Papers on Planning Under Differential Constraints

Chapter 13: Differential Models, Planning Algorithms. S. M. LaValle. Cambridge University Press, Cambridge, U.K., 2006. [pdf] [Entire Book].

Chapter 14: Sampling-Based Planning Under Differential Constraints, Planning Algorithms. S. M. LaValle. Cambridge University Press, Cambridge, U.K., 2006. [pdf] [Entire Book].

Chapter 15: System Theory and Analytical Techniques, Planning Algorithms. S. M. LaValle. Cambridge University Press, Cambridge, U.K., 2006. [pdf] [Entire Book].

Human perception-optimized planning for comfortable VR-based telepresence. I. Becerra, M. Suomalainen, E. Lozano, K. J. Mimnaugh, R. Murrieta-Cid, and S. M. LaValle. In IEEE International Conference on Intelligent Robots and Systems, 2020. Under review, [pdf].

Continuous planning with winding constraints using optimal heuristic-driven front propagation. D. S. Yershov, P. Vernaza, and S. M. LaValle. In IEEE International Conference on Robotics and Automation, 2013. [pdf].

Simplicial label correcting algorithms for continuous stochastic shortest path problems. D. S. Yershov and S. M. LaValle. In IEEE International Conference on Robotics and Automation, 2013. [pdf].

Simplicial Dijkstra and A* algorithms for optimal feedback planning. D. Yershov and S. M. LaValle. Advanced Robotics, 26(17):2065-2085, 2012. [pdf].

Rendezvous without coordinates. J. Yu, D. Liberzon, and S. M. LaValle. IEEE Transactions on Automatic Control, 57(2):421-434, 2012. [pdf].

Simplicial Dijkstra and A* algorithms for optimal feedback planning. D. Yershov and S. M. LaValle. In Proceedings IEEE International Conference on Intelligent Robots and Systems, 2011. [pdf].

Motion planning: Wild frontiers. S. M. LaValle. IEEE Robotics and Automation Society Magazine, 18(2):108-118, 2011. [pdf].

Sufficient conditions for the existence of resolution complete planning algorithms. D. Yershov and S. M. LaValle. In Proceedings Workshop on Algorithmic Foundations of Robotics (WAFR), 2010. [pdf].

Survivability: Measuring and ensuring path diversity. L. H. Erickson and S. M. LaValle. In Proceedings IEEE International Conference on Robotics and Automation, 2009. [pdf].

Rendezvous without coordinates. J. Yu, D. Liberzon, and S. M. LaValle. In Proceedings IEEE Conference Decision and Control, pages 1803-1808, 2008. [pdf].

Improving the performance of sampling-based motion planning with symmetry-based gap reduction. P. Cheng, E. Frazzoli, and S. M. LaValle. IEEE Transactions on Robotics, 24(2):488-494, April 2008. [pdf].

Minimum wheel-rotation paths for differential-drive mobile robots. H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. T. Mason. International Journal of Robotics Research, 28(1):66-80, 2009. [pdf].

Time-optimal paths for a Dubins airplane. H. Chitsaz and S. M. LaValle. In Proceedings IEEE Conference Decision and Control, 2007. [pdf].

Smooth feedback for car-like vehicles in polygonal environments. S. R. Lindemann and S. M. LaValle. In Proceedings IEEE International Conference on Robotics and Automation, 2007. [pdf].

Minimum wheel-rotation paths for differential drive mobile robots among piecewise smooth obstacles. H. Chitsaz and S. M. LaValle. In Proceedings IEEE International Conference on Robotics and Automation, 2007. [pdf].

An explicit characterizaton of minimum wheel-rotation paths for differential-drives. H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. T. Mason. In Proceedings 12th IEEE International Conference on Methods and Models in Automation and Robotics, 2006. [pdf].

Minimum wheel-rotation paths for differential-drive mobile robots. H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. T. Mason. In Proceedings IEEE International Conference on Robotics and Automation, 2006. [pdf].

