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Abstract

This paper considers the optimal feedback planning problem of a point robot among polygonal
obstacles in R™. In this problem the Euclidean distance traveled by the robot is minimized. The
approximate optimal feedback plan is computed using a piecewise linear approximation of the cost-
to-go function. The approximate cost-to-go function, in turn, satisfies the discrete version of dynamic
programming principle defined using a simplicial decomposition of the environment. Adaptations
of Dijkstra’s and A* algorithms are introduced that solve the nonlinear system of discrete dynamic
programming equations. Interpolation methods are carefully designed and analyzed so that they are
proven to converge numerically. As the result, the computed feedback plan produces approximately
optimal trajectories. The methods are implemented and demonstrated on 2D and 3D examples.
As expected, the simplicial A* algorithm significantly improves performance over the simplicial

Dijkstra’s algorithm.
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1 INTRODUCTION

Computing the Euclidean shortest path to a given goal is a recurring problem in robotics. In addition
to optimal robot navigation and manipulation, it is also useful in image processing, financial modeling,
physics, etc. We focus on finding the shortest path between a given point and a polygonal goal set in
an n-dimensional environment with polygonal obstacles. For n = 3 this problem is already PSPACE-
hard [3]; thus, approximation methods have been developed [4, 17, 21]. We, therefore, consider only
approximate shortest paths.

In robotics, algorithms that compute approximately optimal paths are based on a common approach
to discretizing the problem: construct a reachability graph for a robot in a given environment using, for

example, regular grids [I4, [I8]; and apply a graph search algorithm to find the shortest path. Although



this approach is appealingly intuitive, the computed control signals do not necessarily converge to the
optimal control signal as the graph resolution increases.

An improved approach is the continuous optimal control formulation of the shortest path problem
[5, [7]. The optimal feedback plan (solution to the optimal control problem) gives the shortest path
when integrated. In this case, the space of possible feedback plans is discretized instead of the path
space. This provides flexibility in choosing the optimal path from a continuum of all possible paths.
Moreover, this approach does not require an implementation of path following controllers; instead, the
motion strategy is naturally given by the feedback plan. In this sense, the control-theoretic approach
can be considered as an optimal version of a motion planning using navigation functions [19].

Algorithms proposed in this paper expand upon the control-theoretic approach outlined above. The

main advantages of the new method are:

e The feedback plan is defined through interpolation, thereby providing control values at every point
in space, not just at a discrete set of points. Moreover, the interpolation technique is introduced
for spaces of any dimension and a general simplicial decomposition of the environment, extending
existing interpolation techniques beyond regular grids in 2D or 3D [2I] and 2D triangulations of

manifolds [13].

e The interpolation scheme inherits the causality property of the original problem. We exploit this
property to build a Dijkstra-like [6] algorithm to solve the resulting system of nonlinear equations
in one sweep through the domain. This provides an extremely efficient algorithm for computing a
feedback plan with an asymptotic running time O(N log N) (here N is the number of vertices in

the simplicial decomposition).

e In case the initial point is known, we further reduce the computational cost by proposing a con-
tinuous version of the A* algorithm [I0]. Introducing the heuristic into the interpolation-based
algorithm is nontrivial, and care must be taken to ensure that the system of discrete dynamic

programming equations is solved correctly.

e The theoretical framework sketched in this paper provides error bounds for the proposed algo-
rithms. This analysis paves the way for showing convergence of the approximate path to the

optimal path as the resolution of the simplicial discretization is refined.

The proposed approach concerns computations only, and it closely resembles the numerical analysis
framework for the Eikonal equation in [20]. In this respect, our method is different from [7], 14} 18],
which address the problem of simultaneous plan computation, path execution and dynamic replanning.
However, the approach can be thought of as a planner that, if embedded into simultaneous execution

and replanning framework, possibly leads to an even more general interpolation-based methodology.



