional equation ∂H/∂t = −∂L/∂t appears along with
Hamilton’s equations. As stated previously, Hamilton’s equations are primarily
of interest in establishing basic results in theoretical mechanics, as opposed to
determining the motions of particular systems. For example, the Hamiltonian is
used to establish Louisville’s theorem, which states that phase flows preserve vol-
ume, implying that a Hamiltonian system cannot be asymptotically stable [39].
Asymptotic stability is covered in Section 15.1.1. Pontryagin’s minimum princi-
ple, an extension of Hamilton’s equations to optimal control theory, is covered in
15.2.3.

13.5 Multiple Decision Makers

Differential models can be extended to model the interaction of multiple decision
makers. This leads to continuous-time extensions of sequential decision making,
from Formulation 10.1, and sequential games, from Formulation 10.4. A differen-
tial version of the state transition equation can be made for these extensions.

13.5.1 Differential Decision Making

To make a differential game against nature that extends Formulation 10.1 to con-
tinuous time, suppose that nature actions θ(t) are chosen from Θ. A differential
model can be defined as

ẋ = f(x, u, θ). (13.199)

The state space X and action space U are used in the same way as throughout
this chapter. The difference only comes in the state transition equation. State-
dependent nature action spaces may also be used.

As observed repeatedly throughout Part III, nature can be modeled nondeter-
ministically or probabilistically. In the nondeterministic case, (13.199) is equiva-
lent to a differential inclusion [53]:

ẋ ∈ {ẋ′ | ∃θ ∈ Θ such that ẋ′ = f(x, u, θ)}. (13.200)

Possible future values for ẋ can be computed using forward projections. Reachable
sets, which will be introduced in Section 14.2.1, can be defined that characterize
the evolution of future possible states over time. Plans constructed under this
model usually use worst-case analysis.

13.5. MULTIPLE DECISION MAKERS 781

Example 13.15 (Nondeterministic Forward Projection) As a simple ex-
ample of using (13.199), consider expressing the uncertainty model used in the
preimage planning framework of Section 12.5.1.

At each time t ≥ 0, nature chooses some θ ∈ Θ(t). The state transition
equation is

ẋ = u+ θ. (13.201)

The cone shown in Figure 12.45 is just the nondeterministic forward projection
under the application of a constant u ∈ U . �

In the probabilistic case, restrictions must be carefully placed on the nature
action trajectory (e.g., a Weiner process [910]). Under such conditions, (13.199) be-
comes a stochastic differential equation. Planning in this case becomes continuous-
time stochastic control [567], and the task is to optimize the expected cost.

Example 13.16 (A Simple Car and Nature) Uncertainty can be introduced
into any of the models of this chapter. For example, recall the simple car, (13.15).
Suppose that nature interferes with the steering action so that it is not precisely
known in which direction the car will drive. Let Θ = [−θmax, θmax], in which
θmax ∈ (0, π/2) represents the maximum amount of steering angle error that can
be caused by nature. The simple-car model can be modified to account for this
error as

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
L

tan(uφ + γ),

(13.202)

in which the domain of tan must be extended to R or other suitable restrictions
must be imposed. At each time t, a nature action12 γ ∈ Θ causes the true heading
of the car to be perturbed from the commanded direction uφ. Under nondetermin-
istic uncertainty, the maximum amount that the car deviates from the commanded
direction must be determined by the planning algorithm. A probability density
function p(γ) can be assigned to obtain a probabilistic model. When integrated
over time, (13.202) yields probability density functions over future car configura-
tions [1004]. �

In a similar way, parameters that account for nature can be introduced virtually
anywhere in the models of this chapter. Some errors may be systematic, which
reflect mistakes or simplifications made in the modeling process. These correspond
to a constant nature action applied at the outset. In this case, nature is not
allowed to vary its action over time. Other errors could correspond to noise, which
is expected to yield different nature actions over time.

12The notation γ is used instead of θ to avoid conflicting with the car orientation variable θ
in this particular example.

782 S. M. LaValle: Planning Algorithms

13.5.2 Differential Game Theory

The extension of sequential game theory to the continuous-time case is called
differential game theory (or dynamic game theory [59]), a subject introduced by
Isaacs [477]. All of the variants considered in Sections 9.3, 9.4, 10.5 are possible:

1. There may be any number of players.

2. The game may be zero-sum or nonzero-sum.

3. The state may or may not be known. If the state is unknown, then interesting
I-spaces arise, similar to those of Section 11.7.

4. Nature can interfere with the game.

5. Different equilibrium concepts, such as saddle points and Nash equilibria,
can be defined.

See [59] for a thorough overview of differential games. Two players, P1 and P2, can
be engaged in a differential game in which each has a continuous set of actions. Let
U and V denote the action spaces of P1 and P2, respectively. A state transition
equation can be defined as

ẋ = f(x, u, v), (13.203)

in which x is the state, u ∈ U , and v ∈ V .
Linear differential games are an important family of games because many tech-

niques from optimal control theory can be extended to solve them [59].

Example 13.17 (Linear Differential Games) The linear system model (13.37)
can be extended to incorporate two players. Let X = Rn be a phase space. Let
U = Rm1 and V = Rm2 be an action spaces for m1,m2 ≤ n. A linear differential
game is expressed as

ẋ = Ax+ Bu+ Cv, (13.204)

in which A, B, and C are constant, real-valued matrices of dimensions n × n,
n×m1, and n×m2, respectively. The particular solution to such games depends
on the cost functional and desired equilibrium concept. For the case of a quadratic
cost, closed-form solutions exist. These extend techniques that are developed for
linear systems with one decision maker; see Section 15.2.2 and [59].

The original work of Isaacs [477] contains many interesting examples of pursuit-
evasion differential games. One of the most famous is described next.

Example 13.18 (Homicidal Chauffeur) In the homicidal chauffeur game,
the pursuer is a Dubins car and the evader is a point robot that can translate
in any direction. Both exist in the same world, W = R2. The speeds of the car
and robot are s1 and s2, respectively. It is assumed that |s1| > |s2|, which means
that the pursuer moves faster than the evader. The transition equation is given

13.5. MULTIPLE DECISION MAKERS 783

by extending (13.15) to include two state variables that account for the robot
position:

ẋ1 = s1 cos θ1 ẋ2 = s2 cos v

ẏ1 = s1 sin θ1 ẏ2 = s2 sin v (13.205)

θ̇1 =
s1
L

tan uφ.

The state space is X is R4 × S1, and the action spaces are U = [−φmax, φmax] and
V = [0, 2π).

The task is to determine whether the pursuer can come within some prescribed
distance ǫ of the evader:

(x1 − x2)2 + (y1 − y2)2 < ǫ2. (13.206)

If this occurs, then the pursuer wins; otherwise, the evader wins. The solution
depends on the L, s1, s2, ǫ, and the initial state. Even though the pursuer moves
faster, the evader may escape because it does not have a limited turning radius.
For given values of L, s1, s2, and ǫ, the state space X can be partitioned into two
regions that correspond to whether the pursuer or evader wins [59, 477]. To gain
some intuition about how this partition may appear, imagine the motions that a
bullfighter must make to avoid a fast, charging bull (yes, bulls behave very much
like a fast Dubins car when provoked). �

Another interesting pursuit-evasion game arises in the case of one car attempt-
ing to intercept another [694].

Example 13.19 (A Game of Two Cars) Imagine that there are two simple
cars that move in the same world, W = R2. Each has a transition equation given
by (13.15). The state transition equation for the game is

ẋ1 = us cos θ1 ẋ2 = vs cos θ2

ẏ1 = us sin θ1 ẏ2 = vs sin θ2 (13.207)

θ̇1 =
us
L1

tan uφ θ̇2 =
vs
L2

tan vφ.

The pursuit-evasion game becomes very interesting if both players are restricted
to be Dubins cars. �

Further Reading

This chapter was synthesized from numerous sources. Many important, related subjects
were omitted. For some mechanics of bodies in contact and manipulation in general,
see [681]. Three-dimensional vehicle models were avoided because they are complicated

784 S. M. LaValle: Planning Algorithms

by SO(3); see [433]. For computational issues associated with simulating dynamical
systems, see [247, 863].

For further reading on velocity constraints on the C-space, see [596, 725] and Sec-
tions 15.3 to 15.5. For more problems involving rolling spheres, see [527] and references
therein. The rolling-ball problem is sometimes referred to as the Chaplygin ball. A non-
holonomic manipulator constructed from rolling-ball joints was developed and analyzed
in [729]. The kinematics of curved bodies in contact was studied in [632, 716]. For mo-
tion planning in this context, see [101, 103, 223, 676]. Other interesting nonholonomic
systems include the snakeboard [473, 629], roller racer [556], rollerblader [214], Trikke
[213], and examples in [112] (e.g., the Chaplygin sled).

Phase space representations are a basic part of differential equations, physics, and
control theory; see [44, 192].

Further reading in mechanics is somewhat complicated by two different levels of
treatment. Classical mechanics texts do not base the subject on differential geometry,
which results in cumbersome formulations and unusual terminology (e.g., generalized
coordinates). Modern mechanics texts overcome this problem by cleanly formulating
everything in terms of geodesics on Riemannian manifolds; however, this may be more
difficult to absorb for readers without background in differential geometry. An excellent
source for modern mechanics is [39]. One of the most famous texts for classical mechanics
is [397]. For an on-line book that covers the calculus of variations, including constrained
Lagrangians, see [790]. The constrained Lagrangian presentation is based on Chapter 3
of [789], Section 2.4 of [397], and parts of [405]. Integral constraints on the Lagrangian
are covered in [790], in addition to algebraic and differential constraints. Lagrangian
mechanics under inequality constraints is considered in [789]. The presentation of the
Hamiltonian in Section 13.4.4 is based on Chapter 7 of [397] and Section 15 of [39]. For
advanced, modern treatments of mechanics in the language of affine connections and
Christoffel symbols, see [3, 156, 677]. Another source, which is also heavily illustrated,
is [359]. For further reading on robot dynamics, see [30, 204, 725, 856, 907, 994]. For
dynamics of automobiles, see [389].

For further reading on differential game theory, primary sources are [59, 423, 477]; see
also [34, 57, 783, 985, 991, 992, 993, 997]. Lower bounds for the algorithmic complexity
of pursuit-evasion differential games are presented in [821].

Exercises

1. Let C = R4. There are two Pfaffian constraints, q̇1+q̇2+q̇3+q̇4 = 0 and q̇2−q̇4 = 0.
Determine the appropriate number of action variables and express the differential
constraints in the form q̇ = f(q, u).

2. Introduce a phase space and convert 2ÿ − 10ẏ2 + 5y = 0 into the form ẋ = f(x).

3. Introduce a phase space and convert y(4) + y = 0 into the form ẋ = f(x).

4. Derive the configuration transition equation (13.19) for a car pulling trailers.

5. Use the main idea of Section 13.2.4 to develop a smooth-steering extension of the
car pulling trailers, (13.19).

13.5. MULTIPLE DECISION MAKERS 785

θ1

m1g

L1

L2

θ2

m2q

Figure 13.14: A double pendulum.

6. Suppose that two identical differential-drive robots are connected together at their
centers with a rigid bar of length d. The robots are attached at each end of the
rod, and each attachment forms a revolute joint. There are four wheels to control;
however, some combinations of wheel rotations cause skidding. Assuming that
skidding is not allowed, develop a motion model of the form q̇ = f(q, u), in which
C and U are chosen to reflect the true degrees of freedom.

7. Extend the lunar lander model to a general rigid body with a thruster that does
not apply forces through the center of mass.

8. Develop a model for a 3D rotating rigid body fired out of a canon at a specified
angle above level ground under gravity. Suppose that thrusters are placed on the
body, enabling it to be controlled before it impacts the ground. Develop general
phase transition equations.

9. Add gravity with respect to q2 in Example 13.12 and derive the new state transition
equation using the Euler-Lagrange equation.

10. Use the constrained Lagrangian to derive the equations of motion of the pendulum
in Example 13.8.

11. Define a phase space, and determine an equation of the form ẋ = f(x) for the
double pendulum shown in Figure 13.14.

12. Extend Example 13.13 to obtain the dynamics of a three-link manipulator. The
third link, A3, is attached to the other two by a revolute joint. The new parameters
are θ3, d2, ℓ3, m3, and I3.

786 S. M. LaValle: Planning Algorithms

13. Solve Example 13.14 by parameterizing the sphere with standard spherical coor-
dinates and using the unconstrained Lagrangian. Verify that the same answer is
obtained.

14. Convert the equations in (13.161) into phase space form, to obtain the phase
transition equation in the form ẋ = f(x, u). Express the right side of the equation
in terms of the basic parameters, such as mass, moment of inertia, and lengths.

15. Define the Hamiltonian for a free-floating 2D rigid body under gravity and develop
Hamilton’s equations.

Implementations

16. Make a 3D spacecraft (rigid-body) simulator that allows any number of binary
thrusters to be placed in any position and orientation.

17. Make a simulator for the two-link manipulator in Example 13.13.

Chapter 14

Sampling-Based Planning Under
Differential Constraints

After Chapter 13, it seems that differential constraints arise nearly everywhere.
For example, they may arise when wheels roll, aircraft fly, and when the dynamics
of virtually any mechanical system is considered. This makes the basic model used
for motion planning in Part II invalid for many applications because differential
constraints were neglected. Formulation 4.1, for example, was concerned only with
obstacles in the C-space.

This chapter incorporates the differential models of Chapter 13 into sampling-
based motion planning. The detailed modeling (e.g., Lagrangian mechanics) of
Chapter 13 is not important here. This chapter works directly with a given system,
expressed as ẋ = f(x, u). The focus is limited to sampling-based approaches be-
cause very little can be done with combinatorial methods if differential constraints
exist. However, if there are no obstacles, then powerful analytical techniques may
apply. This subject is complementary to motion planning with obstacles and is
the focus of Chapter 15.

Section 14.1 provides basic definitions and concepts for motion planning under
differential constraints. It is particularly important to explain the distinctions
made in literature between nonholonomic planning, kinodynamic planning, and
trajectory planning, all of which are cases of planning under differential constraints.
Another important point is that obstacles may be somewhat more complicated in
phase spaces, which were introduced in Section 13.2. Section 14.2 introduces
sampling over the space of action trajectories, which is an essential part of later
planning algorithms.

Section 14.3 revisits the incremental sampling and searching framework of Sec-
tion 5.4 and extends it to handle differential constraints. This leads to several
sampling-based planning approaches, which are covered in Section 14.4. Familiar
choices such as dynamic programming or the RDTs of Section 5.5 appear once
again. The resulting planning methods can be used for a wide variety of problems
that involve differential constraints on C-spaces or phase spaces.

Section 14.5 briefly covers feedback motion planning under differential con-

787

788 S. M. LaValle: Planning Algorithms

straints. Approximate, optimal plans can be obtained by a simple adaptation
of value iteration from Section 8.5.2. Section 14.6 describes decoupled methods,
which start with a collision-free path that ignores differential constraints, and then
perform refinements to obtain the desired trajectory. Such approaches often lose
completeness and optimality, but they offer substantial computational savings in
many settings. Section 14.7 briefly surveys numerical techniques for optimizing
a trajectory subjected to differential constraints; the techniques can be used to
improve solutions computed by planning algorithms.

14.1 Introduction

14.1.1 Problem Formulation

Motion planning under differential constraints can be considered as a variant of
classical two-point boundary value problems (BVPs) [440]. In that setting, initial
and goal states are given, and the task is to compute a path through a state space
that connects initial and goal states while satisfying differential constraints. Mo-
tion planning involves the additional complication of avoiding obstacles in the state
space. Techniques for solving BVPs are unfortunately not well-suited for motion
planning because they are not designed for handling obstacle regions. For some
methods, adaptation may be possible; however, the obstacle constraints usually
cause these classical methods to become inefficient or incomplete. Throughout
this chapter, the BVP will refer to motion planning with differential constraints
and no obstacles. BVPs that involve more than two points also exist; however,
they are not considered in this book.

It is assumed that the differential constraints are expressed in a state transition
equation, ẋ = f(x, u), on a smooth manifold X, called the state space, which
may be a C-space C or a phase space of a C-space. A solution path will not be
directly expressed as in Part II but is instead derived from an action trajectory
via integration of the state transition equation.

Let the action space U be a bounded subset of Rm. A planning algorithm
computes an action trajectory ũ, which is a function of the form ũ : [0,∞) → U .
The action at a particular time t is expressed as u(t). To be consistent with
standard notation for functions, it seems that this should instead be denoted
as ũ(t). This abuse of notation was intentional, to make the connection to the
discrete-stage case clearer and to distinguish an action, u ∈ U , from an action
trajectory ũ. If the action space is state-dependent, then u(t) must additionally
satisfy u(t) ∈ U(x(t)) ⊆ U . For state-dependent models, this will be assumed by
default. It will also be assumed that a termination action uT is used, which makes
it possible to specify all action trajectories over [0,∞) with the understanding that
at some time tF , the termination action is applied.

The connection between the action and state trajectories needs to be formu-
lated. Starting from some initial state x(0) at time t = 0, a state trajectory is

14.1. INTRODUCTION 789

derived from an action trajectory ũ as

x(t) = x(0) +

∫ t

0

f(x(t′), u(t′))dt′, (14.1)

which integrates the state transition equation ẋ = f(x, u) from the initial con-
dition x(0). Let x̃(x(0), ũ) denote the state trajectory over all time, obtained by
integrating (14.1). Differentiation of (14.1) leads back to the state transition equa-
tion. Recall from Section 13.1.1 that if u is fixed, then the state transition equation
defines a vector field. The state transition equation is an alternative expression of
(8.14) from Section 8.3, which is the expression for an integral curve of a vector
field. The state trajectory is the integral curve in the present context.

The problem of motion planning under differential constraints can be formu-
lated as an extension of the Piano Mover’s Problem in Formulation 4.1. The main
differences in this extension are 1) the introduction of time, 2) the state or phase
space, and 3) the state transition equation. The resulting formulation follows.

Formulation 14.1 (Motion Planning Under Differential Constraints)

1. A world W , a robot A (or A1, . . ., Am for a linkage), an obstacle region O,
and a configuration space C, which are defined the same as in Formulation
4.1.

2. An unbounded time interval T = [0,∞).

3. A smooth manifold X, called the state space, which may be X = C or it
may be a phase space derived from C if dynamics is considered; see Section
13.2. Let κ : X → C denote a function that returns the configuration q ∈ C
associated with x ∈ X. Hence, q = κ(x).

4. An obstacle region Xobs is defined for the state space. If X = C, then
Xobs = Cobs. For general phase spaces, Xobs is described in detail in Section
14.1.3. The notation Xfree = X\Xobs indicates the states that avoid collision
and satisfy any additional global constraints.

5. For each state x ∈ X, a bounded action space U(x) ⊆ Rm ∪ {uT}, which
includes a termination action uT and m is some fixed integer called the
number of action variables. Let U denote the union of U(x) over all x ∈ X.

6. A system is specified using a state transition equation ẋ = f(x, u), defined
for every x ∈ X and u ∈ U(x). This could arise from any of the differential
models of Chapter 13. If the termination action is applied, it is assumed
that f(x, uT) = 0 (and no cost accumulates, if a cost functional is used).

7. A state xI ∈ Xfree is designated as the initial state.

8. A set XG ⊂ Xfree is designated as the goal region.

790 S. M. LaValle: Planning Algorithms

9. A complete algorithm must compute an action trajectory ũ : T → U , for
which the state trajectory x̃, resulting from (14.1), satisfies: 1) x(0) = xI ,
and 2) there exists some t > 0 for which u(t) = uT and x(t) ∈ XG.

Additional constraints may be placed on ũ, such as continuity or smoothness
over time. At the very least, ũ must be chosen so that the integrand of (14.1) is
integrable over time. Let U denote the set of all permissible action trajectories over
T = [0,∞). By default, U is assumed to include any integrable action trajectory.
If desired, continuity and smoothness conditions can be enforced by introducing
new phase variables. The method of placing integrators in front of action variables,
which was covered in Section 13.2.4, can usually achieve the desired constraints. If
optimizing a criterion is additionally important, then the cost functional given by
(8.39) can be used. The existence of optimal solutions requires that U is a closed
set, in addition to being bounded.

A final time does not need to be stated because of the termination action
uT . As usual, once uT is applied, cost does not accumulate any further and the
state remains fixed. This might seem strange for problems that involve dynamics
because momentum should keep the state in motion. Keep in mind that the
termination action is a trick to make the formulation work correctly. In many
cases, the goal corresponds to a subset of X in which the velocity components
are zero. In this case, there is no momentum and hence no problem. If the goal
region includes states that have nonzero velocity, then it is true that a physical
system may keep moving after uT has been applied; however, the cost functional
will not measure any additional cost. The task is considered to be completed after
uT is applied, and the simulation is essentially halted. If the mechanical system
eventually collides due to momentum, then this is the problem of the user who
specified a goal state that involves momentum.

The overwhelming majority of solution techniques are sampling-based. This
is motivated primarily by the extreme difficultly of planning under differential
constraints. The standard Piano Mover’s Problem from Formulation 4.1 is a special
case of Formulation 14.1 and is already PSPACE-hard [817]. Optimal planning is
also NP-hard, even for a point in a 3D polyhedral environment without differential
constraints [172]. The only known methods for exact planning under differential
constraints in the presence of obstacles are for the double integrator system q̈ = u,
for C = R [747] and C = R2 [171].

Section 14.1.2 provides some perspective on motion planning problems under
differential constraints that fall under Formulation 14.1, which assumes that the
initial state is given and future states are predictable. Section 14.5 briefly addresses
the broader problem of feedback motion planning under differential constraints.

14.1.2 Different Kinds of Planning Problems

There are many ways to classify motion planning problems under differential con-
straints. Some planning approaches rely on particular properties of the system;
therefore, it is helpful to characterize these general differences. The different kinds

14.1. INTRODUCTION 791

of problems described here are specializations of Formulation 14.1. In spite of dif-
ferences based on the kinds of models described below, all of them can be unified
under the topic of planning under differential constraints.

One factor that affects the differential model is the way in which the task
is decomposed. For example, the task of moving a robot usually requires the
consideration of mechanics. Under the classical robotics approach that was shown
in Figure 1.19, the motion planning problem is abstracted away from the mechanics
of the robot. This enables the motion planning ideas of Part II to be applied. This
decomposition is arbitrary. The mechanics of the robot can be considered directly
in the planning process. Another possibility is that only part of the constraints
may be considered. For example, perhaps only the rolling constraints of a vehicle
are considered in the planning process, but dynamics are handled by another
planning module. Thus, it is important to remember that the kinds of differential
constraints that appear in the planning problem depend not only on the particular
mechanical system, but also on how the task is decomposed.

14.1.2.1 Terms from planning literature

Nonholonomic planning The term nonholonomic planning was introduced by
Laumond [593] to describe the problem of motion planning for wheeled mobile
robots (see [595, 633] for overviews). It was informally explained in Section 13.1
that nonholonomic refers to differential constraints that cannot be completely
integrated. This means they cannot be converted into constraints that involve no
derivatives. A more formal definition of nonholonomic will be given in Section
15.4. Most planning research has focused on velocity constraints on C, as opposed
to a phase space X. This includes most of the models given in Section 13.1, which
are specified as nonintegrable velocity constraints on the C-space C. These are
often called kinematic constraints, to distinguish them from constraints that arise
due to dynamics.

In mechanics and control, the term nonholonomic also applies to nonintegrable
velocity constraints on a phase space [112, 113]. Therefore, it is perfectly rea-
sonable for the term nonholonomic planning to refer to problems that also involve
dynamics. However, in most applications to date, the term nonholonomic planning
is applied to problems that have kinematic constraints only. This is motivated pri-
marily by the early consideration of planning for wheeled mobile robots. In this
book, it will be assumed that nonholonomic planning refers to planning under
nonintegrable velocity constraints on C or any phase space X.

For the purposes of sampling-based planning, complete integrability is actually
not important. In many cases, even if it can be theoretically established that
constraints are integrable, it does not mean that performing the integration is
practical. Furthermore, even if integration can be performed, each constraint
may be implicit and therefore not easily parameterizable. Suppose, for example,
that constraints arise from closed kinematic chains. Usually, a parameterization
is not available. By differentiating the closure constraint, a velocity constraint is

792 S. M. LaValle: Planning Algorithms

obtained on C. This can be treated in a sampling-based planner as if it were a
nonholonomic constraint, even though it can easily be integrated.

Kinodynamic planning The term kinodynamic planning was introduced by
Canny, Donald, Reif, and Xavier [290] to refer to motion planning problems for
which velocity and acceleration bounds must be satisfied. This means that there
are second-order constraints on C. The original work used the double integrator
model q̈ = u for C = R2 and C = R3. A scalar version of this model appeared
Example 13.3. More recently, the term has been applied by some authors to
virtually any motion planning problem that involves dynamics. Thus, any problem
that involves second-order (or higher) differential constraints can be considered
as a form of kinodynamic planning. Thus, if x includes velocity variables, then
kinodynamic planning includes any system, ẋ = f(x, u).

Note that kinodynamic planning is not necessarily a form of nonholonomic
planning; in most cases considered so far, it is not. A problem may even involve
both nonholonomic and kinodynamic planning. This requires the differential con-
straints to be both nonintegrable and at least second-order. This situation often
results from constrained Lagrangian analysis, covered in Section 13.4.3. The car
with dynamics which was given Section 13.3.3 is both kinodynamic and nonholo-
nomic.

Trajectory planning The term trajectory planning has been used for decades
in robotics to refer mainly to the problem of determining both a path and velocity
function for a robot arm (e.g., PUMA 560). This corresponds to finding a path
in the phase space X in which x ∈ X is defined as x = (q, q̇). Most often the
problem is solved using the refinement approach mentioned in Section 1.4 by first
computing a path through Cfree. For each configuration q along the path, a velocity
q̇ must be computed that satisfies the differential constraints. An inverse control
problem may also exist, which involves computing for each t, the action u(t) that
results in the desired q̇(t). The refinement approach is often referred to as time
scaling of a path through C [456]. In recent times, trajectory planning seems
synonymous with kinodynamic planning, assuming that the constraints are second-
order (x includes only configuration and velocity variables). One distinction is that
trajectory planning still perhaps bears the historical connotations of an approach
that first plans a path through Cfree.

14.1.2.2 Terms from control theory

A significant amount of terminology that is appropriate for planning has been
developed in the control theory community. In some cases, there are even conflicts
with planning terminology. For example, the term motion planning has been used
to refer to nonholonomic planning in the absence of obstacles [156, 727]. This can
be considered as a kind of BVP. In some cases, this form of planning is referred to
as the steering problem (see [596, 725]) and will be covered in Section 15.5. The

14.1. INTRODUCTION 793

term motion planning is reserved in this book for problems that involve obstacle
avoidance and possibly other constraints.

Open-loop control laws Differential models, such as any of those from Chapter
13, are usually referred to as control systems or just systems, a term that we have
used already. These are divided into linear and nonlinear systems, as described
in Sections 13.2.2 and 13.2.3, respectively. Formulation 14.1 can be considered in
control terminology as the design of an open-loop control law for the system (sub-
jected to nonconvex constraints on the state space). The open-loop part indicates
that no feedback is used. Only the action trajectory needs to be specified over
time (the feedback case is called closed-loop; recall Section 8.1). Once the initial
state is given, the state trajectory can be inferred from the action trajectory. It
may also be qualified as a feasible open-loop control law, to indicate that it satis-
fies all constraints but is not necessarily optimal. It is then interesting to consider
designing an optimal open-loop control law. This is extremely challenging, even
for problems that appear to be very simple. Elegant solutions exist for some re-
stricted cases, including linear systems and some wheeled vehicle models, but in
the absence of obstacles. These are covered in Chapter 15.

Drift The term drift arose in Section 13.2.1 and implies that from some states it
is impossible to instantaneously stop. This difficulty arises in mechanical systems
due to momentum. Infinite deceleration, and therefore infinite energy, would be
required to remove all kinetic energy from a mechanical system in an instant of
time. Kinodynamic and trajectory planning generally involve drift. Nonholonomic
planning problems may be driftless if only velocity constraints exist on the C-space;
the models of Section 13.1.2 are driftless. From a planning perspective, systems
with drift are usually more challenging than driftless systems.

Underactuation Action variables, the components of u, are often referred to
as actuators, and a system is called underactuated if the number of actuators is
strictly less than the dimension of C. In other words, there are less independent
action variables than the degrees of freedom of the mechanical system. Under-
actuated nonlinear systems are typically nonholonomic. Therefore, a substantial
amount of nonholonomic system theory and planning for nonholonomic systems
involves applications to underactuated systems. As an example of an underactu-
ated system, consider a free-floating spacecraft in R3 that has three thrusters. The
amount of force applied by each thruster can be declared as an action variable;
however, the system is underactuated because there are only three actuators, and
the dimension of C is six. Other examples appeared Section 13.1.2. If the system
is not underactuated, it is called fully actuated, which means that the number
of actuators is equal to the dimension of C. Kinodynamic planning has mostly
addressed fully actuated systems.

794 S. M. LaValle: Planning Algorithms

Cobs

Xobs

X

C

Figure 14.1: An obstacle region Cobs ⊂ C generates a cylindrical obstacle region
Xobs ⊂ X with respect to the phase variables.

Symmetric systems Finally, one property of systems that is important in some
planning algorithms is symmetry.1 A system ẋ = f(x, u) is symmetric if the
following condition holds. If there exists an action trajectory that brings the
system from some xI to some xG, then there exists another action trajectory that
brings the system from xG to xI by visiting the same points in X, but in reverse
time. At each point along the path, this means that the velocity can be negated by
a different choice of action. Thus, it is possible for a symmetric system to reverse
any motions. This is usually not possible for systems with drift. An example of
a symmetric system is the differential drive of Section 13.1.2. For the simple car,
the Reeds-Shepp version is symmetric, but the Dubins version is not because the
car cannot travel in reverse.

14.1.3 Obstacles in the Phase Space

In Formulation 14.1, the specification of the obstacle region in Item 4 was inten-
tionally left ambiguous. Now it will be specified in more detail. If X = C, then
Xobs = Cobs, which was defined in (4.34) for a rigid robot and in (4.36) for a robot
with multiple links. The more interesting case occurs if X is a phase space that
includes velocity variables in addition to configuration information.

Any state for which its associated configuration lies in Cobs must also be a
member of Xobs. The velocity is irrelevant if a collision occurs in the world W . In
most cases that involve a phase space, the obstacle region Xobs is therefore defined

1Sometimes in control theory, the term symmetry applies to Lie groups. This is a different
concept and means that the system is invariant with respect to transformations in a group such
as SE(3). For example, the dynamics of a car should not depend on the direction in which the
car is pointing.

14.1. INTRODUCTION 795

NASA/Lockheed Martin X-33 Re-entry trajectory

Figure 14.2: In the NASA/Lockheed Martin X-33 re-entry problem, there are
complicated constraints on the phase variables, which avoid states that cause the
craft to overheat or vibrate uncontrollably. (Courtesy of NASA)

as
Xobs = {x ∈ X | κ(x) ∈ Cobs}, (14.2)

in which κ(x) is the configuration associated with the state x ∈ X. If the first n
variables ofX are configuration parameters, thenXobs has the cylindrical structure
shown in Figure 14.1 with respect to the other variables. If κ is a complicated
mapping, as opposed to simply selecting the configuration coordinates, then the
structure might not appear cylindrical. In these cases, (14.2) still indicates the
correct obstacle region in X.

14.1.3.1 Additional constraints on phase variables

In many applications, additional constraints may exist on the phase variables.
These are called phase constraints and are generally of the form hi(x) ≤ 0. For
example, a car or hovercraft may have a maximum speed for safety reasons. There-
fore, simple bounds on the velocity variables will exist. For example, it might be
specified that ‖q̇‖ ≤ q̇max for some constant q̇max ∈ (0,∞). Such simple bounds
are often incorporated directly into the definition of X by placing limits on the
velocity variables.

In other cases, however, constraints on velocity may be quite complicated. For
example, the problem of computing the re-entry trajectory of the NASA/Lockheed
Martin X-33 reusable spacecraft2 (see Figure 14.2) requires remaining within a
complicated, narrow region in the phase space. Even though there are no hard
obstacles in the traditional sense, many bad things can happen by entering the
wrong part of the phase space. For example, the craft may overheat or vibrate
uncontrollably [160, 201, 662]. For a simpler example, imagine constraints on X

2This project was canceled in 2001, but similar crafts have been under development.

796 S. M. LaValle: Planning Algorithms

to ensure that an SUV or a double-decker tour bus (as often seen in London, for
example) will not tumble sideways while turning.

The additional constraints can be expressed implicitly as hi(x) ≤ 0. As part
of determining whether some state x lies in Xfree or Xobs, it must be substituted
into each constraint to determine whether it is satisfied. If a state lies in Xfree,
it will generally be called violation-free, which implies that it is both collision-free
and does not violate any additional phase constraints.

14.1.3.2 The region of inevitable collision

One of the most challenging aspects of planning can be visualized in terms of the
region of inevitable collision, denoted by Xric. This is the set of states from which
entry into Xobs will eventually occur, regardless of any actions that are applied.
As a simple example, imagine that a robotic vehicle is traveling 100 km/hr toward
a large wall and is only 2 meters away. Clearly the robot is doomed. Due to
momentum, collision will occur regardless of any efforts to stop or turn the vehicle.
At low enough speeds, Xric and Xobs are approximately the same; however, Xric

grows dramatically as the speed increases.
Let U∞ denote the set of all trajectories ũ : [0,∞)→ U for which the termina-

tion action uT is never applied (we do not want inevitable collision to be avoided
by simply applying uT). The region of inevitable collision is defined as

Xric = {x(0) ∈ X | for any ũ ∈ U∞ , ∃t > 0 such that x(t) ∈ Xobs}, (14.3)

in which x(t) is the state at time t obtained by applying (14.1) from x(0). This
does not include cases in which motions are eventually blocked, but it is possible
to bring the system to a state with zero velocity. Suppose that the Dubins car
from Section 13.1.2 is used and the car is unable to back its way out of a dead-end
alley. In this case, it can avoid collision by stopping and remaining motionless. If
it continues to move, it will eventually have no choice but to collide. This case
appears more like being trapped and technically does not fit under the definition
of Xric. For driftless systems, Xric = Xobs.

Example 14.1 (Region of Inevitable Collision) Figure 14.3 shows a simple
illustration of Xric. Suppose that W = R, and the robot is a particle (or point
mass) that moves according to the double integrator model q̈ = u (for mass, as-
sume m = 1). For simplicity, suppose that u represents a force that must be
chosen from U = [−1, 1]. The C-space is C = R, the phase space is X = R2, and a
phase (or state) is expressed as x = (q, q̇). Suppose that there are two obstacles in
C: a point and an interval. These are shown in Figure 14.3 along the q-axis. In the
cylinder above them, Xobs appears. In the slice at q̇ = 0, Xric = Xobs = Cobs. As
q̇ increases, Xric becomes larger, even though Xobs remains fixed. Note that Xric

only grows toward the left because q̇ > 0 indicates a positive velocity, which causes
momentum in the positive q direction. As this momentum increases, the distance
required to stop increases quadratically. From a speed of q̇ = v, the minimum

14.1. INTRODUCTION 797

q
q̇ = 0

q̇ < 0

q̇ > 0

q̇ Xric

Xric

Xric

Xobs

Xric

Figure 14.3: The region of inevitable collision grows quadratically with the speed.

distance required to stop is v2/2, which can be calculated by applying the action
u = −1 and integrating q̈ = u twice. If q̇ > 0 and q is to the right of an obstacle,
then it will safely avoid the obstacle, regardless of its speed. If q̇ < 0, then Xric

extends to the right instead of the left. Again, this is due to the required stopping
distance. �

In higher dimensions and for more general systems, the problem becomes sub-
stantially more complicated. For example, in R2 the robot can swerve to avoid
small obstacles. In general, the particular direction of motion becomes important.
Also, the topology of Xric may be quite different from that of Xobs. Imagine that a
small airplane flies into a cave that consists of a complicated network of corridors.
Once the plane enters the cave, there may be no possible actions that can avoid
collision. The entire part of the state space that corresponds to the plane in the
cave would be included in Xric. Furthermore, even parts of the state space from
which the plane cannot avoid entering the cave must be included.

In sampling-based planning under differential constraints, Xric is not computed
because it is too complicated.3 It is not even known how to make a “collision de-
tector” for Xric. By working instead with Xobs, challenges arise due to momentum.
There may be large parts of the state space that are never worth exploring because
they lie in Xric. Unfortunately, there is no practical way at present to accurately
determine whether states lie in Xric. As the momentum and amount of clutter
increase, this becomes increasingly problematic.

3It may, however, be possible to compute crude approximations of Xric and use them in
planning.

798 S. M. LaValle: Planning Algorithms

14.2 Reachability and Completeness

This section provides preliminary concepts for sampling-based planning algorithms.
In Chapter 5, sampling over C was of fundamental importance. The most impor-
tant consideration was that a sequence of samples should be dense so that samples
get arbitrarily close to any point in Cfree. Planning under differential constraints
is complicated by the specification of solutions by an action trajectory instead
of a path through Xfree. For sampling-based algorithms to be resolution com-
plete, sampling and searching performed on the space of action trajectories must
somehow lead to a dense set in Xfree.

14.2.1 Reachable Sets

For the algorithms in Chapter 5, resolution completeness and probabilistic com-
pleteness rely on having a sampling sequence that is dense on C. In the present
setting, this would require dense sampling on X. Differential constraints, however,
substantially complicate the sampling process. It is generally not reasonable to
prescribe precise samples in X that must be reached because reaching them may
be impossible or require solving a BVP. Since paths in X are obtained indirectly
via action trajectories, completeness analysis begins with considering which points
can be reached by integrating action trajectories.

14.2.1.1 Reachable set

Assume temporarily that there are no obstacles: Xfree = X. Let U be the set of
all permissible action trajectories on the time interval [0,∞). From each ũ ∈ U , a
state trajectory x̃(x0, ũ) is defined using (14.1). Which states in X are visited by
these trajectories? It may be possible that all of X is visited, but in general some
states may not be reachable due to differential constraints.

Let R(x0,U) ⊆ X denote the reachable set from x0, which is the set of all states
that are visited by any trajectories that start at x0 and are obtained from some
ũ ∈ U by integration. This can be expressed formally as

R(x0,U) = {x1 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = x1}, (14.4)

in which x(t) is given by (14.1) and requires that x(0) = x0.
The following example illustrates some simple cases.

Example 14.2 (Reachable Sets for Simple Inequality Constraints) Sup-
pose that X = C = R2, and recall some of the simple constraints from Section
13.1.1. Let a point in R2 be denoted as q = (x, y). Let the state transition equation
be ẋ = u1 and ẏ = u2, in which (u1, u2) ∈ U = R2.

Several constraints will now be imposed on U , to define different possible action
spaces. Suppose it is required that u1 > 0 (this was ẋ > 0 in Section 13.1.1). The
reachable set R(q0,U) from any q0 = (x0, y0) ∈ R2 is an open half-plane that is

14.2. REACHABILITY AND COMPLETENESS 799

defined by the set of all points to the right of the vertical line x = x0. In the case
of u1 ≤ 0, then R(q0,U) is a closed half-plane to the left of the same vertical line.
If U is defined as the set of all (u1, u2) ∈ R2 such that u1 > 0 and u2 > 0, then
the reachable set from any point is a quadrant.

For the constraint au1 + bu2 = 0, the reachable set from any point is a line in
R2 with normal vector (a, b). The location of the line depends on the particular
q0. Thus, a family of parallel lines is obtained by considering reachable states from
different initial states. This is an example of a foliation in differential geometry,
and the lines are called leaves [872].

In the case of u21 + u22 ≤ 1, the reachable set from any (x0, y0) is R
2. Thus, any

state can reach any other state. �

So far the obstacle region has not been considered. Let Ufree ⊆ U denote the
set of all action trajectories that produce state trajectories that map into Xfree. In
other words, Ufree is obtained by removing from U all action trajectories that cause
entry into Xobs for some t > 0. The reachable set that takes the obstacle region
into account is denoted R(x0,Ufree), which replaces U by Ufree in (14.4). This
assumes that for the trajectories in Ufree, the termination action can be applied
to avoid inevitable collisions due to momentum. A smaller reachable set could
have been defined that eliminates trajectories for which collision inevitably occurs
without applying uT .

The completeness of an algorithm can be expressed in terms of reachable sets.
For any given pair xI , xG ∈ Xfree, a complete algorithm must report a solution
action trajectory if xG ∈ R(xI ,Ufree), or report failure otherwise. Completeness is
too difficult to achieve, except for very limited cases [171, 747]; therefore, sampling-
based notions of completeness are more valuable.

14.2.1.2 Time-limited reachable set

Consider the set of all states that can be reached up to some fixed time limit. Let
the time-limited reachable set R(x0,U , t) be the subset of R(x0,U) that is reached
up to and including time t. Formally, this is

R(x0,U , t) = {x1 ∈ X | ∃ũ ∈ U and ∃t′ ∈ [0, t] such that x(t′) = x1}. (14.5)

For the last case in Example 14.2, the time-limited reachable sets are closed discs
of radius t centered at (x0, y0). A version of (14.5) that takes the obstacle region
into account can be defined as R(x0,Ufree, t).

Imagine an animation of R(x0,U , t) that starts at t = 0 and gradually increases
t. The boundary of R(x0,U , t) can be imagined as a propagating wavefront that
begins at x0. It eventually reaches the boundary of R(x0,U) (assuming it has a
boundary; it does not if R(x0,U) = X). The boundary of R(x0,U , t) can actually
be interpreted as a level set of the optimal cost-to-come from x0 for a cost functional
that measures the elapsed time. The boundary is also a kind of forward projection,
as considered for discrete spaces in Section 10.1.2. In that context, possible future

800 S. M. LaValle: Planning Algorithms

Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the
right; (b) this is not the time-limited reachable set for the Reeds-Shepp car!

states due to nature were specified in the forward projection. In the current
setting, possible future states are determined by the unspecified actions of the
robot. Rather than looking k stages ahead, the time-limited reachable set looks for
duration t into the future. In the present context there is essentially a continuum
of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reach-
able sets can be obtained from the simple car models from Section 13.1.2. Suppose
that X = C = R2 × S1 and Xobs = ∅.

Recall that the Dubins car can only drive forward. From an arbitrary con-
figuration, the time-limited reachable set appears as shown in Figure 14.4a. The
time limit t is small enough so that the car cannot rotate by more than π/2. Note
that Figure 14.4a shows a 2D projection of the reachable set that gives translation
only. The true reachable set is a 3D region in C. If t > 2π, then the car will
be able to drive in a circle. For any q, consider the limiting case as t approaches
infinity, which results in R(q,U). Imagine a car driving without reverse on an
infinitely large, flat surface. It is possible to reach any desired configuration by
driving along a circle, driving straight for a while, and then driving along a circle
again. Therefore, R(q,U) = C for any q ∈ C. The lack of a reverse gear means
that some extra maneuvering space may be needed to reach some configurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any
time-limited reachable set for this car must include all points from the correspond-
ing reachable set for the Dubins car because new actions have been added to U but
none have been removed. It is tempting to assert that the time-limited reachable
set appears as in Figure 14.4b; however, this is wrong. In an arbitrarily small
amount of time (or space) a car with reverse can be wiggled sideways. This is
achieved in practice by familiar parallel-parking maneuvers. It turns out in this
case that R(q,U , t) always contains an open set around q, which means that it
grows in all directions (see Section 15.3.2). The property is formally referred to as
small-time controllability and is covered in Section 15.4. �

14.2. REACHABILITY AND COMPLETENESS 801

14.2.1.3 Backward reachable sets

The reachability definitions have a nice symmetry with respect to time. Rather
than describing all points reachable from some x ∈ X, it is just as easy to describe
all points from which some x ∈ X can be reached. This is similar to the alternative
between forward and backward projections in Section 10.1.2.

Let the backward reachable set be defined as

B(xf ,U) = {x0 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = xf}, (14.6)

in which x(t) is given by (14.1) and requires that x(0) = x0. Note the intentional
similarity to (14.4). The time-limited backward reachable set is defined as

B(xf ,U , t) = {x0 ∈ X | ∃ũ ∈ U and ∃t′ ∈ [0, t] such that x(t′) = xf}, (14.7)

which once again requires that x(0) = x0 in (14.1). Completeness can even be de-
fined in terms of backward reachable sets by defining a backward-time counterpart
to U .

At this point, there appear to be close parallels between forward, backward, and
bidirectional searches from Chapter 2. The same possibilities exist in sampling-
based planning under differential constraints. The forward and backward reachable
sets indicate the possible states that can be reached under such schemes. The
algorithms explore subsets of these reachable sets.

14.2.2 The Discrete-Time Model

This section introduces a simple and effective way to sample the space of ac-
tion trajectories. Section 14.2.3 covers the more general case. Under differential
constraints, sampling-based motion planning algorithms all work by sampling the
space of action trajectories. This results in a reduced set of possible action trajec-
tories. To ensure some form of completeness, a motion planning algorithm should
carefully construct and refine the sample set. As in Chapter 5, the qualities of
a sample set can be expressed in terms of dispersion and denseness. The main
difference in the current setting is that the algorithms here work with a sample
sequence over U , as opposed to over C as in Chapter 5. This is required because
solution paths can no longer be expressed directly on C (or X).

The discrete-time model is depicted in Figure 14.5 and is characterized by three
aspects:

1. Time T is partitioned into intervals of length ∆t. This enables stages to
be assigned, in which stage k indicates that (k − 1)∆t units of time have
elapsed.

2. A finite subset Ud of the action space U is chosen. If U is already finite, then
this selection may be Ud = U .

3. The action u(t) ∈ Ud must remain constant over each time interval.

802 S. M. LaValle: Planning Algorithms

T

U

T

U

A trajectory in U A trajectory in Ud
Figure 14.5: The discrete-time model results in Ud ⊂ U , which is obtained by
partitioning time into regular intervals and applying a constant action over each
interval. The action is chosen from a finite subset Ud of U .

The first two discretize time and the action spaces. The third condition is needed
to relate the time discretization to the space of action trajectories. Let Ud denote
the set of all action trajectories allowed under a given time discretization. Note
that Ud completely specifies the discrete-time model.

For some problems, U may already be finite. Imagine, for example, a model of
firing one of several thrusters (turn them on or off) on a free-floating spacecraft. In
this case no discretization of U is necessary. In the more general case, U may be a
continuous set. The sampling methods of Section 5.2 can be applied to determine
a finite subset Ud ⊆ U .

Any action trajectory in Ud can be conveniently expressed as an action sequence
(u1, u2, . . . , uk), in which each ui ∈ Ud gives the action to apply from time (i−1)∆t
to time i∆t. After stage k, it is assumed that the termination action is applied.

14.2.2.1 Reachability graph

After time discretization has been performed, the reachable set can be adapted to
Ud to obtain R(x0,Ud). An interesting question is: What is the effect of sampling
on the reachable set? In other words, how do R(x0,U) and R(x0,Ud) differ?
This can be addressed by defining a reachability graph, which will be revealed
incrementally by a planning algorithm.

Let Tr(x0,Ud) denote a reachability tree, which encodes the set of all trajectories
from x0 that can be obtained by applying trajectories in Ud. Each vertex of
Tr(x0,Ud) is a reachable state, x ∈ R(x0,Ud). Each edge of Tr(x0,Ud) is directed; its
source represents a starting state, and its destination represents the state obtained
by applying a constant action u ∈ Ud over time ∆t. Each edge e represents an
action trajectory segment, e : [0,∆t] → U . This can be transformed into a state
trajectory, x̃e, via integration using (14.1), from 0 to ∆t of f(x, u) from the source

14.2. REACHABILITY AND COMPLETENESS 803

Two stages Four stages

Figure 14.6: A reachability tree for the Dubins car with three actions. The kth
stage produces 3k new vertices.

state of e.
Thus, in terms of x̃e, Tr can be considered as a topological graph in X (Tr will

be used as an abbreviation of Tr(x0,Ud)). The swath S(Tr) of Tr is

S(Tr) =
⋃

e∈E

⋃

t∈[0,∆t]
xe(t), (14.8)

in which xe(t) denotes the state obtained at time t from edge e. (Recall topological
graphs from Example 4.6 and the swath from Section 5.5.1.)

Example 14.4 (Reachability Tree for the Dubins Car) Several stages of the
reachability tree for the Dubins car are shown in Figure 14.6. Suppose that there
are three actions (straight, right-turn, left-turn), and ∆t is chosen so that if the
right-turn or left-turn action is applied, the car travels enough to rotate by π/2.
After the second stage, there are nine leaves in the tree, as shown in Figure 14.6a.

804 S. M. LaValle: Planning Algorithms

Each stage produces 3k new leaves. In Figure 14.6b, 81 new leaves are added in
stage k = 4, which yields a total of 81 + 27 + 9 + 3 + 1 vertices. In many cases,
the same state is reachable by different action sequences. The swath after the first
four stages is the set of all points visited so far. This is a subset of C that is the
union of all vertices and all points traced out by x̃e for each e ∈ E. �

From Example 14.4 it can be seen that it is sometimes possible to arrive at
the same state using two or more alternative action trajectories. Since each action
trajectory can be expressed as an action sequence, the familiar issue arises from
classical AI search of detecting whether the same state has been reached from
different action sequences. For some systems, the reachability problem can be
dramatically simplified by exploiting this information. If the same state is reached
from multiple action sequences, then only one vertex needs to be represented.

This yields a directed reachability graph Gr(x0,Ud), which is obtained from
Tr(x0,Ud) by merging its duplicate states. If every action sequence arrives at a
unique state, then the reachability graph reduces to the reachability tree. However,
if multiple action sequences arrive at the same state, this is represented as a single
vertex Gr. From this point onward, the reachability graph will be primarily used.
As for a reachability tree, a reachability graph can be interpreted as a topological
graph in X, and its swath S(Gr) is defined by adapting (14.8).

The simplest case of arriving at the same state was observed in Example 2.1.
The discrete grid in the plane can be modeled using the terminology of Chapter
13 as a system of the form ẋ = u1 and ẏ = u2 for a state space X = R2. The
discretized set Ud of actions is {(1, 0), (0, 1), (−1, 0), (0,−1)}. Let ∆t = 1. In this
case, the reachability graph becomes the familiar 2D grid. If (0, 0) is the initial
state, then the grid vertices consist of all states in which both coordinates are
integers.

Through careless discretization of an arbitrary system, such a nice grid usually
does not arise. However, in many cases a discretization can be carefully chosen
so that the states become trapped on a grid or lattice. This has some advantages
in sampling-based planning. Section 14.4.1 covers a method that exploits such
structure for the system q̈ = u. It can even be extended to more general systems,
provided that the system can be expressed as q̈ = g(q, q̇, u) and it is not under-
actuated. It was shown recently that by a clever choice of discretization, a very
large class of nonholonomic systems4 can also be forced onto a lattice [762]. This
is usually difficult to achieve, and under most discretizations the vertices of the
reachability graph are dense in the reachable set.

It is also possible to define backward versions of the reachability tree and
reachability graph, in the same way that backward reachable sets were obtained.
These indicate initial states and action sequences that will reach a given goal state
and are no more difficult to define or compute than their forward counterparts.

4The class is all driftless, nilpotent systems. The term nilpotent will be defined in Section
15.5.

14.2. REACHABILITY AND COMPLETENESS 805

They might appear more difficult, but keep in mind that the initial states are not
fixed; thus, no BVP appears. The initial states can be obtained by reverse-time
integration of the state transition equation; see Section 14.3.2.

14.2.2.2 Resolution completeness for ẋ = u

Sampling-based notions of completeness can be expressed in terms of reachable
sets and the reachability graph. The requirement is to sample U in a way that
causes the vertices of the reachability graph to eventually become dense in the
reachable set, while also making sure that the reachability graph is systematically
searched. All of the completeness concepts can be expressed in terms of forward
or backward reachability graphs. Only the forward case will be described because
the backward case is very similar.

To help bridge the gap with respect to motion planning as covered in Part II,
first suppose: 1) X = C = R2, 2) a state is denoted as q = (x, y), 3) U = [−1, 1]2,
and 4) the state transition equation is ẋ = u1 and ẏ = u2. Suppose that the
discrete-time model is applied to U . Let ∆t = 1 and

Ud = {(−1, 0), (0,−1), (1, 0), (0, 1)}, (14.9)

which yields the Manhattan motion model from Example 7.4. Staircase paths
are produced as was shown in Figure 7.40. In the present setting, these paths are
obtained by integrating the action trajectory. From some state xI , the reachability
graph represents the set of all possible staircase paths with unit step size that can
be obtained via (14.1).

Suppose that under this model, Xfree is a bounded, open subset of R2. The
connection to resolution completeness from Chapter 5 can be expressed clearly in
this case. For any fixed ∆t, a grid of a certain resolution is implicitly defined via
the reachability graph. The task is to find an action sequence that leads to the goal
(or a vertex close to it in the reachability graph) while remaining in Xfree. Such
a sequence can be found by a systematic search, as considered in Section 2.2. If
the search is systematic, then it will correctly determine whether the reachability
graph encodes a solution. If no solution exists, then the planning algorithm can
decrease ∆t by a constant factor (e.g., 2), and perform the systematic search
again. This process repeats indefinitely until a solution is found. The algorithm
runs forever if no solution exists (in practice, of course, one terminates early and
gives up). The approach just described is resolution complete in the sense used in
Chapter 5, even though all paths are expressed using action sequences.

The connection to ordinary motion planning is clear for this simple model
because the action trajectories integrate to produce motions that follow a grid.
As the time discretization is improved, the staircase paths can come arbitrarily
close to some solution path. Looking at Figure 14.5, it can be seen that as the
sampling resolution is improved with respect to U and T , the trajectories obtained
via discrete-time approximations converge to any trajectory that can be obtained
by integrating some ũ. In general, convergence occurs as ∆t and the dispersion

806 S. M. LaValle: Planning Algorithms

of the sampling in U are driven to zero. This also holds in the same way for the
more general case in which ẋ = u and X is any smooth manifold. Imagine placing
a grid down on X and refining it arbitrarily by reducing ∆t.

14.2.2.3 Resolution completeness for ẋ = f(x, u)

Beyond the trivial case of ẋ = u, the reachability graph is usually not a simple
grid. Even if X is bounded, the reachability graph may have an infinite number of
vertices, even though ∆t is fixed and Ud is finite. For a simple example, consider
the Dubins car under the discretization ∆t = 1. Fix uφ = −φmax (turn left) for
all t ∈ T . This branch alone generates a countably infinite number of vertices
in the reachability graph. The circumference of the circle is 2πρmin, in which
ρmin is the minimum turning radius. Let ρmin = 1. Since the circumference is an
irrational number, it is impossible to revisit the initial point by traveling k seconds
for some integer k. It is even impossible to revisit any point on the circle. The set
of vertices in the reachability graph is actually dense in the circle. This did not
happen in Figure 14.6 because ∆t and the circumference were rationally related
(i.e., one can be obtained from the other via multiplication by a rational number).
Consider what happens in the current example when ρmin = 1/π and ∆t = 1.

Suppose that ẋ = f(x, u) and the discrete-time model is used. To ensure
convergence of the discrete-time approximation, f must be well-behaved. This
can be established by requiring that all of the derivatives of f with respect to u
and x are bounded above and below by a constant. More generally, f is assumed
to be Lipschitz, which is an equivalent condition for cases in which the derivatives
exist, but it also applies at points that are not differentiable. If U is finite, then
the Lipschitz condition is that there exists some c ∈ (0,∞) such that

‖f(x, u)− f(x′, u)‖ ≤ c‖x− x′‖ (14.10)

for all x, x′ ∈ X, for all u ∈ U , and ‖ · ‖ denotes a norm on X. If U is infinite,
then the condition is that there must exist some c ∈ (0,∞) such that

‖f(x, u)− f(x′, u′)‖ ≤ c(‖x− x′‖+ ‖u− u′‖), (14.11)

for all x, x′ ∈ X, and for all u, u′ ∈ U . Intuitively, the Lipschitz condition indicates
that if x and u are approximated by x′ and u′, then the error when substituted
into f will be manageable. If convergence to optimal trajectories with respect
to a cost functional is important, then Lipschitz conditions are also needed for
l(x, u). Under such mild assumptions, if ∆t and the dispersion of samples of Ud
is driven down to zero, then the trajectories obtained from integrating discrete
action sequences come arbitrarily close to solution trajectories. In other words,
action sequences provide arbitrarily close approximations to any ũ ∈ U . If f is
Lipschitz, then the integration of (14.14) yields approximately the same result for
ũ as the approximating action sequence.

In the limit as ∆t and the dispersion of Ud approach zero, the reachability
graph becomes dense in the reachable set R(xI ,U). Ensuring a systematic search

14.2. REACHABILITY AND COMPLETENESS 807

1

2

3

4

5

6

∆t 1
2
∆t 1

4
∆t 1

8
∆t 1

16
∆t 1

32
∆t 1

64
∆t

It
er

at
io

n

Time step

Figure 14.7: By systematically alternating between exploring different reachability
graphs, resolution completeness can be achieved, even if each reachability graph
has a countably infinite number of vertices.

for the case of a grid was not difficult because there is only a finite number of
vertices at each resolution. Unfortunately, the reachability graph may generally
have a countably infinite number of vertices for some fixed discrete-time model,
even if X is bounded.

To see that resolution-complete algorithms nevertheless exist if the reachability
graph is countably infinite, consider triangular enumeration, which proves that
N×N is countable, in which N is the set of natural numbers. The proof proceeds
by giving a sequence that starts at (0, 0) and proceeds by sweeping diagonally
back and forth across the first quadrant. In the limit, all points are covered. The
same idea can be applied to obtain resolution-complete algorithms. A sequence of
discrete-time models can be made for which the time step ∆t and the dispersion
of the sampling of U approach zero. Each discretization produces a reachability
graph that has a countable number of vertices.

A resolution-complete algorithm can be made by performing the same kind
of zig-zagging that was used to show that N × N is countable. See Figure 14.7;
suppose that U is finite and Ud = U . Along the horizontal axis is a sequence of
improving discrete-time models. Each model generates its own reachability graph,
for which a systematic search eventually explores all of its vertices. Imagine this
exploration occurs one step at a time, in which one new vertex is reached in each
step. The vertical axis in Figure 14.7 indicates the number of vertices reached so
far by the search algorithm. A countably infinite set of computers could explore all

808 S. M. LaValle: Planning Algorithms

of reachability graphs in parallel. With a single computer, it can still be assured
that everything is eventually explored by zig-zagging as shown. Thus a resolution-
complete algorithm always exists if U is finite. If U is not finite, then Ud must
also be refined as the time step is decreased. Of course, there are numerous other
ways to systematically explore all of the reachability graphs. The challenging task
is to find a way that leads to good performance in practice.

The discussion so far has assumed that a sampling-based algorithm can un-
cover a subgraph of the reachability graph. This neglects numerical issues such as
arithmetic precision and numerical integration error. Such issues can additionally
be incorporated into a resolution completeness analysis [196].

14.2.3 Motion Primitives

The discrete-time model of Section 14.2.2 is just one of many possible ways to
discretize the space of action trajectories. It will now be considered as a special
case of specifying motion primitives. The restriction to constant actions over
fixed time intervals may be too restrictive in many applications. Suppose we
want to automate the motions of a digital actor for use in a video game or film.
Imagine having a database of interesting motion primitives. Such primitives could
be extracted, for example, from motion capture data [35, 553]. For example, if the
actor is designed for kung-fu fighting, then each motion sequence may correspond
to a basic move, such a kick or punch. It is unlikely that such motion primitives
correspond to constant actions over a fixed time interval. The durations of the
motion primitives will usually vary.

Such models can generally be handled by defining a more general kind of dis-
cretization. The discrete-time model can be used to formulate a discrete-time state
transition equation of the form

xk+1 = fd(xk, uk), (14.12)

in which xk = x((k − 1)∆t), xk+1 = x(k∆t), and uk is the action in Ud that is
applied from time (k− 1)∆t to time k∆t. Thus, fd is a function fd : X ×Ud → X
that represents an approximation to f , the original state transition function. Every
constant action u ∈ Ud applied over ∆t can be considered as a motion primitive.

Now generalize the preceding construction to allow more general motion prim-
itives. Let ũp denote a motion primitive, which is a function from an interval of
time into U . Let the interval of time start at 0 and stop at tF (ũ

p), which is a final
time that depends on the particular primitive. From any state x ∈ Xfree, suppose
that a set Up(x) of motion primitives is available. The set may even be infinite, in
which case some additional sampling must eventually be performed over the space
of motion primitives by a local planning method. A state transition equation that
operates over discrete stages can be defined as

xk+1 = fp(xk, ũ
p
k), (14.13)

14.2. REACHABILITY AND COMPLETENESS 809

Hover Forward flight

Steady left turn

Steady right turn

Figure 14.8: A maneuver automaton, proposed by Frazzoli [360], captures the
constraints on allowable sequences of motion primitives.

in which ũpk is a motion primitive that must be chosen from Up(xk). The time
discretization model and (14.12) can be considered as a special case in which the
motion primitives are all constant over a fixed time interval [0,∆t). Note that in
(14.13) the stage index k does not necessarily correspond to time (k − 1)∆t. The
index k merely represents the fact that k− 1 motion primitives have been applied
so far, and it is time to decide on the kth motion primitive. The current time is
determined by summing the durations of all k−1 primitives applied so far. If a set
Up(x) of primitives is given for all x ∈ X, then a reachability graph and its swath
can be defined by simple extensions of the discrete-time case. The discrete-time
model Ud can now be interpreted as a special set of motion primitives.

For some motion primitives, it may not be possible to immediately sequence
them without applying transitional motions. For example, in [362], two different
kinds of motion primitives, called trim trajectories and maneuvers, are defined for
autonomous helicopter flight. The trim trajectories correspond to steady motions,
and maneuvers correspond to unsteady motions that are needed to make transi-
tions between steady motions. Transitions from one trim trajectory to another
are only permitted through the execution of a maneuver. The problem can be
nicely modeled as a hybrid system in which each motion primitive represents a
mode [360] (recall hybrid system concepts from Sections 7.3, 8.3.1, and 10.6). The
augmented state space is X ×M , in which M is a set of modes. The transition
equation (14.13) can be extended over the augmented state space so that motion
primitives can change modes in addition to changing the original state. The pos-
sible trajectories for the helicopter follow paths in a graph called the maneuver
automaton. An example from [360] is shown in Figure 14.8. Every edge and every
vertex corresponds to a mode in the maneuver automaton. Each edge or vertex
actually corresponds to a parameterized family of primitives, from which a partic-
ular one is chosen based on the state. A similar state machine is proposed in [452]
for animating humans, and the motion primitives are called behaviors.

Discretizations based on general motion primitives offer great flexibility, and in
many cases dramatic performance improvements can be obtained in a sampling-
based planning algorithm. The main drawback is that the burden of establishing

810 S. M. LaValle: Planning Algorithms

resolution completeness is increased.

14.3 Sampling-Based Motion Planning Revisited

Now that the preliminary concepts have been defined for motion planning under
differential constraints, the focus shifts to extending the sampling-based planning
methods of Chapter 5. This primarily involves extending the incremental sampling
and searching framework from Section 5.4 to incorporate differential constraints.
Following the general framework, several popular methods are covered in Section
14.4 as special cases of the framework. If an efficient BVP solver is available,
then it may also be possible to extend sampling-based roadmaps of Section 5.6 to
handle differential constraints.

14.3.1 Basic Components

This section describes how Sections 5.1 to 5.3 are adapted to handle phase spaces
and differential constraints.

14.3.1.1 Distance and volume in X

Recall from Chapter 5 that many sampling-based planning algorithms rely on
measuring distances or volumes in C. If X = C, as in the wheeled systems from
Section 13.1.2, then the concepts of Section 5.1 apply directly. The equivalent is
needed for a general state space X, which may include phase variables in addition
to the configuration variables. In most cases, the topology of the phase variables
is trivial. For example, if x = (q, q̇), then each q̇i component is constrained to
an interval of R. In this case the velocity components are just an axis-aligned
rectangular region in Rn/2, if n is the dimension of X. It is straightforward in
this case to extend a measure and metric defined on C up to X by forming the
Cartesian product.

A metric can be defined using the Cartesian product method given by (5.4).
The usual difficulty arises of arbitrarily weighting different components and com-
bining them into a single scalar function. In the case of C, this has involved
combining translations and rotation. For X, this additionally includes velocity
components, which makes it more difficult to choose meaningful weights.

Riemannian metrics A rigorous way to define a metric on a smooth manifold is
to define a metric tensor (or Riemannian tensor), which is a quadratic function of
two tangent vectors. This can be considered as an inner product on X, which can
be used to measure angles. This leads to the definition of the Riemannian metric,
which is based on the shortest paths (called geodesics) in X [133]. An example
of this appeared in the context of Lagrangian mechanics in Section 13.4.1. The
kinetic energy, (13.70), serves as the required metric tensor, and the geodesics
are the motions taken by the dynamical system to conserve energy. The metric

14.3. SAMPLING-BASED MOTION PLANNING REVISITED 811

can be defined as the length of the geodesic that connects a pair of points. If
the chosen Riemannian metric has some physical significance, as in the case of
Lagrangian mechanics, then the resulting metric provides meaningful information.
Unfortunately, it may be difficult or expensive to compute its value.

The ideal distance function The ideal way to define distance on X is to use
a cost functional and then define the distance from x ∈ Xfree to x

′ ∈ Xfree as the
optimal cost-to-go from x to x′ while remaining in Xfree. In some cases, it has
been also referred to as the nonholonomic metric, Carnot-Caratheodory metric,
or sub-Riemannian metric [596]. Note that this not a true metric, as mentioned
in Section 5.1.2, because the cost may not be symmetric. For example, traveling
a small distance forward with Dubins car is much shorter than traveling a small
distance backward. If there are obstacles, it may not even be possible to reach
configurations behind the car.

