
Noname manuscript No.
(will be inserted by the editor)

A Motion Strategy for Exploration Driven by an
Automaton Activating Feedback-based Controllers

Edgar Martinez · Guillermo Laguna · Rafael Murrieta-Cid ·
Hector M. Becerra · Rigoberto Lopez-Padilla · Steven M. LaValle

Received: date / Accepted: date

Abstract This paper addresses the problem of explor-

ing an unknown, planar, polygonal and simply con-

nected environment. To explore the environment, the

robot follows the environment boundary. In the first

part of this paper, we propose a motion policy based

on simple sensor feedback and a complete exploration

strategy is represented as a Moore machine. The pro-

posed motion policy is based on the paradigm of avoid-

ing the state estimation; there is a direct mapping from

observation to control. We present the theoretical con-

ditions guaranteeing that the robot discovers the largest

possible region of the environment. In the second part of

the paper, we propose an automaton that filters spuri-

ous observations to activate feedback-based controllers.

We propose a practical control scheme whose objective

This work was partially funded by CONACYT projects
220796 and 264896.

E. Martinez
Centro de Investigación en Matemáticas, CIMAT,
Guanajuato, México
E-mail: edgar.martinez@cimat.mx

G. Laguna
Iowa State University,
Ames Iowa, USA
E-mail: glaguna@iastate.edu

R. Murrieta-Cid
E-mail: murrieta@cimat.mx

H. M. Becerra
E-mail: hector.becerra@cimat.mx

R. Lopez-Padilla
CIATEC,
León, México
E-mail: rlopez@ciatec.mx

S.-M. LaValle
University of Illinois,
Urbana IL, USA
E-mail: lavalle@illinois.edu

is to maintain a desired distance between the robot and

the boundary of the environment. The approach is able

to deal with imprecise robot’s observations and con-

trols, and to take into account variations in the robot’s

velocities. The control scheme switches controllers ac-

cording to observations obtained from the robots sen-

sor. Our control scheme aims to maintain the continu-

ity of angular and linear velocities of the robot in spite

of the switching between controllers. All the proposed

techniques have been implemented and both simula-

tions and experiments in a real robot are presented.

Keywords Exploration · Combinatorial Filters ·
Feedback Controllers · Nonholonomic Constraints

1 Introduction

Our work is related to the problem of planning robot’s

paths that avoid collision with obstacles [1–3], and par-

ticularly with nonholonomic robots [4–6]. This paper

is also related to the problem of exploring an unknown

environment [7–10] to build a representation of it useful

for other tasks, for instance object finding [11,12].

The task of exploring unknown planar environments

has been treated in many previous works [13–15,11,16,

17]; some of them use a simplified model where a mobile

robot is considered as a point. From a theoretical point

of view, this approach has allowed one to solve some

problems of robot navigation; however, for more realis-

tic tasks, this approach is not sufficient. Modeling the

robot as a point ignores the robot’s physical dimensions

and that assumption may impact the real performance.

A natural step forward, and more realistic, is to con-

sider the robot as a nonzero size entity. A disc shape is

the simplest one. The robot’s size represents additional

constraints in the configuration space. This raises the

2 Edgar Martinez et al.

main conceptual difference between a point robot and a

disc robot, which makes necessary the design of explo-

ration strategies specific for a disc robot. Indeed, the

concept of visibility is equal to the concept of reacha-

bility for a point robot. It means that if the robot can

see certain place within the environment, that place is

also reachable for the robot. However, this property is

not necessarily true for a disc robot.

If the original map is totally known then to build

the configuration space of a disc robot is easy, this map

is expanded by the robot radius. But note that in the

exploration problem addressed in this work, initially

the map is unknown and the problem is to discover it

with the robots sensors. Also note that the configura-

tion space of the disc shaped robot is not observable,

the robot cannot directly measure it with a sensor, not

even for a local map. To plan collision free paths, the

disc shaped robot must infer relevant information of the

configuration space from the workspace.Thus, one main

contribution of this paper is to determine what relevant

information is needed from the workspace, and how to

obtain it directly with the robot sensor to infer valid

motions in the configuration space. In this paper, we

also present a novel exploration strategy of an unknown,

planar polygonal environment using a disc robot.