2 PROBLEM FORMULATION

Consider the problem of optimal feedback planning in a n-dimensional Euclidean space. High dimen-
sional environments may arise, for example, from considering the configuration space of a robot. Assume
that the robot’s trajectory, z : [0,Tf] — R™ (here T is a final time), are restricted by global constraints

only. Hence, the motion model is
l’(t) = u<t) ) J?(O) = Tinit , (1)

in which w : [0,T¢] — U is a control signal, and U C R" is a compact input set. The global constraints,
however, require z(t) € Xgee = R™ \ Xops for all ¢ € [0,TY], in which X,ps is an open set with (n — 1)-
dimensional polygonal boundary that represents obstacles. Finally, assume the goal set, Xgoa1 C Xtree,
is closed and has a nonempty interior and polygonal boundary. The problem is to find u that navigates
the robot along the shortest path from zii; to Xgoa1, while avoiding obstacles. In this paper, we focus
on computing the optimal feedback plan to find such wu.

Formally a feedback plan can be described as a vector valued function F' : Xgee — U, which returns

the control signal at given position, that is, v = F'(z). Thus, the motion model becomes
fE(t) = F(‘r(t))v x(O) = Tinit - (2)

The problem of optimal feedback planning is to find F, such that = is the shortest collision-free path
between Ziniy and Xgoa. Generally, we may consider discontinuous feedback plans, and hence the
Filippov solution in (2)) is assumed [g].

It is well known that the optimal feedback plan can be derived from the cost-to-go function, V(z),
which satisfies Bellman’s equation [2]:

= liminf inf
V(z) =lim in helg(é){V(xﬂLh)thll}, (3)

in which B(4) is a ball of radius § centered at the origin. Once V() is known, F(x) = —VV (z) is the
optimal feedback plan.
To summarize, the main goal of this paper is to compute the cost-to-go function, and use the result

to derive the optimal feedback plan.

3 NUMERICAL APPROACH

Equation admits an analytical solution in special cases. For example, if there are no obstacles
in the environment, V' (x) is simply given by the distance function to Xga. For a two-dimensional
environment with polygonal obstacles, this problem can be solved exactly by visibility graph methods
[12] or continuous Dijkstra method [I1], [15] [16]. However, the exact solution is unknown under general
conditions, and thus we must rely on a numerical approximation. In this section we construct a piecewise

linear approximate solution, and prove that it converges to the exact solution.



3.1 Piecewise linear approximation

First, we construct a simplicial discretization of X, by choosing a set of vertices Xq = {2; € Xfreo |
1 < i < N} (a subset of Xgeo). Define an abstract simplicial complex, 7 = {T" C {1,..., N}}, such
that if 7 € T € T, then T" € 7. In this case, T’ is called a face of T’ if additionally T’ # T, then
it is called a proper face of T. In this regard, the notion of (proper) faces is parallel to the notion of
(proper) subsets. Next, denote a geometric representation of simplex T' € T as Xt such that X is the
convex hull of the set {z;};cr. The tuple (Xq,7T) is called a simplicial complex if any two simplices
intersect over the common proper face only, that is, for any T and T in T, X7 N X7 = Xra7. Finally,
a simplicial complex discretizes Xgee, if UTeT Xr = Xfreeﬂ For simplicity, we refer to a simplicial
discretization of X¢ee as a mesh on Xgee-

Second, build a piecewise linear approximation V of the cost-to-go function, using a mesh on Xgee.
Let the approximation take value V; at vertex ;. Define V(x) by linear interpolation within any simplex
T, the geometric description of which contains x:

V(z) = V(Z ai%‘) £ Zai‘}% ) (4)
ieT i€T
in which «; > 0 for all 7, and ZZ-GT «; = 1. The values «; are called barycentric coordinates of x within
Xr. The approximation is completely determined by its values at the vertices of a mesh through .

Since a piecewise linear function cannot satisfy under general conditions, we introduce a discrete

version of Bellman’s principle by considering at points of Xg only:

V(s) = min inf {V(az)+||xixH}, (5)

TeN (i) z€XT,
in which N(i) ={T € T |i € T} C T is a set of simplices incident to vertex z; and T; = T\ {i} is a
proper face of simplex X1 opposite vertex x;.