This concept of distance should be somewhat disturbing because it requires
optimally solving the motion planning problem of Formulation 14.1. Thus, it can-
not be practical for efficient use in a motion planning algorithm. Nevertheless,
understanding this ideal notion of distance can be very helpful in designing practi-
cal distance functions on X. For example, rather than using a weighted Euclidean
metric (often called Mahalanobis metric) for the Dubins car, a distance function
can be defined based on the length of the shortest path between two configura-
tions. These lengths are straightforward to compute, and are based on the optimal
curve families that will be covered in Section 15.3. This distance function neglects
obstacles, but it should still provide better distance information than the weighted
Euclidean metric. It may also be useful for car models that involve dynamics.

The general idea is to get as close as possible to the optimal cost-to-go without
having to perform expensive computations. It is often possible to compute a useful
underestimate of the optimal cost-to-go by neglecting some of the constraints, such
as obstacles or dynamics. This may help in applying A∗ search heuristics.

Defining measure As mentioned already, it is straightforward to extend a mea-
sure on C to X if the topology associated with the phase variables is trivial. It
may not be possible, however, to obtain an invariant measure. In most cases, C
is a transformation group, in which the Haar measure exists, thereby yielding the
“true” volume in a sense that is not sensitive to parameterizations of C. This was
observed for SO(3) in Section 5.1.4. For a general state space X, a Haar measure
may not exist. If a Riemannian metric is defined, then intrinsic notions of surface
integration and volume exist [133]; however, these may be difficult to exploit in a
sampling-based planning algorithm.

14.3.1.2 Sampling theory

Section 14.2.2 already covered some of the sampling issues. There are at least two
continuous spaces: X, and the time interval T . In most cases, the action space

812 S. M. LaValle: Planning Algorithms

U is also continuous. Each continuous space must be sampled in some way. In
the limit, it is important that any sample sequence is dense in the space on which
sampling occurs. This was required for the resolution completeness concepts of
Section 14.2.2.

Sampling of T and U can be performed by directly using the random or deter-
ministic methods of Section 5.2. Time is just an interval of R, and U is typically
expressed as a convex m-dimensional subset of Rm. For example, U is often an
axis-aligned rectangular subset of Rm.

Some planning methods may require sampling on X. The definitions of dis-
crepancy and dispersion from Section 5.2 can be easily adapted to any measure
space and metric space, respectively. Even though it may be straightforward to
define a good criterion, generating samples that optimize the criterion may be
difficult or impossible.

A convenient way to avoid this problem is to work in a coordinate neighbor-
hood of X. This makes the manifold appear as an n-dimensional region in Rn,
which in many cases is rectangular. This enables the sampling concepts of Section
5.2 to be applied in a straightforward manner. While this is the most straightfor-
ward approach, the sampling quality depends on the particular parameterization
used to define the coordinate neighborhood. Note that when working with a co-
ordinate neighborhood (for example, by imagining that X is a cube), appropriate
identifications must be taken into account.

14.3.1.3 Collision detection

As in Chapter 5, efficient collision detection algorithms are a key enabler of
sampling-based planning. If X = C, then the methods of Section 5.3 directly
apply. If X includes phase constraints, then additional tests must be performed.
These constraints are usually given and are therefore straightforward to evaluate.
Recall from Section 4.3 that this is not efficient for the obstacle constraints on C
due to the complicated mapping between obstacles in W and obstacles in C.

If only pointwise tests are performed, the trajectory segment between the points
is not guaranteed to stay in Xfree. This problem was addressed in Section 5.3.4 by
using distance information from collision checking algorithms. The same problem
exists for the phase constraints of the form hi(x) ≤ 0. In this general form there is
no additional information that can be used to ensure that some neighborhood of
x is contained in Xfree. Fortunately, the phase constraints are not complicated in
most applications, and it is possible to ensure that x is at least some distance away
from the constraint boundary. In general, careful analysis of each phase constraint
is required to ensure that the state trajectory segments are violation-free.

In summary, determining whether x ∈ Xfree involves

1. Using a collision detection algorithm as in Section 5.3 to ensure that κ(x) ∈
Cfree.

2. Checking x to ensure that other constraints of the form hi(x) ≤ 0 have been
satisfied.

14.3. SAMPLING-BASED MOTION PLANNING REVISITED 813

System
Simulatorũt

x(0)

t

x̃t

Figure 14.9: Using a system simulator, the system ẋ = f(x, u) is integrated from
x(0) using ũt : [0, t]→ U to produce a state trajectory x̃t : [0, t]→ X. Sometimes
x̃ is specified as a parameterized path, but most often it is approximated as a
sequence of samples in X.

Entire trajectory segments should theoretically be checked. Often times, in prac-
tice, only individual points are checked, which is more efficient but technically
incorrect.

14.3.2 System Simulator

A new component is needed for sampling-based planning under differential con-
straints because of (14.1). Motions are now expressed in terms of an action trajec-
tory, but collision detection and constraint satisfaction tests must be performed in
X. Therefore, the system, ẋ = f(x, u) needs to be integrated frequently during the
planning process. Similar to the modeling of collision detection as a “black box,”
the integration process is modeled as a module called the system simulator. See
Figure 14.9. Since the systems considered in this chapter are time-invariant, the
starting time for any required integration can always be shifted to start at t = 0.
Integration can be considered as a module that implements (14.1) by computing
the state trajectory resulting from a given initial state x(0), an action trajectory
ũt, and time t. The incremental simulator encapsulates the details of integrating
the state transition equation so that they do not need to be addressed in the de-
sign of planners. However, that information from the particular state transition
equation may still be important in the design of the planning algorithm.

Closed-form solutions According to (14.1), the action trajectory must be in-
tegrated to produce a state trajectory. In some cases, this integration leads to a
closed-form expression. For example, if the system is a chain of integrators, then
a polynomial expression can easily be obtained for x(t). For example, suppose q is
a scalar and q̈ = u. If q(0) = q̇(0) = 0 and a constant action u = 1 is applied, then
x(t) = t2/2. If ẋ = f(x, u) is a linear system (which includes chains of integrators;
recall the definition from Section 13.2.2), then a closed-form expression for the
state trajectory can always be obtained. This is based on matrix exponentials and
is given in many control theory texts (e.g, [192]).

Euler method For most systems, the integration must be performed numeri-
cally. A system simulator based on numerical integration can be constructed by
breaking t into smaller intervals and iterating classical methods for computing

814 S. M. LaValle: Planning Algorithms

numerical solutions to differential equations. The Euler method is the simplest of
these methods. Let ∆t denote a small time interval over which the approxima-
tion will be made. This can be considered as an internal parameter of the system
simulator. In practice, this ∆t is usually much smaller than the ∆t used in the
discrete-time model of Section 14.2.2. Suppose that x(0) and u(0) are given and
the task is to estimate x(∆t).

By performing integration over time, the state transition equation can be used
to determine the state after some fixed amount of time ∆t has passed. For example,
if x(0) is given and u(t′) is known over the interval t′ ∈ [0,∆t], then the state at
time ∆t can be determined as

x(∆t) = x(0) +

∫ ∆t

0

f(x(t), u(t))dt. (14.14)

The integral cannot be evaluated directly because x(t) appears in the integrand
and is unknown for time t > 0.

Using the fact that

f(x, u) = ẋ =
dx

dt
≈ x(∆t)− x(0)

∆t
, (14.15)

solving for x(∆t) yields the classic Euler integration method

x(∆t) ≈ x(0) + ∆t f(x(0), u(0)). (14.16)

The approximation error depends on how quickly x(t) changes over time and on
the length of the interval ∆t. If the planning algorithm applies a motion primitive
ũp, it gives tF (ũ

p) as the time input, and the system simulator may subdivide
the time interval to maintain higher accuracy. This allows the developer of the
planning algorithm to ignore numerical accuracy issues.

Runge-Kutta methods Although Euler integration is efficient and easy to un-
derstand, it generally yields poor approximations. Taking a Taylor series expansion
of x̃ at t = 0 yields

x(∆t) = x(0) + ∆t ẋ(0) +
(∆t)2

2!
ẍ(0) +

(∆t)3

3!
x(3)(0) + · · · . (14.17)

Comparing to (14.16), it can be seen that the Euler method just uses the first
term of the Taylor series, which is an exact representation (if x̃ is analytic). Thus,
the neglected terms reflect the approximation error. If x(t) is roughly linear, then
the error may be small; however, if ẋ(t) or higher order derivatives change quickly,
then poor approximations are obtained.

Runge-Kutta methods are based on using higher order terms of the Taylor
series expansion. One of the most widely used and efficient numerical integration
methods is the fourth-order Runge-Kutta method. It is simple to implement and

14.3. SAMPLING-BASED MOTION PLANNING REVISITED 815

yields good numerical behavior in most applications. Also, it is generally recom-
mended over Euler integration. The technique can be derived by performing a
Taylor series expansion at x(1

2
∆t). This state itself is estimated in the approxi-

mation process.
The fourth-order Runge-Kutta integration method is

x(∆t) ≈ x(0) +
∆t

6
(w1 + 2w2 + 2w3 + w4), (14.18)

in which

w1 = f(x(0), u(0))

w2 = f(x(0) + 1
2
∆t w1, u(

1
2
∆t))

w3 = f(x(0) + 1
2
∆t w2, u(

1
2
∆t))

w4 = f(x(0) + ∆t w3, u(∆t)).

(14.19)

Although this is more expensive than Euler integration, the improved accuracy is
usually worthwhile in practice. Note that the action is needed at three different
times: 0, 1

2
∆t, and ∆t. If the action is constant over [0,∆t), then the same value

is used at all three times.
The approximation error depends on how quickly higher order derivatives of

x̃ vary over time. This can be expressed using the remaining terms of the Taylor
series. In practice, it may be advantageous to adapt ∆t over successive iterations
of Runge-Kutta integration. In [247], for example, it is suggested that ∆t is scaled
by (∆t/∆x)1/5, in which ∆x = ‖x(∆t)− x(0)‖, the Euclidean distance in Rn.

Multistep methods Runge-Kutta methods represent a popular trade-off be-
tween simplicity and efficiency. However, by focusing on the integration problem
more carefully, it is often possible to improve efficiency further. The Euler and
Runge-Kutta methods are often referred to as single-step methods. There exist
multi-step methods, which rely on the fact that a sequence of integrations will be
performed, in a manner analogous to incremental collision detection in Section
5.3.3. The key issues are ensuring that the methods properly initialize, ensuring
numerical stability over time, and estimating error to adaptively adjust the step
size. Many books on numerical analysis cover multi-step methods [51, 440, 863].
One of the most popular families is the Adams methods.

Multistep methods require more investment to understand and implement.
For a particular application, the decision to pursue this route should be based on
the relative costs of planning, collision detection, and numerical integration. If
integration tends to dominate and efficiency is critical, then multi-step methods
could improve running times dramatically over Runge-Kutta methods.

Black-box simulators For some problems, a state transition equation might
not be available; however, it is still possible to compute future states given a
current state and an action trajectory. This might occur, for example, in a complex

816 S. M. LaValle: Planning Algorithms

software system that simulates the dynamics of a automobile or a collection of parts
that bounce around on a table. In computer graphics applications, simulations may
arise from motion capture data. Some simulators may even work internally with
implicit differential constraints of the form gi(x, ẋ, u) = 0, instead of ẋ = f(x, u).
In such situations, many sampling-based planners can be applied because they
rely only on the existence of the system simulator. The planning algorithm is
thus shielded from the particular details of how the system is represented and
integrated.

Reverse-time system simulation Some planning algorithms require integra-
tion in the reverse-time direction. For some given x(0) and action trajectory that
runs from −∆t to 0, the backward system simulator computes a state trajectory,
x̃ : [−t, 0] → X, which when integrated from −∆t to 0 under the application of
ũt yields x(0). This may seem like an inverse control problem [856] or a BVP as
shown in Figure 14.10; however, it is much simpler. Determining the action trajec-
tory for given initial and goal states is more complicated; however, in reverse-time
integration, the action trajectory and final state are given, and the initial state
does not need to be fixed.

The reverse-time version of (14.14) is

x(−∆t) = x(0) +

∫ −∆t

0

f(x(t), u(t))dt = x(0) +

∫ ∆t

0

−f(x(t), u(t))dt, (14.20)

which relies on the fact that ẋ = f(x, u) is time-invariant. Thus, reverse-time
integration is obtained by simply negating the state transition equation. The Euler
and Runge-Kutta methods can then be applied in the usual way to −f(x(t), u(t)).

14.3.3 Local Planning

The methods of Chapter 5 were based on the existence of a local planning method
(LPM) that is simple and efficient. This represented an important part of both the
incremental sampling and searching framework of Section 5.4 and the sampling-
based roadmap framework of Section 5.6. In the absence of obstacles and differ-
ential constraints, it is trivial to define an LPM that connects two configurations.
They can, for example, be connected using the shortest path (geodesic) in C. The
sampling-based roadmap approach from Section 5.6 relies on this simple LPM.

In the presence of differential constraints, the problem of constructing an LPM
that connects two configurations or states is considerably more challenging. Recall
from Section 14.1 that this is the classical BVP, which is difficult to solve for most
systems. There are two main alternatives to handle this difficulty in a sampling-
based planning algorithm:

1. Design the sampling scheme, which may include careful selection of motion
primitives, so that the BVP can be trivially solved.

14.3. SAMPLING-BASED MOTION PLANNING REVISITED 817

Two-Point
Boundary-Value
Solver

ũt

xI

xG

Figure 14.10: Some methods in Chapter 15 can solve two-point boundary value
problems in the absence of Xobs. This is difficult to obtain for most systems, but
it is more powerful than the system simulator. It is very valuable, for example, in
making a sampling-based roadmap that satisfies differential constraints.

2. Design the planning algorithm so that as few as possible BVPs need to be
solved. The LPM in this case does not specify precise goal states that must
be reached.

Under the first alternative, the BVP solver can be considered as a black box, as
shown in Figure 14.10, that efficiently connects xI to xG in the absence of obstacles.
In the case of the Piano Mover’s Problem, this was obtained by moving along the
shortest path in C. For many of the wheeled vehicle systems from Section 13.1.2,
steering methods exist that could serve as an efficient BVP solver; see Section 15.5.
Efficient techniques also exist for linear systems and are covered in Section 15.2.2.

If the BVP is efficiently solved, then virtually any sampling-based planning
algorithm from Chapter 5 can be adapted to the case of differential constraints.
This is achieved by using the module in Figure 14.10 as the LPM. For example, a
sampling-based roadmap can use the computed solution in the place of the shortest
path through C. If the BVP solver is not efficient enough, then this approach
becomes impractical because it must typically be used thousands of times to build
a roadmap. The existence of an efficient module as shown in Figure 14.10 magically
eliminates most of the complications associated with planning under differential
constraints. The only remaining concern is that the solutions provided by the BVP
solver could be quite long in comparison to the shortest path in the absence of
differential constraints (for example, how far must the Dubins car travel to move
slightly backward?).

Under the second alternative, it is assumed that solving the BVP is very costly.
The planning method in this case should avoid solving BVPs whenever possible.
Some planning algorithms may only require an LPM that approximately reaches
intermediate goal states, which is simpler for some systems. Other planning algo-
rithms may not require the LPM to make any kind of connection. The LPM may
return a motion primitive that appears to make some progress in the search but
is not designed to connect to a prescribed state. This usually involves incremental
planning methods, which are covered in Section 14.4 and extends the methods of
Sections 5.4 and 5.5 to handle differential constraints.

818 S. M. LaValle: Planning Algorithms

14.3.4 General Framework Under Differential Constraints

The framework presented here is a direct extension of the sampling and searching
framework from Section 5.4.1 and includes the extension of Section 5.5 to allow
the selection of any point in the swath of the search graph. This replaces the
vertex selection method (VSM) by a swath-point selection method (SSM). The
framework also naturally extends the discrete search framework of Section 2.2.4.
The components are are follows:

1. Initialization: Let G(V,E) represent an undirected search graph, for which
the vertex set V contains a vertex for xI and possibly other states in Xfree,
and the edge set E is empty. The graph can be interpreted as a topological
graph with a swath S(G).

2. Swath-point Selection Method (SSM): Choose a vertex xcur ∈ S(G) for
expansion.

3. Local Planning Method (LPM):Generate a motion primitive ũp : [0, tF]→
Xfree such that u(0) = xcur and u(tF) = xr for some xr ∈ Xfree, which may
or may not be a vertex in G. Using the system simulator, a collision detec-
tion algorithm, and by testing the phase constraints, ũp must be verified to
be violation-free. If this step fails, then go to Step 2.

4. Insert an Edge in the Graph: Insert ũp into E. Upon integration, ũp

yields a state trajectory from xcur to xr. If xr is not already in V , it is added.
If xcur lies in the interior of an edge trajectory for some e ∈ E, then e is split
by the introduction of a new vertex at xcur.

5. Check for a Solution: Determine whether G encodes a solution path. In
some applications, a small gap in the state trajectory may be tolerated.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied. In the latter case, the algorithm reports
failure.

The general framework may be applied in the same ways as in Section 5.4.1
to obtain unidirectional, bidirectional, and multidirectional searches. The issues
from the Piano Mover’s Problem extend to motion planning under differential
constraints. For example, bug traps cause the same difficulties, and as the number
of trees increases, it becomes difficult to coordinate the search.

The main new complication is due to BVPs. See Figure 14.11. Recall from
Section 14.1.1 that for most systems it is important to reduce the number of BVPs
that must be solved during planning as much as possible. Assume that connecting
precisely to a prescribed state is difficult. Figure 14.11a shows the best situation,
in which forward, unidirectional search is used to enter a large goal region. In
this case, no BVPs need to be solved. As the goal region is reduced, the problem

14.3. SAMPLING-BASED MOTION PLANNING REVISITED 819

XGxI xI

xG

BVP

(a) (b)

xI

xG
BVP xG

xI

BVP

(c) (d)

Figure 14.11: (a) Forward, unidirectional search for which the BVP is avoided.
(b) Reaching the goal precisely causes a BVP. (c) Backward, unidirectional search
also causes a BVP. (d) For bidirectional search, the BVP arises when connecting
the trees.

becomes more challenging. Figure 14.11b shows the limiting case in which XG is
a point {xG}. This requires the planning algorithm to solve at least one BVP.

Figure 14.11c shows the case of backward, unidirectional search. This has the
effect of moving the BVP to xI . Since xI is precisely given (there is no “initial
region”), the BVP cannot be avoided as in the forward case. If an algorithm
produces a solution ũ for which x(0) is very close to xI , and if XG is large, then it
may be possible to salvage the solution. The system simulator can be applied to ũ
from xI instead of x(0). It is known that x̃(x(0), ũ) is violation-free, and x̃(xI , ũ)
may travel close to x̃(x(0), ũ) at all times. This requires f to vary only a small
amount with respect to changes in x (this would be implied by a small Lipschitz
constant) and also for ‖xI − x(0)‖ to be small. One problem is that the difference
between points on the two trajectories usually increases as time increases. If it is
verified by the system simulator that x̃(xI , ũ) is violation-free and the final state
still lies in XG, then a solution can be declared.

For bidirectional search, a BVP must be solved somewhere in the middle of a
trajectory, as shown in Figure 14.11d. This complicates the problem of determining

820 S. M. LaValle: Planning Algorithms

whether the two trees can be connected. Once again, if the goal region is large,
it may be possible remove the gap in the middle of the trajectory by moving
the starting state of the trajectory produced by the backward tree. Let ũ1 and
ũ2 denote the action trajectories produced by the forward and backward trees,
respectively. Suppose that their termination times are t1 and t2, respectively. The
action trajectories can be concatenated to yield a function ũ : [0, t1 + t2]→ U by
shifting the domain of ũ2 from [0, t2] to [t1, t1 + t2]. If t ≤ t1, then u(t) = u1(t);
otherwise, u(t) = u2(t − t1). If there is a gap, the new state trajectory x̃(xI , ũ)
must be checked using the system simulator to determine whether it is violation-
free and terminates in XG. Multi-directional search becomes even more difficult
because more BVPs are created. It is possible in principle to extend the ideas
above to concatenate a sequence of action trajectories, which tries to remove all
of the gaps.

Consider the relationship between the search graph and reachability graphs.
In the case of unidirectional search, the search graph is always a subset of a
reachability graph (assuming perfect precision and no numerical integration error).
In the forward case, the reachability graph starts at xI , and in the backward case it
starts at xG. In the case of bidirectional search, there are two reachability graphs.
It might be the case that vertices from the two coincide, which is another way
that the BVP can be avoided. Such cases are unfortunately rare, unless xI and
xG are intentionally chosen to cause this. For example, the precise location of xG
may be chosen because it is known to be a vertex of the reachability graph from
xI . For most systems, it is difficult to force this behavior. Thus, in general, BVPs
arise because the reachability graphs do not have common vertices. In the case of
multi-directional search, numerous reachability graphs are being explored, none of
which may have vertices that coincide with vertices of others.

14.4 Incremental Sampling and Searching Meth-

ods

The general framework of Section 14.3.4 will now be specialized to obtain three
important methods for planning under differential constraints.

14.4.1 Searching on a Lattice

This section follows in the same spirit as Section 5.4.2, which adapted grid search
techniques to motion planning. The difficulty in the current setting is to choose a
discretization that leads to a lattice that can be searched using any of the search
techniques of Section 2.2. The section is inspired mainly by kinodynamic planning
work [288, 290, 441].

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 821

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x

(a) u = −1 (b) u = 0 (c) u = 1

Figure 14.12: The reachability graph will be obtained by switching between these
vector fields at every ∆t. The middle one produces horizontal phase trajectories,
and the others produce parabolic curves.

14.4.1.1 A double-integrator lattice

First consider the double integrator from Example 13.3. Let C = Cfree = R and
q̈ = u. This models the motion of a free-floating particle in R, as described in
Section 13.3.2. The phase space is X = R2, and x = (q, q̇). Let U = [−1, 1]. The
coming ideas can be easily generalized to allow any acceleration bound amax > 0
by letting U = [−amax, amax]; however, amax = 1 will be chosen to simplify the
presentation.

The differential equation q̈ = u can be integrated once to yield

q̇(t) = q̇(0) + ut, (14.21)

in which q̇(0) is an initial speed. Upon integration of (14.21), the position is
obtained as

q(t) = q(0) + q̇(0) t+ 1
2
ut2, (14.22)

which uses two initial conditions, q(0) and q̇(0).
A discrete-time model exists for which the reachability graph is trapped on a

lattice. This is obtained by letting Ud = {−1, 0, 1} and ∆t be any positive real
number. The vector fields over X that correspond to the cases of u = −1, u = 0,
and u = 1 are shown in Figure 14.12. Switching between these fields at every ∆t
and integrating yields the reachability graph shown in Figure 14.13.

This leads to a discrete-time transition equation of the form xk+1 = fd(xk, uk),
in which uk ∈ Ud, and k represents time t = (k− 1)∆t. Any action trajectory can
be specified as an action sequence; for example a six-stage action sequence may be
given by (−1, 1, 0, 0,−1, 1). Start from x1 = x(0) = (q1, q̇1). At any stage k and
for any action sequence, the resulting state xk = (qk, q̇k) can be expressed as

qk = q1 + i1
2
(∆t)2

q̇k = q̇1 + j∆t,
(14.23)

822 S. M. LaValle: Planning Algorithms

q̇

q

Figure 14.13: The reachability graph from the origin is shown after three stages
(the true state trajectories are actually parabolic arcs when acceleration or decel-
eration occurs). Note that a lattice is obtained, but the distance traveled in one
stage increases as |q̇| increases.

in which i, j are integers that can be computed from the action sequence. Thus,
any action sequence leads to a state that can be expressed using integer coordinates
(i, j) in the plane. Starting at x1 = (0, 0), this forms the lattice of points shown
in Figure 14.13. The lattice is slanted (with slope 1) because changing speed
requires some motion. If infinite acceleration were allowed, then q̇ could be changed
instantaneously, which corresponds to moving vertically inX. As seen in (14.21), q̇
changes linearly over time. If q 6= 0, then the configuration changes quadratically.
If u = 0, then it changes linearly, except when q̇ = 0; in this case, no motion
occurs.

The neighborhood structure is not the same as those in Section 5.4.2 because
of drift. For u = 0, imagine having a stack of horizontal conveyor belts that carry
points to the right if they are above the q-axis, and to the left if they are below
it (see Figure 14.12b). The speed of the conveyor belt is given by q̇. If u = 0,
the distance traveled along q is q̇∆t. This causes horizontal motion to the right
in the phase plane if q̇ > 0 and horizontal motion to the left if q̇ < 0. Observe in
Figure 14.13 that larger motions result as |q̇| increases. If q̇ = 0, then no horizontal
motion can occur. If q 6= 0, then the q̇ coordinate changes by ±1

2
u(∆t)2. This

slowing down or speeding up also affects the position along q.

For most realistic problems, there is an upper bound on speed. Let vmax > 0
be a positive constant and assume that |q̇| ≤ vmax. Furthermore, assume that
C is bounded (all values of q ∈ C are contained in an interval of R). Since the
reachability graph is a lattice and the states are now confined to a bounded subset

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 823

xg

q̇

q

xi

q̇

q

(a) Backward reachable set from xG (b) Forward reachable set from xI

Figure 14.14: The initial and goal states can be connected to lattice points that
call within cones in X that represent time-limited reachable sets.

of R2, the number of vertices in the reachability graph is finite. For any fixed
∆t, the lattice can be searched using any of the algorithms of Section 2.2. The
search starts on a reachability graph for which the initial vertex is xI . Trajecto-
ries that are approximately time-optimal can be obtained by using breadth-first
search (Dijkstra’s algorithm could alternatively be used, but it is more expensive).
Resolution completeness can be obtained by reducing ∆t by a constant factor each
time the search fails to find a solution. As mentioned in Section 5.4.2, it is not
required to construct an entire grid resolution at once. Samples can be gradually
added, and the connectivity can be updated efficiently using the union-find algo-
rithm [243, 823]. A rigorous approximation algorithm framework will be presented
shortly, which indicates how close the solution is to optimal, expressed in terms of
input parameters to the algorithm.

Recall the problem of connecting to grid points, which was illustrated in Figure
5.14b. If the goal region XG contains lattice points, then exact arrival at the goal
occurs. If it does not contain lattice points, as in the common case of XG being
a single point, then some additional work is needed to connect a goal state to a
nearby lattice point. This actually corresponds to a BVP, but it is easy to solve
for the double integrator. The set of states that can be reached from some state
xG within time ∆t lie within a cone, as shown in Figure 14.14a. Lattice points
that fall into the cone can be easily connected to xG by applying a constant action
in U . Likewise, xI does not even have to coincide with a lattice point. Thus, it is
straightforward to connect xI to a lattice point, obtain a trajectory that arrives
at a lattice point near xG, and then connect it exactly to xG.

14.4.1.2 Extensions and other considerations

Alternative lattices for the double integrator Many alternative lattices can
be constructed over X. Different discretizations of U and time can be used. Great
flexibility is allowed if feasibility is the only concern, as opposed to optimality.
Since C = R, it is difficult to define an obstacle avoidance problem; however, the
concepts will be soon generalized to higher dimensions. In this case, finding a

824 S. M. LaValle: Planning Algorithms

feasible trajectory that connects from some initial state to a goal state may be
the main concern. Note, however, that if xI and xG are states with zero velocity,
then the state could hover around close to the q-axis, and the speeds will be so
slow that momentum is insignificant. This provides some incentive for at least
reducing the travel time as much as possible, even if the final result is not optimal.
Alternatively, the initial and goal states may not have zero velocity, in which case,
any feasible solution may be desired. For example, suppose the goal is to topple a
sports utility vehicle (SUV) as part of safety analysis.

To get a feeling for how to construct lattices, recall again the analogy to con-
veyor belts. A lattice can be designed by placing horizontal rows of sample points
at various values of q̇. These could, for example, be evenly spaced in the q̇ direc-
tion as in Figure 14.13. Imagine the state lies on a conveyor belt. If desired, a
move can be made to any other conveyor belt, say at q̇′, by applying a nonzero
action for some specific amount of time. If q̇′ > q̇, then u > 0; otherwise, u < 0. If
the action is constant, then after time |q̇ − q̇′|/u has passed, the state will arrive
at q̇′. Upon arrival, the position q on the conveyor belt might not coincide with a
sample point. This is no problem because the action u = 0 can be applied until the
state drifts to the next sample point. An alternative is to choose an action from
U that drives directly to a lattice point within its forward, time-limited reachable
set. Recall Figure 14.14; the cone can be placed on a lattice point to locate other
lattice points that can be reached by application of a constant action in U over
some time interval.

Recall from Figure 14.13 that longer distances are traveled over time ∆t as |q̇|
increases. This may be undesirable behavior in practice because the resolution
is essentially much poorer at higher speeds. This can be compensated for by
placing the conveyor belts closer together as |q̇| increases. As the speed increases,
a shorter time interval is needed to change belts, and the distance traveled can be
held roughly the same for all levels. This corresponds to the intuition that faster
response times are needed at higher speeds.

A multi-resolution version can also be made [816]. The simple problem con-
sidered so far can actually be solved combinatorially, without any approximation
error [747]; however, the lattice-based approach was covered because it can be
extended to much harder problems, as will be explained next.

Multiple, independent double integrators Now consider generalizing to a
vector of n double integrators. In this case, C = Rn and each q ∈ C is an n-
dimensional vector. There are n action variables and n double integrators of the
form q̈i = ui. The action space for each variable is Ui = [−1, 1] (once again, any
acceleration bound can be used). The phase space X is R2n, and each point is x =
(q1, . . . , qn, q̇1, . . . , q̇n). The ith double integrator produces two scalar equations of
the phase transition equation: ẋi = xn+i and ẋn+i = ui.

Even though there are n double integrators, they are decoupled in the state
transition equation. The phase of one integrator does not depend on the phase of
another. Therefore, the ideas expressed so far can be extended in a straightforward

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 825

way to obtain a lattice over R2n. Each action is an n-dimensional vector u. Each Ui
is discretized to yield values −1, 0, and 1. There are 3n edges emanating from any
lattice point for which q̇i 6= 0 for all i. For any double integrator for which q̇i = 0,
there are only two choices because ui = 0 produces no motion. The projection of
the reachability graph down to (xi, xn+i) for any i from 1 to n looks exactly like
Figure 14.13 and characterizes the behavior of the ith integrator.

The standard search algorithms can be applied to the lattice over R2n. Breadth-
first search once again yields solutions that are approximately time-optimal. Res-
olution completeness can be obtained again by bounding X and allowing ∆t to
converge to zero. Now that there are more dimensions, a complicated obstacle
region Xobs can be removed from X. The traversal of each edge then requires
collision detection along each edge of the graph. Note that the state trajectories
are linear or parabolic arcs. Numerical integration is not needed because (14.22)
already gives the closed-form expression for the state trajectory.

Unconstrained mechanical systems A lattice can even be obtained for the
general case of a fully actuated mechanical system, which for example includes
most robot arms. Recall from (13.4) that any system in the form q̇ = f(q, u) can
alternatively be expressed as q̇ = u, if U(q) is defined as the image of f for a fixed
q. The main purpose of using f is to make it easy to specify a fixed action space
U that maps differently into the tangent space for each q ∈ C.

A similar observation can be made regarding equations of the form q̈ = h(q, q̇, u),
in which u ∈ U and U is an open subset of Rn. Recall that this form was obtained
for general unconstrained mechanical systems in Sections 13.3 and 13.4. For ex-
ample, (13.148) expresses the dynamics of open-chain robot arms. Such equations
can be expressed as q̈ = u′ by directly specifying the set of allowable accelerations.
Each u will map to a new action u′ in an action space given by

U ′(q, q̇) = {q̈ ∈ Rn | ∃u ∈ U such that q̈ = h(q, q̇, u)} (14.24)

for each q ∈ C and q̇ ∈ Rn.
Each u′ ∈ U ′(q, q̇) directly expresses an acceleration vector in Rn. Therefore,

using u′ ∈ U(q, q̇), the original equation expressed using h can be now written as
q̈ = u′. In its new form, this appears just like the multiple, independent double
integrators. The main differences are

1. The set U ′(q, q̇) may describe a complicated region in Rn, whereas U in the
case of the true double integrators was a cube centered at the origin.

2. The set U ′(q, q̇) varies with respect to q and q̇. Special concern must be
given for this variation over the time sampling interval ∆t. In the case of
the true double integrators, U was fixed.

The first difference is handled by performing grid sampling over Rn and making
an edge in the reachability graph for every grid point that falls into U ′(q, q̇); see
Figure 14.15a. The grid resolution can be improved along with ∆t to obtain

826 S. M. LaValle: Planning Algorithms

U ′(q, q̇)

R
n

R
n

(a) (b)

Figure 14.15: (a) The set, U ′(q, q̇), of new actions and grid-based sampling. (b)
Reducing the set by some safety margin to account for its variation over time.

resolution completeness. To address the second problem, think of U ′(q(t), q̇(t))
as a shape in Rn that moves over time. Choosing u′ close to the boundary of
U ′(q(t), q̇(t)) is dangerous because as t increases, u′ may fall outside of the new
action set. It is often possible to obtain bounds on how quickly the boundary of
U ′(q, q̇) can vary over time (this can be determined, for example, by differentiating
h with respect to q and q̇). Based on the bound, a thin layer near the boundary
of U ′(q, q̇) can be removed from consideration to ensure that all attempted actions
remain in U ′(q(t), q̇(t)) during the whole interval ∆t. See Figure 14.15b.

These ideas were applied to extend the approximation algorithm framework to
the case of open-chain robot arms, for which h is given by (13.148). Suppose that
U is an axis-aligned rectangle, which is often the case for manipulators because
the bounds for each ui correspond to torque limits for each motor. If q and q̇
are fixed, then (13.140) applies a linear transformation to obtain q̈ from u. The
rectangle is generally sheared into a parallelepiped (a n-dimensional extension of
a parallelogram). Recall such transformations from Section 3.5 or linear algebra.

Approximation algorithm framework The lattices developed in this section
were introduced in [290] for analyzing the kinodynamic planning problem in the
rigorous approximation algorithm framework for NP-hard problems [765]. Suppose
that there are two or three independent double integrators. The analysis shows
that the computed solutions are approximately optimal in the following sense. Let
c0 and c1 be two positive constants that define a function

δ(c0, c1)(q̇) = c0 + c1‖q̇‖. (14.25)

Let tF denote the time at which the termination action is applied. A state tra-
jectory is called δ(c0, c1)-safe if for all t ∈ [0, tF], the ball of radius δ(c0, c1)(q̇)
that is centered at q(t) does not cause collisions with obstacles in W . Note that
the ball radius grows linearly as the speed increases. The robot can be imagined

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 827

as a disk with a radius determined by speed. Let xI , xG, c0, and c1 be given
(only a point goal region is allowed). Suppose that for a given problem, there
exists a δ(c0, c1)-safe state trajectory (resulting from integrating any ũ ∈ U) that
terminates in xG after time topt. It was shown that by choosing the appropriate
∆t (given by a formula in [290]), applying breadth-first search to the reachability
lattice will find a (1− ǫ)δ(c0, c1)-safe trajectory that takes time at most (1+ ǫ)topt,
and approximately connects xI to xG (which means that the closeness in X de-
pends on ǫ). Furthermore, the running time of the algorithm is polynomial in 1/ǫ
and the number of primitives used to define polygonal obstacles.5 One of the key
steps in the analysis is to show that any state trajectory can be closely tracked
using only actions from Ud and keeping them constant over ∆t. One important
aspect is that it does not necessarily imply that the computed solution is close to
the true optimum, as it travels through X (only the execution times are close).
Thus, the algorithm may give a solution from a different homotopy class from the
one that contains the true optimal trajectory. The analysis was extended to the
general case of open-chain robot arms in [288, 441].

Backward and bidirectional versions There is a perfect symmetry to the
concepts presented so far in this section. A reachability lattice similar to the one
in Figure 14.13 can be obtained by integrating backward in time. This indicates
action sequences and associated initial states from which a fixed state can be
reached. Note that applying the ideas in the reverse direction does not require
the system to be symmetric. Given that the graphs exist in both directions,
bidirectional search can be performed. By using the forward and backward time-
limited reachability cones, the initial and goal states can be connected to a common
lattice, which is started, for example, at the origin.

Underactuated and nonholonomic systems Many interesting systems can-
not be expressed in the form q̈ = h(q, q̇, u) with n independent action variables
because of underactuation or other constraints. For example, the models in Section
13.1.2 are underactuated and nonholonomic. In this case, it is not straightforward
to convert the equations into a vector of double integrators because the dimension
of U(q, q̇) is less than n, the dimension of C. This makes it impossible to use
grid-based sampling of U(q, q̇). Nevertheless, it is still possible in many cases to
discretize the system in a clever way to obtain a lattice. If this can be obtained,
then a straightforward resolution-complete approach based on classical search al-
gorithms can be developed. If X is bounded (or a bounded region is obtained after
applying the phase constraints), then the search is performed on a finite graph. If
failure occurs, then the resolution can be improved in the usual way to eventually
obtain resolution completeness. As stated in Section 14.2.2, obtaining such a lat-

5One technical point: It is actually only pseudopolynomial [765] in amax, vmax, c0, c1, and
the width of the bounding cube in W. This means that the running time is polynomial if
the representations of these parameters are treated as having constant size; however, it is not
polynomial in the actual number of bits needed to truly represent them.

828 S. M. LaValle: Planning Algorithms

tice is possible for a large family of nonholonomic systems [762]. Next, a method
is presented for handling reachability graphs that are not lattices.

14.4.2 Incorporating State Space Discretization

If the reachability graph is not a lattice, which is typically the case with underac-
tuated and nonholonomic systems, then state space discretization can be used to
force it to behave like a lattice. If there are no differential constraints, then paths
can be easily forced to travel along a lattice, as in the methods of Section 7.7.1.
Under differential constraints, the state cannot be forced, for example, to follow
a staircase path. Instead of sampling X and forcing trajectories to visit specific
points, X can be partitioned into small cells, within which no more than one ver-
tex is allowed in the search graph. This prevents a systematic search algorithm
from running forever if the search graph has an infinite number of vertices in some
bounded region. For example, with the Dubins car, if u is fixed to an integer, an
infinite number of vertices on a circle is obtained, as mentioned in Section 14.2.2.
The ideas in this section are inspired mainly by the Barraquand-Latombe dynamic
programming method [73], which has been mainly applied to the models in Section
13.1.2. In the current presentation, however, the approach is substantially gener-
alized. Here, optimality is not even necessarily required (but can be imposed, if
desired).

Decomposing X into cells At the outset, X is decomposed into a collection of
cells without considering collision detection. Suppose that X is an n-dimensional
rectangular subset of Rn. If X is more generally a smooth manifold, then the
rectangular subset can be defined in a coordinate neighborhood. If desired, identi-
fications can be used to respect the topology ofX; however, coordinate changes are
technically needed at the boundaries to properly express velocities (recall Section
8.3).

The most common cell decomposition is obtained by splittingX into n-dimensional
cubes of equal size by quantizing each coordinate. This will be called a cubical par-
tition. Assume in general thatX is partitioned into a collection D of n-dimensional
cells. Let D ∈ D denote a cell, which is a subset of X. It is assumed here that all
cells have dimension n. In the case of cubes, this means that points on common
boundaries between cubes are declared to belong to only one neighboring cube
(thus, the cells may be open, closed, or neither).

Note that X is partitioned into cells, and not Xfree, as might be expected
from the methods in Chapter 6. This means that collision detection and other
constraints on X are ignored when defining D. The cells are defined in advance,
just as grids were declared in Section 5.4.2. In the case of a cubical partition, the
cells are immediately known upon quantization of each coordinate axis.

Searching The algorithm fits directly into the framework of Section 14.3.4. A
search graph is constructed incrementally from xI by applying any systematic

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 829

(a) (b)

Figure 14.16: (a) The first four stages of a dense reachability graph for the Dubins
car. (b) One possible search graph, obtained by allowing at most one vertex per
cell. Many branches are pruned away. In this simple example, there are no cell
divisions along the θ-axis.

search algorithm. It is assumed that the system has been discretized in some way.
Most often, the discrete-time model of Section 14.2.2 is used, which results in a
fixed ∆t and a finite set Ud of actions.

In the basic search algorithms of Section 2.2.1, it is important to keep track of
which vertices have been explored. Instead of applying this idea to vertices, it is
applied here to cells. A cell D is called visited if the search graph that has been
constructed so far contains a vertex in D; otherwise, D is called unvisited. Initially,
only the cell that contains xI is marked as visited. All others are initialized to
unvisited. These labels are used to prune the reachability graph during the search,
as shown in Figure 14.16.

The basic algorithm outline is shown in Figure 14.17. Let Q represent a priority
queue in which the elements are vertices of the search graph. If optimization of a
cost functional is required, thenQmay be sorted by the cost accumulated along the
path constructed so far from xI to x. This cost can be assigned in many different
ways. It could simply represent the time (number of ∆t steps), or it could count the
number of times the action has changed. As the algorithm explores, new candidate
vertices are encountered. They are only saved in the search graph and placed into
Q if they lie in a cell marked unvisited and are violation-free. Upon encountering
such a cell, it becomes marked as visited. The reached function generates a set

830 S. M. LaValle: Planning Algorithms

CELL-BASED SEARCH(xI , xG)
1 Q.insert(xI);
2 G.init(xI);
3 while Q 6= ∅ and xG is unvisited
4 xcur → Q.pop();
5 for each (ũt, x) ∈ reached(xcur)
6 if x is unvisited
7 Q.insert(x);
8 G.add vertex(x);
9 G.add edge(ũt);
10 Mark cell that contains x as visited;
11 Return G;

Figure 14.17: Searching by using a cell decomposition of X.

of violation-free trajectory segments. Under the discrete-time model, this means
applying each u ∈ Ud over time ∆t and reporting only those states reached without
violating the constraints (including collision avoidance).

As usual, the BVP issue may arise if XG is small relative to the cell size. If
XG is large enough to include entire cells, then this issue is avoided. If xG is a
single point, then it may only be possible to approximately reach xG. Therefore,
the algorithm must accept reaching xG to within a specified tolerance. This can
be modeled by defining XG to be larger; therefore, tolerance is not explicitly
mentioned.

Maintaining the cells There are several alternatives for maintaining the cells.
The main operation that needs to be performed efficiently is point location [264]:
determine which cell contains a given state. The original method in [73] preallo-
cates an n-dimensional array. The collision-checking is even performed in advance.
Any cell that contains at least one point in Xobs can be labeled as occupied. This
allows cells that contain collision configurations to be avoided without having to
call the collision detection module. For a fixed dimension, this scheme finds the
correct cell and updates the labels in constant time. Unfortunately, the space
requirement is exponential in dimension.

An alternative is to use a hash table to maintain the collection of cells that are
labeled as visited. This may be particularly valuable if optimality is not important
and if it is expected that solutions will be found before most of the cells are reached.
The point location problem can be solved efficiently without explicitly storing a
multi-dimensional array.

Suppose that the cubical decomposition is not necessarily used. One general
approach is to define D as the Voronoi regions of a collection P of m samples
{p1, . . . , pm} in X. The “name” of each cell corresponds uniquely to a sample in P .
The cell that contains some x ∈ X is defined as the nearest sample in P , using some

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 831

predetermined metric on X. As a special case, the cubical decomposition defines
the cells based on a Sukharev grid (recall Figure 5.5a). If the dimension of X is
not too high, then efficient nearest-neighbor schemes can be used to determine the
appropriate cell in near-logarithmic time in the number of points in P (in practice,
Kd-trees, mentioned in Section 5.5.2, should perform well). For maintaining a
cubical decomposition, this approach would be cumbersome; however, it works for
any sample set P . If no solution is found for a given P , then the partition could
be improved by adding more samples. This allows any dense sequence to be used
to guide the exploration of X while ensuring resolution completeness, which is
discussed next.

Resolution issues One of the main complications in using state discretization
is that there are three spaces over which sampling occurs: time, the action space,
and the state space. Assume the discrete-time model is used. If obtaining optimal
solutions is important, then very small cells should be used (e.g., 50 to 100 per
axis). This limits its application to state spaces of a few dimensions. The time
interval ∆t should also be made small, but if it is too small relative to the cell size,
then it may be impossible to leave a cell. If only feasibility is the only requirement,
then larger cells may be used, and ∆t must be appropriately increased. A course
quantization of U may cause solutions to be missed, particularly if ∆t is large. As
∆t decreases, the number of samples in Ud becomes less important.

To obtain resolution completeness, the sampling should be improved each time
the search fails. Each time that the search is started, the sampling dispersion for
at least one of the three spaces should be decreased. The possibilities are 1) the
time interval ∆t may be reduced, 2) more actions may be added to Ud, or 3) more
points may be added to P to reduce the cell size. If the dispersion approaches zero
for all three spaces, and if XG contains an open subset of Xfree, then resolution
completeness is obtained. If XG is only a point, then solutions that come within
some ǫ > 0 must be tolerated.

Recall that resolution completeness assumes that f has bounded derivatives
or at least satisfies a Lipschitz condition (14.11). The actual rate of convergence
is mainly affected by three factors: 1) the rate at which f varies with respect
to changes in u and x (characterized by Lipschitz constants), 2) the required
traversal of narrow regions in Xfree, and 3) the controllability of the system. The
last condition will be studied further for nonholonomic systems in Section 15.4.
For a concrete example, consider making a U-turn with a Dubins car that has a
very large turning radius, as shown in Figure 14.18. A precise turn may be required
to turn around, and this may depend on an action that was chosen many stages
earlier. The Dubins car model does not allow zig-zagging (e.g., parallel parking)
maneuvers to make local corrections to the configuration.

Backward and bidirectional versions As usual, both backward and bidi-
rectional versions of this approach can be made. If the XG is large (or the goal
tolerance is large) and the BVP is costly to solve, then the backward version seems

832 S. M. LaValle: Planning Algorithms

Uses minimum turning radius

Pruned away from
the search graph

D

(a) (b)

Figure 14.18: (a) The Dubins car is able to turn around if it turns left as sharply as
possible. (b) Unfortunately, the required vertex is pruned because one cell along
the required trajectory already contains a vertex. This illustrates how missing a
possible action can cause serious problems many stages later.

less desirable if the BVP is hard. The forward direction is preferred because the
BVP can be avoided altogether.

For a bidirectional algorithm, the same collection D of cells can be used for
both trees. The problem could be considered solved if the same cell is reached
by both trees; however, one must be careful to still ensure that the remaining
BVP can be solved. It must be possible to find an action trajectory segment that
connects a vertex from the initial-based tree to a vertex of the goal-based tree.
Alternatively, connections made to within a tolerance may be acceptable.

14.4.3 RDT-Based Methods

The rapidly exploring dense tree (RDT) family of methods, which includes the
RRT, avoids maintaining a lattice altogether. RDTs were originally developed for
handling differential constraints, even though most of their practical application
has been to the Piano Mover’s Problem. This section extends the ideas of Section
5.5 from C to X and incorporates differential constraints. The methods covered so
far in Section 14.4 produce approximately optimal solutions if the graph is searched
using dynamic programming and the resolution is high enough. By contrast, RDTs
are aimed at returning only feasible trajectories, even as the resolution improves.
They are often successful at producing a solution trajectory with relatively less
sampling. This performance gain is enabled in part by the lack of concern for

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 833

SIMPLE RDT WITH DIFFERENTIAL CONSTRAINTS(x0)
1 G.init(x0);
2 for i = 1 to k do
3 xn ← nearest(S(G), α(i));
4 (ũp, xr)← local planner(xn, α(i));
5 G.add vertex(xr);
6 G.add edge(ũp);

Figure 14.19: Extending the basic RDT algorithm to handle differential con-
straints. In comparison to Figure 5.16, an LPM computes xr, which becomes
the new vertex, instead of α(i). In some applications, line 4 may fail, in which
case lines 5 and 6 are skipped.

Apply some ũ
p

xn

α(i)

Figure 14.20: If the nearest point S lies in the state trajectory segment associated
to an edge, then the edge is split into two, and a new vertex is inserted into G.

optimality.

Let α denote an infinite, dense sequence of samples in X. Let ρ : X × X →
[0,∞] denote a distance function on X, which may or may not be a proper metric.
The distance function may not be symmetric, in which case ρ(x1, x2) represents
the directed distance from x1 to x2.

The RDT is a search graph as considered so far in this section and can hence
be interpreted as a subgraph of the reachability graph under some discretization
model. For simplicity, first assume that the discrete-time model of Section 14.2.2
is used, which leads to a finite action set Ud and a fixed time interval ∆t. The
set Up of motion primitives is all action trajectories for which some u ∈ Ud is held
constant from time 0 to ∆t. The more general case will be handled at the end of
this section.

Paralleling Section 5.5.1, the RDT will first be defined in the absence of ob-
stacles. Hence, let Xfree = X. The construction algorithm is defined in Figure
14.19; it may be helpful to compare it to Figure 5.16, which was introduced on
C for the Piano Mover’s Problem. The RDT, denoted by G, is initialized with a
single vertex at some x0 ∈ X. In each iteration, a new edge and vertex are added

834 S. M. LaValle: Planning Algorithms

to G. Line 3 uses ρ to choose xn, which is the nearest point to α(i) in the swath
of G. In the RDT algorithm of Section 5.5, each sample of α becomes a vertex.
Due to the BVP and the particular motion primitives in Up, it may be difficult or
impossible to precisely reach α(i). Therefore, line 4 calls an LPM to determine a
primitive ũp ∈ Up that produces a new state xr upon integration from xn. The
result is depicted in Figure 14.20. For the default case in which Up represents the
discrete-time model, the action is chosen by applying all u ∈ U over time ∆t and
selecting the one that minimizes ρ(xr, α(i)). One additional constraint is that if
xn has been chosen in a previous iteration, then ũp must be a motion primitive
that has not been previously tried from xn; otherwise, duplicate edges would result
in G or time would be wasted performing collision checking for reachability graph
edges that are already known to be in collision. The remaining steps add the new
vertex and edge from xn. If xn is contained in the trajectory produced by an edge
e, then e is split as described in Section 5.5.1.

Efficiently finding nearest points The issues of Section 5.5.2 arise again for
RDTs under differential constraints. In fact, the problem is further complicated
because the edges in G are generally curved. This prevents the use of simple
point-segment distance tests. Furthermore, an exact representation of the state
trajectory is usually not known. Instead, it is approximated numerically by the
system simulator. For these reasons, it is best to use the approximate method of
determining the nearest point in the swath, which is a straightforward extension
of the discussion in Section 5.5.2; recall Figure 5.22. Intermediate vertices may be
inserted if the applied motion primitive yields a state trajectory that travels far
in Xfree. If the dimension is low enough (e.g., less than 20), then efficient nearest-
neighbor algorithms (Section 5.5.2) can be used to offset the cost of maintaining
intermediate vertices.

Handling obstacles Now suppose that Xobs 6= ∅. In Section 5.5.1, the RDT
was extended until a stopping configuration qs was reached, just in front of an
obstacle. There are two new complications under differential constraints. The
first is that motion primitives are used. If ∆t is small, then in many cases the
time will expire before the boundary is reached. This can be alleviated by using
a large ∆t and then taking only the violation-free portion of the trajectory. In
this case, the trajectory may even be clipped early to avoid overshooting α(i).
The second complication is due to Xric. If momentum is substantial, then pulling
the tree as close as possible to obstacles will increase the likelihood that the RDT
becomes trapped. Vertices close to obstacles will be selected often because they
have large Voronoi regions, but expansion is not possible. In the case of the Piano
Mover’s Problem, this was much less significant because the tree could easily follow
along the boundary. In most experimental work, it therefore seems best to travel
only part of the way (perhaps half) to the boundary.

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 835

Tree-based planners Planning algorithms can be constructed from RDTs in
the same way as in Section 5.5. Forward, backward, and bidirectional versions
can be made. The main new complication is the familiar BVP that the other
sampling-based methods of this section have also suffered from. If it is expensive
or even impossible to connect nearby states, then the usual complications arise. If
XG contains a sizable open set, then a forward, single-tree planner with a gentle
bias toward the goal could perform well while avoiding the BVP. However, if XG

is a point, then a tolerance must be set on how close the RDT must get to the
goal before it can declare that it has a solution. For systems with drift, the search
time often increases dramatically as this tolerance decreases.

Bidirectional search offers great performance advantages in many cases, but the
BVP exists when attempting connections between the two trees. One possibility is
to set the tolerance very small and then concatenate the two action trajectories, as
described in Section 14.3.4. If it succeeds, then the planning algorithm successfully
terminates. Unfortunately, the performance once again depends greatly on the
tolerance, particularly if the drift is substantial. Recent studies have shown that
using a bidirectional RDT with a large connection tolerance and then closing the
gap by using efficient variational techniques provides dramatic improvement in
performance [198, 576]. Unfortunately, variational techniques are not efficient for
all systems because they must essentially solve the BVP by performing a gradient
descent in the trajectory space; see Section 14.7.

Distance function issues The RDT construction algorithm is heavily influ-
enced by the distance function ρ. This was also true for RDTs applied to the
Piano Mover’s Problem; however, it becomes more critical and challenging to de-
sign a good metric in the presence of differential constraints. For example, the
metric given by Example 5.3 is inappropriate for measuring the distance between
configurations for the Dubins car. A more appropriate metric is to use length of the
shortest path from q to q′ (this length is easy to compute; see Section 15.5). Such
a metric would be more appropriate than the one in Example 5.3 for comparing
the configurations, even for car models that involve dynamics and obstacles.

Although many challenging problems can be solved using weighted Euclidean
metrics [611], dramatic improvements can be obtained by exploiting particular
properties of the system. This problem might seem similar to the choice of a po-
tential function for the randomized potential field planer of Section 5.4.3; however,
since RDTs approach many different samples in α(i), instead of focusing only on
the goal, the performance degradation is generally not as severe as the local mini-
mum problem for a potential field planner. There are many more opportunities to
escape in an RDT. Metrics that would fail miserably as a potential function often
yield good performance in an RDT-based planner.

The ideal distance function, as mentioned in Section 14.3, is to use the optimal
cost-to-go, denoted here as ρ∗. Of course, computing ρ∗ is at least as hard as
solving the motion planning problem. Therefore, this idea does not seem practical.
However, it is generally useful to consider ρ∗ because the performance of RDT-

836 S. M. LaValle: Planning Algorithms

based planners generally degrades as ρ, the actual metric used in the RDT, and
ρ∗ diverge. An effort to make a crude approximation to ρ∗, even if obstacles
are neglected, often leads to great improvements in performance. An excellent
example of this appears in [363], in which value iteration was used to compute the
optimal cost-to-go in the absence of obstacles for an autonomous helicopter using
the maneuver automaton model of Figure 14.8.

Ensuring resolution completeness Suppose that the discrete-time model is
used. If α is dense in X, then each RDT vertex is visited a countably infinite
number of times after it is constructed. By ensuring that the same motion primitive
is never applied twice from the same vertex, all available motion primitives will
eventually be tried. This ensures that the full reachability graph is explored for a
fixed ∆t. Since the reachability graph is not necessarily finite, obtaining resolution
completeness is more challenging. The scheme described in Figure 14.7 can be
applied by periodically varying ∆t during execution, and using smaller and smaller
of values of ∆t in later iterations. If U is finite, refinements can also be made to
Ud. This leads to a resolution-complete RDT.

Designing good motion primitives Up to this point, only the discrete-time
model has been considered. Although it is the most straightforward and general,
there are often many better motion primitives that can be used. For a particular
system, it may be possible to design a nice family of trajectories off-line in the ab-
sence of obstacles and then use them as motion primitives in the RDT construction.
If possible, it is important to carefully analyze the system under consideration to
try to exploit any special structure it may have or techniques that might have been
developed for it. For motion planning of a vehicle, symmetries can be exploited to
apply the primitives from different states. For example, in flying a helicopter, the
yaw angle and the particular position (unless it is close to the ground) may not
be important. A family of trajectories designed for one yaw angle and position
should work well for others.

Using more complicated motion primitives may increase the burden on the
LPM. In some cases, a simple control law (e.g., PID [50]) may perform well. Ideally,
the LPM should behave like a good steering method, which could be obtained using
methods in Chapter 15. It is important to note, though, that the RDT’s ability to
solve problems does not hinge on this. It will greatly improve performance if there
are excellent motion primitives and a good steering method in the LPM. The main
reason for this is that the difficulties of the differential constraints have essentially
been overcome once this happens (except for the adverse effects of drift). Although
having good motion primitives can often improve performance in practice, it can
also increase the difficulty of ensuring resolution completeness.

14.5. FEEDBACK PLANNING UNDER DIFFERENTIAL CONSTRAINTS837

14.4.4 Other Methods

Extensions of virtually any other method in Chapter 5 can be made to handle
differential constraints. Several possibilities are briefly mentioned in this section.

Randomized potential fields The randomized potential field method of Sec-
tion 5.4.3 can be easily adapted to handle differential constraints. Instead of
moving in any direction to reduce the potential value, motion primitives are ap-
plied and integrated to attempt to reduce the value. For example, under the
discrete-time model, each u ∈ Ud can be applied over ∆t, and the one for which
the next state has the lowest potential value should be selected as part of the
descent. Random walks can be tried whenever no such action exists, but once
again, motion in any direction is not possible. Random actions can be chosen
instead. The main problems with the method under differential constraints are
1) it is extremely challenging to design a good potential function, and 2) random
actions do not necessarily provide motions that are similar to those of a random
walk. Section 15.1.2 discusses Lyapunov functions, which serve as good potential
functions in the presence of differential constraints (but usually neglect obstacles).
In the place of random walks, other planning methods, such as an RDT, could be
used to try to escape local minima.

Other tree-based planners Many other tree-based planners can be extended
to handle differential constraints. For example, an extension of the expansive space
planner from Section 5.4.4 to kinodynamic planning for spacecrafts appears in
[466]. Recently, a new tree-based method, called the path-directed subdivision tree,
has been proposed for planning under differential constraints [572]. The method
works by choosing points at random in the swath, applying random actions, and
also using a space-partition data structure to control the exploration.

Sampling-based roadmap planners As stated already, it is generally difficult
to construct sampling-based roadmaps unless the BVP can be efficiently solved.
The steering methods of Section 15.5 can serve this purpose [934, 859]. In principle,
any of the single-query methods of Section 14.4 could be used; however, it may
be too costly to use them numerous times, which is required in the roadmap
construction algorithm.

14.5 Feedback Planning Under Differential Con-

straints

14.5.1 Problem Definition

Formulation 14.1 assumed that feedback is not necessary. If the initial state is
given, then the solution takes the form of an action trajectory, which upon inte-

838 S. M. LaValle: Planning Algorithms

gration yields a time-parametrized path through Xfree. This extended the Piano
Mover’s Problem of Section 4.3.1 to include phase spaces and differential con-
straints. Now suppose that feedback is required. The reasons may be that the
initial state is not given or the plan execution might not be predictable due to
disturbances or errors in the system model. Recall the motivation from Section
8.1.

With little effort, the feedback motion planning framework from Chapter 8
can be extended to handle differential constraints. Compare Formulations 8.2
and 14.1. Feedback motion planning under differential constraints is obtained by
making the following adjustments to Formulation 8.2:

1. In Formulation 8.2, X = Cfree, which automatically removed Cobs from C by
definition. Now let X be any C-space or phase space, and let Xobs be defined
as in Formulation 8.2. This leads to Xfree, as defined in Formulation 14.1.

2. In Formulation 8.2, the state transition equation was ẋ = u, which directly
specified velocities in the tangent space Tx(X). Now let any system, ẋ =
f(x, u), be used instead. In this case, U(x) is no longer a subset of Tx(X).
It still includes the special termination action uT .

3. Formulation 14.1 includes xI , which is now removed for the feedback case to
be consistent with Formulation 8.2.

4. A feedback plan is now defined as a function π : Xfree → U . For a given
state x ∈ Xfree, an action π(x) is produced. Composing π with f yields a
velocity in Tx(X) given by ẋ = f(x, π(x)). Therefore, π defines a vector field
on Xfree.

Let tF denote the time at which uT is applied. Both feasible and optimal planning
can be defined using a cost functional,

L(x̃tF , ũtF) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF)), (14.26)

which is identical to that given in Section 8.4.1. This now specifies the problem
of feedback motion planning under differential constraints.

The most important difference with respect to Chapter 8 is that ẋ = u is re-
placed with ẋ = f(x, u), which allows complicated differential models of Chapter
13 to be used. The vector field that results from π must satisfy the differen-
tial constraints imposed by ẋ = f(x, u). In Section 8.4.4, simple constraints on
the allowable vector fields were imposed, such as velocity bounds or smoothness;
however, these constraints were not as severe as the models in Chapter 13. For
example, the Dubins car does not allow motions in the reverse direction, whereas
the constraints in Section 8.4.4 permit motions in any direction.

14.5. FEEDBACK PLANNING UNDER DIFFERENTIAL CONSTRAINTS839

14.5.2 Dynamic Programming with Interpolation

As observed in Section 14.4, motion planning under differential constraints is ex-
tremely challenging. Additionally requiring feedback complicates the problem even
further. If Xobs = ∅, then a feedback plan can be designed using numerous tech-
niques from control theory. See Section 15.2.2 and [192, 523, 846]. In many cases,
designing feedback plans is no more difficult than computing an open-loop trajec-
tory. However, if Xobs 6= ∅, feedback usually makes the problem much harder.

Fortunately, dynamic programming once again comes to the rescue. In Section
2.3, value iteration yielded feedback plans for discrete state spaces and state tran-
sition equations. It is remarkable that this idea can be generalized to the case in
which U and X are continuous and there is a continuum of stages (called time).
Most of the tools required to apply dynamic programming in the current setting
were already introduced in Section 8.5.2. The main ideas in that section were to
represent the optimal cost-to-go G∗ by interpolation and to use a discrete-time
approximation to the motion planning problem.

The discrete-time model of Section 14.2.2 can be used in the current setting
to obtain a discrete-stage state transition equation of the form xk+1 = fd(xk, uk).
The cost functional is approximated as in Section 8.5.2 by using (8.65). This
integral can be evaluated numerically by using the result of the system simulator
and yields the cost-per-stage as ld(xk, uk). Using backward value iteration, the
dynamic programming recurrence is

G∗
k(xk) = min

uk∈Ud

{

ld(xk, uk) +G∗
k+1(xk+1)

}

, (14.27)

which is similar to (2.11) and (8.56). The finite set Ud of action samples is used
if U is not already finite. The system simulator is applied to determine whether
some points along the trajectory lie in Xobs. In this case, ld(xk, uk) = ∞, which
prevents actions from being chosen that violate constraints.

As in Section 8.5.2, a set P ⊂ X of samples is used to approximate G∗ over
X. The required values at points in X \ P are obtained by interpolation. For
example, the barycentric subdivision scheme of Figure 8.20 may be applied here
to interpolate over simplexes in O(n lg n) time, in which n is the dimension of X.

As usual, backward value iteration starts at some final stage F and proceeds
backward through the stage indices. Termination occurs when all of the cost-to-go
values stabilize. The initialization at stage F yields G∗

F (x) = 0 for x ∈ XG ∩ P ;
otherwise, G∗

F (x) = ∞. Each subsequent iteration is performed by evaluating
(14.27) on each x ∈ P and using interpolation to obtain G∗

k+1(xk+1).
The resulting stationary cost-to-go function G∗ can serve as a navigation func-

tion over Xfree, as described in Section 8.5.2. Recall from Chapter 8 that a nav-
igation function is converted into a feedback plan by applying a local operator.
The local operator in the present setting is

π(x) = argmin
u∈Ud

{

ld(x, u) +G∗(fd(x, u))
}

, (14.28)

840 S. M. LaValle: Planning Algorithms

which yields an action for any state in Xfree that falls into an interpolation neigh-
borhood of some samples in P .

Unfortunately, the method presented here is only useful in spaces of a few
dimensions. If X = C, then it may be applied, for example, to the systems
in Section 13.1.2. If dynamics are considered, then in many circumstances the
dimension is too high because the dimension of X is usually twice that of C. For
example, if A is a rigid body in the plane, then the dimension of X is six, which
is already at the usual limit of practical use.

It is interesting to compare the use of dynamic programming here with that of
Sections 14.4.1 and 14.4.2, in which a search graph was constructed. If Dijkstra’s
algorithm is used (or even breadth-first search in the case of time optimality), then
by the dynamic programming principle, the resulting solutions are approximately
optimal. To ensure convergence, resolution completeness arguments were given
based on Lipschitz conditions on f . It was important to allow the resolution to
improve as the search failed to find a solution. Instead of computing a search
graph, value iteration is based on computing cost-to-go functions. In the same
way that both forward and backward versions of the tree-based approaches were
possible, both forward and backward value iteration can be used here. Providing
resolution completeness is more difficult, however, because xI is not fixed. It is
therefore not known whether some resolution is good enough for the intended
application. If xI is known, then G

∗ can be used to generate a trajectory from xI
using the system simulator. If the trajectory fails to reach XG, then the resolution
can be improved by adding more samples to P and Ud or by reducing ∆t. Under
Lipschitz conditions on f , the approach converges to the true optimal cost-to-go
[92, 168, 565]. Therefore, value iteration can be considered resolution complete
with respect to a given xI . The convergence even extends to computing optimal
feedback plans with additional actions that are taken by nature, which is modeled
nondeterministically or probabilistically. This extends the value iteration method
of Section 10.6.

