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Abstract
This paper addresses the lower limits of encoding and processing the information acquired through interactions between
an internal system (robot algorithms or software) and an external system (robot body and its environment) in terms of
action and observation histories. Both are modeled as transition systems. We want to know the weakest internal system
that is sufficient for achieving passive (filtering) and active (planning) tasks. We introduce the notion of an information
transition system (ITS) for the internal system which is a transition system over a space of information states that
reflect a robot’s or other observer’s perspective based on limited sensing, memory, computation, and actuation. An ITS
is viewed as a filter and a policy or plan is viewed as a function that labels the states of this ITS. Regardless of whether
internal systems are obtained by learning algorithms, planning algorithms, or human insight, we want to know the limits
of feasibility for given robot hardware and tasks. We establish, in a general setting, that minimal information transition
systems (ITSs) exist up to reasonable equivalence assumptions, and are unique under some general conditions. We
then apply the theory to generate new insights into several problems, including optimal sensor fusion/filtering, solving
basic planning tasks, and finding minimal representations for modeling a system given input-output relations.
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1 Introduction

Accomplishing a robot’s tasks may involve designing
or employing a combination of different parts: planning
algorithms, sensor fusion or filtering methods, machine
learning algorithms, and control laws. Given a problem
expressed in terms of a well-defined task structure, the
relationship between these different parts with each other,
and their relation with the task is often ignored. Each part
is developed rather in isolation, heavily motivated by the
long lasting traditions in robotics. For example, navigating
a mobile robot to a goal configuration is typically achieved
by estimating the robot configuration in a known (or an
unknown) map and applying a feedback policy that relies
on the estimated configuration. Indeed, for some problems
it may be possible that a simpler filtering approach that
does not require estimating the full state could as well
be sufficient to achieve the given task. This may lead
many to believe that robotics itself does not have its own,
unique theoretical core (on this, we agree with (Koditschek
2021)) and it appears as an application area for other
fields; designing and testing machine learning algorithms,
planning algorithms, sensor fusion methods, control laws,
and so on. In our quest towards a theory that is unique to
robotics and that plays a similar role to Turing machines
for computer science, or ẋ = f(x, u) over differentiable
manifolds for control theory, we want to establish the limits
of the intertwined notions of sensing, learning, filtering,
and planning with respect to a given problem. We would
like to have a general framework that allows researchers
to formulate and potentially answer questions such as:

Does a solution even exist to a given problem? What
are the minimal necessary components to solve it? What
should the best learning approach imaginable produce as
a representation? Such questions would be analogous to
existence and uniqueness in control and dynamical systems,
or decidability and complexity (especially Kolmogorov) in
theoretical computer science.

This paper proposes a mathematical robotics theory that
is built from the input-output relationships between two
(or more) coupled dynamical systems. For a programmable
mechanical system (robot) embedded in an environment,
the input-output relationships correspond to sensing and
actuation between two coupled systems; an internal system
(robot brain) and an external system (robot body and the
environment). This relation is shown in Figure 1(a-b). We
assume that the robot hardware is fixed, which means fixing
the sensors and the actuators, and we focus on determining
which necessary and sufficient conditions the internal system
has to maintain for a task to be accomplished. In light of these
conditions, we try to find a minimal sufficient internal system
which corresponds to the weakest possible representation of
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the acquired information through interactions; reducing the
internal system any further makes the problem unsolvable.

At the core of our framework is the notion of an ITS
which builds on the well-studied notion of transition systems.
The information part of an ITS comes from information
spaces (LaValle 2006, Chapter 11) which is developed as a
foundation of planning with imperfect state information due
to sensing uncertainty. The concept of sufficient information
mappings appears therein. It is generalized in this paper, and
the state space of each ITS will in fact be an information
space. An internal system will be modeled as an ITS and its
sufficiency and minimality with respect to a problem will be
analyzed using this framework.

We categorize tasks into two classes: active and passive.
Informally, a passive task corresponds to filtering and an
active one corresponds to planning or control. In our work
an ITS can be seen as a filter and together with its underlying
information space serves as a domain over which a plan or
a policy can be expressed and analyzed. We will consider a
variety of information spaces, which also encompass robot
configuration spaces or phase spaces, that are typically
used for planning tasks. A distinction between model-based
and model-free formulations will be considered too, in line
with the choices commonly found in machine learning. We
characterize the problems corresponding to the active and
passive tasks and define notions of feasibility and minimality
for information transition systems (ITSs) that solve these
problems. In our approach to finding minimal sufficient ITSs,
we will analyze the limits of reducing or collapsing the
information spaces, until the lower limits of task feasibility
are reached.

1.1 Previous work
Many of the concepts in this paper build upon (Weinstein
et al. 2022), in which we recently proposed an enactivist-
oriented model of cognition based on information spaces.
By enactivist (Hutto and Myin 2012), it is meant that
the necessary brain structures emerge from sensorimotor
interaction, and do not necessarily have predetermined,
meaningful components as in the classical representationalist
paradigm (Newell and Simon 1972). Despite introducing
a general framework, the focus of (Weinstein et al. 2022)
was on emerging equivalence classes of the environment
states through sensorimotor interactions. In some sense, this
corresponds to finding a (minimal) sufficient sensor or a
representation for the external system. In this paper, we
focus on the internal system which, in turn, refers to finding
a minimal filter and/or a policy, given an appropriate task
description.

Most approaches in filtering can be categorized into
two classes: probabilistic and combinatorial. Probabilistic
filters typically rely on Bayes’ rule to propagate the
obtained information (Thrun et al. 2005; Särkkä 2013).
They have been extensively used in robotics; especially for
state estimation, mapping, and localization (Dissanayake
et al. 2001; Zhen et al. 2017). Combinatorial filters
(Tovar et al. 2008; Kristek and Shell 2012) do not
rely on probabilistic models but instead make use
of nondeterministic (possibilistic) ones. The notion of
information spaces (LaValle 2006, Chapter 11) provides a
general formalization that encompasses both probabilistic

and combinatorial filters. In our framework based on
transition systems, the set of states of a transition system
will indeed be an information space. Using the notion of
information spaces, several works attempted to characterize
different sensors defined over the same state space and
compare their power in terms of gathered information
(O’Kane and LaValle 2008; LaValle 2012; Zhang and Shell
2021). Despite providing an elegant and exact way of
solving filtering problems, the space requirements for a
combinatorial filter can be high. Considering a notion of
minimality, some authors addressed algorithmic reduction
of filters (Rahmani and O’Kane 2021; O’Kane and Shell
2017; Song and O’Kane 2012). Reducing combinatorial
filters have roots in the theory of computation, where
decomposition (Hartmanis 1960; Hartmanis and Stearns
1964) and minimization of finite automata (Moore and
Mealy machines) has been a topic of active research since
the 1950s.

A gap still remains between analyzing the requirements of
filters or sensors for pure inference (passive filtering) and the
ones needed for active tasks (planning and control) such that
an information-feedback policy can be described. Various
representations were used in the literature as a domain to
define the policy. For most robotic planning problems, the
domain of the policy or a plan is fixed; which is the robot
configuration or the phase space (Majumdar and Tedrake
2017; Zhu and Alonso-Mora 2019). This corresponds to the
assumption that the robot state can be fully observed or
estimated with high accuracy. For problems that the state is
not fully observable, partially observable Markov decision
processes (POMDPs) (Kaelbling et al. 1998; Ross et al.
2008) and belief spaces (Vitus and Tomlin 2011; Agha-
Mohammadi et al. 2014) have been considered for planning.
Note that POMDP literature is mostly restricted to finite state
and action spaces. There is a limited literature that studied the
information requirements for active tasks which corresponds
to determining the weakest notion of sensing or filtering
that is sufficient to accomplish a task. A notable early work
showed, especially for manipulation, that one can achieve
certain tasks even in the absence of sensory observations
(Erdmann and Mason 1988). In (Zhang and Shell 2020)
the authors characterize all possible sensor abstractions that
are sufficient to solve a planning problem. Minimality has
been addressed for specific problems regarding mobile robot
navigation in (Blum and Kozen 1978; Tovar et al. 2007).
Closely related to our work, a language-theoretic formulation
appears in (Saberifar et al. 2019), in which, Procrustean-
graphs (p-graphs) were proposed as an abstraction to reason
about interactions between a robot and its environment.

Obtaining a model from input-output relations that
represents the underlying system has been a common
interest for many fields ranging from control theory, machine
learning, and robotics. Different approaches to this problem
in the context of finite state automata were reviewed by
(Pitt 1989). In diversity-based inference (DBI) for an input-
output machine (Bainbridge 1977; Rivest and Schapire 1993,
1994), a model of the underlying system is constructed in
terms of equivalence classes of tests which consist of one or
more consecutive actions and observations. Its probabilistic
counterpart, predictive state representation (PSR) (Littman
and Sutton 2001; Boots et al. 2011), addresses the analogous
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Figure 1. (a) The internal robot brain is defined as an ITS that interacts with the external world (robot body and environment). (b)
Coupled internal and external systems mathematically capture sensing, actuation, internal computation, and the external world.

problem by considering (linear) combinations of prediction
vectors, which represent probabilities for test success/failure.
Other than relying solely on input-output relations, a
parametric model (or a class of them) can be provided
for learning a representation for the underlying system
(Brunnbauer et al. 2022). We will also consider this
distinction between model-based and model-free within our
ITS framework.

1.2 Contributions
The main contribution of this paper is a novel mathematical
framework for analyzing and distinguishing the interactions
that emerge from a robotic system embedded in an
environment. We introduce the notion of ITSs as a general
way to characterize the internal system (“brain”) of the robot.
We then proceed to establish conditions for sufficiency and
the existence of unique minimal ITSs in a very general
setting. Intuitively, we establish how small the robot brain
could possibly be for given goals or tasks. Anything less
results in impossibility. The framework addresses both
filtering and sensor fusion problems, which are passive
in the sense of no controls are applied, and planning
or control problems, which are active. We illustrate the
scope of the framework by applying it to several problems
that shed light on relationships to many existing concepts,
including Kalman filters, predictive state representations,
combinatorial filters, and planning over reduced information
spaces.

Many of the concepts in this paper build upon (Weinstein
et al. 2022) and (LaValle 2006, Chapter 11). The
contributions of the present paper with respect to these works
are listed in the following:

• The framework based on transition systems introduced
in (Weinstein et al. 2022) is adapted into a robotic
setting. We define the notions of internal and external
systems within this context, together with concrete
examples. Moreover, we formulate the disturbances
affecting the external system model and the sensor
mapping, within this framework.

• We formally define the notion of task description
(distinguishing between finite and infinitary tasks, as
well as between active and passive tasks), and filtering
and planning problems.

• The notion of minimality for a transition system
describing the internal system under a planning
(control) task is new.

• The ITSs corresponding to some of the information
spaces presented in (LaValle 2006, Chapter 11), which
were based on intuitions, are shown to be minimal
applying the proposed framework.

• We also formalize the model-based and the model-
free information spaces using the notion of coupled
internal-external systems.

This paper is an expanded version of (Sakcak et al. 2022).

1.3 Paper structure
The remaining of the paper is organized as follows. Section
2 provides a general mathematical formulation of robot-
environment interaction as transition systems. We also
introduce a notion of couplings which encode various types
of interactions between an internal and an external system.
Section 3 then develops central notions of sufficiency and
minimality over the space of possible ITSs. Section 4
applies the general concepts to address what it means to
solve both passive (filtering) and active (planning/control)
tasks minimally. Canonical problem families are presented
that aim to capture typical problem settings in filtering
and planning, from the perspective of minimal sufficient
solutions. Section 5 illustrates how the theory can be
applied using simple examples. Section 6 summarizes the
contributions and identifies important directions for future
work.