A multiresolution approach for motion planning under differential constraints. S. R. Lindemann and S. M. LaValle. In Proceedings IEEE International Conference on Robotics and Automation, 2006. [pdf].

Computing smooth feedback plans over cylindrical algebraic decompositions. S. R. Lindemann and S. M. LaValle. In Proceedings Robotics: Science and Systems, 2006. [pdf].

Real time feedback control for nonholonomic mobile robots with obstacles. S. R. Lindemann, I. I. Hussein, and S. M. LaValle. In Proceedings IEEE Conference Decision and Control, 2006. [pdf].

Smoothly blending vector fields for global robot navigation. S. R. Lindemann and S. M. LaValle. In Proceedings IEEE Conference Decision and Control, pages 3353-3559, 2005. [pdf].

Improving the performance of sampling-based planners by using a symmetry-exploiting gap reduction algorithm. P. Cheng, E. Frazzoli, and S. M. LaValle. In Proceedings IEEE International Conference on Robotics and Automation, 2004. [pdf].

Exploiting group symmetries to improve precision in kinodynamic and nonholonomic planning. P. Cheng, E. Frazzoli, and S. M. LaValle. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. [pdf].

From dynamic programming to RRTs: Algorithmic design of feasible trajectories. S. M. LaValle. In A. Bicchi, H. I. Christensen, and D. Prattichizzo, editors, Control Problems in Robotics, pages 19-37. Springer-Verlag, Berlin, 2002. [pdf].

Resolution complete rapidly-exploring random trees. P. Cheng and S. M. LaValle. In Proceedings IEEE International Conference on Robotics and Automation, pages 267-272, 2002. [pdf].

Randomized kinodynamic planning. S. M. LaValle and J. J. Kuffner. International Journal of Robotics Research, 20(5):378-400, May 2001. [pdf].

RRT-based trajectory design for autonomous automobiles and spacecraft. P. Cheng, Z. Shen, and S. M. LaValle. Archives of Control Sciences, 11(3-4):167-194, 2001. [pdf].

Algorithms for computing numerical optimal feedback motion strategies. S. M. LaValle and P. Konkimalla. International Journal of Robotics Research, 20(9):729-752, September 2001. [pdf].

Rapidly-exploring random trees: Progress and prospects. S. M. LaValle and J. J. Kuffner. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions, pages 293-308. A K Peters, Wellesley, MA, 2001. [pdf].

Reducing metric sensitivity in randomized trajectory design. P. Cheng and S. M. LaValle. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 43-48, 2001. [pdf].

Robot motion planning: A game-theoretic foundation. S. M. LaValle. Algorithmica, 26(3):430-465, 2000. [pdf].

Using randomization to find and optimize feasible trajectories for nonlinear systems. P. Cheng, Z. Shen, and S. M. LaValle. In Proceedings Annual Allerton Conference on Communications, Control, Computing, pages 926-935, 2000. [pdf].

Randomized kinodynamic planning. S. M. LaValle and J. J. Kuffner. In Proceedings IEEE International Conference on Robotics and Automation, pages 473-479, 1999. [pdf].

Efficient computation of optimal navigation functions for nonholonomic planning. P. Konkimalla and S. M. LaValle. In Proceedings First IEEE International Workshop on Robot Motion and Control, pages 187-192, 1999. [pdf].

Rapidly-exploring random trees: A new tool for path planning. S. M. LaValle. TR 98-11, Computer Science Dept., Iowa State University, October 1998, [pdf].

On motion planning in changing, partially-predictable environments. S. M. LaValle and R. Sharma. International Journal of Robotics Research, 16(6):775-805, December 1997. [pdf].

A game-theoretic framework for robot motion planning. S. M. LaValle. PhD thesis, University of Illinois, Urbana-Champaign, USA, July 1995. [pdf].