The relationship between the methods based on a search graph and on value
iteration can be brought even closer by constructing Dijkstra-like versions of value
iteration, as described at the end of Section 8.5.2. These extend Dijkstra’s algo-
rithm, which was viewed for the finite case in Section 2.3.3 as an improvement to
value iteration. The improvement to value iteration is made by recognizing that in
most evaluations of (14.27), the cost-to-go value does not change. This is caused
by two factors: 1) From some states, no trajectory has yet been found that leads
to XG; therefore, the cost-to-go remains at infinity. 2) The optimal cost-to-go
from some state might already be computed; no future iterations would improve
the cost.

A forward or backward version of a Dijkstra-like algorithm can be made. Con-
sider the backward case. The notion of a backprojection was used in Section 8.5.2
to characterize the set of states that can reach another set of states in one stage.
This was used in (8.68) to define the frontier during the execution of the Dijkstra-
like algorithm. There is essentially no difference in the current setting to handle

14.6. DECOUPLED PLANNING APPROACHES 841

the system ẋ = f(x, u). Once the discrete-time approximation has been made,
the definition of the backprojection is essentially the same as in (8.66) of Section
8.5.2. Using the discrete-time model of Section 14.2.2, the backprojection of a
state x ∈ Xfree is

B(x) = {x′ ∈ Xfree | ∃u ∈ Ud such that x = fd(x
′, u)}. (14.29)

The backprojection is closely related to the backward time-limited reachable set
from Section 14.2.1. The backprojection can be considered as a discrete, one-stage
version, which indicates the states that can reach x through the application of a
constant action u ∈ Ud over time ∆t. As mentioned in Section 8.5.2, comput-
ing an overapproximation to the frontier set may be preferable in practice. This
can be obtained by approximating the backprojections, which are generally more
complicated under differential constraints than for the case considered in Section
8.5.2. One useful simplification is to ignore collisions with obstacles in defining
B(x). Also, a simple bounding volume of the true backprojection may be used.
The trade-offs are similar to those in collision detection, as mentioned in Section
5.3.2. Sometimes the structure of the particular system greatly helps in determin-
ing the backprojections. A nice wavefront propagation algorithm can be obtained,
for example, for a double integrator; this is exploited in Section 14.6.3. For more
on value iteration and Dijkstra-like versions, see [607].

14.6 Decoupled Planning Approaches

14.6.1 Different Ways to Decouple the Big Problem

As sampling-based algorithms continue to improve along with computation power,
it becomes increasingly feasible in practice to directly solve challenging planning
problems under differential constraints. There are many situations, however, in
which computing such solutions is still too costly due to expensive numerical inte-
gration, collision detection, and complicated obstacles in a high-dimensional state
space. Decoupled approaches become appealing because they divide the big prob-
lem into modules that are each easier to solve. For versions of the Piano Mover’s
Problem, such methods were already seen in Chapter 7. Section 7.1.3 introduced
the velocity-tuning method to handle time-varying obstacles, and Section 7.2.2
presented decoupled approaches to coordinating multiple robots.

Ideally, we would like to obtain feedback plans on any state space in the pres-
ence of obstacles and differential constraints. This assumes that the state can
be reliably measured during execution. Section 14.5 provided the best generic
techniques for solving the problem, but they are unfortunately limited to a few di-
mensions. If there is substantial sensing uncertainty, then the feedback plan must
be defined on the I-space, which was covered in Chapter 11. Back in Section 1.4,
Figure 1.19 showed a popular model of decoupling the big planning problem into
a sequence of refinements. A typical decoupled approach involves four modules:

842 S. M. LaValle: Planning Algorithms

1. Use a motion planning algorithm to find a collision-free path τ : [0, 1] →
Cfree.

2. Transform τ into a new path τ ′ so that velocity constraints on C (if there are
any) are satisfied. This might, for example, ensure that the Dubins car can
actually follow the path. At the very least, some path-smoothing is needed
in most circumstances.

3. Compute a timing function σ : [0, tF]→ [0, 1] for τ ′ so that τ ′ ◦ σ is a time-
parameterized path through Cfree with the following requirement. The state
trajectory x̃ must satisfy ẋ = f(x(t), u(t)) and u(t) ∈ U(x(t)) for all time,
until uT is applied at time tF .

4. Design a feedback plan (or feedback control law) π : X → U that tracks x̃.
The plan should attempt to minimize the error between the desired state
and the measured state during execution.

Given recent techniques and computation power, the significance of this approach
may diminish somewhat; however, it remains an important way to decompose and
solve problems. Be aware, however, that this decomposition is arbitrary. If every
module can be solved, then it is sufficient for producing a solution; however, such
a decomposition is not necessary. At any step along the way, completeness may
be lost because of poor choices in earlier modules. It is often difficult for modules
to take into account problems that may arise later.

Various ways to merge the modules have been considered. The methods of
Section 14.4 solve either: 1) the first two modules simultaneously, if paths that
satisfy q̇ = f(q, u) are computed through Cfree, or 2) the first three modules simul-
taneously, if paths that satisfy ẋ = f(x, u) are computed through Xfree. Section
14.5 solved all four modules simultaneously but was limited to low-dimensional
state spaces.

Now consider keeping the modules separate. Planning methods from Part II
can be applied to solve the first module. Section 14.6.2 will cover methods that
implement the second module. Section 14.6.3 will cover methods that solve the
third module, possibly while also solving the second module. The fourth module
is a well-studied control problem that is covered in numerous texts [523, 846, 856].

14.6.2 Plan and Transform

For the decoupled approach in this section, assume that X = C, which means
there are only velocity constraints, as covered in Section 13.1. The system may be
specified as q̇ = f(q, u) or implicitly as a set of constraints of the form gi(q, q̇) = 0.
The ideas in this section can easily be extended to phase spaces. The method
given here was developed primarily by Laumond (see [596]) and was also applied
to the simple car of Section 13.1.2 in [587]; other applications of the method are
covered in [596].

14.6. DECOUPLED PLANNING APPROACHES 843

PLAN-AND-TRANSFORM APPROACH

1. Compute a path τ : [0, 1] → Cfree using a motion planning algorithm, such
as one from Part II.

2. Choose some s1, s2 ∈ [0, 1] such that s1 < s2 and use an LPM to attempt to
replace the portion of τ from τ(s1) to τ(s2) with a path γ that satisfies the
differential constraints.

3. If τ now satisfies the differential constraints over all [0, 1], then the algorithm
terminates. Otherwise, go to Step 2.

Figure 14.21: A general outline of the plan-and-transform approach.

An outline of the plan-and-transform approach is shown in Figure 14.21. In
the first step, a collision-free path τ : [0, 1] → Cfree is computed by ignoring
differential constraints. The path is then iteratively modified until it satisfies
the constraints. In each iteration, a subinterval [s1, s2] ⊆ [0, 1] is selected by
specifying some s1, s2 ∈ [0, 1] so that s1 < s2. These points may be chosen
using random sequences or may be chosen deterministically. The approach may
use binary subdivision to refine intervals and gradually improve the resolution on
[0, 1] over the iterations.

For each chosen interval [s1, s2], an LPM is used to compute a path segment γ :
[0, 1]→ Cfree that satisfies the conditions γ(0) = τ(s1) and γ(1) = τ(s2). It might
be the case that the LPM fails because it cannot connect the two configurations or
a collision may occur. In this case, another subinterval is chosen, and the process
repeats. Each time the LPM succeeds, τ is updated to τ ′ as

τ ′(s) =







τ(s) if s < s1
γ((s− s1)/(s2 − s1)) if s ∈ [s1, s2]
τ(s) if s > s2.

(14.30)

The argument to γ reparameterizes it to run from s1 to s2, instead of 0 to 1.

Example 14.5 (Plan-and-Transform for the Dubins Car) For a concrete
example, suppose that the task is to plan a path for the Dubins car. Figure 14.22
shows a path τ that might be computed by a motion planning algorithm that
ignores differential constraints. Two sharp corners cannot be traversed by the car.
Suppose that s1 and s2 are chosen at random, and appear at the locations shown in
Figure 14.22. The portion of τ between τ(s1) and τ(s2) needs to be replaced by a
path that can be executed by the Dubins car. Note that matching the orientations
at τ(s1) and τ(s2) is important because they are part of the configuration.

A replacement path γ is shown in Figure 14.23. This is obtained by implement-
ing the following LPM. For the Dubins car, a path between any configurations can
be found by drawing circles at the starting and stopping configurations as shown

844 S. M. LaValle: Planning Algorithms

qG

qI

τ(s1) τ(s2)

τ

Figure 14.22: An initial path that ignores differential constraints.

γ

τ(s1) τ(s2)

Figure 14.23: A path for the Dubins car can always be found by connecting a
bitangent to two circles generated by the minimum turning radius. The path is
not necessarily optimal; see Section 15.3.1 for optimal paths.

in the figure. Each circle corresponds to the sharpest possible left turn or right
turn. It is straightforward to find a line that is tangent to one circle from each
configuration and also matches the direction of flow for the car (the circles are
like one-way streets). Using γ, the path τ is updated to obtain τ ′, which is shown
in Figure 14.24, and satisfies the differential constraints for the Dubins car. This
problem was very simple, and in practice dozens of iterations may be necessary to
replace path segments. Also, if randomization is used, then intervals of the form
[0, s] and [s, 1] must not be neglected.

�

Example 14.5 seemed easy because of the existence of a simple local planner.
Also, there were no obstacles. Imagine that τ instead traveled through a narrow,
zig-zagging corridor. In this case, a solution might not even exist because of sharp
corners that cannot be turned by the Dubins car. If there had been an single
obstacle that happened to intersect the loop in Figure 14.24, then the replacement
would have failed. In general, there is no guarantee that the replacement segment

14.6. DECOUPLED PLANNING APPROACHES 845

qG

qI

τ(s1) τ(s2)

Figure 14.24: Upon replacement, the resulting path τ ′ can be followed by the
Dubins car.

is collision-free. It is important for the LPM to construct path segments that are
as close as possible to the original path. For the Dubins car, this is not possible
in many cases. For example, moving the Dubins car a small distance backward
requires moving along the circles shown in Figure 14.23. Even as the distance
between two configurations is reduced, the distance that the car needs to travel
does not approach zero. This is true even if the shortest possible paths are used
for the Dubins car.

What property should an LPM have to ensure resolution completeness of the
plan-and-transform approach? A sufficient condition is given in [596]. Let ρ denote
a metric on X. An LPM is said to satisfy the topological property if and only if
the following statement holds: For any ǫ > 0, there exists some δ > 0 such that
for any pair q, q′ ∈ Cfree having ρ(q, q′) < δ implies that ρ(τ(s), q) < ǫ for all
s ∈ [0, 1]. If an LPM satisfies the topological property, then any collision-free path
through Cfree can be transformed into one that satisfies the differential constraints.
Suppose that a path τ has some clearance of at least ǫ in Cfree. By dividing the
domain of τ into intervals so that the change in q is no more than δ over each
interval, then the LPM will produce collision-free path segments for replacement.

It turns out that for the Reeds-Shepp car (which has reverse) such an LPM
can be designed because it is small-time locally controllable, a property that will
be covered in Sections 15.1.3 and 15.4. In general, many techniques from Chapter
15 may be useful for analyzing and designing effective LPMs.

An interesting adaptation of the plan-and-transform approach has been de-
veloped for problems that involve k implicit constraints of the form gi(q, q̇) = 0.
An outline of the multi-level approach, which was introduced in [859], is shown
in Figure 14.25 (a similar approach was also introduced in [333]). The idea is to
sort the k constraints into a sequence and introduce them one at a time. Initially,
a path is planned that ignores the constraints. This path is first transformed to
satisfy g1(q, q̇) = 0 and avoid collisions by using the plan-and-transform method
of Figure 14.21. If successful, then the resulting path is transformed into one that
is collision-free and satisfies both g1(q, q̇) = 0 and g2(q, q̇) = 0. This process re-
peats by adding one constraint each time, until either the method fails or all k

846 S. M. LaValle: Planning Algorithms

MULTI-LEVEL APPROACH

1. Compute a path τ : [0, 1] → Cfree using a standard motion planning algo-
rithm (as in Part II), and let i = 1.

2. Transform τ into a collision free path that satisfies gj(q, q̇) = 0 for all j from
1 to i.

3. If the transformation failed in Step 2, then terminate and report failure.

4. If i < k, the number of implicit velocity constraints, then increment i and
go to Step 2. Otherwise, terminate and successfully report τ as a path that
satisfies all constraints.

Figure 14.25: The multi-level approach considers implicit constraints one at a
time.

constraints have been taken into account.

14.6.3 Path-Constrained Trajectory Planning

This section assumes that a path τ : [0, 1] → Cfree has been given. It may be
computed by a motion planning algorithm from Part II or given by hand. The
remaining task is to determine the speed along the path in a way that satisfies
differential constraints on the phase space X. Assume that each state x ∈ X
represents both a configuration and its time derivative, to obtain x = (q, q̇). Let n
denote the dimension of C; hence, the dimension of X is 2n. Once a path is given,
there are only two remaining degrees of freedom in X: 1) the position s ∈ [0, 1]
along the domain of τ , and 2) the speed ṡ = ds/dt at each s. The full state, x,
can be recovered from these two parameters. As the state changes, it must satisfy
a given system, ẋ = f(x, u). It will be seen that a 2D planning problem arises,
which can be solved efficiently using many alternative techniques. Similar concepts
appeared for decoupled versions of time-varying motion planning in Section 7.1.
The presentation in the current section is inspired by work in time-scaling paths
for robot manipulators [456, 876, 879], which was developed a couple of decades
ago. At that time, computers were much slower, which motivated the development
of strongly decoupled approaches.

14.6.3.1 Expressing systems in terms of s, ṡ, and s̈

Suppose that a system is given in the form

q̈ = h(q, q̇, u), (14.31)

in which there are n action variables u = (u1, . . . , un). It may be helpful to glance
ahead to Example 14.6, which will illustrate the coming concepts for the simple

14.6. DECOUPLED PLANNING APPROACHES 847

case of double integrators q̈ = u. The acceleration in C is determined from the state
x = (q, q̇) and action u. Assume u ∈ U , in which U is an n-dimensional subset of
Rn. If h is nonsingular at x, then an n-dimensional set of possible accelerations
arises from choices of u ∈ U . This means it is fully actuated. If there were fewer
than n action variables, then there would generally not be enough freedom to
follow a specified path. Therefore, U must be n-dimensional. Which choices of
u, however, constrain the motion to follow the given path τ? To determine this,
the q, q̇, and q̈ variables need to be related to the path domain s and its first and
second time derivatives ṡ and s̈, respectively. This leads to a subset of U that
corresponds to actions that follow the path.

Suppose that s, ṡ, s̈, and a path τ are given. The configuration q ∈ Cfree is

q = τ(s). (14.32)

Assume that all first and second derivatives of τ exist. The velocity q̇ can be
determined by the chain rule as

q̇ =
dτ

ds

ds

dt
=
dτ

ds
ṡ, (14.33)

in which the derivative dτ/ds is evaluated at s. The acceleration is obtained by
taking another derivative, which yields

q̈ =
d

dt

(
dτ

ds
ṡ

)

=
d2τ

ds2
ds

dt
ṡ+

dτ

ds
s̈

=
d2τ

ds2
ṡ2 +

dτ

ds
s̈,

(14.34)

by application of the product rule. The full state x = (q, q̇) can be recovered from
(s, ṡ) using (14.32) and (14.33).

The next step is to obtain an equation that looks similar to (14.31), but is
expressed in terms of s, ṡ, and s̈. A function h′(s, ṡ, u) can be obtained from
h(q, q̇, u) by substituting τ(s) for q and the right side of (14.33) for q̇:

h′(s, ṡ, u) = h(τ(s),
dτ

ds
ṡ, u). (14.35)

This yields

q̈ = h′(s, ṡ, u). (14.36)

For a given state x (which can be obtained from s and ṡ), the set of accelerations
that can be obtained by a choice of u in (14.36) is the same as that for the original
system in (14.31). The only difference is that x is now constrained to a 2D subset
of X, which are the states that can be reached by selecting values for s and ṡ.

848 S. M. LaValle: Planning Algorithms

Applying (14.34) to the left side of (14.36) constrains the accelerations to cause
motions that follow τ . This yields

d2τ

ds2
ṡ2 +

dτ

ds
s̈ = h′(s, ṡ, u), (14.37)

which can also be expressed as

dτ

ds
s̈ = h′(s, ṡ, u)− d2τ

ds2
ṡ2, (14.38)

by moving the first term of (14.34) to the right. Note that n equations are actually
represented in (14.38). For each i in which dτi/ds 6= 0, a constraint of the form

s̈ =
1

dτi/ds
h′i(s, ṡ, ui)−

d2τi
ds2

ṡ2 (14.39)

is obtained by solving for s̈.

14.6.3.2 Determining the allowable accelerations

The actions in U that cause τ to be followed can now be characterized. An action
u ∈ U follows τ if and only if every equation of the form (14.39) is satisfied. If
dτi/ds 6= 0 for all i from 1 to n, then n such equations exist. Suppose that u1 is
chosen, and the first equation is solved for s̈. The required values of the remaining
action variables u2, . . ., un can be obtained by substituting the determined s̈ value
into the remaining n− 1 equations. This means that the actions that follow τ are
at most a one-dimensional subset of U .

If dτi/ds = 0 for some i, then following the path requires that q̇i = 0. Instead
of (14.39), the constraint is that hi(q, q̇, u) = 0. Example 14.6 will provide a simple
illustration of this. If dτi/ds = 0 for all i, then the configuration is not allowed to
change. This occurs in the degenerate (and useless) case in which τ is a constant
function.

In many cases, a value of u does not exist that satisfies all of the constraint
equations. This means that the path cannot be followed at that particular state.
Such states should be removed, if possible, by defining phase constraints on X.
By a poor choice of path τ violating such a phase constraint may be unavoidable.
There may exist some s for which no u ∈ U can follow τ , regardless of ṡ.

Even if a state trajectory may be optimal in some sense, its quality ultimately
depends on the given path τ : [0, 1] → Cfree. Consider the path shown in Figure
14.26. At τ(1/3), a “corner” is reached. This violates the differentiability assump-
tion and would require infinite acceleration to traverse while remaining on τ . For
some models, it may be possible to stop at τ(1/3) and then start again. For exam-
ple, imagine a floating particle in the plane. It can be decelerated to rest exactly
at τ(1/3) and then started in a new direction to exactly follow the curve. This
assumes that the particle is fully actuated. If there are nonholonomic constraints
on C, as in the case of the Dubins car, then the given path must at least satisfy

14.6. DECOUPLED PLANNING APPROACHES 849

Cfree

τ(1)

τ(0) τ(2/3)

τ(1/3)

Figure 14.26: A bad path for path-constrained trajectory planning.

them before accelerations can be considered. The solution in this case depends on
the existence of decoupling vector fields [157, 224].

It is generally preferable to round off any corners that might have been pro-
duced by a motion planning algorithm in constructing τ . This helps, but it still
does not completely resolve the issue. The portion of the path around τ(2/3) is
not desirable because of high curvature. At a fixed speed, larger accelerations are
generally needed to follow sharp turns. The speed may have to be decreased simply
because τ carelessly requires sharp turns in C. Imagine developing an autonomous
double-decker tour bus. It is clear that following the curve around τ(2/3) may
cause the bus to topple at high speeds. The bus will have to slow down because
it is a slave to the particular choice of τ .

14.6.3.3 The path-constrained phase space

Recall the approach in Section 14.4.1 that enabled systems of the form q̈ =
h(q, q̇, u) to be expressed as q̈ = u′ for some suitable U ′(q, q̇) ⊆ U (this was illus-
trated in Figure 14.15). This enabled many systems to be imagined as multiple,
independent double integrators with phase-dependent constraints on the action
space. The same idea can be applied here to obtain a single integrator.

Let S denote a 2D path-constrained phase space, in which each element is of the
form (s, ṡ) and represents the position and velocity along τ . This parameterizes a
2D subset of the original phase space X. Each original state vector is x = (q, q̇) =
(τ(s), dτ/ds ṡ). Which accelerations are possible at points in S? At each (s, ṡ),
a subset of U can be determined that satisfies the equations of the form (14.39).
Each valid action yields an acceleration s̈. Let U ′(s, ṡ) ⊆ R denote the set of all
values of s̈ that can be obtained from an action u ∈ U that satisfies (14.39) for
each i (except the ones for which dτi/ds = 0). Now the system can be expressed as
s̈ = u′, in which u′ ∈ U ′(s, ṡ). After all of this work, we have arrived at the double
integrator. The main complication is that U ′(s, ṡ) can be challenging to determine
for some systems. It could consist of a single interval, disjoint intervals, or may
even be empty. Assuming that U ′(s, ṡ) has been characterized, it is straightforward
to solve the remaining planning problem using techniques already presented in this
chapter. One double integrator is not very challenging; hence, efficient sampling-

850 S. M. LaValle: Planning Algorithms

based algorithms exist.
An obstacle region Sobs ⊂ S will now be considered. This includes any states

that belong to Xfree. Given s and ṡ, the state x can be computed to determine
whether any constraints on X are violated. Usually, τ is constructed to avoid
obstacle collision; however, some phase constraints may also exist. The obstacle
region Sobs also includes any points (s, ṡ) for which U ′(s, ṡ) is empty. Let Sfree
denote S \ Sobs.

Before considering computation methods, we give some examples.

Example 14.6 (Path-Constrained Double Integrators) Consider the case
of two double integrators. This could correspond physically to a particle moving
in R2. Hence, C = W = R2. Let U = [−1, 1]2 and q̈ = u for u ∈ U . The
path τ will be chosen to force the particle to move along a line. For linear paths,
dτ/ds is constant and d2τ/ds2 = 0. Using these observations and the fact that
h′(s, ṡ, u) = u, (14.39) simplifies to

s̈ =
ui

dτi/ds
, (14.40)

for i = 1, 2.
Suppose that τ(s) = (s, s), which means that the particle must move along a

diagonal line through the origin of C. This further simplifies (14.40) to s̈ = u1 and
s̈ = u2. Hence any u1 ∈ [−1, 1] may be chosen, but u2 must then be chosen as
u2 = u1. The constrained system can be written as one double integrator s̈ = u′,
in which u′ ∈ [−1, 1]. Both u1 and u2 are derived from u′ as u1 = u2 = u′. Note
that U ′ does not vary over S; this occurs because a linear path is degenerate.

Now consider constraining the motion to a general line:

τ(s) = (a1s+ b1, a2s+ b2), (14.41)

in which a1 and a2 are nonzero. In this case, (14.40) yields s̈ = u1/a1 and s̈ =
u2/a2. Since each ui ∈ [−1, 1], each equation indicates that s̈ ∈ [−1/ai, 1/ai]. The
acceleration must lie in the intersection of these two intervals. If |a1| ≥ |a2|, then
s̈ ∈ [−1/a1, 1/a1]. We can designate u′ = u1 and let u2 = u′a2/a1. If |a1| > |a2|,
then s̈ ∈ [−1/a2, 1/a2], u′ = u2, and u1 = u′a1/a2.

Suppose that a1 = 0 and a2 6= 0. The path is

τ(s) = (q1, a2s+ b2), (14.42)

in which q1 is fixed and the particle is constrained to move along a vertical line
in C = R2. In this case, only one constraint, s̈ = u2, is obtained from (14.40).
However, u1 is independently constrained to u1 = 0 because horizontal motions
are prohibited.

If n independent, double integrators are constrained to a line, a similar result is
obtained. There are n equations of the form (14.40). The i ∈ {1, . . . , n} for which
|ai| is largest determines the acceleration range as s̈ ∈ [−1/ai, 1/ai]. The action u′

14.6. DECOUPLED PLANNING APPROACHES 851

is defined as u′ = ui, and the uj for j 6= i are obtained from the remaining n − 1
equations.

Now assume τ is nonlinear, in which case (14.39) becomes

s̈ =
ui

dτi/ds
− d2τi
ds2

ṡ2, (14.43)

for each i for which dτi/ds 6= 0. Now the set U ′(s, ṡ) varies over S. As the speed
ṡ increases, it becomes less likely that U ′(s, ṡ) is nonempty. In other words, it is
less likely that a solution exists to all equations of the form (14.43). In a physical
system, that means that staying on the path requires turning too sharply. At a
high speed, this may require an acceleration q̈ that lies outside of [−1, 1]n. �

The same ideas can be applied to systems that are much more complicated.
This should not be surprising because in Section 14.4.1 systems of the form q̈ =
h(q, q̇) were interpreted as multiple, independent double integrators of the form
q̈ = u′, in which u′ ∈ U ′(q, q̇) provided the possible accelerations. Under this
interpretation, and in light of Example 14.6, constraining the motions of a general
system to a path τ just further restricts U ′(q, q̇). The resulting set of allowable
accelerations may be at most one-dimensional.

The following example indicates the specialization of (14.39) for a robot arm.

Example 14.7 (Path-Constrained Manipulators) Suppose that the system
is described as (13.142) from Section 13.4.2. This is a common form that has been
used for controlling robot arms for decades. Constraints of the form (14.39) can
be derived by expressing q, q̇, and q̈ in terms of s, ṡ, and s̈. This requires using
(14.32), (14.33), and (14.34). Direct substitution into (13.142) yields

M(τ(s))

(
d2τ

ds2
ṡ2 +

dτ

ds
s̈

)

+ C
(

τ(s),
dτ

ds
ṡ
)dτ

ds
ṡ+ g(τ(s)) = u. (14.44)

This can be simplified to n equations of the form

αi(s)s̈+ βi(s)ṡ
2 + γi(s)ṡ = ui. (14.45)

Solving each one for s̈ yields a special case of (14.39). As in Example 14.6, each
equation determines a bounding interval for s̈. The intersection of the intervals
for all n equations yields the allowed interval for s̈. The action u′ once again
indicates the acceleration in the interval, and the original action variables ui can
be obtained from (14.45). If dτi/ds = 0, then αi(s) = 0, which corresponds to the
case in which the constraint does not apply. Instead, the constraint is that the
vector u must be chosen so that q̇i = 0. �

852 S. M. LaValle: Planning Algorithms

ṡ

s

ṡmax

Sobs

Sobs

0 1
0

ṡ

s0 1

(a) (b)

Figure 14.27: (a) Planning occurs in the path-constrained phase space. (b) Due
to the forward-progress assumption, value iteration can be reduced to a quick
wavefront propagation across regularly spaced vertical lines in S.

14.6.3.4 Computing optimal solutions via dynamic programming

Dynamic programming with interpolation, as covered in Section 14.5, can be ap-
plied to solve the problem once it is formulated in terms of the path-constrained
phase space S ⊂ R2. The domain of τ provides the constraint 0 ≤ s ≤ 1. Assume
that only forward progress along the path is needed; moving in the reverse direc-
tion should not be necessary. This implies that ṡ > 0. To make S bounded, an
upper bound, ṡmax, is usually assumed, beyond which it is known that the speed
is too high to follow the path.

This results in the planning problem shown in Figure 14.27a. The system is
expressed as s̈ = u′, in which u′ ∈ U ′(s, ṡ). The initial phase in S is (0, ṡi) and
the goal phase is (1, ṡg). Typically, ṡi = ṡg = 0. The region shown in Figure 14.27
is contained in the first quadrant of the phase space because only positive values
of s and ṡ are allowed (in Figure 14.13, q and q̇ could be positive or negative).
This implies that all motions are to the right. The actions determine whether
accelerations or decelerations will occur.

Backward value iteration with interpolation can be easily applied by discretiz-
ing S and U ′(s, ṡ). Due to the constraint ṡ > 0, making a Dijkstra-like version of
the algorithm is straightforward. A simple wavefront propagation can even be per-
formed, starting at s = 1 and progressing backward in vertical waves until s = 0 is
reached. See Figure 14.27b. The backprojection (14.29) can be greatly simplified.
Suppose that the s-axis is discretized into m + 1 regularly spaced values s0, . . .,
sm at every ∆s, for some fixed ∆s > 0. Thus, sk = (k∆s)/m. The index k can
be interpreted as the stage. Starting at k = m, the final cost-to-go G∗

m(sm, ṡm)

14.6. DECOUPLED PLANNING APPROACHES 853

is defined as 0 if the corresponding phase represents the goal, and ∞ otherwise.
At each sk, the ṡ values are sampled, and the cost-to-go function is represented
using one-dimensional linear interpolation along the vertical axis. At each stage,
the dynamic programming computation

G∗
k(sk, ṡk) = min

u′∈U ′(sk,ṡk)

{

l′d(sk, ṡk, u
′) +G∗

k+1(sk+1, ṡk+1)
}

(14.46)

is performed at each ṡ sample. This represents a special form of (14.27). Linear
interpolation over discretized ṡ values is used to evaluate G∗

k+1(sk+1, ṡk+1). The
cost term l′d is obtained from ld by computing the original state x ∈ X from s
and ṡ; however, if the trajectory segment enters Sobs, it receives infinite cost. The
computations proceed until stage k = 1, at which time the optimal cost-to-go
G∗

1(s1, ṡ1) is computed. The optimal trajectory is obtained by using the cost-to-go
function at each stage as a navigation function.

The dynamic programming approach is so general that it can even be extended
to path-constrained trajectory planning in the presence of higher order constraints
[880]. For example, if a system is specified as q(3) = h(q, q̇, q̈, u), then a 3D path-
constrained phase space results, in which each element is expressed as (s, ṡ, s̈).
The actions in this space are jerks, yielding s(3) = u′ for u′ ∈ U ′(s, ṡ, s̈).

14.6.3.5 A bang-bang approach for time optimality

The dynamic programming approach is already very efficient because the search
is confined to two dimensions. Nevertheless, trajectories that are time optimal
can be computed even more efficiently if Sobs has some special structure. The
idea is to find an alternating sequence between two motion primitives: one of
maximum acceleration and one of maximum deceleration. This kind of switching
between extreme opposites is often called bang-bang control and arises often in
the development of time-optimal control laws (look ahead to Example 15.4). The
method explained here was introduced in [121, 879]. One drawback of obtaining
time-optimal trajectories is that they cannot be tracked (the fourth module from
Section 14.6.1) if errors occur because the solutions travel on the boundary of the
reachable set.

The approach was developed for robot arms, as considered in Example 14.7.
Suppose that Sobs is a single connected component that is bounded above by ṡmax,
and on the sides it is bounded by s = 0 and s = 1. It is assumed that S arises
only due to the vanishing of the interval of allowable values for s̈ (in this case,
U ′(s, ṡ) becomes empty). It is also assumed that the lower boundary of Sobs can
be expressed as a differentiable function φ : [0, 1]→ S, called the limit curve, which
yields the maximum speed ṡ = φ(s) for every s ∈ [0, 1]. The method is extended
to handle multiple obstacles in [879], but this case is not considered here. Assume
also that dτi/ds 6= 0 for every i; the case of dτi/ds = 0 can also be handled in the
method [878].

Let u′min(s, ṡ) and u
′
max(s, ṡ) denote the smallest and largest possible acceler-

ations, respectively, from (s, ṡ) ∈ S. If (s, ṡ) 6∈ Sobs, then u′min(s, ṡ) < u′max(s, ṡ).

854 S. M. LaValle: Planning Algorithms

BANG-BANG APPROACH

1. From the final state (1, 0), apply reverse-time integration to s̈ = u′min(s, ṡ).
Continue constructing the curve numerically until either the interior of Sobs
is entered or ṡ = 0. In the latter case, the algorithm terminates with failure.

2. Let (scur, ṡcur) = (0, 0).

3. Apply forward integration s̈ = u′max(s, ṡ) from (scur, ṡcur) until either the
interior of Sobs is entered or the curve generated in Step 1 is crossed. In the
latter case, the problem is solved.

4. Starting at the point where the trajectory from Step 3 crossed the limit curve,
find next tangent point (stan, ṡtan) to the right along the limit curve. From
(stan, ṡtan), perform reverse integration on s̈ = u′min(s, ṡ) until the curve from
Step 3 is hit. Let (scur, ṡcur) = (stan, ṡtan) and go to Step 3.

Figure 14.28: The bang-bang approach finds a time-optimal, path-constrained
trajectory with less searching than the dynamic programming approach.

At the limit curve, u′min(s, φ(s)) = u′max(s, φ(s)). Applying the only feasible action
in this case generates a velocity that is tangent to the limit curve. This is called
a tangent point, (stan, ṡtan), to φ. Inside of Sobs, no accelerations are possible.

The bang-bang approach is described in Figure 14.28, and a graphical illus-
tration appears in Figure 14.29. Assume that the initial and goal phases are
(0, 0) and (1, 0), respectively. Step 1 essentially enlarges the goal by constructing
a maximum-deceleration curve that terminates at (1, 0). A trajectory that con-
tacts this curve can optimally reach (1, 0) by switching to maximum deceleration.
Steps 3 and 4 construct a maximum-acceleration curve followed by a maximum-
deceleration curve. The acceleration curve runs until it pierces the limit curve.
This constraint violation must be avoided. Therefore, a deceleration must be de-

s

ṡ

0 1

Sobs

Figure 14.29: An illustration of the bang-bang approach to computing a time-
optimal trajectory. The solution trajectory is obtained by connecting the dots.

14.7. GRADIENT-BASED TRAJECTORY OPTIMIZATION 855

termined that departs earlier from the acceleration curve and just barely misses
entering the interior of Sobs. This curve must become tangent to the limit curve;
therefore, a search is made along the limit curve for the next possible tangent
point. From there, reverse-time integration is used in Step 4 to generate a de-
celeration curve that contacts the acceleration curve. A portion of the solution
has now been obtained in which an acceleration is followed by a deceleration that
arrives at a tangent point of φ. It is possible that Step 4 is not reached because
the curve that connects to the goal is contacted. Starting from the tangent point,
Steps 3 and 4 are repeated until the goal curve is contacted.

14.7 Gradient-Based Trajectory Optimization

This section provides a brief overview of a complementary problem to motion
planning. Suppose that an algorithm in this chapter returns a feasible action
trajectory. How can the solution be improved? Trajectory optimization refers to
the problem of perturbing the trajectory while satisfying all constraints so that its
quality can be improved. For example, it may be desirable to shorten a trajectory
computed by an RRT, to remove some of the arbitrary changes in actions due to
randomization. Trajectory optimization is considered complementary to motion
planning because it usually requires an initial guess, which could be provided by a
planning algorithm. Trajectory optimization can be considered as a kind of BVP,
but one that improves an initial guess, as opposed to determining trajectories from
scratch.

The optimization issue also exists for paths computed by sampling-based algo-
rithms for the Piano Mover’s Problem; however, without differential constraints,
it is much simpler to shorten paths. The plan and transform method of Section
14.6.2 can be applied, and the LPM just connects pairs of configurations along the
shortest path in C. In the presence of differential constraints, the BVP must be
faced.

In the most general setting, it is very difficult to improve trajectories. There are
numerous methods from optimization literature; see [98, 151, 664] for overviews.
The purpose of this section is to encourage further study by briefly mentioning
the various kinds of methods that have been developed, instead of explaining them
in detail. The methods fall under the area of nonlinear programming (NLP) (or
nonlinear optimization), as opposed to linear programming, which was used to find
randomized security strategies in Section 9.3. The optimization actually occurs
in a space of possible trajectories, each of which is a function of time. Therefore,
the calculus of variations, which was used in Section 13.4.1, becomes relevant
to characterize extrema. The functional Φ from that setting becomes the cost
functional L in the current setting. The system ẋ = f(x, u) forms an additional
set of constraints that must be satisfied, but u can be selected in the optimization.

To enable numerical computation methods, a family of trajectories is specified
in terms of a parameter space. The optimization can then be viewed as an incre-
mental search in the parameter space while satisfying all constraints. The direction

856 S. M. LaValle: Planning Algorithms

of motion in each step is determined by computing the gradient of a cost functional
with respect to the parameters while constrained to move in a direction tangent to
the constraints. Hence, much of nonlinear programming can be considered as an
application of Newton’s method or gradient descent. As in standard optimization,
second-order derivatives of the cost functional can be used to indicate when the
search should terminate. The numerical issues associated with these methods are
quite involved; several NLP software packages, such as the NAG Fortran Library
or packages within Matlab, are available.

Nonlinear optimal control theory can be considered as a variant of NLP. The dy-
namic programming recurrence becomes a differential equation in the continuous-
time setting, and Hamilton’s equations (13.198) generalize to Pontryagin’s mini-
mum principle. These are covered in Section 15.2. The extra variables that arise in
the minimum principle can be considered as Lagrange multipliers of a constrained
optimization, in which ẋ = f(x, u) is the constraint. The differential equations
arising from dynamic programming or the minimum principle are difficult to solve
analytically; therefore, in most cases, numerical techniques are used. The case of
numerical dynamic programming was covered in Section 14.5.

Shooting methods constitute the simplest family of trajectory optimization
methods. As a simple example, suppose that an action trajectory ũ : [0, tF] → R

has been computed of the form

u(t) = w1 + w2t, (14.47)

in which w1 and w2 are some fixed parameters. Consider perturbing w1 and w2 by
some small amount and applying the integration in (14.1). If f satisfies Lipschitz
conditions, then a small perturbation should produce a small change in x̃. The
resulting new trajectory can be evaluated by a cost functional to determine whether
it is an improvement. It might, for example, have lower maximum curvature.
Rather than picking a perturbation at random, the gradient of the cost functional
with respect to the parameters can be computed. A small step in the parameter
space along the negative gradient direction should reduce the cost. It is very likely,
however, that perturbing w1 and w2 will move the final state x(tF). Usually, a
termination condition, such as x(tF) = xG, must be enforced as a constraint in the
optimization. This removes degrees of freedom from the optimization; therefore,
more trajectory parameters are often needed.

Suppose more generally that a motion planning algorithm computes an action
sequence based on the discrete-time model. Each action in the sequence remains
constant for duration ∆t. The time duration of each action can instead be defined
as a parameter to be perturbed. Each action variable ui over each interval could
also be perturbed using by (14.47) with the initial condition that w1 = ui and
w2 = 0. The dimension of the search has increased, but there are more degrees of
freedom. In some formulations, the parameters may appear as implicit constraints;
in this case, a BVP must be solved in each iteration. The minimum principle
is often applied in this case [98]. More details on formulating and solving the
trajectory optimization problem via shooting appear in [151].

14.7. GRADIENT-BASED TRAJECTORY OPTIMIZATION 857

Several difficulties are encountered when applying the shooting technique to
trajectory optimization among obstacles. Each perturbation requires integration
and collision-checking. For problems involving vehicles, the integrations can some-
times be avoided by exploiting symmetries [197]. For example, a path for the
Dubins car can be perturbed by changing a steering angle over a short amount
of time, and the rest of the trajectory can simply be transformed using a matrix
of SE(2). A critical problem is that following the negative gradient may suggest
shortening the path in a way that causes collision. The problem can be alleviated
by breaking the trajectory into segments, as in the plan-and-transform approach;
however, this yields more optimizations. Another possible solution is to invent a
penalty function for the obstacles; however, this is difficult due to local minima
problems and the lack of representing the precise boundary of Xobs.

Another difficulty with shooting is that a small change in the action near the
starting time may lead to great changes in the states at later times. One way
to alleviate this problem is by multiple shooting (as opposed to single shooting,
which has been described so far). In this case, the trajectory is initially bro-
ken into segments. These could correspond to the time boundaries imposed by
a sequence of motion primitives. In this case, imagine perturbing each motion
primitive separately. Extra constraints are needed in this case to indicate that all
of the trajectory pieces must remain connected. The multiple shooting method
can be generalized to a family of methods called transcription or collocation (see
[98] for references). These methods again split the trajectory into segments, but
each connection constraint relates more points along the trajectory than just the
segment endpoints. One version of transcription uses implicit constraints, which
require using another BVP solver, and another version uses parametric constraints,
which dramatically increases the dimension of the search. The latter case is still
useful in practice by employing fast, sparse-matrix computation methods.

One of the main difficulties with trajectory optimization methods is that they
can become stuck in a local minimum in the space of trajectories. This means that
their behavior depends strongly on the initial guess. It is generally impossible for
them to find a trajectory that is not homotopic to the initial trajectory. They
cannot recover from an initial guess in a bad homotopy class. If Xobs is compli-
cated, then this issue becomes increasingly important. In many cases, variational
techniques might not even find an optimal solution within a single homotopy class.
Multiple local minima may exist if the closure of Xfree contains positive curvature.
If it does not, the space is called nonpositively curved (NPC) or CAT(0), which
is a property that can be derived directly from the metric on X [139]. For these
spaces, the locally optimal trajectory with respect to the metric is always the best
within its homotopy class.

Further Reading

The characterization and computation of reachable sets has been growing in interest
[100, 102, 706, 707, 916, 955]. One motivation for studying reachability is verification,
which ensures that a control system behaves as desired under all possible disturbances.

858 S. M. LaValle: Planning Algorithms

This can actually be modeled as a game against nature, in which nature attempts to bring
the system into an undesirable state (e.g., crashing an airplane). For recent progress
on characterizing Xric, see [355]. The triangularization argument for completeness ap-
pears in a similar context in [292]. The precise rate of convergence, expressed in terms
of dispersion and Lipschitz conditions, for resolution-complete sampling-based motion
planning methods under differential constraints is covered in [196]. For the computa-
tional complexity of control problems, see [114, 766]. For further reading on motion
primitives in the context of planning, see [360, 362, 363, 393, 787, 794, 848]. For further
reading on dynamical simulation and numerical integration, see [331, 440, 863].

Section 14.4.1 was based on [288, 290, 441]. For more works on kinodynamic plan-
ning, see [203, 237, 289, 356, 360, 611, 780, 999]. Section 14.4.2 was inspired by [73].
Section 14.4.3 was drawn from [611]. For more work on RRTs under differential con-
straints, see [138, 199, 224, 324, 360, 393, 509, 949]. For other works on nonholonomic
planning, see the survey [596] and [67, 277, 334, 335, 354, 357, 482, 579, 633, 672].
Combinatorial approaches to nonholonomic planning have appeared in [13, 128, 347].

Section 14.5 was developed by adapting value iteration to motion planning problems.
For general convergence theorems for value iteration with interpolation, see [168, 292,
400, 565, 567]. In [168], global constraints on the phase space are actually considered.
The use of these techniques and the development of Dijkstra-like variants are covered in
[607]. Related work exists in artificial intelligence [722] and control theory [946].

Decoupled approaches to planning, as covered in Section 14.6, are very common in
robotics literature. For material related to the plan-and-transform method, see [333,
596, 859]. For more on decoupled trajectory planning and time scaling, see [353, 456,
457, 843, 876, 877, 880, 881], and see [104, 120, 121, 785, 879, 894, 878] for particular
emphasis on time-optimal trajectories.

For more on gradient-based techniques in general, see [98] and references therein.
Classical texts on the subject are [151, 664]. Gradient-based approaches to path defor-
mation in the context of nonholonomic planning appear in [197, 343, 575].

The techniques presented in this chapter are useful in other fields beyond robotics.
For aerospace applications of motion planning, see [86, 202, 436, 437, 786]. Motion
planning problems and techniques have been gaining interest in computer graphics,
particularly for generating animations of virtual humans (or digital actors); works in
this area include [35, 86, 393, 498, 544, 554, 557, 591, 617, 649, 712, 802, 980]. In many
of these works, motion capture is a popular way to generate a database of recorded
motions that serves as a set of motion primitives in the planning approach.

Exercises

1. Characterize Xric for the case of a point mass in W = R2, with each coordinate
modeled as a double integrator. Assume that u1 = 1 and u2 may take any value
in [−1, 1]. Determine Xric for:

(a) A point obstacle at (0, 0) in W.

(b) A segment from (0,−1) to (0, 1) in W.

Characterize the solutions in terms of the phase variables q1(0), q2(0), q̇1(0), and
q̇2(0).

14.7. GRADIENT-BASED TRAJECTORY OPTIMIZATION 859

2. Extending the double integrator:

(a) Develop a lattice for the triple integrator q(3) = u that extends naturally
from the double-integrator lattice.

(b) Describe how to develop a lattice for higher order integrators q(n) for n > 3.

3. Make a figure similar to Figure 14.6b, but for three stages of the Reeds-Shepp car.

4. Determine expressions for the upper and lower boundaries of the time-limited
reachable sets shown in Figure 14.14. Express them as parabolas, with q̇ as a
function of q.

5. A reachability graph can be made by “rolling” a polyhedron in the plane. For
example, suppose a solid, regular tetrahedron is placed on a planar surface. As-
suming high friction, the tetrahedron can be flipped in one of four directions by
pushing on the top. Construct the three-stage reachability graph for this problem.

6. Construct a four-stage reachability graph similar to the one shown in Figure 14.6b,
but for the case of a differential drive robot modeled by (13.17). Use the three
actions (1, 0), (0, 1), and (1, 1). Draw the graph in the plane and indicate the
configuration coordinates of each vertex.

7. Section 14.2.2 explained how resolution-complete algorithms exist for planning
under differential constraints. Suppose that in addition to continuous state vari-
ables, there are discrete modes, as introduced in Section 7.3, to form a hybrid
system. Explain how resolution-complete planning algorithms can be developed
for this case. Extend the argument shown in Figure 14.7.

Implementations

8. Compare the performance and accuracy of Euler integration to fourth-order Runge-
Kutta on trajectories generated for a single, double, and triple integrator. For
accuracy, compare the results to solutions obtained analytically. Provide recom-
mendations of which one to use under various conditions.

9. Improve Figure 14.13 by making a plot of the actual trajectories, which are
parabolic in most cases.

10. In Figure 14.13, the state trajectory segments are longer as |ẋ| increases. Develop
a lattice that tries to keep all segments as close to the same length as possible by
reducing ∆t as |ẋ| increases. Implement and experiment with different schemes
and report on the results.

11. Develop an implementation for computing approximately time-optimal state tra-
jectories for a point mass in a 2D polygonal world. The robot dynamics can
be modeled as two independent double integrators. Search the double-integrator
lattice in X = R4 to solve the problem. Animate the computed solutions.

860 S. M. LaValle: Planning Algorithms

12. Experiment with RDT methods applied to a spacecraft that is modeled as a 3D
rigid body with thrusters. Develop software that computes collision-free trajecto-
ries for the robot. Carefully study the issues associated with choosing the metric
on X.

13. Solve the problem of optimally bringing the Dubins car to a goal region in a
polygonal world by using value iteration with interpolation.

14. Select and implement a planning algorithm that computes pushing trajectories
for a differential drive robot that pushes a box in a polygonal environment. This
was given as an example of a nonholonomic system in Section 13.1.3. To use the
appropriate constraints on U , see [671].

15. Select and implement a planning algorithm that computes trajectories for parking
a car while pulling a single trailer, using (13.19). Make an obstacle region in W
that corresponds to a tight parking space and vary the amount of clearance. Also,
experiment with driving the vehicle through an obstacle course.

16. Generate a 3D rendering of reachability graphs for the airplane model in (13.20).
Assume that in each stage there are nine possible actions, based on combinations
of flying to the right, left, or straight and decreasing, increasing, or maintaining
altitude.

17. Implement the dynamic programming algorithm shown in Figure 14.27 for the
two-link manipulator model given in Example 13.13.

18. Implement the bang-bang algorithm shown in Figure 14.28 for the two-link ma-
nipulator model given in Example 13.13.

19. For the Dubins car (or another system), experiment with generating a search
graph based on Figure 14.7 by alternating between various step sizes. Plot in the
plane, the vertices and state trajectories associated with the edges of the graph.
Experiment with different schemes for generating a resolution-complete search
graph in a rectangular region and compare the results.

20. Use value iteration with interpolation to compute the optimal cost-to-go for the
Reeds-Shepp car. Plot level sets of the cost-to-go, which indicate the time-limited
reachable sets. Compare the result to Figure 14.4.

Chapter 15

System Theory and Analytical
Techniques

This chapter is complementary to Chapter 14 in that it provides tools and concepts
that can be used to develop better local planning methods (LPMs). Most of the
material was developed in the field of control theory, which focuses mainly on
characterizing the behavior of particular classes of systems, and controlling them
in the absence of obstacles. The two-point boundary value problem (BVP), which
was a frequent nuisance in Chapter 14, can be better understood and solved for
many systems by using the ideas of this chapter. Keep in mind that throughout
this chapter there are no obstacles. Although planning for this case was trivial in
Part II, the presence of differential constraints brings many challenges.

The style in this chapter is to provide a brief survey of concepts and techniques,
with the hope of inspiring further study in other textbooks and research literature.
Modern control theory is a vast and fascinating subject, of which only the surface
can be scratched in one chapter. Section 15.1 introduces stability and controllabil-
ity concepts, both of which characterize possible arrivals in a goal state. Stability
characterizes how the integral curves of a vector field behave around a goal point,
and controllability indicates whether an action trajectory exists that arrives at a
specified goal.

Section 15.2 revisits dynamic programming one last time. Here it becomes a
partial differential equation expressed in terms of the optimal cost-to-go function.
In some cases, it actually has a closed-form solution, as opposed to its main use
in computer science, which is to obtain algorithm constraints. The powerful Pon-
tryagin’s minimum principle, which can be derived from dynamic programming,
is also covered.

The remainder of the chapter is devoted to nonholonomic systems, which often
arise from underactuated mechanical systems. Section 15.3 expresses the shortest
paths between any pair of points for the Dubins car, the Reeds-Shepp car, and
a differential drive, all of which were introduced in Section 13.1.2. The paths
are a beautiful solution to the BVP and are particularly valuable as an LPM; for
example, some have been used in the plan-and-transform method of Section 14.6.2.

861

862 S. M. LaValle: Planning Algorithms

Section 15.4 addresses some basic properties of nonholonomic systems. The most
important issues are determining whether nonholonomic constraints are actually
integrable (which removes all ẋi variables) and characterizing reachable sets that
arise due to nonholonomic constraints. Section 15.5 attempts to do the same as
Section 15.3, but for more challenging nonholonomic systems. In these cases, the
BVP problem may not be solved optimally, and some methods may not even reach
the goal point precisely. Nevertheless, when applicable, they can be used to build
powerful LPMs in a sampling-based motion planning algorithm.

15.1 Basic System Properties

This section provides a brief overview of two fundamental concepts in control
theory: stability and controllability. Either can be considered as characterizing
how a goal state is reached. Stability usually involves feedback and may only
converge to the goal as time approaches infinity. Controllability assesses whether
an action trajectory exists that leads exactly to a specified goal state. In both
cases, there is no obstacle region in X.

15.1.1 Stability

The subject of stability addresses properties of a vector field with respect to a
given point. Let X denote a smooth manifold on which the vector field is defined;
X may be a C-space or a phase space. The given point is denoted as xG and
can be interpreted in motion planning applications as the goal state. Stability
characterizes how xG is approached from other states in X by integrating the
vector field.

The given vector field f is considered as a velocity field, which is represented
as

ẋ = f(x). (15.1)

This looks like a state transition equation that is missing actions. If a system of
the form ẋ = f(x, u) is given, then u can be fixed by designing a feedback plan
π : X → U . This yields ẋ = f(x, π(x)), which is a vector field on X without any
further dependency on actions. The dynamic programming approach in Section
14.5 computed such a solution. The process of designing a stable feedback plan is
referred to in control literature as feedback stabilization.

Equilibrium points and Lyapunov stability At the very least, it seems that
the state should remain fixed at xG, if it is reached. A point xG ∈ X is called
an equilibrium point (or fixed point) of the vector field f if and only if f(xG) = 0.
This does not, however, characterize how trajectories behave in the vicinity of xG.
Let xI ∈ X denote some initial state, and let x(t) refer to the state obtained at
time t after integrating the vector field f from xI = x(0).

15.1. BASIC SYSTEM PROPERTIES 863

xG

O1

O1

xI

xG

O2

(a) (b)

Figure 15.1: Lyapunov stability: (a) Choose any open set O1 that contains xG,
and (b) there exists some open set O2 from which trajectories will not be able to
escape O1. Note that convergence to xG is not required.

See Figure 15.1. An equilibrium point xG ∈ X is called Lyapunov stable if for
any open neighborhood1 O1 of xG there exists another open neighborhood O2 of
xG such that xI ∈ O2 implies that x(t) ∈ O1 for all t > 0. If X = Rn, then some
intuition can be obtained by using an equivalent definition that is expressed in
terms of the Euclidean metric. An equilibrium point xG ∈ Rn is called Lyapunov
stable if, for any t > 0, there exists some δ > 0 such that ‖xI − xG‖ < δ implies
that ‖x(t) − xG‖ < ǫ. This means that we can choose a ball around xG with a
radius as small as desired, and all future states will be trapped within this ball,
as long as they start within a potentially smaller ball of radius δ. If a single δ
can be chosen independently of every ǫ and x, then the equilibrium point is called
uniform Lyapunov stable.

Asymptotic stability Lyapunov stability is weak in that it does not even imply
that x(t) converges to xG as t approaches infinity. The states are only required
to hover around xG. Convergence requires a stronger notion called asymptotic
stability. A point xG is an asymptotically stable equilibrium point of f if:

1. It is a Lyapunov stable equilibrium point of f .

2. There exists some open neighborhood O of xG such that, for any xI ∈ O,
x(t) converges2 to xG as t approaches infinity.

For X = Rn, the second condition can be expressed as follows: There exists some
δ > 0 such that, for any xI ∈ X with ‖xI − xG‖ < δ, the state x(t) converges to
xG as t approaches infinity. It may seem strange that two requirements are needed
for asymptotic stability. The first one bounds the amount of wiggling room for
the integral curve, which is not captured by the second condition.

1An open neighborhood of a point x means an open set that contains x.
2This convergence can be evaluated using the metric ρ on X.

864 S. M. LaValle: Planning Algorithms

Asymptotic stability appears to be a reasonable requirement, but it does not
imply anything about how long it takes to converge. If xG is asymptotically stable
and there exist some m > 0 and α > 0 such that

‖x(t)− xG‖ ≤ me−αt‖xI − xG‖, (15.2)

then xG is also called exponentially stable. This provides a convenient way to
express the rate of convergence.

For use in motion planning applications, even exponential convergence may
not seem strong enough. This issue was discussed in Section 8.4.1. For example,
in practice, one usually prefers to reach xG in finite time, as opposed to only being
“reached” in the limit. There are two common fixes. One is to allow asymptotic
stability and declare the goal to be reached if the state arrives in some small,
predetermined ball around xG. In this case, the enlarged goal will always be
reached in finite time if xG is asymptotically stable. The other fix is to require
a stronger form of stability in which xG must be exactly reached in finite time.
To enable this, however, discontinuous vector fields such as the inward flow of
Figure 8.5b must be used. Most control theorists are appalled by this because
infinite energy is usually required to execute such trajectories. On the other hand,
discontinuous vector fields may be a suitable representation in some applications,
as mentioned in Chapter 8. Note that without feedback this issue does not seem as
important. The state trajectories designed in much of Chapter 14 were expected
to reach the goal in finite time. Without feedback there was no surrounding vector
field that was expected to maintain continuity or smoothness properties. Section
15.1.3 introduces controllability, which is based on actually arriving at the goal
in finite time, but it is also based on the existence of one trajectory for a given
system ẋ = f(x, u), as opposed to a family of trajectories for a given vector field
x = f(x).

Time-varying vector fields The stability notions expressed here are usually
introduced in the time-varying setting ẋ = f(x, t). Since the vast majority of
planning problems in this book are time-invariant, the presentation was confined
to time-invariant vector fields. There is, however, one fascinating peculiarity in
the topic of finding a feedback plan that stabilizes a system. Brockett’s condition
implies that for some time-invariant systems for which continuous, time-varying
feedback plans exist, there does not exist a continuous time-invariant feedback
plan [143, 156, 996]. This includes the class of driftless control systems, such as
the simple car and the unicycle. This implies that to maintain continuity of the
vector field, a time dependency must be introduced to allow the vector field to
vary as xG is approached! If continuity of the vector field is not important, then
this concern vanishes.

Domains of attraction The stability definitions given so far are often called
local because they are expressed in terms of a neighborhood of xG. Global versions
can also be defined by extending the neighborhood to all of X. An equilibrium

15.1. BASIC SYSTEM PROPERTIES 865

point is globally asymptotically stable if it is Lyapunov stable, and the integral
curve from any x0 ∈ X converges to xG as time approaches infinity. It may be
the case that only points in some proper subset of X converge to xG. The set of
all points in X that converge to xG is often called the domain of attraction of xG.
The funnels of Section 8.5.1 are based on domains of attraction. Also related is
the backward reachable set from Section 14.2.1. In that setting, action trajectories
were considered that lead to xG in finite time. For the domain of attraction only
asymptotic convergence to xG is assumed, and the vector field is given (there are
no actions to choose).

Limit cycles For some vector fields, states may be attracted into a limit cycle.
Rather than stabilizing to a point, the state trajectories converge to a loop path
in X. For example, they may converge to following a circle. This occurs in a wide
variety of mechanical systems in which oscillations are possible. Some of the basic
issues, along with several interesting examples for X = R2, are covered in [44].

15.1.2 Lyapunov Functions

Suppose a velocity field ẋ = f(x) is given along with an equilibrium point, xG.
Can the various forms of stability be easily determined? One of the most powerful
methods to prove stability is to construct a Lyapunov function. This will be
introduced shortly, but first some alternatives are briefly mentioned.

If f(x) is linear, which means that f(x) = Ax for some constant n× n matrix
A and X = Rn, then stability questions with respect to the origin, xG = 0, are
answered by finding the eigenvalues of A [192]. The state x = 0 is asymptotically
stable if and only if all eigenvalues of A have negative real parts. Consider the
scalar case, ẋ = ax, for which X = R and a is a constant. The solution to
this differential equation is x(t) = x(0) eat, which converges to 0 only if a < 0.
This can be easily extended to the case in which X = Rn and A is an n × n
diagonal matrix for which each diagonal entry (or eigenvalue) is negative. For
a general matrix, real or complex eigenvalues determine the stability (complex
eigenvalues cause oscillations). Conditions also exist for Lyapunov stability. Every
equilibrium state of ẋ = Ax is Lyapunov stable if the eigenvalues of A all have
nonpositive real parts, and the eigenvalues with zero real parts are distinct roots
of the characteristic polynomial of A.

If f(x) is nonlinear, then stability can sometimes be inferred by linearizing
f(x) about xG and performing linear stability analysis. In many cases, however,
this procedure is inconclusive (see Chapter 6 of [156]). Proving the stability of
a vector field is a challenging task for most nonlinear systems. One approach is
based on LaSalle’s invariance principle [39, 156, 585] and is particularly useful for
showing convergence to any of multiple goal states (see Section 5.4 of [846]). The
other major approach is to construct a Lyapunov function, which is used as an
intermediate tool to indirectly establish stability. If this method fails, then it still
may be possible to show stability using other means. Therefore, it is a sufficient

866 S. M. LaValle: Planning Algorithms

condition for stability, but not a necessary one.

Determining stability Suppose a velocity field ẋ = f(x) is given along with
an equilibrium point xG. Let φ denote a candidate Lyapunov function, which will
be used as an auxiliary device for establishing the stability of f . An appropriate φ
must be determined for the particular vector field f . This may be quite challenging
in itself, and the details are not covered here. In a sense, the procedure can be
characterized as “guess and verify,” which is the way that many solution techniques
for differential equations are described. If φ succeeds in establishing stability, then
it is promoted to being called a Lyapunov function for f .

It will be important to characterize how φ varies in the direction of flow induced
by f . This is measured by the Lie derivative,

φ̇(x) =
n∑

i=1

∂φ

∂xi
fi(x). (15.3)

This results in a new function φ̇(x), which indicates for each x the change in φ
along the direction of ẋ = f(x).

Several concepts are needed to determine stability. Let a function h : [0,∞)→
[0,∞) be called a hill if it is continuous, strictly increasing, and h(0) = 0. This
can be considered as a one-dimensional navigation function, which has a single
local minimum at the goal, 0. A function φ : X → [0,∞) is called locally positive
definite if there exists some open set O ⊆ X and a hill function h such that
φ(xG) = 0 and φ(x) ≥ h(‖x‖) for all x ∈ O. If O can be chosen as O = X, and if
X is bounded, then φ is called globally positive definite or just positive definite. In
some spaces this may not be possible due to the topology of X; such issues arose
when constructing navigation functions in Section 8.4.4. If X is unbounded, then
h must additionally approach infinity as ‖x‖ approaches infinity to yield a positive
definite φ [846]. For X = Rn, a quadratic form xTMx, for which M is a positive
definite matrix, is a globally positive definite function. This motivates the use of
quadratic forms in Lyapunov stability analysis.

The Lyapunov theorems can now be stated [156, 846]. Suppose that φ is
locally positive definite at xG. If there exists an open set O for which xG ∈ O, and
φ̇(x) ≤ 0 on all x ∈ O, then f is Lyapunov stable. If −φ̇(x) is also locally positive
definite on O, then f is asymptotically stable. If φ and −φ̇ are both globally
positive definite, then f is globally asymptotically stable.

Example 15.1 (Establishing Stability via Lyapunov Functions) LetX =
R. Let ẋ = f(x) = −x5, and we will attempt to show that x = 0 is stable. Let the
candidate Lyapunov function be φ(x) = 1

2
x2. The Lie derivative (15.3) produces

φ̇(x) = −x6. It is clear that φ and −φ̇ are both globally positive definite; hence,
0 is a global, asymptotically stable equilibrium point of f . �

15.1. BASIC SYSTEM PROPERTIES 867

Lyapunov functions in planning Lyapunov functions are closely related to
navigation functions and optimal cost-to-go functions in planning. In the optimal
discrete planning problem of Sections 2.3 and 8.2, the cost-to-go values can be
considered as a discrete Lyapunov function. By applying the computed actions,
a kind of discrete vector field can be imagined over the search graph. Each ap-
plied optimal action yields a reduction in the optimal cost-to-go value, until 0
is reached at the goal. Both the optimal cost-to-go and Lyapunov functions en-
sure that the trajectories do not become trapped in a local minimum. Lyapunov
functions are more general than cost-to-go functions because they do not require
optimality. They are more like navigation functions, as considered in Chapter 8.
The requirements for a discrete navigation function, as given in Section 8.2.2, are
very similar to the positive definite condition given in this section. Imagine that
the navigation function shown in Figure 8.3 is a discrete approximation to a Lya-
punov function over R2. In general, a Lyapunov function indicates some form of
distance to xG, although it may not be optimal. Nevertheless, it is based on mak-
ing monotonic progress toward xG. Therefore, it may serve as a distance function
in many sampling-based planning algorithms of Chapter 14. Since it respects the
differential constraints imposed by the system, it may provide a better indication
of how to make progress during planning in comparison to a Euclidean metric that
ignores these considerations. Lyapunov functions should be particularly valuable
in the RDT method of Section 14.4.3, which relies heavily on the distance function
over X.

15.1.3 Controllability

Now suppose that a system ẋ = f(x, u) is given on a smooth manifold X as defined
throughout Chapter 13 and used extensively in Chapter 14. The system can be
considered as a parameterized family of vector fields in which u is the parameter.
For stability, it was assumed that this parameter was fixed by a feedback plan
to obtain some ẋ = f(x). This section addresses controllability, which indicates
whether one state is reachable from another via the existence of an action tra-
jectory ũ. It may be helpful to review the reachable set definitions from Section
14.2.1.

Classical controllability Let U denote the set of permissible action trajectories
for the system, as considered in Section 14.1.1. By default, this is taken as any
ũ for which (14.1) can be integrated. A system ẋ = f(x, u) is called controllable
if for all xI , xG ∈ X, there exists a time t > 0 and action trajectory ũ ∈ U such
that upon integration from x(0) = xI , the result is x(t) = xG. Controllability can
alternatively be expressed in terms of the reachable sets of Section 14.2.1. The
system is controllable if xG ∈ R(xI ,U) for all xI , xG ∈ X.

A system is therefore controllable if a solution exists to any motion planning
problem in the absence of obstacles. In other words, a solution always exists to
the two-point boundary value problem (BVP).

868 S. M. LaValle: Planning Algorithms

Example 15.2 (Classical Controllability) All of the vehicle models in Section
13.1.2 are controllable. For example, in an infinitely large plane, the Dubins car
can be driven between any two configurations. Note, however, that if the plane
is restricted by obstacles, then this is not necessarily possible with the Dubins
car. As an example of a system that is not controllable, let X = R, ẋ = u, and
U = [0, 1]. In this case, the state cannot decrease. For example, there exists no
action trajectory that brings the state from xI = 1 to xG = 0. �

Many methods for determining controllability of a system are covered in stan-
dard textbooks on control theory. If the system is linear, as given by (13.37) with
dimensions m and n, then it is controllable if and only if the n×nm controllability
matrix

M = [B
... AB

... A2B
... · · · ... An−1B] (15.4)

has full rank [192]. This is called the Kalman rank condition [501]. If the system is
nonlinear, then the controllability matrix can be evaluated on a linearized version
of the system. Having full rank is sufficient to establish controllability from a
single point (see Proposition 11.2 in [846]). If the rank is not full, however, the
system may still be controllable. A fascinating property of some nonlinear systems
is that they may be able to produce motions in directions that do not seem to be
allowed at first. For example, the simple car given in Section 13.1.2 cannot slide
sideways; however, it is possible to wiggle the car sideways by performing parallel-
parking maneuvers. A method for determining the controllability of such systems
is covered in Section 15.4.

For fully actuated systems of the form q̈ = h(q, q̇, u), controllability can be
determined by converting the system into double-integrator form, as considered in
Section 14.4.1. Let the system be expressed as q̈ = u′, in which u′ ∈ U ′(q, q̇). If
U ′(q, q̇) contains an open neighborhood of the origin of Rn, and the same neigh-
borhood can be used for any x ∈ X, then the system is controllable. If a nonlinear
system is underactuated, as in the simple car, then controllability issues become
considerably more complicated. The next concept is suitable for such systems.