2 Mathematical Models of
Robot-Environment Systems

2.1 Internal and external systems
In this paper, we consider a robot embedded in an
environment and describe this system as two subsystems,
named internal and external, connected through symmetric
input-output relations. The external system describes the
physical world, and the internal system describes the
information processing “robot brain”. With “robot brain”
we refer to a centralized computational component that
processes sensor observations and actions. The interaction
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between the internal and external systems is shown in
Figure 1(b). The input to the internal system is the
information reflecting the state of the external system,
obtained through observations (that is the output of the
external system). The output of the internal system is a
control command that in turn corresponds to the control input
of the external system, and causes its state to change. In this
sense, the state of the external system is similar to the use of
the term state in control theory and the state of the internal
system is similar to the use of the term in computer science.

The external system corresponds to the totality of the
physical environment, including the robot body. Let X
denote the set of states of this system; it could be for
example, the configuration of a robot (e.g., position and
orientation of a mobile robot or joint configuration of
a robotic manipulator) within a known environment (or
within a set of possible environments), or it can be
extended to include also the (higher order) derivatives of its
configuration. See (LaValle 2012, Section 3.1) for possible
state spaces of a mobile robot. Next, let U be the set of
control inputs (also referred to as actions). When applied at
a state x ∈ X , a control u ∈ U causes x to change according
to a state transition function f : X × U → X . Indeed, an
action u ∈ U refers to the control input to the system and
corresponds to the stimuli created by a control command
generated by a decision maker. Mathematically, the external
system can now be expressed as the triple (X,U, f). The
sets X and U can be finite or infinite discrete spaces, or
they could be equipped with extra structure: they could be
metric manifolds, vector spaces, compact, or non-compact
topological spaces. In such cases, the function f may or may
not be assumed to respect such structure: sometimes it is
appropriate to assume continuity or measurability.

The internal system (robot brain) corresponds to the
perspective of a decision maker. The states of this system
correspond to the retained information gathered through
the outcomes of actions in terms of sensor observations.
To this end, the basis of our mathematical formulation of
the internal system is the notion of an information space
(I-space) presented in (LaValle 2006, Chapter 11). Let I be
the set of these internal information states. We will use the
term information state (I-state) to refer to elements of I and
denote them by ι. Similar to the external system, the internal
system evolves with each y ∈ Y according to the information
transition function ϕ : I × Y → I. The internal system can
now mathematically be described by the triple (I, Y, ϕ).

The external (X,U, f) and internal (I, Y, ϕ) can be
coupled to each other to create a coupled dynamical system.
This is achieved by introducing two coupling functions, that
match outputs of one system to the inputs of the other and
vice versa. For us, these are the sensor mapping h : X → Y
and the policy π : I → U , see Figure 1. The function h
labels the external states with sensory data, and π labels
the internal information states with the actions. Note that
π can be seen as an information feedback policy sending a
control to the external. In the following parts of this paper,
we will refer to π simply as the policy. Therefore, it will be a
map from the states of an I-space (Sections 3.2 and 3.4 will
present possible I-space descriptions) to the set of controls.
This definition is more general than the use of policy in the
robotics literature which typically refers to a state-feedback

policy, that is, a map from the states of a deterministic or a
probabilistic description of the external system.

Suppose the system evolves in discrete stages. Then, the
coupled dynamical system can be written as

ι′ = ϕ(ι, y) in which y = h(x),

x′ = f(x, u) in which u = π(ι′). (1)

Here we use x′ to refer to the next state, not the derivative
of x. Whereas the equations on the left side describe the
evolution of this coupled system, the ones on the right
show the respective outputs of each subsystem. The coupled
system of internal and external described this way is an
autonomous system, meaning that given an initial state
(ι, x) ∈ I ×X there exists a unique state trajectory.1 We
denote the function (ι, x) 7→ (ι′, x′) by ϕ ∗π,h f which
highlights that ϕ ∗π,h f is a coupling of ϕ and f via the pair
of coupling functions (π, h). Then, the coupled system is the
pair

(I ×X, ϕ ∗π,h f).

For the external system, starting from an initial state
x1, each stage k corresponds to applying an action uk
which then yields the next stage k + 1 and the next state
xk+1 = f(xk, uk). As the system evolves through stages, the
tuples x̃k = (x1, x2, . . . , xk), ũk−1 = (u1, u2, . . . , uk−1)
and ỹk = (y1, y2, . . . , yk) correspond respectively to the
state, action, and observation histories up to stage k, with
yi = h(xi) for i ∈ {1, . . . , k}. Note that applying the action
uk at stage k would result in a transition to state xk+1

and the corresponding sensor reading yk+1 = h(xk+1). The
same applies for the internal system. We can describe its
evolution starting from an initial I-state ι0, and following
the state transition equation ιk = ϕ(ιk−1, yk). At stage k,
π(ιk) produces the action uk. Note that the stage index of
the I-state starts from 0. In some cases, ι0 can encode prior
information regarding the external system and in others, it
does not. We will consider this distinction more formally in
Section 3.2. The next information state ι1 is obtained using
ι0 and y1. We assume that no control command (action) is
outputted at stage 0, meaning that the control history starts
with u1. By convention, ũ0 = () is an empty sequence.

2.2 Disturbances
The coupled internal-external systems formulation can be
extended to include disturbances affecting the external
system and the sensor. In particular, we can define two
disturbance generating systems, with outputs θ ∈ Θ and ψ ∈
Ψ, that are influencing the external system and the sensor,
respectively (see Figure 2). Mathematically, the external
system with disturbances is (X,U ×Θ, f), where f : X ×
(U ×Θ) → X is a state transition function for the external
system under disturbances. Thus, the disturbances merely
add a new dimension to the control parameters of the
system. In the internal-external coupling, we also assume
disturbances in the sensory mapping which takes the form

1In dynamical systems terminology, the coupled system is a closed,
deterministic dynamical system. In the presence of extrinsic disturbances
(see Section 2.2) the coupled system becomes a non-autonomous dynamical
system.
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Figure 2. Disturbances may affect the external system and the
sensor. Note that conditioned on the realization of these, the
internal system and policy remain deterministic. An outside
observer (planner / designer) may perceive the coupled system
as a whole.

h : X ×Ψ → I. Then, the definition of the coupled internal-
external system given in (1) is modified as follows:

ι′ = ϕ(ι, y) in which y = h(x, ψ),

x′ = f(x, u, θ) in which u = π(ι′). (2)

Here, the other two functions ϕ (the information transition
function) and π (policy) are as in Section 2.1.

Note that neither θ, which affects the state transition
function of the external system, nor ψ, which affects the
sensor mapping, is directly available to the internal system
(I, Y, ϕ), which is just as in Section 2.1. However, some
information regarding the disturbances can be specified for
an internal system that makes use of a model of the external.
These could be encoded into the set I and the transition
function ϕ. Then, the internal system has a non-trivial
correlation with the disturbance, even though it is never
directly perceived. We will consider the distinction between
model-based and model-free systems in Section 3.5. Finally,
the coupled system is mathematically a triple (I ×X,Θ×
Ψ, g) where g is a function that, given a state (ι, x) ∈ I ×X
and a disturbance parameter (θ, ψ) ∈ Θ×Ψ, outputs the
next state in I ×X , formally,

g : (I ×X)× (Θ×Ψ) → I ×X.

There are two possibilities for how the information
regarding the disturbances can be specified: nondeterministic
and probabilistic. In the nondeterministic case, the set Ψ
and possibly a subset Ψ(x) ⊆ Ψ is specified for all x ∈
X , in which Ψ(x) represents the set of all ψ that can
be realized for each x. In the probabilistic case, assuming
that the disturbances are generated by a system that is
Markovian, such that they do not depend on the previous

stages, a probability distribution over Ψ can be specified for
each x. This will be denoted as P (ψ | x). The disturbances
affecting the external system can be specified similarly to
those that affect the sensor. In the nondeterministic case, the
set Θ(x, u) ∈ Θ is known for each (x, u) ∈ X × U . In the
probabilistic case, a probability distribution over Θ, that is,
P (θ | x, u), can be specified for each (x, u).

2.3 Generalizing to transition systems
A transition system is a triple (S,Λ, T ), in which, S and
Λ are some sets (possibly equipped with some structure,
for example, topology), and T ⊆ S × Λ× S is a ternary
relation. Here S is the set of states, Λ is the set of labels
for transitions between elements of S, and a triple (s, λ, s′)
belongs to T if there is a transition from s to s′ labeled by λ.
A special case is when for each (s, λ) ∈ S × Λ there is a
unique s′ ∈ S with (s, λ, s′) ∈ T . Then, T defines a function
τ : S × Λ → S. These are called deterministic transition
systems, and sometimes also (open) dynamical systems. An
extensive analysis of those and their coupling is explored
by (Spivak 2015).

All models in Sections 2.1 and 2.2 are deterministic
transition systems: the external, the internal, the disturbed
versions, and their couplings are all deterministic transition
systems.2 Note that if Λ is a singleton, the system (S,Λ, τ) is
equivalent to a discrete time autonomous dynamical system.
If (S,Λ, τ) is a deterministic transition system, S and Λ are
finite, s0 ∈ S, and F ⊆ S, then (S,Λ, τ, s0, F ) is a finite
automaton as defined in (Sipser 2012, Definition 1.5). If not
stated otherwise, we do not assume our systems to be finite.
In Section 5.3 we explore connections between our theory
with the theory of finite systems.

The following notion of state-relabeled transition systems
was introduced in (Weinstein et al. 2022) to model the
internal and external systems.

Definition 1. State-relabeled transition system. A state-
relabeled transition system is the quintuple (S,Λ, T, σ, L) in
which σ : S → L is a labeling function and (S,Λ, T ) is a
transition system. The function σ is the labeling function and
L is the set of labels.

A state-relabeled transition system is closely related to the
Moore machine which is a state-relabeled transition system
with a fixed initial state, a finite set of states, and finite sets
of input and output alphabets (finite Λ and L) (Moore 1956).

In our framework, a labeling function σ serves two
purposes; it enables a potential coupling by matching output
of one system to the input of another, and acts as a
categorization of the states of the system being labeled.
Preimages of a labeling function σ induce a partition of the
state space S into sets whose elements are indistinguishable
through sensing. Let S/σ be the set of equivalence classes
[s]σ induced by σ such that S/σ = {[s]σ | s ∈ S} and [s]σ =
{s′ ∈ S | σ(s′) = σ(s)}. Then, using these equivalence

2Although the values of the disturbances, when present, are not known
beforehand or deterministically, once the disturbed parts of the coupled
system receive the value of the disturbance, they produce a uniquely
determined output. Hence, these components and their couplings are
deterministic transition systems.
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classes, we can define a new transition system called the
quotient of (S,Λ, T ) by σ.

Definition 2. Quotient system. The quotient of (S,Λ, T )
by σ is the transition system (S/σ,Λ, T/σ), in which

T/σ :=
{(

[s]σ, λ, [s
′]σ

)
| (s, λ, s′) ∈ T

}
.

Note that (S/σ,Λ, T/σ) is a reduced version of (S,Λ, T ),
in the sense that the map s 7→ [s]σ is onto, but not necessarily
one-to-one.3 We might be interested in finding a labeling
function σ such that the corresponding quotient transition
system is as simple as possible while ensuring that it is still
useful. In the following sections, we will provide motivations
for a reduction and discuss in more detail the requirements on
σ for the quotient system to be useful.

The external and internal systems can be written as state-
relabeled deterministic transition systems (X,U, f, h, Y )
and (I, Y, ϕ, π, U), respectively, in which h and π are
considered as labeling functions. Interpreting the labels as
the output of a transition system, a coupled internal-external
system can be described in terms of the state-relabeled
transition systems formulation too, so that the output of one
transition system is an input for another. Described this way,
a coupling of two transition systems results in unique paths
in either transition system, initialized at a particular state.

