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Abstract

In this paper we present a dynamic data structure,
useful for robot mavigation in an unknown, simply-
connected planar environment. The guiding philoso-
phy in this work is to avoid traditional problems such
as complete map building and localization by con-
structing a minimal representation based entirely on
critical events in online sensor measurements made
by the robot. Furthermore, this representation pro-
vides a sensor-feedback motion strategy that guides
the robot along an optimal trajectory between any two
environment locations, and allows the search of static
targets, even though there is no geometric map of the
environment. We present algorithms for building the
data structure in an unknown environment, and for
using it to perform optimal navigation. We imple-
mented these algorithms on a real mobile robot. Re-
sults are presented in which the robot builds the data
structure online, and is able to use it without needing
a global reference frame. Simulation results are also
shown to demonstrate how the robot is able to find
interesting objects in the environment.

1 Introduction

Our ideas center on the development of mo-
bile robotics systems that perform sophisticated
visibility-based tasks with minimal sensing require-
ments. The goal is to provide autonomous mobile
robots for applications such as surveillance, search-
and-rescue, fire-fighting, law enforcement, and re-
mote visual presence. Classical approaches often lack
reliability when applied in practice due to classical
problems such as mapping uncertainty, registration,
segmentation, localization error and unpredictable
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control errors. A primary cause is that previous al-
gorithmic efforts have often assumed the availability
of perfect geometric models.

The guiding philosophy in our work is that most of
these difficulties can be overcome by developing algo-
rithms and mobile robots that minimize the informa-
tion requirements. By constructing an algorithm and
control law that use the information directly from the
robot sensors, it may be possible to solve the problem
while eliminating the need to make potentially-flawed
measurements. The idea of using minimal representa-
tions was popularized in the context of manipulation
planning in [6, 7]. Within mobile robotics, on-line
models have been used for navigation [11, 12, 14],
target tracking [8], pursuit-evasion [16], and localiza-
tion [2, 4, 9, 10, 18]. By focusing on the particular
task at hand, many of the classical requirements are
eliminated. This can provide low-cost solutions to
challenging problems, while achieving greater relia-
bility in the face of uncertainties.

With this in mind, we present new algorithms
for environment exploration, navigation, and object
location. Owur approach is based on a novel rep-
resentation that is constructed entirely from criti-
cal events in online sensor measurements made by
the robot. In this paper we introduce a dynamic
tree data structure that combinatorially represents
simply-connected, planar environments. The data
structure serves as a topological map of the envi-
ronment; however, geometric information (such as
lengths, angles, distances, or segments) is not nec-
essarily represented. We will show that once this dy-
namic tree is constructed, the path traversed by the
robot between two locations is optimal with respect
to distance, and that it is possible to find fixed ob-
jects in the environment.
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Figure 1: The robot’s view of the environment.

2 Problem formulation

The robot is required to explore an unknown en-
vironment and to learn the location of certain ob-
jects. Once the environment is learned, the robot
must be able to move efficiently and reliably between
any two locations by exploiting sensor feedback. Us-
ing its learned knowledge, the robot must visit the
places where interesting objects are, and perform use-
ful tasks, such as moving an object from one place to
another, or gathering all of the objects to one place.

To address this problem, we model the robot as a
point that moves in a simply-connected open set, R,
in the plane. The boundary of R is a simple, closed,
piecewise-smooth curve. It is assumed a priori that
the robot has no model of R.

The robot is equipped with a sensor that is capable
of producing a representation as shown in Figure 1.b,
which gives the location of discontinuities in depth in-
formation, for the environment shown in Figure 1.a.
In a sense, Figure 1.b indicates the way the world
appears to the robot at all times. Note that each dis-
continuity corresponds to a connected portion of R
that is not visible to the robot. The precise distances
to the walls may be unknown; however, it is assumed
that the robot has a kind of edge detector that can
detect each of the discontinuities, and return their
direction relative to the robot’s heading. Each dis-
continuity will be referred to as a gap, and the sensor
will be called the gap sensor (as also considered in
[16]). These gaps are referred to as spurious edges of
the visibility polygon in [9].

It is assumed that the robot can track the gaps at
all times, and record any topological change, which
involves the appearance, disappearance, merging, or
splitting of gaps. These changes are defined as gap
critical events. A general position assumption is
made, which states that two gap critical events do
not occur at the same time.

Given the gaps the robot sees at a given time, it

is possible to command the robot to move toward a
given gap. This sensor-feedback movement is defined
as chasing the gap.

Note that the path between the robot and a gap is
always collision free. Also, note that the robot does
not need to know its exact localization in any global
reference frame to chase a gap.

