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An enactivist-inspired
mathematical model of
cognition

Vadim Weinstein*, Basak Sakcak and Steven M. LaValle*

Center for Ubiquitous Computing, Faculty of Information Technology and Electrical Engineering,

University of Oulu, Oulu, Finland

In this paper we start from the philosophical position in cognitive science

known as enactivism. We formulate five basic enactivist tenets that we have

carefully identified in the relevant literature as the main underlying principles

of that philosophy. We then develop a mathematical framework to talk about

cognitive systems (both artificial and natural) which complies with these

enactivist tenets. In particularwe pay attention that ourmathematicalmodeling

does not attribute contentful symbolic representations to the agents, and that

the agent’s nervous system or brain, body and environment are modeled in a

way that makes them an inseparable part of a greater totality. The long-term

purpose for which this article sets the stage is to create a mathematical

foundation for cognition which is in line with enactivism. We see two main

benefits of doing so: (1) It enables enactivist ideas to be more accessible

for computer scientists, AI researchers, roboticists, cognitive scientists, and

psychologists, and (2) it gives the philosophers a mathematical tool which can

be used to clarify their notions and help with their debates. Our main notion is

that of a sensorimotor systemwhich is a special case of a well studied notion of

a transition system. We also consider related notions such as labeled transition

systems and deterministic automata. We analyze a notion called su�ciency

and show that it is a very good candidate for a foundational notion in the

“mathematics of cognition from an enactivist perspective.” We demonstrate

its importance by proving a uniqueness theorem about the minimal su�cient

refinements (which correspond in some sense to an optimal attunement of an

organism to its environment) and by showing that su�ciency corresponds to

known notions such as su�cient history information spaces. In the end, we tie

it all back to the enactivist tenets.

KEYWORDS

enactivism, transition systems, automaton, cognitive modeling, information spaces,

robotics

1. Introduction: Mathematizing enactivism

The premise of this paper is to lay down a logical framework for analyzing

agency in a novel way, inspired by enactivism. Classically, mathematical and logical

models of cognition are in line with the cognitivist paradigm in that they rely on the

notion of symbolic representation and do not emphasize embodiment or enactment

(Newell and Simon, 1972; Fodor, 2008; Gallistel and King, 2009; Rescorla, 2016).
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FIGURE 1

The environment, body, and nervous system (or brain) will be

modeled as inseparable parts of a coupled transition system.

Cognitivism presumes that the world possesses objective

structure and the contentful information of this structure is

acquired and represented by the cognitive agent. This aligns well

with the classical model-theoretic paradigm. In this paradigm

a formal language is describing a static model (such as when

sentences in the language of rings describe algebraic structures—

such as rings).

In the cognitivist analogy, the agent possesses (“in its head”)

formulas of the language and the model is the world or the

environment of the agent. If the formulas possessed by the agent

hold in the model, then the agent’s representation of the world is

correct; otherwise, it is incorrect. Such view of cognitive agency

is rejected by the enactivists either weakly or strongly depending

on the branch of enactivism. For example, radical enactivism

(Hutto and Myin, 2012, 2017) rejects this view strongly. Our

question for this paper is: What would the mathematical logic

of cognition look like, if even the radical enactivists were to

accept it?

We do not take part in the cognitivist-enactivist, or

the representationalist-antirepresentationalist debate (Pezzulo

et al., 2011; O’Regan and Block, 2012; Gallagher, 2018;

Fuchs, 2020). Rather, we take a somewhat extreme enactivist

and antirepresentational view as our axiomatic starting point

and as a theoretical explanatory target. Then we develop a

mathematical theory that attempts to account for cognition in

a way congruent with this view. Even though most forms of

enactivism (even radical ones) have room for representation, it

is not our main goal at the moment to bridge the gap between

“basic minds” and “scaffolded minds,” to use terminology of

(Hutto and Myin, 2017). Thus, in this terminology, we are going

to explore a mathematical (only) of basic minds.

The following “axioms” we take as fundamentals for our

work:

(EA1) Embodiment. “From a third-person perspective the

organism-environment is taken as the explanatory unit”

(Gallagher, 2017). The environment, the body, and the

nervous system are inseparable parts of the system

which they form by coupling; see Figure 1. They cannot

be meaningfully understood in isolation from each

other. “Mentality is in all cases concretely constituted

by, and thus literally consists of, the extensive ways

in which organisms interact with their environments,

where the relevant ways of interacting involve, but are

not exclusively restricted to, what goes on in brains”

(Embodiment Thesis Hutto and Myin, 2012).

(EA2) Groundedness. The brain does not “acquire” or “possess”

contentful states, representations, or manipulate

semantic information in any other way. “Mentality-

constituting interactions are grounded in, shaped by,

and explained by nothing more, or other, than the

history of an organism’s previous interactions. Nothing

other than its history of active engaging structures or

explains an organism’s current interactive tendencies.”

[Developmental-Explanatory Thesis (Hutto and Myin,

2012)].

(EA3) Emergence. The crucial properties of the brain-body-

environment system from the point of view of

cognition emerge from the embodiment, the brain-

body-environment coupling, the situatedness, and the

skills of the agent. The agent’s and the environment’s

prior structure come together to facilitate new structure

which emerges through the sensorimotor engagement.

“[T]he mind and world arise together in enaction, [but]

their manner of arising is not arbitrary” (i.e. it is

structured) (Varela et al., 1992).

(EA4) Attunement. Agents differ in their ways of attunement

and adaptation to their environments, and in the skills

they have. A skill is a potential possibility to engage

reliably in complex sensorimotor interactions with the

environment (Gallagher, 2017).

(EA5) Perception. Sensing and perceiving are not the same

thing. Perception arises from skillful sensorimotor

activity. To perceive is to become better attuned to the

environment. O’Regan and Noë (2001) and Noë (2004)

“Perception and action, sensorium and motorium, are

linked together as successively emergent and mutually

selecting patterns.” Varela et al. (1992).

The mathematics we use to capture those ideas is a mixture

of known and new concepts from theoretical robotics,

(non-)deterministic automata and transition systems theory,

and dynamical systems (Goranko and Otto, 2007). It will also

build upon the information spaces framework, introduced in

LaValle (2006) as a unified way to model sensing, actuation, and

planning in robotics; the framework itself builds upon earlier

ideas such as dynamic games with imperfect information (von

Neumann and Morgenstern, 1944; Başar and Olsder, 1995),

control with imperfect state information (Kumar and Varaiya,

1986; Bertsekas, 2001), knowledge states (Lozano-Pérez et al.,

1984; Erdmann, 1993), perceptual equivalence classes (Donald
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and Jennings, 1991; Donald, 1995), maze and graph-exploring

automata (Shannon, 1952; Blum and Kozen, 1978; Fraigniaud

et al., 2005), and belief spaces (Kaelbling et al., 1998; Roy and

Gordon, 2003).

Although information spaces refer to “information,” they

are not directly related to Shannon’s information theory

(Shannon, 1948), which came later than von Neumann’s use

of information in the context of sequential game theory.

Neither does “information” here refer to content-bearing

information. One important intuition behind the information

in information spaces is that more information corresponds to

narrowing down the space of possibilities (for example of future

sensorimotor interactions).

The main mathematical concept of this paper is a

sensorimotor system (SM-system), which is a special case of a

transition system. Sensorimotor systems can describe the body-

brain system, the body-environment system as well as other

parts of the brain-body-environment system. Given two SM-

systems they can be coupled to produce another (third) SM-

system. Mathematically, the coupling operation is akin to a

direct product. We introduce several notions that describe the

coupling of the agent and the environment from an outside

perspective (not from the perspective of the agent or the

environment). The main notion is that of sufficiency. In some

sense it guarantees that the coupling is of “high fidelity.” It does

not compare “internal” models of the agent to “external” states

of affairs. Rather it asks whether the way in which the agent

engages in sensorimotor patterns is well structured. The notion

of sufficiency compares the sensorimiotor capacity of the agent

to itself by asking whether the past sensorimotor patterns (in a

given environment) determine reliably the future sensorimotor

patterns. We then introduce several related notions. The degree

of insufficiency is a measure by which various agents can be

compared in their coupling versatility (Def 4.11). Minimal

sufficient refinement is a concept that can be used in the

most vivid ways to illustrate how the sensorimotor interaction

“enacts” properties of the brain-body-environment system.

The notion of minimal sufficient refinement ties together

mathematics of sensorimotor systems and the philosophical

ideas of emergence, structural coupling and enactment of the

“world we inhabit” (cf. Varela et al., 1992); see Example 4.25.

We prove the uniqueness of minimal sufficient refinements

(Theorem 4.19) and point out their connection to the notions

of bisimulation and sufficient information mappings. Strategic

sufficiency is a mathematically more challenging concept, but

has appealing properties in the philosophical and practical sense.

A sensor mapping is strategically sufficient for some subset of

the state space G, if that sensor can (in principle) be used by

the agent to reach G 1. Again, any sensor mapping has minimal

strategic refinements, but this time they are not unique. Different

1 This idea of a reachable set G is the simplest way to formalize

a�ordances.

minimal refinements in this case can be thought of as different

adaptations to the same environmental demands.

Mathematically, sufficiency is a relative concept to some

known notions in theoretical computer science and robotics:

that of bisimulation in automata and Kripke model theory

(Goranko and Otto, 2007), and sufficient information mappings

in information spaces theory (LaValle, 2006).

Minimal sufficient refinements lead to unique classifications

of agent-environment states that “emerge” from the way in

which the agent is coupled to the environment, not merely from

the way the environment is structured on its own. Thus, the

world is simultaneously objectively existing (from the global

“god” perspective), but also “brought about” by the agent.

This should be enough to answer the two questions

that, according to Paolo (2018), any embodied theory of

cognition should be able to provide precise answers to: What

is its conception of bodies? What central role do bodies

play in this theory different from the roles they play in

traditional computationalism?

Section 2 introduces the basics of transition and SM-

systems, their coupling, and other mathematical constructs such

as quotients. Section 3 illustrates the introduced notions with

detailed examples. Section 4 introduces the notion of sufficiency,

sufficient refinements, and minimal sufficient refinements. We

will prove the uniqueness theorem for the latter and illustrate

the notions in a computational setting. We will explore the

importance of sufficiency and related notions for the enactivist

way of looking at cognitive organization. Finally, Section 5 ties

the mathematics back to the philosophical premises.

2. Transition systems and
sensorimotor systems

At the most abstract level, the central concept for our

mathematical theory is that of a transition system. This is a

standard definition from automata theory (for instance Goranko

and Otto, 2007):

Definition 2.1. A transition system is a triple (X,U,T) where X

is the state space (mathematically it is just a set), U is the set of

names for outgoing transitions (another set), and T ⊆ X×U×X

is a ternary relation.