3 Sufficient Information Transition
Systems

3.1 Information transition systems
In the general setting, an I-state corresponds to the available
(stored) information at a certain stage with respect to the
action and observation histories. An I-space is a collection of
all possible I-states. We will use the acronym ITS to refer to
an information transition system, that is, a transition system
whose state space is an I-space.

We have already used the notion of an I-space when
modeling the internal system representing the robot brain,
which we view as an ITS. Here, we extend the notion of an
ITS to include different perspectives from which the external
and the coupled systems can be viewed. In particular, we
identify three perspectives;

• a planner,

• a plan executor,

• and an (independent) observer.

With a slight abuse of previously introduced notation and
terminology, we use the term internal to refer to any system
that is not the external system and we use I to denote a
generic I-space. We use the term deterministic information
transition system (DITS) to refer to an ITS for which
the transitions are governed by an information transition
function so that they are deterministic. We denote these
types of systems by (I,Λ, ϕ), in which Λ is the edge
labeling and ϕ : I × Λ → I is an information transition
function. Otherwise, an ITS will be called a nondeterministic
information transition system (NITS) and denoted by
(I,Λ,Φ), in which Φ ⊆ I × Λ× I is the transition relation.

Suppose (I, U × Y,Φ) is a NITS and π : I → U a policy,
and define

Φπ := {(ι, (u, y), ι′) ∈ Φ | u = π(ι)}⊆ Φ. (3)

The transition system (I, U × Y,Φπ) is called the restriction
of (I, U × Y,Φ) by the policy π. 4 If (I, U × Y, ϕ) is
a DITS, the strong restriction by π : I → U is given
by (I, Y, ϕπ), in which ϕπ : I × Y → I and ϕπ(ι, y) =
ϕ(ι, π(ι), y). The strong restriction is obtained by first taking
the restriction of ϕ treated as a subset of I × (U × Y )× I
and then taking the projection of the resulting set onto
I × Y × I.

Before any policy is fixed, a DITS of the form (I, U ×
Y, ϕ) corresponds to the planner perspective. Once the policy
is fixed, the strong restriction (I, Y, ϕπ), which is just as the
internal system was defined in Section 2, corresponds to the
plan executor.

Example 1. A binary toy model. Consider the DITS
(I, U × Y, ϕ) which corresponds to a planner perspective.
Suppose U = Y = I = {0, 1} and let ϕ : I × (U × Y ) →
I be defined by ϕ(ι, (u, y)) = |y − u|. Suppose a policy
π : I → U is fixed such that π(ι) = ι. Then, (I, Y, ϕπ),
in which ϕπ(ι, y) = |y − π(ι)|, is the strong restriction of
(I, U × Y, ϕ) by π. Furthermore, it corresponds to the plan
executor.

In this paper, an observation will refer to a sensor
reading y. However, when we discuss an (independent)
observer described over the coupled system, the input to this
observer system can be a function of any variable of the
coupled system, for instance action, information state or the
state of the external. If the coupled system is disturbed, the
disturbances can be observed by the observer too.

3.2 History information spaces
The most fundamental I-space is the history I-space, which
we denote by Ihist. A history I-state at stage k corresponds
to all the information that is gathered through sensing (and
potentially also through actions) up to stage k, assuming
perfect memory. In this sense, Ihist is the canonical I-space,
and all the other I-spaces are derived from it. We denote the
history I-states by the letter η to distinguish them from the
states of other information spaces, which we typically denote
by ι (recall the notation introduced in Section 2.1).

Let U and Y be the sets of possible actions and
observations respectively. The elements of Ihist are finite
sequences of alternating actions and observations which
build upon some initial state η0 ∈ Ihist. Denote the set of
possible initial states of Ihist by I0. Then the elements of
Ihist are of the form

(η0, ũk−1, ỹk) := (η0, y1, u1, y2, u2 . . . , uk−1, yk) (4)

3Considering homomorphisms between transition systems goes beyond the
present paper; a good source for the general theory is (Goranko and Otto
2007).
4Note that we can treat the external system symmetrically and given a
non-deterministic transition system (X,Y × U, F ) with F ⊆ X × (Y ×
U)×X and a sensor mapping h : X → Y , we can define the restriction
Fh in an analogous way as above. However, because it is not central to this
paper we will not elaborate on this topic.
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for k ∈ N, in which η0 ∈ I0, ui ∈ U and yi ∈ Y for all
i ≤ k. Additionally, denote

ηk := (η0, ũk−1, ỹk). (5)

The notations (4) and (5) follow (LaValle 2006, Chapter 11).
The lower index k refers to the stage of the state, or the
length of the action-observation sequence. The convention
here, as already mentioned in the end of Section 2.1, is that
ũ0 is assumed to be the null-tuple. Thus, ηk = (η0, ũk−1, ỹk)
is the I-state at stage k, which is achieved by iteratively
concatenating the action-observation pairs (ui−1, yi) at the
end of the sequence for i ∈ {1, . . . , k} after the initial
state η0.

The description of initial conditions in the set I0 varies
with the available prior information. We discuss these
descriptions below. The history information space at stage k
is the subset of Ihist which consists of elements of the form
given by (4) for fixed k, and can be expressed as the product

Ik := I0 × Ũk−1 × Ỹk, (6)

in which Ũk−1 = Uk−1 and Ỹk = Y k. In general, the
number of stages that the system will go through is not fixed.
Therefore we assume the history I-space to contain all finite
action-observation sequences, that is, Ihist =

⋃
k∈N Ik. The

DITS corresponding to Ihist is (Ihist, U × Y, ϕhist), in
which

ϕhist(η, u, y) = η⌢(u, y),

and ⌢ is the concatenation of two sequences. Note that
the concatenation operation makes (Ihist,⌢) into a free
monoid. The derived information transitions systems which
will be introduced in Section 3.4 can be seen as quotients
of this monoid by equivalence relations; sometimes these
quotients can also be monoids, or even groups.

3.3 Sufficient state-relabeling
In (Weinstein et al. 2022) we have introduced a notion
of sufficiency that generalizes the definition introduced
in (LaValle 2006, Chapter 11) and is presented here for
completeness.

Definition 3. Sufficient labeling function. Let (S,Λ, T ) be
a transition system. A labeling function σ : S → L defined
over the states of a transition system is sufficient if and only if
for all s, t, s′, t′ ∈ S and all λ ∈ Λ, the following implication
holds:

σ(s) = σ(t) ∧ (s, λ, s′) ∈ T ∧ (t, λ, t′) ∈ T =⇒
σ(s′) = σ(t′).

If σ is defined over the states of a deterministic transition
system (S,Λ, τ), then σ is sufficient if and only if
for all s, t ∈ S and all λ ∈ Λ, σ(s) = σ(t) implies that
σ(τ(s, λ)) = σ(τ(t, λ)).

Consider the stage-based evolution of the state-relabeled
deterministic transition system corresponding to the external
system (X,U, f, h, Y ) with respect to the action (control
input) sequence ũk−1 = (u1, . . . , uk−1). This corresponds
to the state and observation histories till stage k, that
are x̃k = (x1, . . . , xk) and ỹk = (y1, . . . , yk). Recall that

applying uk at stage k would result in a transition to xk+1

and the corresponding observation yk+1 = h(xk+1). Hence,
in this context, sufficiency of h implies that given the label
yk = h(xk) and the action uk, it is possible to determine the
label yk+1 = h(xk+1). One interpretation of sufficiency of h
is that the respective quotient system sufficiently represents
the underlying system up to the equivalence classes induced
by h. This notion is similar to a minimal realization
of a system, that is, the minimal state space description
that models the given input-output measurements (see for
example (Kotta et al. 2018)). Another interpretation is in
a predictive sense. Suppose the quotient system is known.
Then, the label yk+1 = h(xk+1) can be determined before
the system gets to xk+1, using the current label yk and the
action to be applied uk. Furthermore, under a fixed policy,
the complete observation trajectory can be determined from
the initial observation by induction.

Now, consider an internal system with a labeling function
κ : I → I ′, that is, (I, U × Y, ϕ, κ, I ′), and its evolution
with respect to the histories ỹ = (y1, . . . , yk) and ũ =
(u1, . . . , uk−1). At stage k, the state of the DITS is
ιk and with (uk, yk+1) the system transitions to ιk+1 =
ϕ(ιk, uk, yk+1). Sufficiency of κ implies that given κ(ιk),
uk, and yk+1, we can determine κ(ιk+1). This is equivalent
to the definition introduced in (LaValle 2006, Chapter 11)
and makes it a special case of Definition 3.

3.4 Derived information transition systems
Even though it seems natural to rely on a history ITS, the
dimension of a history I-state increases linearly, and the size
of the history I-space increases exponentially, as a function
of the stage index, making it impractical in most cases.
Thus, we are interested in defining a reduced ITS that is
more manageable, due to for example lowered requirements
for memory or computing power. Furthermore, this would
largely simplify the description of a policy for a planner or a
plan executor.

Recall the quotient of a transition system by a labeling
function (see Definition 2). We rewrite (Ihist, U × Y, ϕhist)
as (Ihist, U × Y,Φhist), in which

Φhist =
{(
η, (u, y), η′

)
∈

Ihist × (U × Y )× Ihist | η′ = ϕhist(η, u, y)
}
. (7)

We can introduce an information mapping (I-map)
κ : Ihist → Ider that categorizes the states of Ihist
into equivalence classes through its preimages. In this case,
κ serves as a labeling function. A reduction is obtained
in terms of the quotient of (Ihist, U × Y,Φ) by κ, that
is, (Ihist/κ, U × Y,Φ/κ) as histories are grouped into
equivalence classes.

It is crucial that the derived ITS is a DITS so that
the transition from the current label to the next can be
determined using only the derived ITS, without making
reference to the history ITS. The reason for this requirement
is straightforward for an observer as the I-states correspond
to what is inferred about the external system, given
observation history (potentially accompanied by the action
history). The same applies for the planner and the plan
executor to be able to describe and execute a policy.
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Considering the quotient system derived by κ from the
DITS (by definition) (Ihist, U × Y, ϕ), we cannot always
guarantee that the resulting ITS is deterministic. This
depends on the I-map used for state-relabeling, as illustrated
in the following proposition.

Proposition 1. Quotient of a history ITS may be a NITS.
For all non-empty U and Y , and for the corresponding Ihist,
there exists a labeling function κ such that the quotient
(Ihist/κ, U × Y,Φ/κ) of (Ihist, U × Y, ϕ) by κ, in which
Φ is defined as in (7), is not a DITS.

Proof. Let κ : Ihist → {l1, l2} and define κ−1(l1) =
{
ηk =

(ũk−1, ỹk) ∈ Ihist | ũk−1 = (ui)
k−1
i=1 , ui = u for 1 ≤ i ≤

k − 1, and k > 3
}

, and κ−1(l2) = Ihist \ κ−1(l1). Then
κ−1(l1) is the set of histories of length k > 3 which
correspond to applying the same action u for k − 1 times,
and κ−1(l2) is its complement. Then, there exist sequences
ηk−2 = (ũk−3, ỹk−2) and ηk−1 = (ũk−2, ỹk−1) such that
ηk−2 = ηk−1

⌢(u, y) and ηk = ηk−1
⌢(u, y) for which

κ(ηk−2) = κ(ηk−1) = l2 and κ(ηk) = l1. Thus,{
([ηk−2]κ, (u, y), [ηk−1]κ), ([ηk−1]κ, (u, y), [ηk]κ)

}
∈ Φ/κ.