1.1 Related Work

Many works have addressed the problem of exploring

an unknown environment to build a representation of

it [18–21]. It is possible to classify those exploration

strategies into two main types: (i) systematic explo-

ration and (ii) strategies in which sensed information

is taken into account to define the next sensing loca-

tion. In systematic explorations (exploration type (i)),

the robots follow a predefined motion pattern, for in-

stance following walls, moving in concentric circles [22],

and so forth. In non-systematic exploration (type (ii)),

information taken by the sensor is frequently used to se-

lect an appropriate sensing location. Some exploration

strategies of type (ii) use frontier-based exploration,

originally proposed in [8]. In frontier-based exploration,

the robot goes to the imaginary line that divides the

known and unknown parts of the environment. In [18–

20], the proposed exploration strategies lead the robot

to locations in which maximal information gain is ex-

pected; a utility function is defined to maximize the

new information that will be obtained in the next sens-

ing location. Several works have proposed to generate

random sensing locations for exploration (e.g., [23,24]).

The work reported in [24] presents sensor-based explo-

ration techniques. Given strong sensors and good odom-

etry, standard SLAM approaches [25–27] provide a ge-

ometric map of the environment. In [28], a method is

proposed for building a global geometric map without

precise robot localization by registering scans collected

by laser range finder. A different map building approach

is the occupancy grid [17], which represents the en-

vironment as a 2D array, instead of using geometric

primitives (e.g., line segments). Another type of envi-

ronment’s representations are the topological maps in

the form of graphs [16,11,29]. The problem of exploring

an unknown environment for searching of one or more

recognizable targets is considered in [16]. That method

assumes limited sensing capabilities of the robot and

the environment is represented in the so-called bound-

ary place graph, which records the set of landmarks.

A method for robot’s navigation without the capac-

ity of sensing orientation but sensing range discontinu-

ities is presented in [11]. In that work, the Gap Nav-

igation Tree (GNT) is proposed, which is a combina-

torial structure that encodes information about range

discontinuities (gaps) and the relation between them.

This original GNT approach was designed for explo-

ration and navigation of a point robot. A probabilistic

model for the gaps in the GNT is presented in [15]. This

improves robustness given that the model deals with

noise in the sensor’s measurements. The GNT was also

extended to clouds of points models in [14]. A larger

family of gap sensors is described in [30]. The GNT ap-

proach has been extended to a disc-shaped differential-

drive robot placed into a simply connected polygonal

region in [31]. The main result in that work is a navi-

gation strategy that drives the robot to optimally navi-

gate toward a landmark in the region. In [13], a wall fol-

lowing approach for exploration of a simply connected

environment with a point robot has been proposed. A

data structure called cut ordering is proposed in that

work. Once the cut ordering representation is built, it

is used to address a pursuit/evasion problem.

As it was mentioned above, the problem of finding

collision free paths and the problem of exploring an un-

known environment with a mobile robot have been two

very active topics in the robotics community. But, to

our knowledge, the previous works most closely related

to our approach are the ones presented in [11,13] and

[31,32]. A significant difference with respect to [13,11]

is that in this work the robot is no longer a point. We

model the robot as a disc shaped differential drive robot

(nonholonomic system). In [31,32] a navigation strat-

egy to reach a landmark has been presented, but in [31,

32] an exploration strategy to learn the GNT and en-

coding a landmark within it has not been developed. In

this paper, we propose such exploration strategy.

The proposed exploration strategy is based on wall

following and not on chasing gaps in contrast to [11].

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 3

Different control schemes have been proposed to achieve

a wall following behavior, mainly by using a range sen-

sor for feedback information, e.g. [33–35]. The work

in [33] focuses on a robust detection and representa-

tion of walls. In [34] a switching wall-following control

scheme based on odometry and distance information is

presented. The control scheme is designed to avoid sat-

uration of the angular robot velocity when dealing with

discontinuous contours. The control scheme of [34] has

been used for reactive obstacle avoidance by following

the contour of the obstacles in [35]. The use of a dis-

tance sensor has also been extended for active sensing in

[36], where the perception and action systems of a robot

are dynamically coupled for reactive wall-following. An-

other type of sensor has been used for the wall-following

task, for instance, a bio-inspired antennae [37], which

is a passive tactile sensor.

1.2 Main contributions

One main contribution of this paper is a motion pol-

icy based on simple sensor feedback and a complete

exploration strategy. We present the theoretical condi-

tions guaranteeing that the robot discovers the largest

possible region of the environment. The proposed strat-

egy is compact, in such a way that it is represented as

a Moore’s finite state machine. Furthermore, the pro-

posed exploration strategy does not requiere to localize

the robot.