STLC: Controllability that handles obstacles The controllability concept
discussed so far has no concern for how far the trajectory travels in X before xG is
reached. This issue becomes particularly important for underactuated systems and
planning among obstacles. These concerns motivate a natural question: Is there a
form of controllability that is naturally suited for obstacles? It should declare that
if a state is reachable from another in the absence of differential constraints, then
it is also reachable with the given system ẋ = f(x, u). This can be expressed using
time-limited reachable sets. Let R(x,U , t) denote the set of all states reachable
in time less than or equal to t, starting from x. A system ẋ = f(x, u) is called
small-time locally controllable (STLC) from xI if there exists some t > 0 such that
xI ∈ int(R(xI ,U , t′)) for all t′ ∈ (0, t] (here, int denotes the interior of a set, as

15.1. BASIC SYSTEM PROPERTIES 869

xI

B(xI , ǫ)

int(R(xI ,U , t′))

Figure 15.2: If the system is STLC, then motions can be made in any direction,
in an arbitrarily small amount of time.

defined in Section 4.1.1). If the system ẋ = f(x, u) is STLC from every xI ∈ X,
then the whole system is said to be STLC.

Consider using this definition to answer the question above. Since int(R(xI ,U , t′))
is an open set, there must exist some small ǫ > 0 for which the open ball B(xI , ǫ)
is a strict subset of int(R(xI ,U , t′)). See Figure 15.2. Any point on the boundary
of B(xI , ǫ) can be reached, which means that a step of size ǫ can be taken in any
direction, even though differential constraints exist. With obstacles, however, we
have to be careful that the trajectory from xI to the surface of B(xI , ǫ) does not
wander too far away.

Suppose that there is an obstacle region Xobs, and a violation-free state trajec-
tory x̃ is given that terminates in xG at time tF and does not necessarily satisfy
a given system. If the system is STLC, then it is always possible to find an-
other trajectory, based on x̃, that satisfies the differential constraints. Apply the
plan-and-transform method of Section 14.6.2. Suppose that intervals for potential
replacement are chosen using binary recursive subdivision. Also suppose that an
LPM exists that computes that shortest trajectory between any pair of states;
this trajectory ignores obstacles but respects the differential constraints. Initially,
[0, tF] is replaced by a trajectory from the LPM, and if it is not violation-free, then
[0, tF] is subdivided into [0, tF/2] and [tF/2, tF], and replacement is attempted on
the smaller intervals. This idea can be applied recursively until eventually the
segments are small enough that they must be violation-free.

This final claim is implied by the STLC property. No matter how small the
intervals become, there must exist a replacement trajectory. If an interval is large,
then there may be sufficient time to wander far from the original trajectory. How-
ever, as the time interval decreases, there is not enough time to deviate far from
the original trajectory. (This discussion assumes mild conditions on f , such as
being Lipschitz.) Suppose that the trajectory is protected by a collision-free tube
of radius ǫ. Thus, all points along the trajectory are at least ǫ from the boundary
of Xfree. The time intervals can be chosen small enough to ensure that the tra-
jectory deviations are less than ǫ from the original trajectory. Therefore, STLC is
a very important property for a system to possess for planning in the presence of

870 S. M. LaValle: Planning Algorithms

obstacles. Section 15.4 covers some mathematical tools for determining whether a
nonlinear system is STLC.

A concept closely related to controllability is accessibility, which is only con-
cerned with the dimension of the reachable set. Let n be the dimension of X. If
there exists some t > 0 for which the dimension of R(xI ,U , t) is n, then the system
is called accessible from xI . Alternatively, this may be expressed as requiring that
int(R(xI ,U , t)) 6= ∅.

Example 15.3 (Accessibility) Recall the system from Section 13.1.3 in which
the state is trapped on a circle. In this case X = R2, and the state transition
equation was specified by ẋ = yu and ẏ = −xu. This system is not accessible
because the reachable sets have dimension one. �

A small-time version of accessibility can also be defined by requiring that there
exists some t such that int(R(xI ,U , t′)) 6= ∅ for all t′ ∈ (0, t]. Accessibility is
particularly important for systems with drift.

15.2 Continuous-Time Dynamic Programming

Dynamic programming has been a recurring theme throughout most of this book.
So far, it has always taken the form of computing optimal cost-to-go (or cost-to-
come) functions over some sequence of stages. Both value iteration and Dijkstra-
like algorithms have emerged. In computer science, dynamic programming is a
fundamental insight in the development of algorithms that compute optimal so-
lutions to problems. In its original form, however, dynamic programming was
developed to solve the optimal control problem [84]. In this setting, a discrete
set of stages is replaced by a continuum of stages, known as time. The dy-
namic programming recurrence is instead a partial differential equation, called
the Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation can be solved
using numerical algorithms; however, in some cases, it can be solved analytically.3

Section 15.2.2 briefly describes an analytical solution in the case of linear systems.
Section 15.2.3 covers Pontryagin’s minimum principle, which can be derived from
the dynamic programming principle, and generalizes the optimization performed
in Hamiltonian mechanics (recall Section 13.4.4).

15.2.1 Hamilton-Jacobi-Bellman Equation

The HJB equation is a central result in optimal control theory. Many other prin-
ciples and design techniques follow from the HJB equation, which itself is just a
statement of the dynamic programming principle in continuous time. A proper
derivation of all forms of the HJB equation would be beyond the scope of this

3It is often surprising to computer scientists that dynamic programming in this case does not
yield an algorithm. It instead yields a closed-form solution to the problem.

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 871

book. Instead, a time-invariant formulation that is most relevant to planning will
be given here. Also, an informal derivation will follow, based in part on [95].

15.2.1.1 The discrete case

Before entering the continuous realm, the concepts will first be described for dis-
crete planning, which is often easier to understand. Recall from Section 2.3 that
if X, U , and the stages are discrete, then optimal planning can be performed by
using value iteration or Dijkstra’s algorithm on the search graph. The stationary,
optimal cost-to-go function G∗ can be used as a navigation function that encodes
the optimal feedback plan. This was suggested in Section 8.2.2, and an example
was shown in Figure 8.3.

Suppose that G∗ has been computed under Formulation 8.1 (or Formulation
2.3). Let the state transition equation be denoted as

x′ = fd(x, u). (15.5)

The dynamic programming recurrence for G∗ is

G∗(x) = min
u∈U(x)

{l(x, u) +G∗(x′)} , (15.6)

which may already be considered as a discrete form of the Hamilton-Jacobi-
Bellman equation. To gain some insights into the coming concepts, however, some
further manipulations will be performed.

Let u∗ denote the optimal action that is applied in the min of (15.6). Imagine
that u∗ is hypothesized as the optimal action but needs to be tested in (15.6) to
make sure. If it is truly optimal, then

G∗(x) = l(x, u∗) +G∗(fd(x, u
∗)). (15.7)

This can already be considered as a discrete form of the Pontryagin minimum
principle, which will appear in Section 15.2.3. By rearranging terms, a nice inter-
pretation is obtained:

G∗(fd(x, u
∗))−G∗(x) = −l(x, u∗). (15.8)

In a single stage, the optimal cost-to-go drops by l(x, u∗) when G∗ is used as a
navigation function (multiply (15.8) by −1). The optimal single-stage cost is re-
vealed precisely when taking one step toward the goal along the optimal path. This
incremental change in the cost-to-go function while moving in the best direction
forms the basis of both the HJB equation and the minimum principle.

15.2.1.2 The continuous case

Now consider adapting to the continuous case. Suppose X and U are both con-
tinuous, but discrete stages remain, and verify that (15.5) to (15.8) still hold true.

872 S. M. LaValle: Planning Algorithms

Their present form can be used for any system that is approximated by discrete
stages. Suppose that the discrete-time model of Section 14.2.2 is used to approxi-
mate a system ẋ = f(x, u) on a state space X that is a smooth manifold. In that
model, U was discretized to Ud, but here it will be left in its original form. Let ∆t
represent the time discretization.

The HJB equation will be obtained by approximating (15.6) with the discrete-
time model and letting ∆t approach zero. The arguments here are very informal;
see [95, 570, 912] for more details. Using discrete-time approximation, the dynamic
programming recurrence is

G∗(x) = min
u∈U(x)

{ld(x, u) +G∗(x′)} , (15.9)

in which ld is a discrete-time approximation to the cost that accumulates over
stage k and is given as

ld(x, u) ≈ l(x, u)∆t. (15.10)

It is assumed that as ∆t approaches zero, the total discretized cost converges to
the integrated cost of the continuous-time formulation.

Using the linear part of a Taylor series expansion about x, the term G∗(x′) can
be approximated as

G∗(x′) ≈ G∗(x) +
n∑

i=1

∂G∗

∂xi
fi(x, u)∆t. (15.11)

This approximates G∗(x′) by its tangent plane at x. Substitution of (15.11) and
(15.10) into (15.9) yields

G∗(x) ≈ min
u∈U(x)

{

l(x, u)∆t+G∗(x) +
n∑

i=1

∂G∗

∂xi
fi(x, u)∆t

}

. (15.12)

Subtracting G∗(x) from both sides of (15.12) yields

min
u∈U(x)

{

l(x, u)∆t+
n∑

i=1

∂G∗

∂xi
fi(x, u)∆t

}

≈ 0. (15.13)

Taking the limit as ∆t approaches zero and then dividing by ∆t yields the HJB
equation:

min
u∈U(x)

{

l(x, u) +
n∑

i=1

∂G∗

∂xi
fi(x, u)

}

= 0. (15.14)

Compare the HJB equation to (15.6) for the discrete-time case. Both indicate
how the cost changes when moving in the best direction. Substitution of u∗ for
the optimal action into (15.14) yields

n∑

i=1

∂G∗

∂xi
fi(x, u

∗) = −l(x, u∗). (15.15)

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 873

This is just the continuous-time version of (15.8). In the current setting, the left
side indicates the derivative of the cost-to-go function along the direction obtained
by applying the optimal action from x.

The HJB equation, together with a boundary condition that specifies the final-
stage cost, sufficiently characterizes the optimal solution to the planning problem.
Since it is expressed over the whole state space, solutions to the HJB equation
yield optimal feedback plans. Unfortunately, the HJB equation cannot be solved
analytically in most settings. Therefore, numerical techniques, such as the value
iteration method of Section 14.5, must be employed. There is, however, an im-
portant class of problems that can be directly solved using the HJB equation; see
Section 15.2.2.

15.2.1.3 Variants of the HJB equation

Several versions of the HJB equation exist. The one presented in (15.14) is suitable
for planning problems such as those expressed in Chapter 14. If the cost-to-go
functions are time-dependent, then the HJB equation is

min
u∈U(x)

{

l(x, u, t) +
∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi
fi(x, u, t)

}

= 0, (15.16)

and G∗ is a function of both x and t. This can be derived again using a Taylor
expansion, but with x and t treated as the variables. Most textbooks on optimal
control theory present the HJB equation in this form or in a slightly different form
by pulling ∂G∗/∂t outside of the min and moving it to the right of the equation:

min
u∈U(x)

{

l(x, u, t) +
n∑

i=1

∂G∗

∂xi
fi(x, u, t)

}

= −∂G
∗

∂t
. (15.17)

In differential game theory, the HJB equation generalizes to the Hamilton-
Jacobi-Isaacs (HJI) equations [59, 477]. Suppose that the system is given as
(13.203) and a zero-sum game is defined using a cost term of the form l(x, u, v, t).
The HJI equations characterize saddle equilibria and are given as

min
u∈U(x)

max
v∈V (x)

{

l(x, u, v, t) +
∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi
fi(x, u, v, t)

}

= 0 (15.18)

and

max
v∈V (x)

min
u∈U(x)

{

l(x, u, v, t) +
∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi
fi(x, u, v, t)

}

= 0. (15.19)

There are clear similarities between these equations and (15.16). Also, the swap-
ping of the min and max operators resembles the definition of saddle points in
Section 9.3.

874 S. M. LaValle: Planning Algorithms

15.2.2 Linear-Quadratic Problems

This section briefly describes a problem for which the HJB equation can be directly
solved to yield a closed-form expression, as opposed to an algorithm that computes
numerical approximations. Suppose that a linear system is given by (13.37), which
requires specifying the matrices A and B. The task is to design a feedback plan
that asymptotically stabilizes the system from any initial state. This is an infinite-
horizon problem, and no termination action is applied.

An optimal solution is requested with respect to a cost functional based on
matrix quadratic forms. Let Q be a nonnegative definite4 n×n matrix, and let R
be a positive definite n× n matrix. The quadratic cost functional is defined as

L(x̃, ũ) =
1

2

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt. (15.20)

To guarantee that a solution exists that yields finite cost, several assumptions must
be made on the matrices. The pair (A,B) must be stabilizable, and (A,Q) must
be detectable; see [28] for specific conditions and a full derivation of the solution
presented here.

Although it is not done here, the HJB equation can be used to derive the
algebraic Riccati equation,

SA+ ATS − SBR−1BTS +Q = 0, (15.21)

in which all matrices except S were already given. Methods exist that solve for S,
which is a unique solution in the space of nonnegative definite n× n matrices.

The linear vector field

ẋ =
(
A−BR−1BTS

)
x (15.22)

is asymptotically stable (the real parts of all eigenvalues of the matrix are nega-
tive). This vector field is obtained if u is selected using a feedback plan π defined
as

π(x) = −R−1BTSx. (15.23)

The feedback plan π is in fact optimal, and the optimal cost-to-go is simply

G∗(x) = 1
2
xTSx. (15.24)

Thus, for linear systems with quadratic cost, an elegant solution exists without
resorting to numerical approximations. Unfortunately, the solution techniques do
not generalize to nonlinear systems or linear systems among obstacles. Hence, the
planning methods of Chapter 14 are justified.

However, many variations and extensions of the solutions given here do exist,
but only for other problems that are expressed as linear systems with quadratic

4Nonnegative definite means xTQx ≥ 0 for all x ∈ R, and positive definite means xTRx > 0
for all x ∈ Rn.

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 875

cost. In every case, some variant of Riccati equations is obtained by application
of the HJB equation. Solutions to time-varying systems are derived in [28]. If
there is Gaussian uncertainty in predictability, then the linear-quadratic Gaussian
(LQG) problem is obtained [564]. Linear-quadratic problems and solutions even
exist for differential games of the form (13.204) [59].

15.2.3 Pontryagin’s Minimum Principle

Pontryagin’s minimum principle5 is closely related to the HJB equation and pro-
vides conditions that an optimal trajectory must satisfy. Keep in mind, however,
that the minimum principle provides necessary conditions, but not sufficient con-
ditions, for optimality. In contrast, the HJB equation offered sufficient conditions.
Using the minimum principle alone, one is often not able to conclude that a tra-
jectory is optimal. In some cases, however, it is quite useful for finding candidate
optimal trajectories. Any trajectory that fails to satisfy the minimum principle
cannot be optimal.

To understand the minimum principle, we first return to the case of discrete
planning. As mentioned previously, the minimum principle is essentially given by
(15.7). This can be considered as a specialization of the HJB equation to the
special case of applying the optimal action u∗. This causes the min to disappear,
but along with it the global properties of the HJB equation also vanish. The
minimum principle expresses conditions along the optimal trajectory, as opposed
to the cost-to-go function over the whole state space. Therefore, it can at best
assure local optimality in the space of possible trajectories.

The minimum principle for the continuous case is essentially given by (15.15),
which is the continuous-time counterpart to (15.7). However, it is usually ex-
pressed in terms of adjoint variables and a Hamiltonian function, in the spirit of
Hamiltonian mechanics from Section 13.4.4.

Let λ denote an n-dimensional vector of adjoint variables, which are defined as

λi =
∂G∗

∂xi
. (15.25)

The Hamiltonian function is defined as

H(x, u, λ) = l(x, u) +
n∑

i=1

λifi(x, u), (15.26)

which is exactly the expression inside of the min of the HJB equation (15.14) after
using the adjoint variable definition from (15.25). This can be compared to the
Hamiltonian given by (13.192) in Section 13.4.4 (p from that context becomes λ

5This is often called Pontryagin’s maximum principle, because Pontryagin originally defined it
as a maximization [801]. The Hamiltonian used in most control literature is negated with respect
to Pontryagin’s Hamiltonian; therefore, it becomes minimized. Both names are in common use.

876 S. M. LaValle: Planning Algorithms

here). The two are not exactly the same, but they both are motivated by the same
basic principles.

Under the execution of the optimal action trajectory ũ∗, the HJB equation
implies that

H(x(t), u∗(t), λ(t)) = 0 (15.27)

for all t ≥ 0. This is just an alternative way to express (15.15). The fact that H
remains constant appears very much like a conservation law, which was the basis
of Hamiltonian mechanics in Section 13.4.4. The use of the Hamiltonian in the
minimum principle is more general.

Using the HJB equation (15.14), the optimal action is given by

u∗(t) = argmin
u∈U(x)

{H(x(t), u(t), λ(t))} . (15.28)

In other words, the Hamiltonian is minimized precisely at u(t) = u∗(t).
The missing piece of information so far is how λ evolves over time. It turns

out that a system of the form

λ̇ = g(x, λ, u∗) (15.29)

can be derived by differentiating the Hamiltonian (or, equivalently, the HJB equa-
tion) with respect to x. This yields two coupled systems, ẋ = f(x, u∗) and (15.29).
These can in fact be interpreted as a single system in a 2n-dimensional phase space,
in which each phase vector is (x, λ). This is analogous to the phase interpretation
in Section 13.4.4 for Hamiltonian mechanics, which results in (13.198).

Remember that λ is defined in (15.25) just to keep track of the change in G∗. It
would be helpful to have an explicit form for (15.29). Suppose that u∗ is selected
by a feedback plan to yield u∗ = π∗(x). In this case, the Hamiltonian can be
interpreted as a function of only x and λ. Under this assumption, differentiating
the Hamiltonian (15.26) with respect to xi yields

∂l(x, π∗(x))

∂xi
+

n∑

j=1

∂λj
∂xi

fj(x, π
∗(x)) +

n∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
. (15.30)

This validity of this differentiation requires a technical lemma that asserts that
the derivatives of π(x) can be disregarded (see Lemma 3.3.1 of [95]). Also, it will
be assumed that U is convex in the arguments that follow, even though there exist
proofs of the minimum principle that do not require this.

The second term in (15.30) is actually λ̇i, although it is hard to see at first.
The total differential of λi with respect to the state is

dλi =
n∑

j=1

∂λi
∂xj

dxj. (15.31)

Dividing both sides by dt yields

dλi
dt

=
n∑

j=1

∂λi
∂xj

dxj
dt

=
n∑

j=1

∂λi
∂xj

ẋj. (15.32)

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 877

Each ẋj is given by the state transition equation: ẋj = fj(x, π
∗(x)). Therefore,

λ̇i =
dλi
dt

=
d

dt

∂G∗

∂xi
=

n∑

j=1

∂λi
∂xj

fj(x, π
∗(x)). (15.33)

Substituting (15.33) into (15.30) and setting the equation to zero (because the
Hamiltonian is zero along the optimal trajectory) yields

∂l(x, π∗(x))

∂xi
+ λ̇i +

n∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
= 0. (15.34)

Solving for λ̇i yields

λ̇i = −
∂l(x, π∗(x))

∂xi
−

n∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
. (15.35)

Conveniently, this is the same as

λ̇i = −
∂H

∂xi
, (15.36)

which yields the adjoint transition equation, as desired.
The transition equations given by ẋ = f(x, u) and (15.36) specify the evolution

of the system given by the minimum principle. These are analogous to Hamilton’s
equations (13.198), which were given in Section 13.4.4. The generalized momentum
in that context becomes the adjoint variables here.

When applying the minimum principle, it is usually required to use the fact
that the optimal action at all times must satisfy (15.28). Often, this is equivalently
expressed as

H(x(t), u∗(t), λ(t)) ≤ H(x(t), u(t), λ(t)), (15.37)

which indicates that the Hamiltonian increases or remains the same whenever
deviation from the optimal action occurs (the Hamiltonian cannot decrease).

Example 15.4 (Optimal Planning for the Double Integrator) Recall the
double integrator system from Example 13.3. Let q̈ = u, C = R, and U =
[−1, 1]∪ {uT}. Imagine a particle that moves in R. The action is a force in either
direction and has at most unit magnitude. The state transition equation is ẋ1 = x2
and ẋ2 = u, and X = R2. The task is to perform optimal motion planning between
any two states xI , xG ∈ X. From a given initial state xI , a goal state xG must be
reached in minimum time. The cost functional is defined in this case as l(x, u) = 1
for all x ∈ X and and u ∈ U such that u 6= uT .

Using (15.26), the Hamiltonian is defined as

H(x, u, λ) = 1 + λ1x2 + λ2u. (15.38)

878 S. M. LaValle: Planning Algorithms

The optimal action trajectory is obtained from (15.28) as

u∗(t) = argmin
u∈[−1,1]

{1 + λ1(t)x2(t) + λ2(t)u(t)} . (15.39)

If λ2(t) < 0, then u∗(t) = 1, and if λ2(t) > 0, then u∗(t) = −1. Thus, the action
may be assigned as u∗(t) = −sgn(λ2(t)), if λ2(t) 6= 0. Note that these two cases
are the “bangs” of the bang-bang control from Section 14.6.3, and they are also
the extremal actions used for the planning algorithm in Section 14.4.1. At the
boundary case in which λ2(t) = 0, any action in [−1, 1] may be chosen.

The only remaining task is to determine the values of the adjoint variables
over time. The adjoint transition equation is obtained from (15.36) as λ̇1 = 0 and
λ̇2 = −λ1. The solutions are λ1(t) = c1 and λ2(t) = c2−c1t, in which c1 and c2 are
constants that can be determined at t = 0 from (15.38) and (15.39). The optimal
action depends only on the sign of λ2(t). Since its solution is the equation of a
line, it can change signs at most once. Therefore, there are four possible kinds of
solutions, depending on the particular xI and xG:

1. Pure acceleration, u∗(t) = 1, is applied for all time.

2. Pure deceleration, u∗(t) = −1, is applied for all time.

3. Pure acceleration is applied up to some time t′ and is followed immediately
by pure deceleration until the final time.

4. Pure deceleration is applied up to some time t′ followed immediately by pure
acceleration until the final time.

For the last two cases, t′ is often called the switching time, at which point a dis-
continuity in ũ∗ occurs. These two are bang-bang solutions, which were described
in Section 14.6.3. �

This was one of the simplest possible examples, and the optimal solution was
easily found because the adjoint variables are linear functions of time. Section 15.3
covers optimal solutions for the Dubins car, the Reeds-Shepp car, and the differ-
ential drive, all of which can be established using the minimum principle combined
with some geometric arguments. As systems become more complicated, such anal-
ysis is unfortunately too difficult. In these cases, sampling-based methods, such
as those of Chapter 14, must be used to determine optimal trajectories.

One common complication is the existence of singular arcs along the solution
trajectory. These correspond to a degeneracy in H with respect to u over some
duration of time. This could be caused, for example, by having H independent of
u. In Example 15.4, H became independent of u when λ2(t) = 0; however, there
was no singular arc because this could only occur for an instant of time. If the
duration had been longer, then there would be an interval of time over which the
optimal action could not be determined. In general, if the Hessian (recall definition

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 879

from (8.48)) of H with respect to u is a positive definite matrix, then there are no
singular arcs (this is often called the Legendre-Clebsch condition). The minimum
principle in this case provides a sufficient condition for local optimality in the
space of possible state trajectories. If the Hessian is not positive definite for some
interval [t1, t2] with t1 < t2, then additional information is needed to determine
the optimal trajectory over the singular arc from x∗(t1) to x

∗(t2).

Note that all of this analysis ignores the existence of obstacles. There is noth-
ing to prevent the solutions from attempting to enter an obstacle region. The
action set U(x) and cost l(x, u) can be adjusted to account for obstacles; however,
determining an optimal solution from the minimum principle becomes virtually
impossible, except in some special cases.

There are other ways to derive the minimum principle. Recall from Section
13.4.4 that Hamilton’s equations can be derived from the Euler-Lagrange equa-
tion. It should not be surprising that the minimum principle can also be derived
using variational principles [95, 789]. The minimum principle can also be inter-
preted as a form of constrained optimization. This yields the interpretation of
λ as Lagrange multipliers. A very illuminating reference for further study of the
minimum principle is Pontryagin’s original works [801].

Time optimality Interesting interpretations of the minimum principle exist for
the case of optimizing the time to reach the goal [424, 903]. In this case, l(x, u) = 1
in (15.26), and the cost term can be ignored. For the remaining portion, let λ be
defined as

λi = −
∂G∗

∂xi
, (15.40)

instead of using (15.25). In this case, the Hamiltonian can be expressed as

H(x, u, λ) =
n∑

i=1

λifi(x, u) =

〈

−∂G
∗

∂x
, f(x, u)

〉

, (15.41)

which is an inner product between f(x, u) and the negative gradient of G∗. Using
(15.40), the Hamiltonian should be maximized instead of minimized (this is equiv-
alent to Pontryagin’s original formulation [801]). An inner product of two vectors
increases as their directions become closer to parallel. Optimizing (15.41) amounts
to selecting u so that ẋ is as close as possible to the direction of steepest descent
of G∗. This is nicely interpreted by considering how the boundary of the reachable
set R(x0,U , t) propagates through X. By definition, the points on ∂R(x0,U , t)
must correspond to time-optimal trajectories. Furthermore, ∂R(x0,U , t) can be
interpreted as a propagating wavefront that is perpendicular to −∂G∗/∂x. The
minimum principle simply indicates that u should be chosen so that ẋ points into
the propagating boundary, as close to being orthogonal as possible [424].

880 S. M. LaValle: Planning Algorithms

15.3 Optimal Paths for Some Wheeled Vehicles

For some of the wheeled vehicle models of Section 13.1.2, the shortest path between
any pair of configurations was completely characterized. In this section, X = C =
R2 × S1, which corresponds to the C-space for a rigid body in the plane. For
each model, the path length in C must be carefully defined to retain some physical
significance in the world W = R2 in which the vehicle travels. For example, in
the case of the simple car, the distance in W traveled by the center of the rear
axle will be optimized. If the coordinate frame is assigned appropriately, this
corresponds to optimizing the path length in the R2 subspace of C while ignoring
orientation. Keep in mind that the solutions given in this section depend heavily
on the particular cost functional that is optimized.

Sections 15.3.1–15.3.3 cover the shortest paths for the Dubins car, the Reeds-
Shepp car, and a differential-drive model, respectively. In each case, the paths
can be elegantly described as combinations of a few motion primitives. Due to
symmetries, it is sufficient to describe the optimal paths from a fixed initial con-
figuration qI = (0, 0, 0) to any goal configuration qG ∈ C. If the optimal path is
desired from a different qI ∈ C, then it can be recovered from rigid-body transfor-
mations applied to qI and qG (the whole path can easily be translated and rotated
without effecting its optimality, provided that qG does not move relative to qI).
Alternatively, it may be convenient to fix qG and consider optimal paths from all
possible qI .

Once qI (or qG) is fixed, C can be partitioned into cells that correspond to sets
of placements for qG (or qI). Inside of each cell, the optimal curve is described by
a fixed sequence of parameterized motion primitives. For example, one cell for the
Dubins car indicates “turn left,” “go straight,” and then “turn right.” The curves
are ideally suited for use as an LPM in a sampling-based planning algorithm.

This section mainly focuses on presenting the solutions. Establishing their cor-
rectness is quite involved and is based in part on Pontryagin’s minimum principle
from Section 15.2.3. Other important components are Filipov’s existence theorem
(see [903]) and Boltyanskii’s sufficient condition for optimality (which also justi-
fies dynamic programming) [130]. Substantially more details and justifications of
the curves presented in Sections 15.3.1 and 15.3.2 appear in [903, 904, 923]. The
corresponding details for the curves of Section 15.3.3 appear in [64].

15.3.1 Dubins Curves

Recall the Dubins version of the simple car given in Section 13.1.2. The system
was specified in (13.15). It is assumed here that the car moves at constant forward
speed, us = 1. The other important constraint is the maximum steering angle
φmax, which results in a minimum turning radius ρmin. As the car travels, consider
the length of the curve in W = R2 traced out by a pencil attached to the center
of the rear axle. This is the location of the body-frame origin in Figure 13.1. The
task is to minimize the length of this curve as the car travels between any qI and

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 881

Symbol Steering: u

S 0
L 1
R -1

Figure 15.3: The three motion primitives from which all optimal curves for the
Dubins car can be constructed.

qG. Due to ρmin, this can be considered as a bounded-curvature shortest-path
problem. If ρmin = 0, then there is no curvature bound, and the shortest path
follows a straight line in R2. In terms of a cost functional of the form (8.39), the
criterion to optimize is

L(q̃, ũ) =

∫ tF

0

√

ẋ(t)2 + ẏ(t)2dt, (15.42)

in which tF is the time at which qG is reached, and a configuration is denoted as
q = (x, y, θ). If qG is not reached, then it is assumed that L(q̃, ũ) =∞.

Since the speed is constant, the system can be simplified to

ẋ = cos θ

ẏ = sin θ

θ̇ = u,

(15.43)

in which u is chosen from the interval U = [− tanφmax, tanφmax]. This implies
that (15.42) reduces to optimizing the time tF to reach qG because the integrand
reduces to 1. For simplicity, assume that tanφ = 1. The following results also
hold for any φmax ∈ (0, π/2).

It was shown in [294] that between any two configurations, the shortest path
for the Dubins car can always be expressed as a combination of no more than
three motion primitives. Each motion primitive applies a constant action over an
interval of time. Furthermore, the only actions that are needed to traverse the
shortest paths are u ∈ {−1, 0, 1}. The primitives and their associated symbols are
shown in Figure 15.3. The S primitive drives the car straight ahead. The L and
R primitives turn as sharply as possible to the left and right, respectively. Using
these symbols, each possible kind of shortest path can be designated as a sequence
of three symbols that corresponds to the order in which the primitives are applied.
Let such a sequence be called a word . There is no need to have two consecutive
primitives of the same kind because they can be merged into one. Under this
observation, ten possible words of length three are possible. Dubins showed that
only these six words are possibly optimal:

{LRL, RLR, LSL, LSR, RSL, RSR}. (15.44)

The shortest path between any two configurations can always be characterized by
one of these words. These are called the Dubins curves.

882 S. M. LaValle: Planning Algorithms

α

γ

d
Rα

Sd

Lγ

qGqI
α

γ

Rγ

Rα

qG
qI

Lβ

β

RαSdLγ RαLβRγ

Figure 15.4: The trajectories for two words are shown in W = R2.

To be more precise, the duration of each primitive should also be specified.
For L or R, let a subscript denote the total amount of rotation that accumulates
during the application of the primitive. For S, let a subscript denote the total
distance traveled. Using such subscripts, the Dubins curves can be more precisely
characterized as

{LαRβ Lγ, Rα Lβ Rγ, Lα Sd Lγ, Lα SdRγ, Rα Sd Lγ , Rα SdRγ}, (15.45)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0. Figure 15.4 illustrates two cases.
Note that β must be greater than π (if it is less, then some other word becomes
optimal).

It will be convenient to invent a compressed form of the words to group together
paths that are qualitatively similar. This will be particularly valuable when Reeds-
Shepp curves are introduced in Section 15.3.2 because there are 46 of them, as
opposed to 6 Dubins curves. Let C denote a symbol that means “curve,” and
represents either R or L. Using C, the six words in (15.44) can be compressed to
only two base words:

{CCC, CSC}. (15.46)

In this compressed form, remember that two consecutive Cs must be filled in by
distinct turns (RR and LL are not allowed as subsequences). In compressed form,
the base words can be specified more precisely as

{CαCβ Cγ, Cα SdCγ}, (15.47)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0.
Powerful information has been provided so far for characterizing the shortest

paths; however, for a given qI and qG, two problems remain:

1. Which of the six words in (15.45) yields the shortest path between qI and
qG?

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 883

y

x

LSR RSL

RSL LSR

LSL

RSR

LRL

RLR

Figure 15.5: A slice at θ = π of the partition into word-invariant cells for the
Dubins car. The circle is centered on the origin.

2. What are the values of the subscripts, α, β, γ, and d for the particular word?

To use the Dubins curves as an LPM, these questions should be answered effi-
ciently. One simple approach is to try all six words and choose the shortest one.
The parameters for each word can be determined by tracing out minimum-radius
circles from qI and qG, as shown in Figure 14.23. Another way is to use the precise
characterization of the regions over which a particular word is optimal. Suppose
that qG is fixed at (0, 0, 0). Based on the possible placements of qI , the C-space
can be partitioned into cells for which the same word is optimal. The cells and
their boundaries are given precisely in [903]. As an example, a slice of the cell
decomposition for θ = π is shown in Figure 15.5.

In addition to use as an LPM, the resulting cost of the shortest path may be
a useful distance function in many sampling-based planning algorithms. This is
sometimes called the Dubins metric (it is not, however, a true metric because it
violates the symmetry axiom). This can be considered as the optimal cost-to-go
G∗. It could have been computed approximately using the dynamic programming
approach in Section 14.5; however, thanks to careful analysis, the exact values are
known. One interesting property of the Dubins metric is that it is discontinuous;
see Figure 15.6. Compare the cost of traveling π/2 using the R primitive to the
cost of traveling to a nearby point that would require a smaller turning radius
than that achieved by the R primitive. The required action does not exist in U ,
and the point will have to be reached by a longer sequence of primitives. The
discontinuity in G∗ is enabled by the fact that the Dubins car fails to possess the
STLC property from Section 15.1.3. For STLC systems, G∗ is continuous.

884 S. M. LaValle: Planning Algorithms

Figure 15.6: Level sets of the Dubins metric are shown in the plane. Along two
circular arcs, the metric is discontinuous (courtesy of Philippe Souères).

15.3.2 Reeds-Shepp Curves

Now consider the shortest paths of the Reeds-Shepp car. The only difference in
comparison to the Dubins car is that travel in the reverse direction is now allowed.
The same criterion (15.42) is optimized, which is the distance traveled by the
center of the rear axle. The shortest path is equivalent to the path that takes
minimum time, as for the Dubins car. The simplified system in (15.43) can be
enhanced to obtain

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u1u2,

(15.48)

in which u1 ∈ {−1, 1} and u2 ∈ [− tanφmax, tanφmax]. The first action variable,
u1, selects the gear, which is forward (u1 = 1) or reverse (u1 = −1). Once again,
assume for simplicity that u2 ∈ [−1, 1]. The results stated here apply to any
φmax ∈ (0, π/2).

It was shown in [814] that there are no more than 48 different words that
describe the shortest paths for the Reeds-Shepp car. The base word notation from
Section 15.3.1 can be extended to nicely express the shortest paths. A new symbol,
“ | ”, is used in the words to indicate that the “gear” is shifted from forward to
reverse or reverse to forward. Reeds and Shepp showed that the shortest path for
their car can always be expressed with one of the following base words:

{C|C|C, CC|C, C|CC, CSC, CCβ|Cβ C, C|Cβ Cβ|C,
C|Cπ/2SC, CSCπ/2|C, C|Cπ/2SCπ/2|C}.

(15.49)

As many as five primitives could be needed to execute the shortest path. A
subscript of π/2 is given in some cases because the curve must be followed for
precisely π/2 radians. For some others, β is given as a subscript to indicate that
it must match the parameter of another primitive. The form given in (15.49)

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 885

Base α β γ d

Cα|Cβ|Cγ [0, π] [0, π] [0, π] −
Cα|CβCγ [0, β] [0, π/2] [0, β] −
CαCβ|Cγ [0, β] [0, π/2] [0, β] −
CαSdCγ [0, π/2] - [0, π/2] (0,∞)
CαCβ|CβCγ [0, β] [0, π/2] [0, β] −
Cα|CβCβ|Cγ [0, β] [0, π/2] [0, β] −
Cα|Cπ/2SdCπ/2|Cγ [0, π/2] - [0, π/2] (0,∞)
Cα|Cπ/2SdCγ [0, π/2] - [0, π/2] (0,∞)
CαSdCπ/2|Cγ [0, π/2] - [0, π/2] (0,∞)

Figure 15.7: The interval ranges are shown for each motion primitive parameter
for the Reeds-Shepp optimal curves.

Symbol Gear: u1 Steering: u2

S+ 1 0
S− -1 0
L+ 1 1
L− -1 1
R+ 1 -1
R− -1 -1

Figure 15.8: The six motion primitives from which all optimal curves for the
Reeds-Shepp car can be constructed.

is analogous to (15.46) for the Dubins car. The parameter ranges can also be
specified, to yield a form analogous to (15.47). The result is shown in Figure 15.7.
Example curves for two cases are shown in Figure 15.9.

Now the base words will be made more precise by specifying the particular
motion primitive. Imagine constructing a list of words analogous to (15.44) for
the Dubins car. There are six primitives as shown in Figure 15.8. The symbols
S, L, and R are used again. To indicate the forward or reverse gear, + and −
superscripts will be used as shown in Figure 15.8.6

Figure 15.10 shows 48 different words, which result from uncompressing the
base words expressed using C, S, and “ | ” in (15.49). Each shortest path is a
word with length at most five. There are substantially more words than for the
Dubins car. Each base word in (15.49) expands into four or eight words using the
motion primitives. To uncompress each base word, the rule that R and L cannot
be applied consecutively is maintained. This yields four possibilities for the first

6This differs conceptually from the notation used in [903]. There, r− corresponds to L− here.
The L here means that the steering wheel is positioned for a left turn, but the car is in reverse.
This aids in implementing the rule that R and L cannot be consecutive in a word.

886 S. M. LaValle: Planning Algorithms

α

γ

qG
qI

β

R+
α R+

γ

L−
β

Figure 15.9: An example of the R+
αL

−
βR

+
γ curve. This uses reverse to generate a

curve that is shorter than the one in Figure 15.4b for the Dubins car.

six compressed words. The remaining three involve an intermediate S primitive,
which allows eight possible sequences of Rs and Ls for each one. Two of the 48
words were eliminated in [923]. Each of the remaining 46 words can actually occur
for a shortest path and are called the Reeds-Shepp curves.

For use as an LPM, the problem appears once again of determining the partic-
ular word and parameters for a given qI and qG. This was not difficult for Dubins
curves, but now there are 46 possibilities. The naive approach of testing every
word and choosing the shortest one may be too costly. The precise cell boundaries
in C over which each word applies are given in [903]. The cell boundaries are un-
fortunately quite complicated, which makes the point location algorithm difficult
to implement. A simple way to prune away many words from consideration is
to use intervals of validity for θ. For some values of θ, certain compressed words
are impossible as shortest paths. A convenient table of words that become active
over ranges of θ is given in [903]. Once again, the length of the shortest path can
serve as a distance function in sampling-based planning algorithms. The resulting
Reeds-Shepp metric is continuous because the Reeds-Shepp car is STLC, which
will be established in Section 15.4.

15.3.3 Balkcom-Mason Curves

In recent years, two more families of optimal curves have been determined [64, 211].
Recall the differential-drive system from Section 13.1.2, which appears in many
mobile robot systems. In many ways, it appears that the differential drive is
a special case of the simple car. The expression of the system given in (13.17)
can be made to appear identical to the Reeds-Shepp car system in (15.48). For
example, letting r = 1 and L = 1 makes them equivalent by assigning uω = u1 and

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 887

Base word Sequences of motion primitives
C|C|C (L+R−L+)(L−R+L−)(R+L−R+)(R−L+R−)
CC|C (L+R+L−)(L−R−L+)(R+L+R−)(R−L−R+)
C|CC (L+R−L−)(L−R+L+)(R+L−R−)(R−L+R+)
CSC (L+S+L+)(L−S−L−)(R+S+R+)(R−S−R−)

(L+S+R+)(L−S−R−)(R+S+L+)(R−S−L−)
CCβ|Cβ C (L+R+

β L
−
βR

−)(L−R−
β L

+
βR

+)(R+L+
βR

−
β L

−)(R−L−
βR

+
β L

+)

C|Cβ Cβ|C (L+R−
β L

−
βR

+)(L−R+
β L

+
βR

−)(R+L−
βR

−
β L

+)(R−L+
βR

+
β L

−)

C|Cπ/2SC (L+R−
π/2S

−R−)(L−R+
π/2S

+R+)(R+L−
π/2S

−L−)(R−L+
π/2S

+L+)

(L+R−
π/2S

−L−)(L−R+
π/2S

+L+) (R+L−
π/2S

−R−)(R−L+
π/2S

+R+)

CSCπ/2|C (L+S+L+
π/2R

−)(L−S−L−
π/2R

+)(R+S+R+
π/2L

−)(R−S−R−
π/2L

+)

(R+S+L+
π/2R

−)(R−S−L−
π/2R

+)(L+S+R+
π/2L

−)(L−S−R−
π/2L

+)

C|Cπ/2SCπ/2|C (L+R−
π/2S

−L−
π/2R

+)(L−R+
π/2S

+L+
π/2R

−)

(R+L−
π/2S

−R−
π/2L

+)(R−L+
π/2S

+R+
π/2L

−)

Figure 15.10: The 48 curves of Reeds and Shepp. Sussmann and Tang [923] showed
that (L−R+L−) and (R−L+R−), which appear in the first row, can be eliminated.
Hence, only 46 words are needed to describe the shortest paths.

uψ = u1u2. Consider the distance traveled by a point attached to the center of the
differential-drive axle using (15.42). Minimizing this distance for any qI and qG is
trivial, as shown in Figure 13.4 of Section 13.1.2. The center point can be made to
travel in a straight line in W = R2. This would be possible for the Reeds-Shepp
car if ρmin = 0, which implies that φmax = π/2. It therefore appeared for many
years that no interesting curves exist for the differential drive.

The problem, however, with measuring the distance traveled by the axle cen-
ter is that pure rotations are cost-free. This occurs when the wheels rotate at
the same speed but with opposite angular velocities. The center does not move;
however, the time duration, energy expenditure, and wheel rotations that occur
are neglected. By incorporating one or more of these into the cost functional, a
challenging optimization arises. Balkcom and Mason bounded the speed of the
differential drive and minimized the total time that it takes to travel from qI to
qG. Using (13.16), the action set is defined as U = [−1, 1] × [−1, 1], in which the
maximum rotation rate of each wheel is one (an alternative bound can be used
without loss of generality). The criterion to optimize is

L(q̃, ũ) =

∫ tF

0

√

ẋ(t)2 + ẏ(t)2 + |θ̇(t)|dt, (15.50)

which takes θ into account, whereas it was neglected in (15.42). This criterion is
once again equivalent to minimizing the time to reach qG. The resulting model will
be referred to as the Balkcom-Mason drive. An alternative criterion is the total
amount of wheel rotation; this leads to an alternative family of optimal curves
[211].

888 S. M. LaValle: Planning Algorithms

Symbol Left wheel: ul Right wheel: ur

⇑ 1 1
⇓ -1 -1
x -1 1
y 1 -1

Figure 15.11: The four motion primitives from which all optimal curves for the
differential-drive robot can be constructed.

It was shown in [64] that only the four motion primitives shown in Figure
15.11 are needed to express time-optimal paths for the differential-drive robot.
Each primitive corresponds to holding one action variable fixed at its limit for an
interval of time. Using the symbols in Figure 15.11 (which were used in [64]),
words can be formed that describe the optimal path. It has been shown that the
word length is no more than five. Thus, any shortest paths may be expressed as a
piecewise-constant action trajectory in which there are no more than five pieces.
Every piece corresponds to one of the primitives in Figure 15.11.

It is convenient in the case of the Balkcom-Mason drive to use the same sym-
bols for both base words and for precise specification of primitives. Symmetry
transformations will be applied to each base word to yield a family of eight words
that precisely specify the sequences of motion primitives. Nine base words describe
the shortest paths:

{y, ⇓, ⇓y, y⇓y, ⇑xπ⇓, x⇓y, ⇓yy, x⇓y⇑, ⇑x⇓y⇑}. (15.51)

This is analogous to the compressed forms given in (15.46) and (15.49). The
motions are depicted in Figure 15.12.

Figure 15.13 shows 40 distinct Balkcom-Mason curves that result from apply-
ing symmetry transformations to the base words of (15.51). There are 72 entries
in Figure 15.13, but many are identical. The transformation T1 indicates that
the directions of ⇑ and ⇓ are flipped from the base word. The transformation T2
reverses the order of the motion primitives. The transformation T3 flips the direc-
tions of x and y. The transformations commute, and there are seven possible
ways to combine them, which contributes to a row of Figure 15.13.

To construct an LPM or distance function, the same issues arise as for the
Reeds-Shepp and Dubins cars. Rather than testing all 40 words to find the shortest
path, simple tests can be defined over which a particular word becomes active [64].
A slice of the precise cell decomposition and the resulting optimal cost-to-go (which
can be called the Balkcom-Mason metric) are shown in Figure 15.14.

15.4 Nonholonomic System Theory

This section gives some precision to the term nonholonomic, which was used loosely
in Chapters 13 and 14. Furthermore, small-time controllability (STLC), which

15.4. NONHOLONOMIC SYSTEM THEORY 889

Figure 15.12: Each of the nine base words is depicted [64]. The last two are only
valid for small motions; they are magnified five times and the robot outline is not
drawn.

Base T1 T2 T3 T2 ◦ T1 T3 ◦ T1 T3 ◦ T2 T3 ◦ T2 ◦ T1
A. y y y x y x x x

B. ⇓ ⇑ ⇓ ⇓ ⇑ ⇑ ⇓ ⇑
C. ⇓y ⇑y y⇓ ⇓x y⇑ ⇑x x⇓ x⇑
D. y⇓y y⇑y y⇓y x⇓x y⇑y x⇑x x⇓x x⇑x
E. ⇑xπ⇓ ⇓xπ⇑ ⇓xπ⇑ ⇑yπ⇓ ⇑xπ⇓ ⇓yπ⇑ ⇓yπ⇑ ⇑yπ⇓
F. x⇓y x⇑y y⇓x y⇓x y⇑x y⇑x x⇓y x⇑y
G. ⇓y⇑ ⇑y⇓ ⇑y⇓ ⇓x⇑ ⇓y⇑ ⇑x⇓ ⇑x⇓ ⇓x⇑
H. x⇓y⇑ x⇑y⇓ ⇑y⇓x y⇓x⇑ ⇓y⇑x y⇑x⇓ ⇑x⇓y ⇓x⇑y
I. ⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇑y⇓x⇑ ⇓y⇑x⇓ ⇓y⇑x⇓ ⇑x⇓y⇑ ⇓x⇑y⇓

Figure 15.13: The 40 optimal curve types for the differential-drive robot, sorted
by symmetry class [64].

890 S. M. LaValle: Planning Algorithms

Figure 15.14: A slice of the optimal curves is shown for qI = (x, y, π
4
) and qG =

(0, 0, 0) [64]. Level sets of the optimal cost-to-go G∗ are displayed. The coordinates
correspond to a differential drive with r = L = 1 in (13.16).

was defined in Section 15.1.3, is addressed. The presentation given here barely
scratches the surface of this subject, which involves deep mathematical principles
from differential geometry, algebra, control theory, and mechanics. The intention
is to entice the reader to pursue further study of these topics; see the suggested
literature at the end of the chapter.

15.4.1 Control-Affine Systems

Nonholonomic system theory is restricted to a special class of nonlinear systems.
The techniques of Section 15.4 utilize ideas from linear algebra. The main concepts
will be formulated in terms of linear combinations of vector fields on a smooth
manifold X. Therefore, the formulation is restricted to control-affine systems,
which were briefly introduced in Section 13.2.3. For these systems, ẋ = f(x, u) is
of the form

ẋ = h0(x) +
m∑

i=1

hi(x)ui, (15.52)

in which each hi is a vector field on X.

The vector fields are expressed using a coordinate neighborhood of X. Usually,
m < n, in which n is the dimension of X. Unless otherwise stated, assume that
U = Rm. In some cases, U may be restricted.

15.4. NONHOLONOMIC SYSTEM THEORY 891

Each action variable ui ∈ R can be imagined as a coefficient that determines
how much of hi(x) is blended into the result ẋ. The drift term h0(x) always remains
and is often such a nuisance that the driftless case will be the main focus. This
means that h0(x) = 0 for all x ∈ X, which yields

ẋ =
m∑

i=1

hi(x)ui. (15.53)

The driftless case will be used throughout most of this section. The set h1, . . .,
hm, is referred to as the system vector fields. It is essential that U contains at
least an open set that contains the origin of Rm. If the origin is not contained in
U , then the system is no longer driftless.7

Control-affine systems arise in many mechanical systems. Velocity constraints
on the C-space frequently are of the Pfaffian form (13.5). In Section 13.1.1, it was
explained that under such constraints, a configuration transition equation (13.6)
can be derived that is linear if q is fixed. This is precisely the driftless form (15.53)
using X = C. Most of the models in Section 13.1.2 can be expressed in this form.
The Pfaffian constraints on configuration are often called kinematic constraints
because they arise due to the kinematics of bodies in contact, such as a wheel
rolling. The more general case of (15.52) for a phase space X arises from dynamic
constraints that are obtained from Euler-Lagrange equation (13.118) or Hamilton’s
equations (13.198) in the formulation of the mechanics. These constraints capture
conservation laws, and the drift term usually appears due to momentum.

Example 15.5 (A Simplified Model for Differential Drives and Cars) Both
the simple-car and the differential-drive models of Section 13.1.2 can be expressed
in the form (15.53) after making simplifications. The simplified model, (15.48),
can be adapted to conveniently express versions of both of them by using different
restrictions to define U . The third equation of (15.48) can be reduced to θ̇ = u2
without affecting the set of velocities that can be achieved. To conform to (15.53),
the equations can then be written in a linear-algebra form as





ẋ
ẏ

θ̇



 =





cos θ
sin θ
0



u1 +





0
0
1



u2. (15.54)

This makes it clear that there are two system vector fields, which can be combined
by selecting the scalar values u1 and u2. One vector field allows pure translation,
and the other allows pure rotation. Without restrictions on U , this system be-
haves like a differential drive because the simple car cannot execute pure rotation.
Simulating the simple car with (15.54) requires restrictions on U (such as requiring
that u1 be 1 or −1, as in Section 15.3.2). This is equivalent to the unicycle from
Figure 13.5 and (13.18).

7Actually, if the convex hull of U contains an open set that contains the origin, then a driftless
system can be simulated by rapid switching.

892 S. M. LaValle: Planning Algorithms

Note that (15.54) can equivalently be expressed as




ẋ
ẏ

θ̇



 =





cos θ 0
sin θ 0
0 1





(
u1
u2

)

(15.55)

by organizing the vector fields into a matrix. �

In (15.54), the vector fields were written as column vectors that combine lin-
early using action variables. This suggested that control-affine systems can be
alternatively expressed using matrix multiplication in (15.55). In general, the
vector fields can be organized into an n×m matrix as

H(x) =
[
h1(x) h2(x) · · · hm(x)

]
. (15.56)

In the driftless case, this yields

ẋ = H(x) u (15.57)

as an equivalent way to express (15.53)
It is sometimes convenient to work with Pfaffian constraints,

g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0, (15.58)

instead of a state transition equation. As indicated in Section 13.1.1, a set of k
independent Pfaffian constraints can be converted into a state transition equation
with m = (n − k) action variables. The resulting state transition equation is
a driftless control-affine system. Thus, Pfaffian constraints provide a dual way
of specifying driftless control-affine systems. The k Pfaffian constraints can be
expressed in matrix form as

G(x) ẋ = 0, (15.59)

which is the dual of (15.57), and G(x) is a k × n matrix formed from the gi
coefficients of each Pfaffian constraint. Systems with drift can be expressed in a
Pfaffian-like form by constraints

g0(x) + g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0. (15.60)

15.4.2 Determining Whether a System Is Nonholonomic

The use of linear algebra in Section 15.4.1 suggests further development of alge-
braic concepts. This section briefly introduces concepts that resemble ordinary
linear algebra but apply to linear combinations of vector fields. This provides
the concepts and tools needed to characterize important system properties in the
remainder of this section. This will enable the assessment of whether a system is
nonholonomic and also whether it is STLC. Many of the constructions are named
after Sophus Lie (pronounced “lee”), a mathematician who in the nineteenth cen-
tury contributed many ideas to algebra and geometry that happen to be relevant in
the study of nonholonomic systems (although that application came much later).

15.4. NONHOLONOMIC SYSTEM THEORY 893

15.4.2.1 Completely integrable or nonholonomic?

Every control-affine system must be one or the other (not both) of the following:

1. Completely integrable: This means that the Pfaffian form (15.59) can be
obtained by differentiating k equations of the form fi(x) = 0 with respect
to time. This case was interpreted as being trapped on a surface in Section
13.1.3. An example of being trapped on a circle in R2 was given in (13.22).

2. Nonholonomic: This means that the system is not completely integrable.
In this case, it might even be possible to reach all of X, even if the number
of action variables m is much smaller than n, the dimension of X.

In this context, the term holonomic is synonymous with completely integrable,
and nonintegrable is synonymous with nonholonomic. The term nonholonomic is
sometimes applied to non-Pfaffian constraints [588]; however, this will be avoided
here, in accordance with mechanics literature [112].

The notion of integrability used here is quite different from that required for
(14.1). In that case, the state transition equation needed to be integrable to obtain
integral curves from any initial state. This was required for all systems considered
in this book. By contrast, complete integrability implies that the system can be
expressed without even using derivatives. This means that all integral curves can
eventually be characterized by constraints that do not involve derivatives.

To help understand complete integrability, the notion of an integral curve will
be generalized from one to m dimensions. A manifold M ⊆ X is called an integral
manifold of a set of Pfaffian constraints if at every x ∈M , all vectors in the tangent
space Tx(M) satisfy the constraints. For a set of completely integrable Pfaffian
constraints, a partition of X into integral manifolds can be obtained by defining
maximal integral manifolds from every x ∈ X. The resulting partition is called a
foliation, and the maximal integral manifolds are called leaves [872].

Example 15.6 (A Foliation with Spherical Leaves) As an example, sup-
pose X = Rn and consider the Pfaffian constraint

x1ẋ1 + x2ẋ2 + · · · xnẋn = 0. (15.61)

This is completely integrable because it can be obtained by differentiating the
equation of a sphere,

x21 + x22 + · · · x2n − r2 = 0, (15.62)

with respect to time (r is a constant). The particular sphere that is obtained
via integration depends on an initial state. The foliation is the collection of all
concentric spheres that are centered at the origin. For example, if X = R3, then a
maximal integral manifold arises for each point of the form (0, 0, r). In each case,
it is a sphere of radius r. The foliation is generated by selecting every r ∈ [0,∞).
�

894 S. M. LaValle: Planning Algorithms

The task in this section is to determine whether a system is completely inte-
grable. Imagine someone is playing a game with you. You are given an control-
affine system and asked to determine whether it is completely integrable. The
person playing the game with you can start with equations of the form hi(x) = 0
and differentiate them to obtain Pfaffian constraints. These can then be converted
into the parametric form to obtain the state transition equation (15.53). It is easy
to construct challenging problems; however, it is very hard to solve them. The
concepts in this section can be used to determine only whether it is possible to
win such a game. The main tool will be the Frobenius theorem, which concludes
whether a system is completely integrable. Unfortunately, the conclusion is ob-
tained without producing the integrated constraints hi(x) = 0. Therefore, it is
important to keep in mind that “integrability” does not mean that you can inte-
grate it to obtain a nice form. This is a challenging problem of reverse engineering.
On the other hand, it is easy to go in the other direction by differentiating the
constraints to make a challenging game for someone else to play.

15.4.2.2 Distributions

A distribution8 expresses a set of vector fields on a smooth manifold. Suppose
that a driftless control-affine system (15.53) is given. Recall the vector space defi-
nition from Section 8.3.1 or from linear algebra. Also recall that a state transition
equation can be interpreted as a vector field if the actions are fixed and as a vector
space if the state is instead fixed. For U = Rm and a fixed x ∈ X, the state
transition equation defines a vector space in which each hi evaluated at x is a
basis vector and each ui is a coefficient. For example, in (15.54), the vector fields
h1 and h2 evaluated at q = (0, 0, 0) become [1 0 0]T and [0 0 1]T , respectively.
These serve as the basis vectors. By selecting values of u ∈ R2, a 2D vector space
results. Any vector of the form [a 0 b]T can be represented by setting u1 = a and
u2 = b. More generally, let △(x) denote the vector space obtained in this way for
any x ∈ X.

The dimension of a vector space is the number of independent basis vectors.
Therefore, the dimension of △(x) is the rank of H(x) from (15.56) when evaluated
at the particular x ∈ X. Now consider defining △(x) for every x ∈ X. This yields
a parameterized family of vector spaces, one for each x ∈ X. The result could
just as well be interpreted as a parameterized family of vector fields. For example,
consider actions for i from 1 to m of the form ui = 1 and uj = 0 for all i 6= j. If
the action is held constant over all x ∈ X, then it selects a single vector field hi
from the collection of m vector fields:

ẋ = hi(x). (15.63)

Using constant actions, an m-dimensional vector space can be defined in which
each vector field hi is a basis vector (assuming the hi are linearly independent),

8This distribution has nothing to do with probability theory. It is just an unfortunate coin-
cidence of terminology.

15.4. NONHOLONOMIC SYSTEM THEORY 895

and the ui ∈ R are the coefficients:

u1h1(x) + u2h2(x) + · · ·+ umhm(x). (15.64)

This idea can be generalized to allow the ui to vary over X. Thus, rather than
having u constant, it can be interpreted as a feedback plan π : X → U , in which
the action at x is given by u = π(x). The set of all vector fields that can be
obtained as

π1(x)h1(x) + π2(x)h2(x) + · · ·+ πm(x)hm(x) (15.65)

is called the distribution of the set {h1, . . . , hm} of vector fields and is denoted as
△. If △ is obtained from an control-affine system, then △ is called the system
distribution. The resulting set of vector fields is not quite a vector space because
the nonzero coefficients πi do not necessarily have a multiplicative inverse. This
is required for the coefficients of a vector field and was satisfied by using R in the
case of constant actions. A distribution is instead considered algebraically as a
module [469]. In most circumstances, it is helpful to imagine it as a vector space
(just do not try to invert the coefficients!). Since a distribution is almost a vector
space, the span notation from linear algebra is often used to define it:

△ = span{h1, h2, . . . , hm}. (15.66)

Furthermore, it is actually a vector space with respect to constant actions u ∈ Rm.
Note that for each fixed x ∈ X, the vector space △(x) is obtained, as defined
earlier. A vector field f is said to belong to a distribution △ if it can be expressed
using (15.65). If for all x ∈ X, the dimension of △(x) is m, then △ is called a
nonsingular distribution (or regular distribution). Otherwise, △ is called a singular
distribution, and the points x ∈ X for which the dimension of △(x) is less than m
are called singular points. If the dimension of △(x) is a constant c over all x ∈ X,
then c is called the dimension of the distribution and is denoted by dim(△). If
the vector fields are smooth, and if π is restricted to be smooth, then a smooth
distribution is obtained, which is a subset of the original distribution.

As depicted in Figure 15.15, a nice interpretation of the distribution can be
given in terms of the tangent bundle of a smooth manifold. The tangent bundle
was defined for X = Rn in (8.9) and generalizes to any smooth manifold X to
obtain

T (X) =
⋃

x∈X
Tx(X). (15.67)

The tangent bundle is a 2n-dimensional manifold in which n is the dimension of X.
A phase space for which x = (q, q̇) is actually T (C). In the current setting, each
element of T (X) yields a state and a velocity, (x, ẋ). Which pairs are possible for
a driftless control-affine system? Each △(x) indicates the set of possible ẋ values
for a fixed x. The point x is sometimes called the base and △(x) is called the
fiber over x in T (X). The distribution △ simply specifies a subset of Tx(X) for
every x ∈ X. For a vector field f to belong to △, it must satisfy f(x) ∈ △(x)
for all x ∈ X. This is just a restriction to a subset of T (X). If m = n and the

896 S. M. LaValle: Planning Algorithms

X x

Tx(X)

T (X)

△
△(x)

Figure 15.15: The distribution △ can be imagined as a slice of the tangent bundle
T (X). It restricts the tangent space at every x ∈ X.

system vector fields are independent, then any vector field is allowed. In this case,
△ includes any vector field that can be constructed from the vectors in T (X).

Example 15.7 (The Distribution for the Differential Drive) The system
in (15.54) yields a two-dimensional distribution:

△ = span{[cos θ sin θ 0]T , [0 0 1]T}. (15.68)

The distribution is nonsingular because for any (x, y, θ) in the coordinate neigh-
borhood, the resulting vector space △(x, y, θ) is two-dimensional. �

Example 15.8 (A Singular Distribution) Consider the following system,
which is given in [478]:





ẋ1
ẋ2
ẋ3



 = h1(x)u1 + h2(x)u2 + h3(x)u3

=





x1
1 + x3

1



u1 +





x1x2
(1 + x3)x2

x2



u2 +





x1
x1
0



u3.

(15.69)

The distribution is
△ = span{h1, h2, h3}. (15.70)

The first issue is that for any x ∈ R3, h2(x) = h1(x)x2, which implies that the
vector fields are linearly dependent over all of R3. Hence, this distribution is
singular because m = 3 and the dimension of ∆(x) is 2 if x1 6= 0. If x1 = 0, then
the dimension of ∆(x) drops to 1. The dimension of △ is not defined because the
dimension of ∆(x) depends on x. �

15.4. NONHOLONOMIC SYSTEM THEORY 897

q(0) q(∆t)

q(2∆t)

x

y

q(2∆t)

q(4∆t)

q(3∆t)

y

x

(a) (b)

Figure 15.16: (a) The effect of the first two primitives. (b) The effect of the last
two primitives.

A distribution can alternatively be defined directly from Pfaffian constraints.
Each gi(x) = 0 is called an annihilator because enforcing the constraint eliminates
many vector fields from consideration. At each x ∈ X, △(x) is defined as the
set of all velocity vectors that satisfy all k Pfaffian constraints. The constraints
themselves can be used to form a codistribution, which is a kind of dual to the
distribution. The codistribution can be interpreted as a vector space in which each
constraint is a basis vector. Constraints can be added together or multiplied by
any c ∈ R, and there is no effect on the resulting distribution of allowable vector
fields.

15.4.2.3 Lie brackets

The key to establishing whether a system is nonholonomic is to construct mo-
tions that combine the effects of two action variables, which may produce motions
in a direction that seems impossible from the system distribution. To motivate
the coming ideas, consider the differential-drive model from (15.54). Apply the
following piecewise-constant action trajectory over the interval [0, 4∆t]:

u(t) =







(1, 0) for t ∈ [0,∆t)
(0, 1) for t ∈ [∆t, 2∆t)
(−1, 0) for t ∈ [2∆t, 3∆t)
(0,−1) for t ∈ [3∆t, 4∆t] .

(15.71)

The action trajectory is a sequence of four motion primitives: 1) translate forward,
2) rotate forward, 3) translate backward, and 4) rotate backward.

898 S. M. LaValle: Planning Algorithms

The result of all four motion primitives in succession from qI = (0, 0, 0) is
shown in Figure 15.16. It is fun to try this at home with an axle and two wheels
(Tinkertoys work well, for example). The result is that the differential drive moves
sideways!9 From the transition equation (15.54) such motions appear impossible.
This is a beautiful property of nonlinear systems. The state may wiggle its way in
directions that do not seem possible. A more familiar example is parallel parking a
car. It is known that a car cannot directly move sideways; however, some wiggling
motions can be performed to move it sideways into a tight parking space. The
actions we perform while parking resemble the primitives in (15.71).

Algebraically, the motions of (15.71) appear to be checking for commutativity.
Recall from Section 4.2.1 that a group G is called commutative (or Abelian) if
ab = ba for any a, b ∈ G. A commutator is a group element of the form aba−1b−1.
If the group is commutative, then aba−1b−1 = e (the identity element) for any
a, b ∈ G. If a nonidentity element of G is produced by the commutator, then the
group is not commutative. Similarly, if the trajectory arising from (15.71) does not
form a loop (by returning to the starting point), then the motion primitives do not
commute. Therefore, a sequence of motion primitives in (15.71) will be referred to
as the commutator motion. It will turn out that if the commutator motion cannot
produce any velocities not allowed by the system distribution, then the system is
completely integrable. This means that if we are trapped on a surface, then it is
impossible to leave the surface by using commutator motions.

Now generalize the differential drive to any driftless control-affine system that
has two action variables:

ẋ = f(x)u1 + g(x)u2. (15.72)

Using the notation of (15.53), the vector fields would be h1 and h2; however, f
and g are chosen here to allow subscripts to denote the components of the vector
field in the coming explanation.

Suppose that the commutator motion (15.71) is applied to (15.72) as shown in
Figure 15.17. Determining the resulting motion requires some general computa-
tions, as opposed to the simple geometric arguments that could be made for the
differential drive. If would be convenient to have an expression for the velocity
obtained in the limit as ∆t approaches zero. This can be obtained by using Tay-
lor series arguments. These are simplified by the fact that the action history is
piecewise constant.

The coming derivation will require an expression for ẍ under the application of
a constant action. For each action, a vector field of the form ẋ = h(x) is obtained.
Upon differentiation, this yields

ẍ =
dh

dt
=
∂h

∂x

dx

dt
=
∂h

dx
ẋ =

∂h

dx
h(x). (15.73)

This follows from the chain rule because h is a function of x, which itself is a
function of t. The derivative ∂h/∂x is actually an n × n Jacobian matrix, which

9It also moves slightly forward; however, this can be eliminated by either lengthening the
time of the third primitive or by considering the limit as ∆ approaches zero.