Since [ηk−2]κ = [ηk−1]κ and [ηk−1]κ ̸= [ηk]κ, the transition
corresponding to ([ηk−1]κ, (u, y)) is not unique; thus,
(Ihist/κ, U × Y,Φ/κ) is not deterministic.

Note that Proposition 1 holds also in the case of a generic
ITS (I, U × Y, ϕ), with non-history I-states, if there exist
s, s′, q, q′ ∈ I such that {(s, (u, y), s′), (q, (u, y), q′)} ∈ Φ,
in which Φ is defined using ϕ as in (7). Then, any I-map κ
such that κ(s) = κ(q) and κ(s′) ̸= κ(q′) results in a quotient
system that is not a DITS.

Remark 1. Whether the quotient system derived from
(Ihist, U × Y, ϕ) is a DITS depends on the sufficiency of κ.
In (Weinstein et al. 2022, Proposition 4.5) it is shown that
the quotient of a transition system (S,Λ, T ) by a labeling
function σ is a deterministic transition system if and only if
(S,Λ, T ) is full5 and σ is sufficient.

As ϕhist is a function with domain Ihist × (U × Y ), it is
full, so the following is implied by (Weinstein et al. 2022) as
a special case:

Proposition 2. A Quotient system is a DITS when the
labeling is sufficient. Let (Ihist/κ, U × Y,Φhist/κ) be
the quotient of (Ihist, U × Y, ϕhist) by κ, in which Φ is
defined as in (7). Then (Ihist/κ, U × Y,Φ/κ) is a DITS if
and only if κ is sufficient.

Remark 2. For an I-map κ : Ihist → Ider, the quotient
(Ihist/κ, U × Y,Φhist/κ) is isomorphic to (Ider, U ×
Y,Φder), in which

Φder = {(κ(η), (u, y), κ(η′)) | (η, (u, y), η′) ∈ Φhist}

(Weinstein et al. 2022, Proposition 2.37). Thus, we can use
the labels introduced by an κ as the new (derived) I-space
and the corresponding quotient system as the derived ITS.

Suppose an I-map κ is sufficient. Then, the derived ITS is a
DITS, meaning that given an I-state ιk−1 in the derived space
Ider, and (uk−1, yk), ιk ∈ Ider can be uniquely determined.
Consequently, we can write the derived ITS as (Ider, U ×

Y, ϕder) in which

ϕder : Ider × (U × Y ) → Ider

is the new information transition function. Therefore, we no
longer need to rely on the full histories and the history ITS
and can rely solely on the derived ITS. This is shown in the
first two rows of the following diagram:

Ihist Ihist Ihist Ihist

Ider Ider Ider Ider

Imin Imin Imin Imin

Itask Itask Itask Itask

u1,y2

κ

u2,y3

κ

u3,y4

κ κ
u1,y2

κ′

u2,y3

κ′

u3,y4

κ′ κ′

u1,y2

κ′′

u2,y3

κ′′

u3,y4

κ′′ κ′′

(8)
Note that we can similarly define an I-map that maps any
derived I-space to another. An example is given in (8) as the
mappings κ′ : Ider → Imin and κ′′ : Imin → Itask. In this
example, κ′ is sufficient, visible also from the commutativity
of the respected square in the diagram. This implies that
the quotient system derived by κ′ is deterministic. On the
other hand, κ′′ is not sufficient, meaning that the derived ITS
is not deterministic: given an element of Itask one cannot
uniquely determine the next I-state using the derived ITS
only. This is shown in (8) with the missing arrows at the
respective row of Itask. Hence, for κ′′ the diagram does not
commute. Note that an I-map whose domain is Ihist can
also be defined as composition of the mappings along the
column of the diagram. For example, κmin : Ihist → Imin

is the composition of κ and κ′, that is, κmin = κ′ ◦ κ (same
for κtask : Ihist → Itask).

3.5 Model-based and model-free
In machine learning, control, and robotics literature, methods
are often categorized into model-based and model-free (or
data-driven) ones. Informally, using our setup, a model-based
scenario is one where the derived I-state is allowed to depend
on knowledge about the external system, the sensor mapping,
the initial state, and the disturbances acting on the external
system or on the sensors (if there are any). The model-free
scenario in contrast cannot depend on those, but can depend
on data, which in our case is the history I-states, that is, the
sequences of actions and observations.

In Section 2.1 we have defined internal-external coupled
systems. Their coupling (1) produces an autonomous system
(I ×X,ϕ ∗π,h f). However, we can choose not to consider
either one of the coupling functions π and h, and be left with
a system that still has a control parameter. For example, let
(I ×X,U, ϕ ∗h f) be a system where the evolution of states
can be written as

ι′ = ϕ(ι, y) in which y = h(x),

x′ = f(x, u). (9)

Here, u ∈ U is a control parameter on which the next state
always depends. This system represents the coupled system

5A transition system (S,Λ, T ) is full, if ∀s ∈ S, λ ∈ Λ there exists at least
one s′ ∈ S with (s, λ, s′) ∈ T .

Prepared using sagej.cls



Sakcak et al. 9

before a policy π has been defined over the states of the
internal.

Note that the internal system only has access to the current
information state ι ∈ I, not to the external state x ∈ X . One
can notationally express this perspective by evolving the
internal system by an externally parametrized information
transition function ϕf,h(· ; x), which maps the current I-state
and action pair (ι, u) ∈ I × U to the next I-state ι′ ∈ I. The
maps h (which couples the external to the internal system)
and f are subsumed into the global map ϕf,h which is
additionally parametrized by the current state x ∈ X of the
external system. Thus, in accordance with (9), we define ϕf,h
for each (ι, u) ∈ I × U and x ∈ X by

ϕf,h
(
ι, u ; x

)
:= ϕ

(
ι, h(f(x, u))

)
. (10)

If the I-space in (9) is the history I-space, we can write (9)
as (Ihist ×X,U, ϕ ∗h f), and its internal system perspective
(10) becomes (Ihist, U, ϕf,h). We propose that a method
of obtaining a derived I-space corresponding to an I-map κ
is model-based, if κ is obtained as a function of (Ihist ×
X,U, ϕ ∗h f), while it is model-free, if it is obtained as a
function of it from the perspective of the internal system, that
is, as a function of (Ihist, U, ϕf,h).

The distinction between model-based and model-free is
also seen in the initial states η0 of the history I-space. In
model-based setups, typically η0 is a subset of X , or a
probability distribution over X while in model-free setups
η0 is an empty sequence. Examples 9 and 11 are examples of
model-free and model-based I-spaces respectively.

Note that this formalization implies that model-free
methods are a subset of model-based. This is because
the internal perspective is itself a function of the entire
coupled system, so anything that is a function of the internal
perspective is by transitivity also a function of the entire
coupled system. This matches the intuition that model-based
are ones where more information is available. We leave
the exploration of more aspects of this distinction and its
formalization for future work.

We now present two examples that illustrate model-based
and model-free derived ITSs.

Example 2. Bayesian filter. Suppose the initial history
information state encodes a probability distribution over
X such that η0 = P (x1). We refer to the coupled system
including the disturbances described in (2). A Markovian,
probabilistic model of the disturbances is given in the form
of conditional distributions P (ψ | x) over Ψ, and P (θ | x, u)
over Θ. In the former, conditioning takes place relative to
external states x ∈ X , and in the latter relative to state-action
pairs (x, u) ∈ X × U . Using the definitions of f and h given
in (2), P (yk | xk) and P (xk+1 | xk, uk) can be derived from
P (ψk | xk) and P (xk+1 | xk, uk) for all stages k.

Let Iprob be the set of all probability distributions
defined over X and let Ihist be a history information
space with I0 = Iprob such that η0 is a probability
distribution over X , that is P (x1). An ITS can
be derived by κprob : Ihist → Iprob such that
κprob(ηk) = ιk = P (xk | ηk). Note that we can write
ηk as ηk = ηk−1

⌢(uk−1, yk). The I-state ιk = P (xk | ηk)
can be inductively computed from ιk−1 and (uk−1, yk)
using marginalization and Bayes’ rule starting from ι1 =

P (x1 | y1), in which η1 = y1. This corresponds to defining
ϕ : I × (U × Y ) → I such that ιk = ϕ(ιk−1, (uk−1, yk)).
Then, κ(ηk−1

⌢(uk−1, yk)) = ϕ ◦ κ(ηk−1) = P (xk | ηk)
which shows that κprob is sufficient. Hence, a Bayesian
filter can be modeled as a derived DITS whose state space is
Iprob. Note that in this case, κprob is defined as a function of
(Ihist ×X,U, ϕ ∗h f), making it model-based.

Note that the Kalman filter is a special case of a Bayesian
filter when f and h are linear and the disturbances are
Gaussian. These specifications imply that all the posterior
distributions are Gaussian as well. Therefore, in this special
case, the range of κprob is implicitly restricted to the set
of all Gaussian distributions, denoted as IGauss, such that
κprob : Ihist → IGauss ⊂ Iprob. This restriction allows the
I-state to simply encode only the mean and the covariance
of a multivariate Gaussian distribution, that is, ι = (x̂,Σ),
in which x̂ is the mean and Σ is the covariance matrix,
without violating the sufficiency of κprob. An extension
of the Kalman filter to nonlinear systems is the Extended
Kalman Filter (EKF). In the case of EKF, the functions f
and h are not linear. This violates the posterior distribution
being Gaussian even if the disturbances are. However, the
states of the EKF are defined as elements of IGauss and a
state transition function ϕ : IGauss × (U × Y ) → IGauss is
described that relies on linearizing f and h at each I-state.
Note that even though the Kalman filter and the EKF share
the same underlying I-space, the corresponding I-maps that
derive these transition systems are different.

The following is an example of a model-free derived ITS.

Example 3. Moving average filter. Let Y = R and κk :
Ik → R, in which Ik is the set of k stage histories. A moving
average filter (observation only) with a window size n can be
derived from Ik as

(ũk−1, ỹk) 7→
1

n

k∑
i=k−n+1

yi.

3.6 Lattice of information transition systems
We fix Ihist, which corresponds to fixing the set of initial
states I0. Then, each I-map κ defined over Ihist induces a
partition of Ihist through its preimages, denoted as Ihist/κ.

Definition 4. Refinement of an I-map. An I-map κ′ is a
refinement of κ, denoted as κ′ ⪰ κ, if ∀A ∈ Ihist/κ′ there
exists a B ∈ Ihist/κ such that A ⊆ B.

Let K(Ihist) denote the set of all partitions over Ihist.
Refinement induces a partial ordering since not all partitions
of Ihist are comparable. The partial ordering given by
refinements form a lattice of partitions over Ihist, denoted
as (K(Ihist),⪰).

At the top of the lattice, there is the partition induced
by an identity I-map (or equivalently, by a bijection),
κid : Ihist → Ihist, since all of its elements are singletons
(all equivalence classes contain exactly one element),
making it the maximally distinguishable case. Conversely,
we can define a constant mapping κconst : Ihist → Iconst for
which Ihist/κconst is a singleton, that is, Iconst = {ιconst},
which then will be at the bottom of the lattice. In turn, κconst
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yields the minimally distinguishable case as all histories now
belong to a single equivalence class. This idea is similar to
the notion of the sensor lattice defined over the partitions
of X see (LaValle 2012; Zhang and Shell 2021). Indeed, if
we take I0 = X and consider κest : Ihist → X , the ordering
of partitions of Ihist such that Ihist/κest is the least upper
bound gives out the sensor lattice.

