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Abstract

This paper formally defines a robot system, including its sensing and ac-
tuation components and its surrounding environment, as a general, topological
dynamical system. The focus is on determining general conditions under which
various environments in which the robot can be placed are indistinguishable, from
the viewpoint or experience of the robot. An envronment is defined as a tuple
that includes a Polish state space with which ‘interaction’ occurs through a senso-
rimotor structure that is defined in terms of a Borel sensor mapping and a Polish
space of control signals that acts on the state space. A key result is that, under
very general conditions, covering maps witness such indistinguishability. This
formalizes the intuition behind the well studied loop closure problem in robotics.
An important special case is where the sensor mapping reports an invariant of
the local topological (metric) structure of an environment because such structure
is preserved by (metric) covering maps. Whereas coverings provide a sufficient
condition for the equivalence of environments, we also give a necessary condi-
tion using bisimulation. The overall framework is applied to unify previously
identified phenomena in robotics and related fields, in which moving agents with
sensors must make inferences about their environments based on limited data.
Many open problems are identified.
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Figure 1: Map reconstruction before loop closure (left) and after loop closure (right).
Note how a new metric has been defined on the space to support the new information
that the distance of two previously distinct points equals now to zero. Figure repro-
duced from [35].

1 Introduction

When a mobile robot explores a multiply connected environment using sensors, it
frequently encounters the well-known problem of loop closure, in which it must detect
that it has returned to a previously visited location. Robots combine information from
sensor observations at multiple times, leading to the filtering problem (also known
as sensor fusion) of appropriately aggregating or summarizing its data. Shown in
Figure 1, the robot becomes mistaken (from our perspective) about its position over
time as it tries to build a geometric representation of its environment. The problem
is part of SLAM (simultaneous localization and mapping) [6, 15], a critical operation
in many robots and autonomous systems. Similarly, a person donning a VR headset
can be tricked into walking in circles when they believe they are heading straight,
using a method known as redirected walking [25]. Likewise, according to a popular
theory [24], a moth inadvertently travels in circles around a fire because it cannot
distinguish the fire and a celestial light source1. This phenomenon occurs, and can
be studied, in the framework of minimalist robotics such as Braitenberg robots [1],
wall-following robots [18, 26], and robots with topological sensing and filtering, such
as the gap-navigating robots of [30]. It is also closely related to some version of the
graph exploration problem [20, 27].

All of these examples (and many more) share an underlying principle: The covering
map f : R → S1, t 7→ eit commutes with the agent’s sensorimotor behavior, whether
the agent be a robot, human, or insect. More generally, topological ambiguities arise
from limited sensing and actuation capabilities, and we show in this paper that they are
naturally understood in terms of covering spaces. Figure 2 shows examples of spaces
and their coverings which, considered as robot’s environments, will be shown to be
strongly indistinguishable (Section 6.3). As a converse we obtain an invariant of the

1This theory was recently disputed in [9].
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Figure 2: The spaces on the bottom are strongly indistinguishable from the ones above
them. The 2-manifold (a) is a covering space of (d), the 1-complex (b) is a covering
space of (e) and (f), whereas (c) is the universal covering space of (b), (e), and (f). For
a robot, which senses the local homeomorphism type, (b), (c), (e), and (f) are mutually
(not strongly) indistinguishable. Figures are reproduced from [16].

Figure 3: A robot, which senses the local homeomorphism type, can distinguish be-
tween these spaces, which implies that they cannot have a common covering space (see
Example 6.10). This constitutes an application of the present theory of mathematical
robotics to topology.

purely topological equivalence relation between spaces which holds if and only if they
have a common covering space, see Figure 3.

We approach this through the abstract theory of information spaces which was
originally proposed and developed in [21, 31] and extended recently in [23, 34]. In it, the
robot (or more broadly, an agent), has access exclusively to the sequence of sensorimotor
interactions with the environment given by a sequence η = (u0, y0, u1, y1, . . . , un, yn−1)
in which uk is the motor input at stage k and yk is the sensory data at stage k. These
sequences are called history information states. The robot may be thought of exploring
a tree of all possible history information states ordered by end-extension. This tree is
called the history information space.

We begin by reviewing prior work on loop closure, SLAM, graph exploration, and
minimal filtering in Section 2. In Section 3 we develop the general theory of the spaces
of control signals, trajectories, and what we call path actions. We review some prior
work where such spaces have been defined (Sections 3.1-3.2) and strengthen some of
the results of [36] in order to motivate the more general topological definitions in
Section 3.3. Our main result in this section is Corollary 3.15 which says that the map
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assigning robot’s trajectories to control signals is continuous under the assumption
that the mere position of the robot is a continuous function of the control signals.
We prove this under very general topological assumptions on the set of control signals
(Definition 3.10).

Then, in Section 4 we apply the framework developed in 3-3.3 to define the notion of
sensorimotor structure as well as the general notion of environment. The sensorimotor
structure consists of a sensor mapping h and a path action p which define the coupling
between the ambient space and the robot’s sensors and actuators (Section 4.1). Then,
we define the continuous version of history information state space -4.2) generalizing
the discrete time version of [21].

We then use these tools to define a class of indistinguishability equivalence relations
on environments in Section 5 and prove a number of basic results about them. These
are interesting from the perspective of both robotics and topology. The most basic
one, which we also analyze the most, says that two environments are indistinguishable,
if any control signal (no matter how long) will yield identical sensory readings in both
of them (Definitions 5.1 and 5.7).

In Section 6 we introduce the idea of covering spaces in this context and prove our
next main results (Theorem 6.5, Corollary 6.7, and Theorem 6.9) which formalize the
idea that a covering map enables lifting the sensorimotor structure to make the covered
and covering spaces indistinguishable, or that environments which have a common
covering (or are both coverings of an) environment, then they are also indistinguishable.

In the end of the paper we prove our final main result, Theorem 7.4, giving a
complete characterization of the ≡-equivalence in terms of bisimulations. Section 8
then revisits the examples of Section 2. Finally we prove a general result about robots
whose sensors report an isometry-invariant of their local neighbourhood, Theorem 8.7.

2 Closing the Loop via Sensing and Filtering

This section reviews the well-known loop closure problem in robotics, both in the
context of engineering (Section 2.1), and as analyzed in the theoretical minimalist
setup (Section 2.2). Finally, we touch upon the related topic of graph exploration in
Section 2.3.

2.1 Loop closure in SLAM

In simultaneous localization and mapping (SLAM) problems, robots are moving in their
environments while also scanning them. They may also keep track of various non-visual
parameters such as data from their accelerometer, GPS-coordinates, wheel encoders,
sonars, lasers and so on [32]. Once the robot circles back to an area where it has
been before, it is incumbent on the robot to be capable of “meeting the ends”, that is,
identifying the place as one which has been already visited and applying this knowledge
to the map reconstruction problem. The visual loop closure is the subcategory of loop
closure problems in which this recognition has to be made based on visual sensors
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alone (possibly including 3D-sensors such as lasers). Even when motion detection data
is available, accumulated errors may make loop closure detection difficult based on path
integration methods. This error makes the loop closure problem in essence topological,
as opposed to metric. In fact, once two places in the internally reconstructed metric
maps have been identified as the same, usually a new metric has to be defined on the
map to make it correct, see Figure 1

In many applications the visual sensors are powerful monocular or binocular multi-
megapixel cameras and laser measurements [2, 13]. Many computational methods have
been developed to perform this highly complex task. Methods which work directly with
data include statistical such as Bayesian inference [2], hybrid statistical-geometric such
as direct sparse odometry [8, 12], graph based methods such as local registration and
global correlation [14] and other sophisticated methods such as ORB-SLAM [22] and
graph-matching with deep learning [7]. These include scan matching, consistent pose
estimation, map correlation, clustering, and dimension analysis. There is also a class
of methods which are based on image recognition where the visual images are labeled
using neural networks and then the algorithms operate with those labels.

2.2 Minimal filtering and minimal SLAM

At the other extreme, minimalist models which analyze the logical and geometric un-
derpinnings of SLAM have been proposed [18, 26, 29, 30]. In this line of work the
analysis is performed in mathematically well-defined environments and the models as-
sume only simple feature detectors. The robots are often capable of building very
minimalist, topological representations of the environment so that the required tasks
are accomplished reliably and provably. Loop closure features in this theory too. It can
be achieved by the robot dropping recognizable pebbles in the environment at selected
locations [29, 30]. The framework of minimalist robotics has the theoretical advan-
tage that it enables one to reason about the limiting cases pertaining in particular to
whether loop closure is theoretically possible or not.