The intuitive interpretation of (X,U,T) is that it is possible

to transition from the state x1 ∈ X to the state x2 ∈

X via u ∈ U iff (x1, u, x2) ∈ T. We use the notation

x1
u
→ x2 to mean that (x1, u, x2) ∈ T. Our notion of

transition system is often called a labeled transition system in

the literature, because each potential transition has a name or

label, u ∈ U. However, we drop the term “labeled” because in

Section 2.5 we will introduce a version of transition systems

in which the states are relabeled, thereby introducing a new

kind of labeling. Note that when working with such transition
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systems as modeling agency, we are safely within the realm

of the Developmental-Explanatory Thesis (EA2). The following

definitions are standard (although we do not restrict X to

be finite):

Definition 2.2. Let X = (X,U,T) and X ′ = (X′,U′,T′)

be transition systems. An isomorphism is a bijective function

f : X → X′ such that for all x1, x2 ∈ X and u ∈ U we have

(x1, u, x2) ∈ T ⇐⇒ (f (x1), u, f (x2)) ∈ T′. A simulation is a

relation R ⊆ X × X′ such that for all (x1, x
′
1) ∈ R, all u ∈ U

and all x2 ∈ X, we have that if (x1, u, x2) ∈ T, then there exists

x′2 ∈ X′ with (x′1, u, x
′
2) ∈ T′ and (x2, x

′
2) ∈ R. A bisimulation

is a relation R such that both R and RT = {(y, x) :(x, y) ∈ R} are

simulations.

The notation X ∼= X ′ means that X , X ′ are isomorphic,

and X ∼ X ′ means that there is a bisimulation R such that

X = dom(R) and X′ = ran(R). We speak of automorphism and

autobisimulation, if X = X ′.

We are ready to make the first observation:

Proposition 2.3. If X ∼= X ′, then X ∼ X ′.

Proof: Let f be an isomorphism f : X → X′. Then R =

{(x1, x2) ∈ X × X′ | x2 = f (x1)} is a bisimulation.

2.1. Transition systems as a unifying
concept

There are several ways in which transition systems and their

relatives appear in the literature relevant to us.

Examples 2.4. Let (X,U,T) be a transition system.

1. Let x0 ∈ X and F ⊆ X. Let T̂ : X × U → P(X) be defined

by T̂(x, u) = {x2 ∈ X | x1
u
→ x2}. Then (X,U, T̂, x0, F) is a

nondeterministic automaton. If in addition X andU are finite,

then it is a nondeterministic finite automaton (NFA).

2. Let T̃ : X × X → P(U) be the function T̃(x1, x2) = {u ∈

U | x1
u
→ x2}. Then T̃(x1, x2) is the set of all u that take

x1 to x2. Then, (X, T̃) is a labeled directed graph in which

the labels are subsets of U. Another way to think of it is as a

labeled directed multigraph: the multiplicity of the edge from

x1 to x2 is n = |T̃(x1, x2)| and these n edges are labeled by the

labels from the set T̃(x1, x2).

3. If for all x1 ∈ X and u ∈ U there is a unique x2 ∈ X with

x1
u
→ x2, let τ : X × U → X be the function defined such

that τ (x1, u) = x2 iff x1
u
→ x2. Let x0 ∈ X and F ⊆ X.

Then (X,U, τ , x0, F) is a deterministic automaton, and if X

and U are finite, then it is a deterministic finite automaton

(DFA). Without F, (X,U, τ , x0) also satisfies the definition of

the temporal filter of LaValle (2012, 4.2.3). In this case X is the

information space or the I-space (usually denoted by I instead

of X), and U is the observation space (usually denoted by Y

instead of U).

2.2. Information spaces and filters

We can reformulate the notion of a history information space

introduced by LaValle (2006) as follows. In this context, X is an

external state space that characterizes the robot’s configuration,

velocity, and environment, U is an action space, f is a state

transition mapping that produces a next state from a current

state and action, h is a sensor mapping that maps states to

observations, and Y is a sensor observation space. As in LaValle

(2006), for each x ∈ X, let 9(x) be a finite set of “nature sensing

actions” and for each x ∈ X and u ∈ U let 2(x, u) be a finite

set of “nature actions.” Let X9 = {(x,ψ) | ψ ∈ 9(x)} and

let h : X9 → Y be a “sensor mapping” where Y is a set called

the “observation space.” Let X2 = {(x, u, θ) | θ ∈ 2(x, u)}

and let f : X2 → X be the “transition function.” The following

definition is an adaptation from LaValle (2006).

Definition 2.5. A valid history I-state for X,9 ,2, f is a sequence

(u0, y0, . . . , uk−1, yk−1) of length 2k for which there exist x̄ =

(x0, . . . , xk−1), ψ̄ = (ψ0, . . . ,ψk−1) and θ̄ = (θ0, . . . , θk−2)

such that for all i < k we have

1. θi ∈ 2(xi, ui),

2. if i < k− 1, then xi+1 = f (xi, ui, θi),

3. ψi ∈ 9(xi),

4. yi = h(xi,ψi).

In this case we say that (u0, y0, . . . , uk−1, yk−1) is witnessed by x̄,

ψ̄ and θ̄ .

Now let I be the set of all valid history I-states for X,9 ,2, f .

For all k ∈ N, all x̄ ∈ Xk−1, all ψ̄ = (ψ0, . . . ,ψk−1) and

all θ̄ = (θ0, . . . , θk−2), let I
k(x̄, ψ̄ , θ̄) be the set of all valid

paths (u0, y0, . . . , uk−1, yk−1) witnessed by x̄, ψ̄ , and θ̄ . Now let

T ⊆ I × (U × Y)× I be defined by

T =
{

(η, (u, y), η′) | there exist k ∈ N,

x̄ = (x0, . . . , xk−1), ψ̄ = (ψ0, . . . ,ψk−1),

θ̄ = (θ0, . . . , θk−2), θ ∈ 2(xk−1, u) and ψ ∈ 9(f (xk−1, u, θ))

such that

η ∈ Ik(x̄, ψ̄ , θ̄) ∧ η′ ∈ Ik+1(x̄′, ψ̄ ′, θ̄ ′),

where x̄′ = x̄⌢(f (xk−1, u, θ)), ψ̄
′ = ψ⌢(ψ), and θ̄ ′ = θ⌢(θ)

}

.

Here, x⌢y is the concatenation of sequences x and y. Then

(I ,U × Y ,T) is the history I-space transition system.

Suppose for each x, y ∈ X there is at most one u ∈ U with

x
u
→ y. Let

ET = {(x, y) ∈ X2 | ∃u ∈ U(x
u
→ y)},

and let l : ET → U be defined so that l((x, y)) is the unique u

such that x
u
→ y. Then (X,ET , l, x0) with x0 ∈ X is a passive

I-state graph as in O’Kane and Shell (2017, Def 1).

The following definition is more of a notational than

mathematical value.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.846982
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Weinstein et al. 10.3389/fnbot.2022.846982

Definition 2.6. Let X = (X,U,T) be a transition system. If for

all (x, u) ∈ X × U there is a unique y ∈ X with (x, u, y) ∈ T,

then we denote the function (x, u) 7→ y by τ , and write (X,U, τ )

instead of (X,U,T). In this case we call X an automaton. Note

that usually in computer science literature an automaton is finite

and also has an initial state and a set of accepting states, but we

do not have those in our definition.

For automata we also use the notation x ∗ u = τ (x, u) and if

ū = (u0, . . . , uk−1), then x ∗ ū is defined by induction for k > 1

as follows: x ∗ (u0, . . . , uk−1) = (x ∗ (u0, . . . , uk−2)) ∗ uk−1.

Examples 2.7. Automata and transition systems can model

agent-environment and related dynamics.

1. If (X, ·) is a group, U ⊆ X is a set of generators, and τ (x, u) =

x · u, then (X,U, τ ) is an automaton. For example, consider

the situation in which X = Z × Z and U = {a, b, a−1, b−1}

in which a = (1, 0) and b = (0, 1). Thus, X is presented with

generators a, b, and relation a ·b = b ·a. This models an agent

moving without rotation in an infinite 2D-grid and the agent

can move left, right, up and down. There are no obstacles.

The standard Cayley graph is equivalent to the graph based

representation of the automaton.

2. LetU∗ be the set of all finite sequences (“strings”) of elements

of U. If ū = (u0, . . . , uk−1) ∈ U∗ and uk ∈ U, we denote by

ū⌢uk the concatenation (u0, . . . , uk−1, uk). If ū0, ū1 ∈ U∗,

then ū0
⌢ū1 is similarly the concatenation of two strings. The

operation of concatenation turns U∗ into a monoid. Suppose

τ : X×U∗ → X is an action of the monoidU∗ on Xmeaning

that it satisfies τ (τ (x, ū), ū′) = τ (x, ū⌢ū′) and τ (x,∅) =

x. Then the automaton (X,U, τ ) is a discrete-time control

system. A sequence of controls ū = (u0, . . . , uk−1) produces

a unique trajectory (x0, . . . , xk), given the initial state x0 by

induction: xi+1 = τ (xi, ui) for all i < k.

3. Consider an automaton (X,U, τ ) in which U is a group,

and τ is a group action of U on X. In some situations

it can be natural to consider the set of motor-outputs of

an agent to be a group: the neutral element is no motor-

output at all, every motor-output has an “inverse” for which

the effect is the opposite, or negating (say, moving right as

opposed to moving left), the composition of movements is

many movements applied consecutively. The action τ of U

on X is then the realization of those motor-outputs in the

environment. In realistic scenarios, however, this is not a

good way to model the sensorimotor interaction because of

the following reason. Suppose the agent has actions “left”

and “right,” but it is standing next to an obstacle on its left.

Then moving “left” will result in staying still (because of the

obstacle), but moving “right” will result in actually moving

right, if there is no obstacle at the right of the agent. In

this situation the sequence “left-right” results in a different

position of the agent than the sequence “right-left,” so if “left”

and “right” are each other’s inverses in G, then the axioms of

group action are violated.

4. Note that if T = ∅, then (X,U,T) is a transition system.

5. LetX = {0, 1}∗ as in (2),U = {0}, and (x, 0, y) ∈ T if and only

if |y| = |x|+1, then (X,U,T) is a transition system, where |x|

is the length of the string x.

6. If (X,U,T) is a transition system and E ⊆ X an equivalence

relation, then (X/E,U,T/E) is a transition system, where

X/E = {[x]E | x ∈ X} and T/E = {([x]E, u, [y]E) | (x, u, y) ∈

T}, and / denotes a quotient space; see Definition 2.33.

2.3. Sensorimotor systems

Next, we will define a sensorimotor system, which is a special

case of a transition system. Following the tenet (EA1) that

“environment is inseparable from the body which is inseparable

from the brain,” our sensorimotor systems can model any part of

the environment-body-brain coupling. Themodel that describes

the environment differs from the one that describes the agent

merely in the type of structure it possesess, but not in an essential

mathematical way.

SM-systems can be thought of as a partial specification

of (some part of) the brain-body-environment coupling.

Physicalist determinism demands that under full specification2

we are left with a deterministic system. A specification is partial

when it leaves room for unknowns in some, or all, parts of

the system.

Definition 2.8. A sensorimotor system (or SM-system) is a

transition system (X,U,T) where U = S × M for some sets S

andM, which we call in this context the sensory set and themotor

set, respectively.

The interpretation is that if x
(s,m)
−→ y, then s is the sensation

that either occurs at x, or along the transition to the next state

y, and m the motor action which leads to the transition. We

will show later how SM-systems can be connected together

(Definition 2.22) to form coupled systems. Sometimes an SM-

system is modeling a brain-body totality, and other times it is

modeling body-environment totality. A coupling between these

two will model the brain-body-environment totality. This is a

flexible framework which enables enactivist-style analysis. We

do not assume that the agent “knows” the effect of a givenm ∈ M

or that the “meaning” of a given s ∈ S. The sets S and M

are purely mathematical sets denoting the interface between the

agent and the environment from the third person perspective.