To construct a fully discrete numerical method we closely follow [20] by using linear interpolation
to solve minimization problem at each vertex. A similar discretization for the Hamilton-Jacobi-
Bellman equation is introduced in [I] based on upwind differencing, whereas our approach is based
directly on discretization of the dynamic programming principle (firstly introduced in [21]), and it

generalizes to high-dimensional meshes.

3.2 Numerical convergence

As with most mesh-based numerical methods, computational error depend crucially on the mesh quality.
The computational error can be defined using a function space norm of the difference between the cost-
to-go function and its approximation. Unlike the standard norms defined on vector spaces, norms on

function spaces are not all equivalent. Thus, it is possible that an algorithm converges in one norm but

Lf the boundary of Xfee is not a polygonal set, then a simplicial discretization may not exist. Although, it is still
possible to find a simplicial complex such that UTGT X1 C Xtree, and the difference Xfree \ UTET X is “small”. In this

case the shortest path in X can be approximated by the shortest path in the simplicial complex.



not in another. In this paper, we define the computational error using sup-norm
Error = sup |V(z)— V(x)|. (6)
€ X free
Moreover, the convergence in L,-norm for all p > 1 follows from the convergence in sup-norm. Thus,
proving the convergence in sup-norm is a stronger result.
Further, we introduce a mesh quality parameter

h = . 7
glgggg\lxl | (7)

This parameter is defined by the diameter of the largest simplex in a given mesh. Additionally, h can
be reduced if mesh refinement techniques are applied, for example, in 2D each triangle can be split by
its midsegments into four triangles effectively reducing h by a factor of two.

Before we formulate our main result it is useful to introduce some common notation. Let, V' be a
solution to such that the norm of the Hessian matrix of V is uniformly bounded by M in Xfreeﬂ
Further, let V be a solution to and V' be a piecewise linear function such that V' is linear on each
Xp and V'(z;) = V(z;) for all i € {1,..., N}. Finally, we define [z,2'] = {tz + (1 — t)2/|0 < t < 1} for
any two points z and z’.

The next three lemmas provide the basis, essential to prove the main global error result.

Lemma 1 (Local Interpolation Error). In the notation above,
V(z) = V'(z)] < Mh?. (®)

Proof. Assume x € X for some simplex T' € T, and the barycentric coordinates of x in Xt are {a; }ier.

By definition

T = Z oz, and  V(z) = Za,;V(xi) . 9)

i€T ieT
On the other hand, using Taylor series expansion, we establish that
1
Viz) = Z a;V(x) = Z o; (V(z;) + VV(2) - (xz — x;) + i(m —z)"THV (z)(z — 2;) + O(h®)).  (10)
i€T i€T
Consider the second term in the expansion:
ZaiVV(x) (r—x) =VV(x)- (Zai(x = ml)) =VV(z)- (a: . Z%’%‘) =0. (11)
ieT i€T i€T
Thus, it follows, from @7 and the triangle inequality, that
- 1
V(2) = V'(z)] < Zai§|(35 — ;) THV (2) (2 — )| + |O(h?)] . (12)

€T

2The Hessian matrix of V' may not be uniformly bounded in a small neighborhood of a critical point, in which the
optimal trajectory changes its direction, for example, a corner of an obstacle. Nevertheless, the set of all critical points has
measure zero. Moreover, it is possible to approximate V with a smoother function V’, which has the uniformly bounded

Hessian matrix. Thus, we may assume without loss of generality, that V' is sufficiently smooth.



1
In the expression above, the first term on the right-hand-side is bounded by §M h2. Moreover, we can

1
bound the second term on the right-hand-side by §M h?, for sufficiently small h. Substituting these

bounds in , we finalize the proof. [ |
Lemma 2 (Local Minimization Problem Error). In the notation above, for alli € {1,...,N}
min  min {V'(z) - V'(z;) — ||z — acl||}‘ < Mh*. (13)

TeN (i) zxeXT;

Proof. The proof follows from Lemma |1| and . |

Lemma 3 (Local Dependency). Assume V is a linear function defined on Xt for some simplex T € T.
For all k €T, let

xf = argmin{V (z) — V() + ||z — 21|} . (14)
:cGXT,C

If V'V is a nonzero covector field, then for any i,j € T at most one of the following holds:

*
3

1. The intersection of [x;, x}] with the interior of X1 is nonempty;

2. The intersection of [z, x;] with the interior of X1 is nonempty.

Proof. Since V is linear in X, VV is a constant covector field in X7, which we denote as Vo V. Thus,

is equivalent to

xy, = arg min {VTV~ M} . (15)
e Jo— o]

Assume to the contrary that conditions 1 and 2 hold. Thus, both [z;, z]] and [z, z}] pass through
the interior of X7, and the constraints z € X, and = € X, are inactiveﬂ Therefore, the result of

*

can be achieved considering the corresponding unconstrained minimization problems. Thus, both z; — ;]

and x; — x;‘ must be collinear with VTV, which is impossible for nondegenerate X1 and VTV #0. 1

Theorem 4 (Global Error). In the notation above, there exists C' such that for sufficiently small h > 0,

Error < Ch . (16)

Proof. From the definition of V and compactness of Uren) X, it follows that for all ¢ € {1,..., N}

there exist @} € Upepr;) X1, such that
V() = V(@) + ||z — i - (17)
Similarly, using Lemma we find 7" € Upc N () X7, such that

V! (2) = V(i) + |2 — ]| < MR2. (18)

3See complementary slackness in Karush-Kuhn-Tucker conditions.



We define T and T;* to be such that z} € Xr- and x7* € Xr=-.

For given z;, consider two piecewise discontinuous paths: Let the first path be defined as Z : [0, K] —
Xiree such that #(k —0) = z;(,) and Z(k+0) = x;f(k)ﬂ in which {j(k)}, is such that j(k+1) € T;ys
J(0) =1, and x(x) € Xgoal. An example of Z is sketched in Fig.|I} Similarly, the second path is defined
as &' : [0, K] = Xiree, with the difference that '(k — 0) = ;) and 2'(k + 0) = 2}7,,, in which

{j'(k)}K, is such that j'(k +1) € T}, 3'(0) = i, and @y (k1) € Xgoal-

Figure 1: An example of a piecewise discontinuous path Z such that 2(0) = z; and Z(K) € Xgoa.

Consider the function V(&) : [0, K] — R. On one hand, using V(2(K)) = 0 (2(K) = Tk) € Xgoal)
we derive

K-1 -1

K
| =grramar = X (V) - Vi) = Vi) + (Vo) = Vi) - 09

=

=
Il
o
B
I

k41 ) K-1
=> / =VV(Z()) - (2f) — Tj)) dt = 125 — il = L, (20)
k=0 7k k=0

in which L is a total length of the line segments of . It follows from the above that

K-1

Vi)=Y (V(x;(k_l)) - V(zj(k>)) YL, (21)

k=1
Similarly, considering V(:E’ ) and repeating the above steps, we show that

K'—1

V) < S (Ve - Vieyw) + 1 (22)

k=1
in which L’ is a total length of the line segments of Z’. The inequality arises due to the nonoptimality
of 27* when substituted into .

Relations for V'(z;) similar to and are established by considering functions V(%) and
V'(Z') and using Lemma [2| and :

K-1

V)<Y (V’(x;(k_l) ) — V’(xj(k))) +L(1+ Mh?) (23)
k=1

4Here the notation #(k — 0) and #(k + 0) refers to the left and right limits of function Z at point k respectively.



and
K'—1

Vi)=Y (f/’(x;,*(k_l)) - V'(xj,(k))) L L(1— Mh?). (24)

k=1
From relations — , the upper and lower bounds on the difference V' -V at point x; are

provided as follows:

K-—1
V(@) = V(i) < (V/($§(k—1)) = V(ai-1) + Vizim) — V/(-rj(k))) + LMh? (25)
k=1
and
K'—1
Vi) — V' (2:) < (V(xj,*(k_l)) — V@) + V(@) — V(xj/(k))) FL'MRE. (26)
k=1

It follows from the definition of {j(k)}E_, and {j’(k)}X,, the linearity of V and V', and Lemma
that {j(k)}<, and {j’(k)} , have no cycles. Moreover,

W(x;(kq)) - V/(x;(kq))\ < |V(1'j(k)) - V/(xj(k))| (27)
and
V(@3 1y) = V(@) < V(@jm) = Vi@ m)l (28)
Therefore, inequalities and can be solved recursively in K and K'.