To explore the environment, the robot follows the

environment boundary. We propose a practical hybrid

control scheme, whose objective is to maintain a de-

sired distance between the robot and the boundary of

the environment. This practical control scheme allows

the robot’s commands to be imperfect, and to deal with

the robot dynamics (i.e. velocities variations). Besides,

our control scheme aims to maintain the continuity of

angular and linear velocities of the robot in spite of the

switching between controllers. The main originality of

the proposed approach with respect to previous work

on wall following is that a sensor observation is directly

related to a given controller, and in this approach, an

automaton constraints the possible states transitions

filtering spurious observation due to noisy sensor read-

ings.

A preliminary version of a portion of this work ap-

peared in [38]. The main distinguishing features of our

current work compared with our previous research in

[38] are: 1) We propose an automaton that filters spuri-

ous observations to activate feedback-based controllers.

2) We propose a practical hybrid control scheme, whose

objective is to maintain a desired distance between the

robot and the boundary of the environment. 3) The

work presented in [38] did not include any experiments

on a real robot at all. In this new version, experiments

on a real robotic set-up were included showing the prac-

tical viability of the approach.

The remainder of this paper is organized as follows:

Section 2 presents the problem statement, Section 3

presents concepts defined in [11], which are used in this

work. Sections 4 and 5 present the robot’s model includ-

ing sensing and motion capabilities. Section 6 presents

the motion strategy that is modeled as a Moore machine

and a feedback motion policy that maps observations

to robot commands. In Section 7, we determine several

sensor measurements. These measurements are used as

feedback information in a hybrid control scheme, and

they are transformed to binary observations that de-

termine the transitions between states in a state ma-

chine. In Section 8, we propose another Moore’s ma-

chine whose objective is to move the robot to a desired

distance from the environment boundary. In this case,

some observations activate a specific controller. In Sec-

tion 9 feedback based controllers are proposed, these

controlles are able to deal with noisy measurements and

take into account robot’s dynamics. Section 10 presents

simulations and experiments in a real robot. Finally,

Section 11 concludes the paper.

2 Problem Statement

The robot has the shape of a disc with radius r mov-

ing in an unknown, planar, polygonal, and simply con-

nected environment, which could be any compact set

E ⊂ R2 for which the interior of E is simply connected.

The boundary ∂E of E is the image of a piecewise-

analytic closed curve. However, it is assumed that the

collision-free subset of the robot’s configuration space C
is simply connected or it might have several connected

components. C-space obstacle corresponds to that of a

translating disc, that is, the extended boundary of E

which is due to the robot’s radius1. A salient object

(i.e. a landmark) is located in the environment. The

robot is unable to localize itself in a global reference

frame.

The main objective is to explore an environment.

That is, while the robot moves the visibility region of

the robot’s sensor must cover the environment E at

least once, or in the worst case the largest possible re-

gion of E. Consequently, the robot will find the land-

mark or declare that an exploration strategy to find it

does not exist.

1 Note that this is the configuration space for a translat-
ing disc rather than for a rigid body because of rotational
symmetry.

4 Edgar Martinez et al.

3 Preliminaries

We use a topological map called the Gap Navigation

Tree (GNT) [11,31] to represent the environment. A

depth discontinuity in the boundary of the environment

is called a gap. The gaps are the borders between the

known and unknown environment. The robot sensor (a

laser range finder) is used to detect these discontinu-

ities (gaps) from the current position of the robot (see

Fig. 1). The GNT is an efficient data structure that dy-

namically changes according to some critical events in

the gaps until the whole environment has been discov-

ered.

The GNT can be constructed incrementally as the

robot moves along a path τ . Initially, the GNT consists

of a root node that is connected to one leaf node for

every gap in G(τ(0)). Each time t at which a change

in G(τ(t)) occurs corresponds to a critical event. This

requires updating the GNT. There are four different

kinds of critical events:

– A new gap g appears: A node g is added as a child of

the root, while preserving the cyclic ordering from

the gap sensor (see Fig. 1 a)). For a description of

the gap sensor see Section 4.

– A gap g disappears: The node g, which must be a

leaf, is removed (see Fig. 1 b)).

– Gaps g1 and g2 merge into g: Nodes g1 and g2 be-

come children of a new node, g, which is added as a

child of the root and preserving the ordering of gaps

(see Fig. 1 c)).