Consider gap-navigation trees introduced in [30]. Here, the robot is moving in a
planar environment O ⊂ R2 and is equipped with a sensor which only reports the
directions in which the distance-to-the-boundary function has discontinuities. These
correspond to corners and turns in the boundary of the environment. This sensor
can be thought of as detecting a topological invariant of the star-convex environment
of the robot’s current location (Figure 4). We will make this statement precise in
Example 8.1. Using this data the robot is able to internally build a tree-like model
which encodes the convex region structure sufficiently well for the robot to be able
to optimally solve navigation tasks in a simply connected environment. This setup is
subject to the loop-closure problem. If the environment is not simply connected, the
robot may start going around a circular obstacle, but updating the model as if it is
seeing new regions ad infinitum. It was shown in [30] that their model will fail in non-
simply connected environments. We show in Example 8.1 the same thing within our
new framework. By equipping the robot with loop closure detection (using pebbles),
the authors of [30] show that then the navigation problem can be solved in non-simply
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Figure 4: The visible star-convex region (left) and the outcome of sensor filtering
(right). The filter is a topological invariant of the star-region as we will see in Section 8.
Image reproduced from [30]

Figure 5: An example of a sensor mapping which is a metric invariant of the local
neighbourhood of the robot. See Section 8 for more details. Image reproduced from [18]

connected environments too.
In [18] the authors analyze a simple robot with local sensors that moves in an un-

known polygonal environment. The robot is capable of sensing local geometric struc-
ture of the environment: it can detect whether or not it is on the boundary and if it is,
whether or not it is on a vertex and if it is, whether it is a convex or a reflex (concave)
vertex (Figure 5). The robot can also leave pebbles in the environment which it can
later detect. Using this machinery the robot is shown to be capable of various tasks.
Our interest in this example is that here also, the sensor is a geometric (in this case
metric, not topological) invariant of the local neighbourhood of the robot, see Section 8.

In [28] the authors “analyze a problem in which an unpredictable moving body
travels among obstacles and binary detection beams. The task is to determine the
possible body path based only on the binary sensor data. This is a basic filtering
problem encountered in many settings, which may arise from physical sensor beams or
virtual beams that are derived from other sensing modalities.” (quote from [28], see
also Figure 6) The authors show among other things that if the region is partitioned
by the beams into simply connected regions, then the body can know the homotopy
type of the traversed trajectory.
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Figure 6: Navigation using only the data from the beams. Image reproduced from [28]

2.3 Graph exploration

Graph exploration is a family of problems in the intersection of graph theory and
theoretical robotics. A subcategory of them ask the robot to generate a map of the
environment, either a complete one or a sufficient one for its tasks [20, 27].

This set of problems must include some form of loop closure, for otherwise a robot
cannot distinguish between the graphs (b), (c), (e), and (f) shown on Figure 2. The
theory outlined in this paper applies to this context in the limited special case when
the robot is not allowed to make marks in the environment.

3 Basic Models and Theory Development

In this section we introduce the basic setup. In Section 3.1 we introduce the space UM

of measurable control signals, and in Section 3.2 the space X of continuous trajectories
that robot traverses in X. We analyze, building on [36] the case when X is a differential
manifold and define the functions r and r̄ which connect the control signal to the
resulting configuration and the trajectory of the robot respectively. Using the results
of 3.1 and 3.2, we then formulate appropriate generalizations to a topological framework
in Section 3.3. There, we define U which is a generalization of UM , and the path action
p (and the induced p̄) which is a generalization of r (respectively of r̄). The space X is
merely generalized from being a differential manifold to being a Polish space without
any changes in the definition of X .

3.1 Space of control signals

This section will follow [36] in defining the space U of control signals. Later, in Sec-
tion 3.3, we will have a bit more general definition. The robot has an arbitrary,
nonempty set of inputs U which in this section is a topological space. A control signal
is a measurable function ū : [0, T ) → U . We use half-open intervals as the domain
(deviating from [36]) so that we can naturally concatenate them. Over its lifetime, the
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robot computer or controller generates a signal x̄ : R⩾0 → U , which can be obtained as
a concatenation of bounded-time signals. This will be made formal.

Definition 3.1. Let UM be the set of all measurable functions ū : [0, T ) → U for
T ∈ R⩾0. For T = 0 this is the empty function ū = ∅. Denote by T = |ū| the
supremum of the domain of ū. For any two elements ū1, ū2 ∈ UM , let ū1 ⊕ ū2 be the
control signal ū with |ū| = |ū1|+ |ū2| defined by

ū(t) =

{
ū1(t) if t < |ū1|
ū2(t− |ū1|) otherwise.

Given ū ∈ UM , denote by ū ↾ [0, t) the restriction of ū to [0, t). This can be shortened
to ū ↾ t or to ū<t. If t ⩾ |ū|, then ū ↾ t = ū. Let ū1 ◁ ū2 denote that |ū1| < |ū2| and
ū2 ↾ |ū1| = ū1. Given ū ∈ UM and t ∈ R⩾0 we define ū<t and ū⩾t to be the unique two
elements of UM with the property that |ū<t| = t and ū = ū<t ⊕ ū⩾t. ⊣

Proposition 3.2. UM is

(1) closed under ⊕, meaning that for all ū0, ū1 ∈ UM we have ū0 ⊕ ū1 ∈ UM ,

(2) closed under segmentation, meaning that for all ū and all t, also ū<t and ū⩾t are
in UM , and

(3) extensive, meaning that for all ū ∈ UM , there is ū1 ∈ UM such that ū ◁ ū1 and
|ū1| ⩾ |ū|+ 1.

Proof. These all follow easily from the fact that UM is the collection of all measurable
functions

Remark 3.3. 1. As is standard in functional analysis, we actually consider equiva-
lence classes of measurable functions that differ on a set of measure zero, without
altering notation.

2. The ordering ◁ is a tree order on UM , meaning ◁-incompatible control signals
have no common ◁-extensions.

3. We always have ū1 ◁ ū1 ⊕ ū2.

4. Also, (ū0 ⊕ ū1)<|u0| = u0 and (ū0 ⊕ ū1)⩾|u0| = u1.

5. ū<t is the same as the restriction ū↾ [0, t).

6. ū⩾t is the final segment of ū which can be explicitly defined as a function with
domain [0, t0) where t0 = |ū|−t and for all 0 ⩽ t1 < t0 we have ū⩾t(t1) = ū(t+t1).

⊣

Following [36] we define the L1-type metric on UM .
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Definition 3.4 (Metric on UM). Assume that dU is a metric on U . Then, given
measurable ū1 : [0, T1) → U and ū2 : [0, T2) → U , define

ϱUM
(ū1, ū2) =

∫ T

0

dU(ū1(t), ū2(t))dt+ |T1 − T2|,

where T = min{T1, T2}. ⊣
A metric is called Polish if it makes the space complete and separable.

Proposition 3.5. If dU is bounded, then ϱUM
is a Polish metric on UM .

Proof. That it is a metric was already observed in [36]. A dense countable set was
also constructed in [36]. Suppose (ūn) is a Cauchy sequence. Because of the second
term in the definition of the metric, |ūn| must converge to some T . Let (Tn) be an
increasing sequence converging to T with the property that for all m ⩾ n we have
|ūm| > Tn. Then for each n, the sequence (ūm ↾ <Tn)m⩾n is a Cauchy sequence in the
classical L1-metric on the space of all continuous functions from [0, Tn) into U which is
known to be complete. Thus, let ū∗

n be the limit of that sequence. Then, observe that
ū∗
n ◁ ū∗

n+1 for all n, and
⋃

n ū
∗
n is the limit of (ūn) in UM .

The following acts as a motivation for the generalization in Definition 3.10.

Proposition 3.6. For ū ∈ UM and t ∈ R⩾0, the following functions are continuous:

(1) τ1 : ū 7→ |ū|,

(2) τ2 : (ū, t) 7→ ū<t.

Proof. (1) Suppose s < |ū| < t and let ε = min{|ū| − s, t − |ū|}. Since |ū − ū1| is
bounded by ϱUM

(ū1, ū) for all ū1, if ϱUM
(ū1, ū) < ε, then also s < |ū1| < t. This shows

that the inverse image of the open interval (s, t) under τ1 is open.
(2) Let UM ×R⩾0 be equipped with the metric δ((ū, t), (v̄, s)) = ϱUM

(ū, v̄) + |t− s|.
This metric is compatible with the product topology; thus, it suffices to show continuity
of τ2 w.r.t. δ. Suppose (ū, t), (v̄, s) ∈ UM × R⩾0. Let T1 = min{|ū|, |v̄|, t, s}, T2 =
min{|ū|, |v̄|}, T3 = min{|ū|, t}, and T4 = min{|v̄|, s}. Now T1 ⩽ T2, T3 = |ū<t| ⩽ |ū|+t,
T4 = |v̄<s| ⩽ |v̄|+ s, and so we get:

ϱUM
(τ2(ū, t), τ2(v̄, s)) = ϱUM

(ū<t, v̄<s)

=

∫ T1

0

dU(ū<t(z), v̄<s(z))dz + ||ū<t| − |v̄<s||

=

∫ T1

0

dU(ū(z), v̄(z))dz + |T3 − T4|

⩽
∫ T2

0

dU(ū(z), v̄(z))dz + ||ū| − |v̄|+ t− s|

⩽
∫ T2

0

dU(ū(z), v̄(z))dz + ||ū| − |v̄||+ |t− s|

= ϱUM
(ū, v̄) + |t− s|

= δ((ū, t), (v̄, s)),
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which shows that τ2 is in fact 1-Lipschitz and therefore continuous.