15.4. NONHOLONOMIC SYSTEM THEORY 899

−g

−f

g

f
x(∆t)

x(2∆t)

x(0)

x(3∆t)

Figure 15.17: The velocity obtained by the Lie bracket can be approximated by a
sequence of four motion primitives.

is multiplied by the vector ẋ. To further clarify (15.73), each component can be
expressed as

ẍi =
d

dt
hi(x(t)) =

n∑

j=1

∂hi
∂xj

hj. (15.74)

Now the state trajectory under the application of (15.71) will be determined
using the Taylor series, which was given in (14.17). The state trajectory that
results from the first motion primitive u = (1, 0) can be expressed as

x(∆t) = x(0) + ∆t ẋ(0) + 1
2
(∆t)2 ẍ(0) + · · ·

= x(0) + ∆t f(x(0)) +
1

2
(∆t)2

∂f

∂x

∣
∣
∣
x(0)

f(x(0)) + · · · ,
(15.75)

which makes use of (15.73) in the second line. The Taylor series expansion for the
second primitive is

x(2∆t) = x(∆t) + ∆t g(x(∆t)) +
1

2
(∆t)2

∂g

∂x

∣
∣
∣
x(∆t)

g(x(∆t)) + · · · . (15.76)

An expression for g(x(∆t)) can be obtained by using the Taylor series expansion
in (15.75) to express x(∆t). The first terms after substitution and simplification
are

x(2∆t) = x(0) + ∆t (f + g) + (∆t)2
(
1

2

∂f

∂x
f +

∂g

∂x
f +

1

2

∂g

∂x
g

)

+ · · · . (15.77)

To simplify the expression, the evaluation at x(0) has been dropped from every
occurrence of f and g and their derivatives.

The idea of substituting previous Taylor series expansions as they are needed
can be repeated for the remaining two motion primitives. The Taylor series ex-
pansion for the result after the third primitive is

x(3∆t) = x(0) + ∆t g + (∆t)2
(
∂g

∂x
f − ∂f

∂x
g +

1

2

∂g

∂x
g

)

+ · · · . (15.78)

900 S. M. LaValle: Planning Algorithms

Finally, the Taylor series expansion after all four primitives have been applied is

x(4∆t) = x(0) + (∆t)2
(
∂g

∂x
f − ∂f

∂x
g

)

+ · · · . (15.79)

Taking the limit yields

lim
∆t→0

x(4∆t)− x(0)
(∆t)2

=
∂g

∂x
f − ∂f

∂x
g, (15.80)

which is called the Lie bracket of f and g and is denoted by [f, g]. Similar to
(15.74), the ith component can be expressed as

[f, g]i =
n∑

j=1

(

fj
∂gi
∂xj
− gj

∂fi
∂xj

)

. (15.81)

The Lie bracket is an important operation in many subjects, and is related to the
Poisson and Jacobi brackets that arise in physics and mathematics.

Example 15.9 (Lie Bracket for the Differential Drive) The Lie bracket should
indicate that sideways motions are possible for the differential drive. Consider tak-
ing the Lie bracket of the two vector fields used in (15.54). Let f = [cos θ sin θ 0]T

and g = [0 0 1]T . Rename h1 and h2 to f and g to allow subscripts to denote the
components of a vector field.

By applying (15.81), the Lie bracket [f, g] is

[f, g]1 = f1
∂g1
∂x
− g1

∂f1
∂x

+ f2
∂g1
∂y
− g2

∂f1
∂y

+ f3
∂g1
∂θ
− g3

∂f1
∂θ

= sin θ

[f, g]2 = f1
∂g2
∂x
− g1

∂f2
∂x

+ f2
∂g2
∂y
− g2

∂f2
∂y

+ f3
∂g2
∂θ
− g3

∂f2
∂θ

= − cos θ

[f, g]3 = f1
∂g3
∂x
− g1

∂f3
∂x

+ f2
∂g3
∂y
− g2

∂f3
∂y

+ f3
∂g3
∂θ
− g3

∂f3
∂θ

= 0.

(15.82)

The resulting vector field is [f, g] = [sin θ − cos θ 0]T , which indicates the side-
ways motion, as desired. When evaluated at q = (0, 0, 0), the vector [0 − 1 0]T

is obtained. This means that performing short commutator motions wiggles the
differential drive sideways in the −y direction, which we already knew from Figure
15.16. �

Example 15.10 (Lie Bracket of Linear Vector Fields) Suppose that each
vector field is a linear function of x. The n × n Jacobians ∂f/∂x and ∂g/∂x are
constant.

15.4. NONHOLONOMIC SYSTEM THEORY 901

As a simple example, recall the nonholonomic integrator (13.43). In the linear-
algebra form, the system is





ẋ1
ẋ2
ẋ3



 =





1
0
−x2



u1 +





0
1
x1



u2. (15.83)

Let f = h1 and g = h2. The Jacobian matrices are

∂f

∂x
=





0 0 0
0 0 0
0 −1 0



 and
∂g

∂x
=





0 0 0
0 0 0
1 0 0



 . (15.84)

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =





0 0 0
0 0 0
1 0 0









1
0
−x2



−





0 0 0
0 0 0
0 −1 0









0
1
−x1



 =





0
0
2



 . (15.85)

This result can be verified using (15.81).
�

15.4.2.4 The Frobenius Theorem

The Lie bracket is the only tool needed to determine whether a system is com-
pletely integrable (holonomic) or nonholonomic (not integrable). Suppose that a
system of the form (15.53) is given. Using the m system vector fields h1, . . ., hm
there are (m2) Lie brackets of the form [hi, hj] for i < j that can be formed. A
distribution △ is called involutive [133] if for each of these brackets there exist m
coefficients ck ∈ R such that

[hi, hj] =
m∑

k=1

ckhk. (15.86)

In other words, every Lie bracket can be expressed as a linear combination of the
system vector fields, and therefore it already belongs to △. The Lie brackets are
unable to escape △ and generate new directions of motion. We did not need to
consider all n2 possible Lie brackets of the system vector fields because it turns
out that [hi, hj] = −[hj, hi] and consequently [hi, hi] = 0. Therefore, the definition
of involutive is not altered by looking only at the (m2) pairs.

If the system is smooth and the distribution is nonsingular, then the Frobenius
theorem immediately characterizes integrability:

A system is completely integrable if and only if it is involutive.

902 S. M. LaValle: Planning Algorithms

Proofs of the Frobenius theorem appear in numerous differential geometry and
control theory books [133, 156, 478, 846]. There also exist versions that do not
require the distribution to be nonsingular.

Determining integrability involves performing Lie brackets and determining
whether (15.86) is satisfied. The search for the coefficients can luckily be avoided
by using linear algebra tests for linear independence. The n × m matrix H(x),
which was defined in (15.56), can be augmented into an n× (m+1) matrix H ′(x)
by adding [hi, hj] as a new column. If the rank of H ′(x) is m + 1 for any pair
hi and hj, then it is immediately known that the system is nonholonomic. If the
rank of H ′(x) is m for all Lie brackets, then the system is completely integrable.
Driftless linear systems, which are expressed as ẋ = Bu for a fixed matrix B, are
completely integrable because all Lie brackets are zero.

Example 15.11 (The Differential Drive Is Nonholonomic) For the differ-
ential drive model in (15.54), the Lie bracket [f, g] was determined in Example 15.9
to be [sin θ − cos θ 0]T . The matrix H ′(q), in which q = (x, y, θ), is

H ′(q) =





cos θ 0 sin θ
sin θ 0 − cos θ
0 1 0



 . (15.87)

The rank of H ′(q) is 3 for all q ∈ C (the determinant of H ′(q) is 1). Therefore, by
the Frobenius theorem, the system is nonholonomic. �

Example 15.12 (The Nonholonomic Integrator Is Nonholonomic) We would
hope that the nonholonomic integrator is nonholonomic. In Example 15.10, the
Lie bracket was determined to be [0 0 2]T . The matrix H ′(q) is

H ′(q) =





1 0 0
0 1 0
−x2 x1 2



 , (15.88)

which clearly has full rank for all q ∈ C. �

Example 15.13 (Trapped on a Sphere) Suppose that the following system
is given: 



ẋ1
ẋ2
ẋ3



 =





x2
−x1
0



u1 +





x3
0
−x1



u2, (15.89)

for which X = R3 and U = R2. Since the vector fields are linear, the Jacobians
are constant (as in Example 15.10):

∂f

∂x
=





0 1 0
−1 0 0
0 0 0



 and
∂g

∂x
=





0 0 1
0 0 0
−1 0 0



 . (15.90)

15.4. NONHOLONOMIC SYSTEM THEORY 903

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =





0 0 1
0 0 0
−1 0 0









x2
−x1
0



−





0 1 0
−1 0 0
0 0 0









x3
0
−x1



 =





0
x3
−x2



 . (15.91)

This yields the matrix

H ′(x) =





x2 −x1 0
x3 0 −x1
0 x3 −x2



 . (15.92)

The determinant is zero for all x ∈ R3, which means that [f, g] is never linearly
independent of f and g. Therefore, the system is completely integrable.10

The system can actually be constructed by differentiating the equation of a
sphere. Let

f(x) = x21 + x22 + x23 − r2 = 0, (15.93)

and differentiate with respect to time to obtain

x1ẋ1 + x2ẋ2 + x3ẋ3 = 0, (15.94)

which is a Pfaffian constraint. A parametric representation of the set of vectors
that satisfy (15.94) is given by (15.89). For each (u1, u2) ∈ R2, (15.89) yields a
vector that satisfies (15.94). Thus, this was an example of being trapped on a
sphere, which we would expect to be completely integrable. It was difficult, how-
ever, to suspect this using only (15.89). �

15.4.3 Determining Controllability

Determining complete integrability is the first step toward determining whether
a driftless control-affine system is STLC. The Lie bracket attempts to produce
motions in directions that do not seem to be allowed by the system distribution.
At each q, a velocity not in △(q) may be produced by the Lie bracket. By work-
ing further with Lie brackets, it is possible to completely characterize all of the
directions that are possible from each q. So far, the Lie brackets have only been
applied to the system vector fields h1, . . ., hm. It is possible to proceed further by
applying Lie bracket operations on Lie brackets. For example, [h1, [h1, h2]] can be
computed. This might generate a vector field that is linearly independent of all
of the vector fields considered in Section 15.4.2 for the Frobenius theorem. The
main idea in this section is to apply the Lie bracket recursively until no more
independent vector fields can be found. The result is called the Lie algebra. If the
number of independent vector fields obtained in this way is the dimension of X,
then it turns out that the system is STLC.

10This system is singular at the origin. A variant of the Frobenius theorem given here is
technically needed.

904 S. M. LaValle: Planning Algorithms

15.4.3.1 The Lie algebra

The notion of a Lie algebra is first established in general. Let V be any vector
space with coefficients in R. In V , the vectors can be added or multiplied by
elements of R; however, there is no way to “multiply” two vectors to obtain a
third. The Lie algebra introduces a product operation to V . The product is called
a bracket or Lie bracket (considered here as a generalization of the previous Lie
bracket) and is denoted by [·, ·] : V × V → V .

To be a Lie algebra obtained from V , the bracket must satisfy the following
three axioms:

1. Bilinearity: For any a, b ∈ R and u, v, w ∈ V ,

[au+ bv, w] = a[u, w] + b[v, w]

[u, av + bw] = a[u, w] + b[u, w].
(15.95)

2. Skew symmetry: For any u, v ∈ V ,

[u, v] = −[v, u]. (15.96)

This means that the bracket is anti-commutative.

3. Jacobi identity: For any u, v, w ∈ V ,

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0. (15.97)

Note that the bracket is not even associative.

Let L(V) denote the Lie algebra of V . This is a vector space that includes all
elements of V and any new elements that can be obtained via Lie bracket oper-
ations. The Lie algebra L(V) includes every vector that can be obtained from
any finite number of nested Lie bracket operations. Thus, describing a Lie algebra
requires characterizing all vectors that are obtained under the algebraic closure of
the bracket operation. Since L(V) is a vector space, this is accomplished by find-
ing a basis of independent vectors of which all elements of L(V) can be expressed
as a linear combination.

Example 15.14 (The Vector Cross Product) Let V be the vector space
over R3 that is used in vector calculus. The basis elements are often denoted as ı̂,
̂, and k̂. A bracket for this vector space is simply the cross product

[u, v] = u× v. (15.98)

It can be verified that the required axioms of a Lie bracket are satisfied.
One interesting property of the cross product that is exploited often in analytic

geometry is that it produces a vector outside of the span of u and v. For example,
let W be the two-dimensional subspace of vectors

W = span{̂ı, ̂}. (15.99)

15.4. NONHOLONOMIC SYSTEM THEORY 905

The cross product always yields a vector that is a multiple of k̂, which lies outside
of V if the product is nonzero. This behavior is very similar to constructing vector
fields that lie outside of △ using the Lie bracket in Section 15.4.2. �

Example 15.15 (Lie Algebra on Lie Groups) Lie groups are the most im-
portant application of the Lie algebra concepts. Recall from Section 4.2.1 the
notion of a matrix group. Important examples throughout this book have been
SO(n) and SE(n). If interpreted as a smooth manifold, these matrix groups are
examples of Lie groups [63]. In general, a Lie group G is both a differentiable
manifold and a group with respect to some operation ◦ if and only if:

1. The product a ◦ b, interpreted as a function from G×G→ G, is smooth.

2. The inverse a−1, interpreted as a function from G to G, is smooth.

The two conditions are needed to prevent the group from destroying the nice
properties that come with the smooth manifold. An important result in the study
of Lie groups is that all compact finite-dimensional Lie groups can be represented
as matrix groups.

For any Lie group, a Lie algebra can be defined on a special set of vector fields.
These are defined using the left translation mapping Lg : x 7→ gx. The vector
field formed from the differential of Lg is called a left-invariant vector field. A
Lie algebra can be defined on the set of these fields. The Lie bracket definition
depends on the particular group. For the case of GL(n), the Lie bracket is

[A,B] = AB − BA. (15.100)

In this case, the Lie bracket clearly appears to be a test for commutativity. If
the matrices commute with respect to multiplication, then the Lie bracket is zero.
The Lie brackets for SO(n) and SE(n) are given in many texts on mechanics and
control [156, 846]. The Lie algebra of left-invariant vector fields is an important
structure in the study of nonlinear systems and mechanics. �

15.4.3.2 Lie algebra of the system distribution

Now suppose that a set h1, . . ., hm of vector fields is given as a driftless control-
affine system, as in (15.53). Its associated distribution △ is interpreted as a vector
space with coefficients in R, and the Lie bracket operation was given by (15.81).
It can be verified that the Lie bracket operation in (15.81) satisfies the required
axioms for a Lie algebra.

As observed in Examples 15.9 and 15.10, the Lie bracket may produce vector
fields outside of△. By defining the Lie algebra of△ to be all vector fields that can
be obtained by applying Lie bracket operations, a potentially larger distribution
L(△) is obtained. The Lie algebra can be expressed using the span notation by
including h1, . . ., hm and all independent vector fields generated by Lie brackets.
Note that no more than n independent vector fields can possibly be produced.

906 S. M. LaValle: Planning Algorithms

Example 15.16 (The Lie Algebra of the Differential Drive) The Lie al-
gebra of the differential drive (15.54) is

L(△) = span{[cos θ sin θ 0]T , [0 0 1]T , [sin θ − cos θ 0]T}. (15.101)

This uses the Lie bracket that was computed in (15.82) to obtain a three-dimensional
Lie algebra. No further Lie brackets are needed because the maximum number of
independent vector fields has been already obtained. �

Example 15.17 (A Lie Algebra That Involves Nested Brackets) The pre-
vious example was not very interesting because the Lie algebra was generated after
computing only one bracket. Suppose that X = R5 and U = R2. In this case,
there is room to obtain up to three additional, linearly independent vector fields.
The dimension of the Lie algebra may be any integer from 2 to 5.

Let the system be








ẋ1
ẋ2
ẋ3
ẋ4
ẋ5









=









1
0
x2
x3
x4









u1 +









0
1
0
0
0









u2. (15.102)

This is a chained-form system, which is a concept that becomes important in
Section 15.5.2.

The first Lie bracket produces

[h1, h2] = [0 0 − 1 0 0]T . (15.103)

Other vector fields that can be obtained by Lie brackets are

[h1, [h1, h2]] = [0 0 0 1 0]T (15.104)

and
[h1, [h1, [h1, h2]]] = [0 0 0 0 1]T . (15.105)

The resulting five vector fields are independent over all x ∈ R5. This includes
h1, h2, and the three obtained from Lie bracket operations. Independence can be
established by placing them into a 5× 5 matrix,









1 0 0 0 0
0 1 0 0 0
x2 0 −1 0 0
x3 0 0 1 0
x4 0 0 0 1









, (15.106)

which has full rank for all x ∈ R5. No additional vector fields can possibly be
independent. Therefore, the five-dimensional Lie algebra is

L(△) = span{h1, h2, [h1, h2], [h1, [h1, h2]], [h1, [h1, [h1, h2]]]}. (15.107)

�

15.4. NONHOLONOMIC SYSTEM THEORY 907

15.4.3.3 Philip Hall basis of a Lie algebra

Determining the basis of a Lie algebra may be a long and tedious process. The
combinations of Lie brackets in Example 15.17 were given; however, it is not
known in advance which ones will produce independent vector fields. Numerous Lie
brackets may be needed, including some that are nested, such as [[h1, h2], h3]. The
maximum depth of nested Lie bracket operations is not known a priori. Therefore,
a systematic search must be performed (this can in fact be modeled as a discrete
planning problem) by starting with h1, . . ., hm and iteratively generating new,
independent vector fields using Lie brackets.

One popular approach is to generate the Philip Hall basis (or P. Hall basis) of
the Lie algebra L(△). The construction of the basis essentially follows breadth-
first search, in which the search depth is defined to be the number of nested levels
of bracket operations. The order (or depth) d of a Lie product is defined recursively
as follows. For the base case, let d(hi) = 1 for any of the system vector fields. For
any Lie product [φ1, φ2], let

d([φ1, φ2]) = d(φ1) + d(φ2). (15.108)

Thus, the order is just the nesting depth (plus one) of the Lie bracket operations.
For example, d([h1, h2]) = 2 and d([h1, [h2, h3]]) = 3.

In addition to standard breadth-first search, pruning should be automatically
performed to ensure that the skew symmetry and Jacobi identities are always
utilized to eliminate redundancy. A P. Hall basis is a sequence, PH = (φ1, φ2,
. . .), of Lie products for which:

1. The system vector fields hi are the first m elements of PH.

2. If d(φi) < d(φj), then i < j.

3. Each [φi, φj] ∈ PH if and only if: a) φi, φj ∈ PH and i < j, and b) either
φj = hi for some i or φj = [φl, φr] for some φl, φr ∈ PH such that l ≤ i.

It is shown in many algebra books (e.g., [861]) that this procedure results in a
basis for the Lie algebra L(△). Various algorithms for computing the basis are
evaluated in [299].

Example 15.18 (P. Hall Basis Up to Depth Three) The P. Hall basis sorts
the Lie products into the following sequence, which is obtained up to depth d = 3:

h1, h2, h3,
[h1, h2], [h2, h3], [h1, h3],
[h1, [h1, h2]], [h1, [h1, h3]], [h2, [h1, h2]], [h2, [h1, h3]],
[h2, [h2, h3]], [h3, [h1, h2]], [h3, [h1, h3]], [h3, [h2, h3]] .

So far, the only Lie product eliminated by the Jacobi identity is [h1, [h2, h3]] be-
cause

[h1, [h2, h3]] = [h2, [h1, h3]]− [h3, [h1, h2]]. (15.109)

908 S. M. LaValle: Planning Algorithms

Note that all of the Lie products given here may not be linearly independent vector
fields. For a particular system, linear independence tests should be performed to
delete any linearly dependent vector fields from the basis. �

When does the sequence PH terminate? Recall that dim(L(△)) can be no
greater than n, because Lx(△) ⊆ Tx(X). In other words, at every state x ∈ X,
the number of possible independent velocity vectors is no more than the dimension
of the tangent space at x. Therefore, PH can be terminated once n independent
vector fields are obtained because there is no possibility of finding more. For
some systems, there may be a depth k after which all Lie brackets are zero. Such
systems are called nilpotent of order k. This occurs, for example, if all components
of all vector fields are polynomials. If the system is not nilpotent, then achieving
termination may be difficult. It may be the case that dim(L(△)) is strictly less
than n, but this is usually not known in advance. It is difficult to determine
whether more Lie brackets are needed to increase the dimension or the limit has
already been reached.

15.4.3.4 Controllability of driftless systems

The controllability of a driftless control-affine system (15.53) can be characterized
using the Lie algebra rank condition (or LARC). Recall the definition of STLC
from Section 15.1.3. Assume that either U = Rm or U at least contains an open
set that contains the origin of Rm. The Chow-Rashevskii theorem [112, 156, 846]
states:

A driftless control-affine system, (15.53), is small-time locally controllable (STLC)
at a point x ∈ X if and only if dim(Lx(△)) = n, the dimension of X.

If the condition holds for every x ∈ X, then the whole system is STLC. In-
tegrability can also be expressed in terms of dim(L(△)). Assume as usual that
m < n. The three cases are:

1. dim(L(△)) = m the system is completely integrable;
2. m < dim(L(△)) < n the system is nonholonomic, but not STLC;
3. dim(L(△)) = n the system is nonholonomic and STLC.

(15.110)

Example 15.19 (Controllability Examples) The differential drive, nonholo-
nomic integrator, and the system from Example 15.17 are all STLC by the Chow-
Rashevskii theorem because dim(L(△)) = n. This implies that the state can be
changed in any direction, even though there are differential constraints. The state
can be made to follow arbitrarily close to any smooth curve in X. A method
that achieves this based on the Lie algebra is given in Section 15.5.1. The fact
that these systems are STLC assures the existence of an LPM that satisfies the

15.4. NONHOLONOMIC SYSTEM THEORY 909

topological property of Section 14.6.2. �

15.4.3.5 Handling Control-Affine Systems with Drift

Determining whether a system with drift (15.52), is STLC is substantially more
difficult. Imagine a mechanical system, such as a hovercraft, that is moving at
a high speed. Due to momentum, it is impossible from most states to move in
certain directions during an arbitrarily small interval of time. One can, however,
ask whether a system is STLC from a state x ∈ X for which h0(x) = 0. For
a mechanical system, this usually means that it starts at rest. If a system with
drift is STLC, this intuitively means that it can move in any direction by hovering
around states that are close to zero velocity for the mechanical system.

The Lie algebra techniques can be extended to determine controllability for sys-
tems with drift; however, the tools needed are far more complicated. See Chapter
7 of [156] for more complete coverage. Even if dim(L(△)) = n, it does not nec-
essarily imply that the system is STLC. It does at least imply that the system is
accessible, which motivates the definition given in Section 15.1.3. Thus, the set of
achievable velocities still has dimension n; however, motions in all directions may
not be possible due to drift. To obtain STLC, a sufficient condition is that the set
of possible values for ẋ contains an open set that contains the origin.

The following example clearly illustrates the main difficultly with establishing
whether a system with drift is STLC.

Example 15.20 (Accessible, Not STLC) The following simple system clearly
illustrates the difficulty caused by drift and was considered in [741]. Let X = R2,
U = R, and the state transition equation be

ẋ1 = u

ẋ2 = x21.
(15.111)

This system is clearly not controllable in any sense because x2 cannot be decreased.
The vector fields are h0(x) = [0 x21]

T and h1(x) = [1 0]T . The first independent
Lie bracket is

[h1, [h0, h1]] = [0 − 2]. (15.112)

The two-dimensional Lie algebra is

L(△) = span{h1, [h1, [h0, h1]]}, (15.113)

which implies that the system is accessible. It is not STLC, however, because the
bracket [h1, [h0, h1]] was constructed using h0 and was combined in an unfortunate
way. This bracket is indicating that changing x2 is possible; however, we already
know that it is not possible to decrease x2. Thus, some of the vector fields obtained
from Lie brackets that involve h0 may have directional constraints. �

910 S. M. LaValle: Planning Algorithms

In Example 15.20, [h1, [h0, h1]] was an example of a bad bracket [925] because
it obstructed controllability. A method of classifying brackets as good or bad has
been developed, and there exist theorems that imply whether a system with drift
is STLC by satisfying certain conditions on the good and bad brackets. Intuitively,
there must be enough good brackets to neutralize the obstructions imposed by the
bad brackets [156, 925].

15.5 Steering Methods for Nonholonomic Sys-

tems

This section briefly surveys some methods that solve the BVP for nonholonomic
systems. This can be considered as a motion planning problem under differential
constraints but in the absence of obstacles. For linear systems, optimal control
techniques can be used, as covered in Section 15.2.2. For mechanical systems
that are fully actuated, standard control techniques such as the acceleration-based
control model in (8.47) can be applied. If a mechanical system is underactuated,
then it is likely to be nonholonomic. As observed in Section 15.4, it is possible to
generate motions that appear at first to be prohibited. Suppose that by the Chow-
Rashevskii theorem, it is shown that a driftless system is STLC. This indicates
that it should be possible to design an LPM that successfully connects any pair
of initial and goal states. The next challenge is to find an action trajectory ũ
that actually causes xI to reach xG upon integration in (14.1). Many methods
in Chapter 14 could actually be used, but it is assumed that these would be too
slow. The methods in this section exploit the structure of the system (e.g, its
Lie algebra) and the fact that there are no obstacles to more efficiently solve the
planning problem.

15.5.1 Using the P. Hall Basis

The steering method presented in this section is due to Lafferriere and Sussmann
[574]. It is assumed here that a driftless control-affine system is given, in which
X is a Lie group, as introduced in Example 15.15. Furthermore, the system is
assumed to be STLC. The steering method sketched in this section follows from
the Lie algebra L(△). The idea is to apply piecewise-constant motion primitives
to move in directions given by the P. Hall basis. If the system is nilpotent, then
this method reaches the goal state exactly. Otherwise, it leads to an approximate
method that can be iterated to get arbitrarily close to the goal. Furthermore,
some systems are nilpotentizable by using feedback [442].

The main idea is to start with (15.53) and construct an extended system

ẋ =
s∑

i=1

bi(x)vi, (15.114)

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 911

in which each vi is an action variable, and bi is a vector field in PH, the P. Hall
basis. For every i ≤ m, each term of (15.114) is bi(x)vi = hi(x)ui, which comes
from the original system. For i > m, each bi represents a Lie product in PH, and
vi is a fictitious action variable. It is called fictitious because the velocity given
by bi for i > m cannot necessarily be achieved by using a single action variable of
the system. In general, s may be larger than n because at each x ∈ X a different
subset of PH may be needed to obtain n independent vectors. Also, including
more basis elements simplifies some of the coming computations.

Example 15.21 (Extended System for the Nonholonomic Integrator) The
extended system for the nonholonomic integrator (15.83) is





ẋ1
ẋ2
ẋ3



 =





1
0
−x2



 v1 +





0
1
x1



 v2 +





0
0
2



 v3. (15.115)

The first two terms correspond to the original system. The last term arises from
the Lie bracket [h1, h2]. Only one fictitious action variable is needed because the
three P. Hall vector fields are independent at every x ∈ X.

It is straightforward to move this system along a grid-based path in R3. Mo-
tions in the x1 and x2 directions are obtained by applying v1 = u1 and v2 = u2,
respectively. To move the system in the x3 direction, the commutator motion
in (15.71) should be performed. This corresponds to applying v3. The steering
method described in this section yields a generalization of this approach. Higher
degree Lie products can be used, and motion in any direction can be achieved. �

Suppose some xI and xG are given. There are two phases to the steering
method:

1. Determine an action trajectory ṽ for the extended system, for which x(0) =
xI and x(tF) = xG for some tF > 0.

2. Convert ṽ into an action trajectory ũ that eliminates the fictitious variables
and uses the actual m action variables u1, . . . , um.

The first phase is straightforward. For the extended system, any velocity in the
tangent space, Tx(X), can be generated. Start with any smooth path τ : [0, 1]→ X
such that τ(0) = xI and τ(1) = xG. The velocity τ̇(t) along the path τ is a velocity
vector in Tτ(t)(X) that can be expressed as a linear combination of the bi(τ(t))
vectors using linear algebra. The coefficients of this combination are the vi values.
The second phase is much more complicated and will be described shortly. If the
system is nilpotent, then ũ should bring the system precisely from xI to xG. By
the way it is constructed, it will also be clear how to refine ũ to come as close as
desired to the trajectory produced by ṽ.

912 S. M. LaValle: Planning Algorithms

Formal calculations The second phase is solved using formal algebraic com-
putations. This means that the particular vector fields, differentiation, manifolds,
and so on, can be ignored. The concepts involve pure algebraic manipulation.
To avoid confusion with previous definitions, the term formal will be added to
many coming definitions. Recall from Section 4.4.1 the formal definitions of the
algebra of polynomials (e.g., F[x1, . . . , xn]). Let A(y1, . . . , ym) denote the formal
noncommutative algebra11 of polynomials in the variables y1, . . ., ym. The yi here
are treated as symbols and have no other assumed properties (e.g, they are not
necessarily vector fields). When polynomials are multiplied in this algebra, no
simplifications can be made based on commutativity. The algebra can be con-
verted into a Lie algebra by defining a Lie bracket. For any two polynomials
p, q ∈ A(y1, . . . , ym), define the formal Lie bracket to be [p, q] = pq − qp. The
formal Lie bracket yields an equivalence relation on the algebra; this results in
a formal Lie algebra L(y1, . . . , ym) (there are many equivalent expressions for the
same elements of the algebra when the formal Lie bracket is applied). Nilpotent
versions of the formal algebra and formal Lie algebra can be made by forcing all
monomials of degree k + 1 to be zero. Let these be denoted by Ak(y1, . . . , ym)
and Lk(y1, . . . , ym), respectively. The P. Hall basis can be applied to obtain a
basis of the formal Lie algebra. Example 15.18 actually corresponds to the basis
of L3(h1, h2, h3) using formal calculations.

The exponential map The steering problem will be solved by performing cal-
culations on Lk(y1, . . . , ym). The formal power series of A(y1, . . . , ym) is the set of
all linear combinations of monomials, including those that have an infinite number
of terms. Similarly, the formal Lie series of L(y1, . . . , ym) can be defined.

The formal exponential map is defined for any p ∈ A(y1, . . . , ym) as

ep = 1 + p+
1

2!
p2 +

1

3!
p3 + · · · . (15.116)

In the nilpotent case, the formal exponential map is defined for any p ∈ Ak(y1, . . . , ym)
as

ep =
k∑

i=0

pi

i!
. (15.117)

The formal series is truncated because all terms with exponents larger than k
vanish.

A formal Lie group is constructed as

Gk(y1, . . . , ym) = {ep | p ∈ Lk(y1, . . . , ym)}. (15.118)

If the formal Lie algebra is not nilpotent, then a formal Lie group G(y1, . . . , ym)
can be defined as the set of all ep, in which p is represented using a formal Lie
series.

The following example is taken from [574]:

11Intuitively, being an algebra means that polynomials can be added and multiplied; for all of
the required axioms, see [469].

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 913

Example 15.22 (Formal Lie Groups) Suppose that the generators x and y
are given. Some elements of the formal Lie group G(x, y) are

ex = I + x+ 1
2
x2 + 1

6
x3 + · · · , (15.119)

e[x,y] = I + [x, y] + 1
2
[x, y]2 + · · · , (15.120)

and

ex−y+3[x,y] = I + x− y + 3[x, y] + · · · , (15.121)

in which I is the formal Lie group identity. Some elements of the formal Lie group
G2(x, y) are

ex = I + x+ 1
2
x2, (15.122)

e[x,y] = I + [x, y], (15.123)

and

ex−y+3[x,y] = I + x− y + 3[x, y] + 1
2
(x− y)2. (15.124)

�

To be a group, the axioms given in Section 4.2.1 must be satisfied. The identity
is I, and associativity clearly follows from the series representations. Each ep

has an inverse, e−p, because epe−p = I. The only remaining axiom to satisfy is
closure. This is given by the Campbell-Baker-Hausdorff-Dynkin formula (or CBHD
formula), for which the first terms for any p, q ∈ G(y1, . . . , ym) are

exp(p) exp(q) = exp(p+q+ 1
2
[p, q]+ 1

12
[[p, q], q]− 1

12
[[p, q], p]+ 1

24
[p, [q, [p, q]]]+ · · ·),

(15.125)
in which exp(x) alternatively denotes ex for any x. The formula also applies to
Gk(y1, . . . , ym), but it becomes truncated into a finite series. This fact will be
utilized later. Note that epeq 6= ep+q, which differs from the standard definition of
exponentiation.

The CBHD formula is often expressed as

epeqe−p = exp

(∞∑

i=0

Adip q

i!

)

, (15.126)

in which Ad0
p q = q, and Adip q = [p,Adi−1

p q]. The operator Ad provides a compact
way to express some nested Lie bracket operations. Additional terms of (15.125)
can be obtained using (15.126).

The Chen-Fliess series The P. Hall basis from Section 15.4.3 applies in general
to any Lie algebra. Let B1, . . ., Bs denote a P. Hall basis for the nilpotent formal
Lie algebra Lk(y1, . . . , ym). An important theorem in the study of formal Lie

914 S. M. LaValle: Planning Algorithms

groups is that every S ∈ Gk(y1, . . . , ym) can be expressed in terms of the P. Hall
basis of its formal Lie algebra as

S = ezsBsezs−1Bs−1 · · · ez2B2ez1B1 , (15.127)

which is called the Chen-Fliess series. The zi are sometimes called the backward
P. Hall coordinates of S (there is a forward version, for which the terms in (15.127)
go from 1 to s, instead of s to 1).

Returning to the system vector fields Now the formal algebra concepts can
be applied to the steering problem. The variables become the system vector fields:
yi = hi for all i from 1 to m. For the P. Hall basis elements, each Bi becomes bi.
The Lie group becomes the state space X, and the Lie algebra is the familiar Lie
algebra over the vector fields, which was introduced in Section 15.4.3. Consider
how an element of the Lie group must evolve over time. This can be expressed
using the differential equation

Ṡ(t) = S(t)(v1b1 + v2b2 + · · ·+ vsbs), (15.128)

which is initialized with S(0) = I. Here, S can be interpreted as a matrix, which
may, for example, belong to SE(3).

The solution at every time t > 0 can be written using the Chen-Fliess series,
(15.127):

S(t) = ezs(t)bsezs−1(t)bs−1 · · · ez2(t)b2ez1(t)b1 . (15.129)

This indicates that S(t) can be obtained by integrating b1 for time z1(t), followed
by b2 for time z2(t), and so on until bs is integrated for time zs(t). Note that the
backward P. Hall coordinates now vary over time. If we determine how they evolve
over time, then the differential equation in (15.128) is solved.

The next step is to figure out how the backward P. Hall coordinates evolve.
Differentiating (15.129) with respect to time yields

Ṡ(t) =
s∑

j=1

ezsbs · · · ezj+1bj+1 żjbje
zjbj · · · ez1b1 . (15.130)

The Chen-Fliess-Sussmann equation There are now two expressions for Ṡ,
which are given by (15.128) and (15.130). By equating them, s equations of the
form

s∑

j=1

pj,kżj = vk (15.131)

are obtained, in which pj,k is a polynomial in zi variables. This makes use of the
series representation for each exponential; see Example 15.23.

The evolution of the backward P. Hall coordinates is therefore given by the
Chen-Fliess-Sussmann (CFS) equation:

ż = Q(z)v, (15.132)

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 915

in which Q(z) is an s×smatrix, and z(0) = 0. The entries in Q(z) are polynomials;
hence, it is possible to integrate the system analytically to obtain expressions for
the zi(t).

A simple example is given, which was worked out in [299]:

Example 15.23 (The CFS Equation for the Nonholonomic Integrator) The
extended system for the nonholonomic integrator was given in (15.115). The dif-
ferential equation (15.128) for the Lie group is

Ṡ(t) = S(t)(v1b1 + v2b2 + v3b3), (15.133)

because s = 3.
There are two expressions for its solution. The Chen-Fliess series (15.129)

becomes
S(t) = ez3(t)b3ez2(t)b2ez1(t)b1 . (15.134)

The initial condition S(0) = I is satisfied if zi(0) = 0 for i from 1 to 3. The second
expression for Ṡ(t) is (15.130), which in the case of the nonholonomic integrator
becomes

Ṡ(t) =ż3(t)b3e
z3(t)b3ez2(t)b2ez1(t)b1+

ez3(t)b3 ż2(t)b2e
z2(t)b2ez1(t)b1+

ez3(t)b3ez2(t)b2 ż1(t)b1e
z1(t)b1 .

(15.135)

Note that
S−1(t) = e−z1(t)b1e−z2(t)b2e−z3(t)b3 . (15.136)

Equating (15.133) and (15.135) yields

S−1Ṡ = v1b1 + v2b2 + v3b3 =e
−z1b1e−z2b2e−z3b3 ż3b3e

z3b3ez2b2ez1b1+

e−z1b1e−z2b2 ż2b2e
z2b2ez1b1+

e−z1b1 ż1b1e
z1b1 ,

(15.137)

in which the time dependencies have been suppressed to shorten the expression.
The formal Lie series expansions, appropriately for the exponentials, are now used.
For i = 1, 2,

ezibi = (I + zibi +
1
2
z2i b

2
i) (15.138)

and
e−zibi = (I − zibi − 1

2
z2i b

2
i). (15.139)

Also,
ez3b3 = (I + z3b3) (15.140)

and
e−z3b3 = (I − z3b3). (15.141)

The truncation is clearly visible in (15.140) and (15.141). The b23 terms are absent
because b3 is a polynomial of degree two, and its square would be of degree four.

916 S. M. LaValle: Planning Algorithms

Substitution into (15.137), performing noncommutative multiplication, and ap-
plying the Lie bracket definition yields

ż1b1 + ż2(b2 − z1b3) + ż3b3 = v1b1 + v2b2 + v3b3. (15.142)

Equating like terms yields the Chen-Fliess-Sussmann equation

ż1 = v1

ż2 = v2

ż3 = v3 + z1v2.

(15.143)

Recall that ṽ is given. By integrating (15.143) from z(0) = 0, the backward P.
Hall coordinate trajectory z̃ is obtained. �

Using the original action variables Once the CFS equation has been deter-
mined, the problem is almost solved. The action trajectory ṽ was determined from
the given state trajectory ṽ and the backward P. Hall coordinate trajectory z̃ is
determined by (15.143). The only remaining problem is that the action variables
from vm+1 to vs are fictitious because their associated vector fields are not part of
the system. They were instead obtained from Lie bracket operations. When these
are applied, they interfere with each other because many of them may try to use
the same ui variables from the original system at the same time.

The CBHD formula is used to determine the solution in terms of the system
action variables u1, . . ., um. The differential equation now becomes

Ṡ(t) = S(t)(u1h1 + u2h2 + · · ·+ umhm), (15.144)

which is initialized with S(0) = I and uses the original system instead of the
extended system.

When applying vector fields over time, the CBHD formula becomes

exp(tf) exp(tg) =

exp(tf + tg +
t2

2
[f, g] +

t3

12
[[f, g], g]− t3

12
[[f, g], f] +

t4

24
[f, [g, [f, g]]] + · · ·).

(15.145)

If the system is nilpotent, then this series is truncated, and the exact effect of
sequentially combining constant motion primitives can be determined. This leads
to a procedure for determining a finite sequence of constant motion primitives that
generate a motion in the same direction as prescribed by the extended system and
the action trajectory ṽ.

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 917

15.5.2 Using Sinusoidal Action Trajectories

The steering method presented in this section is based on initial work by Brockett
[142] and a substantial generalization of it by Murray and Sastry [727]. The
approach applies to several classes of systems for which the growth of independent
vector fields occurs as quickly as possible. This means that when the P. Hall
basis is constructed, no elements need to be removed due to linear dependency
on previous Lie products or system vector fields. For these systems, the approach
applies sinusoids of integrally related frequencies to some action variables. This
changes some state variables while others are automatically fixed. For more details
beyond the presentation here, see [596, 725, 727, 846].

15.5.2.1 Steering the nonholonomic integrator

The main idea of the method can be clearly illustrated for the nonholonomic
integrator,

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1,
(15.146)

which was considered throughout Section 15.5.1. This case will be explained in
detail, and the methods obtained by generalizing the principles will subsequently
be stated. The presentation given here is based on [727, 846].

As was previously indicated, growing independent vector fields as quickly as
possible is important. For the nonholonomic integrator, [h1, h2], is linearly inde-
pendent of h1 and h2, as observed in Example 15.12; thus, it satisfies this property.
Consider steering the system from some xI = x(0) to some xG = x(1) while opti-
mizing the cost functional

∫ 1

0

(
u1(t)

2 + u2(t)
2
)
dt. (15.147)

The problem can be solved by using the constrained Lagrangian formulation,
which was given in Section 13.4.3. The first step is to eliminate the u variables.
From (15.146), the cost can be expressed in terms of ẋ1 and ẋ2 by using ẋ1 = u1
and ẋ2 = u2. The third equation in (15.146) can be written as

ẋ3 = x1ẋ2 − x2ẋ1 (15.148)

and will be interpreted as a constraint on the Lagrangian, which is combined
using a (scalar) Lagrange multiplier as explained in Section 13.4.3. Define the
Lagrangian as

L(x, ẋ) = (ẋ21 + ẋ22) + λ
(
ẋ3 − x1ẋ2 + x2ẋ1

)
, (15.149)

in which the first term comes from the integrand of (15.147), and the second term
comes from (15.148).

918 S. M. LaValle: Planning Algorithms

The Euler-Lagrange equation (13.118) yields

ẍ1 + λẋ2 = 0

ẍ2 − λẋ1 = 0

λ̇ = 0.

(15.150)

Note that λ̇ = 0 implies that λ(t) is constant for all time. To obtain a differential
equation that characterizes the optimal action trajectory, use the fact that for
i = 1, 2, ẋi = ui and ẍi = u̇i. This yields the equations u̇1 = −λu̇2 and u̇2 = λu̇1.
These can be represented as second-order linear differential equations. Based on
its roots, the solution is

u1(t) = u1(0) cosλt− u2(0) sinλt
u2(t) = u1(0) sinλt+ u2(0) cosλt.

(15.151)

Given initial and goal states, the optimal action trajectory is found by determining
u1(0), u2(0), and λ. Suppose that xI = x(0) = (0, 0, 0) and xG = x(1) = (0, 0, a)
for some a ∈ R. Other cases can be obtained by applying transformations in
SE(3) to the solution.

The state trajectories for x1 and x2 can be obtained by integration of (15.151)
because ui = ẋi for i = 1 and i = 2. Starting from x1(0) = x2(0) = 0, this yields

x1(t) =
1

λ

(
u1(0) sinλt+ u2(0) cosλt− u2(0)

)

x2(t) =
1

λ

(
− u1(0) cosλt+ u2(0) sinλt+ u1(0)

)
.

(15.152)

To maintain the constraint that x1(1) = x2(1) = 0, λ must be chosen as λ = 2kπ
for some integer n. Integration of ẋ3 yields

x3(t) =

∫ 1

0

(
x1u2 − x2u1

)
dt =

1

λ

(
u21(0) + u22(0)

)
= a. (15.153)

The cost is ∫ 1

0

(
u21(t) + u22(t)

)
dt = u21(0) + u22(0) = λa. (15.154)

The minimum cost is therefore achieved for k = −1, which yields λ = 2π and
‖u‖ = 2πa. This fixes the magnitude of u(0), but any direction may be chosen.

The steering problem can be solved in two phases:

1. Apply any action trajectory to steer x1 and x2 to their desired values while
neglecting to consider x3.

2. Apply the solution just developed to steer x3 to the goal while x1 and x2
return to their values obtained in the first phase.

This idea can be generalized to other systems.

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 919

15.5.2.2 First-order controllable systems

The approach developed for the nonholonomic integrator generalizes to systems of
the form

ẋi = ui for i from 1 to m

ẋij = xiuj − xjui for all i, j so that i < j and 1 ≤ j ≤ m (15.155)

and

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m. (15.156)

Brockett showed in [142] that for such first-order controllable systems, the optimal
action trajectory is obtained by applying a sum of sinusoids with integrally related
frequencies for each of the m action variables. If m is even, then the trajectory for
each variable is a sum of m/2 sinusoids at frequencies 2π, 2 · 2π, . . ., (m/2) · 2π.
If m is odd, there are instead (m − 1)/2 sinusoids; the sequence of frequencies
remains the same. Suppose m is even (the odd case is similar). Each action is
selected as

ui =

m/2
∑

k=1

aik sin 2πkt+ bik cos 2πkt. (15.157)

The other state variables evolve as

xij = xij(0) +
1

2

m/2
∑

k=1

1

k
(ajkbik − aikbjk), (15.158)

which provides a constraint similar to (15.153). The periodic behavior of these
action trajectories causes the xi variables to return to their original values while
steering the xij to their desired values. In a sense this is a vector-based general-
ization in which the scalar case was the nonholonomic integrator.

Once again, a two-phase steering approach is obtained:

1. Apply any action trajectory that brings every xi to its goal value. The
evolution of the xij states is ignored in this stage.

2. Apply sinusoids of integrally related frequencies to the action variables.
Choose each ui(0) so that xij reaches its goal value. In this stage, the xi
variables are ignored because they will return to their values obtained in the
first stage.

This method has been generalized even further to second-order controllable
systems:

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m (15.159)

ẋijk = xijuk for all (i, j, k) ∈ J ,

920 S. M. LaValle: Planning Algorithms

in which J is the set of all unique triples formed from distinct i, j, k ∈ {1, . . . ,m}
and removing unnecessary permutations due to the Jacobi identity for Lie brackets.
For this problem, a three-phase steering method can be developed by using ideas
similar to the first-order controllable case. The first phase determines xi, the
second handles xij , and the third resolves xijk. See [727, 846] for more details.

15.5.2.3 Chained-form systems

Example 15.17 considered a special case of a chained-form system. The system in
(15.102) can be generalized to any n as

ẋ1 = u1 ẋ4 = x3u1

ẋ2 = u2
... (15.160)

ẋ3 = x2u1 ẋn = xn−1u1.

This can be considered as a system with higher order controllability. For these
systems, a multi-phase approach is obtained:

1. Apply any action trajectory for u1 and u2 that brings x1 and x2 to their goal
values. The evolution of the other states is ignored in this stage.

2. This phase is repeated for each k from 3 to n. Steer xk to its desired value
by applying

u1 = a sin 2πkt and u2 = b cos 2πkt, (15.161)

in which a and b are chosen to satisfy the constraint

xk(1) = xk(0) +
(a

4π

)(k−2) b

(k − 2)!
. (15.162)

Each execution of this phase causes the previous k − 1 state variables to
return to their previous values.

For a proof of the correctness of the second phase, and more information in
general, see [727, 846]. It may appear that very few systems fit the forms given
in this section; however, it is sometimes possible to transform systems to fit this
form. Recall that the original simple car model in (13.15) was simplified to (15.54).
Transformation methods for putting systems into chained form have been devel-
oped. For systems that still cannot be put in this form, Fourier techniques can
be used to obtain approximate steering methods that are similar in spirit to the
methods in this section. When the chained-form system is expressed using Pfaf-
fian constraints, the result is often referred to as the Goursat normal form. The
method can be extended even further to multi-chained-form systems.

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 921

15.5.3 Other Steering Methods

The steering methods presented so far are perhaps the most widely known; how-
ever, several other alternatives exist. Most of these follow in the spirit of the
methods in Sections 15.5.1 and 15.5.2 by exploiting the properties of a specific
class of systems. Some alternatives are briefly surveyed here. This is an active
field of research; it is likely that new methods will be developed in the coming
years.

Differentially flat systems Differential flatness has become an important con-
cept in the development of steering methods. It was introduced by Fliess, Lévine,
Martin, and Rouchon in [344]; see also [726]. Intuitively, a system is said to be
differentially flat if a set of variables called flat outputs can be found for which
all states and actions can be determined from them without integration. This
specifically means that for a system ẋ = f(x, u) with X = Rn and U = Rm, there
exist flat outputs of the form

y = h(x, u, u̇, . . . , u(k)) (15.163)

such that there exist functions g and g′ for which

x = g(y, ẏ, . . . , y(j)) (15.164)

and
u = g′(y, ẏ, . . . , y(j)). (15.165)

One example is the simple car pulling trailers, expressed in (13.19); the flat outputs
are the position in W = R2 of the last trailer. This property was used for motion
planning in [578]. Recent works on the steering of differentially flat systems include
[578, 813, 833].

Decoupling vector fields For mechanical systems in which dynamics is con-
sidered, the steering problem becomes complicated by drift. One recent approach
is based on establishing that a system is kinematically controllable, which means
that the system is STLC on the C-space, if traversed using trajectories that start
and stop at zero velocity states [157]. The method finds decoupling vector fields on
the C-space. Any path that is the integral curve of a decoupling vector field in the
C-space is executable by the full system with dynamics. If a mechanical system
admits such vector fields, then it was proved in [157] that a steering method for C
can be lifted into one for X, the phase space of the mechanical system. This idea
was applied to generate an efficient LPM in an RRT planner in [224].

Averaging methods By decomposing the state trajectory into a low-frequency
part that accounts for the long-range evolution of states and a high-frequency part
that accounts for small oscillations over short ranges, averaging methods enable
perturbations to be systematically made to state trajectories. This yields other
steering methods based on sinusoidal action trajectories [112, 420, 623, 624].

922 S. M. LaValle: Planning Algorithms

Variational techniques As might be expected, the general-purpose gradient-
based optimization techniques of Section 14.7 can be applied to the steering of
nonholonomic systems. Such methods are based on Newton iterations on the space
of possible state trajectories. This leads to a gradient descent that arrives at a
local optimum while satisfying the differential constraints. For details on applying
such techniques to steer nonholonomic systems, see [276, 334, 596, 901, 926].

Pontryagin’s minimum principle The minimum principle can be helpful in
developing a steering method. Due to the close connection between the Euler-
Lagrange equation and Hamilton’s equations, as mentioned in Section 13.4.4, this
should not be surprising. The Euler-Lagrange equation was used in Section 15.5.2
to determine an optimal steering method for the nonholonomic integrator. A
steering methodology based on the minimum principle is described in [846]. The
optimal curves of Section 15.3 actually represent steering methods obtained from
the minimum principle. Unfortunately, for the vast majority of problems, numer-
ical techniques are needed to solve the resulting differential equations. It is gener-
ally expected that techniques developed for specific classes, such as the nilpotent,
chained-form, or differentially flat systems, perform much better than general-
purpose numerical techniques applied to the Euler-Lagrange equation, Hamilton’s
equations or Pontryagin’s minimum principle.

Dynamic programming The numerical dynamic programming approach of
Section 14.5 can be applied to provide optimal steering for virtual any system. To
apply it here, the obstacle region Xfree is empty. The main drawback, however,
is that the computational cost is usually too high, particularly if the dimension of
X is high. On the other hand, it applies in a very general setting, and Lie group
symmetries can be used to apply precomputed trajectories from any initial state.
This is certainly a viable approach with systems for which the state space is SE(2)
or SO(3).

Further Reading

The basic stability and controllability concepts from Section 15.1 appear in many con-
trol textbooks, especially ones that specialize in nonlinear control; see [523, 846] for an
introduction to nonlinear control. More advanced concepts appear in [156]. For illustra-
tions of many convergence properties in vector fields, see [44]. For linear system theory,
see [192]. Brockett’s condition and its generalization appeared in [143, 996]. For more
on stabilization and feedback control of nonholonomic systems, see [156, 846, 964]. For
Lyapunov-based design for feedback control, see [278].

For further reading on the Hamilton-Jacobi-Bellman equation, see [85, 95, 492, 789,
912]. For numerical approaches to its solution (aside from value iteration), see [2, 253,
707]. Linear-quadratic problems are covered in [28, 570]. Pontryagin’s original works
provide an unusually clear explanation of the minimum principle [801]. For other sources,
see [95, 410, 789]. A generalization that incorporates state-space constraints appears in
[927].

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 923

Works on which Section 15.3 is based are [64, 127, 211, 294, 814, 903, 904, 923].
Optimal curves have been partially characterized in other cases; see [227, 903]. One
complication is that optimal curves often involve infinite switching [370, 1000]. There is
also interest in nonoptimal curves that nevertheless have good properties, especially for
use as a local planning method for car-like robots [31, 358, 520, 794, 848]. For feedback
control of car-like robots, see [112, 663].

For further reading on nonholonomic system theory beyond Section 15.4, there are
many excellent sources: [83, 112, 113, 156, 478, 725, 741, 846]. A generalization of
the Chow-Rashevskii theorem to hybrid systems is presented in [724]. Controllability
of a car pulling trailers is studied in [594]. Controllability of a planar hovercraft with
thrusters is considered in [669]. The term holonomic is formed from two Greek words
meaning “integrable” and “law” [135].

Section 15.5 is based mainly on the steering methods in [574] (Section 15.5.1) and
[142, 727] (Section 15.5.2). The method of Section 15.5.1 is extended to time-varying
systems in [299]. A multi-rate version is developed in [713]. In [480], it was improved
by using a Lyndon basis, as opposed to the P. Hall basis. Another steering method that
involves series appears in [154, 155]. For more on chained-form systems, see [858, 902].
For a variant that uses polynomials and the Goursat normal form, instead of sinusoids,
see [846]. For other steering methods, see the references suggested in Section 15.5.3.

Exercises

1. Characterize the stability at (0, 0) of the vector field on X = R2, given by ẋ1 = x2
and ẋ2 = −x22 − x1. Use the Lyapunov function φ(x1, x2) = x21 + x22.

2. Repeat Example 15.4, but instead use the cost term l(x, u) = u2.

3. Repeat Example 15.4, but instead for a triple integrator q(3) = u and U = [−1, 1].

4. Determine the precise conditions under which each of the four cases of Example
15.4 occurs. Define a feedback motion plan that causes time-optimal motions.

5. Note that some of the six optimal words for the Dubins car do not appear for the
Reeds-Shepp car. For each of these, illustrate why it does not appear.

6. Retrace the steps of the Taylor series argument for deriving the Lie bracket in
Section 15.4.2. Arrive at (15.81) by showing all steps in detail (smaller steps are
skipped in Section 15.4.2).

7. Determine whether the following system is nonholonomic and STLC:

q̇1 = u1 q̇4 = q22u1

q̇2 = u2 q̇5 = q21u2 (15.166)

q̇3 = q1u2 − q2u1.

8. Prove that linear systems ẋ = Ax+Bu for constant matrices A and B cannot be
nonholonomic.

924 S. M. LaValle: Planning Algorithms

9. Determine whether the following system is nonholonomic and STLC:







ẋ
ẏ

θ̇

ψ̇







=







cos θ
sin θ
0

− sinψ






u1 +







0
0
1
1






u2. (15.167)

10. Using the commutator motion and constant actions for the differential drive, de-
velop a lattice over its configuration space.

11. Consider a smooth nonlinear system that has only one action variable and an n-
dimensional state space for n > 1. Are such systems always completely integrable,
always nonholonomic, or is either possible?

12. Generalize Example 15.17 to Rn with two action variables. Determine whether
the system is STLC for any n > 5.

13. Show that the vector cross product on R3 indeed produces a Lie algebra when
used as a bracket operation.

14. Derive the CFS equation for the following system:

q̇1 = u1 q̇3 = q1u2 − q2u1
q̇2 = u2 q̇4 = q22u1. (15.168)

Implementations

15. Implement software that computes the P. Hall basis up to any desired order (this
is only symbolic computation; the Lie brackets are not expanded).

16. Implement software that displays the appropriate optimal path for the Dubins
car, between any given qI and qG.

17. Apply the planning algorithm in Section 14.4.2 to numerically determine the Du-
bins curves. Use Dijkstra’s algorithm for the search, and use a high-resolution
grid. Can your software obtain the same set of curves as Dubins?

18. Experiment with using Dubins curves as a local planning method (LPM) and met-
ric in an RRT-based planning algorithm. Does using the curves improve execution
time? Do they lead to better solutions?

Bibliography

[1] D. Aarno, D. Kragic, and H. I. Christensen. Artificial potential biased probabilis-
tic roadmap method. In Proceedings IEEE International Conference on Robotics
& Automation, 2004.

[2] R. Abgrall. Numerical discretization of the first-order Hamilton-Jacobi equa-
tion on triangular meshes. Communications on Pure and Applied Mathematics,
49(12):1339–1373, December 1996.

[3] R. Abraham and J. Marsden. Foundations of Mechanics. Addison-Wesley, Read-
ing, MA, 2002.

[4] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and Appli-
cations, 2nd Ed. Springer-Verlag, Berlin, 1988.

[5] A. Abrams and R. Ghrist. Finding topology in a factory: Configuration spaces.
The American Mathematics Monthly, 109:140–150, February 2002.

[6] E. U. Acar and H. Choset. Complete sensor-based coverage with extended-range
detectors: A hierarchical decomposition in terms of critical points and Voronoi di-
agrams. In Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2001.

[7] E. U. Acar and H. Choset. Robust sensor-based coverage of unstructured en-
vironments. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2001.

[8] C. C. Adams. The Knot Book: An Elementary Introduction to the Mathematical
Theory of Knots. W. H. Freeman, New York, 1994.

[9] P. Agarwal, M. de Berg, D. Halperin, and M. Sharir. Efficient generation of
k-directional assembly sequences. In ACM Symposium on Discrete Algorithms,
pages 122–131, 1996.

[10] P. K. Agarwal, N. Amenta, B. Aronov, and M. Sharir. Largest placements and
motion planning of a convex polygon. In J.-P. Laumond and M. Overmars,
editors, Robotics: The Algorithmic Perspective. A.K. Peters, Wellesley, MA, 1996.

[11] P. K. Agarwal, B. Aronov, and M. Sharir. Motion planning for a convex polygon
in a polygonal environment. Discrete and Computational Geometry, 22:201–221,
1999.

[12] P. K. Agarwal, J.-C. Latombe, R. Motwani, and P. Raghavan. Nonholonomic path
planning for pushing a disk among obstacles. In Proceedings IEEE International
Conference on Robotics & Automation, 1997.

[13] P. K. Agarwal, P. Raghavan, and H.Tamaki. Motion planning for a steering
constrained robot through moderate obstacles. In Proceedings ACM Symposium
on Computational Geometry, 1995.

925

926 BIBLIOGRAPHY

[14] S. Akella, W. H. Huang, K. M. Lynch, and M. T. Mason. Parts feeding on a
conveyor with a one joint robot. Algorithmica, 26(3/4):313–344, March/April
2000.

[15] S. Akella and S. Hutchinson. Coordinating the motions of multiple robots with
specified trajectories. In Proceedings IEEE International Conference on Robotics
& Automation, pages 624–631, 2002.

[16] R. Alami, J.-P. Laumond, and T. Siméon. Two manipulation planning algo-
rithms. In J.-P. Laumond and M. Overmars, editors, Algorithms for Robotic
Motion and Manipulation. A.K. Peters, Wellesley, MA, 1997.

[17] R. Alami, T. Siméon, and J.-P. Laumond. A geometrical approach to planning
manipulation tasks. In Proceedings International Symposium on Robotics Re-
search, pages 113–119, 1989.

[18] G. Allgower and K. Georg. Numerical Continuation Methods. Springer-Verlag,
Berlin, 1990.

[19] E. Alpaydin. Machine Learning. MIT Press, Cambridge, MA, 2004.

[20] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and
C. Uhrig. Approximate motion planning and the complexity of the boundary
of the union of simple geometric figures. In Proceedings ACM Symposium on
Computational Geometry, pages 281–289, 1990.

[21] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods. In
Proceedings IEEE International Conference on Robotics & Automation, pages
630–637, 1998.

[22] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM: An
obstacle-based PRM for 3D workspaces. In Proceedings Workshop on Algorithmic
Foundations of Robotics, pages 155–168, 1998.

[23] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods.
IEEE Transactions on Robotics & Automation, 16(4):442–447, Aug 2000.

[24] N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map pro-
tein folding landscapes and analyze folding kinetics of known native structures.
In Proceedings 6th ACM International Conference on Computational Molecular
Biology (RECOMB), pages 2–11, 2002.

[25] N. M. Amato and G. Song. Using motion planning to study protein folding
pathways. Journal of Computational Biology, 9(2):149–168, 2002.

[26] N. M. Amato and Y. Wu. A randomized roadmap method for path and manip-
ulation planning. In Proceedings IEEE International Conference on Robotics &
Automation, pages 113–120, 1996.

[27] F. Ancona and A. Bressan. Patchy vector fields and asymptotic stabilization.
ESAIM-Control, Optimisation and Calculus of Variations, 4:445–471, 1999.

[28] B. D. Anderson and J. B. Moore. Optimal Control: Linear-Quadratic Methods.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

[29] J. Angeles. Spatial Kinematic Chains. Analysis, Synthesis, and Optimisation.
Springer-Verlag, Berlin, 1982.

BIBLIOGRAPHY 927

[30] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and
Algorithms. Springer-Verlag, Berlin, 2003.

[31] D. A. Anisi, J. Hamberg, and X. Hu. Nearly time-optimal paths for a ground
vehicle. Journal of Control Theory and Applications, November 2003.

[32] E. Anshelevich, S. Owens, F. Lamiraux, and L. E. Kavraki. Deformable volumes
in path planning applications. In Proceedings IEEE International Conference on
Robotics & Automation, pages 2290–2295, 2000.

[33] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu J.-C. Latombe, and C. Varm.
Stochastic roadmap simulation: An efficient representation and algorithm for
analyzing molecular motion. Journal of Computational Biology, 10:257–281, 2003.

[34] M. D. Ardema and J. M. Skowronski. Dynamic game applied to coordination
control of two arm robotic system. In R. P. Hämäläinen and H. K. Ehtamo,
editors, Differential Games – Developments in Modelling and Computation, pages
118–130. Springer-Verlag, Berlin, 1991.

[35] O. Arikan and D. Forsyth. Interactive motion generation from examples. In
Proceedings ACM SIGGRAPH, 2002.

[36] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering
traveling salesman problem. Discrete Applied Mathematics, 55:194–218, 1994.

[37] B. Armstrong, O. Khatib, and J. Burdick. The explicit dynamic model and
inertial parameters of the Puma 560 arm. In Proceedings IEEE International
Conference on Systems, Man, & Cyberetics, pages 510–518, 1986.

[38] M. A. Armstrong. Basic Topology. Springer-Verlag, New York, 1983.

[39] V. I. Arnold. Mathematical Methods of Classical Mechanics, 2nd Ed. Springer-
Verlag, Berlin, 1989.

[40] D. S. Arnon. Geometric reasoning with logic and algebra. Artificial Intelligence
Journal, 37(1-3):37–60, 1988.

[41] B. Aronov, M. de Berg, A. F. van der Stappen, P. Svestka, and J. Vleugels.
Motion planning for multiple robots. Discrete and Computational Geometry,
22:505–525, 1999.

[42] B. Aronov and M. Sharir. On translational motion planning of a convex poly-
hedron in 3-space. SIAM Journal on Computing, 26(6):1875–1803, December
1997.

[43] K. Arras, N. Tomatis, B. Jensen, and R. Siegwart. Multisensor on-the-fly lo-
calization: Precision and reliability for applications. Robotics and Autonomous
Systems, 34(2-3):131–143, 2001.

[44] D. K. Arrowsmith and C. M. Place. Dynamical Systems: Differential Equations,
Maps, and Chaotic Behaviour. Chapman & Hall/CRC, New York, 1992.

[45] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions
on Signal Processing, 50(2):174–188, 2002.

[46] S. Arya and D. M. Mount. Algorithms for fast vector quantization. In IEEE
Data Compression Conference, pages 381–390, March 1993.

928 BIBLIOGRAPHY

[47] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed di-
mensions. In Proceedings ACM-SIAM Symposium on Discrete Algorithms, pages
271–280, 1993.

[48] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An
optimal algorithm for approximate nearest neighbor searching. Journal of the
ACM, 45:891–923, 1998.

[49] R. B. Ash. Information Theory. Dover, New York, 1990.

[50] K. J. Astrom and T. Hagglund. PID Controllers: Theory, Design, and Tuning,
2nd Ed. The Instrument, Systems, and Automation Society, Research Triangle
Park, NC, 1995.

[51] K. E. Atkinson. An Introduction to Numerical Analysis. Wiley, New York, 1978.

[52] A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for mo-
tion planning. In Proceedings IEEE International Conference on Robotics and
Automation, pages 632–637, 2002.

[53] J.-P. Aubin and A. Cellina. Differential Inclusions. Springer-Verlag, Berlin, 1984.

[54] F. Aurenhammer. Voronoi diagrams – A survey of a fundamental geometric
structure. ACM Computing Surveys, 23:345–405, 1991.

[55] F. Avnaim, J.-D. Boissonnat, and B. Faverjon. A practical exact planning al-
gorithm for polygonal objects amidst polygonal obstacles. In Proceedings IEEE
International Conference on Robotics & Automation, pages 1656–1660, 1988.

[56] J. Bañon. Implementation and extension of the ladder algorithm. In Proceedings
IEEE International Conference on Robotics & Automation, pages 1548–1553,
1990.

[57] T. Başar. Game theory and H∞-optimal control: The continuous-time case. In
R. P. Hämäläinen and H. K. Ehtamo, editors, Differential Games – Developments
in Modelling and Computation, pages 171–186. Springer-Verlag, Berlin, 1991.

[58] T. Başar and P. R. Kumar. On worst case design strategies. Computers and
Mathematics with Applications, 13(1-3):239–245, 1987.

[59] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory, 2nd Ed.
Academic, London, 1995.

[60] R. A. Baeza, J. C. Culberson, and G. J. E. Rawlins. Searching in the plane.
Information and Computation, 106(2):234–252, 1993.

[61] B. Baginski. The Z3 method for fast path planning in dynamic environments. In
Proceedings IASTED Conference on Applications of Control and Robotics, pages
47–52, 1996.

[62] B. Baginski. Motion Planning for Manipulators with Many Degrees of Freedom
– The BB-Method. PhD thesis, Technical University of Munich, 1998.

[63] A. Baker. Matrix Groups. Springer-Verlag, Berlin, 2002.

[64] D. J. Balkcom and M. T. Mason. Time optimal trajectories for bounded velocity
differential drive vehicles. International Journal of Robotics Research, 21(3):199–
217, 2002.