In fact, the sensory andmotor components can be decoupled

which might be more natural from the mathematics’ point of

view in some cases. The following shows that we can look at it

both ways.

2 This means a full specification of the environment, the agent’s body,

its brain, their coupling, as well as the initial states.
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Definition 2.9. An asynchronous SM-system is a transition

system (X,U,T) such that there exist partitions U = S ∪M and

X = Xs ∪ Xm such that for all (x, u, y) ∈ T we have

1. if x ∈ Xs, then u ∈ S,

2. if x ∈ Xm, then u ∈ M, and

3. x ∈ Xm ⇐⇒ y ∈ Xs.

Thus, the state space of a sequential SM-system contains separate

sensory states andmotor states.

Definition 2.10. Suppose E is an equivalence relation on a setX.

We say that a map f : X → X is E-preserving if for all x, y ∈ X,

we have xEy ⇐⇒ f (x)Ef (y).

There is a natural correspondence between SM-systems and

their asynchronous counterpart:

Theorem 2.11. Let SM and aSM be the classes of SM-systems

and asynchronous SM-systems, respectively. There are functions

F : SM→ aSM and G : aSM→ SM such that

1. F and G are isomorphism and bisimulation preserving,

2. restricted to finite systems, F and G are polynomial-time

computable, and restricted to the infinite ones they are Borel-

functions in the sense of classical descriptive set theory (Kechris,

1994).

Proof: See Appendix B.

Another type of a system, which is in a similar way

equivalent to a special case of an SM-system, is a state-labeled

transition system which we will introduce next, and prove a

similar result, Lemma 2.19.

2.4. Quasifilters and quasipolicies

The amount of information specified in a given SM-system

depends on which part of the brain-body-environment system

we are modeling. At one extreme, we specify the environment’s

dynamics down to the small detail and leave the brain’s dynamics

completely unspecified. In this case the SM-systemwill have only

one sensation corresponding to each state and the transition to

the next state will be completely determined by knowing the

motor action. This is, in a sense, the environment’s perspective.

At the other extreme, we specify the brain completely, but leave

the environment unspecified. We “don’t know” which sensation

comes next, but we “know” which motor actions are we going

to apply. This is in a sense the perspective of the agent. The

first extreme case is the perspective often taken in robotics

and other engineering fields when either specifying a planning

problem (Ghallab et al., 2004; Choset et al., 2005; O’Kane

and LaValle, 2008), or designing a filter (Hager, 1990; Thrun

et al., 2005; LaValle, 2012; Särkkä, 2013) (also known as sensor

fusion). This is why we call SM-systems of that sort quasifilters

(Definition 2.12). The other extreme is the perspective of a

policy. The policy depends on sensory input, but the motor

actions are determined (by the policy). This is why we call the

SM-systems of the latter sort quasipolicy. The “quasi-” prefix is

used because both are weaker and more general notions than

those that appear in the literature; see Remarks 2.20 and 2.21.

Another way to look at this is the dichotomy between

virtual reality (VR), and robotics. In virtual reality, scientists

are designing the (virtual) environment for an agent whereas

in robotics they are typically designing an agent for an

environment. In the former case the agent is partially specified:

the type of embodiment is known (S and M are known) and

some types of patterns of embodiment are known (eye-hand

coordination). However, the specific actions to be taken by the

agents are left unspecified. The job of the designer is to specify

the environment down to the smallest detail, so that every

sequence of motor actions of the agent yields targeted sensory

feedback. The VR-designer is designing a quasifilter constrained

by the partial knowledge of the agent’s embodiment and internal

dynamics. The case for the robot designer is the opposite. She

has a partial specification of the robot’s intended environment

and usually works with a complete specification of the robot’s

mechanics. She is designing a quasipolicy. For VR-designers

the agent is a black box; for roboticists the agent is a white

box (Suomalainen et al., 2020) (unless the task is to reverse

engineer an unknown robot design). For the environment, the

roles are reversed. A similar dichotomy can be seen between

biology (in which the agent is a black box) and robotics (in which

it usually is a white box).

All the definitions in this section are new.

Definition 2.12. Suppose that (X, S × M,T) is an SM-system

with the property that for all x1 ∈ X there exists sx1 ∈ S such

that for all x2 ∈ X and all (s,m) ∈ S×M we have that x1
(s,m)
−→ x2

implies s = sx1 . Then, (X, S×M,T) is a quasifilter.

In a quasifilter the sensory part of the outgoing edge is

unique. The dual notion (quasipolicy) is when the motor part

is unique:

Definition 2.13. Suppose that (X, S × M,T) is an SM-system

with the property that for all x ∈ X there exists mx ∈ M such

that for all y ∈ X and all (s,m) ∈ S ×M we have that x
(s,m)
−→ y

impliesm = mx. Then, (X, S×M,T) is a quasipolicy.

Before explaining the connections between quasifilter and a

filter and quasipolicy and a policy, let us define projections of the

sensorimotor transition relation to “motor” and to “sensory”:

Definition 2.14. Given an SM-system (X, S×M,T), let

TM = {(x,m, y) ∈ X ×M × X | ∃s ∈ S(x, (s,m), y) ∈ T}

TS = {(x, s, y) ∈ X × S× X | ∃m ∈ M(x, (s,m), y) ∈ T}.

These are called the motor and the sensory projections,

respectively of the sensorimotor transition relation. They are
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also called themotor transition relation and the sensory transition

relation, respectively. The corresponding transition systems

(X,M,TM) and (X, S,TS) are called the motor and the sensory

projection systems.

Definition 2.15. Given a transition system (X,U,T), and x ∈ X,

let OT(x) ⊆ U be defined as the set OT(x) = {u ∈ U | (∃y ∈

X)(x
u
→ y)}. Combining this notation with the one introduced

in Example 2.4(2), given x, y ∈ X, we have

OT(x) =
⋃

y∈X

T̃(x, y).

For a transition relation T ⊆ X × (S × M) × X, define its

transpose by Tt ⊆ X×(S×M)×X such that Tt = {(x, (m, s), y) |

(x, (s,m), y) ∈ T}. Note that (Tt)t = T. For a subset of a

Cartesian product A ⊆ S × M, let A1 be the projection to the

first coordinate A1 = {s ∈ S | (∃m ∈ M)((s,m) ∈ A)} and

A2 the projection to the second one: A2 = {m ∈ M | (∃s ∈

S)((s,m) ∈ A)}.

Mathematically coupling of two transition systems is

symmetric [see Theorem 2.24(3)], but from the cognitive

perspective there is (usually) an asymmetry between the agent

and the environment (which can be evident from some specific

properties of the agent and of the environment). Because

of the partial symmetry, many properties of an agent can

dually be held by the environment and vice versa. The

following proposition highlights the duality between quasipolicy

and quasifilters: reversing the roles of the environment and

the agent.

Proposition 2.16. For an SM-system X = (X, S × M,T) the

following are equivalent:

1. X is a quasifilter,

2. X t = (X, S×M,Tt) is a quasipolicy,

3. OTS = (OT(x))2 = (OTt (x))1 is a singleton for each x ∈ X.

Similarly, X is a quasipolicy if and only if OTM (x) = (OT(X))1 is

a singleton for each x ∈ X.

Proof: A straightforward consequence of all the definitions.

2.5. State-relabeled transition systems

It will become convenient in the coming framework to assign

labels to the states. The elements x of the state spaceX are already

named; thus, our labeling can be more properly considered as a

relabeling via a function h :X → L, in which L is an arbitrary

set of labels. This allows partitions to be naturally induced over

X by the preimages of h. Intuitively, this will allow the state

space X to be characterized at different levels of “resolution” or

“granularity.” Thus, we have the following definition:

Definition 2.17. A state-relabeled transition system (or simply

labeled transition system) is a quintuple (X,U,T, h, L) in

which h : X → L is a labeling function and (X,U,T) is a

transition system.

We think of state-relabeled to be a more descriptive term, but we

shorten it in the remainder of this paper to being simply labeled.

Remark 2.18. In an analogy toDefinition 2.6, a labeled transition

system is a labeled automaton, if T happens to be a function;

in other words, for all (x, u) ∈ X × U there is a unique

y ∈ X with (x, u, y) ∈ T. In this case we may denote this

function by τ : (x, u) 7→ y and work with the labeled automaton

(X,U, τ , h, L). For example, the temporal filter in Section 2.1 is a

labeled automaton.

The isomorphism and bisimulation relations are defined

similary as for transition systems, but in a label-preserving way.

One intended application of a labeled transition system

(X,U,T, h, L) is that h is a sensor mapping, L is a set of sensor

observations, and U is a set of actions. Thus, actions u ∈ U

allow the agent to transition between states in X while h tells

us what the agent senses in each state. We intend to show that

this can be seen as a special case of an SM-system by proving

a theorem similar to Theorem 2.11, but stronger, namely these

corresponces preserve isomorphism:

Lemma 2.19. Let F be the class of quasifilters, P the class of

quasipolicies, and L the class of labeled systems. Then there are

one-to-one maps

LTSP : P → L and LTSF : F → L

such that

1. LTSP and LTSF are isomorphism and bisimulation preserving,

2. restricted to finite systems, LTSP and LTSF are polynomial-

time computable, and restricted to the infinite ones they are

Borel-functions in the sense of classical descriptive set theory.

Proof: See Appendix B

Remark 2.20. Let X = (X, S ×M,T) be a quasifilter and X ′ =

LTSF(X ) = (X,M,TM , h, S) as in Lemma 2.19. Suppose further

that for each x, y ∈ X there is at most one u ∈ U with x
u
→ y. Let

ET = {(x, y) ∈ X2 | ∃u ∈ U(x
u
→ y)},

Then (X,M,ET , x0) coincides with the definition of a filter

(O’Kane and Shell, 2017, Def 3). If it is also an automaton,

meaning that above we replace “at most one” by “exactly

one,” then every sequence of motor actions (m0, . . . ,mk−1)

determines a unique resulting state xk−1 ∈ X. This is analogous,

and can be proved in the same way, as the fact that each

sequence of sensory data determines a unique resulting state in

Remark 2.21 below.

Remark 2.21. Usually, a policy is a function which describes how

an agent chooses actions based on its own past experience. Thus,

ifM is the set of motor commands and S is the set of sensations,
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a policy is a function π : S∗ → M where S∗ is the set of finite

sequences of sensory “histories”; see for example (LaValle, 2006).

Now, suppose that an SM-system X = (X, S × M,T) is a

quasipolicy in the sense of Definition 2.13 and let x 7→ mx be

as in that Definition. Assume further that X is an automaton

(Section 2.1) and let τ : X× (S×M)→ X be the corresponding

transition function so that for all x ∈ X and (s,m) ∈ S ×M we

have (x, (s,m), τ (x, (s,m))) ∈ T. Let x0 ∈ X be an initial state.We

will show how the pair (X , x0) defines a function π : S∗ → M

in a natural way. Let s̄ = (s0, . . . , sk−1) ∈ Sk be a sequence of

sensory data. If k = 0, and so s̄ = () = ∅, let π(s̄) = mx0 . If

k > 0, assume that π(s0, . . . , sk−2) and xk−1 are both defined

(induction hypothesis). Then let xk = τ (xk−1, (mxk−1 , sk−1))

and π(s0, . . . , sk−2, sk−1) = mxk . The idea is that because of the

uniqueness of mx, a sequence of sensory data determines (given

an initial state) a unique path through the automaton X .