– Gap g1 splits into g2 and g3: If g1 is a leaf node,

then g2 and g3 become new nodes; otherwise, they

already exist as children of g1. Both g2 and g3 are

connected to the root, preserving the ordering of

gaps and removing g1 (see Fig. 1 d)).

If any leaf vertex has the potential to split, then

the GNT is incomplete because it could expand, some

gaps split and other gaps simply disappear. The gaps

that disappear are called primitive (their corresponding

nodes in the GNT are also called primitive). If all the

leaf nodes of the GNT are primitive, then the GNT is

said to be complete. Indeed, the following Lemma in

[11] guarantees the termination of the GNT’s construc-

tion.

Lemma 1 ([11]) The procedure of iteratively chasing

non-primitive leaves terminates with a resulting com-

plete GNT.

For the proof please see [11].

In [11], chasing a gap means to move the robot’s sen-

sor until it touches the vertex that generates the gap

observing the portion of the environment occluded by

g

(a)

g

(b)

g1 g2 g
g1 g2

(c)

g1 g2g
g1 g2

(d)

Fig. 1: Critical events: a) Gap appears, b) Gap disap-

pears, c) Gap merge, d) Gap splits.

that vertex and hence making the corresponding gap

disappear. The key observation to understand the ter-

mination condition of the exploration task given by the

GNT is that, any time that a new gap appears in the

GNT, the portion occluded from the robot sensor has

been already sensed (it is a primitive gap). Therefore,

the only gaps that contribute to the incompleteness of

the GNT are ones that either appeared at the begin-

ning of the exploration or were formed by a sequence of

splits of these gaps. Hence by chasing those initial gaps

the exploration will be finished when all those gaps have

been explored making them become primitive gaps.

In [11], the angles of the gaps are unknown due to

the limited sensor’s capabilities, but the sensor is able

to maintain a cyclic angular order of them. If a gap first

disappears and then it appears again, it will appear in

the same angular other with respect to the others gaps

(this has been proved in [11]). Let G(x) = [g1, ..., gk]

denote the sequence of gaps as they appear in the gap

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 5

sensor, when it is placed at x ∈ E, if x lies in the interior

of E there is a cyclic order such that statements as

[g1, ..., gk] = [g2, ..., gk, g1] can be made (see Figs. 2 a)

and b)). If x lies in ∂E then part of the sensor’s view

is obstructed by the boundary, and a linear ordering of

gaps is obtained (see Figs. 2 c) and d)).

l p
lt

g1
g2

g3

(a)

g1g2
g3

(b)

l plt

g1
g2

g3

(c)

g1g2
g3

(d)

Fig. 2: a) Gap sensor at x ∈ E, b) Cyclic order, c) Gap

sensor at x ∈ ∂E, d) Linear order.

4 Sensing Model

4.1 Robot’s sensors and landmark

The differential drive robot has a defined forward head-

ing. The extremal left and right side robot’s points are

respectively called lp and rp. The robot has an omni-

directional sensor, which is used to discover the envi-

ronment. The sensor might be located at rp or lp. The

direction of the line tangent to the robot’s boundary at

rp is called rt. The direction of the line tangent to the

robot’s boundary at lp is called lt (see Fig. 3). The om-

nidirectional sensor is also able to track the direction lt

or rt depending whether the sensor is placed over lp or

rp.

The omnidirectional sensor is also able to detect

and track discontinuities in depth information (gaps).

Hence, over the omnidirectional sensor, it is possible to

build a gap detector, further referred as the gap sensor.

The gap sensor is also able to identify any of the four

possible critical events related to the gaps: gap appears,

disappears, merges and splits.

In summary the gap sensor is able to detect and

order the gap directions, the direction rt or lt and a

visibility obstruction if the sensor is in contact with ∂E.

This behavior allows the sensor to detect events such as

alignments between the directions rt or lt and any gap,

or between one of the two directions lt or rt and the

wall (∂E) that is in contact with the omnidirectional

sensor.

l p

rp

lt

rt
Omnidirectional sensor

Surface of contact

Fig. 3: Representation of the robot’s sensors.

Let Λ be a static disc-shaped landmark with the

same radius as the robot lying on the interior of E.

The landmark is said to be recognized if Λ is visible at

least partially from the location of the omnidirectional

sensor.