BIBLIOGRAPHY 929

[65] D. J. Balkcom and M. T. Mason. Introducing robotic origami folding. In Pro-
ceedings IEEE International Conference on Robotics & Automation, 2004.

[66] J. E. Banta, Y. Zhien, X. Z. Wang, G. Zhang, M. T. Smith, and M. A. Abidi.
A “best-next-view” algorithm for three-dimensional scene reconstruction using
range images. In Proceedings SPIE, vol. 2588, pages 418–29, 1995.

[67] J. Barraquand and P. Ferbach. A penalty function method for constrained motion
planning. In Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 1235–1242, 1994.

[68] J. Barraquand and P. Ferbach. Motion planning with uncertainty: The informa-
tion space approach. In Proceedings IEEE International Conference on Robotics
& Automation, pages 1341–1348, 1995.

[69] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and P. Ragha-
van. A random sampling scheme for robot path planning. In G. Giralt and
G. Hirzinger, editors, Proceedings International Symposium on Robotics Research,
pages 249–264. Springer-Verlag, New York, 1996.

[70] J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path planning
with many degrees of freedom. In Proceedings IEEE International Conference on
Robotics & Automation, pages 1712–1717, 1990.

[71] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: Con-
trollability and motion planning in the presence of obstacles. In Proceedings IEEE
International Conference on Robotics & Automation, pages 2328–2335, 1991.

[72] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed repre-
sentation approach. International Journal of Robotics Research, 10(6):628–649,
December 1991.

[73] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica,
10:121–155, 1993.

[74] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential
decision making. In M. Gabriel and J.W. Moore, editors, Learning and Compu-
tational Neuroscience: Foundations of Adaptive Networks, pages 539–602. MIT
Press, Cambridge, MA, 1990.

[75] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen. Disconnection proofs for
motion planning. In Proceedings IEEE International Conference on Robotics &
Automation, pages 1765–1772, 2001.

[76] S. Basu, R. Pollack, and M. F. Roy. Computing roadmaps of semi-algebraic sets
on a variety. Journal of the American Society of Mathematics, 3(1):55–82, 1999.

[77] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, Berlin, 2003.

[78] K. Basye and T. Dean. Map learning with indistinguishable locations. In M. Hen-
rion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence
5, pages 331–340. Elsevier Science, New York, 1990.

[79] K. Basye, T. Dean, J. Kirman, and M. Lejter. A decision-theoretic approach to
planning, perception, and control. IEEE Expert, 7(4):58–65, August 1992.

[80] T. Bayes. An essay towards solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society of London, 53, 1763.

930 BIBLIOGRAPHY

[81] C. Becker, H. González-Baños, J.-C. Latombe, and C. Tomasi. An intelligent
observer. In Preprints of International Symposium on Experimental Robotics,
pages 94–99, 1995.

[82] K. E. Bekris, B. Y. Chen, A. Ladd, E. Plaku, and L. E. Kavraki. Multiple query
probabilistic roadmap planning using single query primitives. In Proceedings
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.

[83] A. Bellaiche, F. Jean, and J. J. Risler. Geometry of nonholonomic systems.
In J.-P. Laumond, editor, Robot Motion Planning and Control, pages 55–92.
Springer-Verlag, Berlin, 1998.

[84] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[85] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

[86] I. Belousov, C. Esteves, J.-P. Laumond, and E. Ferre. Motion planning for large
space manipulators with complicated dynamics. In Proceedings IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2005.

[87] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power
of a pebble: Exploring and mapping directed graphs. In Proceedings Annual
Symposium on Foundations of Computer Science, 1998.

[88] A. Benveniste, M. Metivier, and P. Prourier. Adaptive Algorithms and Stochastic
Approximations. Springer-Verlag, Berlin, 1990.

[89] J. O. Berger. Statistical Decision Theory. Springer-Verlag, Berlin, 1980.

[90] M. Bern. Triangulations and mesh generation. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, 2nd
Ed., pages 563–582. Chapman and Hall/CRC Press, New York, 2004.

[91] J. Bernard, J. Shannan, and M. Vanderploeg. Vehicle rollover on smooth surfaces.
In Proceedings SAE Passenger Car Meeting and Exposition, Dearborn, MI, 1989.

[92] D. P. Bertsekas. Convergence in discretization procedures in dynamic program-
ming. IEEE Transactions on Automatic Control, 20(3):415–419, June 1975.

[93] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[94] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

[95] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I, 2nd Ed.
Athena Scientific, Belmont, MA, 2001.

[96] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II, 2nd Ed.
Athena Scientific, Belmont, MA, 2001.

[97] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[98] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of
Guidance, Control, and Dynamics, 21(2):193–207, March-April 1998.

BIBLIOGRAPHY 931

[99] A. Beygelzimer, S. M. Kakade, and J. Langford. Cover trees
for nearest neighbor. University of Pennsylvania, Available from
http://www.cis.upenn.edu/∼skakade/papers/ml/cover tree.pdf, 2005.

[100] A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis
of continuous and hybrid systems. In R. Alur and G. J. Pappas, editors, Hybrid
Systems: Computation and Control, pages 67–78. Springer-Verlag, Berlin, 2004.
Lecture Notes in Computer Science, 2993.

[101] S. Bhattacharya and S. K. Agrawal. Design, experiments and motion planning
of a spherical rolling robot. In Proceedings IEEE International Conference on
Robotics & Automation, pages 1207–1212, 2000.

[102] A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized control
systems. IEEE Transactions on Automatic Control, 47(4):546–563, April 2002.

[103] A. Bicchi, D. Prattichizzo, and S. Sastry. Planning motions of rolling surfaces.
In Proceedings IEEE Conference Decision & Control, 1995.

[104] Z. Bien and J. Lee. A minimum-time trajectory planning method for two robots.
IEEE Transactions on Robotics & Automation, 8(3):414–418, June 1992.

[105] D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of
Algorithms, 12:239–245, 1991.

[106] J. Bilmes. A gentle tutorial on the EM algorithm and its application to parameter
estimation for Gaussian mixture and hidden Markov models. Technical Report
ICSI-TR-97-021, International Computer Science Institute (ICSI), Berkeley, CA,
1997.

[107] R. L. Bishop and S. I. Goldberg. Tensor Analysis on Manifolds. Dover, New
York, 1980.

[108] H. S. Black. Stabilized feedback amplifiers. Bell Systems Technical Journal,
13:1–18, 1934.

[109] D. Blackwell and M. A. Girshik. Theory of Games and Statistical Decisions.
Dover, New York, 1979.

[110] S. Blind, C. McCullough, S. Akella, and J. Ponce. Manipulating parts with
an array of pins: A method and a machine. International Journal of Robotics
Research, 20(10):808–818, December 2001.

[111] A. Bloch. Murphy’s Law and Other Reasons Why Things Go Wrong. Price Stern
Sloan Adult, New York, 1977.

[112] A. M. Bloch. Nonholonomic Mechanics and Control. Springer-Verlag, Berlin,
2003.

[113] A. M. Bloch and P. E. Crouch. Nonholonomic control systems on Riemannian
manifolds. SIAM Journal on Control & Optimization, 33:126–148, 1995.

[114] V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity results
in systems and control. Automatica, 36(9):1249–1274, September 2000.

[115] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approx-
imation algorithms for orienteering and discounted-reward TSP. In Proceedings
IEEE Symposium on Foundations of Computer Science, 2003.

932 BIBLIOGRAPHY

[116] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric
terrains. In Proceedings ACM Symposium on Computational Geometry, pages
494–504, 1991.

[117] A. L. Blum and M. L. Furst. Fast planing through planning graph analysis.
In Proceedings International Joint Conference on Artificial Intelligence, pages
1636–1642, 1995.

[118] L. Blum, F. Cucker, and M. Schub abd S. Smale. Complexity and Real Compu-
tation. Springer-Verlag, Berlin, 1998.

[119] M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In Proceedings Annual Symposium on Foundations of
Computer Science, pages 132–142, 1978.

[120] J. E. Bobrow. Optimal robot path planning using the minimum-time criterion.
IEEE Transactions on Robotics & Automation, 4(4):443–450, August 1988.

[121] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control of robotic
manipulators along specified paths. International Journal of Robotics Research,
4(3):3–17, 1985.

[122] H. Bode. Feedback: The history of an idea. In R. Bellman and R. Kalaba,
editors, Selected Papers on Mathematical Trends in Control Theory, pages 106–
123. Dover, New York, 1969.

[123] R. Bohlin. Path planning in practice; lazy evaluation on a multi-resolution grid.
In Proceedings IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2001.

[124] R. Bohlin. Robot Path Planning. PhD thesis, Chalmers University, Gothenburg,
Sweden, 2002.

[125] R. Bohlin and L. Kavraki. Path planning using Lazy PRM. In Proceedings IEEE
International Conference on Robotics & Automation, 2000.

[126] K.-F. Böhringer, B. R. Donald, and N. C. MacDonald. Upper and lower bounds
for programmable vector fields with applications to MEMS and vibratory plate
parts feeders. In J.-P. Laumond and M. Overmars, editors, Algorithms for Robotic
Motion and Manipulation. A.K. Peters, Wellesley, MA, 1997.

[127] J.-D. Boissonnat, A. Cérézo, and J. Leblond. Shortest paths of bounded curvature
in the plane. Journal of Intelligent and Robotic Systems, 11:5–20, 1994.

[128] J.-D. Boissonnat and S. Lazard. A polynomial-time algorithm for computing a
shortest path of bounded curvature amidst moderate obstacles. In Proceedings
ACM Symposium on Computational Geometry, pages 242–251, 1996.

[129] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University
Press, Cambridge, U.K., 1998.

[130] V. G. Boltyanskii. Sufficient conditions for optimality and the justification of the
dynamic programming method. SIAM Journal on Control, 4:326–361, 1966.

[131] G. Boo and K. Goldberg. Orienting polygonal parts without sensors:
An implementation in Java. Alpha Lab, UC Berkeley. Available from
http://www.ieor.berkeley.edu/∼goldberg/feeder-S05/, 2005.

BIBLIOGRAPHY 933

[132] V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling
strategy for probabilistic roadmap planners. In Proceedings IEEE International
Conference on Robotics & Automation, pages 1018–1023, 1999.

[133] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian
Geometry. Revised 2nd Ed. Academic, New York, 2003.

[134] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems and
Techniques. A.K. Peters, Wellesley, MA, 1996.

[135] A. V. Borisov and I .S. Mamaev. On the history of the development of nonholo-
nomic dynamics. Regular and Chaotic Dynamics, 7(1):43–47, 2002.

[136] P. Bose, A. Lubiv, and J. I. Munro. Efficient visibility queries in simple polygons.
In Proceedings Canadian Conference on Computational Geometry, pages 23–28,
1992.

[137] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid
control: Model and optimal control theory. IEEE Transactions on Automatic
Control, 43(1):31–45, 1998.

[138] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan. RRTs for nonlin-
ear, discrete, and hybrid planning and control. In Proceedings IEEE Conference
Decision & Control, 2003.

[139] M. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature. Springer-
Verlag, Berlin, 1999.

[140] A. Briggs. An efficient algorithm for one-step compliant motion planning with
uncertainty. In Proceedings ACM Symposium on Computational Geometry, 1989.

[141] A. J. Briggs and B. R. Donald. Robust geometric algorithms for sensor plan-
ning. In J.-P. Laumond and M. Overmars, editors, Proceedings Workshop on
Algorithmic Foundations of Robotics. A.K. Peters, Wellesley, MA, 1996.

[142] R. W. Brockett. Control theory and singular Riemannian geometry. In P. A.
Fuhrman, editor, New Directions in Applied Mathematics, pages 11–27. Springer-
Verlag, Berlin, 1981.

[143] R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W.
Brockett, R. S. Millman, and H. J. Sussmann, editors, Differential Geometric
Control Theory, pages 181–191. Birkhäuser, Boston, MA, 1983.

[144] R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration
space for findpath with rotation. IEEE Transactions on Systems, Man, & Cy-
bernetics, SMC-15(2):224–233, 1985.

[145] R. C. Brost. Automatic grasp planning in the presence of uncertainty. Interna-
tional Journal of Robotics Research, 7(1):3–17, 1988.

[146] R. C. Brost. Analysis and Planning of Planar Manipulation Tasks. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 1991.

[147] R. C. Brost and A. D. Christiansen. Probabilistic analysis of manipulation tasks:
A research agenda. In Proceedings IEEE International Conference on Robotics
& Automation, volume 3, pages 549–556, 1993.

[148] R. C. Brost and A. D. Christiansen. Probabilistic analysis of manipulation tasks:
A computational framework. Technical Report SAND92-2033, Sandia National
Laboratories, Albuquerque, NM, January 1994.

934 BIBLIOGRAPHY

[149] R. C. Brost and A. D. Christiansen. Probabilistic analysis of manipulation tasks:
A computational framework. International Journal of Robotics Research, 15(1):1–
23, February 1996.

[150] J. Bruce and M. Veloso. Real-time randomized path planning for robot naviga-
tion. In Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002.

[151] A. E. Bryson and Y.-C. Ho. Applied Optimal Control. Hemisphere Publishing
Corp., New York, 1975.

[152] M. Buckland. AI Techniques for Game Programming. Premier Press, Portland,
OR, 2002.

[153] S. J. Buckley. Fast motion planning for multiple moving robots. In Proceedings
IEEE International Conference on Robotics & Automation, pages 322–326, 1989.

[154] F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM
Journal on Control & Optimization, 40(1):166–190, 2001.

[155] F. Bullo. Series expansions for analytic systems linear in control. Automatica,
38(9):1425–1432, September 2002.

[156] F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems. Springer-
Verlag, Berlin, 2004.

[157] F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory
planning in underactuated mechanical systems. IEEE Transactions on Robotics
& Automation, 17(4):402–412, 2001.

[158] J. W. Burdick. Kinematic Analysis and Design of Redundant Manipulators. PhD
thesis, Stanford University, Stanford, CA, 1988.

[159] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. The interactive museum tour-guide robot. In Proceed-
ings AAAI National Conference on Artificial Intelligence, pages 11–18, 1998.

[160] J. J. Burken, P. Lu, and Z. Wu. Reconfigurable flight control designs with applica-
tion to the X-33 vehicle. Technical Report TM-1999-206582, NASA, Washington,
DC, 1999.

[161] B. Burns and O. Brock. Sampling-based motion planning using predictive models.
In Proceedings IEEE International Conference on Robotics & Automation, 2005.

[162] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential composition of dy-
namically dexterous robot behaviors. International Journal of Robotics Research,
18(6):534–555, 1999.

[163] L. G. Bushnell, D. M. Tilbury, and S. S. Sastry. Steering three-input nonholo-
nomic systems: the fire truck example. International Journal of Robotics Re-
search, 14(4):366–381, 1995.

[164] Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Contact sensor-based coverage of
rectilinear environments. In IEEE Symposium on Intelligent Control, 1999.

[165] Z. J. Butler and D. Rus. Distributed motion planning for modular robots
with unit-compressible modules. International Journal of Robotics Research,
22(9):699–716, 2003.

BIBLIOGRAPHY 935

[166] S. Cambon, F. Gravot, and R. Alami. A robot task planner and merges sym-
bolic and geometric reasoning. In Proceedings European Conference on Artificial
Intelligence, 2004.

[167] S. Cameron. A comparison of two fast algorithms for computing the distance
between convex polyhedra. IEEE Transactions on Robotics & Automation,
13(6):915–920, December 1997.

[168] F. Camilli and M. Falcone. Approximation of optimal control problems with
state constraints: Estimates and applications. In B. S. Mordukhovich and H. J.
Sussmann, editors, Nonsmooth Analysis and Geometric Methods in Deterministic
Optimal Control, pages 23–57. Springer-Verlag, Berlin, 1996. Mathematics and
its Applications, Vol. 78.

[169] J. Canny. Constructing roadmaps of semi-algebraic sets I. Artificial Intelligence
Journal, 37:203–222, 1988.

[170] J. Canny. Computing roadmaps of general semi-algebraic sets. The Computer
Journal, 36(5):504–514, 1993.

[171] J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in
the plane. Discrete and Computational Geometry, 6:461–484, 1991.

[172] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. In Proceedings IEEE Symposium on Foundations of Computer Science,
pages 49–60, 1987.

[173] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1988.

[174] J. F. Canny. On computability of fine motion plans. In Proceedings IEEE Inter-
national Conference on Robotics & Automation, pages 177–182, 1989.

[175] J. F. Canny and K. Y. Goldberg. “RISC” industrial robots: Recent results and
current trends. In Proceedings IEEE International Conference on Robotics &
Automation, pages 1951–1958, 1994.

[176] J. F. Canny and M. Lin. An opportunistic global path planner. Algorithmica,
10:102–120, 1993.

[177] S. Carpin and E. Pagello. On parallel RRTs for multi-robot systems. In Proceed-
ings 8th Conference of the Italian Association for Artificial Intelligence, pages
834–841, 2002.

[178] S. Carpin and G. Pillonetto. Merging the adaptive random walks planner with the
randomized potential field planner. In Proceedings IEEE International Workshop
on Robot Motion and Control, pages 151–156, 2005.

[179] S. Carpin and G. Pillonetto. Robot motion planning using adaptive random
walks. IEEE Transactions on Robotics & Automation, 21(1):129–136, 2005.

[180] A. Casal. Reconfiguration Planning for Modular Self-Reconfigurable Robots. PhD
thesis, Stanford University, Stanford, CA, 2002.

[181] S. Caselli and M. Reggiani. ERPP: An experience-based randomized path plan-
ner. In Proceedings IEEE International Conference on Robotics & Automation,
2000.

936 BIBLIOGRAPHY

[182] J. Castellanos, J. Montiel, J. Neira, and J. Tardós. The SPmap: A probabilistic
framework for simultaneous localization and mapping. IEEE Transactions on
Robotics & Automation, 15(5):948–953, 1999.

[183] D. Challou, D. Boley, M. Gini, and V. Kumar. A parallel formulation of informed
randomized search for robot motion planning problems. In Proceedings IEEE
International Conference on Robotics & Automation, pages 709–714, 1995.

[184] D. D. Champeaux. Bidirectional heuristic search again. Journal of the ACM,
30(1):22–32, January 1983.

[185] D. D. Champeaux and L. Sint. An improved bidirectional heuristic search algo-
rithm. Journal of the ACM, 24(2):177–191, April 1977.

[186] H. Chang and T. Y. Li. Assembly maintainability study with motion planning.
In Proceedings IEEE International Conference on Robotics & Automation, pages
1012–1019, 1995.

[187] S. Charentus. Modeling and Control of a Robot Manipulator Composed of Several
Stewart Platforms. PhD thesis, Université Paul Sabatier, Toulouse, France, 1990.
In French.

[188] S. Chawla. Graph Algorithms for Planning and Partitioning. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, June 2005.

[189] B. Chazelle. Approximation and decomposition of shapes. In J. T. Schwartz
and C. K. Yap, editors, Algorithmic and Geometric Aspects of Robotics, pages
145–185. Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

[190] B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Com-
putational Geometry, 6(5):485–524, 1991.

[191] B. Chazelle. The Discrepancy Method. Cambridge University Press, Cambridge,
U.K., 2000.

[192] C.-T. Chen. Linear System Theory and Design. Holt, Rinehart, and Winston,
New York, 1984.

[193] P. C. Chen and Y. K. Hwang. SANDROS: A motion planner with performance
proportional to task difficulty. In Proceedings IEEE International Conference on
Robotics & Automation, pages 2346–2353, 1992.

[194] P. C. Chen and Y. K. Hwang. SANDROS: A dynamic search graph algorithm for
motion planning. IEEE Transactions on Robotics & Automation, 14(3):390–403,
1998.

[195] Y.-B. Chen and D. J. Ierardi. The complexity of oblivious plans for orienting and
distinguishing polygonal parts. Algorithmica, 14:367–397, 1995.

[196] P. Cheng. Sampling-Based Motion Planning with Differential Constraints. PhD
thesis, University of Illinois, Urbana, IL, August 2005.

[197] P. Cheng, E. Frazzoli, and S. M. LaValle. Exploiting group symmetries to im-
prove precision in kinodynamic and nonholonomic planning. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2003.

[198] P. Cheng, E. Frazzoli, and S. M. LaValle. Improving the performance of sampling-
based planners by using a symmetry-exploiting gap reduction algorithm. In Pro-
ceedings IEEE International Conference on Robotics and Automation, 2004.

BIBLIOGRAPHY 937

[199] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajectory
design. In Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 43–48, 2001.

[200] P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring random
trees. In Proceedings IEEE International Conference on Robotics and Automa-
tion, pages 267–272, 2002.

[201] P. Cheng, Z. Shen, and S. M. LaValle. Using randomization to find and opti-
mize feasible trajectories for nonlinear systems. In Proceedings Annual Allerton
Conference on Communications, Control, Computing, pages 926–935, 2000.

[202] P. Cheng, Z. Shen, and S. M. LaValle. RRT-based trajectory design for au-
tonomous automobiles and spacecraft. Archives of Control Sciences, 11(3-4):167–
194, 2001.

[203] M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles. In
Proceedings IEEE International Conference on Robotics & Automation, 1999.

[204] F. L. Chernousko, N. N. Bolotnik, and V. G. Gradetsky. Manipulation Robots.
CRC Press, Boca Raton, FL, 1994.

[205] L. P. Chew and K. Kedem. A convex polygon among polygonal obstacles: Place-
ment and high-clearance motion. Computational Geometry: Theory and Appli-
cations, 3:59–89, 1993.

[206] D. Chibisov, E. W. Mayr, and S. Pankratov. Spatial planning and geometric
optimization: Combining configuration space and energy methods. In H. Hong
and D. Wang, editors, Automated Deduction in Geometry - ADG 2004. Springer-
Verlag, Berlin, 2006.

[207] S. Chien, R. Sherwood, D. Tran, B. Cichy, D. Mandl, S. Frye, B. Trout, S. Shul-
man, and D. Boyer. Using autonomy flight software to improve science return
on Earth Observing One. Journal of Aerospace Computing, Information, and
Communication, 2:196–216, April 2005.

[208] W.-P. Chin and S. Ntafos. Optimum watchman routes. Information Processing
Letters, 28:39–44, 1988.

[209] G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff. Evaluating efficiency of self-
reconfiguration in a class of modular robots. Journal of Robotic Systems,
13(5):717–338, 1996.

[210] G. S. Chirikjian and A. B. Kyatkin. Engineering Applications of Noncommutative
Harmonic Analysis. CRC Press, Boca Raton, FL, 2001.

[211] H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. T. Mason. Minimum wheel-
rotation paths for differential-drive mobile robots. In Proceedings IEEE Interna-
tional Conference on Robotics and Automation, 2006.

[212] H. Chitsaz, J. M. O’Kane, and S. M. LaValle. Pareto-optimal coordination of
two translating polygonal robots on an acyclic roadmap. In Proceedings IEEE
International Conference on Robotics and Automation, 2004.

[213] S. Chitta, P. Cheng, E. Frazzoli, and V. Kumar. RoboTrikke: A novel undulatory
locomotion system. In Proceedings IEEE International Conference on Robotics
& Automation, 2005.

938 BIBLIOGRAPHY

[214] S. Chitta and V. Kumar. Dynamics and generation of gaits for a planar
rollerblader. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2003.

[215] J. Choi, J. Sellen, and C. K. Yap. Precision-sensitive Euclidean shortest path
in 3-space. In Proceedings ACM Symposium on Computational Geometry, pages
350–359, 1995.

[216] H. Choset. Coverage of known spaces: The boustrophedon cellular decomposition.
Autonomous Robots, 9:247–253, 2000.

[217] H. Choset. Coverage for robotics – A survey of recent results. Annals of Mathe-
matics and Artificial Intelligence, 31:113–126, 2001.

[218] H. Choset and J. Burdick. Sensor based motion planning: Incremental con-
struction of the hierarchical generalized Voronoi graph. International Journal of
Robotics Research, 19(2):126–148, 2000.

[219] H. Choset and J. Burdick. Sensor based motion planning: The hierarchical gener-
alized Voronoi graph. International Journal of Robotics Research, 19(2):96–125,
2000.

[220] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implemen-
tations. MIT Press, Cambridge, MA, 2005.

[221] H. Choset and K. Nagatani. Topological simultaneous localization and mapping
(T-SLAM). IEEE Transactions on Robotics & Automation, 17(2):125–137, 2001.

[222] H. Choset and P. Pignon. Cover path planning: The boustrophedron decompo-
sition. In Proceedings International Conference on Field and Service Robotics,
Canberra, Australia, December 1997.

[223] P. Choudhury and K. Lynch. Rolling manipulation with a single control. In
Proceedings Conference on Control Applications, September 2002.

[224] P. Choudhury and K. Lynch. Trajectory planning for second-order underactu-
ated mechanical systems in presence of obstacles. In Proceedings Workshop on
Algorithmic Foundations of Robotics, 2002.

[225] K.-C. Chu. Team decision theory and information structures in optimal con-
trol problems – Part II. IEEE Transactions on Automatic Control, 17(1):22–28,
February 1972.

[226] C. K. Chui and G. Chen. Kalman Filtering. Springer-Verlag, Berlin, 1991.

[227] M. Chyba, H. Sussmann, H. Maurer, and G. Vossen. Underwater vehicles: The
minimum time problem. In Proceedings IEEE Conference Decision & Control,
The Bahamas, December 2004.

[228] C. M. Clark, S. M. Rock, and J.-C. Latombe. Motion planning for multiple mobile
robots using dynamic networks. In Proceedings IEEE International Conference
on Robotics & Automation, 2003.

[229] D. E. Clark, G. Jones, P. Willett P. W. Kenny, and R. C. Glen. Pharmacophoric
pattern matching in files of three-dimensional chemical structures: Comparison
of conformational searching algorithms for flexible searching. Journal Chemical
Information and Computational Sciences, 34:197–206, 1994.

BIBLIOGRAPHY 939

[230] K. L. Clarkson. Nearest neighbor searching in metric spaces: Ex-
perimental results for sb(s). Bell Labs. Available from http://cm.bell-
labs.com/who/clarkson/Msb/readme.html, 2003.

[231] F. S. Cohen and D. B. Cooper. Simple parallel hierarchical and relaxation algo-
rithms for segmenting noncausal Markovian random fields. IEEE Transactions
Pattern Analysis Machine Intelligence, 9(2):195–219, March 1987.

[232] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proceedings Second GI Conference on Automata Theory and
Formal Languages, pages 134–183, Berlin, 1975. Springer-Verlag. Lecture Notes
in Computer Science, 33.

[233] G. E. Collins. Quantifier elimination by cylindrical algebraic decomposition–
twenty years of progress. In B. F. Caviness and J. R. Johnson, editors, Quanti-
fier Elimination and Cylindrical Algebraic Decomposition, pages 8–23. Springer-
Verlag, Berlin, 1998.

[234] L. Conlon. Differentiable Manifolds, 2nd Ed. Birkhäuser, Boston, MA, 2001.

[235] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local potential func-
tions for global robot control and navigation. In Proceedings IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 3546–3551, 2003.

[236] C. Connolly and R. Grupen. The application of harmonic potential functions to
robotics. Journal of Robotic Systems, 10(7):931–946, 1993.

[237] C. Connolly, R. Grupen, and K. Souccar. A Hamiltonian framework for kinody-
namic planning. In Proceedings IEEE International Conference on Robotics &
Automation, 1995.

[238] C. I. Connolly. The determination of next best views. In Proceedings IEEE
International Conference on Robotics & Automation, pages 432–435, 1985.

[239] C. I. Connolly. Applications of harmonic functions to robotics. In IEEE Sympo-
sium on Intelligent Control, pages 498–502, 1992.

[240] C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using Laplace’s equation.
In Proceedings IEEE International Conference on Robotics & Automation, pages
2102–2106, May 1990.

[241] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices, and Groups.
Springer-Verlag, Berlin, 1999.

[242] H. W. Corley. Some multiple objective dynamic programs. IEEE Transactions
on Automatic Control, 30(12):1221–1222, December 1985.

[243] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (2nd Ed.). MIT Press, Cambridge, MA, 2001.

[244] J. Cortés. Motion Planning Algorithms for General Closed-Chain Mechanisms.
PhD thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2003.

[245] J. Cortés, T. Siméon M. Remaud-Siméon, and V. Tran. Geometric algorithms
for the conformational analysis of long protein loops. Journal of Computational
Chemistry, 25:956–967, 2004.

[246] J. Cortés, T. Siméon, and J.-P. Laumond. A random loop generator for planning
the motions of closed kinematic chains using PRM methods. In Proceedings IEEE
International Conference on Robotics & Automation, 2002.

940 BIBLIOGRAPHY

[247] M. G. Coutinho. Dynamic Simulations of Multibody Systems. Springer-Verlag,
Berlin, 2001.

[248] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New
York, 1991.

[249] N. Cowan. Composing navigation functions on Cartesian products of manifolds
with boundary. In Proceedings Workshop on Algorithmic Foundations of Robotics,
Zeist, The Netherlands, July 2004.

[250] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-
Verlag, Berlin, 1992.

[251] H. S. M. Coxeter. Regular Polytopes. Dover, New York, 1973.

[252] J. J. Craig. Introduction to Robotics. Addison-Wesley, Reading, MA, 1989.

[253] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations.
Transactions of the American Mathematical Society, 277(1):1–42, 1983.

[254] D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile intruder in a
corridor – The open edge variant of the polygon search problem. International
Journal Computational Geometry & Applications, 5(4):397–412, 1995.

[255] J. C. Culberson. Sokoban is PSPACE-complete. In Proceedings International
Conference on Fun with Algorithms (FUN98), pages 65–76, Waterloo, Ontario,
Canada, June 1998. Carleton Scientific.

[256] M. R. Cutkosky. Robotic Grasping and Fine Manipulation. Kluwer, Boston, MA,
1985.

[257] L. K. Dale and N. M. Amato. Probabilistic roadmap methods are embarrassingly
parallel. In Proceedings IEEE International Conference on Robotics & Automa-
tion, 1999.

[258] F. Dallaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for
mobile robots. In Proceedings IEEE International Conference on Robotics &
Automation, 1999.

[259] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, 1963.

[260] A. Datta, C. A. Hipke, and S. Schuierer. Competitive searching in polygons–
beyond generalized streets. In J. Staples, P. Eades, N. Katoh, and A. Moffat,
editors, Algorithms and Computation, ISAAC ’95, pages 32–41. Springer-Verlag,
Berlin, 1995.

[261] R. S. Datta. Using computer algebra to compute Nash equilibria. In Proceedings
International Symposium on Symbolic and Algebraic Computation, 2003.

[262] J. Davenport and J. Heintz. Real quantifier elimination is doubly exponential.
Journal of Symbolic Computation, 5:29–35, 1988.

[263] S. Davies. Multidimensional triangulation and interpolation for reinforcement
learning. In Proceedings Neural Information Processing Systems, 1996.

[264] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications, 2nd Ed. Springer-Verlag, Berlin, 2000.

BIBLIOGRAPHY 941

[265] M. J. de Smith. Distance and Path: The Development, Interpretation and Ap-
plication of Distance Measurement in Mapping and Modelling. PhD thesis, Uni-
versity College, University of London, London, 2003.

[266] T. Dean and S. Kambhampati. Planning and scheduling. In A. B. Tucker, editor,
The CRC Handbook of Computer Science and Engineering, pages 614–636. CRC
Press, Boca Raton, FL, 1997.

[267] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufman, San
Francisco, CA, 1991.

[268] M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

[269] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society,
Ser. B., 39:1–38, 1977.

[270] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an
unknown environment I: The rectilinear case. Available from
http://www.cs.berkeley.edu/∼christos/, 1997.

[271] P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[272] R. Dial. Algorithm 360: Shortest path forest with topological ordering. Commu-
nications of the ACM, 12:632–633, 1969.

[273] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[274] D. V. Dimarogonas, M. M. Zavlanos, S. G. Loizou, and K. J. Kyriakopoulos. De-
centralized motion control of multiple holonomic agents under input constraints.
In Proceedings IEEE Conference Decision & Control, 2003.

[275] G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba.
A solution to the simultaneous localisation and map building (SLAM) problem.
IEEE Transactions on Robotics & Automation, 17(3):229–241, 2001.

[276] A. W. Divelbiss and J. T. Wen. Nonholonomic path planning with inequality
constraints. In Proceedings IEEE International Conference on Robotics & Au-
tomation, pages 52–57, 1994.

[277] A. W. Divelbiss and J. T. Wen. A path-space approach to nonholonomic planning
in the presence of obstacles. IEEE Transactions on Robotics & Automation,
13(3):443–451, 1997.

[278] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti. Nonlinear Control
of Engineering Systems: A Lyapunov-Based Approach. Birkhäuser, Boston, MA,
2003.

[279] M. P. do Carmo. Riemannian Geometry. Birkhäuser, Boston, MA, 1992.

[280] B. R. Donald. Motion planning with six degrees of freedom. Technical Report
AI-TR-791, Artificial Intelligence Lab., Massachusetts Institute of Technology,
Cambridge, MA, 1984.

[281] B. R. Donald. Error Detection and Recovery for Robot Motion Planning with
Uncertainty. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1987.

942 BIBLIOGRAPHY

[282] B. R. Donald. A search algorithm for motion planning with six degrees of freedom.
Artificial Intelligence Journal, 31:295–353, 1987.

[283] B. R. Donald. The complexity of planar compliant motion planning under un-
certainty. In Proceedings ACM Symposium on Computational Geometry, pages
309–318, 1988.

[284] B. R. Donald. A geometric approach to error detection and recovery for robot
motion planning with uncertainty. Artificial Intelligence Journal, 37:223–271,
1988.

[285] B. R. Donald. Planning multi-step error detection and recovery strategies. In-
ternational Journal of Robotics Research, 9(1):3–60, 1990.

[286] B. R. Donald. On information invariants in robotics. Artificial Intelligence Jour-
nal, 72:217–304, 1995.

[287] B. R. Donald and J. Jennings. Sensor interpretation and task-directed planning
using perceptual equivalence classes. In Proceedings IEEE International Confer-
ence on Robotics & Automation, pages 190–197, 1991.

[288] B. R. Donald and P. Xavier. Provably good approximation algorithms for op-
timal kinodynamic planning for Cartesian robots and open chain manipulators.
Algorithmica, 14(6):480–530, 1995.

[289] B. R. Donald and P. Xavier. Provably good approximation algorithms for optimal
kinodynamic planning: Robots with decoupled dynamics bounds. Algorithmica,
14(6):443–479, 1995.

[290] B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic planning.
Journal of the ACM, 40:1048–66, November 1993.

[291] S. K. Donaldson. Self-dual connections and the topology of smooth 4-manifold.
Bulletin of the American Mathematical Society, 8:81–83, 1983.

[292] A. L. Dontchev. Discrete approximations in optimal control. In B. S. Mor-
dukhovich and H. J. Sussmann, editors, Nonsmooth Analysis and Geometric
Methods in Deterministic Optimal Control, pages 59–80. Springer-Verlag, Berlin,
1996. Mathematics and Its Applications, Vol. 78.

[293] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in
Practice. Springer-Verlag, Berlin, 2001.

[294] L. E. Dubins. On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents. American
Journal of Mathematics, 79:497–516, 1957.

[295] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd Ed. Wiley,
New York, 2000.

[296] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cam-
bridge University Press, Cambridge, U.K., 2000.

[297] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Map validation and self-location
in a graph-like world. In Proceedings AAAI National Conference on Artificial
Intelligence, pages 1648–1653, 1993.

[298] G. Dudek, K. Romanik, and S. Whitesides. Global localization: Localizing a
robot with minimal travel. SIAM Journal on Computing, 27(2):583–604, April
1998.

BIBLIOGRAPHY 943

[299] I. Duleba. Algorithms of Motion Planning for Nonholonomic Robots. Technical
University of Wroclaw, Wroclaw, Poland, 1998.

[300] G. E. Dullerud and R. D’Andrea. Distributed control of heterogeneous systems.
IEEE Transactions on Automatic Control, 49(12):2113–2128, 2004.

[301] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory. Springer-
Verlag, Berlin, 2000.

[302] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
Berlin, 1987.

[303] C. Edwards and S. K. Spurgeon. Sliding Mode Control: Theory and Applications.
CRC Press, Ann Arbor, MI, 1998.

[304] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and T. M.
Murali. Sweeping simple polygons with a chain of guards. In Proceedings ACM-
SIAM Symposium on Discrete Algorithms, 2000.

[305] M. Egerstedt and X. Hu. Formation constrained multi-agent control. IEEE
Transactions on Robotics & Automation, 17(6):947–951, December 2001.

[306] S. Ehmann and M. C. Lin. Accurate and fast proximity queries between polyhedra
using convex surface decomposition. In Proceedings Eurographics, 2001.

[307] A. Elfes. Using occupancy grids for mobile robot perception and navigation.
IEEE Computer, 22(6):46–57, June 1989.

[308] G. Ellis. Observers in Control Systems. Elsevier, New York, 2002.

[309] I. Z. Emiris and B. Mourrain. Computer algebra methods for studying and
computing molecular conformations. Technical report, INRIA, Sophia-Antipolis,
France, 1997.

[310] A. G. Erdman, G. N. Sandor, and S. Kota. Mechanism Design: Analysis and
Synthesis, 4th Ed., Vol. 1. Prentice Hall, Englewood Cliffs, NJ, 2001.

[311] M. A. Erdmann. On motion planning with uncertainty. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, August 1984.

[312] M. A. Erdmann. Using backprojections for fine motion planning with uncertainty.
International Journal of Robotics Research, 5(1):19–45, 1986.

[313] M. A. Erdmann. On Probabilistic Strategies for Robot Tasks. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1989.

[314] M. A. Erdmann. Randomization in robot tasks. International Journal of Robotics
Research, 11(5):399–436, October 1992.

[315] M. A. Erdmann. Randomization for robot tasks: Using dynamic programming
in the space of knowledge states. Algorithmica, 10:248–291, 1993.

[316] M. A. Erdmann. On a representation of friction in configuration space. Interna-
tional Journal of Robotics Research, 13(3):240–271, 1994.

[317] M. A. Erdmann. Understanding action and sensing by designing action-based
sensors. International Journal of Robotics Research, 14(5):483–509, 1995.

944 BIBLIOGRAPHY

[318] M. A. Erdmann. An exploration of nonprehensile two-palm manipulation using
two zebra robots. In J.-P. Laumond and M. Overmars, editors, Algorithms for
Robotic Motion and Manipulation, pages 239–254. A.K. Peters, Wellesley, MA,
1997.

[319] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. In Proceedings
IEEE International Conference on Robotics & Automation, pages 1419–1424,
1986.

[320] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. Algorithmica,
2:477–521, 1987.

[321] M. A. Erdmann and M. T. Mason. An exploration of sensorless manipulation.
IEEE Transactions on Robotics & Automation, 4(4):369–379, August 1988.

[322] M. A. Erdmann, M. T. Mason, and G. Vaněček. Mechanical parts orienting: The
case of a polyhedron on a table. Algorithmica, 10:206–247, 1993.

[323] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing
in robotics. IEEE Transactions on Robotics & Automation, 8(3):313–326, June
1992.

[324] J. Esposito, J. W. Kim, and V. Kumar. Adaptive RRTs for validating hybrid
robotic control systems. In Proceedings Workshop on Algorithmic Foundations
of Robotics, Zeist, The Netherlands, July 2004.

[325] M. Farber. Topological complexity of motion planning. Discrete and Computa-
tional Geometry, 29:211–221, 2003.

[326] M. Farber, S. Tabachnkov, and S. Yuzvinsky. Topological robotics: Motion plan-
ning in projective spaces. International Mathematical Research Notices, 34:1853–
1870, 2003.

[327] M. Farber and S. Yuzvinsky. Topological robotics: Subspace arrangements and
collision free motion planning. Technical Report math.AT/0210115, arXiv (on-
line), 2004.

[328] B. Faverjon. Obstacle avoidance using an octree in the configuration space of
a manipulator. In Proceedings IEEE International Conference on Robotics &
Automation, pages 504–512, 1984.

[329] B. Faverjon. Hierarchical object models for efficient anti-collision algorithms. In
Proceedings IEEE International Conference on Robotics & Automation, pages
333–340, 1989.

[330] B. Faverjon and P. Tournassoud. A local based method for path planning of
manipulators with a high number of degrees of freedom. In Proceedings IEEE
International Conference on Robotics & Automation, pages 1152–1159, 1987.

[331] R. Featherstone. Robot Dynamics Algorithms. Kluwer, Boston, MA, 1987.

[332] S. P. Fekete, R. Klein, and A. Nüchter. Online searching with an autonomous
robot. In Proceedings Workshop on Algorithmic Foundations of Robotics, Zeist,
The Netherlands, July 2004.

[333] P. Ferbach. A method of progressive constraints for nonholonomic motion plan-
ning. In Proceedings IEEE International Conference on Robotics & Automation,
pages 2949–2955, 1996.

BIBLIOGRAPHY 945

[334] C. Fernandes, L. Gurvits, and Z. X. Li. A variational approach to optimal non-
holonomic motion planning. In Proceedings IEEE International Conference on
Robotics & Automation, pages 680–685, 1991.

[335] C. Fernandes, L. Gurvits, and Z. X. Li. Near-optimal nonholonomic motion
planning for a system of coupled rigid bodies. IEEE Transactions on Automatic
Control, 30(3):450–463, March 1994.

[336] R. Fierro, A. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of formations of
robots. In Proceedings IEEE International Conference on Robotics & Automation,
pages 157–162, 2001.

[337] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving. Artificial Intelligence Journal, 2:189–208, 1971.

[338] A. F. Filippov. Differential equations with discontinuous right-hand sides. Amer-
ican Mathematical Society Translations, Ser. 2, 64:199–231, 1964.

[339] P. W. Finn, D. Halperin, L. E. Kavraki, J.-C. Latombe, R. Motwani, C. Shelton,
and S. Venkatasubramanian. Geometric manipulation of flexible ligands. In
M. C. Lin and D. Manocha, editors, Applied Computational Geometry, pages
67–78. Springer-Verlag, Berlin, 1996. Lecture Notes in Computer Science, 1148.

[340] R. J. Firby. An investigation into reactive planning in complex domains. In
Proceedings AAAI National Conference on Artificial Intelligence, 1987.

[341] G. F. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer-
Verlag, Berlin, 1996.

[342] R. Fleischer, K. Romanik, S. Schuierer, and G. Trippen. Optimal localization in
trees. Information and Computation, 171(2):224–247, 2002.

[343] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for smooth-
ing mobile robot trajectories. IEEE Transactions on Robotics & Automation,
11(3):441–448, 1995.

[344] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of non-linear
systems: Introductory theory and examples. International Journal of Control,
61(6):1327–1361, 1995.

[345] H. Flordal, M. Fabian, and K. Akesson. Automatic implementation and verifi-
cation of coordinating PLC-code for robotcells. In Proceedings IFAC Symposium
of Information Control Problems in Manufacturing, 2004.

[346] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley,
New York, 1984.

[347] S. Fortune and G. Wilfong. Planning constrained motion. In Proceedings ACM
Symposium on Theory of Computing, pages 445–459, 1988.

[348] M. Foskey, M. Garber, M. Lin, and D. Manocha. A Voronoi-based hybrid mo-
tion planner. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2001.

[349] A. Fox and S. Hutchinson. Exploiting visual constraints in the synthesis of
uncertainty-tolerant motion plans. IEEE Transactions on Robotics & Automa-
tion, 1(11):56–71, February 1995.

946 BIBLIOGRAPHY

[350] D. Fox, S. Thrun, W. Burgard, and F. Dallaert. Particle filters for mobile robot
localization. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential
Monte Carlo Methods in Practice, pages 401–428. Springer-Verlag, Berlin, 2001.

[351] D. Hähnel D. Fox, W. Burgard, and S. Thrun. A highly efficient FastSLAM
algorithm for generating cyclic maps of large-scale environments from raw laser
range measurements. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2003.

[352] J. Fraden. Handbook of Modern Sensors: Physics, Designs, and Applications.
Springer-Verlag, Berlin, 2003.

[353] T. Fraichard. Dynamic trajectory planning with dynamic constraints: A ’state-
time space’ approach. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1393–1400, 1993.

[354] T. Fraichard and J.-M. Ahuactzin. Smooth path planning for cars. In Proceedings
IEEE International Conference on Robotics & Automation, pages 3722–3727,
2001.

[355] T. Fraichard and H. Asama. Inevitable collision states - a step towards safer
robots? Advanced Robotics, pages 1001–1024, 2004.

[356] T. Fraichard and C. Laugier. Kinodynamic planning in a structured and time-
varying 2D workspace. In Proceedings IEEE International Conference on Robotics
& Automation, pages 2: 1500–1505, 1992.

[357] T. Fraichard and A. Scheuer. Car-like robots and moving obstacles. In Proceedings
IEEE International Conference on Robotics & Automation, pages 64–69, 1994.

[358] T. Fraichard and A. Scheuer. From Reeds and Shepp’s to continuous-curvature
paths. IEEE Transactions on Robotics, 20(6):1025–1035, December 2004.

[359] T. Frankel. The Geometry of Physics. Cambridge University Press, Cambridge,
U.K., 2004.

[360] E. Frazzoli. Robust Hybrid Control of Autonomous Vehicle Motion Planning.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2001.

[361] E. Frazzoli and F. Bullo. Decentralized algorithms for vehicle routing in a stochas-
tic time-varying environment. In Proceedings IEEE Conference Decision & Con-
trol, pages 3357–3363, 2004.

[362] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. AIAA Journal of Guidance and Control, 25(1):116–129,
2002.

[363] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for
nonlinear systems with symmetries. IEEE Transactions on Robotics, 21(6):1077–
1091, December 2005.

[364] E. Freund and H. Hoyer. Path finding in multi robot systems including obsta-
cle avoidance. International Journal of Robotics Research, 7(1):42–70, February
1988.

[365] J. H. Friedman, J. L. Bentley, and R.A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Soft-
ware, 3(3):209–226, September 1977.

BIBLIOGRAPHY 947

[366] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics: Control, Sensing, Vision,
and Intelligence. McGraw-Hill, New York, 1987.

[367] K. Fujimura and H. Samet. A hierarchical strategy for path planning among mov-
ing obstacles. Technical Report CAR-TR-237, Center for Automation Research,
University of Maryland, November 1986.

[368] K. Fujimura and H. Samet. Planning a time-minimal motion among moving
obstacles. Algorithmica, 10:41–63, 1993.

[369] T. Fukuda, S. Ito, N. Oota, F. Arai, Y. Abe, K. Tanake, and Y. Tanaka. Naviga-
tion system based on ceiling landmark recognition for autonomous mobile robot.
In Proceedings International Conference on Industrial Electronics, Control, and
Instrumentation, pages 1466–1471, 1993.

[370] A. T. Fuller. Relay control systems optimized for various performance crite-
ria. In Automatic and Remote Control (Proceedings First World Congress IFAC,
Moscow, 1960), pages 510–519. Butterworths, London, 1961.

[371] J. Funge. Artificial Intelligence for Computer Games. A. K. Peters, Wellesley,
MA, 2004.

[372] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous areas by
a mobile robot. Technical report, Dept. of Mechanical Engineering, Technion,
Israel Institute of Technology, December 1999.

[373] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous areas
by a mobile robot. In Proceedings IEEE International Conference on Robotics &
Automation, pages 1927–1933, 2001.

[374] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environments by
a mobile robot. Computational Geometry: Theory and Applications, 24(3):197–
224, April 2003.

[375] Y. Gabriely and E. Rimon. Competitive complexity of mobile robot on line
motion planning problems. In Proceedings Workshop on Algorithmic Foundations
of Robotics, pages 249–264, 2004.

[376] J. Gallier. Curves and Surfaces in Geometric Modeling. Morgan Kaufmann, San
Francisco, CA, 2000.

[377] D. Geman and S. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions Pattern Analysis Machine
Intelligence, 6(6):721–741, November 1984.

[378] M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, San Francisco, CA, 1987.

[379] R. Geraerts and M. Overmars. Sampling techniques for probabilistic roadmap
planners. In Proceedings International Conference on Intelligent Autonomous
Systems, 2004.

[380] R. Geraerts and M. H. Overmars. A comparative study of probabilistic roadmap
planners. In Proceedings Workshop on Algorithmic Foundations of Robotics, De-
cember 2002.

[381] B. Gerkey, S. Thrun, and G. Gordon. Clear the building: Pursuit-evasion with
teams of robots. In Proceedings AAAI National Conference on Artificial Intelli-
gence, 2004.

948 BIBLIOGRAPHY

[382] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.
Morgan Kaufman, San Francisco, CA, 2004.

[383] A. K. Ghose, M. E. Logan, A. M. Treasurywala, H. Wang, R. C. Wahl, B. E. Tom-
czuk, M. R. Gowravaram, E. P. Jaeger, and J. J. Wendoloski. Determination of
pharmacophoric geometry for collagenase inhibitors using a novel computational
method and its verification using molecular dynamics, NMR, and X-ray crystal-
lography. Journal of the American Chemical Society, 117:4671–4682, 1995.

[384] S. K. Ghosh and D. M. Mount. An output sensitive algorithm for computing
visibility graphs. SIAM Journal on Computing, 20:888–910, 1991.

[385] R. Ghrist. Shape complexes for metamorphic robot systems. In Proceedings
Workshop on Algorithmic Foundations of Robotics, December 2002.

[386] R. Ghrist, J. M. O’Kane, and S. M. LaValle. Computing Pareto Optimal
Coordinations on Roadmaps. The International Journal of Robotics Research,
24(11):997–1010, 2005.

[387] E. G. Gilbert and D. W. Johnson. Distance functions and their application to
robot path planning in the presence of obstacles. IEEE Transactions on Robotics
& Automation, 1(1):21–30, March 1985.

[388] E. G. Gilbert, D. W. Johnson, and S. S. Keerth. A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE Journal
of Robotics & Automation, RA-4(2):193–203, Apr 1988.

[389] T. N. Gillespie. Fundamentals of Vehicle Dynamics. Society of Automotive
Engineers, Warrendale, PA, 1992.

[390] B. Glavina. Solving findpath by combination of goal-directed and randomized
search. In Proceedings IEEE International Conference on Robotics & Automation,
pages 1718–1723, May 1990.

[391] B. Glavina. Planning collision free motions for manipulators through a combi-
nation of goal oriented search and the creation of intermediate random subgoals.
PhD thesis, Technical University of Munich, 1991. In German.

[392] P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe. A decision-theoretic ap-
proach to coordinating multi-agent interactions. In Proceedings International
Joint Conference on Artificial Intelligence, pages 62–68, 1991.

[393] J. Go, T. Vu, and J. J. Kuffner. Autonomous behaviors for interactive vehicle
animations. In Proceedings SIGGRAPH Symposium on Computer Animation,
2004.

[394] K. Y. Goldberg. Stochastic Plans for Robotic Manipulation. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, August 1990.

[395] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10:201–
225, 1993.

[396] K. Y. Goldberg and M. T. Mason. Bayesian grasping. In Proceedings IEEE
International Conference on Robotics & Automation, 1990.

[397] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.

[398] M. Goldwasser and R. Motwani. Intractability of assembly sequencing: Unit
disks in the plane. In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia,
editors, WADS ’97 Algorithms and Data Structures, pages 307–320. Springer-
Verlag, Berlin, 1997. Lecture Notes in Computer Science, 1272.

BIBLIOGRAPHY 949

[399] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd ed). Johns Hopkins
University Press, Baltimore, MD, 1996.

[400] R. Gonzalez and E. Rofman. On deterministic control problems: An approxi-
mation procedure for the optimal cost, parts I, II. SIAM Journal on Control &
Optimization, 23:242–285, 1985.

[401] H. H. González-Baños, L. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, R. Mot-
wani, and C. Tomasi. Motion planning with visibility constraints: Building au-
tonomous observers. In Y. Shirai and S. Hirose, editors, Proceedings Eighth Inter-
national Symposium on Robotics Research, pages 95–101. Springer-Verlag, Berlin,
1998.

[402] H. H. González-Baños, C.-Y. Lee, and J.-C. Latombe. Real-time combinatorial
tracking of a target moving unpredictably among obstacles. In Proceedings IEEE
International Conference on Robotics & Automation, 2002.

[403] J. E. Goodman and J. O’Rourke (eds). Handbook of Discrete and Computational
Geometry, 2nd Ed. Chapman and Hall/CRC Press, New York, 2004.

[404] M. T. Goodrich and R. Tammasia. Algorithm Design: Foundations, Analysis,
and Internet Examples. Wiley, New York, 2002.

[405] B. R. Gossick. Hamilton’s Principle and Physical Systems. Academic, New York,
1967.

[406] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical structure
for rapid interference detection. In Proceedings ACM SIGGRAPH, 1996.

[407] V. E. Gough and S. G. Whitehall. Universal tyre test machine. In Proceedings
9th International Technical Congress F.I.S.I.T.A., May 1962.

[408] E. J. Griffith and S. Akella. Coordinating multiple droplets in planar array digital
microfluidic systems. International Journal of Robotics Research, 24(11):933–949,
2005.

[409] R. Grossman, A. Nerode, A. Ravn, and H. Rischel (eds). Hybrid Systems.
Springer-Verlag, Berlin, 1993.

[410] L. Grüne. An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman
equation. Numerische Mathematik, 75:319–337, 1997.

[411] L. Guibas and R. Seidel. Computing convolution by reciprocal search. In Pro-
ceedings ACM Symposium on Computational Geometry, pages 90–99, 1986.

[412] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. ACM Transactions on Graphics,
4(2):74–123, 1985.

[413] L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchical distance computation
for moving convex bodies. In Proceedings ACM Symposium on Computational
Geometry, pages 265–273, 1999.

[414] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-
based pursuit-evasion in a polygonal environment. International Journal of Com-
putational Geometry and Applications, 9(5):471–494, 1999.

[415] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. In
K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, Algorithmic
Foundations of Robotics, pages 269–282. A.K. Peters, Wellesley, MA, 1995.

950 BIBLIOGRAPHY

[416] L. Guilamo, B. Tovar, and S. M. LaValle. Pursuit-evasion in an unknown envi-
ronment using gap navigation trees. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2004.

[417] K. Gupta and Z. Guo. Motion planning with many degrees of freedom: Sequen-
tial search with backtracking. IEEE Transactions on Robotics & Automation,
6(11):897–906, 1995.

[418] K. Gupta and X. Zhu. Practical motion planning for many degrees of free-
dom: A novel approach within sequential framework. Journal of Robotic Systems,
2(12):105–118, 1995.

[419] S. K. Gupta, D. A. Bourne, K. Kim, and S. S. Krishnan. Automated process
planning for robotic sheet metal bending operations. Journal of Manufacturing
Systems, 17(5):338–360, 1998.

[420] L. Gurvits. Averaging approach to nonholonomic motion planning. In Proceedings
IEEE International Conference on Robotics & Automation, pages 2541–2546,
1992.

[421] J.-S. Gutmann, T. Weigel, and B. Nebel. A fast, accurate, and robust method
for self-localization in polygonal environments using laser-range-finders. Advanced
Robotics, 14(8):651–668, 2001.

[422] O. Hájek. Pursuit Games. Academic, New York, 1975.

[423] K. Haji-Ghassemi. On differential games of fixed duration with phase coordinate
restrictions on one player. SIAM Journal on Control & Optimization, 28(3):624–
652, May 1990.

[424] H. Halkin. Mathematical foundation of system optimization. In G. Leitman,
editor, Topics in Optimization. Academic, New York, 1967.

[425] P. R. Halmos. Measure Theory. Springer-Verlag, Berlin, 1974.

[426] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Hand-
book of Discrete and Computational Geometry, 2nd Ed., pages 529–562. Chapman
and Hall/CRC Press, New York, 2004.

[427] D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework for assem-
bly planning: the motion space approach. In Proceedings ACM Symposium on
Computational Geometry, pages 9–18, 1998.

[428] D. Halperin and M. Sharir. A near-quadratic algorithm for planning the motion
of a polygon in a polygonal environment. Discrete and Computational Geometry,
16:121–134, 1996.

[429] D. Halperin and R. Wilson. Assembly partitioning along simple paths: the case of
multiple translations. In Proceedings IEEE International Conference on Robotics
& Automation, pages 1585–1592, 1995.

[430] J. H. Halton. On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numerische Mathematik, 2:84–90, 1960.

[431] J. M. Hammersley. Monte-Carlo methods for solving multivariable problems.
Annals of the New York Academy of Science, 86:844–874, 1960.

BIBLIOGRAPHY 951

[432] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap method
for closed chain systems. In B. R. Donald, K. M. Lynch, and D. Rus, editors,
Algorithmic and Computational Robotics: New Directions, pages 233–246. A.K.
Peters, Wellesley, MA, 2001.

[433] H. Harrison and T. Nettleton. Advanced Engineering Dynamics. Elsevier, New
York, 1997.

[434] R. S. Hartenberg and J. Denavit. A kinematic notation for lower pair mechanisms
based on matrices. Journal of Applied Mechanics, 77:215–221, 1955.

[435] R. S. Hartenberg and J. Denavit. Kinematic Synthesis of Linkages. McGraw-Hill,
New York, 1964.

[436] J. W. Hartmann. Counter-Intuitive Behavior in Locally Optimal Solar Sail Escape
Trajectories. PhD thesis, University of Illinois, Urbana, IL, May 2005.

[437] J. W. Hartmann, V. L. Coverstone, and J. E. Prussing. Optimal counter-intuitive
solar sail escape trajectories. In Proceedings AIAA/AAS Space Flight Mechanics
Conference, 2004. Paper AAS 04-279.

[438] R. Hartshorne. Algebraic Geometry. Springer-Verlag, Berlin, 1977.

[439] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, U.K.,
2002. Available at http://www.math.cornell.edu/∼hatcher/AT/ATpage.html.

[440] M. T. Heath. Scientific Computing: An Introductory Survey, 2nd Ed. McGraw-
Hill, New York, 2002.

[441] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal trajectories for
a robotic manipulator: A provably good approximation algorithm. In Proceed-
ings IEEE International Conference on Robotics & Automation, pages 150–155,
Cincinnati, OH, 1990.

[442] H. Hermes, A. Lundell, and D. Sullivan. Nilpotent bases for distributions and
control systems. Journal of Differential Equations, 55(3):385–400, 1984.

[443] J. Hershberger and S. Suri. Efficient computation of Euclidean shortest paths in
the plane. In Proceedings IEEE Symposium on Foundations of Computer Science,
pages 508–517, 1995.

[444] S. Hert, S. Tiwari, and V. Lumelsky. A terrain-covering algorithm for an AUV.
Autonomous Robots, 3:91–119, 1996.

[445] F. J. Hickernell. Lattice rules: How well do they measure up? In P. Bickel,
editor, Random and Quasi-Random Point Sets, pages 109–166. Springer-Verlag,
Berlin, 1998.

[446] F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. Extensible lattice
sequences for quasi-monte carlo quadrature. SIAM Journal on Scientific Com-
puting, 22:1117–1138, 2000.

[447] R. Hinkel and T. Knieriemen. Environment perception with a laser radar in a
fast moving robot. In Proceedings Symposium on Robot Control, pages 68.1–68.7,
Karlsruhe, Germany, 1988.

[448] Y. Hirano, K. Kitahama, and S. Yoshizawa. Image-based object recognition and
dextrous hand/arm motion planning using RRTs for grasping in cluttered scene.
In Proceedings IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2005.

952 BIBLIOGRAPHY

[449] M. W. Hirsch. Differential Topology. Springer-Verlag, Berlin, 1994.

[450] Y.-C. Ho and K.-C. Chu. Team decision theory and information structures in
optimal control problems-Part I. In IEEE Transactions on Automatic Control,
pages 15–22, 1972.

[451] J. G. Hocking and G. S. Young. Topology. Dover, New York, 1988.

[452] J. K. Hodgins and W. L. Wooten. Animating human athletes. In Y. Shirai and
S. Hirose, editors, Proceedings International Symposium on Robotics Research,
pages 356–367. Springer-Verlag, Berlin, 1998.

[453] R. L. Hoffman. Automated assembly in a CSG domain. In Proceedings IEEE
International Conference on Robotics & Automation, pages 210–215, 1989.

[454] C. M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San Fran-
cisco, CA, 1989.

[455] C. Holleman and L. E. Kavraki. A framework for using the workspace medial axis
in PRM planners. In Proceedings IEEE International Conference on Robotics &
Automation, pages 1408–1413, 2000.

[456] J. Hollerbach. Dynamic scaling of manipulator trajectories. Technical report,
MIT A.I. Lab Memo 700, 1983.

[457] J. Hollerbach. Dynamic scaling of manipulator trajectories. In Proceedings Amer-
ican Control Conference, pages 752–756, 1983.

[458] L. S. Homem de Mello and A. C. Sanderson. Representations of mechanical
assembly sequences. IEEE Transactions on Robotics & Automation, 7(2):211–
227, 1991.

[459] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applica-
tions. Morgan Kaufmann, San Francisco, 2004.

[460] J. Hopcroft, D. Joseph, and S. Whitesides. Movement problems for 2-dimensional
linkages. In J .T .Schwartz, M. Sharir, and J. Hopcroft, editors, Planning, Ge-
ometry, and Complexity of Robot Motion, pages 282–329. Ablex, Norwood, NJ,
1987.

[461] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion
planning for multiple independent objects: PSPACE-hardness of the “warehouse-
man’s problem”. International Journal of Robotics Research, 3(4):76–88, 1984.

[462] J. E. Hopcroft, J. D. Ullman, and R. Motwani. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA, 2000.

[463] T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of free-
dom: Random reflections at C-space obstacles. In Proceedings IEEE International
Conference on Robotics & Automation, pages 3318–3323, San Diego, CA, April
1994.

[464] A. E. Howe and E. Dahlman. A critical assessment of benchmark comparison in
planning. Journal of Artificial Intelligence Research, pages 1–33, 2002.

[465] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow
passages with probabilistic roadmap planners. In Proceedings IEEE International
Conference on Robotics & Automation, 2003.

BIBLIOGRAPHY 953

[466] D. Hsu, R. Kindel, J-C. Latombe, and S. Rock. Randomized kinodynamic motion
planning with moving obstacles. In B. R. Donald, K. M. Lynch, and D. Rus,
editors, Algorithmic and Computational Robotics: New Directions. A.K. Peters,
Wellesley, MA, 2001.

[467] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configu-
ration spaces. International Journal Computational Geometry & Applications,
4:495–512, 1999.

[468] W. Huang. Optimal line-sweep-based decompositions for coverage algorithms.
In Proceedings IEEE International Conference on Robotics & Automation, pages
27–32, 2001.

[469] T. W. Hungerford. Algebra. Springer-Verlag, Berlin, 1984.

[470] S. A. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control.
IEEE Transactions on Robotics & Automation, 12(5):651–670, October 1996.

[471] M. Hutter. Universal Artificial Intelligence. Springer-Verlag, Berlin, 2005.

[472] Y. K. Hwang and N. Ahuja. Gross motion planning–A survey. ACM Computing
Surveys, 24(3):219–291, September 1992.

[473] S. Iannitti and K. M. Lynch. Exact minimum control switch motion planning for
the snakeboard. In Proceedings IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2003.

[474] C. Icking, G. Rote, E. Welzl, and C.-K. Yap. Shortest paths for line segments.
Algorithmica, 10:182–200, 1992.

[475] P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, 2nd
Ed., pages 877–892. Chapman and Hall/CRC Press, New York, 2004.

[476] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proceedings ACM Symposium on Theory of Com-
puting, pages 604–613, 1998.

[477] R. Isaacs. Differential Games. Wiley, New York, 1965.

[478] A. Isidori. Nonlinear Control Systems, 2nd Ed. Springer-Verlag, Berlin, 1989.

[479] P. Isto. Constructing probabilistic roadmaps with powerful local planning and
path optimization. In Proceedings IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 2323–2328, 2002.

[480] G. Jacob. Lyndon discretization and exact motion planning. In Proceedings
European Control Conference, 1991.

[481] H. Jacob, S. Feder, and J. Slotine. Real-time path planning using harmonic
potential functions in dynamic environment. In Proceedings IEEE International
Conference on Robotics & Automation, pages 874–881, 1997.

[482] P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In Proceedings
IEEE International Conference on Robotics & Automation, pages 2–7, 1989.

[483] P. Jensfelt. Approaches to Mobile Robot Localization. PhD thesis, Royal Institute
of Technology (KTH), Stockholm, Sweden, 2001.

954 BIBLIOGRAPHY

[484] P. Jensfelt and H. I. Christensen. Pose tracking using laser scanning and mini-
malistic environmental models. IEEE Transactions on Robotics & Automation,
17(2):138–147, 2001.

[485] P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using
multiple hypothesis tracking. IEEE Transactions on Robotics & Automation,
17(5):748–760, October 2001.

[486] X. Ji and J. Xiao. Planning motion compliant to complex contact states. Inter-
national Journal of Robotics Research, 20(6):446–465, 2001.

[487] Y.-B. Jia. Computation on parametric curves with an application in grasping.
International Journal of Robotics Research, 23(7-8):825–855, 2004.

[488] P. Jiménez, F. Thomas, and C. Torras. Collision detection algorithms for motion
planning. In J.-P. Laumond, editor, Robot Motion Planning and Control, pages
1–53. Springer-Verlag, Berlin, 1998.

[489] D. Jordan and M. Steiner. Configuration spaces of mechanical linkages. Discrete
and Computational Geometry, 22:297–315, 1999.

[490] D. A. Joseph and W. H. Plantiga. On the complexity of reachability and motion
planning questions. In Proceedings ACM Symposium on Computational Geome-
try, pages 62–66, 1985.

[491] V. Jurdjevic. The geometry of the plate-ball problem. Archives for Rational
Mechanics and Analysis, 124:305–328, 1993.