2.6. Couplings of transition systems

The central concept of this work pertaining to all principles

(EA1)–(EA5) is the coupling of SM-systems. We define

coupling, however, for general transition systems with the

understanding that our most interesting applications will be

for SM-systems where U0 = U1 = S × M. The idea is

that in every transition there is a sensory component and

a motor component. The set S could be thought of as all

possible events that trigger afferent nervous signals, or their

combinations. The elements of M are those events that are

triggered by efferent nervous signals. This is an abstract space

and in transitioning from one state to another some subset of

S × M is “active.” If we know little of what kind of sensory

data the agent receives during the transition, then that transition

will occupy a subset of S × M whose projection to the S-

coordinate is large. If, on the other hand we know a lot,

and can specify the exact sensory data, then the projection

to the S-coordinate is small. Vice versa, if we do not know

which motor actions lead from one state to another, then the

projection of the corresponding subset to the M-coordinate is

large etc. This was made more precise in Section 2.4. The fact

that the transition consists of pairs (s,m) where s is a sensory

input and m is a motor command does not mean that the

agent is equipped with the semantics of what m “means,” or

what it “does” in the world. The effect of m is “computed”

by the environment and the agent only receives the next “s”

as the feedback. It might have been more intuitive, but more

cumbersome to make this definition in terms of functions that

map events of the environment to sensory stimuli and internal

events of the nervous system to motor actions, and further

functions that map the motor actions to the actual events in

the environment, etc., but from the point of view of essential

mathematical structure these extra identifications wouldn’t add

anything qualitatively new.

Definition 2.22. Let X0 = (X0,U0,T0) and X1 = (X1,U1,T1)

be two transition systems. The coupled system X0 ∗ X1 is the

transition system (X,U,T) defined as follows: X = X0 × X1,

U = U0 ∩ U1, and

T = T0 ∗ T1 = {((x0, x1), u, (y0, y1)) | (x0, u, y0)

∈ T0 ∧ (x1, u, y1) ∈ T1}.

Equivalently, for all ((x0, x1), (y0, y1)) ∈ (X0 × X1)
2 we have

T̃((x0, y0), (x1, y1)) = T̃0(x0, x1) ∩ T̃1(y0, y1)

(recall the T̃ notation from Example 2.4(2)).

Example 2.23. A simple example of coupling is illustrated in

Figure 2.

Mathematically the coupling is a product of sorts. If we think

of one transition system as “the environment” and the other as

“the agent,” then the coupling tells us about all possible ways

in which the agent can engage with the environment. The fact

that the state space of the coupled system is the product of the

state spaces of the two initial systems reflects the fact that the

coupled system includes information of “what would happen” if

the environment was in any given state while the agent is in any

given (“internal”) state.

We immediately prove the first theorem concerning

coupling:

Theorem 2.24. Suppose that Xi = (Xi,Ui,Ti) and X ′i =

(X′i ,U
′
i ,T
′
i ) for i ∈ {0, 1} are four SM-systems. Then the following

hold:

1. If Xi
∼= X ′i for i ∈ {0, 1}, then X0 ∗ X1

∼= X ′0 ∗ X
′
1.

2. If Xi ∼ X ′i for i ∈ {0, 1}, then X0 ∗ X1 ∼ X ′0 ∗ X
′
1.

3. X0 ∗ X1
∼= X1 ∗ X0.

Proof: See Appendix B

Coupling provides an interesting way to compare SM-systems

from the “point of view” of other SM-systems. For example,

given an SM-system E one can define an equivalence relation

on SM-systems by saying that I ∼E I ′, if E ∗ I = E ∗ I ′. If

E is the “environment” and I , I ′ are “agents,” this is saying that

the agents perform identically in this particular environment. Or

vice versa, for a fixed I , the relation E ∗ I = E ′ ∗ I means that

the environments are indistinguishable by the agent I .

Remark 2.25. In the definition of coupling we see that the

two SM-systems constrain each other. This is seen from

the fact that in the definition we take intersections. For

example, when an agent is coupled to an environment, it

chooses certain actions from a large range of possibilities.

In this way the agent structures its own world through

the coupling (EA3). To make this notion further connect

to enactivist paradigm, we invoke the dynamical systems
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FIGURE 2

(A) States and actions for the transition system X0 that describes a 2-by-2 grid. 8 actions populating the set M = {m0, . . . ,m7} correspond to a

move (to a neighbor cell if possible) either sideways or diagonally. Suppose S is a singleton such that S = {s}. Then, in the following, ui

corresponds to the transition ui = (mi, s) for i = 1, . . . , 7. (B) Transition system X1. (C) Transition system X0. (D) The coupled system X0 ∗X1.

approach to cognition (Tschacher and Dauwalder, 2003).

An attractor in a transition system X = (X,U,T) is

a set A ⊆ X with the property that for all infinite

sequences

x0
u0
→ x1

u1
→ · · · xk−1

uk−1
→ xk

uk
→ · · ·

there are infinitely many indices n such that xn ∈ A. There could

be other possible definitions, such as “for all large enough n,

xn ∈ A”. For the present illustration purposes it is, however,

irrelevant. It could be the case that A ⊆ X is not an attractor

of X , but after coupling with X ′ = (X′,U′,T′), A × X′ may

be an attractor of X ∗ X ′. Thus, if X is the environment and

X ′ is the agent and A is a set of desirable environmental states,

then we may say that the agent is well attuned to X , if A was

not initially an attractor, but in X ∗ X ′, then A × X′ becomes

one. It could also be that the agent needs to arrive to A while

being in a certain type of an internal state B ⊆ X′, for example,

if A is “food” and B is “hungry”. Then it is not important

that A × X′ is an attractor, but it is imperative that A × B

is one.

2.7. Unconstrained and fully constrained
SM-systems

Aswementioned before, the information specified in an SM-

system depends on which part of the brain-body-environment

system we are modeling. In the extreme case we do not specify

anything, except for the very minimal information. Consider a

body of a robot for which the set of possible actions (or motor

commands) is M and the set of possible sensor observations

is S. Suppose that is all we know about the robot. We do not

know what kind of environment it is in and we do not know

what kind of “brain” (a processor or an algorithm) it is equipped

with. Thus, we do not know of any constraints the robot may

have in sensing or moving. We then model this robot as an

unconstrained SM-system:

Definition 2.26. An SM-system (X, S × M,T) is called

unconstrained iff for all x ∈ X, we have OT(x) = S ×M; recall

Definition 2.15.

Unconstrained systems have the role of a neutral element

with respect to coupling (Proposition 2.29). We now show that

given all unconstrained SM-systems with shared M and S are

mutually bisimulation equivalent:
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Proposition 2.27. Suppose that X = (X, S × M,T) and X ′ =

(X′, S×M,T′) are unconstrained systems. Then X ∼ X ′.

Proof: See Appendix B

There are many intuitions behind the above. An

unconstrained system is one where anything could happen:

the agent might perform any actions in any order and the

environment could provide the agent with any sensory data.

Such a world is reminiscent of white noise. Such a system is

only interesting from an abstract mathematical perspective, it

is in some sense “maximal”. The content of Proposition 2.27

is that such systems are indistinguishable from each other.

An unconstrained system has a similar role with respect

to all SM-systems as the free group has to other groups,

although we haven’t made this universality claim precise in

the present paper. Intuitively it means that every possible

agent-environment combination can be found as a subsystem

(or possibly a quotient) of the unconstrained one. The term

“unconstrained” refers in particular to that when coupled to

other systems, this system doesn’t constrain them, so it acts in

the same way as 0 in arithmetic addition (Proposition 2.29).

The opposite is the fully constrained system (Definition 2.31,

Proposition 2.32). In that case, the intuition is the opposite: in

environments where nothing happens and actions do not have

any effects, any agent is as good as any other and vice versa:

agents that don’t do anything are equivalent.

Corollary 2.28. The SM-system ε = ({0}, {0} × (S×M)× {0}})

is the unique, up to bisimulation, unconstrained system.

Proposition 2.29. Let ε be as in Corollary 2.28 and let X =

(X, S×M,T) be any SM-system. Then X ∗ ε ∼= X .

Corollary 2.30. If X and X ′ are SM-systems and X ′ is

unconstrained, then X ∗ X ′ ∼ X .

Proof: By Corollary 2.28 X ′ ∼ ε, So by Theorem 2.24 we have

X ∗X ′ ∼ X ∗ε. However, by Proposition 2.29,X ∗ε ∼ X ; thus,

X ∗ X ′ ∼ X .

The opposite of an unconstrained system is a fully

constrained one:

Definition 2.31. An SM-system (X, S×M,T) is fully constrained

iff T = ∅.

Proposition 2.32. Dually to the propositions above, we have that

(1) all fully constrained systems are bisimulation equivalent to

each other, (2) the simplest example being λ = ({0}, S×M,∅), and

(3) if X = (X, S×M,T) is another SM-system, then X ∗ λ ∼ λ.

All transition systems are in some sense between the

fully constrained and the unconstrained, these being the two

theoretical extremes.

2.8. Quotients of transition systems

When considering labelings and their induced equivalence

relations, it will be convenient to develop a notion of quotient

systems, analogous to quotient spaces in topology. SupposeX =

(X,U,T) is a transition system and E is an equivalence relation

on X. We can then form a new transition system, called the

quotient of X by E in which the new states are E-equivalence

classes and the transition relation is modified accordingly.

The following definition of a quotient is standard in Kripke

model theory, especially bisimulation theory:

Definition 2.33. SupposeX = (X,U,T) and E are as above. Let

X/E = {[x]E | x ∈ X}, in which each [x]E is an equivalence

class of states x under relation E, and T/E = {([x]E, u, [y]E) |

(x, u, y) ∈ T}. Then X /E = (X/E,U,T/E) is the quotient of

(X,U,T) by E.

The following definition is inspired by the idea of sensory

pre-images, see LaValle (2019), but is also needed for technical

reasons.

Definition 2.34. Given any function h : X → L, denote by Eh

the inverse-image equivalence: Eh = {(x, y) ∈ X2 | h(x) = h(y)}.

We will denote the equivalence classes of Eh by [x]h instead of

[x]Eh if no confusion is possible.

The equivalence relation Eh partitions X according to the

preimages of h, as considered in the sensor lattice theory of

LaValle (2019). The partition of X induced by h directly yields

an quotient transition system by applying the previous two

definitions:

Definition 2.35. Let X = (X,U,T) be a transition system and

h : X→ L be any mapping. Then define X /h to be X /Eh where

we combine Definitions 2.34 and 2.33.

Proposition 2.36. If h is one-to-one, then X /h ∼= X .

Proof: h is one-to-one if and only if Eh is equality, in which case

it is straightforward to verify that the function x 7→ [x]Eh is an

isomorphism.

For h : X → L, the transition system (X/h,U,T/h) is

essentially a new state space over the preimages of h. In this case

X /h is called the derived information space (as used in LaValle,

2006). More precisely:

Proposition 2.37. Let L′ = ran(h) ⊆ L. Define

T′ = {(l, u, l′) ∈ L′ × U × L′ | (h−1(l), u, h−1(l′)) ∈ T/h}

= {(h(x), u, h(y)) | (x, u, y) ∈ T}.

Then (X/h,U,T/h) is isomorphic to (L′,U,T′) via the

isomorphism f : [x]Eh 7→ h(x).