3 A sensor-based dynamic tree
for optimal navigation

Before discussing the structure of the dynamic tree,
some concepts related to the visibility graph will be
introduced. This allows us to describe the dynamic
tree in a well-known framework, and to prove the
optimality of the paths generated. The concept of the
visibility graph is appealing for planar environments,
but is difficult to implement reliably in real robots.
We will show how our dynamic tree overcomes some
of these implementation issues.

3.1 Visibility trees

Suppose that a representation of the environment is
given, as a simple polygon R (Figure 2.a). For this
polygon, one can compute the visibility graph, and
also the reduced visibility graph G, [17].}

For any point ¢ € R, we define a wisibility tree,
T,(q), that combinatorially represents all of the short-
est paths which connect ¢ to any other point p € R.
See Figure 2.b. The root of T} is g. The children of
the root correspond to line segments that connect ¢ to
points of tangency along the boundary of R. At this
point, the tree is similar to that which appeared re-
cently in [8], which was used for on-line target track-
ing. The remaining edges of T,(q) are the subset of
the edges of G- that are needed to construct shortest
paths from ¢ to any p € R.

Consider the collection of possible trees, over any
q € R. Tt is possible to construct a cell decomposition
of R by partitioning R based on inflection and bitan-
gent rays extended along its boundary [9, 13]. (This
is equivalent to an aspect graph based on perspective
projection [15].) Let C' denote any cell in R. For
all points p € C, T,(p) will be equivalent (the only
difference is the position of the tree root); therefore,
we consider these trees as a single tree, denoted as

T,(C).

IThe reduced visibility graph is obtained by eliminating the
edges of the visibility graph that, if extended by a small € in
both sides, at least one end-point will lie outside R. Enough
information is encoded in G4r to produce optimal paths.
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Figure 2: a) Reduced visibility graph. b) Visibility
tree at point g, T,(q)
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Figure 3: a) Visibility region. b) Measurement of the
gap Sensor.

Suppose that an robot with perfect maps and ideal
localization capability is placed in some C' C R. By
using the tree, T, (C), it will have sufficient informa-
tion to construct an optimal path to any p € R. In
this paper, we assume that the robot does not have all
of this information; however, the dynamic tree con-
cept presented in Section 3.2 will enable the robot to
learn and exploit this optimal-path structure without
mapping and localization.

3.2 Dynamic tree definition

We next describe how to encode the shortest-path
information contained in the collection of all T3, (C)
(for each cell C), in a single dynamic tree, which we
refer to as T,;. The structure of 7, at a given time is
similar to the corresponding 73, (C), and it is updated
due to critical gap events as the robot moves across
cell boundaries.

From a gap sensor perspective, the gaps are pro-
duced by visibility obstructions of the vertices of R,
as shown in Figure 3. Traveling to a certain gap is
the same as traveling to the inflection point that pro-
duces it, which is the first part of the path encoded
in T,,(C'). When the robot arrives at the inflection
point, new gaps could appear that are to be chased

by the robot. A sequence of gap chasing movements
follows the same path as that represented by the vis-
ibility tree from Section 3.1. Recall that is assumed
that the robot can track gaps all of the time, and
record all of the critical events (appearances, disap-
pearances, splits, and merges of gaps).

Initially, when the robot is placed in a new environ-
ment, T, contains only a root node, r(7},), and a set
of children, one for each gap. The node r(T;) moves
along with the robot, and because of this, T} is a local
topological map, not a global one as in [1, 3, 5]. In
general, each leaf in T, encodes topological informa-
tion about the environment. Each child node of r(T})
represents a gap that is detected by the gap sensor
while the robot is stationary in R. Assume that the
children are maintained in circular order, as they ap-
pear to the gap sensor. Except for the root node,
every node in T, has a label of either “L” for left,
and “R” for right. The label indicates the direction
of the part of R that is hidden behind the gap. This
corresponds to transitions of the gap sensor from “far
to near” (left) or “near to far” (right) if the gaps are
detected by a scan from right to left.

We now describe how T} is updated as critical
events occur. If a gap disappears, the correspond-
ing node is removed from T,. If a gap appears, it
is added as a child of r(7,) in a location that pre-
serves the circular ordering of gaps. Any node that is
added in this way is designated as a primitive node.
Intuitively, a gap disappearance means that a por-
tion of the environment, once hidden to the robot,
is now visible. An appearance means that a portion
once visible is now occluded. Appearances are added
to the tree as primitive nodes, meaning already ex-
plored. If a gap splits, then one child of r(T}) will
be replaced with two children. If two gaps merge,
the two corresponding children of r(7,) become the
children of a new node, n, and n becomes a child of
r(Ty).