[492] V. Jurdjevic. Geometric Control Theory. Cambridge University Press, Cam-
bridge, U.K., 1997.

[493] L. P. Kaelbling, A. Cassandra, and J. Kurien. Acting under uncertainty: Discrete
Bayesian models for mobile robot navigation. In Proceedings IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 963–972, 1996.

[494] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence Journal, 101, 1998.

[495] S. Kagami, J. Kuffner, K. Nishiwaki, and K. Okada M. Inaba. Humanoid arm
motion planning using stereo vision and RRT search. In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2003.

[496] D. W. Kahn. Topology: An Introduction to the Point-Set and Algebraic Areas.
Dover, New York, 1995.

[497] H. Kaindl and G. Kainz. Bidirectional heuristic search reconsidered. Journal of
Artificial Intelligence Research, pages 283–317, December 1997.

[498] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning collision-free
reaching motions for interactive object manipulation and grasping. Eurographics,
22(3), 2003.

[499] M. Kallmann and M. Mataric. Motion planning using dynamic roadmaps. In
Proceedings IEEE International Conference on Robotics & Automation, 2004.

[500] R. Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME, Journal of Basic Engineering, 82:35–45, 1960.

BIBLIOGRAPHY 955

[501] R. E. Kalman, Y.-C. Ho, and K. S. Narendra. Controllability of dynamical
systems. Contributions to Differential Equations, 1:189–213, 1963.

[502] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. Wiley, New York, 1986.

[503] T. Kameda, M. Yamashita, and I. Suzuki. On-line polygon search by a seven-state
boundary 1-searcher. IEEE Transactions on Robotics, 2006. To appear.

[504] I. Kamon and E. Rivlin. Sensory-based motion planning with global proofs. IEEE
Transactions on Robotics & Automation, 13(6):814–822, December 1997.

[505] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in three
dimensions. In Proceedings IEEE International Conference on Robotics & Au-
tomation, 1999.

[506] K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-
velocity decomposition. International Journal of Robotics Research, 5(3):72–89,
1986.

[507] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An
optimal randomized algorithm for the cow-path problem. In SODA: ACM-SIAM
Symposium on Discrete Algorithms, pages 441–447, 1993.

[508] W. Kaplan. Advanced Calculus. Addison-Wesley, Reading, MA, 1984.

[509] T. Karatas and F. Bullo. Randomized searches and nonlinear programming in
trajectory planning. In IEEE Conference on Decision and Control, 2001.

[510] R. M. Karp. On-line algorithms versus off-line algorithms: How much is it worth
to know the future? In Proceedings World Computer Congress, 1992.

[511] L. Kauffman. Knots and Applications. World Scientific, River Edge, NJ, 1995.

[512] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic.
In Proceedings International Conference on Knowledge Representation and Rea-
soning, 1996.

[513] L. E. Kavraki. Computation of configuration-space obstacles using the Fast
Fourier Transform. IEEE Transactions on Robotics & Automation, 11(3):408–
413, 1995.

[514] L. E. Kavraki. Geometry and the discovery of new ligands. In J.-P. Laumond
and M. H. Overmars, editors, Algorithms for Robotic Motion and Manipulation,
pages 435–445. A.K. Peters, Wellesley, MA, 1997.

[515] L. E. Kavraki and M. Kolountzakis. Partitioning a planar assembly into two
connected parts is NP-complete. Information Processing Letters, 55(3):159–165,
1995.

[516] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics & Automation, 12(4):566–580, June 1996.

[517] Y. Ke and J. O’Rourke. Lower bounds on moving a ladder in two and three
dimensions. Discrete and Computational Geometry, 3:197–217, 1988.

[518] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete and
Computational Geometry, 1:59–71, 1986.

956 BIBLIOGRAPHY

[519] J. M. Keil. Polygon decomposition. In J. R. Sack and J. Urrutia, editors, Hand-
book on Computational Geometry. Elsevier, New York, 2000.

[520] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via paramet-
ric optimal control. International Journal of Robotics Research, 22(7-8):583–601,
2003.

[521] J. F. Kenney and E. S. Keeping. Mathematics of Statistics, Part 2, 2nd ed. Van
Nostrand, Princeton, NJ, 1951.

[522] L. Kettner. Designing a data structure for polyhedral surfaces. In Proceedings
ACM Symposium on Computational Geometry, pages 146–154, 1998.

[523] H. K. Khalil. Nonlinear Systems. Macmillan, New York, 2002.

[524] W. Khalil and J. F. Kleinfinger. A new geometric notation for open and closed-
loop robots. In Proceedings IEEE International Conference on Robotics & Au-
tomation, volume 3, pages 1174–1179, 1986.

[525] O. Khatib. Commande dynamique dans l’espace opérational des robots manipu-
lateurs en présence d’obstacles. PhD thesis, Ecole Nationale de la Statistique et
de l’Administration Economique, France, 1980.

[526] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5(1):90–98, 1986.

[527] A. A. Kilin. The dynamics of Chaplygin ball: The qualitative and computer
analysis. Regular and Chaotic Dynamics, 6(3):291–306, 2001.

[528] J. Kim and J. P. Ostrowski. Motion planning of aerial robot using rapidly-
exploring random trees with dynamic constraints. In Proceedings IEEE Interna-
tional Conference on Robotics & Automation, 2003.

[529] J.-O. Kim and P. Khosla. Real-time obstacle avoidance using harmonic potential
functions. Technical report, Carnegie Mellon University, Pittsburgh, PA, 1990.

[530] K. H. Kim and F. W. Roush. Team Theory. Ellis Horwood Limited, Chichester,
U.K., 1987.

[531] J. T. Kimbrell. Kinematic Analysis and Synthesis. McGraw-Hill, New York,
1991.

[532] R. Kimmel, N. Kiryati, and A. M. Bruckstein. Multivalued distance maps for mo-
tion planning on surfaces with moving obstacles. IEEE Transactions on Robotics
& Automation, 14(3):427–435, June 1998.

[533] R. Kimmel and J. Sethian. Computing geodesic paths on manifolds. Proceedings
of the National Academy of Sciences, USA, 95(15):8431–8435, 1998.

[534] R. Kimmel and J. Sethian. Optimal algorithm for shape from shading and path
planning. Journal of Mathematical Imaging and Vision, 14(3):234–244, 2001.

[535] C. L. Kinsey. Topology of Surfaces. Springer-Verlag, Berlin, 1993.

[536] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics, 5(1), 1996.

[537] J. M. Kleinberg. On-line algorithms for robot navigation and server problems.
Technical Report MIT/LCS/TR-641, MIT, Cambridge, MA, May 1994.

BIBLIOGRAPHY 957

[538] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.
In Proceedings ACM Symposium on Theory of Computing, pages 599–608, May
1997.

[539] S. A. Klugman, H. H. Panjer, and G. E. Willmot. Loss Models: From Data to
Decisions, 2nd Ed. Wiley, New York, 2004.

[540] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd Ed. Addison-Wesley, Reading, MA, 1998.

[541] D. E. Koditschek. Exact robot navigation by means of potential functions: Some
topological considerations. In Proceedings IEEE International Conference on
Robotics & Automation, pages 1–6, 1987.

[542] D. E. Koditschek. An approach to autonomous robot assembly. Robotica, 12:137–
155, 1994.

[543] S. Koenig and M. Likhachev. D∗ lite. In Proceedings AAAI National Conference
on Artificial Intelligence, pages 476–483, 2002.

[544] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning motions with
intentions. Proceedings ACM SIGGRAPH, pages 395–408, 1994.

[545] D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria for
extensive two-person games. Games and Economic Behavior, 14:247–259, 1996.

[546] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover, New
York, 1975.

[547] V. Koltun. Pianos are not flat: Rigid motion planning in three dimensions. In
Proceedings ACM-SIAM Symposium on Discrete Algorithms, 2005.

[548] K. Kondo. Motion planning with six degrees of freedom by multistrategic bidi-
rectional heuristic free-space enumeration. IEEE Transactions on Robotics &
Automation, 7(3):267–277, 1991.

[549] K. Konolige. Markov localization using correlation. In Proceedings International
Joint Conference on Artificial Intelligence, 1999.

[550] R. E. Korf. Search: A survey of recent results. In H. E. Shrobe, editor, Exploring
Artificial Intelligence: Survey Talks from the National Conference on Artificial
Intelligence. Moran Kaufmann, San Francisco, CA, 1988.

[551] R. E. Korf. Artificial intelligence search algorithms. In Algorithms and Theory
of Computation Handbook. CRC Press, Boca Raton, FL, 1999.

[552] K. Kotay, D. Rus, M. Vora, and C. McGray. The self-reconfiguring robotic
molecule: Design and control algorithms. In P. K. Agarwal, L. E. Kavraki,
and M. T. Mason, editors, Robotics: The Algorithmic Perspective. A.K. Peters,
Natick, MA, 1998.

[553] L. Kovar and M. Gleicher. Automated extraction and parameterization of motions
in large data sets. In Proceedings ACM SIGGRAPH, 2004.

[554] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proceedings ACM
SIGGRAPH, 2002.

[555] K. Kozlowski, P. Dutkiewicz, and W. Wróblewski. Modeling and Control of
Robots. Wydawnictwo Naukowe PWN, Warsaw, Poland, 2003. In Polish.

958 BIBLIOGRAPHY

[556] P. S. Krishnaprasad and D. P. Tsakaris. Oscillations, SE(2)-snakes and motion
control: A study of the roller racer. Technical report, Center for Dynamics and
Control of Smart Structures, University of Maryland, 1998.

[557] J. J. Kuffner. Autonomous Agents for Real-time Animation. PhD thesis, Stanford
University, Stanford, CA, 1999.

[558] J. J. Kuffner. Some Computed Examples [using RRT-Connect]. [Online], 2001.
Available at http://www.kuffner.org/james/plan/examples.html.

[559] J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path
planning. In Proceedings IEEE International Conference on Robotics & Automa-
tion, 2004.

[560] J. J. Kuffner and S. M. LaValle. An efficient approach to path planning using bal-
anced bidirectional RRT search. Technical Report CMU-RI-TR-05-34, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, August 2005.

[561] J. J. Kuffner, K. Nishiwaki, M. Inaba, and H. Inoue. Motion planning for hu-
manoid robots. In Proceedings International Symposium on Robotics Research,
2003.

[562] H. W. Kuhn. Extensive games and the problem of information. In H. W. Kuhn
and A. W. Tucker, editors, Contributions to the Theory of Games, pages 196–216.
Princeton University Press, Princeton, NJ, 1953.

[563] J. B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applications
to Orbits, Aerospace, and Virtual Reality. Princeton University Press, Princeton,
NJ, 2002.

[564] P. R. Kumar and P. Varaiya. Stochastic Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[565] H. J. Kushner. Numerical methods for continuous control problems in continuous
time. SIAM Journal on Control & Optimization, 28:999–1048, 1990.

[566] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Springer-Verlag, Berlin, 1978.

[567] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control
Problems in Continuous Time. Springer-Verlag, Berlin, 1992.

[568] K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky. Provable strategies for vision-
guided exploration in three dimensions. In Proceedings IEEE International Con-
ference on Robotics & Automation, pages 1365–1371, 1994.

[569] J. B. H. Kwa. BS*: An admissible bidirectional staged heuristic search algorithm.
Artificial Intelligence Journal, 38:95–109, 1989.

[570] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley, New York,
1972.

[571] A. Ladd and L. E. Kavraki. Motion planning for knot untangling. In Proceedings
Workshop on Algorithmic Foundations of Robotics, Nice, France, December 2002.

[572] A. Ladd and L. E. Kavraki. Fast exploration for robots with dynamics. In Proceed-
ings Workshop on Algorithmic Foundations of Robotics, Zeist, The Netherlands,
July 2004.

[573] A. Ladd and L. E. Kavraki. Measure theoretic analysis of probabilistic path
planning. IEEE Transactions on Robotics & Automation, 20(2):229–242, 2004.

BIBLIOGRAPHY 959

[574] G. Laffierriere and H. J. Sussmann. Motion planning for controllable systems
without drift. In Proceedings IEEE International Conference on Robotics & Au-
tomation, 1991.

[575] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for
non-holonomic mobile robots. IEEE Transactions on Robotics, 20(6):967–977,
December 2004.

[576] F. Lamiraux, E. Ferre, and E. Vallee. Kinodynamic motion planning: Connecting
exploration trees using trajectory optimization methods. In Proceedings IEEE
International Conference on Robotics & Automation, pages 3987–3992, 2004.

[577] F. Lamiraux and L. Kavraki. Path planning for elastic plates under manipula-
tion constraints. In Proceedings IEEE International Conference on Robotics &
Automation, pages 151–156, 1999.

[578] F. Lamiraux and J.-P. Laumond. Flatness and small-time controllability of multi-
body mobile robots: Application to motion planning. IEEE Transactions on
Automatic Control, 45(10):1878–1881, April 2000.

[579] F. Lamiraux, S. Sekhavat, and J.-P. Laumond. Motion planning and control for
Hilare pulling a trailer. IEEE Transactions on Robotics & Automation, 15(4):640–
652, August 1999.

[580] A. S. Lapaugh. Recontamination does not help to search a graph. Journal of the
ACM, 40(2):224–245, April 1993.

[581] P.-S. Laplace. Théorie Analityque des Probabilités. Courceir, Paris, 1812.

[582] R. E. Larson. A survey of dynamic programming computational procedures.
IEEE Transactions on Automatic Control, 12(6):767–774, December 1967.

[583] R. E. Larson and J. L. Casti. Principles of Dynamic Programming, Part II.
Dekker, New York, 1982.

[584] R. E. Larson and W. G. Keckler. Optimum adaptive control in an unknown
environment. IEEE Transactions on Automatic Control, 13(4):438–439, August
1968.

[585] J. P. LaSalle. Stability theory for ordinary differential equations. Journal of
Differential Equations, 4:57–65, 1968.

[586] A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects of
Dynamics, 2nd Ed. Springer-Verlag, Berlin, 1995.

[587] J.-C. Latombe. A fast path planner for a car-like indoor mobile robot. In Proceed-
ings AAAI National Conference on Artificial Intelligence, pages 659–665, 1991.

[588] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

[589] J.-C. Latombe. Motion planning: A journey of robots, molecules, digital actors,
and other artifacts. International Journal of Robotics Research, 18(11):1119–
1128, 1999.

[590] J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with uncer-
tainty in control and sensing. Artificial Intelligence Journal, 52:1–47, 1991.

[591] M. Lau and J. J. Kuffner. Behavior planning for character animation. In Pro-
ceedings Eurographics/SIGGRAPH Symposium on Computer Animation, 2005.

960 BIBLIOGRAPHY

[592] S. L. Laubach and J. W. Burdick. An autonomous sensor-based path-planning for
planetary microrovers. In Proceedings IEEE International Conference on Robotics
& Automation, 1999.

[593] J.-P. Laumond. Trajectories for mobile robots with kinematic and environment
constraints. In Proceedings International Conference on Intelligent Autonomous
Systems, pages 346–354, 1986.

[594] J.-P. Laumond. Controllability of a multibody mobile robot. IEEE Transactions
on Robotics & Automation, 9(6):755–763, December 1993.

[595] J.-P. Laumond. Robot Motion Planning and Control. Springer-Verlag, Berlin,
1998. Available online at http://www.laas.fr/∼jpl/book.html.

[596] J.-P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic mo-
tion planning for mobile robots. In J.-P. Laumond, editor, Robot Motion Planning
and Control, pages 1–53. Springer-Verlag, Berlin, 1998.

[597] S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. PhD
thesis, University of Illinois, Urbana, IL, July 1995.

[598] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technical Report 98-11, Computer Science Dept., Iowa State University, Oct.
1998.

[599] S. M. LaValle. Robot motion planning: A game-theoretic foundation. Algorith-
mica, 26(3):430–465, 2000.

[600] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship be-
tween classical grid search and probabilistic roadmaps. International Journal of
Robotics Research, 23(7/8):673–692, July/August 2004.

[601] S. M. LaValle, P. Finn, L. Kavraki, and J.-C. Latombe. A randomized
kinematics-based approach to pharmacophore-constrained conformational search
and database screening. J. Computational Chemistry, 21(9):731–747, 2000.

[602] S. M. LaValle, H. H. González-Baños, C. Becker, and J.-C. Latombe. Motion
strategies for maintaining visibility of a moving target. In Proceedings IEEE
International Conference on Robotics and Automation, pages 731–736, 1997.

[603] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion: The case
of curved environments. IEEE Transactions on Robotics and Automation,
17(2):196–201, April 2001.

[604] S. M. LaValle and S. A. Hutchinson. An objective-based stochastic framework for
manipulation planning. In Proceedings IEEE/RSJ/GI International Conference
on Intelligent Robots and Systems, pages 1772–1779, September 1994.

[605] S. M. LaValle and S. A. Hutchinson. An objective-based framework for mo-
tion planning under sensing and control uncertainties. International Journal of
Robotics Research, 17(1):19–42, January 1998.

[606] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots
having independent goals. IEEE Trans. on Robotics and Automation, 14(6):912–
925, December 1998.

[607] S. M. LaValle and P. Konkimalla. Algorithms for computing numerical op-
timal feedback motion strategies. International Journal of Robotics Research,
20(9):729–752, September 2001.

BIBLIOGRAPHY 961

[608] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proceed-
ings IEEE International Conference on Robotics and Automation, pages 473–479,
1999.

[609] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Proceedings Workshop on the Algorithmic Foundations of Robotics,
2000.

[610] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Interna-
tional Journal of Robotics Research, 20(5):378–400, May 2001.

[611] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and
Computational Robotics: New Directions, pages 293–308. A K Peters, Wellesley,
MA, 2001.

[612] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani. Finding
an unpredictable target in a workspace with obstacles. In Proceedings IEEE
International Conference on Robotics and Automation, pages 737–742, 1997.

[613] S. M. LaValle and R. Sharma. On motion planning in changing, partially-
predictable environments. International Journal of Robotics Research, 16(6):775–
805, December 1997.

[614] S. Lazebnik. Visibility-based pursuit evasion in three-dimensional environments.
Technical Report CVR TR 2001-01, Beckman Institute, University of Illinois,
2001.

[615] A. R. Leach and I. D. Kuntz. Conformational analysis of flexible ligands in
macromolecular receptor sites. Journal of Computational Chemistry, 13(6):730–
748, 1992.

[616] D. T. Lee and R. L. Drysdale. Generalization of Voronoi diagrams in the plane.
SIAM Journal on Computing, 10:73–87, 1981.

[617] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive
control of avatars with human motion data. In Proceedings ACM SIGGRAPH,
2002.

[618] J.-H. Lee, S. Y. Shin, and K.-Y. Chwa. Visibility-based pursuit-evasions in a
polygonal room with a door. In Proceedings ACM Symposium on Computational
Geometry, 1999.

[619] D. H. Lehmer. Mathematical methods in large-scale computing units. In Pro-
ceedings 2nd Symposium on Large-Scale Digital Computing Machinery, pages
141–146, Cambridge, MA, 1951. Harvard University Press.

[620] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot mo-
tion planning using rasterizing computer graphics hardware. Computer Graphics,
24(4):327–335, August 1990.

[621] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile
robots. In Proceedings IEEE International Conference on Robotics & Automation,
2000.

[622] J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map building for an au-
tonomous mobile robot. International Journal of Robotics Research, 11(4):89–96,
1992.

962 BIBLIOGRAPHY

[623] N. E. Leonard and P. S. Krishnaprasad. Averaging for attitude control and
motion planning. In Proceedings IEEE Conference Decision & Control, pages
3098–3104, December 1993.

[624] N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free left-invariant
systems on lie groups. IEEE Transactions on Automatic Control, 40(9):1539–
1554, 1995.

[625] D. Leven and M. Sharir. An efficient and simple motion planning algorithm for
a ladder moving in a 2-dimensional space amidst polygonal barriers. Journal of
Algorithms, 8:192–215, 1987.

[626] D. Leven and M. Sharir. Planning a purely translational motion for a convex
object in two-dimensional space using generalized Voronoi diagrams. Discrete
and Computational Geometry, 2:9–31, 1987.

[627] P. Leven and S. A. Hutchinson. Real-time path planning in changing environ-
ments. IEEE Transactions on Robotics & Automation, 21(12):999–1030, Decem-
ber 2002.

[628] P. Leven and S. A. Hutchinson. Using manipulability to bias sampling during
the construction of probabilistic roadmaps. IEEE Transactions on Robotics &
Automation, 19(6):1020–1026, December 2003.

[629] A. D. Lewis, J. P. Ostrowski, J. W. Burdick, and R. M. Murray. Nonholonomic
mechanics and locomotion: The snakeboard example. In Proceedings IEEE In-
ternational Conference on Robotics & Automation, pages 2391–2400, 1994.

[630] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer-Verlag, Berlin, 1997.

[631] T.-Y. Li and Y.-C. Shie. An incremental learning approach to motion planning
with roadmap management. In Proceedings IEEE International Conference on
Robotics & Automation, 2002.

[632] Z. Li and J. F. Canny. Motion of two rigid bodies with rolling constraint. IEEE
Transactions on Robotics & Automation, 6(1):62–72, February 1990.

[633] Z. Li and J. F. Canny. Nonholonomic Motion Planning. Kluwer, Boston, MA,
1993.

[634] D. Liberzon. Switching in Systems and Control. Birkhäuser, Boston, MA, 2003.

[635] J.-M. Lien, S. L. Thomas, and N. M. Amato. A general framework for sampling on
the medial axis of the free space. In Proceedings IEEE International Conference
on Robotics & Automation, 2003.

[636] M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance compu-
tation. In Proceedings IEEE International Conference on Robotics & Automation,
1991.

[637] M. C. Lin and D. Manocha. Collision and proximity queries. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
2nd Ed., pages 787–807. Chapman and Hall/CRC Press, New York, 2004.

[638] M. C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection: Al-
gorithms and applications. In J.-P. Laumond and M. H. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 129–142. A.K. Peters,
Wellesley, MA, 1997.

BIBLIOGRAPHY 963

[639] S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice methods
for motion planning. In Proceedings IEEE International Conference on Robotics
and Automation, pages 2920–2927, 2003.

[640] S. R. Lindemann and S. M. LaValle. Current issues in sampling-based motion
planning. In P. Dario and R. Chatila, editors, Proceedings International Sympo-
sium on Robotics Research. Springer-Verlag, Berlin, 2004.

[641] S. R. Lindemann and S. M. LaValle. Incrementally reducing dispersion by in-
creasing Voronoi bias in RRTs. In Proceedings IEEE International Conference
on Robotics and Automation, 2004.

[642] S. R. Lindemann and S. M. LaValle. Steps toward derandomizing RRTs. In IEEE
Fourth International Workshop on Robot Motion and Control, 2004.

[643] S. R. Lindemann and S. M. LaValle. Smoothly blending vector fields for global
robot navigation. In Proceedings IEEE Conference Decision & Control, pages
3353–3559, 2005.

[644] S. R. Lindemann, A. Yershova, and S. M. LaValle. Incremental grid sampling
strategies in robotics. In Proceedings Workshop on Algorithmic Foundations of
Robotics, pages 297–312, 2004.

[645] A. Lingas. The power of non-rectilinear holes. In Proceedings 9th Interna-
tional Colloquium on Automata, Languange, and Programming, pages 369–383.
Springer-Verlag, 1982. Lecture Notes in Computer Science, 140.

[646] F. Lingelbach. Path planning using probabilistic cell decomposition. In Proceed-
ings IEEE International Conference on Robotics & Automation, 2004.

[647] M. Littman. The witness algorithm: Solving partially observable Markov decision
processes. Technical Report CS-94-40, Brown University, Providence, RI, 1994.

[648] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for
partially-observable environments: Scaling up. In Proceedings International Con-
ference on Machine Learning, pages 362–370, 1995.

[649] C. K. Liu and Z. Popovic. Synthesis of complex dynamic character motion from
simple animations. In Proceedings ACM SIGGRAPH, pages 408–416, 2002.

[650] Y. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles. International Journal of Robotics Re-
search, 11(4):376–382, 1992.

[651] S. G. Loizou and K. J. Kyriakopoulos. Closed loop navigation for multiple holo-
nomic vehicles. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002.

[652] S. G. Loizou and K. J. Kyriakopoulos. Closed loop navigation for multiple non-
holonomic vehicles. In Proceedings IEEE International Conference on Robotics
& Automation, 2003.

[653] I. Lotan, F. Schwarzer, D. Halperin, and J.-C. Latombe. Efficient maintenance
and self-collision testing for kinematic chains. In Proceedings ACM Symposium
on Computational Geometry, pages 43–52, 2002.

[654] I. Lotan, H. van den Bedem, A. M. Deacon, and J.-C. Latombe. Computing
protein structures from electron density maps: The missing loop problem. In
Proceedings Workshop on Algorithmic Foundations of Robotics, 2004.

964 BIBLIOGRAPHY

[655] W. S. Lovejoy. Computationally feasible bounds for partially observed Markov
decision processes. Operations Research, 39(1):162–175, 1991.

[656] T. Lozano-Pérez. Automatic planning of manipulator transfer movements. IEEE
Transactions on Systems, Man, & Cybernetics, 11(10):681–698, 1981.

[657] T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Trans-
actions on Computing, C-32(2):108–120, 1983.

[658] T. Lozano-Pérez. A simple motion-planning algorithm for general robot manip-
ulators. IEEE Journal of Robotics & Automation, RA-3(3):224–238, Jun 1987.

[659] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-
motion strategies for robots. International Journal of Robotics Research, 3(1):3–
24, 1984.

[660] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.

[661] L. Lu and S. Akella. Folding cartons with fixtures: A motion planning approach.
IEEE Transactions on Robotics & Automation, 16(4):346–356, Aug 2000.

[662] P. Lu and J. M. Hanson. Entry guidance for the X-33 vehicle. Journal of Space-
craft and Rockets, 35(3):342–349, 1998.

[663] A. De Luca, G. Oriolo, and C. Samson. Feedback control of a nonholonomic
car-like robot. In J.-P. Laumond, editor, Robot Motion Planning and Control,
pages 171–253. Springer-Verlag, Berlin, 1998.

[664] D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Wiley,
New York, 1973.

[665] V. J. Lumelsky and K. R. Harinarayan. Decentralized motion planning for multi-
ple mobile robots: The cocktail party model. Autonomous Robots, 4(1):121–135,
1997.

[666] V. J. Lumelsky and T. Skewis. Incorporating range sensing in the robot naviga-
tion function. IEEE Transactions on Systems, Man, & Cybernetics, 20(5):1058–
1069, 1990.

[667] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,
2:403–430, 1987.

[668] V. J. Lumelsky and S. Tiwari. An algorithm for maze searching with azimuth
input. In Proceedings IEEE International Conference on Robotics & Automation,
pages 111–116, 1994.

[669] K. M. Lynch. Controllability of a planar body with unilateral thrusters. IEEE
Transactions on Automatic Control, 44(6):1206–1211, 1999.

[670] K. M. Lynch and M. T. Mason. Pulling by pushing, slip with infinite friction, and
perfectly rough surfaces. International Journal of Robotics Research, 14(2):174–
183, 1995.

[671] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and
planning. International Journal of Robotics Research, 15(6):533–556, 1996.

BIBLIOGRAPHY 965

[672] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie. Collision free trajectory plan-
ning for a 3-dof robot with a passive joint. International Journal of Robotics
Research, 19(12):1171–1184, 2000.

[673] I. M. Makarov, T. M. Vinogradskaya, A. A. Rubchinsky, and V. B. Sokolov. The
Theory of Choice and Decision Making. Mir Publishers, Moscow, 1987.

[674] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for
on-line problems. In Proceedings ACM Symposium on Theory of Computing,
pages 322–333, 1988.

[675] D. Manocha and J. Canny. Real time inverse kinematics of general 6R manipula-
tors. In Proceedings IEEE International Conference on Robotics & Automation,
pages 383–389, Nice, May 1992.

[676] A. Marigo and A. Bicchi. Rolling bodies with regular surface: Controllability
theory and applications. IEEE Transactions on Automatic Control, 45(9):1586–
1599, 2000.

[677] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry.
Springer-Verlag, Berlin, 1999.

[678] M. T. Mason. Compliance and force control for computer controlled manipu-
lators. In M. Brady et al., editor, Robot Motion: Planning and Control, pages
373–404. MIT Press, Cambridge, MA, 1982.

[679] M. T. Mason. The mechanics of manipulation. In Proceedings IEEE International
Conference on Robotics & Automation, pages 544–548, 1985.

[680] M. T. Mason. Mechanics and planning of manipulator pushing operations. In-
ternational Journal of Robotics Research, 5(3):53–71, 1986.

[681] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, Cambridge, MA,
2001.

[682] J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.

[683] J. Matousek and J. Nesetril. Invitation to Discrete Mathematics. Oxford Univer-
sity Press, Oxford, U.K., 1998.

[684] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation, 8(1):3–30, January 1998.

[685] L. Matthies and A. Elfes. Integration of sonar and stereo range data using a grid-
based representation. In Proceedings IEEE International Conference on Robotics
& Automation, pages 727–733, 1988.

[686] O. Mayr. The Origins of Feedback Control. MIT Press, Cambridge, MA, 1970.

[687] E. Mazer, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm.
Journal of Artificial Intelligence Research, 9:295–316, November 1998.

[688] E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algo-
rithm. In Proceedings International Conference of Society of Adaptive Behavior,
Honolulu, 1992.

[689] J. M. McCarthy. Geometric Design of Linkages. Springer-Verlag, Berlin, 2000.

966 BIBLIOGRAPHY

[690] D. J. McGill and W. W. King. An Introduction to Dynamics. PWS, Boston,
MA, 1995.

[691] R. McKelvey and A. McLennan. Computation of equilibria in finite games. In
H. Amman, D. A. Kendrick, and J .Rust, editors, The Handbook of Computational
Economics, pages 87–142. Elsevier, New York, 1996.

[692] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.
The complexity of searching a graph. Journal of the ACM, 35(1):18–44, January
1988.

[693] J.-P. Merlet. Parallel Robots. Kluwer, Boston, MA, 2000.

[694] A. W. Merz. The game of two identical cars. Journal of Optimization Theory &
Applications, 9(5):324–343, 1972.

[695] N. C. Metropolis and S. M. Ulam. The Monte-Carlo method. Journal of the
American Statistical Association, 44:335–341, 1949.

[696] A. N. Michel and C. J. Herget. Applied Algebra and Functional Analysis. Dover,
New York, 1993.

[697] R. J. Milgram and J. C. Trinkle. Complete path planning for closed kine-
matic chains with spherical joints. International Journal of Robotics Research,
21(9):773–789, 2002.

[698] R. J. Milgram and J. C. Trinkle. The geometry of configuration spaces for closed
chains in two and three dimensions. Homology, Homotopy, and Applications,
6(1):237–267, 2004.

[699] D. A. Miller and S. W. Zucker. Copositive-plus Lemke algorithm solves polyma-
trix games. Operations Research Letters, 10:285–290, 1991.

[700] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-
packings and nearest neighbor graphs. Journal of the ACM, 44(1):1–29, January
1997.

[701] J. W. Milnor. Morse Theory. Princeton University Press, Princeton, NJ, 1963.

[702] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. Technical
Report TR97-05, Mitsubishi Electronics Research Laboratory, 1997.

[703] B. Mirtich. Efficient algorithms for two-phase collision detection. In K. Gupta
and A.P. del Pobil, editors, Practical Motion Planning in Robotics: Current Ap-
proaches and Future Directions, pages 203–223. Wiley, New York, 1998.

[704] B. Mishra. Algorithmic Algebra. Springer-Verlag, New York, 1993.

[705] B. Mishra. Computational real algebraic geometry. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, pages
537–556. CRC Press, New York, 1997.

[706] I. Mitchell, A. Bayen, and C. Tomlin. Computing reachable sets for continu-
ous dynamic games using level set methods. IEEE Transactions on Automatic
Control, 2003. Submitted.

[707] I. Mitchell and C. J. Tomlin. Overapproximating reachable sets by Hamilton-
Jacobi projections. Journal of Scientific Computation, 19(1):323–346, 2003.

BIBLIOGRAPHY 967

[708] J. S. B. Mitchell. Shortest paths among obstacles in the plane. International
Journal Computational Geometry & Applications, 6(3):309–332, 1996.

[709] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, 2nd
Ed., pages 607–641. Chapman and Hall/CRC Press, New York, 2004.

[710] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem. Journal
of the ACM, 38:18–73, 1991.

[711] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[712] L. Molina-Tanco and A. Hilton. Realistic synthesis of novel human movements
from a database of motion capture examples. In Proceedings IEEE Workshop on
Human Motion, 2000.

[713] S. Monaco and D. Normand-Cyrot. An introduction to motion planning under
multirate digital control. In Proceedings IEEE Conference Decision & Control,
pages 1780–1785, 1992.

[714] G. Monahan. A survey of partially observable Markov decision processes. Man-
agement Science, 101(1):1–16, 1982.

[715] B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted
graphs. Theoretical Computer Science, 58:209–229, 1988.

[716] D. J. Montana. The kinematics of contact and grasp. International Journal of
Robotics Research, 7(3):17–32, 1988.

[717] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proceedings
AAAI National Conference on Artificial Intelligence, 1999.

[718] M. E. Mortenson. Geometric Modeling, 2nd Ed. Wiley, New York, 1997.

[719] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge, U.K., 1995.

[720] R. Munos. Error bounds for approximate value iteration. In Proceedings AAAI
National Conference on Artificial Intelligence, 2005.

[721] R. Munos and A. Moore. Barycentric interpolator for continuous space & time
reinforcement learning. In Proceedings Neural Information Processing Systems,
1998.

[722] R. Munos and A. Moore. Variable resolution discretization in optimal control.
Machine Learning, 49:291–323, 2001.

[723] T. Muppirala, R. Murrieta-Cid, and S. Hutchinson. Optimal motion strategies
based on critical events to maintain visibility of a moving target. In Proceedings
IEEE International Conference on Robotics & Automation, pages 3837–3842,
2005.

[724] T. Murphey. Control of Multiple Model Systems. PhD thesis, California Institute
of Technology, May 2002.

[725] R. M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Boca Raton, FL, 1994.

968 BIBLIOGRAPHY

[726] R. M. Murray, M. Rathinam, and W. M. Sluis. Differential flatness of mechanical
control systems. In Proceedings ASME International Congress and Exposition,
1995.

[727] R. M. Murray and S. Sastry. Nonholonomic motion planning: Steering using
sinusoids. IEEE Transactions on Automatic Control, 38(5):700–716, 1993.

[728] R. Murrieta-Cid, A. Sarmiento, S. Bhattacharya, and S. Hutchinson. Maintaining
visibility of a moving target at a fixed distance: The case of observer bounded
speed. In Proceedings IEEE International Conference on Robotics & Automation,
pages 479–484, 2004.

[729] Y. Nakamura, T. Suzuki, and M. Koinuma. Nonlinear behavior and control
of a nonholonomic free-joint manipulator. IEEE Transactions on Robotics &
Automation, 13(6):853–862, 1997.

[730] J. Nash. Noncooperative games. Annals of Mathematics, 54(2):286–295, 1951.

[731] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New
York, 1996.

[732] B. K. Natarajan. The complexity of fine motion planning. International Journal
of Robotics Research, 7(2):36–42, 1988.

[733] B. K. Natarajan. On planning assemblies. In Proceedings ACM Symposium on
Computational Geometry, pages 299–308, 1988.

[734] New York University. MathMol Library. Scientific Visualization Center. Available
from http://www.nyu.edu/pages/mathmol/library/, 2005.

[735] A. Newell and H. Simon. GPS: A program that simulates human thought. In
E. A. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-
Hill, New York, 1963.

[736] W. S. Newman and M. S. Branicky. Real-time configuration space transforms for
obstacle avoidance. International Journal of Robotics Research, 10(6):650–667,
1991.

[737] A. Y. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and
POMDPs. In Proceedings Conference on Uncertainty in Artificial Intelligence,
2000.

[738] H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia, 1992.

[739] H. Niederreiter and C. P. Xing. Nets, (t,s)-sequences, and algebraic geometry. In
P. Hellekalek and G. Larcher, editors, Random and Quasi-Random Point Sets,
pages 267–302. Springer-Verlag, Berlin, 1998. Lecture Notes in Statistics, 138.

[740] D. Nieuwenhuisen and M. H. Overmars. Useful cycles in probabilistic roadmap
graphs. In Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 446–452, 2004.

[741] H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control Systems.
Springer-Verlag, Berlin, 1990.

[742] N. J. Nilsson. A mobile automaton: An application of artificial intelligence tech-
niques. In 1st International Conference on Artificial Intelligence, pages 509–520,
1969.

BIBLIOGRAPHY 969

[743] N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company,
Wellsboro, PA, 1980.

[744] N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San
Francisco, CA, 1998.

[745] S. Ntafos. Watchman routes under limited visibility. Computational Geometry:
Theory and Applications, 1:149–170, 1992.

[746] P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-free coordina-
tion of two robot manipulators. In Proceedings IEEE International Conference
on Robotics & Automation, pages 484–489, 1989.

[747] C. O’Dunlaing. Motion planning with inertial constraints. Algorithmica,
2(4):431–475, 1987.

[748] C. O’Dunlaing, M. Sharir, and C. K. Yap. Retraction: A new approach to motion
planning. In J .T .Schwartz, M. Sharir, and J. Hopcroft, editors, Planning,
Geometry, and Complexity of Robot Motion, pages 193–213. Ablex, Norwood,
NJ, 1987.

[749] C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion of
a disc. Journal of Algorithms, 6:104–111, 1982.

[750] P. Ögren. Formations and Obstacle Avoidance in Mobile Robot Control. PhD
thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2003.

[751] J. M. O’Kane. Global localization using odometry. In Proceedings IEEE Inter-
national Conference on Robotics and Automation, 2005.

[752] J. M. O’Kane and S. M. LaValle. Almost-sensorless localization. In Proceedings
IEEE International Conference on Robotics and Automation, 2005.

[753] B. O’Neill. Elementary Differential Geometry. Academic, New York, 1966.

[754] S. Oore, G. E. Hinton, and G. Dudek. A mobile robot that learns its place.
Neural Computation, 9:683–699, 1997.

[755] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,
New York, 1987.

[756] J. O’Rourke. Visibility. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, 2nd Ed., pages 643–663. Chapman and
Hall/CRC Press, New York, 2004.

[757] J. O’Rourke and S. Suri. Polygons. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, 2nd Ed., pages 583–606.
Chapman and Hall/CRC Press, New York, 2004.

[758] M. H. Overmars and J. van Leeuwen. Dynamic multidimensional data structures
based on Quad- and K-D trees. Acta Informatica, 17:267–285, 1982.

[759] G. Owen. Game Theory. Academic, New York, 1982.

[760] B. Paden, A. Mees, and M. Fisher. Path planning using a Jacobian-based
freespace generation algorithm. In Proceedings IEEE International Conference
on Robotics & Automation, pages 1732–1737, 1989.

[761] D. K. Pai and L. M. Reissell. Multiresolution rough terrain motion planning.
IEEE Transactions on Robotics & Automation, 14(5):709–717, 1998.

970 BIBLIOGRAPHY

[762] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi. Motion planning
through symbols and lattices. In Proceedings IEEE International Conference
on Robotics & Automation, pages 3914–3919, 2004.

[763] C. H. Papadimitriou. An algorithm for shortest-path planning in three dimen-
sions. Information Processing Letters, 20(5):259–263, 1985.

[764] C. H. Papadimitriou. Games against nature. Journal of Computer and System
Sciences, 31:288–301, 1985.

[765] C. H. Papadimitriou and K. J. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[766] C. H. Papadimitriou and J. N. Tsitsiklis. Intractable problems in control theory.
SIAM Journal of Control & Optimization, 24(4):639–654, July 1986.

[767] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, August 1987.

[768] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theo-
retical Computer Science, 84:127–150, 1991.

[769] A. Papantonopoulou. Algebra: Pure and Applied. Prentice Hall, Englewood
Cliffs, NJ, 2002.

[770] S.-M. Park, J.-H. Lee, and K.-Y. Chwa. Visibility-based pursuit-evasion in a
polygonal region by a searcher. Technical Report CS/TR-2001-161, Dept. of
Computer Science, KAIST, Seoul, South Korea, January 2001.

[771] R. Parr and A. Eliazar. DP-SLAM: Fast, robust simultaneous localization and
mapping without predetermined landmarks. In Proceedings International Joint
Conference on Artificial Intelligence, 2003.

[772] R. Parr and S. Russell. Approximating optimal policies for partially observable
stochastic domains. In Proceedings International Joint Conference on Artificial
Intelligence, 1995.

[773] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors,
Theory and Application of Graphs, pages 426–441. Springer-Verlag, Berlin, 1976.

[774] T. Parthasarathy and M. Stern. Markov games: A survey. In Differential Games
and Control Theory II, pages 1–46. Marcel Dekker, New York, 1977.

[775] R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT
Press, Cambridge, MA, 1981.

[776] R. P. Paul and B. Shimano. Compliance and control. In Proceedings of the Joint
American Automatic Control Conference, pages 1694–1699, 1976.

[777] J. Pearl. Heuristics. Addison-Wesley, Reading, MA, 1984.

[778] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, 1988.

[779] B. Peleg and P. Sudlölter. Introduction to the Theory of Cooperative Games.
Springer-Verlag, Berlin, 2003.

BIBLIOGRAPHY 971

[780] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic con-
straints along specified paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and
S. Hutchinson, editors, Algorithmic Foundations of Robotics V (WAFR 2002),
pages 221–237. Springer-Verlag, Berlin, 2002.

[781] J. Pertin-Troccaz. Grasping: A state of the art. In O. Khatib, J. J. Craig, and
T. Lozano-Pérez, editors, The Robotics Review 1. MIT Press, Cambridge, MA,
1989.

[782] S. Petitjean, D. Kriegman, and J. Ponce. Computing exact aspect graphs of
curved objects: algebraic surfaces. International Journal of Computer Vision,
9:231–255, Dec 1992.

[783] L. A. Petrosjan. Differential Games of Pursuit. World Scientific, Singapore, 1993.

[784] J. Pettré, J.-P. Laumond, and T. Siméon. A 2-stages locomotion planner for dig-
ital actors. In Proceedings Eurographics/SIGGRAPH Symposium on Computer
Animation, pages 258–264, 2003.

[785] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning. IEEE
Journal of Robotics & Automation, RA-3(2):115–123, 1987.

[786] J. M. Phillips, N. Bedrosian, and L. E. Kavraki. Spacecraft rendezvous and
docking with real-time randomized optimization. In Proceedings AIAA Guidance,
Navigation and Control Conference, 2003.

[787] A. Piazzi, M. Romano, and C. G. Lo Bianco. G3 splines for the path planning of
wheeled mobile robots. In Proceedings European Control Conference, 2003.

[788] L. Piegl. On NURBS: A survey. IEEE Transactions on Computer Graphics &
Applications, 11(1):55–71, Jan 1991.

[789] D. A. Pierre. Optimization Theory with Applications. Dover, New York, 1986.

[790] R. W. Pike. Optimization for Engineering Systems. [Online], 2001. Available at
http://www.mpri.lsu.edu/bookindex.html.

[791] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration. In Proceedings
International Joint Conference on Artificial Intelligence, pages 1025–1032, 2003.

[792] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning for
a rigid body based on hardware accelerated Voronoi sampling. In Proceedings
Workshop on Algorithmic Foundations of Robotics, 2000.

[793] R. Pito. A sensor based solution to the next best view problem. In International
Conference Pattern Recognition, 1996.

[794] M. Pivtoraiko and A. Kelly. Generating near minimal spanning control sets for
constrained motion planning in discrete state spaces. In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005.

[795] E. Plaku and L. E. Kavraki. Distributed sampling-based roadmap of trees for
large-scale motion planning. In Proceedings IEEE International Conference on
Robotics & Automation, 2005.

[796] M. Pocchiola and G. Vegter. The visibility complex. International Journal Com-
putational Geometry & Applications, 6(3):279–308, 1996.

972 BIBLIOGRAPHY

[797] I. Pohl. Bi-directional and heuristic search in path problems. Technical report,
Stanford Linear Accelerator Center, Stanford, CA, 1969.

[798] I. Pohl. Bi-directional search. In B. Meltzer and D. Michie, editors, Machine
Intelligence, pages 127–140. Elsevier, New York, 1971.

[799] J. Ponce and B. Faverjon. On computing three-finger force-closure grasps of
polygonal objects. IEEE Transactions on Robotics & Automation, 11(6):868–
881, 1995.

[800] J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, and J.-P. Merlet. On com-
puting four-finger equilibrium and force-closure grasps of polyhedral objects. In-
ternational Journal of Robotics Research, 16(1):11–35, February 1997.

[801] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. L.
S. Pontryagin Selected Works, Volume 4: The Mathematical Theory of Optimal
Processes. Gordon and Breach, Montreux, Switzerland, 1986.

[802] J. Popovic, S. M. Seitz, M. A. Erdmann, and Z. Popovic A. P. Wiktin. Interactive
manipulation of rigid body simulations. In Proceedings ACM SIGGRAPH, pages
209–217, 2002.

[803] J. M. Porta, M. T. J. Spaan, and N. Vlassis. Robot planning in partially observ-
able continuous domains. In Proceedings Robotics: Science and Systems, 2005.

[804] H. Pottman and J. Wallner. Computational Line Geometry. Springer-Verlag,
Berlin, 2001.

[805] P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Pro-
ceedings Neural Information Processing Systems, 2003.

[806] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
Berlin, 1985.

[807] S. Quinlan. Efficient distance computation between nonconvex objects. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages 3324–
3329, 1994.

[808] M. Rabin. Transaction protection by beacons. Journal of Computation Systems
Science, 27(2):256–267, 1983.

[809] S. Rajko and S. M. LaValle. A pursuit-evasion bug algorithm. In Proceedings
IEEE International Conference on Robotics and Automation, pages 1954–1960,
2001.

[810] A. Rao and K. Goldberg. Manipulating algebraic parts in the plane. IEEE
Transactions on Robotics & Automation, 11(4):598–602, 1995.

[811] N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-
12410:1–58, Oak Ridge National Laboratory, July 1993.

[812] S. Ratering and M. Gini. Robot navigation in a known environment with unknown
moving obstacles. In Proceedings IEEE International Conference on Robotics &
Automation, pages 25–30, 1993.

[813] M. Rathinam and R. M. Murray. Configuration flatness of Lagrangian sys-
tems underactuated by one control. SIAM Journal of Control & Optimization,
36(1):164–179, 1998.

BIBLIOGRAPHY 973

[814] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards
and backwards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

[815] J. Reif and Z. Sun. On frictional mechanical systems and their computational
power. SIAM Journal on Computing, 32(6):1449–1474, 2003.

[816] J. Reif and H. Wang. Non-uniform discretization approximations for kinodynamic
motion planning. In J.-P. Laumond and M. H. Overmars, editors, Algorithms for
Robotic Motion and Manipulation, pages 97–112. A.K. Peters, Wellesley, MA,
1997.

[817] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proceedings
IEEE Symposium on Foundations of Computer Science, pages 421–427, 1979.

[818] J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles.
In Proceedings IEEE Symposium on Foundations of Computer Science, pages
144–154, 1985.

[819] J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles.
Journal of the ACM, 41:764–790, 1994.

[820] J. H. Reif and Z. Sun. An efficient approximation algorithm for weighted region
shortest path problem. In B. R. Donald, K. M. Lynch, and D. Rus, editors,
Algorithmic and Computational Robotics: New Directions, pages 191–203. A.K.
Peters, Wellesley, MA, 2001.

[821] J. H. Reif and S. R. Tate. Continuous alternation: The complexity of pursuit in
continuous domains. Algorithmica, 10:157–181, 1993.

[822] J. Reimpell, H. Stoll, and J. W. Betzler. The Automotive Chassis: Engineering
Principles. Society of Automotive Engineers, Troy, MI, 2001.

[823] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1977.

[824] E. Remolina and B. Kuipers. Towards a general theory of topological maps.
Artificial Intelligence Journal, 152(1):47–104, 2004.

[825] W. Rencken. Concurrent localisation and map building for mobile robots us-
ing ultrasonic sensors. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2192–2197, 1993.

[826] E. Rimon and J. W. Burdick. Mobility of bodies in contact–I: A 2nd order
mobility index for multiple-finger grasps. IEEE Transactions on Robotics & Au-
tomation, 14(5):696–708, 1998.

[827] E. Rimon and J. W. Burdick. Mobility of bodies in contact–II: How forces are
generated by curvature effects. IEEE Transactions on Robotics & Automation,
14(5):709–717, 1998.

[828] E. Rimon and J. Canny. Construction of C-space roadmaps using local sensory
data – What should the sensors look for? In Proceedings IEEE International
Conference on Robotics & Automation, pages 117–124, 1994.

[829] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential
fields. IEEE Transactions on Robotics & Automation, 8(5):501–518, October
1992.

974 BIBLIOGRAPHY

[830] A. A. Rizzi. Hybrid control as a method for robot motion programming. In
Proceedings IEEE International Conference on Robotics & Automation, pages
832–837, 1998.

[831] C. P. Robert. The Bayesian Choice, 2nd. Ed. Springer-Verlag, Berlin, 2001.

[832] H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Infor-
mation Processing Letters, 23:71–76, 1986.

[833] I. M. Ross and F. Fahroo. Pseudospectral methods for optimal motion planning of
differentially flat systems. IEEE Transactions on Automatic Control, 49(8):1410–
1413, 2004.

[834] J. J. Rotman. Introduction to Algebraic Topology. Springer-Verlag, Berlin, 1988.

[835] N. Roy and G. Gordon. Exponential family PCA for belief compression in
POMDPs. In Proceedings Neural Information Processing Systems, 2003.

[836] H. L. Royden. Real Analysis. MacMillan, New York, 1988.

[837] W. Rudin. Real Analysis. McGraw-Hill, New York, 1987.

[838] W. Rudin. Functional Analysis, 2nd Ed. McGraw-Hill, New York, 1991.

[839] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd Edi-
tion. Prentice-Hall, Englewood Cliffs, NJ, 2003.

[840] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion in an un-
known planar environment. International Journal of Robotics Research, 23(1):3–
26, January 2004.

[841] H. Sagan. Introduction to the Calculus of Variations. Dover, New York, 1992.

[842] H. Sagan. Space-Filling Curves. Springer-Verlag, Berlin, 1994.

[843] G. Sahar and J. M. Hollerbach. Planning minimum-time trajectories for robot
arms. International Journal of Robotics Research, 5(3):97–140, 1986.

[844] G. Sánchez and J.-C. Latombe. A single-query bi-directional probabilistic
roadmap planner with lazy collision checking. In Proceedings International Sym-
posium on Robotics Research, 2001.

[845] G. Sánchez and J.-C. Latombe. On delaying collision checking in PRM plan-
ning: Application to multi-robot coordination. International Journal of Robotics
Research, 21(1):5–26, 2002.

[846] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer-Verlag,
Berlin, 1999.

[847] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimiza-
tion. Academic, New York, 1985.

[848] A. Scheuer and T. Fraichard. Collision-free and continuous-curvature path
planning for car-like robots. In Proceedings IEEE International Conference on
Robotics & Automation, pages 867–873, 1997.

[849] A. Scheuer and C. Laugier. Planning sub-optimal and continuous-curvature paths
for car-like robots. In Proceedings IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 25–31, 1998.

BIBLIOGRAPHY 975

[850] B. Schiele and J. Crowley. A comparison of position estimation techniques using
occupancy grids. In Proceedings IEEE International Conference on Robotics &
Automation, 1994.

[851] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: I. The case
of a two-dimensional rigid polygonal body moving amidst polygonal barriers.
Communications on Pure and Applied Mathematics, 36:345–398, 1983.

[852] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: II. General
techniques for computing topological properties of algebraic manifolds. Commu-
nications on Pure and Applied Mathematics, 36:345–398, 1983.

[853] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: III. Coordinat-
ing the motion of several independent bodies. International Journal of Robotics
Research, 2(3):97–140, 1983.

[854] J. T. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry, and Complexity
of Robot Motion. Ablex, Norwood, NJ, 1987.

[855] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact collision checking of robot
paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors,
Algorithmic Foundations of Robotics V (WAFR 2002). Springer-Verlag, Berlin,
2002.

[856] L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipulators.
Springer-Verlag, Berlin, 1996.

[857] R. Sedgewick. Algorithms in C++, 2nd Ed. Addison-Wesley, Reading, MA, 2002.

[858] S. Sekhavat and J.-P. Laumond. Topological property for collision-free nonholo-
nomic motion planning: The case of sinusoidal inputs for chained-form systems.
IEEE Transactions on Robotics & Automation, 14(5):671–680, 1998.

[859] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars. Multilevel path
planning for nonholonomic robots using semiholonomic subsystems. International
Journal of Robotics Research, 17:840–857, 1998.

[860] N. F. Sepetov, V. Krchnak, M. Stankova, S. Wade, K. S. Lam, and M. Lebl. Li-
brary of libraries: Approach to synthetic combinatorial library design and screen-
ing of “pharmacophore” motifs. Proceedings of the National Academy of Sciences,
USA, 92:5426–5430, June 1995.

[861] J.-P. Serre. Lie Algebras and Lie Groups. Springer-Verlag, Berlin, 1992.

[862] J. A. Sethian. Level set methods : Evolving interfaces in geometry, fluid me-
chanics, computer vision, and materials science. Cambridge University Press,
Cambridge, U.K., 1996.

[863] A. A. Shabana. Computational Dynamics. Wiley, New York, 2001.

[864] C. E. Shannon. A mathematical theory of communication. Bell Systems Technical
Journal, 27:379–423, 1948.

[865] M. Sharir. Algorithmic motion planning. In J. E. Goodman and J. O’Rourke, ed-
itors, Handbook of Discrete and Computational Geometry, 2nd Ed., pages 1037–
1064. Chapman and Hall/CRC Press, New York, 2004.

[866] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, Cambridge, U.K., 1995.

976 BIBLIOGRAPHY

[867] R. Sharma. Locally efficient path planning in an uncertain, dynamic environ-
ment using a probabilistic model. IEEE Transactions on Robotics & Automation,
8(1):105–110, February 1992.

[868] R. Sharma. A probabilistic framework for dynamic motion planning in partially
known environments. In Proceedings IEEE International Conference on Robotics
& Automation, pages 2459–2464, Nice, France, May 1992.

[869] R. Sharma, J.-Y. Hervé, and P. Cucka. Dynamic robot manipulation using visual
tracking. In Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 1844–1849, 1992.

[870] R. Sharma, S. M. LaValle, and S. A. Hutchinson. Optimizing robot motion
strategies for assembly with stochastic models of the assembly process. IEEE
Trans. on Robotics and Automation, 12(2):160–174, April 1996.

[871] R. Sharma, D. M. Mount, and Y. Aloimonos. Probabilistic analysis of some
navigation strategies in a dynamic environment. IEEE Transactions on Systems,
Man, & Cybernetics, 23(5):1465–1474, September 1993.

[872] R. W. Sharpe. Differential Geometry. Springer-Verlag, Berlin, 1997.

[873] H. Shatkay and L. P. Kaelbling. Learning topological maps with weak local odo-
metric information. In Proceedings International Joint Conference on Artificial
Intelligence, 1997.

[874] T. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384–
1399, September 1992.

[875] C. L. Shih, T.-T. Lee, and W. A. Gruver. A unified approach for robot motion
planning with moving polyhedral obstacles. IEEE Transactions on Systems, Man,
& Cybernetics, 20:903–915, 1990.

[876] Z. Shiller and S. Dubowsky. On the optimal control of robotic manipulators
with actuator and end-effector constraints. In Proceedings IEEE International
Conference on Robotics & Automation, pages 614–620, 1985.

[877] Z. Shiller and S. Dubowsky. On computing global time-optimal motions of robotic
manipulators in the presence of obstacles. IEEE Transactions on Robotics &
Automation, 7(6):785–797, Dec 1991.

[878] Z. Shiller and H.-H. Lu. Computation of path constrained time-optimal motions
with dynamic singularities. Transactions of the ASME, Journal of Dynamical
Systems, Measurement, & Control, 114:34–40, 1992.

[879] K. G. Shin and N. D. McKay. Minimum-time control of robot manipulators with
geometric path constraints. IEEE Transactions on Automatic Control, 30(6):531–
541, 1985.

[880] K. G. Shin and N. D. McKay. A dynamic programming approach to trajectory
planning of robotic manipulators. IEEE Transactions on Automatic Control,
31(6):491–500, 1986.

[881] K. G. Shin and Q. Zheng. Minimum-time collision-free trajectory planning for
dual-robot systems. IEEE Transactions on Robotics & Automation, 8(5):641–644,
October 1992.

[882] A. M. Shkel and V. J. Lumelsky. Incorporating body dynamics into sensor-based
motion planning: The maximum turn strategy. IEEE Transactions on Robotics
& Automation, 13(6):873–880, December 1997.

BIBLIOGRAPHY 977

[883] K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics Gems III,
pages 124–132. Academic, New York, 1992.

[884] R. Sim and G. Dudek. Learning generative models of scene features. In Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition, pages
920–929, 2001.

[885] T. Siméon, J.-P. Laumond, and C. Nissoux. Visibility based probabilistic
roadmaps for motion planning. Advanced Robotics, 14(6), 2000.

[886] T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple mobile
robots: A resolution complete algorithm. IEEE Transactions on Robotics &
Automation, 18(1), February 2002.

[887] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O’Sullivan. A layered ar-
chitecture for office delivery robots. In Proceedings First International Conference
on Autonomous Agents, Marina del Rey, CA, 1997.

[888] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observ-
able environments. In Proceedings International Joint Conference on Artificial
Intelligence, pages 1080–1087, 1995.

[889] B. Simov, S. M. LaValle, and G. Slutzki. A complete pursuit-evasion algorithm
for two pursuers using beam detection. In Proceedings IEEE International Con-
ference on Robotics and Automation, pages 618–623, 2002.

[890] B. Simov, G. Slutzki, and S. M. LaValle. Pursuit-evasion using beam detection. In
Proceedings IEEE International Conference on Robotics and Automation, 2000.

[891] M. Sipser. Introduction to the Theory of Computation. PWS, Boston, MA, 1997.

[892] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[893] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford Science,
Englewood Cliffs, NJ, 1994.

[894] J.-J. E. Slotine and H. S. Yang. Improving the efficiency of time-optimal path-
following algorithms. IEEE Transactions on Robotics & Automation, 5(1):118–
124, 1989.

[895] W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continuous
spaces. In Proceedings International Conference on Machine Learning, 2000.

[896] D. Smith, J. Frank, and A. Jónsson. Bridging the gap between planning and
scheduling. Knowledge Engineering Review, 15(1):47–83, 2000.

[897] R. C. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research, 5(4):56–68, 1986.

[898] S. J. J. Smith, D. S. Nau, and T. Throop. Computer bridge: A big win for AI
planning. AI Magazine, 19(2):93–105, 1998.

[899] E. J. Sondik. The optimal control of partially observable Markov processes over
the infinite horizon: Discounted costs. Operations Research, 9(2):149–168, 1978.

[900] G. Song and N. M. Amato. Using motion planning to study protein folding
pathways. Journal of Computational Biology, 26(2):282–304, 2002.

978 BIBLIOGRAPHY

[901] E. Sontag. Gradient technique for systems with no drift: A classical idea revisited.
In Proceedings IEEE Conference Decision & Control, pages 2706–2711, December
1993.

[902] O. J. Sordalen. Conversion of a car with n trailers into a chained form. In
Proceedings IEEE International Conference on Robotics & Automation, pages
1382–1387, 1993.

[903] P. Souères and J.-D. Boissonnat. Optimal trajectories for nonholonomic mobile
robots. In J.-P. Laumond, editor, Robot Motion Planning and Control, pages
93–169. Springer-Verlag, Berlin, 1998.

[904] P. Souères and J.-P. Laumond. Shortest paths synthesis for a car-like robot. In
IEEE Transactions on Automatic Control, pages 672–688, 1996.

[905] R. Spence and S. A. Hutchinson. Dealing with unexpected moving obstacles by
integrating potential field planning with inverse dynamics control. In Proceedings
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1485–1490, 1992.

[906] M. Spivak. Differential Geometry. Publish or Perish, Houston, TX, 1979.

[907] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control.
Wiley, New York, 2005.

[908] R. L Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.
Algorithmica, 6:579–589, 1991.

[909] W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, edi-
tor, Multicriteria Optimization in Engineering and in the Sciences, pages 1–25.
Plenum Press, New York, 1988.

[910] H. Stark and J. W. Woods. Probability, Random Processes, and Estimation
Theory for Engineers. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[911] L. A. Steen and J. A. Seebach Jr. Counterexamples in Topology. Dover, New
York, 1996.

[912] R. F. Stengel. Optimal Control and Estimation. Dover, New York, 1994.

[913] A. Stentz. Optimal and efficient path planning for partially-known environments.
In Proceedings IEEE International Conference on Robotics & Automation, pages
3310–3317, 1994.

[914] D. Stewart. A platform with six degrees of freedom. In Institution of Mechanical
Engineers, Proceedings 1965-66, 180 Part 1, pages 371–386, 1966.

[915] M. Stilman and J. J. Kuffner. Navigation among movable obstacles: Real-time
reasoning in complex environments. In Proceedings 2004 IEEE International
Conference on Humanoid Robotics (Humanoids’04), 2004.

[916] D. Stipanovic, I. Hwang, and C. J. Tomlin. Computation of an overapproximation
of the backward reachable set using subsystem level set functions, dynamics of
continuous, discrete, and impulsive systems. Series A: Mathematical Analysis,
11:399–411, 2004.

[917] P. D. Straffin. Game Theory and Strategy. Mathematical Association of America,
Washington, DC, 1993.

BIBLIOGRAPHY 979

[918] M. Strandberg. Augmenting RRT-planners with local trees. In Proceedings IEEE
International Conference on Robotics & Automation, pages 3258–3262, 2004.

[919] M. Strandberg. Robot Path Planning: An Object-Oriented Approach. PhD thesis,
Royal Institute of Technology (KTH), Stockholm, Sweden, 2004.

[920] A. Sudsang, J. Ponce, and N. Srinivasa. Grasping and in-hand manipulation:
Geometry and algorithms. Algorithmica, 26:466–493, 2000.

[921] A. Sudsang, F. Rothganger, and J. Ponce. Motion planning for disc-shaped
robots pushing a polygonal object in the plane. IEEE Transactions on Robotics
& Automation, 18(4):550–562, 2002.

[922] A. G. Sukharev. Optimal strategies of the search for an extremum. U.S.S.R.
Computational Mathematics and Mathematical Physics, 11(4), 1971. Translated
from Russian, Zh. Vychisl. Mat. i Mat. Fiz., 11, 4, 910-924, 1971.

[923] H. Sussmann and G. Tang. Shortest paths for the Reeds-Shepp car: A worked out
example of the use of geometric techniques in nonlinear optimal control. Technical
Report SYNCON 91-10, Dept. of Mathematics, Rutgers University, Piscataway,
NJ, 1991.

[924] H. J. Sussmann. A sufficient condition for local controllability. SIAM Journal on
Control & Optimization, 16(5):790–802, 1978.

[925] H. J. Sussmann. A general theorem on local controllability. SIAM Journal on
Control & Optimization, 25(1):158–194, 1987.

[926] H. J. Sussmann. A continuation method for nonholonomic path-finding problems.
In Proceedings IEEE Conference Decision & Control, pages 2717–2723, December
1993.

[927] H. J. Sussmann. A very non-smooth maximum principle with state constraints.
In Proceedings IEEE Conference Decision & Control, pages 917–922, December
2005.

[928] K. Sutner and W. Maass. Motion planning among time dependent obstacles.
Acta Informatica, 26:93–122, 1988.

[929] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44, 1988.

[930] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[931] I. Suzuki, Y. Tazoe, M. Yamashita, and T. Kameda. Searching a polygonal
region from the boundary. International Journal on Computational Geometry &
Applications, 11(5):529–553, 2001.

[932] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal
region. SIAM Journal on Computing, 21(5):863–888, October 1992.

[933] I. Suzuki, M. Yamashita, H. Umemoto, and T. Kameda. Bushiness and a tight
worst-case upper bound on the search number of a simple polygon. Information
Processing Letters, 66:49–52, 1998.

[934] P. Svestka and M. H. Overmars. Coordinated motion planning for multiple car-
like robots using probabilistic roadmaps. In Proceedings IEEE International Con-
ference on Robotics & Automation, pages 1631–1636, 1995.

980 BIBLIOGRAPHY

[935] H. Takeda, C. Facchinetti, and J.-C. Latombe. Planning the motions of a mobile
robot in a sensory uncertainty field. IEEE Transactions Pattern Analysis Machine
Intelligence, 16(10):1002–1017, October 1994.

[936] H. Takeda and J.-C. Latombe. Sensory uncertainty field for mobile robot naviga-
tion. In Proceedings IEEE International Conference on Robotics & Automation,
pages 2465–2472, Nice, France, May 1992.

[937] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer, Boston,
MA, 1995.

[938] S. Tezuka. Quasi-Monte Carlo: The discrepancy between theory and practice.
In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2000, pages 124–140. Springer-Verlag, Berlin, 2002.

[939] M. Thorup. Undirected single source shortest paths in linear time. In Proceedings
IEEE Symposium on Foundations of Computer Science, pages 12–21, 1997.

[940] S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–109, 2000.

[941] S. Thrun, W. Burgard, and D. Fox. A probabilistic approach to concurrent
mapping and localization for mobile robots. Machine Learning, 31(5):1–25, April
1998.

[942] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,
MA, 2005.