Proof: See Appendix B
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The intuitive meaning of the quotient is the following. There

is a Soviet comedy film from the 1970’s where the main character

ends up in an apartment in Leningrad, while he thinks that he is

actually in Moscow. The apartement in Leningrad is identical to

his home in Moscow and he cannot distinguish between them.

He thinks for a while that he is at his home in Moscow while

being in an apartment in Leningrad. Even his key from Moscow

worked for the Leningrad apartment. The pun is that in Soviet

times all houses were built according to the same blueprint. Now,

before he realized his situation, as far as he was concerned, he

was in Moscow. He thought he came to the same place in the

evening as in the morning, while he actually didn’t. The idea

of the quotient captures exactly that: We identify those states

that “look the same” (the label is the same) even though they

are actually different states. In fact, let us look at a cognitive

system on several levels of granularity: When I type on my

laptop at home or in a cafeteria, my fingers experience the

keyboard in (approximately) the same way. As far as my fingers

(and associated motor areas) are concerned, we can identify all

situations where they are pressing keys on my keyboard. On a

higher level, I might be coming home after a 10 h time and

experience as if I am in the same place, but we all know that

the planet, on which my home is, has moved, so I actually am

not in the same place, just like the main character in the movie

referenced above.

3. Illustrative examples of
SM-systems

We next illustrate how sensorimotor systems model

body-environment, brain-body, and brain-body-environment

couplings. Consider a body in a fully understood and specified

deterministic environment. In this case the body-environment

system will be modeled by a quasifilter, Definition 2.12. Instead

of using the quasifilter definition, we work with a labeled

transition system which, according to Proposition 2.19, is

equivalent. According to the assumption of full specification, we

will in fact work with labeled automata.

The body has a set M of possible motor actions each of

which has a deterministic influence on the body-environment

dynamics. Denote the set of body-environment states by E0.

Whenever a motor action m ∈ M is applied at a body-

environment state e ∈ E, a new body-environment state

A(e,m) ∈ E is achieved. At each state e ∈ E the body

senses data σ (e). Denote the set of sensations by S. In this

way, the labeled automaton E0 = (E,M,A, σ , S) models this

body-environment system. This model is ambivalent toward the

agent’s internal dynamics, its strategies, policies and so on, but

not ambivalent toward its embodiment and its environment’s

structure. In fact, it characterizes them completely.

Alternatively, consider a brain in a body, and suppose that

the brain is fully understood and deterministic (for example,

perhaps it is designed by us), but we do not know which

environment it is in. We model this by an SM-system which is

a quasipolicy. Again, by the analogous considerations as above,

we work directly an equivalent labeled automaton specification.

Denote the set of internal states of the brain by I. The agent’s

internal state is a function of the sensations; therefore, let B : I×

S → I be a function (B stands for brain) that takes one internal

state to another based on new sensory data. At each internal

state, the agent produces a motor output which is an element

of the set M; therefore, let µ : I → M be a function assigning a

motor output to each internal state. Now, I = (I, S,B,µ,M) is a

labeled transition system modeling this agent. It is ambivalent

toward the type of the environment the agent is in, but it is

not ambivalent toward the agent’s internal dynamics, policies,

strategies and so on; in fact, it determines them completely.

Now, the coupling of the environment E and the agent A is

the SM-system obtained as

LTS−1F (E) ∗ LTS−1P (A).

The sensory and motor sets S and M capture the

interface between the brain and the environment because they

characterize the body (but not the embodiment).

Example 3.1. Consider an agent that has four motor outputs,

called “up” (U), “down” (D), “left” (L), and “right” (R), and there

is no sensor feedback (this defines the body). In Corollary 2.28

we gave a minimal example of an unconstrained SM-system. On

the other extreme one can give large examples. For instance the

free monoid generated by the setM = {U,D, L,R}.

LetX be the set of all possible finite strings in the four “letter”

alphabet M, let T = {(x,m, y) | x⌢m = y}. “No sensor data”

is equivalent to always having the same sensor data; thus, we

can assume that S = {s0} is a singleton and the sensor mapping

h : X → S is constant.3 The resulting unconstrained transition

system U = (X,T,M, σ , S) can be represented by an infinite

quaternary tree, shown in Figure 3A.

Suppose that this body is situated in a 2 × 2 grid. The body

can occupy one of the four grid’s squares at a time, and when it

applies one of the movements, it either moves correspondingly,

or, if there is a wall blocking the movement, it doesn’t. This

defines the body-environment system. The set of states is now E

and has four elements corresponding to all the possible positions

of the body. The transition function A : E ×M → E tells where

to move, and the rest is as above. The system E = (E,A,M, σ , S)

is shown in Figure 3B. Let us now look at the agent. Suppose that

it applies the following policy: (1) In the beginning move left; (2)

if the previous move was to the left, then move right, otherwise

3 We do not mean to say that no data is always the same as some other

data. We are talking here about an agent that never receives any data, or

an agent that always receives the same data. Thus, it cannot rely on any

“change” between having and not having any sensory input. Thus, there

is no “presense in absence” paradox here.
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FIGURE 3

(A) Having motor commands and no sensory feedback leads to an infinite tree automaton. (B) Once the body is coupled with a 2× 2 grid

environment, a four-state automaton results.

move left. This can be modeled with a two-state automaton

I = (I, S,B,µ,M) where I = {L,R}, S = {s0}, B(L, s0) = R,

B(R, s0) = L, µ(L) = l and µ(R) = r. Now, the coupling

LTS−1F (E) ∗ LTS−1P (I) is an automaton that realizes the policy

in the environment, as shown in Figure 4A.

If the agent has a different embodiment in the same

environment, then all of the automata will look different.

Suppose that instead of the previous four actions, the agent

has two: “rotate 90-degrees counterclockwise” (C),“forward one

step” (F). Note that these are expressed in the local frame of

the robot: It can either rotate relative to its current orientation,

or it can move in the direction it is facing; the previous

four actions were expressed as if in a global frame or the

robot is incapable of rotation. Under the new embodiment, the

unconstrained automaton with no sensor feedback is an infinite

binary tree, with every node having two outgoing edges, labeled

C and F, respectively, instead of the quaternary infinite tree

depicted on Figure 3A. Instead of the four-state automaton of

Figure 3, the automaton describing the environment transitions

is a 16 state-automaton, because the orientation of the agent

can now have four different values. See Figure 4B. Finally

the automaton describing the internal mechanics of the agent

I is a quasipolicy in these two actions, and finally, the

coupling corresponds essentially to taking a path in the 16-state

automaton above.

Note that there is a bisimulation between U and E which

reflects the fact that from the point of view of an agent they

are indistinguishable. This is natural because there is no sensory

data, so from the agent’s viewpoint it is unknowable whether or

not it is embedded in an environment. A bisimulation is given as

follows: Let y0 ∈ Y be the top-right corner and x0 ∈ X the root

of the tree. Define R ⊆ X × Y be the minimal set satisfying the

following conditions:

1. (x0, y0) ∈ R.

2. If (x, y) ∈ R andm ∈ M, then (T(x,m),U(y,m)) ∈ R.

Example 3.2. The 16-state automaton of Example 3.1 has

four automorphisms corresponding to the rotation of the

environment by 90 degrees counterclockwise. Each of those

automorphisms corresponds to an auto-bisimulation. Mirroring

is not an automorphism because the agent’s rotating action fixes

the orientation of the automaton.

Example 3.3. Figure 5 shows an example of how an automaton

with non-trivial sensing could look. Jumping a little bit ahead, it

will be seen that the labeling provided by h in this figure is not

sufficient (a notion introduced in Definition 4.2).

4. Su�cient refinements and degree
of insu�ciency

This section presents the concept of sufficiency, which will be

the main glue between enactivist philosophy and mathematical

understanding of cognition. In Section 4.1 we introduce the

main concepts and explain its profound relevance to enactivist

modeling and how it can be a precursor to the emergence

of meaning from meaningless sensorimotor interactions. In

Section 4.2 we introduce the notion of minimal sufficient

refinements, prove a uniqueness result about them, and show

how they are connected to the classical notions of bisimulation

as well as derived information state spaces4.

4 There could be an interesting relationship between this concept and

the free energy principle proposed by K. Friston. A systemwhich is attuned

to its environment in a su�cient way can be interpreted by an inspector

as a system that is making ] predictions about its environment.
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FIGURE 4

(A) A two-state automaton results from the realized policy. (B) If there are only two actions (rotate 90 degrees counterclockwise and going

straight) then the second automaton has 16 states instead of four as in Figure 3B.

4.1. Su�ciency

The following consider the main definition of this work. It is

based on the idea of sufficiency in LaValle (2006, Ch.11).

Definition 4.1. Let (X,U,T) be a transition system and E ⊆

X × X an equivalence relation. We say that E is sufficient or

completely sufficient, if for all (x, y) ∈ E and all u ∈ U, if

(x, u, x′) ∈ T and (y, u, y′) ∈ T, then (x′, y′) ∈ E.

This means that if an agent cannot distinguish between

states x and y, then there are no actions it could apply to later

distinguish between them. To put it differently, if the states are

indistinguishable by an instant sensory reading, then they are

in fact indistinguishable even through sensorimotor interaction.

This is related to the equivalence relation known as Myhill-

Nerode congruence in automata theory.

The equivalence relation of indistinguishability in the

context of sensorimotor interactions is at its simplest the

consequence of indistinguishability by sensors. Thus, we define

sufficiency for labelings or sensor mappings:

Definition 4.2. A labeling h : X → L is called sufficient (or

completely sufficient) iff for all x, y, x′, y′ ∈ X and all u ∈ U,

the following implication holds:

(h(x) = h(y) ∧ (x, u, x′) ∈ T ∧ (y, u, y′) ∈ T)⇒ h(x′) = h(y′).

Proposition 4.3. If (X,U, τ ) is an automaton, then h : X→ L is

sufficient if and only if for all x, y ∈ X and all u ∈ U, we have that

if h(x) = h(y), then h(τ (x, u)) = h(τ (y, u)).

FIGURE 5

Consider the automaton E of Figure 3B from Example 3.1, but

assume that the agent can “smell” a di�erent scent in the

top-left corner. This can be modeled by having a two-element

set S = {0, 1} instead of a singleton, and h : X→ {0, 1} such that

h(x) = 0 i� x is not the top-left corner. The state with a scent

is shaded.

Proof: Checking the definitions.

The above proposition is saying that when the sensorimotor

system is deterministic, then sufficiency is equivalent

to predictability.

There is a connection with the classical notion of

bisimulation in classical transition systems theory (recall

Definition 2.2):
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Proposition 4.4. An equivalence relation on a state space of

an automaton (X,U, τ ) is sufficient if and only if it is an

autobisimulation.

Proof: See Appendix B.

The above proposition can intuitively be interpreted as

saying that a sufficient relation is one where different states

with the same label are not only indistinguishable on their own,

but are actually indistinguishable even by their consequences.

Starting from one of two states with same labels, there is no

way to ever find out which one of them it was, no matter how

much will the agent investigate its environment, compare to the

discussion in the end of Section 2.8.

Proposition 4.5 below is an important proposition on which

the idea of derived I-spaces and combinatorial filters builds upon

(LaValle, 2006, 2012; O’Kane and Shell, 2017), although as far as

the authors are aware, in the literature, only the “if ”-direction is

mentioned.We say that a transition system (X,U,T) is full, if for

all x1 ∈ X and all u ∈ U there exists at least one x2 ∈ X with

(x1, u, x2).