Note that both L and L’ are bounded by the maximum geodesic distance in Xpee, denoted as
diam(Xfree), and independent of h. Let C; be the ratio between the largest and the smallest simplex
diameters, which can be fixed for various h. It follows that K and K’ are bounded by C; diam(X¢ee)/h.
Thus, we establish that

V' () — V(2:)| < 2C1 (diam(Xgee))2Mh . (29)

Finally, using Lemma [1| and the triangle inequality, the upper bound on the computational error is

derived from (29)):

Error < sup |V(z) —V'(x)|+ sup |[V'(z) - V(z)| < 2C)(diam(Xgee))>Mh + Mh2. (30)
€ Xfree € Xfree
This result proves the theorem if we let C' = (2C (diam(Xtye0))? + 1)M and h < 1. [ |

4 ALGORITHMIC APPROACH

The discrete dynamic programming principle (5], considered at all vertices of the discretization, describes
a system of nonlinear equations. An application of standard iterative nonlinear solvers suffers from
several shortcomings: it requires a sufficiently accurate initial guess, running time is high, and the
result is only an approximate solution. By contrast, discrete graph search methods, such as Dijkstra’s
algorithm [6] or A* algorithm [I0], solve a similar system of dynamic programming equations in optimal
time without requiring an initial guess. In this paper we implement a modification of these algorithms

to solve the given system.



4.1 Simplicial Dijkstra algorithm

We propose a Simplicial Dijkstra algorithm (SDA) that evaluates the function V in increasing order
of its values using a priority queue, similarly to Dijkstra’s graph search algorithm. Under minimal
conditions, which we establish later in this paper, our implementation guarantees that equation is
solved only once for each vertex. Thus, the entire computation is done in one “sweep” through the

mesh; see Algorithm [I] for details.

Algorithm 1 Simplicial Dijkstra Algorithm

Input: Simplicial complex (X4, 7 ), goal set Xgoal
Output: Approximation of cost-to-go function, f/}, at all vertices x; of simplicial complex
1: Initialize priority queue @ of all vertex indices. Set priority key K; « 0, for all z; € Xgoal, and
K; + 00, otherwise
2: while @ is not empty do
3:  Pop j with least key K ; from Q
4:  Set V] « K i
5. for all T € N(j) do

6: for allie T\ {j} do

7: V* « minloc(i, T, X4)

8: if V* < K; then

9: Update key of i to V* in Q

Algorithm (1] is identical to Dijkstra’s graph search algorithm if the complex is a graph (i.e., a 1-
complex), and minloc computes the distance to the neighboring vertex. In our case, however, minloc

is defined to satisfy for general meshes.

4.2 Local minimization problem

To satisfy , minloc must return a solution to the local minimization problem
V* = 1<£13f { Z Olj‘/j + H(El - Z ijinH} (31)
JET; JET;

for any given ¢ and T, subject to linear constraints o; > 0 for all j € T; and ) a; = 1. Note that

JET:
the local minimization problem is equivalent to the shortest path problem between vertex x; and the
proper face of simplex T opposite x;. The terminal cost on the face is given by linear interpolation of
values ‘7] at vertices previously computed. We propose a geometric algorithm to solve exactly for
simplices of any dimension; see Algorithm [2| for details.

To interpret Algorithm [2| consider a two-dimensional simplex (triangle). Assume z3 is a vertex
with unknown Vg, and without loss of generality, consider Vl < Vg to be known at vertices xy and xo,

respectively. In this setting, the problem is to find the shortest path from 3 to the line segment between

points z; and w5, given a linear terminal cost V such that f/(ml) =V, and V(xg) = Vs.