Let assume that Λ is painted in the ground and

can be detected, hence it does not have volume and it

does not produce distance discontinuities (gaps). This

assumption is made for a further navigation task [31]

in which once the environment has been explored the

robot would have as goal to park on the landmark.

The assumption about that the landmark is a disc

with the same radius as the robot allows one to es-

tablish that whenever the collision-free subset of the

robot’s configuration space C is simply connected then

the landmark will be always reachable. Moreover, it also

allows one to establish that in this case the whole land-

mark will be totally visible at some moment during the

exploration.

Regarding the landmark encoding, if the whole land-

mark is visible from the current position then it is di-

rectly connected to the root of the GNT.

Let rpΛ be an extremal point on the landmark such

that whenever rt is aligned to rpΛ the body of the land-

mark is to the left of direction rt. There is an analogous

definition for point lpΛ.

The landmark Λ can be encoded at most with two

gaps. If a reflex vertex 2 occludes point rpΛ then Λ is

encoded with the gap generated by the vertex. Simi-

larly, if a reflex vertex occludes point lpΛ then it is also

encoded with the gap generated by the vertex. In par-

ticular, in the case when the robot and Λ are located

in different connected components of the collision-free

2 A reflex vertex is a polygon vertex of an internal angle
greater than π.

6 Edgar Martinez et al.

subset of the configuration space C, then Λ might be en-

coded at most with two gaps, one that is generated by a

vertex that occludes point rpΛ and other that occludes

point lpΛ.

We assume that the robot can distinguish whether

there exists contact on a single point or more than one.

That is, the robot is able to detect whether its frontal

periphery is in contact with an obstacle. The frontal

periphery is called surface of contact (See Fig. 3). The

sensor also distinguishes whether the point rp or lp is in

contact with a wall. This information can be obtained

with different sensor, e.g. a tactile bumber or a omnidi-

rectional laser range finder. The particular case of both

points rp and lp being simultaneously in contact with a

wall is not considered, it only would happen in a narrow

corridor of exactly the same width as the robot.

4.2 The observation vector

With the sensor capabilities defined above, it is possible

to define an observation vector which includes all the

possible observations that trigger a specific control.

Six binary sensor observations constitute the obser-

vation vector: (1: lp) the robot is touching ∂E with

point lp. (2: rp) the robot is touching ∂E with point

rp. (3: sc) the robot is touching ∂E with a single point

within the surface of contact (this point might be either

lp, rp or any other point within the surface of contact).
(4: bc) the robot is touching ∂E with two or more points

within the surface of contact (one of them can be either

lp or rp). (5: aligned) in the case that point rp is touch-

ing ∂E: if direction rt is aligned with the polygonal edge

that point rp is touching, or, if point rp is touching a

reflex vertex and the direction rt is aligned with the

first polygonal edge measured in clockwise sense start-

ing from direction rt then aligned = 1. In the case

that point lp is touching ∂E: if direction lt is aligned

with the polygonal edge that point lp is touching, or,

if point lp is touching a reflex vertex and the direction

rt is aligned with the first polygonal edge measured in

counterclockwise sense starting from direction lt then

aligned = 1. (6: o) the omnidirectional sensor is lo-

cated at point lp (0) or the omnidirectional sensor is

located at point rp (1). Thus, the observation vector is

yei = {lp, rp, sc, bc, aligned, o}

The set of all 64 observation vectors can be parti-

tioned by letting x denote any value to obtain:

ye1 = (0, 0, 0, 0, x, x)

ye2 = (0, 1, 1, 0, 1, 1)

ye3 = (1, 0, 1, 0, 1, 0)

ye4 = (x, x, 0, 1, x, 1)

ye5 = (x, x, 0, 1, x, 0)

ye6 = (0, 1, 1, 0, 0, 1)

ye7 = (1, 0, 1, 0, 0, 0)

ye8 = (0, 0, 1, 0, x, 0)

ye9 = (0, 0, 1, 0, x, 1)

The meaning of each observation vector is the fol-

lowing:

(a) ye1 (b) ye2 (c) ye3

(d) ye4 (e) ye5 (f) ye6

(g) ye7 (h) ye8 (i) ye9

Fig. 4: Examples of Observation Vectors.

- ye1 No contact: This observation might only happen

at the beginning of the exploration if the robot lies

completely in the interior of E, such that no contact

with ∂E is sensed (see Fig. 4a).