Proposition 4.5. Suppose X = (X,U,T) is a transition system.

Let h : X → L be a labeling. Then X /h is an automaton if and

only if X is full and h is sufficient.

Proof: See Appendix B.

The above proposition brings together the ideas of a

quotient, automaton and sufficiency. The idea of the quotient

is that indistinguishable states can be in some circumstances

considered the same and the idea of an automaton is that it

is deterministic. The above proposition says that as far as the

agent is concerned, if it equalizes indistinguishable states, then

the world looks deterministic from the agent’s perspective if and

only if the underlying labeling satsifies Definition 4.2.

The sufficiency of an information mapping was introduced

in LaValle (2006, Ch 11), and is encompassed by a sufficient

labeling in this paper. In the prior context, it has meant that

the current sensory perception together with the next action

determine the next sensory perception. The elegance with

respect to our principle (EA2) is that sufficiency is not saying

that the agent’s internal state corresponds to the environment’s

state (as is in representational models). Nor is it saying that

the agent predicts the next action. It is saying, rather, that

the agent’s current sensation together with a choice of a

motor command determine the agent’s next sensation; and this

statement is true only as a statement made about the system

from outside, not as a statement which would reside “in the

agent.” The sensation may carry no meaning at all “about”

what is actually “out there.” However, if the agent has found

a way to be coupled to the environment in a sufficient way,

then sensations begin to be about future sensation. In this way

meaning emerges from sensorimotor patterns. This relates to

(EA3) and somewhat touches on the topic of perception (EA5).

Furthermore, the property of determining future outcomes is

related to (EA4) because that is what skill is. There is no

potential to reliably engage with the environment in complex

sensorimotor interactions, if the sensations do not reliably follow

certain historical patterns.

Thus, the notion of sufficiency is considered by us to be

of fundamental importance for enactivist-inspiredmathematical

modeling of cognition. The violation of sufficiency means

that the current sensation-action pair does not correlate with

the future sensation, making it harder to be attuned to the

environment. Having a different sensation following the same

pattern can be seen as a primitive notion of a “surprise.” This can

be seen as aligning with the predictive coding and the free energy

principle from neuroscience (Rao and Ballard, 1999; Friston and

Kiebel, 2009; Friston, 2010), although our framework leaves the

space to a clean non-representational interpretation while this

is not obvious for these other frameworks. Does the notion of

sufficient labelings capture the same ideas in amore general way?

This is an open question for further research.

A generalization of sufficiency is n-sufficiency, in which the

data of n previous steps is needed to determine the next label.

Here, we define an n-chain.

Definition 4.6. An n-chain in X = (X,U,T) is a sequence

c = (x0, u0, · · · , xn−1, un−1, xn) ∈ (X × U)n × X

such that xi
u
→ xi+1 for all i < n. If n = 0, then by convention

c = (xn). Let E ⊆ X × X be an equivalence relation. Let k <

n. We say that two n-chains c = (x0, u0, . . . , xn−1, un−1, xn),

c′ = (x′0, u
′
0, . . . , x

′
n−1, u

′
n−1, x

′
n) are (T,E, k)-equivalent if for all

i < k, we have ui = u′i and (xi, x
′
i) ∈ E. An∞-chain is defined

in the same way as n-chain, except the sequences are infinite,

without the “last” xn.

Definition 4.7. For a transition system X = (X,U,T), an

equivalence relation E on X is called n-sufficient if there are no

two (T,E, n)-equivalent n-chains

c = (x0, u0, . . . , xn−1, un−1, xn) and

c′ = (x′0, u
′
0, . . . , x

′
n−1, u

′
n−1, x

′
n)

such that (xn, x
′
n) /∈ E. A labeling h : X→ L is called n-sufficient

if Eh is n-sufficient (Recall Definition 2.34).

Proposition 4.8. An equivalence relation E is 0-sufficient if

and only if there is only one E-equivalence class, and a labeling

function h is 0-sufficient if and only if it is constant.

Proof: See Appendix B

Proposition 4.9. An equivalence relation E (resp. a labeling h) is

sufficient if and only if it is 1-sufficient.

Proof: See Appendix B
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Proposition 4.10. Suppose n < m are natural numbers. If a

labeling h is n-sufficient, then it is m-sufficient. The same holds

for equivalence relations.

Proof: See Appendix B

This enables us to define the degree of insufficiency:

Definition 4.11. The degree of insufficiency of the labeled

automaton X = (X,U, τ , h, L) is defined to be the smallest n

such that h is n-sufficient, if such n exists, and ∞ otherwise.

Denote the degree of insufficiency of X by degins(X ), or

degins(h) if only the labeling needs to be specified andX is clear

from the context.

The intuition is that the larger the degree of insufficiency of

an environment X , the harder it is for an agent to be attuned to

it. We talk more about the connection between attunement and

sufficiency in the following sections.

4.2. Minimal su�cient refinements

In this section we prove that the minimal sufficient

refinements are always unique (Theorem 4.19). This will follow

from a deeper result that the sufficient equivalence relations

form a complete sublattice of the lattice of all equivalence

relations. This does not hold for n-sufficient equivalence

relations for n > 1 (Example 4.20).We will then explore how the

minimal sufficient refinements can be thought of as an enactive

perceptual construct that emerges from the body-environment,

brain-body, and brain-body-environment dynamics. The idea is

that a minimal sufficient refiniment corresponds to an optimal

attunement of the agent to the base labeling which corresponds

to some minimal information that the agent is interested

in the environment, such as death or life, danger or safety

information. It is “optimal” by minimality and “attunement” by

sufficiency. Our Theorem 4.19 states that such attunement is

mathematically unique.

Definition 4.12. An equivalence relation E is a refinement of

equivalence relation E′, if E ⊆ E′, also denoted E′ 6r E. A

labeling function h is a refinement of a labeling function h′, if

Eh is a refinement of Eh
′
.

An important interpretation of the concept of a refinement

is that a better sensor provides the agent with more information

about the environment5. Each sensor mapping h induces a

partition of X via its preimages, and refinement applies in

the usual set-theoretic sense to the partitions when comparing

sensors mappings. If a sensor mapping h is a refinement of

h′, then it enables the agent to react in a more refined way to

5 Here we are not talking about contentful or semantic information, but

merely about correlational information in the philosophical sense.

nuances in the environment. Using the partial ordering given by

refinements, we obtain the sensor lattice (LaValle, 2019).

By a referee’s request, let us give a couple of

biological examples.

Example 4.13 (First biological example). There is an accepted

theory that primates see red color wavelength, because it enables

them to distinguish ripe fruit from non-ripe. Assuming this

theory is true, it is an example of a refinement which is to

some extent “minimal” and to some extent “sufficient” (of

course strictly speaking it is neither – in the same way as

there is no ideal circle in the physical world). The minimality

is seen in this example, because we perceive other things as

red, even if it is completely unnecessary (certainly unnecessary

to tell the ripeness of fruits). So we are not distinguishing

“too much.” On the other hand, perceiving red color is a

refinement of ripe/non-ripe which is only detected through

stomach ache after the fruit has been already consumed. And it

is sufficient in the sense that it is predictive of the original “base”

labeling (ripe/non-ripe).

Example 4.14 (Second biological example). Where our eyes

look depends on the position of our head as well as the position

of our eyes. Despite this, “looking up” (or “left,” “right” etc..)

are not ambiguous, even though these can be achieved with

virtually infinitely many different head-eye configurations. One

way to understand how this invariance could emerge is through

minimal sufficient refinements. Suppose at birth, every head-

eye configuration is considered as a separate state, but we label

them by what we see in any given (stable) situation. A minimal

sufficient refinement of that labeling will never distinguish

between different states in which the eyes are pointing in the

same direction. So then, by learning the minimal sufficient

refinements, the agent may learn eye-direction invariance.

4.3. Lattice of su�cient equivalence
relations

Please refer to Appendix A in the Supplementary material

for notations and definitions used in this section.

We will prove in this section that if (X,U, τ ) is an

automaton, the sufficient equivalence relations form a complete

sublattice of (E(X),⊆). Given an automaton X = (X,U, τ ),

denote by E
U,τ
suf

(X) ⊆ E(X) the set of sufficient equivalence

relations on X. When U and τ are clear from the context, we

write just Esuf(X) = E
U,τ
suf

(X).

Theorem 4.15. Suppose (X,U, τ ) is an automaton and suppose

that E ⊆ Esuf(X) is a set of sufficient equivalence relations. Then
∧

E and
∨

E are sufficient. Thus, (Esuf(X),⊆) is a complete

sublattice of (E(X),⊆).

Proof: See Appendix B.
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Suppose that a labeling h is very important for an agent.

For example, h could be “death or life,” or it could be relevant

for a robot’s task. Suppose that h is not sufficient. The robot

may want to find a sufficient refinement of h. Clearly a one-

to-one h′ would do. However, assume that the agent has to

use resources for distinguishing between states; thus, the fewer

distinctions the better. This motivates the following definition.

Recall Definition 4.12 of refinements.

Definition 4.16. Let (X,U,T) be a transition system and E0 ⊆

X × X an equivalence relation. A minimal sufficient refinement

of E0 is a sufficient equivalence relation E which is a refinement

of E such that there is no sufficient E′ with E0 6r E
′ <r E.

Given a labeling h0 of a transition system (X,U,T), a

minimal sufficient refinement of h0 is a labeling h such that Eh

is a minimal sufficient refinement of Eh0 (recall Definition 2.34).

Example 4.17. Let X = (X,U, τ ) be an automaton where

X = {0, 1}∗, U = {0, 1} and τ (x, b) = x⌢b (concatenation of

the binary string x with the bit b). Let h(x) = 1 if and only if the

number of ones and the number of zeros in x are both prime;

otherwise h(x) = 0. Then the only sufficient refinements of h are

one-to-one.

Example 4.18. Let X be as above and let h : X→ {0, 1} be such

that if |x| is divisible by 3, then h(x) = 1; otherwise, h(x) = 0.

Then h is not sufficient. Let h′ : x 7→ {0, 1, 2} be such that

h′(x) ≡ |x| mod 3.

Then h′ is a minimal sufficient refinement of σ .

Theorem 4.19. Consider an automaton X = (X,U, τ ) and let

E0 be an equivalence relation on X. Then a minimal sufficient

refinement of E0 exists and is unique.

Proof: See Appendix B

Theorem 4.19 fails, if “automaton” is replaced by “transition

system,” or if “sufficient” is replaced by “n-sufficient” for n > 1

(recall Definition 4.7)

Example 4.20 (Failure of uniqueness for n-sufficiency). Let X =

{0, 1, 2, 3, 4, 5}, U = {u0} and

τ (0, u0) = 1, τ (1, u0) = 2, τ (2, u0) = 2,

and

τ (3, u0) = 4, τ (4, u0) = 5, τ (5, u0) = 5.

Let E0 be an equivalence relation on X such that the equivalence

classes are {0, 1, 3, 4}, {2} and {5}. Then this relation is

not 2-sufficient, because (0, u0, 1, u0, 2) and (3, u0, 4, u0, 5) are

(T,E0, 2)-equivalent, but 2 and 5 are not E0-equivalent. Let

E1,E2 ⊆ E0 be equivalence relations with equivalence classes

as follows:

E1 :{0, 1}, {3, 4}, {2}, {5},

E2 :{0, 4}, {1, 3}, {2}, {5}.