Algorithm 2 Function minloc

Input: Vertex i, simplex T, vertex coordinates Xg4
Output: Solution to minimization problem
1: Restrict T" to face J C T such that all VJ for j € J are known
2: Let Vmax = maX;eJ Vj and jpax = arg max;c y V]
3: Calculate normal vector 77 to planar section of Vmax level set of cost-to-go function (Fig. .
4: Calculate distance vector from x; to plane orthogonal to 7 and passing through z; .  (Fig. [3).
5. if no barycentric coordinate of distance vector within simplex is negative then
6:  return Viax + (zi — xj,..,7)
7: else

8:  Restrict J to subset of non-negative barycentric coordinates and repeat from step 2

For the considered shortest path problem, the level sets of the cost-to-go function V are illustrated
in Fig. 2l Each level set consists of two line segments bitangent to two circular arcs, one of which may
be of zero radius. Two cases are considered: z3 belongs to a line segment or x3 belongs to a circular arc.
In the first case, the shortest path is orthogonal to the line segment of the level set {z | V() = Va};
see Fig. Hence, the solution is given by the signed distance to the line segment, (z3 — xo,7), plus
the cost-to-go function value on the segment, Vg In the second case, the shortest path terminates
either at x; or at zo; see Fig. @ Thus, the solution to the local minimization problem is the lower of
Vi + |3 — x1|| and Vi + ||zs — z»||. Finally, consider the distance vector from vertex z3 to the line
embedding the linear segment of {2 | V() = Va}. This vector is within the triangle in the first case, and
outside otherwise. Using barycentric coordinates of the distance vector, we have thus found a criterion

to distinguish between the two cases considered.

Figure 2: Level sets of V(x) consist of two line segments bitangent to two circular arcs. One of the

circular arcs is of zero radius if V() < V5.

10



Figure 3: The shortest path intersects the linear segment of the level set. In this case Vi="Vs+ (x3 —

X9, 7Y, in which (-,-) is a scalar product of two vectors.

Figure 4: The shortest path intersects the circular arc of the level set. In this case Vs = V; + |21 — 23]|.

11



4.3 Simplicial A* algorithm

The SDA outlined in Section[4.I]computes the approximate cost-to-go function in the entire environment
regardless of the robot’s initial configuration. If xj,;; is known, however, then it is desirable to perform
costly computations only in the vicinity of the optimal path. In the discrete case, the A* graph search
algorithm accomplishes this by employing a heuristic at each iteration of Dijkstra’s algorithm [10]. We
propose a Simplicial A* algorithm (SAA) by invoking a similar heuristic at each iteration of the SDA

that narrows the focus of computations to vertices along the shortest path; see Algorithm [3] for details.

Algorithm 3 Simplicial A* Algorithm

Input: Simplicial complex (X4, 7T ), goal set Xgoa1, initial position of robot @ipis.

Output: Approximation of cost-to-go function, Vi, in all vertices x; in neighborhood of optimal path.
1. H; « heuristic(z;, zinit) for all z; € Xgoal
2. Initialize priority queue Q of all vertices. Set priority key K; < H;, for all z; € X, goal, and K; + oo,
otherwise
3: while @ is not empty do
4:  Pop 7 with least key K; from Q
5. SetV,« K; — H;
6: for all T € N(i) do
7: for all j € T\ {i} do

8: V* « minloc(j, T, X4)

9: ﬁj + heuristic(z;, Zinit)

10: if V*—&—I:Ij <kj then

11: Update key of j to V* + H; in Q

Algorithm [3] is identical to Algorithm [I| in case of the trivial heuristic corresponding to no prior
knowledge of the initial configuration. Although, if the heuristic approximates the cost-to-come function
(i-e., the optimal cost of reaching the point from the initial state), then the SAA advances towards the
initial configuration since H(z) 4+ V (z) is generally lower in this direction than in any other directions.
Moreover, if the heuristic is admissible (H is an underestimate of the true cost-to-come function [10])
and consistent (covered in the next section), then the solution given by the SAA is identical to the

solution given by the SDA at the evaluated vertices.

4.4 Requirements on meshes

If there is no nonnegative cycle in the graph, Dijkstra’s graph search algorithm computes the cost-to-
go function correctly in finite time. We refer to this property as correctness of Dijkstra’s algorithm.
Similarly to Dijkstra’s algorithm, the correctness of the SDA and the SAA requires extra conditions on
a simplicial mesh.