- ye2 Single contact with rp: The omnidirectional sen-

sor is positioned at rp, there is single contact de-

tected at that point, and the direction rt is aligned

with the polygonal edge that point rp is touching

(see Fig. 4b).

- ye3 Single contact with lp: This observation is anal-

ogous to Single contact with rp, it is the left sym-

metric case (see Fig. 4c).

- ye4 Multicontact, sensor at rp: The omnidirectional

sensor is located at point rp and there is a mul-

ticontact detected (rp might be a contact point),

while the omnidirectional sensor is placed at rp. The

robot’s surface of contact is touching more than one

point of ∂E, the contact might be with any combi-

nation of edges or reflex vertices of E (see Fig. 4d).

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 7

- ye5 Multicontact, sensor at lp: This observation is

analogous to Multicontact rp, it is the left symmet-

ric case (see Fig. 4e).

- ye6 Reflex vertex rp: The omnidirectional sensor is

located at point rp, there is single contact between

point rp and a reflex vertex of the polygonal en-

vironment, and the direction rt is not aligned with

the first polygonal edge, measured in clockwise sense

starting from direction rt (see Fig. 4f).

- ye7 Reflex vertex lp: The omnidirectional sensor is

located at point lp, there is single contact between

point lp and a reflex vertex of the polygonal envi-

ronment, and the direction lt is not aligned with the

first polygonal edge, measured in counterclockwise

sense starting from the reflex vertex (see Fig. 4g).

- ye8 No-single contact at lp: The omnidirectional sen-

sor is positioned over lp and the robot is touching

an edge or a reflex vertex of ∂E with a single point

different to lp (see Fig. 4h).

- ye9 No-single contact at rp: This observation is anal-

ogous to No-single contact at lp, it is the right sym-

metric case with the omnidirectional sensor posi-

tioned at rp (see Fig. 4i).

5 Motion Model

The differential drive robot has two independent wheels,

each one with its own motor. The robot is allowed to ex-

ecute five motion primitives as shown in Fig. 5. Let the

angular velocity of the right and left wheels be ωl and

ωr respectively, with ωl, ωr ∈ {−1, 0, 1}. The robot’s

controls are defined by the vector u = {ωl, ωr}. Five

motion primitives are generated by the following con-

trols:

u1 = (1, 1) forward straight line motion

u2 = (1,−1) clockwise rotation in place

u3 = (−1, 1) counterclockwise rotation in place

u4 = (1, 0) clockwise rotation w.r.t. point rp

u5 = (0, 1) counterclockwise rotation w.r.t. point lp

Executing the controls defined above, the robot ex-

plores the environment through moving in contact with

the wall. If the omnidirectional sensor is placed at rp

then the robot follows the environment’s boundary ∂E

in counterclockwise sense, and if the sensor is placed at

lp then the robot follows ∂E in clockwise sense.

6 The Exploration Automaton

A finite-state machine (FSM) is defined as a mathe-

matical model of computation, it is conceived as an

(a) (b) (c)

(d) (e)

Fig. 5: The motion primitives: a) Clockwise rotation in

place, b) Counterclockwise rotation in place, c) Straight

line motion, d) Clockwise rotation w.r.t. rp, e) Coun-

terclockwise rotation w.r.t. lp.

abstract machine that can be in one of a finite num-

ber of states [39]. The machine is in only one state at

a time, it can change from one state to another by a

triggering event or condition called transition. A FSM

is defined by a list of its states, and the triggering con-

dition for each transition. A special kind of FSM is the

Moore machine which includes outputs associated with

every state. According to the presented definition, it is

possible to represent the whole exploration strategy as a

Moore machine.

The FSMM represents the robot’s planner or explo-

ration strategy. M includes a motion policy and man-

ages GNT queries and updates. The motion policy is

a mapping from observations to controls (see Section

6.1). Note that the motion policy is only a part of the

whole exploration strategy.

The task is not finished until a stop condition for

exploration is met, this condition is not included in the

motion policy because it requires topological informa-

tion of the environment that is not given by the current

sensor readings. This information is given by the GNT

built during the robot’s motion. As it is detailed in [11],

the exploration task for a point robot ends when all the

environment has been seen, it happens when all the leaf

nodes of the GNT are labeled as primitive ones (the leaf

nodes have a label called primitive). The condition to

stop the exploration for a disc robot is similar to the one

for a point robot, but includes the additional issue of

gaps that never disappear. Note that due to the robot’s

dimensions, there may be some unreachable environ-

ment’s regions yielding those gaps. Consequently, an

algorithm called local exploration has been developed

for dealing with this issue. See Algorithm 1, which is

part of the exploration strategy.