[943] B. Tovar, L. Guilamo, and S. M. LaValle. Gap navigation trees: A minimal
representation for visibility-based tasks. In Proceedings Workshop on Algorithmic
Foundations of Robotics, pages 11–26, 2004.

[944] B. Tovar, S. M. LaValle, and R. Murrieta. Locally-optimal navigation in multiply-
connected environments without geometric maps. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003.

[945] B. Tovar, S. M. LaValle, and R. Murrieta. Optimal navigation and object find-
ing without geometric maps or localization. In Proceedings IEEE International
Conference on Robotics and Automation, pages 464–470, 2003.

[946] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, September 1995.

[947] S. Udupa. Collision Detection and Avoidance in Computer Controlled Manipu-
lators. PhD thesis, Dept. of Electrical Engineering, California Institute of Tech-
nology, 1977.

[948] University of North Carolina. PQP: A proximity query package. GAMMA Re-
search Group, Available from http://www.cs.unc.edu/∼geom/SSV/, 2005.

[949] C. Urmson and R. Simmons. Approaches for heuristically biasing RRT growth.
In Proceedings IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2003.

[950] J. van den Berg and M. Overmars. Roadmap-based motion planing in dynamic
environments. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1598–1605, 2004.

[951] J. van den Berg and M. Overmars. Prioritized motion planning for multiple
robots. In Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2217–2222, 2005.

BIBLIOGRAPHY 981

[952] J. G. van der Corput. Verteilungsfunktionen I. Akademie van Wetenschappen,
38:813–821, 1935.

[953] D. Vanderpooten. Multiobjective programming: Basic concepts and approaches.
In R. Slowinski and J. Teghem, editors, Stochastic vs. Fuzzy Approaches to Mul-
tiobjective Mathematical Programming under Uncertainty, pages 7–22. Kluwer,
Boston, MA, 1990.

[954] G. Vegter. Computational topology. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, 2nd Ed., pages 719–742.
Chapman and Hall/CRC Press, New York, 2004.

[955] M. Vendittelli and J.-P. Laumond. Visible positions for a car-like robot amidst
obstacles. In J.-P. Laumond and M. H. Overmars, editors, Algorithms for Robotic
Motion and Manipulation, pages 213–228. A.K. Peters, Wellesley, MA, 1997.

[956] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen,
100:295–320, 1928.

[957] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, Princeton, NJ, 1944.

[958] G. Walker and D. Walker. The Official Rock Paper Scissors Strategy Guide.
Fireside, 2004.

[959] X. Wang and F. J. Hickernell. An historical overview of lattice point sets. In
K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-
Monte Carlo Methods 2000, pages 158–167. Springer-Verlag, Berlin, 2002.

[960] F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Springer-
Verlag, Berlin, 1983.

[961] D. S. Watkins. Fundamentals of Matrix Computations, 2nd Ed. Wiley, New
York, 2002.

[962] G. Weiss, C. Wetzler, and E. von Puttkamer. Keeping track of position and
orientation of moving indoor systems by correlation of range-finder scans. In
Proceedings IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 595–601, 1994.

[963] D. Weld. Recent advances in AI planning. AI Magazine, 20(2), 1999.

[964] J. T. Wen. Control of nonholonomic systems. In W. S. Levine, editor, The
Control Handbook, pages 1359–1368. CRC Press, Boca Raton, FL, 1996.

[965] H. Weyl. Über die Gleichverteilung von Zahlen mod Eins. Mathematische An-
nalen, 77:313–352, 1916.

[966] D. Whitney. Force feedback control of manipulator fine motions. Transactions of
the ASME, Journal of Dynamical Systems, Measurement, & Control, 99:91–97,
1977.

[967] D. E. Whitney. Real robots don’t need jigs. In Proceedings IEEE International
Conference on Robotics & Automation, 1986.

[968] H. Whitney. Local properties of analytic varieties. In S. Cairns, editor, Differ-
ential and Combinatorial Topology, pages 205–244. Princeton University Press,
Princeton, NJ, 1965.

982 BIBLIOGRAPHY

[969] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm
for designing passive fences to orient parts. In Proceedings IEEE International
Conference on Robotics & Automation, pages 1133–1139, 1996.

[970] O. Wijk. Triangulation-Based Fusion of Sonar Data with Application in Mo-
bile Robot Mapping and Localization. PhD thesis, Royal Institute of Technology
(KTH), Stockholm, Sweden, 2001.

[971] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In Proceed-
ings IEEE International Conference on Robotics & Automation, pages 1024–1031,
1999.

[972] R. Wilson, L. Kavraki, J.-C. Latombe, and T. Lozano-Pérez. Two-handed as-
sembly sequencing. International Journal of Robotics Research, 14(4):335–350,
1995.

[973] R. H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford University,
Stanford, CA, March 1992.

[974] R. H. Wilson and J.-C. Latombe. Geometric reasoning about mechanical assem-
bly. Artificial Intelligence Journal, 71(2):371–396, 1994.

[975] P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA, 1992.

[976] S. C. Wong, L. Middleton, and B. A. MacDonald. Performance metrics for robot
coverage tasks. In Proceedings Australasian Conference on Robotics and Automa-
tion, 2002.

[977] C. F. J. Wu. On the convergence properties of the EM algorithm. The Annals
of Statistics, 11(1):95–103, 1983.

[978] L. Xu and M. I. Jordan. On convergence properties of the EM algorithm for
Gaussian mixtures. Neural Computation, 8:129–151, 1996.

[979] J. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for
linkages with closed kinematic chains. IEEE Transactions on Robotics and Au-
tomation, 17(6):951–958, December 2001.

[980] K. Yamane, J. J. Kuffner, and J. K. Hodgins. Synthesizing animations of human
manipulation tasks. In Proceedings ACM SIGGRAPH, 2004.

[981] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. Searching for a mobile
intruder in a polygonal region by a group of mobile searchers. Algorithmica,
31:208–236, 2001.

[982] B. Yamauchi, A. Schultz, and W. Adams. Mobile robot exploration and map-
building with continuous localization. In Proceedings IEEE International Con-
ference on Robotics & Automation, pages 3715–3720, 2002.

[983] L. Yang and S. M. LaValle. The sampling-based neighborhood graph: A frame-
work for planning and executing feedback motion strategies. IEEE Transactions
on Robotics and Automation, 20(3):419–432, June 2004.

[984] Q. Yang. Intelligent Planning. Springer-Verlag, Berlin, 1997.

[985] Y. Yavin and M. Pachter. Pursuit-Evasion Differential Games. Pergamon, Ox-
ford, U.K., 1987.

BIBLIOGRAPHY 983

[986] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-domain RRTs:
Efficient exploration by controlling the sampling domain. In Proceedings IEEE
International Conference on Robotics and Automation, 2005.

[987] A. Yershova and S. M. LaValle. Deterministic sampling methods for spheres and
SO(3). In Proceedings IEEE International Conference on Robotics and Automa-
tion, 2004.

[988] A. Yershova, B. Tovar, R. Ghrist, and S. M. LaValle. Bitbots: Simple robots
solving complex tasks. In AAAI National Conference on Artificial Intelligence,
2005.

[989] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In ACM-SIAM Symposium on Discrete Algorithms, pages
311–321, 1993.

[990] M. Yim. Locomotion with a Unit-Modular Reconfigurable Robot. PhD thesis,
Stanford University, Stanford, CA, December 1994. Stanford Technical Report
STAN-CS-94-1536.

[991] J. Yong. On differential evasion games. SIAM Journal on Control & Optimization,
26(1):1–22, January 1988.

[992] J. Yong. On differential pursuit games. SIAM Journal on Control & Optimization,
26(2):478–495, March 1988.

[993] J. Yong. A zero-sum differential game in a finite duration with switching strate-
gies. SIAM Journal on Control & Optimization, 28(5):1234–1250, September
1990.

[994] T. Yoshikawa. Foundations of Robotics: Analysis and Control. MIT Press, Cam-
bridge, MA, 1990.

[995] Y. Yu and K. Gupta. On sensor-based roadmap: A framework for motion plan-
ning for a manipulator arm in unknown environments. In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1919–1924,
1998.

[996] J. Zabczyk. Some comments on stabilizability. Applied Mathematics and Opti-
mization, 19(1):1–9, 1989.

[997] L. S. Zaremba. Differential games reducible to optimal control problems. In
Proceedings IEEE Conference Decision & Control, pages 2449–2450, Tampa, FL,
December 1989.

[998] M. Zefran and J. Burdick. Stabilization of systems with changing dynamics by
means of switching. In Proceedings IEEE International Conference on Robotics
& Automation, pages 1090–1095, 1998.

[999] M. Zefran, J. Desai, and V. Kumar. Continuous motion plans for robotic systems
with changing dynamic behavior. In Proceedings IEEE International Conference
on Robotics & Automation, 1996.

[1000] M. I. Zelikin and V. F. Borisov. Theory of Chattering Control. Birkhäuser,
Boston, MA, 1994.

[1001] M. Zhang, R. A. White, L. Wang, R. N. Goldman, L. E. Kavraki, and B. Has-
sett. Improving conformational searches by geometric screening. Bioinformatics,
21(5):624–630, 2005.

984 BIBLIOGRAPHY

[1002] N. L. Zhang and W. Zhang. Speeding up the convergence of value iteration in
partially observable Markov decision processes. Journal of Artificial Intelligence
Research, 14:29–51, 2001.

[1003] R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm
for POMDPs. In Proceedings International Joint Conference on Artificial Intel-
ligence, 2001.

[1004] Y. Zhou and G. S. Chirikjian. Probabilistic models of dead-reckoning error in
nonholonomic mobile robots. In Proceedings IEEE International Conference on
Robotics & Automation, pages 1594–1599, 2003.

[1005] S. Zionts. Multiple criteria mathematical programming: An overview and several
approaches. In P. Serafini, editor, Mathematics of Multi-Objective Optimization,
pages 227–273. Springer-Verlag, Berlin, 1985.

Index

C0 function, 385
C∞ function, 385
C∞ manifold, see smooth manifold
C∞ structure, see smooth structure
Ck function, 385
GL(n), 145
K-step information-feedback plan, 568
L1 metric, see Manhattan metric
L2 metric, see Euclidean metric
L∞ metric, 187
Lp metric, 187–188
Lp norm, 188
SE(n), see special Euclidean group
C, see configuration space
Cobs, see obstacle region, in the C-space
Xobs, see obstacle region, in the state

space
Xric, see obstacle region, in the state

space
ǫ-goodness, 240
Ihist, see history information space
Indet, see nondeterministic information

space
Iprob, see probabilistic information space
k-cell, 267
k-neighborhood, 221
(t,m,s)-nets, 208
(t,s)-sequences, 208
1-complex, 133
1-neighborhood, 221, 380
2-neighborhood, 221
3D triangles, 90–91

A∗ algorithm, 37, 223, 811
Abelian group, see commutative group
acceleration vector, 408
acceleration-based control, 408

accelerometer, 601
accessibility (of a roadmap), 251
accessible system, 870, 909
accumulation point, 129
Ackerman function, 303, 304
action history, 400, 566
action sequence, 802
action trajectory, 400, 788
active localization problem, 642
active-passive decomposition, 343
actuators, 793
Adams methods, 815
adding integrators to a model, 742–744
adjoint transition equation, 877
adjoint variables, 779, 875
admissible configurations, 334
affine space, 170
affine-in-control system, see affine non-

linear control system
AGVs, see automated guided vehicles
airport terminal, 376
algebraic primitive, 87, 88, 130, 164–166
algebraic Riccati equation, 874
algebraic set, 87
algebraic variety, see variety
alive states, 33, 55, 56, 427
Allen wrench, 701
Alpha Puzzle, 6
alphabet, 586
Amato, 6
ambient isotopy, 350
ambient space, 350
analytic function, 383
angular momentum, see moment of mo-

mentum
angular velocity, 601, 727, 729, 756, 757,

760, 761

985

986 INDEX

annihilator, 897
antipodal points, 138
approximate cell decomposition, 246
approximate cover, 413–414
approximate optimal motion planning,

359–360
approximation algorithm, 826–827
Ariadne’s Clew algorithm, 227
arrangement, 307
Asimo, 14
assembly planning, 321–322
asteroids game, 137
asymptotic convergence to a goal, 399
asymptotic solution plan, 400
asymptotic stability, 863–864
atan2, 99
atlas, see smooth structure
automated farming, 354
automated guided vehicles, 325
automotive assembly, 6
autonomous differential equations, 387
average cost-per-stage model, 522, 524
average dispersion, 246
averaging methods, 921
axioms of rationality, 481–482
axis-aligned bounding box, 211

B-splines, 91
backprojection, 427, 503–505, 840–841,

852
in preimage planning, 696–700

backward action space, 40
backward P. Hall coordinates, 914, 916
backward reachable set, 801
backward search, 39–40, 219, 377, 696,

699, 703
with backprojections, 518–519

backward state transition equation, 40,
50, 53

backward system simulator, 816
backward value iteration, 45–48

for reinforcement learning, 534–535
for sequential games, 546–548
on a nondeterministic I-space, 637–

638

on a probabilistic I-space, 638–639
path-constrained, 852–853
running time, 46
under differential constraints, 839–

841
with average cost-per-stage, 527
with discounted cost, 525–526
with nature and continuous spaces,

551–552
with nondeterministic uncertainty, 508–

514
with probabilistic uncertainty, 510–

514
bad bracket, 910
Balkcom-Mason curves, 886–888
Balkcom-Mason drive, 887
Balkcom-Mason metric, 888
bang-bang approach, 853–855
Barraquand-Latombe nonholonomic plan-

ner, 828–832
base point (on a manifold), 895
base point of a path, 142
basis, 382

of open sets, 130
Basu-Pollack-Roy roadmap algorithm, 298
Battle of the Sexes, 471
Battleship game, 626–627
Bayes’ rule, 443, 458, 578, 653
Bayesian classifier, 456–458

naive, 457
behavioral strategies, 622
behaviors, see motion primitives
best-first search, 38–39
bidirectional search, 40–41, 71, 227, 367,

638, 801, 819, 820, 827, 831, 835
balanced, 235–236
for sampling-based planning, 220

bijective sensor, 562
bilinear programming, 473
binding constraints, 63
bitangent line, 262
bitangent ray, 675
bitmap, 91–92
black-box simulators, 815–816

INDEX 987

Blum and Furst, 64
Blum and Kozen, 660, 662
body density, 753
body frame, 94, 176, 178, 352, 366, 754,

758–760
bond angle, 111
bond length, 111
Borel sets, 192
boundary grid point, 221
boundary of a set, 129
boundary point, 129
boundary representation, 81
boundary sensors, 601–602
bounded set, 132
bounded-acceleration model, 409
bounded-velocity model, 409
Boustrophedon decomposition, 354–357
Brachistochrone curve, 762
bracket, 904
breadth-first search, 35
bridge-test sampling, 243–244
broad-phase collision detection, 210
Brockett, 741, 917, 919
Brockett’s condition, 864
Brockett’s system, see nonholonomic in-

tegrator
bug algorithms, 667–673
bug trap, 219
Bug1 strategy, 668–669
Bug2 strategy, 669–670
BVP, see two-point boundary value prob-

lem

C-space, see configuration space
caffeine, 17
calculus of variations, 440, 762–769, 922
Campbell-Baker-Hausdorff-Dynkin formula,

913
candidate Lyapunov function, 866
Candorcet paradox, 482
Canny, 293
Canny’s roadmap algorithm, 293–298, 307,

315, 324, 339
car pulling trailers, 13, 730–731
Caratheodory, solution sense of, 387

card-counting strategies, 630
Carnot-Caratheodory metric, 811
Cartesian product, 135
carton folding, 347–350
causal links, 63
CBHD formula, 913
cell decomposition, 251, 264–280, 650,

690
under differential constraints, 828

center of mass, 753
Central Limit Theorem, 199
chain of integrators, 738–739
chained-form system, 906, 920
change of coordinates, 391–393
chart, see coordinate neighborhood
chasing a gap, 677
Chazelle, 250
Chen-Fliess series, 913–914
Chen-Fliess-Sussman equation, 914–916
chi-square test, 200
Chow-Rashevskii theorem, 908
Christoffel symbol, 770, 771
Church-Turing thesis, 19
classification rule, 456
classifier, 455–458
cleared region, 688
closed kinematic chains, 118, 167–180

motion planning for, 337–347
closed set, 128
closed system (in mechanics), 746–747
closed-loop

control law, 793
plan, 370
see also feedback plan

closure of a set, 129, 195
closure space, 339
codistribution, 897
coherent models, 212
Collins decomposition, see cylindrical al-

gebraic decomposition
collision detection, 209–217

broad-phase, 210
checking a path segment, 214–217
hierarchical methods, 210–212

988 INDEX

incremental methods, 212–214
narrow-phase, 210
two-phase, 210

collision pairs, 156
collision-detection, 812–813
collocation, 857
combinatorial motion planning, 249–307

cell decompositions, 264–280
introductory concepts, 249–251
polygonal case, 251–264
see also Canny’s roadmap algorithm

see also cylindrical algebraic decom-
position

combinatorial roadmaps, 237
commutative group, 142, 898
commutative ring, 170
commutator, 898
commutator motion, 897–900, 911
compass, 600, 647
compatible coordinate neighborhoods, 393
competitive ratio, 602, 672–673
complementary pair, 59
complete exclusion axiom, 70
completely integrable, 734, 893–894
completeness

overview, 185–186
see also probabilistic completeness
see also resolution completeness

complex, 265–268
complexity class, 299
complexity of motion planning, 298–307

lower bounds, 298–302
upper bounds, 304–307

compliant motions, 692–693, 697
composition of funnels, 412–418, 702, 865
compressed mode, 330
computational algebraic geometry, 280–

298
Conchoid of Nicomedes, 277, 308
conditional Bayes’ risk, 453
conditional Bayes’ rule, 443
conditional expectation, 444
conditional independence, 443

conditional plan, see feedback plan
conditional probability, 443
configuration space, 127–180

obstacle, see obstacle region, C-space
of 2D rigid bodies, 145–148
of 3D rigid bodies, 148–154
of chains of bodies, 154–155
of trees of bodies, 155
velocity constraints on, 716–735

conformations, 110, 351
connected space, 139
connectivity-preserving roadmap, 251
connector in a roadmap, 241
conservative approximations, 593–595
conservative system, 766
constant vector field, 384
constant-sum game, 492
contaminated region, 688
continuous Dijkstra paradigm, 357
continuous function, 131
continuous-steering car, 743–744
contractible space, 144
control system, 715, 793
control-affine system, 741, 890–892
controllability matrix, 868
controllability of a system, 867–870

linear case, 868
small-time local, see small-time lo-

cal controllability
controlled Markov process, 498
convex hull, 211, 388
convex polygon, 82–84
convex set, 82
convolution, 158
cooperative game theory, 490
coordinate neighborhood, 391
coordinates, 391
coordination space, 323
Coriolis matrix, 770
cost functional, 44, 359, 363, 501, 523,

625, 839
approximating, 424
quadratic, 874

cost-based learning, see reinforcement learn-

INDEX 989

ing
cost-to-come, 36, 48–50, 799
cost-to-come iteration, see forward value

iteration
cost-to-go, 37, 45–46, 361, 373, 375–377,

379, 380, 401, 405–407, 412, 419,
420, 422, 424–429, 551, 811, 835,
836, 839, 840, 852, 853

see also stationary cost-to-go func-
tion

cost-to-go iteration, see backward value
iteration

Coulomb friction, 693
counting measure, 193
covariance matrix, 596
cover of a set, 413

approximate, 414
coverage planning, 354–357
Coxeter-Freudenthal-Kuhn triangulation,

421
critical curves, 276
critical gap events, 674–675
critical point of a function, 295, 410
cube complex, 325–327
cubical partition, 828
CW-complex, 265
cycloid function, 762
cylinder over a cell, 270, 276, 290
cylindrical algebraic decomposition, 286–

293, 315, 324
for motion planning, 292–293

cylindrical decomposition, 269–270
cylindrical joint, 105

D∗ algorithm, see Stentz’s algorithm
D’Alembert, 776
Davenport-Schinzel sequence, 302–304
Davis-Putnam procedure, 69
dead states, 33, 34, 37, 427
decision maker, 4, 437
decision problem, 283
decision theory, 437
decision vertex (in a game tree), 536
decision-theoretic learning, see reinforce-

ment learning

decoupled planning, 320, 841–855
decoupling vector fields, 849, 921
deformation retract, 260
degrees of freedom, 95
delayed-observation sensor, 564
Denavit-Hartenberg parameters, 103–106,

110, 149, 154, 167, 179
dense sequence, 195, 798
dense set, 195
dependent events, 443
depth-first search, 36
depth-mapping sensors, 603–605
derivation (on a manifold), 396
derived information space, 571–581, 592–

598
for continuous time, 597–598

derived information transition equation,
573

determining the environment, 656–660
deterministic finite automaton, 31, 585

language, 31
deterministic plan, 538, 545, 621
DFA, see deterministic finite automaton
DH parameters, see Denavit-Hartenberg

parameters
Dial’s algorithm, 380
diameter function, 702
dielectric constant, 352
diffeomorphic spaces, 385
diffeomorphism, 385
differentiable manifold, see smooth man-

ifold
differentiable structure, see smooth struc-

ture
differential constraints, see differential

models
differential drive, 908

Balkcom-Mason, see Balkcom-Mason
drive

model, 726–729
second-order, 744
showing it is nonholonomic, 902

differential game, 782–783
against nature, 780

990 INDEX

pursuit-evasion, 782
differential inclusion, 388, 780
differential models, 715–783

conversion from implicit to paramet-
ric, 720–722

implicit representation, 716–718
parametric representation, 718–720

differential rotations, 755–756
differentially flat systems, 921
digital actor, 12
Dijkstra’s algorithm, 27, 36–37, 55–57,

377, 378, 380, 403, 405, 407, 426,
428, 552, 663, 666, 823, 840, 852

extension of to continuous spaces, 426–
429

with nondeterministic uncertainty, 519–
521

with probabilistic uncertainty, 521
dimension

of a manifold, 134
of a vector space, 383

directed roadmap, 315
Dirichlet boundary condition, 412
disconnection proof, 246
discount factor, 523
discounted cost model, 522–524
discrepancy, 205–209, 811–812

range space, 206
relation to dispersion, 207

discrete feasible planning, 29
discrete-time model, 801–808
discretization of C, 221
dispersion, 201–205, 419, 811–812

relation to discrepancy, 207
distance between sets, 209–210
distance function, 209
distribution (of vector fields), 894–897

regular, 895
singular, 895–896

disturbed odd/even sensor, 564
disturbed sign sensor, 564
DM, see decision maker
domain of attraction, 864–865
dominated action, 440

dominated plan, 364
Donald, 627, 697
double integrator, 737–738, 744, 747, 755,

790, 792, 796
lattice, 820–828
optimal planning for, 877–878

doubly connected edge list, 86, 252, 253,
258

drift, 739, 741, 793, 891
driftless, 741, 793
driftless system, 739, 891

controllability, 908–909
drug design, 15, 350–353
Dubins car, 725, 782, 794, 796, 800, 803,

806, 811, 817, 828, 829, 831, 832,
835, 838, 842, 844, 845, 848

plan-and-transform approach, 843–
844

reachability tree of, 803–804
Dubins curves, 880–883
Dubins metric, 883
dynamic constraints, 891
dynamic game, see differential game
dynamic programming, 27

applied to steering, 922
continuous-time, 870–879
see also Dijkstra’s algorithm
see also Hamilton-Jacobi-Bellman equa-

tion
see also value iteration

dynamics
of a particle, 747–752
of a rigid body, 753–762
of a set of particles, 752–753
of a two-link manipulator, 771–773
of chains of bodies, 769–773
of constrained bodies, 774–777
with nonconservative forces, 777

efficient algorithm, 299, 302, 304
elongated mode, 330
EM algorithm, 682–684
embedding of a manifold, 134
energy function, 347, 350, 352
equilibrium point of a vector field, 862

INDEX 991

Erdmann, 696, 699
error detection and recovery (EDR), 697
Euclidean metric, 187
Euclidean motion model, 361–362
Euclidean norm, 188
Euclidean shortest paths, 357–358
Euler angles, 122
Euler approximation, 423
Euler integration, see numerical integra-

tion, Euler
Euler-Lagrange equation, 765–770, 879,

891, 918, 922
with conservative forces, 777

event space, 442
exact motion planning, see combinato-

rial motion planning
exit face, 403
exotic R4, 393
expansive-space planner, 227–228
expectation of a random variable, 444
expected-case analysis, 449, 508, 570
exploration vs. exploitation, 530
exponential map, 912–913
exponentially stable system, 864
EXPTIME, 299
extended Kalman filter, 617, 655
extended system, 910
exterior point, 129
extremal function, 764

falling particle, 767–768
fast Fourier transforms, 424
Faure sequence, 208
feasible planning

discrete, 29
with feedback, 373–374

feasible space (for closure constraints),
339

feature space, 456
feature vector, 456, 457
feedback control law, see feedback plan
feedback motion planning

complete, optimal, 405–407
complete, some dynamics, 407–412
definitions, 398–402

motivation, 369–371
sampling-based, 412–429
under differential constraints, 837–

841
feedback plan, 372–373, 505–508

cost of, 507–508
graph representation of, 507
information feedback, 568–569
over a cover, 414–416
sensor feedback, 581

feedback planning
continuous, see feedback motion plan-

ning
discrete, 371–381

feedback policy, see feedback plan
feedback stabilization, 862
fiber over a base, 895
fictitious action variable, 911
field, 168–169

algebraically closed, 287
Filipov, solution sense of, 388, 398
fine motion planning, see manipulation

planning
finite state machine, 31
firetruck, 731
first-order controllable systems, 919–920
first-order theory of the reals, 283
fixed point of a vector field, 862
fixed-path coordination, 323–325
fixed-roadmap coordination, 325–327
flashlight example, 59–61

Boolean expression for, 70
planning graph of, 67

flashlight sensor, 691
flat cylinder, 136
flat outputs, 921
flat torus, 137
flexible materials, 121
flying an airplane, 732–733
folding problems, 347–354
foliation, 799, 893
force, 747, 748, 751–755, 760, 761, 766,

767
resultant, 748, 752

992 INDEX

force sensor, 601
formal Lie algebra, 912–913
forward projection, 501, 799

differential, 781
nondeterministic, 501–502
probabilistic, 502–503
under a fixed plan, 506

forward search, 33–39
A∗ algorithm, 37–38
best first, 38–39
breadth-first, 35
depth-first, 36
Dijkstra’s algorithm, 36–37
general, discrete, 33–35
iterative deepening, 39

forward value iteration, 48–50
four-bar mechanism, 175
frame axiom, 70
Fraunhofer Chalmers Centre, 8
Frazzoli, 809
free space, 156
free variables, 282
frequentist, 483–484
frequentist risk, 484
friction cone, 693
Frobenius theorem, 901–902
frontier set, 427, 520, 840
fully actuated system, 793
function space, 383, 590, 763
functional, 763

shortest-path, 764
fundamental group, 142–144

higher order, 144
of a simply connected space, 142
of RP2, 143–144
of S1, 142–143
of Tn, 143

Fundamental Lemma of the Calculus of
Variations, 765

Gabriely and Rimon, 355
gain constant, 408
game

alternating-play model, 538, 621
extensive form, 536

ladder-nested, 623
normal form, 536
open-loop model, 539, 621
sequential, see sequential game
stage-by-stage model, 538, 621
unusual information model, 621
see also game theory

game against nature, 446–459
sequential, 496–508, 551–556

game graph, 544
game theory, 437, 459–476, 489–490, 536–

551, 619–627
information spaces in, 619–627
nonzero-sum, see nonzero-sum game
sequential, see sequential game
zero-sum, see zero-sum game

game tree, 536–544
information space over, 619–623

gap navigation tree, 673–679
gap sensor, 604
gap theorems, 287
garage configuration, 325
Gaussian sampling, 243
Geiger counter sensor, 602
general linear group, 145
general position, 255, 675
generalized coordinates, 767
generalized cylinder, 92
generalized damper model, 693
generalized forces, 768, 769, 776
generalized momentum, 779
generalized Voronoi diagram, see maximum-

clearance roadmap
generator of a lattice, 204
geodesics, 766, 810
geometric modeling, 81–92
Gilbert-Johnson-Keerthi algorithm, 244
gingerbread face, 87, 284, 291
globally asymptotically stable, 865
globally positive definite, 866
globally randomized plan, 622
GNT, see gap navigation tree
goal recognizability, 582, 696
goal sensor, 667

INDEX 993

Goldberg and Mason, 701
golden ratio, 209
Goursat normal form, 920
Grübler’s formula, 180
gradient descent, 375, 401, 410
graph search

on an information space, 638
grasped configurations, 334
gray-scale map, 92, 665
great circle, 190
grid, 318

2D planning on, 29
feedback plan on, 374
infinite sequence, 204–205
localization on, see localization, dis-

crete
multi-resolution, 205
navigation function on, 376–381
neighborhoods, 221
partial, 205
resolution issues, 223–224
set of environments, 655–662
standard, see standard grid
Sukharev, see Sukharev grid
see also lattice

grid point, 221
grid resolution, 201
group, 141

see also fundamental group
see also matrix groups

group axioms, 141
group of n-dimensional rotation matri-

ces, 146
guaranteed reachable, 512
guard in a roadmap, 241
gyroscope, 601

Haar measure, 193–195
hairy ball theorem, 400
half-edge, 86, 253
half-plane, 83
half-space, 87
Halton sequence, 207–208
Hamilton’s equations, 779, 879, 891, 922

Hamilton’s principle of least action, 766–
768

Hamilton-Jacobi-Bellman equation, 515,
870–873

Hamilton-Jacobi-Isaacs equation, 873
Hamiltonian function, 778, 779, 875
Hamiltonian mechanics, see mechanics,

Hamiltonian
Hammersley point set, 207–208
harmonic potential function, 411–412
Hausdorff axiom, 131
Hausdorff space, 131
Heisenberg system, see nonholonomic in-

tegrator
helicopter flight, 809
Hessian, 410
hide and seek, 11
hide-and-seek

see also pursuit-evasion game
hierarchical inclusion of a plan, 23, 693
hierarchical planning, 23, 336
higher order controllability, 920
Hilbert space, 383
hill function, 866
history, 566
history information space, 565–567, 591–

592
at stage k, 567
at time t, 591

history information state, 566
history-based sensor mapping, 590, 591
hitch length, 730
holonomic, 735, 893
homeomorphic spaces, 132
homeomorphism, 132–134, 385, 391
homicidal chauffeur, 782–783
homing sensor, 602
homogeneous transformation matrix, 96,

97, 100–103, 105–108, 110, 121,
124, 145, 165–167

homology, 144
homotopic paths, 140
homotopy group, see fundamental group
humanoid, 13, 14, 114

994 INDEX

hybrid state space, 328
hybrid system, 327–332, 388

motion planning, 327
with nature, 552–556

I-map, see information mapping
I-space, see information space
I-state, see information state
ibuprofen, 17
ideal distance function, 811
identification of points, 136
identity sensor, 562, 598
implicit function theorem, 722
implicit velocity constraints, 718
improper prior, 485
incomparable actions, 440
incremental distance computation, 212
incremental sampling and searching

adapting search algorithms, 220–224
general framework, 217–220
under differential constraints, 820–

837
independent events, 443
independent-joint motion model, 361
inertia matrix, 756–759, 766
inertia operator, see inertia matrix
inertia tensor, see inertia matrix
inertial coordinate frame, 746–747, 754,

755, 762, 767
infimum, 439
infinite reflection (in a game), 489
infinite-horizon problem, 522–527
inflection ray, 674
information mapping, 571–574

sufficient, 573–574
information space, 559–627

continuous examples, 598–614
continuous time, 591–592
conversion to a state space, 570–571,

634–637
discrete examples, 581–589
for game theory, 619–627
in continuous state spaces, 589–614
limited memory, 580–581
sensor feedback, 580–581

see also history information space
see also nondeterministic information

space
see also probabilistic information space

information state, 560
information transition equation, 570–571

derived, 573–574
information transition function, 570
information-conservative property, 688
information-feedback plan, 568
initial condition space, 566–567, 590
input string, 585
integrable system, 734
integral curve, 387–388
integral manifold, 893
integration, see numerical integration
interior of a set, 129
interior point, 129
interpolation neighbors, 420
interpolation region (for value iteration),

422, 551
interval homeomorphisms, 132
intractable problem, 299
inverse Ackerman function, 304
inverse control problem, 816
inverse kinematics problem, 120
involutive distribution, 901
Isaacs, 782
isomorphic graphs, 133
isomorphic groups, 149
isomorphism, 132
iterative deepening, 39

Jacobi identity, 904, 907, 920
Jacobian, 294
jerk (third time derivative), 738, 853
joint encoder, 601
junction of links, 114

Kagami, 13
Kalman filter, 615–617
Kalman rank condition, 868
Kd-tree, 233–234, 417, 831
Khalil-Kleinfinger parameterization, 115

INDEX 995

Khatib, 401
kidnapped-robot problem, 640
kinematic chain, 100
kinematic constraints, 791, 891
kinematic singularities, 346
kinematically controllable, 921
kinematics for wheeled systems, 722–731
Kineo CAM, 7, 16
kinetic energy, 752, 760, 766–769, 772,

776
kinodynamic planning, 792, 820–828
Klein bottle, 138
knot, 350
knot simplification, 350
knot vector, 91
Koditschek, 375, 409
Kolmogorov complexity, 61, 301
Kuffner, 6, 219
Kuhn, 622, 627
Kutzbach criterion, 180

L-shaped corridor example, 582–585
label-correcting algorithms, 56–57
ladder robot, see line-segment robot
Lafferriere and Sussmann, 910
Lagrange multiplier, 774
Lagrangian function, 767, 769, 772, 776,

779
Lagrangian mechanics, see mechanics, La-

grangian, 127
landmark region detector, 602
landmark sensors, 602–603
language, 31, 588
LARC, see Lie algebra rank condition
latitude in a grid, 661
Latombe, 127
lattice, 204, 208

for unconstrained mechanical systems,
825–826

from double integrator, see double-
integrator lattice

grid, see grid
Laumond, 16, 791
lawn mowing, 354
layered graph, 65

layered plan, 68
learning phase, 529
leaves of a foliation, 799, 893
Lebesgue integral, 193
Lebesgue measure, 193
left translation, 905
left-invariant vector field, 905
left-turn predicate, 263
Legendre transformation, 778
Legendre-Clebsch condition, 879
Leibniz rule, 396
Lennard-Jones radii, 352
Lens spaces, 138
level-set method, 429
LG, see linear Gaussian system
Lie, 892
Lie algebra, 904–906

cross product example, 904–905
of the system distribution, 905–906
on Lie groups, 905
see also Philip Hall basis

Lie algebra rank condition, 908
Lie bracket, 897–901, 904

Taylor series approximation of, 899–
900

Lie derivative, 866
Lie group, 145, 905
ligand, 350
limit curve, 853
limit cycle, 865
limit point of a set, 129
Lin-Canny, 245
line-segment robot, 273–280
line-sweep principle, see plane-sweep prin-

ciple
linear combination, 382
linear complementarity problem, 473
linear differential game, 782
linear interpolation, 420
linear momentum, 751
linear programming, 440, 467, 855
linear sensing models, 598–600
linear space, 382
linear system, 739–741

996 INDEX

observability, 740
time-varying, 741

linear transformations, 120
linear-Gaussian system, 615, 616, 655
linear-quadratic problems, 874–875
linear-quadratic-Gaussian (LQG) system,

617, 875
link, 100
linkage, 100
linkage graph, 177
Lipschitz condition, 216, 387–388, 806,

819, 831, 840, 856
Lipschitz constant, 216, 388
LMT framework, see preimage planning,

692
local operator, 375, 377, 378, 401, 403,

410, 514, 839
continuous space, 401

local planning method, 217–220, 226–
228, 231, 238, 240, 241, 327, 855,
862, 869, 880, 883, 886, 888, 908,
910, 921

in plan-and-transform, 843, 845
under differential constraints, 816–

818, 833, 834, 836
local visibility sensor, 667
localization, 640–684

active, 640, 644–646
combinatorial, 647–651
discrete, 640–647
passive, 640, 642–644
probabilistic, 651–655
symmetries, 643–644

locally positive definite, 866
locally randomized plan, 622
Logabex LX4 robot, 348
logic-based planning, 57–71

as satisfiability, 69–71
converting to state space, 61–62
in plan space, 63–64
operator, 58
via a planning graph, 64–69

logical predicate, see predicate
loop path, 142

lost-cow problem, 672, 707
low-discrepancy sampling, 205–209
low-dispersion sampling, 201–205
lower envelope, 302–304, 467
lower pairs, 105
lower value of a game, 461, 540, 546
Lozano-Pérez, 127
Lozano-Pérez, Mason, and Taylor, 692
LPM, see local planning method
lunar lander, 748–750
Lyapunov function, 412, 865–867

in planning, 867
Lyapunov stability, 862–863

uniform, 863
Lynch and Mason, 732

Möbius band, 136, 138, 144, 183
Mahalanobis metric, 811
maneuver, 809
maneuver automaton, 809
Manhattan metric, 187
Manhattan motion model, 360–361
manifold, 134–139

embedding, 134
higher dimensional, 138–139
one-dimensional, 135–136
two-dimensional, 136–138
with boundary, 134
see also smooth manifold

manipulation graph, 335–336
manipulation planning, 332–337

nonprehensile, see nonprehensile ma-
nipulation

under uncertainty, 691–704
manipulator, 107, 118, 122, 332–339, 348,

771–773, 846, 851
map building, 655–684
marginalization, 443–444, 502, 503, 578,

652
Markov chain, 498
Markov decision process, 498
Markov game, 550
Markov process, 498, 499
mass matrix, 766
matching pennies, 446

INDEX 997

Matlab, 856
matrix game, 460
matrix groups, 145–148
matrix subgroup, 146
maximal ball, 244
maximum-clearance navigation function,

379–380
maximum-clearance roadmap, 260–261
maze searching, 660–662
MDP, see Markov decision process
Mealy/Moore machines, 31
means-end analysis, 71
measurable function, 193
measurable sets, 192
measure axioms, 192
measure space, 186
measure theory, 191–195, 811

see also Haar measure
measure zero, 193
mechanics, 745–780

Hamiltonian, 778–780
Lagrangian, 762–777
Newton-Euler, 745–762
see also dynamics

medial-axis sampling, 244
Mersenne twister, 200
metric space, 186–188

Cartesian products of, 188
definition, 187
for motion planning, 188–191
from SE(2), 189
from SE(3), 191
from SO(2), 188–189
from SO(3), 189–190
from Tn, 190–191
nonpositively curved, 857
Riemannian manifold, 810–811
robot displacement metric, 190
subspaces of, 188

metric tensor, 810
metrics, see metric space
metrizable, 187
mine sweeping, 354
minimalism, 700

minimax, 448
minimum turning radius, 725
Minkowski difference, 158, 252, 305
Minkowski sum, 158
mixed Nash equilibrium, see Nash equi-

librium, randomized
mixed strategy, see randomized strategy
mod sensor, 562
mode space, 327
mode transition function, 328
mode-dependent dynamics, 327
moment of a density, 597
moment of force, see torque, 753
moment of inertia, 758
moment of momentum, 751–753, 755,

761
moment-based approximations, 595–597
momentum, 751
monomial, 169
monotone polygon, 269
Monte-Carlo localization, see localiza-

tion, probabilistic
morphing a path, 140
Morse function, 411
Morse theory, 410
motion capture, 858
motion command, 694–695
motion library, see motion primitives
motion planning, 793
motion primitive, 808–810, 836
multi-body dynamics, see dynamics, of

multiple bodies
multi-chained-form systems, 920
multi-level approach, 845
multi-linear interpolation, 421
multi-resolution grid, 204
multiobjective optimization, 440–441
multiple observations, 454
multiple query, 186, 237
multiple shooting, 857
multiple-robot motion planning, 318–327
multiple-robot optimality, 362–364
multiply connected, 141
Murphy’s Law, 448

998 INDEX

Murray and Sastry, 917
mutex condition, 66–67
mutex relation, 66

NAG Fortran Library, 856
naive Bayes, 454
narrow-phase collision detection, 210
NASA/Lockheed Martin X-33, 795
Nash equilibrium, 468–475, 490, 619, 626

admissible, 471
in a sequential game, 548–549
nonuniqueness, 470–472
randomized, 472–474, 476, 622

nature, 437, 447
nature action space, 447
nature observation action, 453
nature sensing action, 563, 564, 590, 598–

599, 609–612
nature sensing actions, 561
navigation function, 35, 52, 375–381

continuous space, 401
in the sense of Rimon-Koditschek,

409–411
stochastic, 553

navigation problem, 657, 660
negative literal, 58
neighborhood function, 241
neighborhood of a cover, 414
Neumann boundary condition, 412
neuro-dynamic programming, see rein-

forcement learning
Newton’s laws, 747–752, 755, 757, 766,

768
Newton-Euler mechanics, see mechan-

ics, Newton-Euler
next-best-view problem, 680
NF2 (a navigation function), 379
NFA, see nondeterministic finite automa-

ton
nicotine, 17
nilpotent, 910
nilpotent system, 908
nilpotentizable, 910
Nilsson, 72
Nixederreiter-Xing sequence, 208

nonconservative forces, 777
nonconvex

polygon, 84–85, 90
polyhedron, 90
set, 82

noncooperative game, 438
noncritical regions, 277
nondeterministic finite automaton, 585–

589
nondeterministic information space, 574–

577
approximations, 593–595
examples, 581–589
planning on, 637–638

nondeterministic Turing machine, 299
nondeterministic uncertainty, 448–450

criticisms of, 487–489
nondirectional backprojections, 696
nondominated, see Pareto optimal
nonholonomic, 735, 791, 888, 893
nonholonomic constraints, 722
nonholonomic integrator, 741–742, 901,

908, 911, 915
showing it is nonholonomic, 902
steering, 917–918

nonholonomic metric, 811
nonholonomic planning, 13, 791–792
nonholonomic system, 827–828
nonholonomic system theory, 888–910
noninformative prior, 485–487
nonintegrable, 893
nonlinear optimization, 855
nonlinear programming, 855–857
nonlinear system, 741–742

affine in control, 890–892
affine-in-control, 741

nonparametric methods, 487
nonpositively curved space, 857
nonprehensile manipulation, 700–704
nonrigid transformations, 120
nonzero-sum game, 468–476

with more than two players, 475–476
with two players, 469–475
see also Nash equilibrium

INDEX 999

NP (complexity class), 299
null sensor, 563
numerical continuation, 341
numerical integration

Euler, 813–814
multistep methods, 815
Runge-Kutta, 424, 814–815
single-step methods, 815

NURBS, 91

OBB, 211
observability, 740
observation space, 451, 561
observations, 451–454
obstacle region, 92, 155

in the C-space, 155–167
1D case, 158
general case, 164–167
polygonal case, 159–163
polyhedral case, 163–164

in the state space, 794–797
in the world, 82–92
polygonal case, 251–264
time-varying, 312–318

obstacles, 82
occupancy grid, 92, 684
Ochiai unknot benchmark, 351
octane transformations, 110–112
odd/even sensor, 561–562
odometric coordinates, 645, 660
odometry sensors, 605
on-line algorithm, 20, 672–673
open ball, 130
open set, 89, 128
open-loop

control law, 793
plan, 370

operator, 58
optical character recognition, 456–458
optimal motion planning, 357–364
optimal planning

discrete, 43–57
fixed-length plans, 45–50
unspecified length, 50–53

optimization, 438–441

orientation sensor, 600
oriented bounding box, 211
orienteering problem, 365
origami, 347
orthogonal group, 146
outdoor navigation, 362

painting, 354
parallel manipulator, 338
parallel-jaw gripper, 701
parameter estimation, 458–459
parameterization, 136, 391
Pareto optimal, 362–364, 440–441, 470,

471, 476, 484
parking a car, 13, 726, 744, 800, 860,

868, 898
part configuration space, 332
partial grid, 205
partial plan, 63
partially observable Markov decision pro-

cess, see POMDP
particle, 747

dynamics, 747–752
falling, 767–768
on a sphere, 776–777

particle filtering, 618–619, 655
path, 139
path connected, 139
path tuning, 319
path-constrained phase space, 849
path-directed subdivision tree, 837
pattern classification, 455–458
pebble, 602
peg-in-hole problem, 692, 696–698
pendulum, 750–751

double, 785
Pennsylvania Turnpike, 441
perfect recall, 622
permissible action trajectories, 790
Pfaffian constraints, 720–721, 724, 734,

742, 775–777, 891–894, 897, 903,
920

pharmacophore, 351
phase constraints, 795
phase space, 735–744

1000 INDEX

obstacles, 794–797
path-constrained, 849–850

phase transition equation, 737, 738
phase vector, 736
Philip Hall basis, 907–908, 910–914, 917
Piano Mover’s Problem, 157–158, 789,

790, 817, 818, 832–835, 838, 841,
855

piecewise-linear obstacle motion, 313–314,
317

pitch rotation, 98
plan-and-transform method, 842–846
plan-based state transition graph, 507
plan-space planning, 65
planar joint, 105
plane-sweep principle, 257–258

radial sweep, 263, 406
planetary navigation, 362
planner, 21
planning graph, 64–69
planning under sensing uncertainty, 633–

704
general methods, 634–640
manipulation, 691–704
pursuit-evasion, see visibility-based

pursuit-evasion
see also SLAM
see also localization

Poinsot, 754, 760
point robot, 252
point-location problem, 421, 830
policy iteration, 514–518

for reinforcement learning, 535
on an information space, 638
with average cost-per-stage, 527
with discounted cost, 526–527

polygonal model, 82–85, 251–264
face, 253
half-edge, 253
representation, 251–253

polyhedral model, 85–87
polynomial, 169–170

coefficient, 169
in formal Lie algebra, 912

term, 169
total degree, 169

polynomial-time reducible, 300
POMDP, 589, 638–640
Pontryagin’s minimum principle, 515, 856,

875–879, 922
time-optimality case, 879

portiernia, 329–330
position sensor, 600
positive definite function, 866
positive literal, 58
possibilistic uncertainty, see nondeter-

ministic uncertainty
posterior, 443
potential energy, 766, 767, 769, 772
potential function, 191, 225, 766

attractive term, 225
continuous state space, 401
discrete, 375
repulsive term, 225
see also navigation function

PQP (Proximity Query Package), 245
predicate, 58

for geometric models, 85
preimage of a function, 131
preimage of a motion command, 695
preimage of an observation, 563
preimage planning, 692–700
Princess and the Monster, 627
principle of least action, see Hamilton’s

principle of least action
principle of optimality, see dynamic pro-

gramming
principle of virtual work, 776
principle subresultant coefficients, 290
prior distribution, 443, 484–487
prioritized planning, 322
prismatic joint, 100, 101, 103, 105, 107
Prisoner’s Dilemma, 472, 490
PRM, see sampling-based roadmap
probabilistic completeness, 186
probabilistic information space, 577–581

approximations, 595–597
examples, 589

INDEX 1001

planning on, 638–640
probabilistic information state

computation of, 614–619
probabilistic roadmap, see sampling-based

roadmap
probabilistic uncertainty, 448–450

criticisms of, 483–487
probability function, 442
probability measure, 193
probability space, 441–442
probability theory, 441–444
problem solving, 27
product of inertia, 758
projection sensors, 600–601, 605–608
projective geometry, 97
projective space, 138
protein cavity, 113
protein folding, 15, 353–354
proximity sensor, 601
pseudometric, 191, 314
pseudorandom number generation, 199–

200
linear congruential, 200

PSPACE, 299
Puma 560 robot, 107
pure strategy, 445
pursuit-evasion game, 627, 782, 783

visibility-based, see visibility-based
pursuit-evasion

pushing a box, 731–732

Q-factor, 534
Q-learning, 534–535
quadratic cost functional, 874
quadratic potential function, 402
quantified variables, 282
quantifier, 282
quantifier-elimination problem, 283
quantifier-free formula, 282
quasi-static, 731
quaternion, 150–153

from a rotation matrix, 153
quotient topology, 136

radar map, 275–276

radial sweep, 263, 406
random loop generator, 343, 345
random sampling, 198–201

of SO(3), 198–199
of directions, 199
tests, 200–201

random variable, 444
random-walk planner, 228
randomized algorithm, 305
randomized lower value, 466, 542, 547
randomized plan, 538, 545
randomized potential field, 224–227, 402

under differential constraints, 837
randomized saddle point, 466
randomized security plan, 542
randomized strategy, 445–446
randomized upper value, 465
randomized value, 466, 542
range scanner, 604
range space (for discrepancy), 206
rapidly exploring dense tree, 228–237,

314, 325, 340, 348
exploration, 228–232
finding nearest points, 232–234
making planners, 235–237
under differential constraints, 832–

836
rapidly exploring random tree, see rapidly

exploring dense tree
Rapoport, 490
rational decision maker, 460, 479, 481
RDT, see rapidly exploring dense tree
reachability graph, 804–805
reachability tree, 802–804
reachable set, 798–801

backward, 865
for simple car models, 800

reactive plan, see feedback plan
real algebraic numbers, 286–287
reality television, 478–479
reckless driving, 13
recognizability, 582, 696
reconfigurable robot, 330
recontamination, 688

1002 INDEX

reduced visibility graph, see shortest-path
roadmap

Reeds-Shepp car, 725, 794, 800, 845
Reeds-Shepp curves, 884–886
refinement of a plan, 22, 841
reflex vertex, 261
region of inevitable collision, 796–797
regret, 450–451, 462
regret matrix, 450, 451
reinforcement learning, 527–535

evaluating a plan, 530–534
general framework, 528–530
terminology, 528

reinforcement planning, see reinforcement
learning

relative value iteration, 527
repulsive vertex, 404
reroute path, 646
resolution, 201
resolution completeness, 186, 201, 224,

325, 805, 831, 836
under differential constraints, 805–

808
resultant

force, 754
moment, 754

retraction method, see maximum-clearance
roadmap

reverse-time system simulation, 816
revolute joint, 100, 101, 103, 105–108,

113, 114, 121, 124
reward, 528
reward function, 439
reward functional, 528
reward space, 480
Riemannian manifold, 766
Riemannian metric, 810–811
Riemannian tensor, 810
rigid-body dynamics, see dynamics, of a

rigid body
rigid-body transformations, see transfor-

mations, rigid body
Rimon, 375, 409
risk

conditional Bayes’, 453
frequentist, 484

RLG, see random loop generator
roadmap

directed, 315
general requirements, 250–251
maximum-clearance, see maximum-

clearance roadmap
sampling-based, see sampling-based

roadmap
shortest-path, see shortest-path roadmap

Robbins-Monro algorithm, see stochas-
tic iterative algorithm

robot displacement metric, 190
robot-robot collisions, 319
Rock-Paper-Scissors, 490, 493
roll rotation, 98
rolling a ball, 733–734
rotation

2D, 95–97
3D with quaternions, 150–152
3D with yaw-pitch-roll, 98–100

RRT, see rapidly exploring dense tree
Rubik’s cube, 4, 5, 17, 30
Runge-Kutta, see numerical integration,

Runge-Kutta, 424
Russell and Norvig, 27

saddle point, see sequential game, sad-
dle point, and zero-sum game,
saddle point

sample point of a cell, 255
sample sequence, 195
sample set, 195
sample space (of a probability space),

442
sampling-based neighborhood graph, 416
sampling-based planning

for closed chains, 340–347
philosophy, 185
time-varying, 314–315
under differential constraints, 810–

837
with feedback, 412–429, 837–841

sampling-based roadmap

INDEX 1003

ǫ-goodness, 240
analysis, 240–241
basic method, 237–241
boundary sampling, 243
bridge-test sampling, 243–244
Guassian sampling, 243
medial-axis sampling, 244
preprocessing phase, 238–239
query phase, 240
vertex enhancement, 242–243
visibility roadmap, 241–242

sampling-based roadmaps, 237–244
under differential constraints, 837

Sard’s Theorem, 411
SB, see strong backprojection
scalarization, 364
scaling an object, 121
screw joint, 105
screw transformation, 106
sealing cracks, 7
search algorithms, 318

adaptation to continuous spaces, 220–
224

under differential constraints, 818–
820, 828–830

unified view, 41–43
see also backward search
see also bidirectional search
see also forward search

search graph, 41, 217, 818
searching an environment, 657
second-order controllable systems, 919
second-order differential drive, 744
second-order unicycle, 743
section (of a cylinder), 290
sector (of a cylinder), 290
security plan, 539–541, 546
security strategy, 461

randomized, 465
selective sensor, 562
semi-algebraic decomposition, 284
semi-algebraic model, 87–89
semi-algebraic set, 87
sensing history, 566

sensor feedback, 581
sensor mapping, 561, 591
sensor observation, 560
sensor-based planning, see planning un-

der sensing uncertainty
sensorless manipulation, 701
sensorless planning, 582–585, 612–614
sensors

continuous, 598–605
discrete, 561–564

sequential game, 536–551
against nature, see game against na-

ture, sequential
information space of, 619–627
Markov assumption, 496–497
more than two players, 550–551
on state spaces, 544–551
saddle point, 542–544, 546, 619, 621–

623, 626
zero-sum with nature, 549–550

shadow component, 674
shadow region, 674
shearing transformation, 121
shooting methods, 856
shortest-path functional, 764
shortest-path roadmap, 261–264, 679
SICK LMS-200, 604
sigma algebra, 192
sign assignment, 284
sign sensor, 562
sign-invariant region, 284
silhouette curves, 293, 296
silhouette method, see Canny’s roadmap

algorithm
simple polygon, 90
simple-car model, 722–726

two-car game, 783
with nature, 781

simple-unicycle model, 729–730
simplicial complex, 265–268
simply connected space, 141
Simpson paradox, 482
simulation-based dynamic programming,

see reinforcement learning

1004 INDEX

simulation-based methods, 528
simulation-based planning, see reinforce-

ment learning
simultaneous localization and mapping,

see SLAM, 656
single query, 186, 217
single shooting, 857
singular 0-simplex, 267
singular 1-simplex, 266
singular k-simplex, 267
singular arcs, 878
singular complex, 265–267
singular distribution, 895
singular matrix, 295
singular point of a distribution, 895
singular simplex, 266
singular value decomposition (SVD), 516
situation calculus, 69
skew symmetry, 904, 907
SLAM, 655–684

probabilistic, 679–684
sliding-mode control, 389
sliding-tile puzzle, 4, 5, 30
small-time local controllability, 722, 726,

845, 868–870, 883, 886, 888, 892,
903, 908–910, 921

smooth differential drive, 744
smooth distribution, 895
smooth function, 385
smooth manifold, 134, 390–398, 895

RPn, 394–395
Rn, 393
Sn, 393–394
Riemannian, 810–811

smooth structure, 392
smoothness of a function, 385
Sobol sequence, 208
Sod’s Law, 448
Sokoban, 301
solid representation, 81
solution in the sense of Filipov, 388
solution trajectory, 387, 398
span of vector fields, 895
spanning tree, 355

spanning-tree covering, 355–357
spatial constraints, 351
special Euclidean group, 147–148, 154
special orthogonal group, 146
speedometer, 601
spherical coordinates, 397
spherical joint, 105, 107, 113
spherical linear interpolation, 189
spine curve, 92
spiral search, 673
squeeze function, 702
squeezing parts, 701–704
SSM, see swath-point selection method
stability of a system, 862–866

asymptotic, see asymptotic stability
Lyapunov, see Lyapunov stability
time-varying case, 864
uniform, 863

stable configuration space, 334
stage-dependent plan, 505
standard grid, 203
star algorithm, 159–161
star-shaped regions, 411
state estimation, 572–573
state history, 400
state mapping, 590
state space, 28
state trajectory, 372, 400, 788
state transition equation, 28, 29, 737,

738
state transition function, 28, 29
state transition graph, 29
state transition matrix, 502
state-nature mapping, 590, 591
state-sensor mapping, 591
state-space discretization, 828–832
stationary cost-to-go function, 51, 511,

512, 514
stationary differential equations, 387
statistical decision theory, 455
steering methods, 817, 910–922

piecewise-constant actions, 910–916
sinusoidal action trajectories, 917–

920

INDEX 1005

steering problem, 792
Stentz’s algorithm, 362, 662–667
stereographic projection, 293, 394
sticking, 693, 697, 699, 700
STLC, see small-time local controllabil-

ity
stochastic control theory, see game against

nature, sequential, 495
stochastic differential equation, 781
stochastic fractal, 231
stochastic iterative algorithm, 533, 534
stochastic shortest-path problem, 556
strange topology, 131
strategy, 452
STRIPS, 27, 58–63
strong backprojection, 504, 696
structure problem, 353
sub-Riemannian metric, 811
subgroup, 146
subjective probabilities, 485
subspace topology, 130–131
sufficient information mapping, 573
sufficient statistic, 573
Sukharev grid, 203
superquadric, 92
supremum, 201, 439
Sussmann and Tang, 887
swath, 229, 231, 803, 804, 809, 818
swath-point selection method, 231, 818
Swiss cheese, 141
switching boundary, 388
switching time, 878
symmetric systems, 793–794
symmetric Turing machine, 300
symmetry class, 644
symplectic manifold, 778
system, 715, 793

determining whether controllable, 903–
910

determining whether nonholonomic,
892–903

distribution, 895
linear, see linear system
nonholonomic, see nonholonomic sys-

tem theory
nonlinear, see nonlinear system
simulator, 813–816
see also differential models

system vector fields, 891
systematic search, 32–33

tangent bundle, 384, 738, 895
tangent point, 854
tangent space, 384, 390, 396

on a manifold, 395–397
TangentBug, 670
Tarski sentence, 282
Tarski-Seidenberg Theorem, 286
Taylor series, 872, 873, 898, 899
TD, see temporal difference
team theory, 626
temporal difference, 531–534
temporal logic, 364
termination action, 51, 568
THC, 17
theory of computation, 298
time scaling, 317, 792
time-invariant, 741
time-limited reachable set, 799
time-monotonic path, 313, 315–317
time-optimal trajectory planning, 853–

855
time-varying motion planning, 311–318

algebraic obstacle motion, 315
bounded speed, 315–316
unbounded speed, 312–315

timing function, 317
tire skidding, 761
Tit-for-Tat, 490
topological complexity, 429
topological graph, 132–134, 803
topological manifold, see manifold
topological property, 845, 909
topological space, 128–134

connected, 139, 140
identification, 136
metrizable, 187
path connected, 139
simply connected, 141

1006 INDEX

topologist’s sine curve, 139
topology

manifold, see manifold
topological space, see topological space

torque, 751, 753, 771
torus, 137, 138, 143, 171, 172, 175
total differential, 778, 779
tower exponentiation, 304
Towers of Hanoi, 368
trailers, 730–731
trajectory, 387
trajectory optimization, 855–857
trajectory planning, 792

path-constrained, 846–855
transcription, 857
transfer mode, 334
transfer path, 335
transformations

2D chain, 100–103
2D rigid body, 94–97
3D chain, 103–112
3D rigid body, 97–100
general concepts, 92–94
kinematic tree, 112–120
nonrigid, 120–122

transit path, 335
transition configurations (mode change),

334
translating a disc, 94
trapezoidal decomposition, see vertical

decomposition
trapped on a surface, 734–735
Traveling Salesman Problem, 354
tray tilting, 612–614, 701
triangle fan, 91
triangle inequality, 187
triangle model, 90–91
triangle strip, 91
triangular enumeration, 807
triangulation, 250, 266, 268–269, 307,

403
tricycle, 725
trim trajectory, 809
trivial operator, 66

trivial topology, 131
Turing machine, 19, 299
two-point boundary value problem, 788,

792, 798, 805, 810, 816–820, 823,
830–832, 834, 835, 837, 855–857,
861, 862, 867, 910

Type A contact, see Type EV contact
Type B contact, see Type VE contact
Type EE contact, 164, 167
Type EV contact, 161, 162, 164–166,

184
Type FV contact, 163, 167
Type VE contact, 161, 162, 164–166,

182, 184
Type VF contact, 164, 167

Udupa, 127
uncertainty

brief overview, 435–436
due to partial predictability, 435, 496–

535
due to sensing, 435, 559–627, 633–

704
underactuated system, 722, 793, 804, 827–

828
unicycle, 729–730, 743–744
uniform random, 198
union-find algorithm, 224, 239
unique point, 662
unit complex number, 149
unit quaternions, 150
unknot, 350
unsupervised classification, 455
unvisited states, 33
upper envelope, 467
upper value of a game, 461, 539, 546
utility function, 482–483
utility of money, 483
utility theory, 477–483

vacuum cleaning, 354
value iteration, 45

backward, see backward value itera-
tion, 45–48

convergence issues, 511–514

INDEX 1007

forward, 48–50
relative, 527
with interpolation, 418–422

van der Corput sequence, 196–197, 204,
205, 207, 217, 238

variation of a function, 763
variety, 168, 170–171

for 2D chains, 171–176
for general linkages, 176–180

vector field, 381–390, 398, 719
equilibrium point, 862
normalized, 400
over a cell complex, 402–404
piecewise-smooth, 388–390

vector space, 382–383
Rn over R, 383
of functions, 383

velocity field, 386–387
velocity-tuning method, 317–318
vertex selection method, 217–220, 226–

228, 231
vertical decomposition, 253–258, 267–268,

319
3D, 270–273

violation-free state, 796
virtual human, 11
VisBug, 670
visibility graph, see shortest-path roadmap
visibility polygon, 648
visibility region, 674
visibility roadmap, 241
visibility sensor, 604, 647
visibility skeleton, 649
visibility-based pursuit-evasion, 684–691

a sequence of hard problems, 686
complete algorithm, 687–690
problem formulation, 684–687
variations, 690–691

Voronoi diagram, 200
Voronoi region, 200, 208, 212–214, 618
Voronoi vertex, 202
VSM, see vertex selection method

wall clock, 605
wall following, 662

warping a path, 140
wavefront, 357
wavefront propagation, 378–379, 428
wavelet, 358
way point, 406
WB, see weak backprojection
weak backprojection, 504, 552, 696, 697
weighted-region problem, 362
Weiner process, 781
Whitney’s embedding theorem, 134, 136
with probability one, 196
word (sequence of motion primitives),

881
world, 81, 745
world frame, 94
worst-case analysis, 448, 507, 570
wrench (from mechanics), 754

yaw rotation, 98

zero-sum game, 459–468
matrix representation of, 460
randomized saddle point, 466–468
randomized value of, 466
regret in, 462
saddle point, 462–464
value of, 462

	Preface
	I Introductory Material
	Introduction
	Planning to Plan
	Motivational Examples and Applications
	Basic Ingredients of Planning
	Algorithms, Planners, and Plans
	Organization of the Book

	Discrete Planning
	Introduction to Discrete Feasible Planning
	Searching for Feasible Plans
	Discrete Optimal Planning
	Using Logic to Formulate Discrete Planning
	Logic-Based Planning Methods

	II Motion Planning
	Geometric Representations and Transformations
	Geometric Modeling
	Rigid-Body Transformations
	Transforming Kinematic Chains of Bodies
	Transforming Kinematic Trees
	Nonrigid Transformations

	The Configuration Space
	Basic Topological Concepts
	Defining the Configuration Space
	Configuration Space Obstacles
	Closed Kinematic Chains

	Sampling-Based Motion Planning
	Distance and Volume in C-Space
	Sampling Theory
	Collision Detection
	Incremental Sampling and Searching
	Rapidly Exploring Dense Trees
	Roadmap Methods for Multiple Queries

	Combinatorial Motion Planning
	Introduction
	Polygonal Obstacle Regions
	Cell Decompositions
	Computational Algebraic Geometry
	Complexity of Motion Planning

	Extensions of Basic Motion Planning
	Time-Varying Problems
	Multiple Robots
	Mixing Discrete and Continuous Spaces
	Planning for Closed Kinematic Chains
	Folding Problems in Robotics and Biology
	Coverage Planning
	Optimal Motion Planning

	Feedback Motion Planning
	Motivation
	Discrete State Spaces
	Vector Fields and Integral Curves
	Complete Methods for Continuous Spaces
	Sampling-Based Methods for Continuous Spaces

	III Decision-Theoretic Planning
	Basic Decision Theory
	Preliminary Concepts
	A Game Against Nature
	Two-Player Zero-Sum Games
	Nonzero-Sum Games
	Decision Theory Under Scrutiny

	Sequential Decision Theory
	Introducing Sequential Games Against Nature
	Algorithms for Computing Feedback Plans
	Infinite-Horizon Problems
	Reinforcement Learning
	Sequential Game Theory
	Continuous State Spaces

	Sensors and Information Spaces
	Discrete State Spaces
	Derived Information Spaces
	Examples for Discrete State Spaces
	Continuous State Spaces
	Examples for Continuous State Spaces
	Computing Probabilistic Information States
	Information Spaces in Game Theory

	Planning Under Sensing Uncertainty
	General Methods
	Localization
	Environment Uncertainty and Mapping
	Visibility-Based Pursuit-Evasion
	Manipulation Planning with Sensing Uncertainty

	IV Planning Under Differential Constraints
	Differential Models
	Velocity Constraints on the Configuration Space
	Phase Space Representation of Dynamical Systems
	Basic Newton-Euler Mechanics
	Advanced Mechanics Concepts
	Multiple Decision Makers

	Sampling-Based Planning Under Differential Constraints
	Introduction
	Reachability and Completeness
	Sampling-Based Motion Planning Revisited
	Incremental Sampling and Searching Methods
	Feedback Planning Under Differential Constraints
	Decoupled Planning Approaches
	Gradient-Based Trajectory Optimization

	System Theory and Analytical Techniques
	Basic System Properties
	Continuous-Time Dynamic Programming
	Optimal Paths for Some Wheeled Vehicles
	Nonholonomic System Theory
	Steering Methods for Nonholonomic Systems