The correctness of the SDA is guaranteed, provided the discrete Bellman’s principle satisfies the

12



causality property: for any ¢ and j sharing a simplex, value V; depends on value Vj if VJ < V;. This
property parallels to the edge weight positivity condition for Dijkstra’s algorithm, which implies the
nonnegative cycle condition. For the SDA, the causality property is satisfied if the following holds for
BI):

V* > Vj for all j such that a; > 0. (32)

The acute simplicial mesh guaranties . We demonstrate this for the two-dimensional case in the
setting of the geometric construction from Section First, notice that V* > V. Second, V* depends
on Vs only if vertex x3 belongs to a linear segment of the corresponding level set. Hence, it follows from
Fig.|3| that V* > Vy if the projection of x3 — x9 on 7 is positive, which holds if the angle between edges
incident at vertex x3 is acute. Thus, as in [I], in 2D the correctness of the SDA is guaranteed if the
triangulation is acute. Moreover, this geometric argument extends to higher dimensions, in which case
we say a discretization is acute if the angles between all pairs of incident edges are acute.

The correctness of the SAA is implied by the modified causality property: for any i and j sharing a

simplex, the value V; depends on the value VJ if
HZ+‘A/12HJ+‘A/J,OI Hj—]:]lgf/;—v; (33)
In we replace v — ‘7] with its minimum provided V; depends on VJ In the two-dimensional case,

the minimum is achieved if 77 is parallel to the side opposite x;; see Fig. [3| Hence,

Vi = Vj < |lai — ] cos(B), (34)
in which § is the angle between edges incident at vertex x;. It follows from and that

Hj — H; < ||z; — x| cos(B) (35)

must be satisfied for correctness. If H satisfies , then it is called consistent. Higher-dimensional
cases are analogous, except that 8 must be replaced with the maximum angle (minimum cosine) between
any two edges incident at vertex x;. In addition to the mesh requirements for the SDA, the heuristic
must be consistent for the SAA correctness.

All of the requirements on meshes can be summarized in the following theorem.

Theorem 5 (Correctness). If the mesh is acute, then the SDA is correct. If additionally H is consistent,
then the SAA is correct.

Proof. The derivations above prove the theorem. ]

The airline distance is a commonly used heuristic for the A* algorithm [I0], but it fails to satisfy
. Nevertheless, a rescaled airline distance provides a consistent heuristic. We introduce a mesh
quality parameter

. . (s s
y :/I%%,%QTCO“ (@i, xj, zr)), (36)

13



in which Z(z;,x;,x)) is the radian measure of the angle between vectors z; — z; and xy — ;. The
parameter vy measures the regularity of a mesh, with v < 0 indicating there is at least one non-acute
simplex and v = 1/2 for the “perfect” 2D equilateral triangulation. It follows, from the triangle
inequality and , that the airline distance multiplied by ~ satisfies (35)). Furthermore, as the mesh
regularity improves, the parameter  increases, and the rescaled heuristic becomes increasingly usable.

If parameter « is small, then the rescaled airline distance is closer to the trivial heuristic, and the
SAA has very little advantage over the SDA. Nevertheless, the rescaling coefficient and hence the quality
of the heuristic can be improved significantly by implementing a virtual edge flip [I]. Figure |5|illustrates
the idea of the virtual edge flip in 2D: the local minimization problem at vertex x; is solved for red
simplices instead of the blue simplex. Red simplices are built using vertex x4, which is opposite face
(22, x3) within the green simplex (blue and green simplices are required to share the face (z2,x3)).
Using a virtual edge flip we can improve v for a 2D equilateral triangulation up to v/3/2. In higher
dimensions the improvement is less pronounced, but three-dimensional experiments show that a virtual

edge flip still provides reasonable v > 1/2.
T3

X
Xyq

X2

Figure 5: Virtual edge flip trick in 2D.