3.2 Space of trajectories and path actions given by differential
structures

We first clarify our notion of the state space and what is its relationship to the ambient
space in which the robot is, and to the notion of an environment defined in Section 4.1.
A robot, as a body occupying physical space, can be in various configurations. The
robot is then embedded in some ambient space which both restricts and extends this
set. On the one hand, not only can the body be in some configuration, but it can also
be in different locations and have different orientations in the ambient space. On the
other hand, the ambient space may restrict the range of possible configurations that the
robot’s body can achieve. This gives rise to the state space X. For example, consider
a car-like robot with four wheels and front steering. Its body’s configuration space is
a subset of (S1)4 ×R. Once embedded in an ambient 3D world R3 and restricting the
car to contact a planar surface, the space of robot’s possible states X becomes a subset
of (S1)4 × R × R2 × S1. The third and fourth factors account for the car’s position
and orientation, respective, in the plane. Thus, the ambient space is the theoretical
space in which the robot is and we do not refer to it in our theory. Often, x ∈ X may
also encode configuration velocities and other environmental particulars. We assume
in this paper that X is a metric space. We obtain the notion of an environment in the
next section by equipping X with a sensor mapping and a path action.

A control signal ū : [0, T ) → U influences the robot’s state in the state space X.
If X is a smooth manifold, as in many applications, we can consider a parameterized
vector field f : X×U → TX, where TX is the tangent bundle such that f(x, u) ∈ TxX.
Then, each ū, given an initial point x0 ∈ X, yields a trajectory x̄ : [0, T ] → X is the
integral curve satisfying the following:

x̄(0) = x0 x̄′(t) = f(ū, x(t)) for all t ∈ [0, T ]

If f is continuous, then x̄ will also be continuous. The existence and uniqueness of x̄ for
locally Lipschitz f follows from the Picard-Lindelöf theorem. Thus, the range of this
map ū 7→ x̄ is included in the space of all continuous paths x̄ : [0, T ] → X. Motivated
by this, we define:

X =
⋃

T∈R⩾0

C([0, T ], X). (1)

Again following [36], and assuming that X is equipped with the metric dX , we can
equip X with the metric

ϱX (x̄1, x̄2) = sup{dX(x̄1(t), x̄2(t)) | t ∈ [0, T ]}+ |T2 − T1|, (2)

where T = min{T1, T2}. As with UM , we show that X is a Polish space.

Proposition 3.7. If dX is a Polish metric on X, then ϱX is a Polish metric on X .
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Proof. The argument for completeness is similar to that of the proof of Proposition 3.5.
The only difference is that instead of the L1-metric we use the sup-metric which is also
known to be complete (in fact Polish) in this case [19, (4.19)]. To find a countable
dense set, again use the fact that XT = {x̄ ∈ X : |x̄| = T} is Polish for all T and let

D =
⋃

T∈Q+

DT ,

where DT is a dense countable set of XT and T ranges over positive rationals. As a
countable union of countable setsD is countable and is easily seen to be dense in X .

Denote by r̄ : UM×X → X the map that takes (ū, x) to the corresponding trajectory
x̄,

r̄ : (ū, x) 7→ x̄. (3)

Let r : UM ×X → X be the map r(ū, x) = r̄(ū, x)(|r̄(ū, x)|). It was shown in [36] that
if f is Lipschitz and X is a subspace of Rn, then r̄ is continuous. We prove a slight
strengthening of that:

Proposition 3.8. If f is uniformly continuous and X ⊂ Rn, then both r̄ and r are
continuous.

Remark 3.9. We will see in Corollary 3.15 that under very general conditions the
continuity of r implies the continuity of r̄. ⊣

Proof. We prove the continuity of r̄. The continuity of r will then follow from the
continuity of the projection map x̄ 7→ x̄(|x̄|). Fix (ū1, x1) and (ū2, x2) arbitrarily. Let
T1 = |ū1|, T2 = |ū2| and T = min{T1, T2}. Let ε > 0 and δ1 be chosen such that
d(f(x2, u2), f(x1, u1)) < ε/(3T ) whenever dX(x1, x2) + dU(u1, u2) < δ1, which exists by
the uniform continuity of f . Let δ = min{ε, δ1}/3. Suppose now ϱUM

(ū1, ū2) + |x2 −
x1| < δ and let x̄1 = r(ū1, x1), x̄2 = r(ū2, x2). Now,

ϱX (x̄1, x̄2)

⩽ sup
{
|x1 − x0|+

∫ t

0

∣∣f(x̄1(t), ū1(t))− f(x̄2(t), ū2(t))
∣∣dt | t ∈ [0, T ]

}
+ |T2 − T1|

⩽ sup
{∫ t

0

ε/(3T )dt | t ∈ [0, T ]
}
+ |x2 − x1|+ |T2 − T2|

= sup
{
tε/(3T ) | t ∈ [0, T ]

}
+ |x2 − x1|+ |T2 − T2|

= ε/3 + δ + δ

⩽ ε/3 + ε/3 + ε/3

= ε,

which proves that r is continuous at the arbitrary point (ū1, x1).
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3.3 Topological versions

The purpose of this section is to free ourselves from differential calculus and enable
more flexible usage of topological machinery. In Definition 3.1 we required that U is
a topological space, because we had to talk about measurable functions with range U .
In the below definition we do not need to equip U with a topology, although usually
in most applications it has a natural topology that comes with it.

Definition 3.10. Suppose U is any set and let U∗ be the set of all functions ū : [0, T ) →
U . Define |ū|, ◁ and ⊕ the same way as in Definition 3.1. We define U to be any subset
of U∗ which satisfies (2) and (3) of Proposition 3.2, that is, closed under segmentation
and extensive, and that it is equipped with a topology satisfying Lemma 3.6, that is,
the projection maps τ1 : ū 7→ |ū| and τ2 : (ū, t) 7→ ū<t are continuous. ⊣

We use Propositions 3.2 and 3.6 to justify Definition 3.10 as a proper generalization
of UM of the previous section. We will use the space X the way we already defined it,
see (1) and (2), assuming X is a Polish metric space (we no longer assume that it is a
manifold).

Finally, here is the definition of path action which is independent of a differential,
or other non-topological, structure on X or U :

Definition 3.11. A path action of U on X is a continuous function p : U × X → X
such that

(PA1) p(∅, x) = x for all x ∈ X, and

(PA2) p(ū, x) = p(ū⩾t, p(ū<t, x)) for all x ∈ X, all ū ∈ U and all t ∈ R⩾0.

⊣

Remark 3.12. Perhaps a more natural definition of an action would to have the
following clause instead of (PA2):

(PA2′) p(ū0 ⊕ ū1, x) = p(ū1, p(ū0, x)) for all x ∈ X, all ū0, ū1 ∈ U .

This is equivalent to (PA2) when U is closed under ⊕. The space UM is such (Propo-
sition 3.2). Suppose, however, one wanted to consider UC ⊂ UM which consists only
of continuous paths. Then, UC is not closed under ⊕: if limt→|ū0| ū0(t) ̸= ū1(0), then
ū0 ⊕ ū1 is not continuous. In this case, clause (PA2) comes in handy as it serves the
same role as (PA2′) but does not require closure under ⊕. It does, however, require
that the space is closed under segmentation (Definition 3.10). The choice between
(PA2) and (PA2′) will not be important in this paper until Theorem 7.4. ⊣

Proposition 3.8 justifies the assumption of continuity in Definition 3.11. Here p
corresponds to r. If we use Proposition 3.8 as a justification for the generalization, the
reader may wonder why we did not additionally assume the continuity of the induced
map into trajectories defined by

p̄(ū, x) : [0, |ū|] → X p̄(ū, x)(t) = p(ū<t, x) 0 ⩽ t ⩽ |ū|. (4)

This is because continuity is implied by Corollary 3.15 below.
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Lemma 3.13. Let Z be a topological space and let f : Z×[0, T ] → R and h : Z → [0, T ]
be continuous. Then, the function g : Z → R defined by

g(z) = sup{f(z, t) | t ∈ [0, h(z)]}

is continuous.

Proof. Let a < b be real numbers. We will show that g−1(a, b) is open in Z. Let

E = {z | ∃t ∈ [0, T ](t ⩽ h(z) ∧ f(z, t) > a)}, and

A = {z | ∀t ∈ [0, T ](t ⩽ h(z) → f(z, t) < b)}.

By the continuity of h and f , we can replace “⩽” by “<” in the definition of E, so

E = {z | ∃t ∈ [0, T ](t < h(z) ∧ f(z, t) > a)}.

We now have g−1(a, b) = E ∩ A; thus, it suffices to show that E and A are open. The
set E is the projection of {(z, t) | t < h(z)}∩f−1(a,∞) which is open by the continuity
of h and f . Thus, it remains to show that A is open. Let z0 ∈ A. We will find an
open neighborhood O of z0 with O ⊂ A. Let Ob = f−1(−∞, b). Since it is open by
the continuity of f , for each t ∈ [0, h(z0)] we have (z0, t) ∈ Ob and it has a rectangular
open neighbourhood Ot × I t in Ob:

(z0, t) ∈ Ot × I t ⊂ Ob. (5)

By compactness, find t0, . . . , tn such that I t0 , . . . , I tn cover [0, h(z0)]. Let O = Ot0∩· · ·∩
Otn . Clearly, z0 ∈ O. It remains to show that O ⊂ A. So let z ∈ O and t ∈ [0, h(z0)]
be arbitrary. Let k be such that t ∈ I tk . However, then (z, t) ∈ Otk × I tk⊂Ob by (5);
thus, f(z, t) < b by the definition of Ob.