As motivated in previous sections, we are interested
in finding a sufficient I-map such that the quotient ITS
derived from the history ITS is still deterministic. Notice
that the constant I-map κconst is sufficient by definition
since for all (u, y) ∈ U × Y , and all η, η′ ∈ Ihist, we have
that κconst(η) = κconst(η

′) and κconst(ϕhist(η, (u, y)) =
κconst(ϕhist(η

′, (u, y)). On the other hand, in certain cases
it is crucial to differentiate certain histories from others. This
will become clear in the next section when we describe the
notion of a task. Suppose κ is a labeling that partitions Ihist
into equivalence classes that are of importance and suppose
that κ is not sufficient. Then, we want to find a refinement
of κ that is sufficient. This will serve as a lower bound on
the lattice of partitions over Ihist since for any partition such
that Ihist/κ is a refinement of it, the classes of histories that
are deemed crucial will not be distinguished. The following
defines the refinement of κ that ensures sufficiency and a
minimal number of equivalence classes.

Definition 5. Minimal sufficient refinement. Let
(Ihist, U × Y, ϕhist) be a history ITS and κ an I-map. A
minimal sufficient refinement of κ is a sufficient I-map κ′

such that there does not exist a sufficient I-map κ′′ that
satisfies κ′ ≻ κ′′ ⪰ κ.

Remark 3. It is shown in (Weinstein et al. 2022, Theorem
4.19) that the minimal sufficient refinement of κ defined over
the states of a deterministic transition system (S,Λ, τ) is
unique up to relabeling, namely if κmin and κ′min are minimal
sufficient refinements, then κmin ≻ κ′min and κ′min ≻ κmin.

4 Solving Tasks Minimally

4.1 Definition of a task
In this section, we formulate general planning and filtering
tasks within the framework of information transition
systems. We distinguish between two categories: 1) active,
which entails planning and executing an information-
feedback policy that forces a desirable outcome in the
external system, and 2) passive, which refers to only
observing the external system without being able to effect
changes. We next describe active and passive tasks for
the model-free and model-based I-space formulations,
introduced in Section 3.5. In the model-free case, tasks are
specified using a logical language over Ihist. This results in
a labeling, a derived I-space Itask, and the associated I-map
κtask. Various logics are allowable, such as propositional,
modal, or a temporal logic. The resulting sentences of the
language involve combinations of predicates that assign true
or false values to subsets of Ihist. Solving an active task
requires that a sentence of interest becomes true during
execution of the policy. This is called satisfiability. For
example, the task may be to simply reach some goal set
G ⊆ Ihist, causing a predicate IN-GOAL(Ihist) to become
satisfied (in other words, be true).

Solving a passive task only requires maintaining whether
a sentence is satisfied, rather than forcing an outcome; this
corresponds to filtering. Whether the task is active or passive,
if satisfiability is concerned with a single, fixed sentence,
then a task-induced labeling (or task labeling for short), that
is, κtask, over Ihist assigns two labels: Those I-states that
result in true and those that result in false. A task labeling
may also be assigned for a set of sentences. In this case,
each sentence induces a partition of Ihist, and the task
labeling over Ihist assigns a label to each set in the common
refinement of these partitions. In the model-based case, tasks
are instead specified using a language over X , and sentence
satisfiability must be determined by an I-map that converts
history I-states into expressions over X .

Some naturally occurring robot tasks can only be
described in terms of infinite sequences of actions and
observations. These are called infinitary tasks. For example,
cycling through a finite sequence of subsets ofX indefinitely
while avoiding others (Fainekos et al. 2009) can only be
described in terms of infinite histories. For this task, whether
the sentence of interest is satisfied cannot be determined
based on a finite history of any given length. However, the
histories that fail, that is, those for which the sentence of
interest becomes false, can be defined in terms of finite
histories (namely those that result in a state that needed to
be avoided). Interested reader can refer to (Kress-Gazit et al.
2009) for examples based on linear temporal logic (LTL).

Infinitary tasks are defined on the set of infinite histories
I∞
hist which consists of infinite sequences of the form η̄ =

(η0, y1, u1, y2, u2, · · · ). These are the elements of the infinite
Cartesian product

I0 × (Y × U)× (Y × U)× · · · = I0 ×
∞∏
k=1

(Y × U).

The preimages of an infinitary task labeling κ̄ : I∞
hist →

Itask are subsets of I∞
hist. Although the satisfiability of

an infinitary task may depend on infinite sequences, these
can nevertheless be characterised in terms of finite initial
segments as follows. Any subset H ⊆ I∞

hist can be written
as

H = I0 ×
∞∏
k=1

(Yk × Uk), (11)

in which I0 ⊆ I0, and Yk ⊆ Y , Uk ⊆ U for all k ∈ N. For
eachm ∈ N, we denote byH(m) the collection of subsets of
I∞
hist for which Yk = Y and Uk = U for all k > m. In other

words, such collections of histories are constrained only at a
finite number of stages.

Now, let ι ∈ Itask and suppose an equivalence class
induced by the preimage κ̄−1(ι) is a (potentially infinite)
union

κ̄−1(ι) =
⋃
α∈A

Hα, (12)

in which A is some index set and each Hα belongs to H(m)
for some m. Then, whether a particular history η̄ ∈ I∞

hist

belongs to κ̄−1(ι) is determined by a finite number of stages
in an initial segment of this history. In general, however, the
length of these initial segments is not bounded from above.

To characterize infinitary tasks in terms of deciding
their satisfiability, we rely on topology. Assume that some
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topology is defined for the sets I0, Y , and U . If these are
finite sets, a natural choice is the discrete topology in which
every singleton is an open set. For subsets of Rn, a natural
choice would be the restriction of the usual Euclidean metric.
The base H◦ of the product topology in I∞

hist consists of
those sets H for which H ∈ H(m) for some m ∈ N, and the
sets I0, Yk, Uk in (11) satisfy that I0 is open in I0, and Yk,
Uk are open in Y , U , respectively, for all k ∈ N. All other
open sets are obtained as arbitrary unions of sets H ∈ H◦.
In particular, when the sets Hα in (12) satisfy Hα ∈ H◦ for
all α ∈ A, the corresponding preimage κ̄−1(ι) is an open set.
If the sets I0, Y , U are compact, the space I∞

hist is compact
in the product topology. This is the case for example when
I, Y , and U are finite sets with the discrete topology.

In the simplest nontrivial case, a task labeling κ̄ concerns
a single sentence. Then, Itask = {0, 1} so that the preimages
of κ̄ partition I∞

hist into the equivalence classes κ̄−1(1), that
is, the set of histories for which the sentence is satisfied,
and κ̄−1(0), which is the set of histories that result in false.
We call κ̄−1(1) and κ̄−1(0) the success set and fail set,
respectively. If the success set of a given task is open, we
call this an open task. A closed task is one whose fail set is
open, so that its success set is closed. It is possible for a task
to be both open and closed, so that both the success and fail
sets are both open and closed. We call such tasks clopen.

Due to the definition of the sets H(m), the membership
of a given history in an open set is determined by some
finite initial segment of that history. Therefore, based on a
finite length segment of a given history, we can determine
its membership in the success set of an open task, in the fail
set of a closed task, and both the success and fail sets for a
clopen task. In these cases, task satisfiability can be defined
in terms of the elements of Ihist. We can thus transcribe
an infinitary task labeling κ̄ : I∞

hist → Itask in the form of
κ : Ihist → Itask. This amounts to assigning to each finite
history η ∈ Ihist some task label ι ∈ Itask in such a way that
this labeling expresses the success set of the corresponding
infinitary task κ̄. Recall that Ihist =

⋃
k∈N Ik, in which Ik

are as in (6). Suppose κ̄−1(ι) is an open set for some ι ∈
Itask so that κ̄−1(ι) =

⋃
α∈AHα as in (12). Then, for a

finite history η = (η0, y1, u1, . . . , uk−1, yk) ∈ Ik we define
κ(η) = ι if and only if there exists some m ≤ k, some index
α ∈ A and a collection of infinite histories

H(η) = I0× (Y1×U1)×· · ·× (Ym×Um)×
∞∏

n=m+1

(Y × U),

for which H(η) ∈ Hα ∈ H(m), η0 ∈ I0 and yn ∈ Yn, un ∈
Un for all 1 ≤ n ≤ m.

Below are examples of typical model-based task
descriptions with their corresponding definitions in terms of
infinite histories that can be expressed using a task-labeling
over Ihist.

Example 4. Reach state x ∈ X from an initial state
x0 ∈ X . The success set of this task consists of those
histories that correspond to the external system arriving to
x in some finite time. If Hm ⊆ I∞

hist contains those histories
in which x is visited for the first time at stage m, the success
set of this task is κ̄−1(1) =

⋃
m∈NHm. AssumingHm ∈ H◦

for every m ∈ N, this task is open.

Example 5. Never visit state x ∈ X . The fail set of this
task consists of those histories that correspond to the external
system arriving at x from some initial state x0. Since this
always happens in finite time (or not at all), the fail set can
be expressed as the union

⋃
m∈NHm, where Hm consists of

all the histories in which state x is reached for the first time
on stage m. Assuming Hm ∈ H◦ for all m ∈ N, the task is
therefore closed.

Example 6. Reach state x1 while avoiding state x2. The
success set of this task may be written as the union, over
m ∈ N, of histories which reach x1 for the first time after
m stages, and did not visit x2 during the first m− 1 stages.
Assuming these sets are open, the success set is thus open.
With an analogous argument, it is seen that the fail set is also
open.

An infinitary task is not necessarily either open or closed.
One example of this are tasks that can be expressed as so-
called Gδ sets (Dugundji 1978, Section 3.6), that is, infinite
intersections of open sets (see Example 7).

Example 7. Revisit state x ∈ X infinitely many times.
In this case, neither the success set or fail set of this
task can be defined in terms of the sets H(m), since
no finite length history can rule out either success or
failure. For each m, k ∈ N, define Hm,k = {η̄ ∈ I∞

hist |
at stagem, the next visit tox happens after k stages}. Then
the success set is given by κ̄−1(1) =

⋂
m∈N

⋃
k∈NHm,k

which is an infinite intersection of open sets if Hm,k ∈ H◦

for all m, k. This set is not generally open, but belongs to the
broader class Gδ .

In this paper, we consider tasks that are expressed as a
labeling over Ihist or those over I∞

hist that can be transcribed
as one over Ihist. Hence, the problem families that we
will introduce in Section 4.2 would refer to these types
of tasks. All the tasks in examples in Section 5 are either
open or closed and thus are representable by either a finitary
success or failure condition. More generally, if one defines
tasks using any common version of temporal logic, the
corresponding success sets are always going to be Borel,
that is, members of the sigma algebra generated by open
sets (Dugundji 1978, Section 3.6).

4.2 Problem families
It is assumed that the state-relabeled transition system
(X,U, f, h, Y ) describing the external system is fixed, but
it is unknown or partially known to the observer (a robot or
other observer).

Filtering (passive case) requires maintaining the label of
an I-state attributed by κtask. Since κtask is not necessarily
sufficient, we cannot guarantee that the quotient system by
κtask is a DITS (Propositions 1 and 2). This implies that
relying solely on the quotient system by κtask, we cannot
determine the class that the current history belongs to (see
the last row in (8)). Hence, we cannot determine whether a
sentence describing the task is satisfied (or which sentences
are satisfied).

Suppose the sets U and Y are specified, and at
each stage k, the action uk−1 is known and yk is
observed. The following describes the problem for a
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passive task given a state-relabeled (history) ITS (Ihist, U ×
Y, ϕhist, κtask, Itask), in which κtask : Ihist → Itask is a
task labeling (that is not assumed to be sufficient), and Itask
is the corresponding I-space.

Problem 1. Find a sufficient I-space filter. Find a
sufficient refinement of κtask.

Note that Ihist/κtask determines a lower bound on the
partitioning of Ihist which is interpreted as the crucial
information that cannot be relinquished without losing
predictability, or success guarantees. Consequently, histories
belonging to different equivalence classes with respect to
κtask must always be distinguished from each other.