Then E1 and E2 are refinements of E0. They are both 2-sufficient,

because there doesn’t exist any (T,E1, 1) or (T,E2, 1) equivalent

2-chains. They are also both 6r-minimal with this property

which can be seen from the fact that they are actually 6r-

minimal refinements of E0 as equivalence relations (not only as

sufficient ones).

Example 4.21 (Failure of uniqueness for transition systems). Let

X = {0, 1, 2, 3, 4}, U = {u0} and T = {(0, u0, 3), (2, u0), 4}.

Let E0 be the equivalence relation with the equivalence classes

{0, 1, 2}, {3} and {4}. Then E0 is not sufficient, because (0, 2) ∈

E0, but (3, 4) /∈ E0. Let E1 and E2 be the refinements of E0 with

the following equivalence classes:

E1 :{0, 1}, {2}, {3}, {4},

E2 :{0}, {1, 2}, {3}, {4}.

Now it is easy to see that both E1 and E2 are sufficient

refinements of E0, and by a similar argument as in Example 4.20

they are both minimal. The reason why this is possible

is the odd behavior of the state 2 which doesn’t have

out-going connections. Such odd states are the reason

why the decision problem “Does there exist a sufficient

refinement with k equivalence classes?” is NP-complete for finite

transition systems (O’Kane and Shell, 2017).

Remark. It is worth noting that Theorems 4.15 and 4.19 do

not assume anything about the cardinality of X or of U, other

structure on them (such as metric or topology) nor anything

about the function τ or the relation E0. Keeping in mind

potential applications in robotics,X andU could be, for instance,

topological manifolds, and τ a continuous function, or X could

be a closed subset ofRn,U discrete and τ a measurable function,

or any other combination of those. In each of those cases, the

sublattice of sufficient equivalence relations is complete, as per

Theorem 4.15, and every equivalence relation E0 on X admits a

unique minimal sufficient refinement as per Theorem 4.19.

Recall Definition 2.10 of an equivalence relation preserving

function. We say that an equivalence relation E on X is closed

under f : X → X if for all x ∈ X, we have (x, f (x)) ∈ E. If E

is closed under f , then f is E-preserving: given (x, x′) ∈ E, we

have (x, f (x)), (x′, f (x′)) ∈ E, because E is closed under f . Now

by transitivity of E we have (f (x), f (x′)) ∈ E, so f is E-preserving.

Definition 4.22. Let f : X → X be a bijection. The induced

orbit equivalence relation is the relation Ef on X defined by

(x, x′) ∈ Ef ⇐⇒ (∃n ∈ Z)(f n(x) = x′), in which f n(x)

is defined by induction as: f 0(x) = x, f n+1(x) = f (f n(x)),

f n−1(x) = f−1(f n(x)).

Theorem 4.23. If f is an automorphism of the automaton

(X,U, τ ), then Ef is a sufficient equivalence relation.

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2022.846982
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Weinstein et al. 10.3389/fnbot.2022.846982

Proof: See Appendix B

Theorem 4.24. Let X = (X,U, τ ) be an automaton and E

be an equivalence relation on X. Suppose f : X → X is an

automorphism such that E is closed under f . Let E′ is the minimal

sufficient refinement of E. Then E′ is closed under f and E 6r

E′ 6r Ef .

Proof: See Appendix B

Example 4.25. Consider the environment which is a one-

dimensional lattice of length five, E = {−2,−1, 0, 1, 2}, in which

the corners “smell bad”; thus, we have a sensor mapping h : E→

S, S = {0, 1} defined by h(n) = 0 ⇐⇒ |n| = 2; see Figure 6A.

Consider two agents in this environment. Both are equipped

with the same h sensor, but their action repertoires differ. Both

have two possible actions. One has actions L = “move left one

space” and R = “move right one space,” and the other one

has actions T = “turn 180 degrees” and F = “go forward

one space.” Let M0 = {L,R} and M1 = {T, F}. Thus, these

agents have a slight difference in embodiment. Although both

of them can move to every square of the lattice in a very similar

way (almost indistinguishable from the outside perspective), we

will see that the differences in embodiment will be reflected

in that the minimal sufficient refinements will produce non-

equivalent “categorizations” of the environment. The structures

that emerge from these two embodiments will be different. These

agents enact different environments, although physically the

environments are the same, as congruent with tenet (EA3).

First, we define the SM-systems that model these agents’

embodiments in E. The first agent does not have orientation. It

can be in one of the five states, and the state space is X0 = E

(Figure 6B). For the second agent, the effect of the F action

depends on the orientation of the agent (pointing left or pointing

right). Thus, there are ten different states the agent can be

in, yielding X1 = E × {−1, 1} (Figure 6C). The effects of

motor outputs are specified completely (L means moving left,

and so on), whereas the agent’s internal mechanisms are left

completely open, so our systems will be quasifilters. According

to Remark 2.18, we can work with a labeled automaton instead.

Hence, let τ0 : X0 × M0 → X0 be defined by τ0(x, L) =

max(x − 1,−2) and τ0(x,R) = min(x + 1, 2). For the

other agent, let τ1((x, b),T) = (x,−b) and τ1((x, b), F) =

(min(max(x + b,−2), 2), b). Now we have labeled automata

X0 = (X0,M0, τ0, h, S) and X1 = (X1,M1, τ1, h, S).

It is not hard to see that the one-to-one map h0 : X0 →

{−2,−1, 0, 1, 2} with h0(x) = x is a sufficient refinement of

h which is minimal (see Figure 7A). Thus, every state needs

to be distinguished by the agent for it to be possible to

determine the following sensation from the current one. The

derived information space automaton X0/h0 isomorphic to X0

(Proposition 2.36).

For the second automaton, consider the labeling h1 : X1 →

{−2,−1, 0, 1, 2} defined by h1(x, b) = b · x (see Figure 7C).

Claim. h1 is a minimal sufficient refinement of h in X1.

Proof: See Appendix B

Both minimal sufficient labelings, h0 and h1 have five values;

thus, they categorize the environment into five distinct state-

types. However, the resulting derived information spaces are

different in the sense that the quotients X0/h0 and X1/h1 are

not isomorphic; compare Figure 7B with Figure 7D.

Example 4.26. Figure 8A shows a filtering example from Tovar

et al. (2014). More complex versions have been studied more

recently in O’Kane and Shell (2017), and are found through

automaton minimization algorithms and some extensions. It

can be shown that this example’s four-state derived information

space depicted on Figure 8B corresponds to the unique minimal

sufficient refinement of the labeling that only distinguishes

between “are in the same region” and “are not in the same

region.” To see this, first note that this labeling is sufficient

(since it can be represented as an automaton, this follows from

Theorem 4.5). It follows from Theorem 4.19 that if this labeling

is not minimal, then there is a minimal one which is strictly

coarser, and so can be obtained by merging the states in the

automaton of Figure 8B. This is impossible: the state T cannot

be merged with anything because it violates the base-labeling;

if, say Da and Dc, are merged, then transition a will lead to

inconsistency as it can lead either to Db (from Dc) or to T

(from Da). This proves that this derived information space is

indeed minimal sufficient, and by Corollary 4.19 there are no

others up to isomorphism.

4.4. Computing su�cient refinements

This section sketches some computational problems and

presents computed examples. The problem of computing the

minimal sufficient refinement in some cases reduces to classical

deterministic finite automaton (DFA) minimization, and in

other cases it becomes NP-hard (O’Kane and Shell, 2017).

Consider an automaton (X,M, τ ) and a labeling function h0,

and the corresponding labeled automaton described using the

quintuple (X,M, τ , h0, L). Suppose that the automaton (X,M, τ )

corresponds to that of an body-environment system. Hence,

X corresponds to the states of this coupled system. Suppose

h0 is not sufficient and consider the problem of computing

a (minimal) sufficient refinement of h0, that is, the coarsest

refinement of h0 that is sufficient.

Despite the uniqueness of the minimal sufficient refinement

of h0 (by Corollary 4.19), we can argue that the formulation of

the problem, in particular, the input, can differ based on the level

at which we are addressing the problem (for example, global

perspective, agent perspective or something in between). Since

the labeled automaton corresponding to an agent-environment

coupling is described from a global perspective, the input to an
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FIGURE 6

(A) One-dimensional lattice environment described in Example 4.25. (B) State space of the agent 0. (C) State space of the agent 1. The states for

which the value of the sensor mapping is 0 are shown in black.

FIGURE 7

(A) State space of the agent 0 categorized by h0, states that belong to the same class are colored with the same color. (B) Resulting quotient

X0/h0 for the agent 0. (C) State space of the agent 1 categorized by h1, states that belong to the same class are colored with the same color. (D)

Resulting quotient X1/h1 for the agent 1.

algorithm that addresses the problem from this perspective is the

labeled automatonA = (X, τ ,M, h0, L) itself. Then, the problem

is defined as givenA computeA′ = (X,M, τ , h, L) such that h is

the minimal sufficient refinement of h0.

A special case of this problem from the global perspective

occurs if the preimages of h0 partition X in two classes

which can be interpreted as the “accept” and “reject” states,

for example, goal states at which the agent accomplishes

a task and others. Furthermore, suppose that the initial

state of the agent is known to be some x0 ∈ X. Then,

computing a minimal sufficient refinement becomes identical

to minimization of a finite automaton, that is, given a DFA

(X,M, τ , x0, F) in which x0 is the initial state and F is the set

of accept states find (X′,M, τ ′, x′0, F
′) such that no DFA with

fewer states recognizes the same language. Existing algorithms,

for example Hopcroft (1971), can be used to compute a

minimal automaton.

Here, we also consider this problem from the agent’s

perspective for which the information about the environment

states is obtained through its sensors, more generally, through

a labeling function. Note that by agent’s perspective we do

not necessarily imply that the agent is the one making the

computation (or any computation) but it means that no further

information can be gathered regarding the environment other

than the actions taken and what is sensed by the agent. At

this level we address the following problem; given a set M of

actions, a domain X, and a labeling function h0 defined on X,

compute theminimal sufficient refinement of h0. The crux of the

problem is that unlike the global perspective described above,

the labeled automaton A is not given, in particular, the state

transitions are not known a priory. Instead, the information

regarding the state transitions can only be obtained locally by

means of applying actions and observing the outcomes, that is,

through sensorimotor interactions. Hence, the current body-

environment state is also not observable. To show that an

algorithm exists to compute a sufficient refinement of h0 at

this level, we propose an iterative algorithm (Algorithm 1) that

explores X through agent’s actions and sensations by keeping

the history information state, that is, the history of actions and

sensations (labels). We then show, by empirical results, that the
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FIGURE 8

(A) Two point-sized independent bodies move along continuous

paths in an annulus-shaped region in the plane. There are three

sensor beams, a, b, and c. When each is crossed by a body, its

corresponding symbol is observed. Based on receiving a string

of observations, the task is to determine whether the two bodies

are together in the same region, with no beam separating them.

(B) The minimal filter as a transition system has only 4 states: T

means that they are together, and Dx means that are in di�erent

regions but beam x separates them. Each transition is triggered

by the observation when a body crosses a beam.

sufficient refinement computed by Algorithm 1 is minimal for

the selected problem.