A graphical representation of M is shown in Fig. 6.

There are seven states, one of them is the initial state

when no motion primitive has been executed, there is

an end state which establishes the GNT completeness,

8 Edgar Martinez et al.

Straight Line Motion

CW Rotation In Place

CCW Rotation In Place

Rotation w.r.t. lp

Rotation w.r.t. rp

Initial State End State
ye1

ye2

ye3

ye4

ye6

ye8

ye9

ye7 ye5

ye2

ye3

ye4

ye4

ye5

ye5

ye6
ye6

ye7

ye7

ye8

ye9

GNT

GNT

GNT

Fig. 6: The finite-state machine that represents the ex-

ploration strategy.

the task has been finished, so no motion primitive is

applied and the robot stops its movement. The other

states represent the execution of the motion primitives

defined in Section 5. All the links in Fig. 6 are labeled

with the corresponding observations defined in Section

4, with the exception of the links to the GNT. These

links to the GNT represent queries to the GNT asking

whether all the leaf nodes are marked as primitive ones.

GNT queries are done in states CCW Rotation in

Place, CW Rotation in Place, and Straight Line Motion

(see Fig. 6). This is because, the GNT might change be-

cause the occurrence of critical events while the robot is

executing one of these motions. The queries are required

to decide whether or not the exploration is terminated

(i.e. the stop condition is met). Local exploration al-

gorithm might be triggered in states CCW Rotation in

Place or CW Rotation in Place. Local exploration algo-

rithm also updates the labels of the gaps in the GNT.

The methodology to design the automaton consists

in first defining the motion primitives needed to per-

form the task, which in general are equivalent to the

states in the automata (in some tasks there may be ad-

ditional states corresponding to the acquisition of some

information with the robots sensors). Second, it is re-

quired to find the controls to execute them and the ob-

servations to activate a given controller. The controllers

are synthesized according to the sensor’s measurements

available at each state in the automaton, from which

both a feedback error is proposed and a controller to

drive it to zero. This methodology might be used to

build an automaton for other robotic tasks.

6.1 Motion Policy

The motion policy is based on the paradigm of avoiding

the state estimation to carry out two consecutive map-

pings: y → x → u, that is from observation y to state

x and then to control u, but instead of that there is a

direct mapping y → u.

Let γ be a mapping function, the motion policy can

be established by: γ : {0, 1}6 → {−1, 0, 1}2, then the

function is expressed as γ (yei) = (ωl, ωr) = uj . The

motion policy is:

– γ(ye1 ∨ ye2 ∨ ye3) = u1

– γ(ye5 ∨ ye8) = u2

– γ(ye4 ∨ ye9) = u3

– γ(ye6) = u4

– γ(ye7) = u5

In which ∨ means “or”.

The previous list summarizes the complete relation-

ship between the controls and the observations given

by the sensors.

6.2 The Local Exploration Algorithm

The configuration space restrictions for a disc robot

might cause the presence of unreachable environment

places. Those places might yield gaps that cannot dis-

appear regardless of the robot motion. Once the point lp

or rp lies on ∂E it is possible to identify the observations

that represent the presence of gaps that do not disap-

pear. Those observations are: yeR4 = (0, 1, 0, 1, x, 1) or

yeL5 = (1, 0, 0, 1, x, 0) (see Figs. 7 a) and b)).

(a) yeR4 (b) yeL5

Fig. 7: Observations yeR4 and yeL5 .

yeR4 means that the omnidirectional sensor is placed

at rp, there is multi-contact between the robot and

∂E and the point rp is touching ∂E. Analogously, yeL5
means that the omnidirectional sensor is placed at lp,

there is multi-contact between the robot and ∂E and

the point lp is touching ∂E. They are special cases

of ye4 and ye5 observations respectively, when any of

these observations happen the local exploration algo-

rithm is triggered (whose pseudocode is presented in

Algorithm 1). The algorithm uses information from the

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 9

GNT, the algorithm ends after the nodes encoding gaps

generated by vertices within an unreachable region are

labeled as primitives.

The pseudocode of local exploration algorithm is

presented in Algorithm 1, and it is described below for

the case when the robot touches the environment bor-

der with point rp, the case when the robot touches the

environment border with point lp is just the symmetric

one.