Below, let X∗ be the set of all functions [0, T ] → X, T ∈ R⩾0.

Proposition 3.14. Let U be as in Definition 3.10, Z any topological space, (X, dX) a
Polish metric space, and X as in (1) with metric as in (2). Suppose p : U ×Z → X is
continuous and define the function p̄ : U × Z → X∗ as in (4), by

p̄(ū, z) : [0, |ū|] → X p̄(ū, x)(t) = p(ū<t, x) 0 ⩽ t ⩽ |ū|. (6)

Then, the range of p̄ is a subset of X , and p̄ is continuous.

Proof. To check that x̄ = p̄(ū, x) belongs to X , simply note that by the continuity of p
and of ū 7→ ū<t, x̄ is also continuous. For the continuity of p̄, it is enough to show that
for all (ū0, z0) ∈ U × Z and all ε, the inverse image of BX (p̄(ū0, z0), ε) is open. Thus,
fix (ū0, z0) ∈ U × Z. Let T = |u0|. Define f : U × Z × [0, T ] → R by

f(ū, z, t) = dX(p(ū<t, z), p((ū0)<t, z0)) + |T − |ū||.

By the continuity of (ū, t) 7→ ū<t, of ū 7→ |ū| (see Definition 3.10), of p, and of the
metric dX , f is continuous. Let h : U × Z → [0, T ] be defined by h(ū, z) = |ū| which
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is again continuous. By Lemma 3.13, the function g : U × Z → R given by g(ū, z) =
sup{f(ū, z, t) | t ∈ [0, h(ū, z)]} is continuous. But g(ū, z) = ϱX (p̄(ū, z), p̄(ū0, z0)). Now
consider the inverse image

p̄−1BX (p̄(ū0, z0), ε) = {(ū, z) ∈ U × Z | g(ū, z) < ε}
= g−1(−ε, ε).

which is open by the continuity of g.

Corollary 3.15. Suppose p : U ×X → X is a path action. Let p̄ be defined as in (4).
Then, p̄ : U ×X → X is continuous.

Proof. Choose Z = X in Proposition 3.14.

For our purposes a full-fledged action as described in Definition 3.11 is often not
necessary. In our setup (Definition 4.1) the environment will always have a unique
initial state x0 ∈ X for the robot; thus, all trajectories will start from that point. It
is only a technicality, as switching the initial state can be formalized as switching the
environment from (X, x0) to (X, x1). However, it will make mathematics easier for our
considerations of covering spaces. Because of this, it will often be enough to consider
the restriction p↾(U × {x0}). Thus, we define:

Definition 3.16. Let (X, x0) be a pointed space. An initialized path action is a
continuous p : U → X such that p(∅) = x0. We also denote p : U → (X, x0), or even
p : (U ,∅) → (X, x0), to emphasize that it is a map between pointed spaces. As for
path actions (4), given an initialized path action p, define p̄ : U → X by

p̄(ū)(t) = p(ū<t), t ⩽ |ū|. (7)

⊣

Remark 3.17. Given a path action p : U ×X → X, the function px0 : U → X defined
by px0(ū) = p(ū, x0) is an initialized path action. ⊣

Proposition 3.18. Let p : U → (X, x0) be an initialized path action. Then, p̄ is
continuous.

Proof. Choose Z = {x0} in Proposition 3.14, and identify U × {x0} with U .

4 History Information Spaces

In this section we first define environments and how trajectories in X become also
trajectories in the sensory space (Section 4.1). Then we generalize history information
spaces in Section 4.2.
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4.1 Trajectories in environments

We want to now make precise the idea that two environments are indistinguishable
from the point of view of some mobile robot. We introduce some more definitions.
Fix a Polish space of control signals U as in Definition 3.10. Let the observation space
Y be any topological space, corresponding to the set of all outputs of a given sensor
connected to the robot. When comparing environments, they all should share U and
Y because these are the “interfaces” between the robot and its environment. If they
are different, it means that the robot has different actuators or different sensors, and
comparing such situations is beyond our present analysis. Thus, we consider that U
and Y are fixed for the rest of the paper.

The algebra of Borel sets in a Polish space is the smallest σ-algebra containing the
basic open sets. A function from a Polish space to another is Borel if the inverse image
of every open set is Borel. Equivalently, the inverse image of every Borel set is Borel.

Definition 4.1. An environment is a tuple E = (X, x0, h, p) where X is a Polish space,
x0 ∈ X is the initial position, h : X → Y a Borel sensor mapping [21], and p is either
an initialized path action p : U → X or a path action p : U ×X → X (Definitions 3.11
and 3.16). The pair (h, p) is called a sensorimotor structure on (X, x0). We will assume
that p is an initialized path action unless mentioned otherwise. ⊣

We require h to be Borel because continuity is too strong of a requirement in general,
but to have no requirements at all would make working with h difficult. The class of
Borel functions is loose enough to include all functions that are generally interesting
in this context, such as piecewise continuous functions. Unlike measurable sets, Borel
sets are topologically invariant (preserved by homeomorphisms). If we were to define
a Radon measure on X, then all Borel functions would automatically be measurable.
Moreover, all Borel functions are continuous on a co-meager set. (Co-meager sets
are sets containing an intersection of countably many dense open sets.) Yet another
benefit for us is that the composition of Borel functions is a Borel function and hence
measurable.

Let Y be the space of measurable functions ȳ : [0, T ) → Y , just as U is the set of
measurable functions into U (Definition 3.1). As defined in (7), each path ū : [0, T ) → U
in U generates a path p̄(ū) = x̄ū : [0, T ] → X defined by

x̄ū(t) = p(ū<t) = p̄(ū)(t) (8)

for all 0 ⩽ t < T . This x̄ū is the trajectory that the robot will traverse in the
configuration space X starting from its initial position x0 and applying the control
given by ū. This trajectory generates a unique path ȳū : R⩾0 → Y in the robot’s
observation space defined by

ȳū(t) = h(x̄ū(t)) = h(p̄(ū)(t)) = h(p(ū<t)). (9)

Since x̄ū is continuous and h is Borel, ȳū is measurable.
Define the induced sensory trajectory map h̄ : X → Y by

h̄(x̄)(t) = h(x̄(t)). (10)
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Using this notation, we have
yū = h̄(p̄(ū)). (11)

4.2 Continuous-time history information states

The following definition can be thought of as a continuous-time version of the history
information space I [21, Ch. 11], and [23, 31, 34].

Definition 4.2 (History information space). A pair η = (ū, ȳ) ∈ U × Y is a history
information state. The set of all information states U × Y is denoted by I. ⊣

Now, each environment E = (X, x0, h, p) carves out a subspace of I which contains
only those histories that are possible in E.

Definition 4.3. Given an environment E, let IE be the set of all pairs (ū, ȳ) where
ȳ = ȳū. To specify in which environment ȳ was obtained from ū, we denote ȳEū = ȳū. ⊣

5 Indistinguishability of Environments

In this section we deal with the equivalence relations of indistinguishability of environ-
ments. We will later introduce the non-symmetric relation of strong indistinguishability
in Section 6.3.

5.1 Main construction

We will now present the main formal ingredients of the theory of indistinguishability.

Definition 5.1. Two environments E = (X, x0, h, p) and E ′ = (X ′, x′
0, h

′, p′) are I-
equivalent, if for all ū ∈ U , ȳEū = ȳE

′
ū . Denote the I-equivalence relation by ≡I . ⊣

We have the following:

Lemma 5.2. The following are equivalent:

1. E ≡I E ′,

2. IE = IE′
,

3. h̄ ◦ p̄ = h̄′ ◦ p̄′,

4. h ◦ p = h′ ◦ p′.

Proof. 1.⇒2. follows from the definitions of ≡I and IE, IE′
.

17



2.⇒3. Suppose ū ∈ U . Then, there is only one ȳ ∈ Y such that the pair (ū, ȳ) is in
IE and it is ȳ = ȳEū which by (11) equals

ȳEū = h̄(p̄(ū)). (12)

However, since IE = IE′
, also (ū, ȳEū ) ∈ IE′

. By the fact that in IE′
there is

only one pair with the first coordinate equal to ū, we have ȳEū = ȳE
′

ū and using
(11) again we have ȳE

′
ū = h̄′(p̄′(ū)) and using (12) we have h̄(p̄(ū)) = h̄′(p̄′(ū)).

By the arbitrary choice of ū, we conclude 3.

3.⇒4. Let ū ∈ U . By (7) we can write

p̄(ū′)(|ū|) = p(ū) and p̄′(ū′)(|ū|) = p′(ū). (13)

Using (10), we now obtain:

h(p(ū))
(13)
= h(p̄(ū′)(|ū|)) (10)

= h̄(p̄(ū′))(|ū|) = (h̄ ◦ p̄)(ū′)(|ū|)
3.
= (h̄′ ◦ p̄′)(ū′)(|ū|) = h̄′(p̄′(ū′))(|ū|) (10)

= h′(p̄′(ū′)(|ū|))
(13)
= h′(p′(ū)).

4.⇒1. Let ū ∈ U . We need to show that ȳEū = ȳE
′

ū . By (9), for all t < |ȳū| we have

ȳEū = h(p(ū<t))
4.
= h(p(ū<t)) = ȳE

′

ū ,

which completes the proof.