Formally, appearances and disappearances occur
when the robot crosses inflections of R, while splits
and merges occur when the robot crosses bitangents
of R. Recall, from Section 3.1 that those were the
borders of the set of points with a common visibility
tree. The structure of T,; changes according to the
cells defined for the visibility trees. Since T is built
only from sensor readings, this eliminates the need for
a geometric model of the environment, localization,
and matching the tree vertices to inflection points.



3.3 Learning the dynamic tree

When the robot is placed in a new environment, all
of the leaves of T, are marked as non-primitive, since
it has not yet been seen what is behind the corre-
sponding gaps. The robot can arbitrarily choose to
chase any one of the gaps, and one of the following
will occur when it reaches the inflection point: 1) the
gap will disappear, or 2) the gap will split. If the
gap disappears, this means that the robot has seen
the entire portion of the environment that was orig-
inally behind the gap. In this case, the robot must
choose another non-primitive gap to chase. If the sec-
ond condition occurred, and the gap splits, then the
robot can choose to chase either one of the new gaps.
This process can be applied repeatedly until the first
condition is met and a gap finally disappears. There
is one further complication. In some cases, there may
be a non-primitive leaf node, n, that is not a child of
r(Ty). To handle this situation, the robot must first
chase the child of 7(T) that is an ancestor of n in Tj.
Once a split occurs, it must then follow the next an-
cestor. This process repeats until n finally disappears
or splits.

As an example of learning T}, suppose the robot
is in the environment, as shown in Figure 4. There
are seven cells; inside each cell no critical event can
occur. The borders between the regions correspond
to the bitangent and inflection rays. The cells are
shown here to indicate when the critical events are
triggered, but the robot does not know them. The
root node is shown as a solid black disk. Nodes that
are not known to be primitive are shown as circles,
and nodes that are primitive are squares.

The robot begins to explore from Cell 1. There
is only one gap which is non-primitive (Figure 4.a);
hence, the robot chases it. While following this gap
the robot triggers a gap split event, by crossing the
border between Cells 1 and 2. This change is re-
flected in the tree. Remember that the root of the
tree corresponds to the current location of the robot.

If the non-primitive gap that the robot is chasing
disappears, then the robot must chase another non-
primitive gap. The robot continues chasing the non-
primitive gaps until it reaches Cell 5, at which point
all leaf nodes are primitive. This condition means
that the robot has seen all of the environment. The
sequence of movements and trees is shown in Figure 4.

3.4 Optimal navigation

Once the environment is learned, the robot can op-
timally navigate to any location in the environment.
Since there is no geometric map, a goal location can-

not be specified in terms of coordinates. Instead, it
is specified as a particular non-primitive leaf, n, that
must be forced to disappear. The interpretation of
this is that the actual goal is visible when the robot
is in any cell that is entered into when n disappears.
In this way, goals can be specified to the robot by
identifying them during exploration. Later, the robot
is able to return to them optimally.

Optimal navigation occurs by executing motions
that follow the path in T, from r(T,) to the desired
leaf node n. During these motions, the robot main-
tains all changes to T, that occur from critical gap
events. At every time during the navigation, the
robot chases the gap that corresponds to the child
of r(T,) that is an ancestor of n. At several points,
the gap may split, and the robot must chase the new
child of 7(T,) that is an ancestor of n. This results
in a sequence of gap chasing commands, which ends
when n finally disappears.

Recall from Section 3.2 and Figure 3, that follow-
ing a gap is like following the edges that join vertices
in the visibility tree. The paths encoded by T, be-
long to a visibility tree; therefore, they are optimal.
Note that although T, encodes enough information
so that the robot can reach any point in R, it is de-
fined locally from the perspective of the robot. The
tree T, encodes the same information as the visibil-
ity tree T,(C'), when the location, ¢ of the robot is
in C. When the robot moves and changes its cell, a
gap critical event is triggered and T is updated ac-
cordingly. In a sense, the representation of T, can
be intuitively viewed as a visitor information map,
in which the “you are here” pointer moves with the
visitor, and the map always shows the shortest way
to reach any location.

3.5 Finding stationary targets in the
environment

The T, data structure is not only useful for capturing
the topology of the environment, but also for finding
stationary objects. Even though T} is a minimal rep-
resentation, the robot can use it to solve semantic
tasks, such as go to the place where object x is, or
move all objects to where object y is.