Example 8. Goal recognition. Suppose κtask : Ihist →
Itask is a labeling that partitions Ihist into two dis-
joint sets; Itask = {ιG, ιNG}, in which κtask

−1(ιG) and
κtask

−1(ιNG) correspond to histories that lead to goal and
the ones that do not, respectively. Suppose the goal is
recognizable, meaning that, solely based on yk, the value
of κtask(ηk) is known, for all ηk ∈ Ihist and k > 0. Then,
κtask is trivially sufficient (also minimal). However, if the
sensor mapping does not directly provide this information,
then a refinement is needed to describe a sufficient filter that
infers whether the goal is reached.

Notice that Problem 1 does not impose an upper bound.
At the limit, a bijection from Ihist is always a sufficient
refinement of κtask. As stated previously, using history ITS
can create computational obstructions in solving problems.
This motivates the following problem.

Problem 2. Find a minimal sufficient I-filter. Find a
minimal sufficient refinement of κtask.

We now consider a basic planning problem for which
Itask = {0, 1}, such that κtask−1(1) ⊂ Ihist is the set of
histories that achieve the goal, and κtask

−1(0) ⊂ Ihist is
its complement. Most planning problems refer to finding a
labeling function π such that, when used to label the states of
the internal system, guarantees task accomplishment. Then
π is called a feasible policy, which is formally defined in
the following. Consider an external system (X,U, f, h, Y ).
Let RX(Itask) ⊆ X be the set of initial states for which
there exist a k ∈ N and histories x̃k, ũk−1, and ỹk, such that
xi+1 = f(xi, ui) and yi = h(xi) for all 0 < i < k, and ηk ∈
κtask

−1(1), in which ηk is the history I-state corresponding
to ũk−1 and ỹk. Informally, RX(Itask) is the set of initial
states of the external system for which there exists an action
sequence such that the evolution of the external system
under this action sequence results in histories that satisfy the
task description. We will then call RX(Itask) the backward
reachable set for Itask, analogously to the use of the same
term in control theory.

Definition 6. Feasible policy for Itask. Let (I, Y, ϕ, π, U)
and (X,U, f, h, Y ) be the state-relabeled transition systems
corresponding to internal and external systems, respectively.
A labeling function π : I → U is a feasible policy for Itask
if for all x in the backward reachable set for Itask, that
is, x ∈ RX(Itask), at least one history ηk corresponding to
the coupled internal-external system (1) initialized at (ι0, x)
belongs to κtask−1(1).

Most problems in the planning literature consider a fixed
DITS and look for a feasible policy for Itask. This yields the
following problem. Typically, the I-space considered is X
which makes the resulting π a state-feedback policy6. Note
that a DITS, in other words, the robot brain, is an I-space
filter itself.

Problem 3. Find a feasible policy. Given (I, Y, ϕ), find
a labeling function π : I → U that is a feasible policy
for Itask.

We can further extend the planning problem to consider
an unspecified internal system. This entails finding a DITS
(I, Y, ϕ) and a policy π : I → U such that the resulting
histories of the coupled system (I ×X,ϕ ∗π,h f) belong to
κtask

−1(1), that is, they satisfy the task description. This is
the problem of jointly finding an I-space-filter and a feasible
policy defined over its states. Let K be the set of all I-maps
defined over Ihist. For κ ∈ K, let Πκ be the set of all policies
(labeling functions) that can be defined over the states of I
which is the image of the mapping κ : Ihist → I.

Problem 4. Find a DITS and a feasible policy. Find
a pair (κ, π) ∈ {(κ, π) | κ ∈ K ∧ π ∈ Πκ} such that κ is
sufficient and π is a feasible policy for Itask.

Suppose κ : Ihist → I and assume (κ, π) is a solution to
Problem 4. This corresponds to the DITS (I, Y, ϕπ) and a
feasible policy π : I → U such that (I, Y, ϕ) is the derived
ITS by κ and (I, Y, ϕπ) is the restriction of it by π.

We emphasize that finding a DITS for a planning problem
differs from Problems 1 and 2 in the sense that we are
not looking for a refinement of κtask. The reason for this
difference is because κtask can already be sufficient, hence,
it is the minimal sufficient refinement of itself. However,
this does not necessarily imply the existence of a feasible
policy defined over Itask. For example, consider the κtask
described in Example 8 and a sensor mapping that reports
whether the goal is reached or not. Even though κtask is
sufficient in this case, knowing when the goal is reached does
not imply, in most cases, that a feasible policy exists as a
labeling function for the quotient system by κtask, that is,
over the states of Itask. On the other hand, we can still talk
about a notion of minimality. This notion is defined in the
following.

Definition 7. Minimal DITS for π. Let κ : Ihist → I
and π : I → U be a solution to Problem 4. Furthermore,
let (Ihist, Y, ϕhist,π◦κ) be the restriction of (Ihist, U ×
Y, ϕhist) by π ◦ κ. Denote by (I ′

hist, Y, ϕhist,π◦κ) the
subgraph of (Ihist, Y, ϕhist,π◦κ) from which the nodes that
are not reachable from η0 have been pruned. We restrict the
domain of I-maps κ and κ′ to I ′

hist. Then, (I, Y, ϕ, π, U),
determined by κ and π, is minimal for π if there does not
exist a sufficient I-map κ′ with κ ≻ κ′ and a corresponding
policy π′ for the quotient system by κ′ that satisfy π ◦ κ =
π′ ◦ κ′.

Informally, a minimal DITS for π implies that one cannot
further reduce the quotient system by merging equivalence

6The term state in state-feedback policy refers to the states of the external
system, as it is commonly used in the robotics literature.
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classes induced by κ, while simultaneously ensuring that
when coupled to the external system that is initialized at the
same state, the coupling would result in the same observation
and action histories as (I, Y, ϕ, π, U).

There may be multiple pairs of (κ, π) that solve the same
problem. Given two DITS, (Ihist/κ1, Y,Φhist/κ1, π1, U)
and (Ihist/κ2, Y,Φhist/κ2, π2, U), a notion of equivalence
can be determined if the preimages of π1 ◦ κ1 and π2 ◦
κ2 partition Ihist in the same way. We can say that
(Ihist/κ1, Y, ϕhist, π1, U) requires more histories to be
distinguished if the partitioning induced by π1 ◦ κ1 is a
refinement over the partitioning induced by π2 ◦ κ2.

Suppose a feasible policy π : Ihist → U is defined over
the states of the history ITS (Ihist, U × Y, ϕhist). The
restriction of the history ITS to the policy π is then
(Ihist, Y, ϕhistπ ) (recall the definition given in Section 3.1
of restriction of a DITS). This is a particular case that
solves Problem 4 for which (κ, π) is the pair such that
κ : Ihist → Ihist is a bijection. Let (I ′

hist, Y, ϕhistπ ) be
the restriction by π from which the states that are not
reachable from η0 are pruned. Note that I ′

hist⊆Ihist is the
set of histories that can be realized once the history ITS
is restricted by the policy π. Restricting the domain of π
to I ′

hist, we obtain a labeling function over the states of
(I ′

hist, Y, ϕhistπ ) which determines the classes of histories
that are distinguished by the actions selected under the policy
π. To ensure that the same action histories are obtained when
a derived DITS (quotient of the history ITS by κ′) is coupled
to the external system, the I-map κ′ needs to be a refinement
of π. Consequently, the following proposition establishes the
connection between a policy π defined over Ihist and its
respective minimal DITS.

Proposition 3. The minimal sufficient refinement of
a feasible policy π : Ihist → U determines its minimal
DITS. Let (κ, π) be a pair that solves Problem 4 such that
κ : Ihist → Ihist is a bijection. Then, a minimal DITS for π
is the DITS (I, Y, ϕ) derived from (I ′

hist, Y, ϕhist,π) by some
minimal sufficient refinement κ′ of π.

Proof. Since κ′ is a minimal sufficient refinement of π, it
is sufficient and ∄κ′′ that satisfies κ′ ⪰ κ′′ ⪰ π. Since it is a
refinement, every set in I ′

hist/κ
′ is a subset of I ′

hist/π. Thus,
we can find a π′ : I → U such that π′(κ′(η)) = π(η). Then,
by Definition 7, (I, Y, ϕ) labelled with π′ is a minimal DITS
for π.

4.3 Learning a sufficient ITS
Although learning and planning overlap significantly, some
unique issues arise in pure learning (Weinstein et al. 2022).
This corresponds to the case when κtask : Ihist → Itask
is not initially given but needs to be revealed through
interactions with the external system, that is, respective
action and observation histories. It is assumed that whether
the sentence (or sentences) describing the task is satisfied or
not can be assessed at a particular history I-state.

We can address both filtering and planning problems
defined previously within this context, considering model-
free and model-based cases. In the model-free case, the task
is to compute a minimal sufficient ITS that is consistent
with the actions and observations. Variations include lifelong

Figure 3. Environment used in Examples 9,10, the obstacle
(an open disk) is shown in black.

learning, in which there is a single, long history I-state, or
more standard learning in which the system can be restarted,
resulting in multiple trials, each yielding a different history I-
state. In the model-based case, partial specifications of X , f ,
and h may be given, and unknown parameters are estimated
using the history I-state(s). Different results are generally
obtained depending on what assumptions are allowed. For
example, do identical history I-states imply identical state
trajectories? If not, then set-based, nondeterministic models
may be assumed, or even probabilistic models based on
behavior observed over many trials and assumptions on
probability measure, priors, statistical independence, and so
on.

5 Applying the Theory
In this section we provide some simple filtering and planning
problems and show how the ideas presented in the previous
sections apply to these problems. All problems defined in the
previous section can be posed in a learning context as well.
Then, Itask is not given but it is revealed through interactions
between the internal and external as the input-output data.
Finally, we formulate as derived ITSs two established
approaches, diversity-based inference and predictive state
representations, for obtaining compact representations of the
input-output (action-observation) relations for an unknown
external system. These techniques illustrate the model-free
approach to representing the internal-external coupling.

5.1 Red-green gates
This example is inspired by (Tovar et al. 2008). Let E ⊆ R2

be an annulus that is partitioned into non-empty regions
separated by gates, see Figure 3. Each gate is either green or
red. This color can be detected by the robot’s color sensor
and follows the rule that each region shares a boundary
with exactly two gates; one green and one red. The set of
possible observations are therefore Y = {r, g}. As in (Tovar
et al. 2008) we assume that the robot’s trajectory is in
general position with respect to the gates, in the sense that
it only crosses them transversally, and never goes through an
intersection of two gates.

Example 9. Consistent rotation filter. This example
considers a filtering problem from the perspective of an
independent observer. Suppose the actions taken by the robot
are not observable and the only information about the system
is the history of readings coming from the robot’s color
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Figure 4. (a) State-relabeled history ITS described in Example 9, and the labeling function κtask. States colored yellow are the
ones that do not violate the task description.(b) Equivalence classes induced by κ′; the minimal sufficient refinement of κtask.
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Figure 5. Quotient by κ′ of the state-relabeled history ITS
shown in Figure 4(b).

sensor; for example, (r, r, r, g, r, g). Then, the history I-space
is the set of all finite length sequences of elements of Y , that
is, Ihist = Y ∗, which refers to the free monoid generated
by the elements of Y (or the Kleene star of Y ). Hence, the
history ITS can be represented as an infinite binary tree.
The task is to determine whether the robot crosses the gates
consistently (in a clockwise or counterclockwise manner) or
not. The preimages of κtask : Ihist → Itask partition Ihist
into two subsets: one which the condition is satisfied (so far)
and the others. The labeling induced by κtask is shown in
Figure 4(a).

Claim 1. Task labeling κtask defined in Example 9 is not
sufficient.