Corollary 5.3. ≡I is an equivalence relation.

Proof. Follows easily from any of the characterizations given by Lemma 5.2.

Thus, I-equivalence means that no matter what the robot does, it cannot receive
different sensory readings in these two environments. We return to the example of a
circle and a line.

Example 5.4. Fix U = {−1, 1} and some Polish observation space Y . Suppose X =
S1 is given as {eiθ | θ ∈ R} with the initial point x0 = e0. Suppose h : S1 → Y is a
continuous sensor mapping and given ū ∈ U , the robot’s state is given by p(ū) = eiθ(ū),
where

θ(ū) =

∫ |ū|

0

ū(t)dt.

This defines an environment E = (X, x0, h, p).
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Now let X ′ = R, x′
0 = 0, and p′(ū) =

∫ |ū|
0

ū(t)dt. To define h′ : R → Y , let
f : R → S1 be the covering map t 7→ eit, and let h′ = h ◦ f . Now p′ is a lifting of p,
f ◦ p′ = p, and the following diagram commutes:

(X ′, x′
0)

(U ,∅) (X, x0) Y.

f h′

p

p′

h

(14)

This diagram shows pointed spaces which are pairs (Z, z) with Z a space and z ∈ Z
a point. The arrows correspond to maps which take the selected point to the selected
point. The selected point in ∅ ∈ U is the empty control signal corresponding to T = 0.
We have not shown the selected point in Y because our maps do not have a requirement
to map x0 or x′

0 to any particular point, although due to commutation, we know that
h′(x′

0) = h(x0). From the above we have

h ◦ p = h ◦ (f ◦ p′) = (h ◦ f) ◦ p′ = h′ ◦ p′.

Thus, by Lemma 5.2(1. ⇔ 4), we have E ′ ≡I E, and so the environments are indistin-
guishable.

Note that we defined h′ from h using f . In Section 6.2 we will also see that such p′

as above can always be obtained from any initialized path action p. This means that
no matter which sensor mapping there is on the circle, the possibility that it is actually
the line can never be ruled out. We will see in Section 6.2 (especially Theorem 6.5)
that the notion of a covering space plays a key role here. ⊣

We can also formulate an equivalence in terms of “eternal” or unbounded trajecto-
ries. This will have the advantage of increased generality. We define:

Definition 5.5. A branch through U is defined to be a function u : R⩾0 → U such that
for all t ∈ R⩾0, we have that u ↾ [0, t) ∈ U . Let BU be the set of branches through U .
Similarly, denote by x a branch through X , i.e., a function x : R⩾0 → X such that
x↾ [0, T ] ∈ X for all T ∈ R⩾0. Denote the set of branches through X by BX . Similarly
let BY be the set of branches through Y defined analogously. ⊣

Denote by p and h the natural extensions of p̄ and h̄ to the sets of branches:

p : BU → BX , p(u)(t) = p(u<t), (15)

h : BX → BY , h(x)(t) = h(x(t)), (16)

in which u<t = u↾ [0, t) is defined just like for elements of U .
For the bounded-domain paths, given a path action p : U × X → X, each branch

u through U generates a unique trajectory xu = p(u) : R⩾0 → X through the state
space given by

xu(t) = p(u<t). (17)

This trajectory generates a unique path yu = h(x) : R⩾0 → Y in the observation space
defined by h(x)(t) = h(p(u ↾ t)). We write yE

u to specify the environment E in which
it was computed.
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Definition 5.6. The branches x ∈ BX are called full trajectories and y ∈ BY are
called the full sensory histories. The set of pairs (u,y) ∈ BU × BY is the set of full
information histories and we denote it by I. Analogously to Definition 4.3 we also
define IE ⊂ I to be the set of the pairs of the form (u,yE

u ) for a given environment E.
⊣

We can now reformulate our definition of equivalence in terms of full information
histories. This definition is more general than the definition of I-equivalence (Defini-
tion 5.1) in the sense that it includes it as a special case (see Section 5.3), but also gives
the possibility of defining a whole class of filter-based equivalence relations. A filter is
an equivalence relation F either on Y , on Y , or on BY usually so that an equivalence
on Y induces equivalences on the function spaces through pointwise application. Ex-
amples of filters are the gap-sensor (Example 8.1), the beam-sensor (Example 8.6) or
considering histories up to homeomorphisms (see Section 5.2).

Definition 5.7. Given an equivalence relation F on the set of full information histories
BU ×BY , let ≡F be an equivalence relation on the set of all environments E, E ′ such
that

E ≡F E ′

if and only if for all u ∈ BU , ((u,yE
u ), (u,y

E′
u )) ∈ F . We call this filter based full

historical equivalence or just filter based equivalence. If F is the identity relation, we
drop it from the notation, so≡ is the same as≡id. We call this full historical equivalence
or just historical equivalence. ⊣

Similarly as for ≡I , we have:

Lemma 5.8. The following are equivalent:

1. E ≡ E ′,

2. IE = IE′
,

3. h ◦ p = h′ ◦ p′,

4. h̄ ◦ p̄ = h̄′ ◦ p̄′,

5. h ◦ p = h′ ◦ p′,
Proof. The implications 1. ⇒ 2. ⇒ 3. are proved similarly as the same ones in
Lemma 5.2, and the implications 4. ⇒ 5. ⇒ 1. similarly as 3. ⇒ 4. ⇒ 1. in Lemma 5.2.
The only one requiring a new argument is 3. ⇒ 4. which we do now.

3.⇒4. Suppose ū ∈ U . Then, by the property of being extensive (Definition 3.10), we
can find u ∈ BU with u<|ū|=ū. Let t ⩽ |ū|. Then,

h̄(p̄(ū))(t)
(10)
= h(p̄(ū)(t))

(7)
= h(p(ū<t)) = h(p((u<|ū|)<t))

t⩽|ū|
= h(p(u<t))

(15)
= h(p(u)(t))

(16)
= h ◦ p(t)

3.
= h′ ◦ p′(t)

(16)
= h′(p′(u)(t))

(15)
= h′(p′(u<t))

= h′(p′((u<|ū|)<t)) = h′(p′(ū<t))
(10)
= h̄′(p̄′(ū))(t).
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5.2 Examples of filter-based equivalence relations

Example 5.9. Define (u,yE
u ) ≈ (u,yE′

u ), if and only if there is a homeomorphism
f : R⩾0 → R⩾0 such that y ◦ f = y′ and u ◦ f = u′. Then consider ≡≈. Clearly, ≡-
equivalence implies ≡≈-equivalence by choosing the homeomorphism to be the identity.
The relation ≡≈ pertains to robots whose time perception is only relational: there is
memory and knowledge of which chronological order the events occurred in, but not
of how much time passed between them. This is because the set of homeomorphisms
R⩾0 → R⩾0 is exactly the set of strictly order preserving bijections. ⊣

Example 5.10. Suppose F is an equivalence relation on Y making some observations
indistinguishable. It induces an equivalence relation F̄ on Y ∪ BY through point-
wise application: (ȳ0, ȳ1) ∈ F̄ if dom(ȳ0) = dom(ȳ1) and for all t ∈ dom(ȳ0) we have
(ȳ0(t), ȳ1(t)) ∈ F . Then, ≡F̄ is an equivalence relation which equates those environ-
ments which cannot be distinguished by any robot that is equipped with this filter F .
We will abuse the notation and denote ≡F in this case instead of ≡F̄ and call it filter
based equivalence induced by F . ⊣

Example 5.11. Suppose the robot has a high-level sensor which reports the result of a
low-level sensorimotor interaction. For example repeatedly pushing against a wall can
provide the data of how hard the wall is and moving whiskers can generate data about
the presence of obstacles or texture of surfaces [5]. This can be expressed by defining a
labeling on the set of information histories of fixed length g : {(ū, ȳ) ∈ I : |ȳ| = 1} → L,
where L is some set of labels. This induces an equivalence relation on BY as follows:

(u,y) ∈ Fg ⇐⇒ ∀n ∈ N
(
g(u↾ [n, n+ 1)) = g(y ↾ [n, n+ 1))

)
,

or as a moving window as follows:

(u,y) ∈ F ′
g ⇐⇒ ∀t ∈ R⩾0

(
g(u↾ [t, t+ 1)) = g(y ↾ [t, t+ 1))

)
.

Then, ≡Fg or ≡F ′
g
capture the equivalence with respect to this filtering. ⊣

Open Problem 5.12. How to generalize the notion of derived information spaces
[21, 31] and of sufficient equivalence relations [34] to the continuous framework?

5.3 Equivalence of equivalences

Both equivalence relations ≡I and ≡ are defined in a natural way of what would it
mean for two environments to be indistinguishable. In fact, they turn out to be the
same:

Theorem 5.13. For all environments E and E ′ we have E ≡I E ′ iff E ≡ E ′.

Proof. Apply Lemma 5.2(4) and Lemma 5.8(5).
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In view of Theorem 5.13 it is enough to only talk about equivalence relations of the
form≡F for some equivalence relation F either on Y , on Y or on BY (see Examples 5.11
and 5.10). This opens an intriguing avenue for future research, but in this paper we
only focus on ≡ with F being the identity.