5 RESULTS and DISCUSSION

In this section, we investigate the convergence of the proposed numerical algorithms and their applica-
bility to real-world problems. The convergence was tested on a simple 2D environment with a circular
goal region and no obstacles. In this case, the cost-to-go function is known, and, hence, the error can
be computed precisely in any standard function space norm, namely sup-norm, Li-norm, and Ls-norm.
Numerical solutions were computed using the SDA on multiple meshes with various mesh quality pa-
rameters h. The convergence results along with the slope 1 lines, as a visual aid, are plotted on Fig. [0}
Our experiment confirms the linear convergence rate, proven in Theorem [4]

We further test the proposed algorithms on real-world problems by considering three different sce-
narios: 1) a two-dimensional environment, 2) a two-dimensional manifold, and 3) a three-dimensional
environment. In all test cases, polygonal obstacles were introduced. Meshes were generated using Gmsh
software [9]. The same algorithms were applied, regardless of a problem’s dimensionality or topology.

Figure[7]shows level sets of the approximate cost-to-go function in the 2D environment with obstacles.

The black level sets are computed using the SDA, and the white level sets are computed using the SAA.
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Figure 6: The plot of error in sup-norm, Li-norm, and Lo-norm. Dashed lines are the slope 1 reference.

The thick white line surrounds vertices computed by the SAA. As we can see, implementing a heuristic
focuses the SAA on vertices primarily in the direction of the robot’s location. Moreover, values of V
at vertices computed by the SAA are identical to those computed by the SDA, and level sets coincide.

Hence, the resulting optimal paths are identical.

Figure 7: Level sets of V in the 2D environment with obstacles (gray) computed using the SDA (black)
and the SAA (white).

Level sets of V computed on a 2D torus with obstacles are shown on Fig.|8} From this experiment, it is
evident that the proposed interpolation-based approach generalizes to finding shortest paths (geodesics)
on manifolds. As expected, the SAA outperforms the SDA by exploring fewer vertices.

In Fig. El two slices of level sets of V for a 3D environment with obstacles are illustrated. The black
level sets correspond to SDA computations and white level sets correspond to SAA computations. As
we can see, both algorithms extend to 3D cases. Moreover, the SDA explores more vertices than the
SAA, and the trend remains in higher dimensions.

To compare the performance of the SDA vs. the SAA, we introduce two performance measures: the
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Figure 8: Level sets of V on a torus with obstacles computed using the SDA (black) and the SAA
(white).

Figure 9: Level sets of V in a the 3D environment with obstacles computed using the SDA (black) and
the SAA (white).
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number of minloc function calls and the number of computed vertices. The former is a better metric
since the local minimization problem is computationally expensive. The latter, however, is adequate
in case memory is limited. As we can see from Table [I| the SAA consistently outperforms the SDA
in both measures introduced above for all experiments considered. The running time of a Python
implementation on Intel Core i7 3GHz is also illustrated in Table [II We would like to emphasize that

the proposed algorithms are not optimized for online computations, and there is space for improvement.

Table 1: Performance of SDA and SAA

Performance Measure
Experiment || Algorithm
minloc call # | vertex # | running time (sec)

2D obs. SAA 15202 727 2.16

SDA 31314 1539 4.16
2D torus SAA 274240 11550 72.91

SDA 557112 23395 138.35
3D obs. SAA 837297 4515 131.82

SDA 1675890 9693 426.03

6 CONCLUSIONS

In summary, we have developed an interpolation-based method for approximating the cost-to-go function
associated with the Euclidean shortest path problem over a simplicial complex. We introduced simplicial
versions of Dijkstra’s algorithm and the A* algorithm to compute the approximate cost-to-go function
from the system of the discrete dynamic programming equations efficiently. We have shown that both
algorithms find a first-order accurate solution when provided with an acute mesh, and a consistent and

admissible heuristic in case of the SAA. The key features of the proposed framework are:

e The implementation is independent of the dimension or topology of the environment, and it relies

solely on a simplicial discretization of the environment.
e For a mesh with N vertices, both algorithms have asymptotic running time O(N log N).

e The SAA consistently explores fewer vertices and requires fewer minloc function calls then the

SDA for the same mesh.
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