Consider the example in Figure 5, which contains
an interesting object which is represented a triangle.
The tree T,; encodes the optimal path from the robot
to the object. The events are the same as in the
case of navigation, except that there are two new
cases. First, when a gap is very close to an object,
we associate the given object with the gap (i.e., Fig-
ure 5.b to Figure 5.c). Also, when an object associ-
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Figure 4: Learning G|,.

ated with a gap is visible, we break this association.

To locate an object, the robot follows the sequence
of gaps (sequence of critical events) in T, until it
reaches the associated gap. Since the robot can travel
in a straight line to the object when it is in line of
sight, the path to an object from anywhere in the en-
vironment is also optimal. If the gap to which the
object is associated disappears before the object is in
sight, the robot can report that the object has moved.

4 Implementation and Results

4.1 Simulation

Figure 6 shows an example in which the robot was
asked to explore the environment. Once it completed
that task, it was asked to move all of the square ob-
jects of a certain color it might encounter to the cor-
responding circle of the same color. In the map the
robot position is marked with a black circle, and the
other circles and squares show the location of different
objects. On the tree, non-primitive gaps are marked
with a circle, primitive gaps with a square, gaps that
hide the environment to the right with red (or dark
gray) and gaps that hide to the left with green (or
light gray). Figure 6.a shows the initial configuration
of the robot and the corresponding partial T}, for the
given environment. Note that all leaves are circles,
since the robot has not done any exploration. From
this point, the robot starts chasing an arbitrary non-
primitive gap, while encoding into T} the topological
events of the gaps and the objects associated with
them (Figure 6.b). Figure 6.c shows the tree when

Figure 5: Encoding environment objects in G



Figure 6: Dynamic tree learning and object finding
simulation

the exploration is complete (note that all leaves are
squares). From this point the robot begins to deliver
the objects (Figure 6.d), until the task is completed
(Figure 6.¢).

4.2 Real robot implementation
4.2.1 Practical considerations

We implemented the T} learning algorithm on a Pio-
neer 2-DX, with two SICK lasers. Although the algo-
rithm was straightforward to implement on the real
robot, there were some issues regarding the matching
with the T, robot model with the real one. The most
important constraint of the T;; model is that the robot
must be capable of tracking gaps all of the time. For
this, the robot was equipped with two lasers to pro-
vide an omnidirectional view. The gap sensor was im-
plemented by combining the data of these two lasers.
Currently is is assumed that the gap sensor can de-
tect discontinuities at arbitrary depth. We would like
to relax this constraint in future work, but in the cur-
rent setting, care was taken to have the environment
walls no farther than the lasers range.

The robot motions obey the standard kinematic
differential drive model. For this reason, the robot
must first turn on the spot to align with the gap, and
then it begins to move toward it. Note that because
only gap sensor information is used, any other motion
would not be guaranteed to avoid collisions.

It is worth noting that while the robot rotates to
the next gap, before chasing it, it only needs to know
the order of the gaps, as opposed to the precise angu-
lar position. This further enables greater robustness
in the control. No global reference frame was con-
structed and no compass was necessary.

Because of the time required to process the gap in-
formation (laser serial communication and gap track-
ing) during the experiments, it was assumed that two
events cannot occur during the same sensing oper-
ation (the general position assumption). In other
words, the robot must move slowly enough to pre-
vent the gap sensor from missing gap events.

The robot was also provided with wall-following ca-
pabilities. In the Tj; model we considered the robot
to be a point, and it can get arbitrarily close to the
environment element that produces a gap. In the
real robot this is not possible. When the robot gets
very near to a wall, it still chases the gap, but also
takes into account the information of a bumper sen-
sor. Note that the wall-following process only assists
the the gap chasing task, and is not performed in
isolation.



Figure 8: Merge example

4.2.2 Experiments

Figure 7 shows a disappear event. It is interesting
than when the only gap disappears, the only element
of the tree is the root. This condition corresponds
to when the robot sees the whole environment. A
merge event is shown in Figure 8, in which two gaps
are merged into one when the robot hides behind a
corner. Finally, Figure 9 shows some snapshots of
a entire experiment, where the complete T} of the
environment is learned.

5 Conclusions

We have presented a data structure and algorithm
that captures the topology of a simply-connected en-
vironment and enables a robot to navigate optimally.
This data structure is a dynamic tree that encodes
enough information to generate optimal paths, al-
though only information of gap critical events is used.

Although our results to date have been encourag-
ing, there are some issues remaining. One of our rea-
sons of studying minimal representations is to un-

Figure 9: A complete T, learning experiment

derstand what information is really needed to design
robust, cost-effective robotics solutions. In the future
we want to study what other capabilities should be
added to the robot to relax the requirement of omni-
directional, unbounded-range sensing. Also, we want
to extend the work to allow multiply-connected envi-
ronments.
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