We have now defined a class of equivalence relations on tuples (X, x0, h, p) which
are, for all intents and purposes, continuous time dynamical systems with a robotic
twist (the sensor mapping h and the nature of the action p). The equivalence relations
defined are motivated by robotics because they are based on comparing orbits (robot’s
trajectories) in terms of the sensor mapping h. We now state another open problem:

Open Problem 5.14. What is the complexity of various ≡F ’s in terms of descriptive
complexity and Borel reducibility [11]? How do they compare to other known equivalence
relations on dynamical systems?

6 Homomorphisms and Covering Spaces

Upon seeing an equivalence relation, it is natural to ask which maps witness it? For
example, a homeomorphism witnesses homotopy equivalence but does not witness iso-
metric equivalence.

6.1 Homomorphisms of environments

Definition 6.1. Given environments E = (X, x0, h, p) and E ′ = (X ′, x′
0, h

′, p′), a
map f : X ′ → X is a homomorphism (also denoted as f : E ′ → E), if the following
conditions are satisfied:

(HOM1) f(x′
0) = x0,

(HOM2) for all ū ∈ U , f(p′(ū)) = p(ū),

(HOM3) for all x ∈ X, h′(x) = h(f(x)).

This is to say that f is such that the following diagram, which is already familiar from
Example 5.4(14), commutes:

(X ′, x′
0)

(U ,∅) (X, x0) Y.

f h′

p

p′

h

If p is a initialized path action (see Definition 4.1), then we require a strengthening of
(HOM2):

(HOM2)’ For all ū ∈ U and all x′ ∈ X ′, f(p′(ū, x′)) = p(ū, f(x′)).
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Recall that we are using pointed spaces. The arrows correspond to maps which take the
selected point to the selected point. The selected point in U is the empty control signal
corresponding to T = 0. We have not shown the selected point in Y because the sensor
mappings h and h′ do not have a requirement to map x0 or x

′
0 to any particular point,

although due to commutation of the diagram (if holds), we know that h′(x′
0) = h(x0).

⊣

It is straightforward to see that the existence of a homomorphism is a sufficient
condition for the equivalence to take place:

Theorem 6.2. If there is a homomorphism f : E ′ → E, then E ≡ E ′ and E ≡I E ′.

Proof. Consider the commutative diagram of Definition 6.1. Since the triangle on the
left commutes, we have f ◦p′ = p, and from the triangle on the right, we have h′ = h◦f .
So,

h ◦ p = h ◦ (f ◦ p′) = (h ◦ f) ◦ p′ = h′ ◦ p′.

Applying Lemmas 5.2 and 5.8 we have the result.

6.2 Covering maps of environments

Covering maps have the role of “unravelling” fundamental groups. A closed loop is
the image of a non-closed path in the covering space. This is why they are natural
to analyse loop closure. The topologist will also readily recognize the idea of covering
spaces from the commutative diagrams in (14) and Definition 6.1. Before we can exploit
this idea, we prove the following:

Lemma 6.3. The space U is contractible.

Proof. We will prove a slightly stronger property that {∅} ⊂ U is a strong deformation
retract of U . Define F : U × [0, 1] → U by F (ū, t) = ū<θ(t) where θ(t) = − ln(t) and
by convention − ln(0) = ∞ and ū<∞ = ū. By Definition 3.10, F is continuous because
the map (ū, t) 7→ ū<t is. Clearly, F (ū, 0) is the identity, F (∅, t) = ∅ for all t, and
F (ū, 1) = ū<0 = ∅ for all ū. Thus, F is a strong deformation retraction to {∅}.

We say that A ⊂ X is reachable, if for all a ∈ A there is ū ∈ U with p(ū) = a.
We say that the environment is fully reachable, if X is reachable. A covering map
f : (X ′, x′

0) → (X, x0) is an onto map which is a local homeomorphism. A pointed
space (X ′, x′) is a covering space of (X, x), if there is a covering map from (X ′, x′) to
(X, x).

Lemma 6.4. Assume that U is path-connected and locally path-connected. E = (X, x0, h, p)
is a fully reachable environment, and (X ′, x′

0) is a covering space of (X, x0) witnessed
by the covering map f . Then, there is unique initialized path action p′ : U → X ′ such
that f ◦ p′ = p and a unique sensing mapping h′ : X ′ → Y such that h′ = h ◦ f .
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Proof. Since U is simply connected (by Lemma 6.3), there is a unique lift of p : (U ,∅) →
(X, x0) to p′ : (U ,∅) → (X ′, x′

0); see Propositions 1.33 and 1.34 in [16]. This p′ is a
continuous map such that f ◦ p′ = p and p′(∅) = x′

0. Thus, it satisfies the conditions
of Definition 3.16 and is an initialized path action. The uniqueness and existence of h′

follow from its definition.

Theorem 6.5. Assume that U is path-connected and locally path-connected, E =
(X, x0, h, p) is a fully reachable environment, and (X ′, x′

0) is a covering space of (X, x0).
Then, there is a sensorimotor structure (h′, p′) on (X ′, x′

0) making it into environment
E ′ = (X ′, x′

0, h
′, p′) such that E ≡ E ′.

Proof. Let f witness that (X ′, x′
0) is a covering space of (X, x0) and let h′ and p′ be

the functions given by Lemma 6.4. Then, they make f into homomorphism E ′ → E,
and the result follows from Theorem 6.2.

We assumed above that U is path-connected and locally path-connected. We show
that these assumptions are satisfied for U = UM of Definition 3.1:

Proposition 6.6. Let UM be as in Definition 3.1 with metric from Definition 3.4.
Then, UM is path-connected and locally path-connected.

Proof. Let ū0, ū1 ∈ UM . We will construct a path γ : [0, 1] → UM such that γ(k) = uk

for k ∈ {0, 1} and for all s ∈ [0, 1] we will have ϱUM
(γ(s), u0)+ϱUM

(γ(s), u1) = d(u0, u1).
From this it follows that every ball BUM

(ū, r), r ∈ R+, in UM is path connected
which implies the statement to be proved. Suppose w.l.o.g. T1 = |ū1| ⩾ |ū0| = T0.
For s ∈ [0, 1] let γ(s) be a path with |γ(s)| = T0 + (T1 − T0)s such that for all
t ∈ [0, T0 + (T1 − T0)s) we have

γ(s)(t) =

{
ū1(t), if t < T0s or t > T0

ū0(t), otherwise.

Being piecewise measurable, γ is measurable; thus, γ ∈ UM . Using the fact that
0 ⩽ s ⩽ 1 one can verify that |T0+(T1−T0)s−T0|+ |T1−(T0+(T1−T0)s)| = |T1−T0|.
Then

ϱUM
(γ(s), u0) + ϱUM

(γ(s), u1)

=

∫ T0

0

dU(γ(s)(t), u0(t))dt+

∫ T0

0

dU(γ(s)(t), u1(t))dt+ |T1 − T0|

=

∫ sT0

0

dU(γ(s)(t), u0(t))dt+

∫ T0

sT0

dU(γ(s)(t), u0(t))dt

+

∫ sT0

0

dU(γ(s)(t), u1(t))dt+

∫ T0

sT0

dU(γ(s)(t), u1(t))dt+ |T1 − T0|
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=

∫ sT0

0

dU(u1(t), u0(t))dt+

∫ T0

sT0

dU(u0(t), u0(t))dt

+

∫ sT0

0

dU(u1(t), u1(t))dt+

∫ T0

sT0

dU(u0(t), u1(t))dt+ |T1 − T0|

=

∫ sT0

0

dU(u1(t), u0(t))dt+

∫ T0

sT0

dU(u0(t), u1(t))dt+ |T1 − T0|

=

∫ T0

0

dU(u1(t), u0(t))dt+ |T1 − T0|

= ϱUM
(u0, u1),

which was to be proven.

Corollary 6.7. Assume that U = UM , E = (X, x0, h, p) an environment, and (X ′, x′
0)

a covering space of (X, x0). Then, there is a sensorimotor structure (h′, p′) on (X ′, x′
0)

making it into environment E ′ = (X ′, x′
0, h

′, p′) such that E ≡ E ′.

Proof. By Lemma 6.6, UM satisfies the assumptions of Theorem 6.5.

Open Problem 6.8. What are the minimal topological conditions for U such that
Theorem 6.5 holds and when are they satisfied?

Theorem 6.9. Suppose E = (X, x0, h, p) and E ′ = (X ′, x′
0, h

′, p′) are environments
and that one of the following holds:

(A) There exists a common covering space (X̃, x̃) of both (X, x0) and (X ′, x′
0) wit-

nessed by covering maps f and f ′ respectively such that the lifts of p and p′ are
identical and such that h ◦ f = h′ ◦ f .

(B) There exists a space (X̂, x̂0) such that both (X, x0) and (X ′, x′
0) are covering

spaces of (X̂, x̂0) witnessed by covering maps f and f ′ respectively such that
f ◦ p = f ′ ◦ p′ and there is ĥ : X̂ → Y such that h and h′ are lifts of ĥ along the
respective covering maps.

Then, E ≡ E ′.