Proof. There exist I-states η, η′ such that κtask(η) =
κtask(η

′) and there exists a y for which κtask(ϕhist(η, y)) ̸=
κtask(ϕhist(η

′, y)); for example consider η = (r, g), η′ =
(r, g, r) and y = g. This shows that κtask violates
Definition 3.

We can obtain a sufficient refinement of κtask, defined as
κ′ : Ihist → {ι0, ιr, ιg, ιnt}. The corresponding equivalence
classes are shown in Figure 4(b). Its quotient DITS is shown
in Figure 5.

Claim 2. κ′ as defined above is a minimal sufficient
refinement of κtask.

()

(r) (g)

(r, ug, r) (r, ug, g)

(.., ug, r)

(g, ur, r) (g, ur, g)

r gr g r g r g

gr

(.., ug, r)(.., ug, g) (.., ug, g)(.., ur, r) (.., ur, r) (.., ur, g)(.., ur, g)

r rg
g

Figure 6. History ITS (Ihist, U × Y, ϕhist) restricted by π,
labelled with π. The histories where ug is applied is colored
green and where ur is applied in red. The initial state η0 is
labeled with ().

Proof. It follows from Proposition 2 that if a labeling is not
minimal then there is a minimal one that is strictly coarser
and is still sufficient. However, neither of the subsets that
belong to Ihist/κ′ can be merged, since merging ιnt (colored
gray in Figure 5) with anything else violates the condition
that κ′ is a refinement of κtask and any pairwise merge of
the others violate sufficiency.

Suppose the robot has a boundary detector, and it is
capable of executing a bouncing motion that involves move
forward and rotate in place. The set of actions is defined
as U = {ur, ug}, in which ug represent a bouncing motion
that allow the robot to traverse the green gate but not the
red one, ur allows it to traverse the red gate but not the
green one. For all the actions, the robot also bounces off
of the boundary. We assume that the boundary detector and
color sensor readings do not arrive simultaneously, and that
the resulting trajectory will strike every open interval in the
boundary of every region infinitely often, with non-zero,
non-tangential velocities (Bobadilla et al. 2011).

Example 10. Consistent rotation plan. We now consider
a planning problem (that belongs to the class described in
Problem 4) for which the goal is to ensure that the robot
crosses the gates consistently. The history I-space of the
planner is Ihist = (U × Y )∗ and the preimages of κtask
partition Ihist into two sets; the histories that satisfy the
predicate and the ones that do not.
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Figure 7. DITS describing the internal system solving the
planning problem described in Example 10.

l2

l1

Figure 8. L-shaped corridor; l1, l2 ≤ l. For any corridor, the
robot starts at the left-most part of the corridor which
corresponds to the coordinates (0, 0).

A policy π : Ihist → I can be determined over the states
of history ITS such that π(η0, . . . , yk) = ug if yk = r and
π(η0, . . . , yk) = ur if yk = g. Let (I ′

hist, Y, ϕhist,π) be the
restriction of history ITS by π such that the states that are not
reachable from η0 are pruned (see Figure 6). The labeling π
defined over the states of (I ′

hist, Y, ϕhist,π) is sufficient as
can be seen from the inspection of the ITS given in Figure 6.
Then, the following claim follows from Proposition 3.

Claim 3. The minimal DITS for π is the quotient of
(I ′

hist, Y, ϕhist,π) by π.

The quotient system, that is the minimal DITS, is shown
in Figure 7. Let I = {i0, i1, i2} be the states of this quotient
ITS. The respective plan π′ represented over the states of this
minimal DITS is given as π′(ι0) = (), π′(ι1) = ug , π′(ι2) =
ur.

5.2 L-shaped corridor
Consider a robot in an inverted L-shaped planar corridor
(Figure 8). Let El be the set of all such environments such
that l1, l2 ≤ l, in which l1 and l2 are the dimensions of
the corridor bounded by l. We assume that the minimum
length/width is larger than the robot radius, that is, 1. The
state space X is defined as the set of all pairs (q, Ei),
in which (q1, q2) ∈ Ei, and Ei ∈ El. The action set is one
which corresponds to moving one step towards right or up; if
the boundary is reached, the state does not change. The robot
has a sensor that reports 1 if the motion is blocked.

Example 11. L-shaped corridor. Consider a model-based
history ITS with η0 ⊂ X that specifies the initial position
as q0 = (0, 0) which corresponds to the left-most bottom
square of the mirrored L-shape (Figure 8) but does not

specify the environment so that it can be any Ei ∈ El. Let
Ihist be its set of states and let κndet : Ihist → pow(X) be
an I-map that maps the history I-state ηk at stage k to a
subset of Xk ⊆ X . Since (X,U, f, h, Y ), and X0 = η0 are
known, transitions for the quotient system can be described
by induction as Xk+1 = X̂(Xk, uk) ∩H(yk+1), in which
X̂(X,u) := {f(x, u) | x ∈ X}, and H(y) := h−1(y) ⊆ X
is the set of all states that could yield y. By construction,
κndet is sufficient. Suppose κtask : Ihist/κndet → Itask is
a task labeling for localization that assigns each singleton a
unique label and all the other subsets are labeled the same.

Claim 4. Let κndet and κtask be the I-maps defined in
Example 11. Then, κndet is a minimal sufficient refinement
of κtask.

Proof. Consider a subset X ′ ⊆ X with cardinality |X ′| > 1
and some x′ ∈ X as labels assigned by κndet. The I-map
κtask is not sufficient because the transition corresponding
to ([X ′]κtask

, (u, y)) can lead to multiple labels [x′]κtask
. By

construction κndet is sufficient. The I-map κndet is a minimal
sufficient refinement of κtask because it is sufficient and
because there does not exist a sufficient κ such that κndet ≻
κ ⪰ κtask. Suppose to the contrary that a sufficient κ exists,
which would mean that some equivalence classes could be
merged. However, this is not possible because merging any
of the non-singleton subsets violates sufficiency (as shown
for κtask) and merging singletons with others violates that it
is a refinement.

A policy can be described over Ihist/κndet; u = (1, 0)
starting from X0 until yk = 1 is obtained and applying u =
(0, 1) starting from Xk until yn = 1 is obtained, then it is
found that q = (k, n) and E is the corridor with l1 = k,
l2 = n.

5.3 Diversity-based Inference (DBI) as a
derived ITS

In this and the following section, we present DBI and its
probabilistic counterpart PSR as deterministic ITSs. The
core idea in DBI (Rivest and Schapire 1993, 1994) is to
gather information about the environment through action-
observation experiments. The environment is modeled as a
finite state Moore machine (finite state automaton), formally
defined as a 6-tuple E = (X,U, f, h, Y, x0). This definition
coincides with our definition of the external system, but
also contains an initial state x0.7 Experiments on E are
called tests. Each test t = (ũm, y) consists of a finite
action sequence ũm := (u1, . . . , um) ∈ Um, followed by an
observation y ∈ Y . The test t = (ũm, y) is said to succeed
from state x ∈ X , if

(
h ◦ f ũm

)
(x) = y, where

f ũm(x) := f
(
· · · f

(
f(x, u1), u2

)
. . . , um

)
. (13)

By convention, if m = 0, then f ũm(x) = x. Thus, for each
test t there exists a success function St : X → {0, 1}, for

7In (Rivest and Schapire 1993), the authors allow several different
observations (predicate symbols) p ∈ P to be observed at each state via a
function γ : X × P → {0, 1}. We assume for simplicity that each x ∈ X
corresponds to a unique observation y = h(x).
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which St(x) = 1 if and only if t succeeds at x. In DBI,
an equivalence relation ∼T is defined in the set of tests
T :=

{
(ũm, y) | ũm ∈ Um, y ∈ Y, m ∈ N

}
by setting

t1 ∼T t2 ⇐⇒ St1(x) = St2(x), ∀x ∈ X.

The cardinality K := |PT | of the set of equivalence classes
PT =

{
[t] | t ∈ T

}
is called the diversity of E . The diversity

of a finite state machine satisfies K ≤ 2|X| <∞. Each state
x ∈ X can thus be labeled by a finite success vector

ξ(x) :=
(
S1(x), . . . , SK(x)

)
(14)

in which, for k ∈ {1, . . . ,K}, the functions Sk := Stk are
the success functions of tests t1, . . . , tK , whose respective
equivalence classes [t1], . . . , [tK ] constitute the set PT .

Proposition 4. The success vector is a minimal sufficient
refinement. Let E = (X,U, f, h, Y, x0) be a finite state
Moore machine with diversity K. Then ξ : X → {0, 1}K
defined in (14) is a minimal sufficient refinement of h.

Proof. By setting m = 0 in (13), we see that ξ must
be a refinement of h. Suppose ξ(x0) = ξ(x1) for some
x0, x1, and let u ∈ U be arbitrary. We want to show that
ξ(f(x0, u)) = ξ(f(x1, u)). Let (ũm, y) be any test and let
ṽm+1 = u⌢ũm denote the concatenation of u as a prefix to
ũm. Then

h
(
f ũm(f(x0, u))

)
= h

(
f ṽm+1(x0)

)
=

h
(
f ṽm+1(x1)

)
= h

(
f ũm(f(x1, u)

)
where the middle equality follows from the assumption that
ξ(x0) = ξ(x1). This means that all tests agree on f(x0, u)
and f(x1, u), which implies that ξ(f(x0, u)) = ξ(f(x1, u)).
Hence, ξ is sufficient.

Suppose ξ is not the minimal sufficient refinement of h.
Let ξ′ be a minimal sufficient refinement of h which always
exists, see Remark 3. Thus, we have ξ ≻ ξ′ ⪰ h, so there are
x0, x1 ∈ X with

(i) ξ′(x0) = ξ′(x1) and (ii) ξ(x0) ̸= ξ(x1). (15)

Since ξ′ is sufficient, it follows from (15)(i) that
ξ′(f(x0, u)) = ξ′(f(x1, u)) for all actions u ∈ U . Using the
sufficiency of ξ′ again m times, it follows that

ξ′
(
f ũm(x0)

)
= ξ′

(
f ũm(x1)

)
(16)

for all finite action sequences ũm ∈ Um. Now, since ξ′

is a refinement of h, (16) implies that h
(
f ũm(x0)

)
=

h
(
f ũm(x1)

)
for all ũm ∈ Um. By definition, this means that

any test (ũm, y) succeeds from x0 if and only if it succeeds
from x1. This implies ξ(x0) = ξ(x1), contradicting (15) (ii),
and proves the claim.

Now, denote the concatenation of an action u0 ∈ U and a
test t = (ũm, y) ∈ Um × Y by

u0
⌢t := (u0, u1, . . . , um, y) ∈ Um+1 × Y.

Since St

(
f(x, u)

)
= Su⌢t(x) for all t ∈ T and u ∈ U , there

exists for each u ∈ U a well-defined mapping gu : PT → PT
given by gu

(
[t]
)
:= [u⌢t]. Furthermore, each gu defines a

mapping (not necessarily a permutation) αu : {1, . . . ,K} →
{1, . . . ,K} by

αu(k) = n ⇐⇒ gu
(
[tk]

)
= [tn]. (17)

Definition 8. Update graph. Let E = (X,U, f, h, Y, x0) be
a finite state Moore machine with diversity K = |PT |. Let
PT =

{
[t1], . . . , [tK ]

}
be the set of test equivalence classes

with representatives t1, . . . , tK ∈ T , and let Sk be the
success function of test tk. Finally, let αu be as in (17) above.
The update graph of E is a state-relabeled deterministic
transition system G := (S,U, τ , σ, Y, s0) where U and Y are
as in E , and

• S :=
{(
S1(x), . . . , SK(x)

)
∈ {0, 1}K | x ∈ X

}
,

• τ
(
(s1, . . . , sK), u

)
:=

(
sαu(1), . . . , sαu(K)

)
,

• σ
(
(s1, . . . , sK)

)
= h(x), where x ∈ X is such that

sk = Sk(x) for all k ∈ {1, . . . ,K}, and

• s0 = (S1(x0), . . . , SK(x0)).