1: Input: h0, l0, M

2: Initialize: H← ∅, h← h0, s← s0

3: for each step do

4: m← policy(s)

5: apply action m and obtain resulting s′

6: add (s,m, s′) to H

7: if ∃(s,m, s′′) ∈ H such that s′ 6= s′′ then

8: h← split(h, s)

9: if there are labels that can be merged then

10: h← merge(h,H, h0)

11: s← s′

Algorithm 1.

The functioning of Algorithm 1 is as follows. Starting from

an initial sensation s0 = h(x0), the agent moves by taking an

action6 given by the mapping policy : L → M. Particularly, we

used a fixed policy which samples an action m from a uniform

distribution over M for each s ∈ S. In principle, any policy

that ensures all states that are reachable from x0 will be visited

infinitely often should be enough. The history information state

is implemented as a list, denoted by H, of triples (s,m, s′) such

that s = h(x) and s′ = h(x′) in which x′ = τ (x,m). At each

step, it is checked whether the current sensation is consistent

with the history (Line 7). Current sensation is inconsistent with

the history if there exists a triple (s,m, s′′) in the history such that

6 This can either be in a real environment or in a realistic simulation.

s′ 6= s′′. If it is not consistent then the label is split, which means

that h−1(s) is partitioned into two parts P and Q. In particular,

we apply a balanced random partitioning, that is, we select P and

Q randomly from a uniform distribution over the partitions of

h−1(s) that have two elements with balanced cardinalities. The

labeling function is updated by a split operation as

h(x) : =















sQ if x ∈ Q

sP if x ∈ P

h(x), otherwise.

Recall that labels or subscripts do not carry any meaning from

the agent’s perspective.

Even a trivial strategy that splits the preimage of the

label seen at each step would succeed computing a sufficient

refinement. However, this would result in h being a one-to-

one mapping. Hence, the finest possible refinement. Splitting

only at the instances when an inconsistency is detected might

reach a coarser refinement that is sufficient but there might be

more equivalence classes than the ones induced by the minimal

sufficient refinement of h0. Therefore, a merge operation is

introduced (Line 10). Let s and s′ be two distinct labels for which

∃s′′ ∈ h0[X] such that h
−1(s) ⊆ h−10 (s′′) and h−1(s′) ⊆ h−10 (s′′).

Let t denote a triple in H and let tk, k = 1, 2, 3, denote the kth

element of that triple. Suppose s′ = s, if there are at least N

number of triples inH such that for each triple t, (t1, t2) = (s,m)

and ∀m ∈ M and ∀t, t′ ∈ H such that (t1, t2) = (t′1, t
′
2) = (s,m)

it is true that t3 = t′3 then labels s and s′ are merged. The merge

procedure goes through all labels and updates h as

h(x) : =







s if h(x) ∈ {s, s′}

h(x) otherwise.

for each pair of labels s and s′ that satisfies the aforementioned

condition. Note that in principle, one can merge two labels

regardless of the number of occurrences in the history. However,

we noticed that this can result in oscillatory behaviour between

split and merge operations especially for states that are reached

less frequently. At present, we considered N as a tunable

parameter and we know that it depends on the cardinality of

the state space X such that larger the number of states, larger

N should be. The problem of defining N as a function of the

problem description remains open.

In the following, we present an illustrative example to

show the practical implications of the previously introduced

concepts in Section 4.2. In particular, we show how a simple

algorithm like Algorithm 1 can be used by a computing unit

which relies only on the sensorimotor interactions of an agent

to further categorize the environment such that there are no

inconsistencies in terms of the actions taken by the agent and

the resulting sensations with respect to an initial categorization

induced by h0 (Figure 9C).
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FIGURE 9

(A) Cheese maze defined in Example 4.27 (B) Labeled automaton with initial labeling h0 corresponding to the cheese-maze example. (C)

Minimal su�cient refinement of h0. Self-loops at the leaf nodes are not shown in the figure.

Example 4.27. Consider an agent (a mouse) that is placed

in a maze where certain paths lead to cheese and others do

not (see Figure 9A). At each intersection the agent can go

either left or right and it can not go back. Hence, at each

step the agent takes one of the two actions; go right or go

left. Figure 9B shows the corresponding automaton with 15

states describing the agent-environment system together with

the initial labeling h0 that partitions the state space into states

in which the agent has reached a cheese (light blue) and others

(dark blue). The initial state x0 is when the agent is at the

entrance of the maze. Once the end of the maze is reached (a

leaf node) the state does not change regardless of which action

is taken. After a predetermined number of steps the system

reverts back to the initial state, similar to an episode in the

reinforcement learning terminology (see, for example, Sutton

and Barto, 2018). However, despite the system going back to

the initial state the history information state still includes the

prior actions and sensations. Figure 10 reports the updates of

h, initialized at h0, by Algorithm 1 being run for 1,000 steps. It

converged to a final labeling h (Figure 10R), that is the minimal

sufficient refinement of h0, in 435 steps. For 20 initializations

of Algorithm 1 for the same problem, on average, it took 364

steps to converge to a minimal sufficient refinement of h0

(Figure 9C).

We have also applied the same algorithm to variations of this

example with different depths of maze and different number of

cheese and cheese placements (varying h0). Empirical evidence

shows that the same algorithm was capable of consistently

finding the minimal sufficient refinement of the initial labeling.

However, it is likely that it might fail for more complicated

problems, for example, when the number of actions are

significantly larger. It remains an open problem finding a

provably correct algorithm for computing the minimal sufficient

refinement of h0 from the agent’s perspective.

4.5. Su�ciency for coupled SM-systems

Section 2 introduced SM-systems, including the special

class of quasifilters. We showed that quasifilters can be

thought of as labeled transition systems, and we worked

with such systems in Sections 4, 4.4. Let us see how

do the concepts introduced in those sections work for

SM-systems. We also defined coupling of SM-systems

(Definition 2.22), but we have not defined what it means

for a coupling to be “good.” We will use sufficiency to approach

this subject.

Let E = (E, (S × M),T) and I = (I, S × M,B) be

SM-systems. We think intuitively of E as “the environment”

and I as the “agent,” even though they share the set of

sensorimotor parameters S × M. When is the coupling E ∗

I “successful”? Given another I ′ = (I′, S × M,B′), how

can we compare I and I ′ in the context of E? The coupled

system E ∗ I is not labeled; therefore, we cannot apply the

definition of sufficiency. However, as soon as we apply some

labeling to it, we can. There are many different ways to

do it, intuitively corresponding to the “agent’s perspective,”

the “environment’s perspective” and a “god’s perspective” (or

“global perpsective”).

The first one is the labeling h : E × I → I, which is the

projection to the right coordinate, hI(e, i) = i. The second one

is the projection to the left coordinate hE(e, i) = i, and the

third one is the labeling of states by themselves, hG(e, i) = (e, i).

Clearly, hG is a refinement of both hE and hI . Yet another option

is to use the sensory data as labelings, which is a coarser labeling

than hI . Or perhaps there was already a labeling h : E → S to

begin with, so thenwe can ask about the property of ĥ : E×I→ S

defined by ĥ(e, i) = h(e). We focus on what we called the agent’s

perspective, hI , for the rest of this section.

Recall Definition 4.11 of the degree of insufficiency. Given

SM-systems E (environment) and I (agent), we can ask what

is the degree of insufficiency of hI in E ∗ I? The smaller the
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FIGURE 10

(A) Labeled automaton with labefigure/ling function h = h0; same colored states belong to the figure/same equivalence class. (B–Q) Updating h

by Algorithm 1 through splitting and merging of the labels. (R) Labeled automaton with the labeling function h that is the minimal su�cient

refinement of h0.

degree, the better the agent is attuned to the environment. This

says something about the way in which the agent is adapted

or attuned to the environment without attributing contentful

states or representations to the agent in alignment with (EA2)

and (EA4).

Let E , I , and I ′ be SM-systems. When is degins(E ∗

I , hI) < degins(E ∗ I ′, hI′ )? Of course, if I is fully constrained

(Definition 2.31), then degins(E ∗ I) = ∞. This corresponds to

the agent never engaging in any sensorimotor interaction with

the environment. No wonder that it can always “predict” the
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result of such passive existence. Assume, however, that there

some constraints on the coupling. For example, we may demand

that the agent must regularly visit states of some particular type

to survive. Subject to such constrains, what can we say about

degins(E ∗ I)? This seems to be a good preliminary notion7

of attunement.

5. Discussion

In the introduction we defined our basic enactivist tenets:

(EA1) Embodiment and the inseparability of the brain-body-

environment system,

(EA2) Grounding in sensorimotor interaction patterns, not in

contentful representations.

(EA3) Emergence from embodiment, enactment of the world,

(EA4) Attunement, adaptation, and skill as possibilities to

reliably engage in complicated patterns of activity with

the environment.

(EA5) Perception as sensorimotor skills.

We developed amodel of sensorimotor systems and coupling for

which the purpose is to account for cognition mathematically,

but in congruence with the principles (EA1)–(EA5). The

principle (EA1) is intrinsic in the ways SM-systems are supposed

to model brain-body and body-environment dynamics. The

central ingredient is the control set S×M in all of those systems

which include “motor” and “sensory” part; it is impossible

in our framework to model say the environment without

acknowledging the way in which the body is part of it. The

approach that the actions of an agent depend solely on the

history of its sensorimotor interactions with the environment,

our approach is well in the scope of (EA2). We do not assume

any representational or symbolic content possessed by the

SM-systems. We do not evaluate them normatively by the

“correctness” of their internal states, but rather by the ways

in which they are, or can be, coupled to the environment and

whether their sensory apparatus generates a sufficient sensor

mapping or not. Coupling of SM-systems is defined so that two

systems constrain each other. Thus, when an agent is coupled

to the environment, they constrain each other, thereby creating

new global properties of the body-environment system.

The principle (EA4) is mostly discussed in connection

with minimal sufficient refinements. Given a labeling, or a

categorization, or an equivalence relation on the state space,

one can ask how well does this labeling “predict itself.”

The interpretation of this labeling can be anything from a

sensor mapping to the labeling of environmental states by the

internal states of the agent which coincide with them (this is

not representation, this is mere co-occurence; see enactivist

interpretation of the place cells in Hutto and Myin (2017) for

7 Further research will indicate how much of this will be accepted by

the most radical enactivists.

comparison). A sufficient sensor mapping can be achieved in

many different ways. In Section 4.4 we present a way in which

the agent “develops” new sensors to be better attuned to the

environment and in that way finds a sufficient sensor mapping.

Another way for the agent would be to learn to act in a way

that excludes “unpredictability.” Both are examples of situations

where the agent “structures” its own body-environment reality

and gains skill. Finally, perception (EA5) can be understood as

sensorimotor patterns on a microlevel. On the other hand, the

agent engage in a sensorimotor activity locally without making

big moves, such as moving the eyes without moving the body.

The result of such sensorimotor interaction is another labeling

function on a macro level.

In this paper, we not only presented mathematical

definitions, but proved a number of propositions and theorems

about them. There would be (and we hope there will be!) much

more of them, but they did not fit in this expository work for

which the main purpose was to demonstrate the connection

of the mathematics in question with the enactive philosophy

of mind.

We have already developed more concepts and theorems

on top of this framework, including notions of degree

of insufficiency, universal covers, hierarchies, and strategic

sufficiency, but these are omitted here due to space limitations.

In other, more mathematical work, we plan to concentrate

on working out mathematical and logical details of the proposed

theory as well as applying the ideas to fundamental questions

in robotics and autonomous systems, control theory, machine

learning, and artificial intelligence.
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