Proof. In the first case, denote by p̃ the lift of p (and p′) and by h̃ = h ◦ f = h′ ◦ f .
Then, it is clear that f and f ′ are homomorphisms from Ẽ = (X̃, x̃0, h̃, p̃) to E and
E ′ respectively. Thus, we have Ẽ ≡ E and Ẽ ≡ E ′. By transitivity we have E ≡ E ′.
Note that the fact that ≡ is an equivalence relation follows from Corollary 5.3 and
Theorem 5.13.

For the second case, denote p̂ = f ◦ p = f ◦ p′ and we have that f and f ′ are ho-
momorphisms from E and E ′ respectively to Ê = (X̂, x̂0, ĥ, p̂); then apply transitivity
again.

Example 6.10 (An application to topology). We can use Corollary 6.9 to prove that
certain spaces do not have a common covering space, if we can show that a robot
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can distinguish between them. For example consider a robot which can detect the
local homeomorphism type of its environment (for more on this see Theorem 8.7 in
Section 8). Then, this robot can easily detect a difference between the following two
spaces on Figure 3. In the space on the left it is possible to go forward along a
1-dimensional path and repeatedly bump into a 4-crossing (by circling around the left-
most loop). In the space on the right, however, no matter how the robot traverses
along the 1-dimensional edges, it will sooner or later bump into a 3-crossing. U-turns
midway are not made. Thus, E ̸≡ E ′ and therefore by Corollary 6.9 there is no
common covering space of both of them, neither there is a space which both of them
are a covering space of. ⊣

6.3 Strong indistinguishability

Motivated by Theorem 6.5, we can define:

Definition 6.11. A pointed space (X, x0) is strongly indistinguishable from the pointed
space (X ′, x′

0), if for all sensorimotor structures (h, p) on (X, x0) there is a sensorimotor
structure (h′, p′) on (X ′, x′

0) such that E ≡ E ′ where E = (X, x0, h, p) and E ′ =
(X ′, x′

0, h
′, p′). ⊣

The relation of strong indistinguishability is not symmetric, but it is transitive and
reflexive; thus, it determines a quasiorder on environments. The higher an environment
is in this ordering the more ambiguities it has. At the top are the universal covering
spaces and at the bottom are the quotients with respect the equivalence relation h(x) =
h(x′) (see [34] for related concepts). See Figure 2 and it’s caption.

7 Equivalence Characterization and Bisimulation

Theorem 6.9 gives sufficient conditions to decide when two spaces are ≡-equivalent
via covering spaces and covering maps. It is also appealing from the point of robotics
because a visual sensor will typically report information about the geometric structure
of the environment and covering spaces have the property of preserving the local topo-
logical structure. The covering maps, however, do note characterize the equivalence.
For example, it is not hard to come up with examples where a projection map is in the
role of a homomorphism, or where no homomorphism exists.

Example 7.1. For example let X = S1 and X ′ = S1 × [0, 1]. Let h : X → R and
h′ : X ′ → R be defined so that for all θ ∈ [0, 2π) and all t ∈ [0, 1],

h(eiθ) = h′(eiθ, t) = sin(θ).

Thus, h′ does not depend on t. Further, let the initialized path actions be some func-
tions p : U → X and p′ : U → X ′ such that pr1 ◦p′ = p where pr1 is the projection to
the first coordinate. Now the projection mapping pr1 is, in fact, a witness of the equiv-
alence between these two environments, but of course there are no common covering
spaces because these must be local homeomorphisms. ⊣
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It is even possible to have two spaces which are equivalent but there is no map at
all that witnesses that:

Example 7.2. Let X = X ′ = ∆ ∨ I where ∆ is a 2-simplex and I is a 1-simplex, and
∨ means that they are glued at one point, for example at a 0-face of both. Thus, it
looks like a kite. Suppose h : X → {−1, 0, 1} is such that h(x) = −1 for all x in the
2-simplex and h(x) = 1 for x in the 1-simplex, except h(x) = 0 at the point where
they are glued. For h′ the numbers are flipped so that h′ = −h. Now if a continuous
f : X → X ′ commutes with the sensor mappings, then it is not surjective. It is not hard
to come up with initialized path actions, however, which make the environments both
equivalent and fully reachable. See Example 8.6 for another pair of such environments.
⊣

As a solution we will use a notion of bisimulation in the continuous setting. There is
a lot of literature on bisimulation in the topological and continuous setting, especially
in the context of hybrid systems [3, 4, 10, 17].

Definition 7.3. Let E = (X, x0, h, p) and E ′ = (X ′, x′
0, h

′, p′) be environments where
p and p′ are path actions (not initialized ones, see Definition 4.1). A binary relation
R ⊂ X ×X ′ is a bisimulation between E and E ′, if (x0, x

′
0) ∈ R and for all (x, x′) ∈

X × X ′ the following holds: If (x, x′) ∈ R, then h(x) = h(x′) and for all ū ∈ U , also
(p(ū, x), p(ū, x′)) ∈ R. ⊣
Theorem 7.4. Suppose E = (X, x0, h, p) and E ′ = (X ′, x′

0, h
′, p′) are environments

where p and p′ are path actions (not initialized ones, see Definition 4.1) and assume that
U is closed under ⊕. Then, E ≡ E ′ if and only if there is a bisimulation R ⊂ X ×X ′.

Proof. We work with ≡I instead of ≡ as justified Suppose E ≡I E ′. Then, define
R = {(p(ū, x0), p

′(ū, x′
0)) | ū ∈ U}. By choosing ū = ∅, we have (x0, x

′
0) ∈ R. Suppose

(x, x′) ∈ R. Let ū ∈ U witness this. Then

h(x) = h(px0(ū)) = h′(p′x0
(ū)) = h′(x′).

Here we used the notation from Remark 3.17 and Lemma 5.2(4.). Now let ū1 be
arbitrary. Then, by Definition 3.11(PA2) and Remark 3.3(4) we have

p(ū1, x) = p(ū1, p(ū, x0)) = p(ū⊕ ū1, x0)

and
p′(ū1, x) = p(ū1, p

′(ū, x0)) = p′(ū⊕ ū1, x0).

Thus, ū ⊕ ū1 witnesses that (p(ū1, x), p(ū1, x
′)) ∈ R. This completes the proof of the

“only if”-part.
Suppose now that R is a bisimulation relation on X × X ′. Then, by definition

of bisimulation h(x0) = h(x′
0), and for all ū, also h(p(ū, x0)) = h′(p′(ū, x′

0)). By
Lemma 5.2, we are done.

Open Problem 7.5. Bisimulation often arises in the context of modal logic and Kripke
models [33] and has also been studied by the present authors in the context of robotics
and minimal sufficient equivalence relations [34]. Can a closer connection to these
areas established by Theorem 7.4 be made?
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8 Bringing It All Together

We now circle back to the main questions of interest, raised in Sections 1 and 2. An
important special case of a sensor mapping h is one which reports invariant infor-
mation about the topological or metric properties of the local neighbourhood of the
agent. Call such sensor mapping geometry based. This is a typical function of distance
measurements and visual sensors in general. Covering maps preserve local topological
structure, and if additionally required to be local isometries, also local metric structure.
Therefore covering maps naturally preserve geometry based sensor mappings. This en-
ables applying our framework to a diverse number of cases in theoretical robotics and
we synthesize it in Theorem 8.7 and Corollary 8.8 below. These results can be seen as
a culmination of this paper and the original motivation to explore this topic.

Recall the setup of Section 3.2. Let O(X) be the set of open subsets of a Polish space
X and suppose that ξ : X → O(X) is some neighborhood function, meaning that for all
x ∈ X, we have x ∈ ξ(x). We will consider systems (X, x0, h, p), where h(x) is either
a metric or a topological invariant of ξ(x), meaning that ξ(x) ∼ ξ(x′) → h(x) = h(x′),
where ∼ is either isometry or homeomorphism. The idea is that ξ(x) is a set visible
from x, and h is some sensor mapping that loses unnecessary information. For example,
we revisit the gap-navigation trees of [30] (recall Section 2.2).

Example 8.1. In the gap-navigation trees setup, X is a closed subset of R2, and

ξ(x) = {x′ ∈ X | [x, x′] ⊂ X}

is the set of all points reachable by a line from the robot’s position as depicted on
Figure 4(left). This set is open in X, but not open in R2. In fact, we can see that ξ(x)
is homeomorphic to a set A that has the property

B2(0, 1) ⊆ A ⊆ B̄2(0, 1),

meaning that it is the closed 2-disk with some parts of the boundary missing. The
missing parts of the boundary correspond precisely to the gaps in the visual field, or
the discontinuities in the distance function. Thus, the sensor mapping h(x) = g(ξ(x)),
where g reports the circular order of these discontinuities is a topological invariant
of ξ(x). The paper [30] addresses environments that are not simply connected, which
the authors handle by having the robot place distinguishable pebbles in the environ-
ment at selected locations. Now we can go a step further and utilize Theorem 6.9
to construct indistinguishable but non-homeomorphic environments for such a sensor,
one can start with a region which is not simply connected, take its covering space
such that the covering map preserves the star-convex neighbourhoods up to homeo-
morphism. Too much distortion and they can be distinguished. Consider Figure 7.
We denote the spaces depicted in (a), (b), and (c) respectively by A, B and C. The
environment B is a covering space of A with a covering map which preserves the home-
omorphism type of the star convex neighborhoods, i.e., commutes with the ξ-mapping
defined above. C is also a covering space of A, but the covering map does not commute
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Figure 7: Environments (a) and (b) are indistinguishable by the gap-navigation sensor,
but environments (a) and (c) as well as (b) and (c) are distinguishable. This is witnessed
by the star convex neighborhood depicted in (d).

with h = g ◦ ξ and so is distinguishable from A, and therefore also from B. This is wit-
nessed by the star convex neighborhood of the point in the top corner in Figure 7(d).
This neighborhood has four discontinuities and such is nowhere to be found in A, B or
C. According to Theorem 6.5 there exists some other sensor mapping h′ on C which
makes it indistinguishable from A. ⊣

Example 8.2. In the wall-following robot scenario of [18] (Figure 5), the robot can
sense only very locally. The polygonal environments in [18] are metrically locally uni-
form in the following sense:

Local metric uniformity. X is equipped with a metric dX and for all x ∈ X there
is εx > 0 such that for all 0 < δ < εx the subspaces B̄X(x, εx) and B̄X(x, δ) are
isometric. We call the isometry type of B̄X(x, εx) the local isometry type at x.