A machine/environment E is said to be reduced, if for
each state x ∈ X there exist tests t1, t2 ∈ T for which
St1(x) ̸= St2(x). It was shown in (Rivest and Schapire
1993, Theorem 3) that it is possible to simulate a reduced
environment E by its update graph. We rephrase and
prove this result in terms of isomorphisms of transition
systems. Two Moore machines (X,U, f, h, Y, x0) and
(X ′, U, f ′, h′, Y, x′0) (both defined in terms of the same
action and observation sets U and Y ) are said to be
isomorphic, if there exists a bijective map g : X →
X ′ such that for all x ∈ X and u ∈ U we have
f ′(g(x), u) = g(f(x, u)), g(x0) = x′0, and (h′ ◦ g)(x) =
h(x). The following is essentially (Rivest and Schapire 1993,
Theorem 3):

Proposition 5. Update graph representation of a Moore
machine. Let E = (X,U, f, h, Y, x0) be a finite state
Moore machine with a reduced state space X and let G :=
(S,U, τ , σ, Y, s0) be the update graph of E . Then the function
ξ from (14) is an isomorphism between E and G.

Proof. Let PT =
{
[t1], . . . , [tK ]

}
be the set of test

equivalence classes in E with representatives t1, . . . , tK ∈
T , and let Sk be the success function of test tk. Recall the
definition of ξ from (14).

Then ξ : X → S is onto by definition of the set S. To show
injectivity, assume ξ(x) = ξ(x′) for some x, x′ ∈ X , which
means that Sk(x) = Sk(x

′) for all k = 1, . . . ,K. Since E
is reduced, it suffices to show that St(x) = St(x

′) for all
tests t ∈ T , because then x = x′. Since every test t satisfies
[t] = [tk] for some k, the claim follows immediately.

We still need to show that for all (x, u) ∈ X ×
U , the functions fu(x) := f(x, u) and τu(s) := τ(s, u)
satisfy

(
τu ◦ ξ

)
(x) =

(
ξ ◦ fu

)
(x). According to Defini-

tion 8, each x ∈ X and u ∈ U satisfies (τu ◦ ξ)(x) =(
Sαu(1)(x), . . . , Sαu(K)(x)

)
where αu(k) = n iff [tn] =

[u⌢tk]. Thus,

(τu ◦ ξ)(x) =
(
Sαu(1)(x), . . . , Sαu(K)(x)

)
(18)

=
(
Su⌢t1(x), . . . , Su⌢tK (x)

)
=

(
S1(f(x, u)), . . . , SK(f(x, u))

)
= ξ

(
f(x, u)

)
=

(
ξ ◦ fu

)
(x).

Since ξ is a bijection, the labeling function σ in
Definition 8 is well defined, and satisfies (σ ◦ ξ)(x) = h(x)
by definition. Finally, ξ(x0) = s0 by the definition of s0.
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To simulate the environment E by G, one needs to set
the initial state ŝ0 = (s1, . . . , sK) ∈ S, which corresponds
to the initial state x0 ∈ X for which Sk(x0) = sk for all
k ∈ {1, . . . ,K}.

If we remove the assumption that E is reduced, we can
view the function ξ : X → S in (14) as a labeling that
identifies those pairs of states that cannot be differentiated
by any test.

Proposition 6. Update graph representation is a DITS.
Let TE = (X,U, f, h, Y ) be the transition system cor-
responding to the finite state Moore machine E =
(X,U, f, h, Y, x0), and let G := (S,U, τ, σ, Y ) be the update
graph of E . Then G is a DITS.

Proof. According to Proposition 4, ξ : X → S in (14) is
a sufficient labeling for TE . By definition, any two states
(equivalence classes) [x1], [x2] of the quotient system TE/ξ
satisfy [x1] ̸= [x2] if and only if ξ(x1) ̸= ξ(x2). This implies
that TE/ξ defines a reduced Moore machine which is
isomorphic to G according to Proposition 5. The claim
then follows from Remark 1, which states that quotients by
sufficient labelings are deterministic transition systems.

5.4 Predictive state representations (PSRs)
Predictive state representation (PSR) (Littman and Sutton
2001; James and Singh 2004), like its deterministic
predecessor DBI, is based on the idea of performing tests
on the environment. The difference is that PSR assumes
a statistical description of the internal-external coupling,
expressed via success probabilities of tests, conditioned on
past histories. PSRs have been shown to be more general
than POMDPs (Cassandra et al. 1997) in the sense that every
POMDP model can be represented via the corresponding
PSR.

Since the introduction of the original PSR, several
variations of the concept have been proposed in connection
to different learning algorithms that aim to discover the set
of core tests and learn the associated prediction functions
(James and Singh 2004; Boots et al. 2011, 2013). So-
called TPSRs (Rosencrantz et al. 2004) are adaptations
of the concept where, instead of maintaining vectors
of probabilities over a finite set of core tests, a linear
combination of a larger set of tests is maintained instead.

We focus on the original formulation of the PSR model
and show how it can be expressed in our formalism as
a DITS. Let ηk := (ũk−1, ỹk) denote the history I-state
at stage k (including the kth observation, but not the kth
action). In addition let ỹk,m := (yk, . . . , yk+m) and similarly
ũk,m := (uk, . . . , uk+m) for all m ∈ N. In PSR, action-
observation sequences t =

(
ũtm−1, ỹ

t
m

)
are called tests. At

stage k ∈ N, a PSR model maintains a sufficient statistic for
computing the conditional success probabilities

Pηk
(t) := P

(
ỹk,m = ỹtm | ũk,m−1 = ũtm−1, ηk

)
(19)

for tests t =
(
ũtm−1, ỹ

t
m

)
of arbitrary length m ≥ 1.

The idea of PSR is to identify minimal core sets of tests
Q = (t1, . . . , tm) which have the property that, given any
test t /∈ Q and some history ηk ∈ Ihist, it is possible to
compute the success probability of t as Pηk

(t) = ft
(
Q(ηk)

)
where Q(ηk) :=

(
Pηk

(t1), . . . , Pηk
(tm)

)
is the prediction

vector for the set Q and ft is the prediction function
associated with t. In linear PSR, the space of admissible
prediction functions is restricted to linear transformations
(vectors) rt ∈ R|Q| so that ft(Q(ηk)) = rt ·Q(ηk) for all
t, ηk.

Formally, a PSR is a 5-tuple (U, Y,Q, F,m0), where
U is the set of actions, Y is the set of observations,
Q is a core set of tests, F is the set of prediction
functions, and m0 ∈ [0, 1]|Q| is the initial prediction vector
after seeing the null history η0 = ∅. A PSR model
provides a complete (probabilistic) description of the action-
observation dynamics, because the prediction vector Q(ηk)
can be updated with each new action-observation. For this,
only the (finite number of) prediction functions f(u,y) and
f(u,y)⌢tm need to be known, corresponding to all possible
action-observation pairs (u, y) and to concatenations of these
with the core tests tm ∈ Q. Then the update to Q(ηk+1),
where ηk+1 = ηk

⌢(u, y), is obtained through the function
ϕPSR : [0, 1]

m × (U × Y ) → [0, 1]m defined by

ϕPSR
(
Q(ηk), (u, y)

)
:=(

ϕ1
(
Q(ηk), (u, y)

)
, . . . , ϕm

(
Q(ηk), (u, y)

))
, (20)

where the functions ϕi : [0, 1]m × (U × Y ) → [0, 1] are
given for each i ∈ {1, . . . ,m} by

ϕi
(
Q(ηk), (u, y)

)
:= Pηk

⌢(u,y)(ti)

=
Pηk

(
(u, y)⌢ti

)
Pηk

(
(u, y)

) =
f(u,y)⌢ti

(
Q(ηk)

)
f(u,y)

(
Q(ηk)

) .

Thus, a PSR with a core set of tests Q = (t1, . . . , tm) is
a DITS

(
IPSR, U × Y, ϕPSR

)
, where IPSR :=

{
Q(ηk) | ηk ∈

Ihist
}

. The corresponding I-map κPSR : Ihist → IPSR is
given by κPSR(η) := Q(η).

6 Conclusions and Future Work
This paper introduced a mathematical framework for
determining minimal filters and minimal feasible policies
by comparing ITSs over information spaces. The minimality
results are quite general without imposing strong restrictions
on the underlying dynamical system (external system). We
show that a large class of problems can be posed and
analyzed under this framework.

Nevertheless, there are several opportunities to expand the
general theory. For example, we assumed that u is both the
output of a policy and the actuation stimulus in the physical
world; more generally, we should introduce a mapping from
an action symbol σ ∈ Σ to a control function ũ ∈ Ũ so
that plans are expressed as π : I → Σ and each σ = π(ι)
produces energy in the physical world via a mapping from
Σ to Ũ .

It is also important to extend the models to continuous
time. In this case, the sensing and action histories are time
parameterized functions, rather than sequences. Sufficiency
must be defined in terms information mappings that apply to
any time slice from 0 to t′ < t for a history that runs from
time 0 to t, rather than only over discrete time steps. Some
ground work has already been done in (LaValle 2006).

Another direction is to consider the hardware and
actuation models as variables, and fix other model
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components. This is similar to the class of problems related
to co-design for which the design process of a robot given
resource constraints (sensors and actuators) is sought to be
automated (Shell et al. 2021; Censi 2016; Zardini et al.
2021).

In this paper, we considered the theoretical limits on the
DITS necessary to express a policy defined over a history
ITS. However, the problem of finding such a DITS remains
as an open algorithmic challenge. Furthermore, we only
considered feasible policies. An interesting direction is to
analyze the information requirements for policies that are
optimal with respect to a relevant objective and the trade-off
between optimality and minimality. This will amount to an
ordering (potentially a partial ordering) of policies in terms
of (expected) cost and the minimal DITS to express such
policy.

In an external-internal coupled system, the different
components, I-map κ, the information transition function
ϕ and the policy π share the total complexity (information
content) of the internal information processing system. Of
particular interest would be to explore the trade-offs between
these components in terms of efficient encoding of data-
structures and their successful decoding in terms of policies.
Ultimately this could lead to fundamental characterisations
of interaction system information content in the spirit of the
minimum description length principle proposed in (Rissanen
1978).

The mathematical theory of coupling as presented in
this paper is very general. Coupling in discrete dynamical
systems, and of finite automata, are special cases of it, and
even continuous systems can be seen as such. Connections
to other work on coupling such as (Spivak 2015) is to be
explored. Dynamic coupling has been proposed as a viable
approach to a mathematical modelling of cognition from
the enactivist perspective (Montebelli et al. 2008; Favela
2020). The existing literatutre on the latter uses bits and
pieces of dynamical systems with sporadic applications in
different areas of cognitive science, but a systematic unifying
study is still to be seen, especially one that has meaningful
ramifications to robotics and algorithmic design. An attempt
to connect philosophical ideas with those of this paper was
presented by the authors in (Weinstein et al. 2022).

A grand challenge remains: The results here are only a first
step toward producing a more complete and unique theory of
robotics that clearly characterizes the relationships between
common tasks, robot systems, environments, and algorithms
that perform filtering, planning, or learning. We should
search for lattice structures that play a role similar to that of
language class hierarchies in the theory of computation. This
includes the structures of the current paper and the sensor
lattices of (LaValle 2012; Zhang and Shell 2021). Many
existing filtering, planning, and learning methods can be
formally characterized within this framework, which would
provide insights into relative complexity, completeness,
minimality, and time/space/energy tradeoffs.
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