Thus, let ξ(x) = BX(x, εx). Then, ξ encodes local metric structure. The sensor of [18] is
now a metric invariant of ξ. Thus, in view of Theorem 6.9, if one wanted to construct
environments indistinguishable by such sensor, one could start with covering spaces
whose covering maps are local isometries. ⊣

Example 8.3. The problem of detecting graph isomorphism by exploring it [20, 27]
is a problem of reconstructing a global map from local information. Graphs, viewed as
1-complexes, are topologically locally uniform in the following sense:

Local topological uniformity. X has a basis B such that for all x ∈ X there is
Ox ∈ B such that for all O1 ⊂ Ox with O1 ∈ B, O1 is homeomorphic to Ox. We
call the homeomorphism type of Ox the local homeomorphism type of x.

Thus, now letting ξ(x) = Ox, it encodes the local homeomorphism type around the
point. In graphs this will be either a straight line or a node of some degree d ∈ N.
Metric realizations of graphs can have edges of varying length which should be ignored.
One option is to use the topological history information equivalence (Example 5.9). The
other option is to equip the complex first with a metric d in which all the nodes of
degree d have isometric neighbourhoods and so that the distance between nodes equals
one, and then redefine d′(x, y) = min{d(x, y), 1

2
} to lose all non-local information.

By Theorem 6.9, if the local homeomorphism type is all the robot can ever see,
it cannot distinguish between 1-complexes which have the same universal covering.
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Figure 8: Indistinguishable environments for the beam-detecting robot. In each there
are two types of beams, a single (green) and a double (blue) beam. All three envi-
ronments are ≡-equivalent, and (b) and (c) are covering spaces of (a). Therefore, any
arrangement of beams on (a) can be “lifted” to (b) and (c), making them indistin-
guishable.

However, it can distinguish between those that do not have. Most algorithms in this
area will exploit other tools such as edge-labeling or pebble placing, for the robot to
recognize which nodes have been visited already. ⊣

Open Problem 8.4. Develop algorithms for a robot to distinguish between non-≡-
equivalent 1-complexes without edge labeling or pebble placing.

Open Problem 8.5. Can our present theory elegantly accommodate the “pebble plac-
ing”? It seems that even a single pebble can significantly narrow down the space of
possible worlds in which the robot could find itself.

Example 8.6. Consider the example of beam sensing [28] of Figure 6. A robot moves
in a multiply connected environment and whenever it crosses a beam, it senses the label
of this beam. In [28] the authors show that under certain assumptions this helps the
robot to determine homotopy invariants of its own trajectory. One of the assumptions
is that each beam has a unique label. By dropping this assumption we can, using
Corollary 6.7, design various environments which will be indistinguishable from the
perspective of such a robot. We show some examples in Figure 8. To see that the
spaces (b) and (c) are covering spaces of (a), we refer to [16, p. 58]. Note that by
Corollary 6.7, any arrangement of beams in (a) can be lifted to an arrangement of
beams in (b) and (c) so that the environments become indistinguishable. Whereas
(b) and (c) are also ≡-equivalent (Theorem 6.9(B)), neither one is a covering of the
other one; thus, not all arrangements of beams on (b) can be lifted to (c), or vice
versa. Environments (b) and (c) are examples of equivalent ones between which there
is no map witnessing the equivalence. Only a many-to-many bisimulation witnesses
the equivalence (Theorem 7.4). ⊣

Motivated by the idea of local uniformity expressed in Examples 8.2 and 8.3, we can
formulate a general theorem. We will formulate it for the metric uniformity, leaving
topological uniformity for future work. Let P be the space of all Polish metric spaces
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(for example viewed as the Effros space of all closed subsets of the Urysohn space
[11, 19]). For any Polish metric space X ∈ P which is locally metrically uniform, let
ξX : X → P be a function such that ξX(x) = B̄X(x, εx) where εx is a witness for local
metric uniformity at x. Since the set of such εx is a connected subset of R+ (since
it is downward closed), it is Kσ and so ξX can always be chosen to be Borel by the
Arsenin-Kunugui uniformization theorem [19, 18.18]. Note that since B̄X(x, εx) is a
closed subset of X, it is also a member of P . By a metric covering map f we mean a
covering map which is a local isometry. Fix g : P → Y to be any isometry-invariant
function which means that g(M) ̸= g(M ′) implies that M and M ′ are not isometric.
Recall that UM is the space of all measurable control signals (Definition 3.1). Below
all path actions are assumed to have the domain UM .

Theorem 8.7. Suppose X and X ′ are locally metrically uniform Polish spaces, h =
g ◦ ξX and h′ = g ◦ ξX

′
, and that p and p′ are initialized path actions on X and X ′

with p(∅) = x0 and p′(∅) = x′
0. Suppose there is a metric covering map f : (X ′, x′

0) →
(X, x0) such that f ◦ p′ = p. Then, the environments (X, x0, h, p) and (X ′, x′

0, h
′, p′)

are ≡-equivalent.

Proof. We need to show that h′ = h ◦ f . To see this, let x′ ∈ X ′. Let ε be small
enough such that f ↾B(x′, ε) is an isometry, and for all δ < ε, BX(x

′, δ) is isometric
to ξX

′
(x′) and BX′(f(x), δ) is isometric to ξX(f(x′)). However, an isometry takes

balls to balls of the same radius; thus, ξX(f(x′)) is isometric to ξX
′
(x′) which implies

(g◦ξX′
)(x′) = (g◦ξX)(f(x)) by the property that g is invariant with respect to isometry.

By the definition of h and h′ this means h′(x′) = h(f(x)).

Corollary 8.8. Suppose X and X ′ are locally metrically uniform Polish spaces, h =
g ◦ ξX and h′ = g ◦ ξX′

, and that p is an initialized path action on X with p(∅) = x0.
Suppose there is a metric covering map f : (X ′, x′

0) → (X, x0) for some x′
0 ∈ X ′. Then

there is a path action p′ on X ′ such that the environments (X, x0, h, p) and (X ′, x′
0, h

′, p′)
are ≡-equivalent.

Proof. Using Corollary 6.7, let p′ be a lifting of p and apply Theorem 8.7.

Open Problem 8.9. Prove results for topological uniformity that are analogous to
Theorem 8.7 and Corollary 8.8.

9 Conclusion

This paper has formalized and unified previous notions pertaining to robots that explore
unknown environments using limited sensors. We started by motivating a mathematical
analysis of the robotics loop closure problem. Perhaps our approach best describes the
situation of false positives in loop closure. Indeed, if p(ū) ̸= p′(ū), but h(p(ū)) =
h′(p′(ū)), then we might be tempted to infer that loop closure was detected, but it
is a false alarm. This false positive at the extreme is tantamount to the inability to
distinguish between the environments completely, that is when h ◦ p = h′ ◦ p′. Our

31



intuition was that this is closely related to the idea of covering spaces because covering
maps literally close loops by mapping, at best, contractible spaces onto spaces with non-
trivial fundamental groups. With this motivation, we developed a general topological
theory that relates control signals, trajectories, and path actions in Section 3. Building
on the framework in [36] and the general theory of dynamical systems, we defined a
continuous-time version of history information spaces. Then, we applied the resulting
tools to define various equivalence relations on environments, which are of independent
topological and set theoretic interest (recall Open Problem 5.14). We then moved on
to the main motivation, covering spaces, and proved that if X ′ is a covering space of
X, then indeed any sensorimotor structure can be lifted from X to X ′, making it look
exactly the same from the point of view of a robot (Theorem 6.5). For this theorem
we assumed that U is path-connected and locally path-connected. We proved this
for the space of measurable controls UM (Proposition 6.6), but we left open whether
these conditions can be weakened, and by how much (Open Problem 6.8). Covering
spaces and covering maps may be attractive from the point of view of applications as
they preserve local structure and are convenient to work with, but they do not give
a complete mathematical characterization of the indistinguishability relation. This is
why in Section 7 we used the notion of bisimulation to obtain a necessary and sufficient
condition for the equivalence to take place. The final result was Theorem 8.7 along
with Corollary 8.8, which unifies and explains several robot navigation settings, by
characterizing environment ambiguities in terms of covering spaces.
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