The main idea of this algorithm is the following.

The gaps are ordered by angle in two lists, one starting

from the direction of the first contact point (before the

robot starts the rotation in place) and other starting

from the direction of the second contact point (after

the robot finishes the rotation in place). Additionally

the direction of line rt is used as common reference

direction in both lists. Based on these three directions

(direction of the first contact point, direction of the

second contact point and direction of line rt) is possible

to determine which gaps are generated by vertices that

are not accesible to the robot.

Fig. 8: list init-list and gaps before the robot’s rotation

in place.

Before the robot executes the rotation in place, the

gaps are ordered by angle starting from the direction de-

fined by the center of the robot and the location of point

rp. The gaps are stored in a linear list called init-list.

See Fig. 8. The changes (splits, merges, appearances

and disappearances) in the gaps, due to the robot’s ro-

tation in place, are updated in list init-list until the

sensor touches the second vertex.

After the robot finished the rotation in place a list

called end-list is created, in this list the gaps are ordered

by angle starting from the direction defined by the cen-

ter of the robot and the location of second vertex that

is touched by point rp. Lists init-list and end-list have

different elements because the lists start and end at dif-

ferent angular directions. See Fig. 9. Note that gap g13

has not been included in the lists, given that this gap

has appeared during the robot’s rotation in place and

Fig. 9: lists init-list and end-list, and gaps after the

robot’s rotation in place.

as it was mentioned before, any time that a new gap

appears in the GNT, it must be primitive.

Fig. 10: Lists G1, G2 and G∩

At the end of the rotation in place, the first gap

on init-list is the first gap (in counterclockwise angular

order) generated by a vertice that is not accesible, this

gap is stored in initf . The last gap in end-list is the

last gap (in counterclockwise angular order) generated

by a vertice that is not accesible, this gap is stored in

endl. As we have said above, the direction of line rt is

used as common reference direction in both lists and is

stored in elements initrt and endrt.

G1 and G2 are auxiliary lists containing specific sub-

sets of init-list and end-list respectively. G1 contains

from initf until the element corresponding to direction

rt. G2 contains from the element corresponding to di-

rection rt until endl. G∩ includes the elements that are

common in both G1 and G2. Algorithm 1 finds G∩ and

gives as output the updated GNT. In fact G∩ contains

the common elements in G1 and G2 that correspond to

the gaps within the unreachable region. See Fig. 10.

Those gaps are the ones that must propagate the

primitive label to their offspring on the GNT.

10 Edgar Martinez et al.

Algorithm 1 Local Exploration Algorithm

Input: GNT, current observation: yei.
Output: updated GNT.
if rp =true then

1. init-list ← Current gaps and rt direction starting from
the sensor’s obstructed visibility region following a coun-
terclockwise order;
if yei = yeR4 (u3 is executed) then

while (yei 6= ye2) and (yei 6= ye6) do

if GNT-event = true then

if critical-event 6= gap-appear then
2. Apply the update suffered by the root’s
child nodes of the GNT to the corresponding
gaps in init-list;

end if

end if

3. Update the position of the rt direction (due to
the sensor’s motion) in init-list according to the cur-
rent angular counterclockwise order in the sensor
reading;

end while

4. end-list ← Current gaps and rt direction starting
from the sensor’s obstructed visibility region following
a counterclockwise order;
5. G1 ← {x ∈ init-list | initf ≤ x < initrt};
6. G2 ← {x ∈ end-list | endrt < x ≤ endl};

end if

end if
8. G∩ ← G1 ∧G2;
for every gap gi ∈ G∩ do

9. Label node gi in the GNT as a primitive node;
10. Propagate the primitive label to the offspring of gi;

end for

6.3 Proving some properties of the motion strategy

The following lemma corresponds to the case when the

robot touches the environment border with point rp,

the case when the robot touches the environment bor-

der with point lp is just the symmetric one.

Lemma 2 The exploration strategy guarantees that all

leaf gaps (i.e. gaps encoded as leaf nodes in the GNT)

are labeled as primitive gaps.

Proof The gaps that do not disappear are handled by

Algorithm 1. If the robot is touching ∂E with point rp

then the G1 list includes all the gaps belonging to the

angular interval between the direction defined by the

center of the robot and the location of point rp before

the rotation in place and the rt direction after the ro-

tation in place. In this interval the order of the gaps

is established in counterclockwise sense. Moreover, G2

list includes all gaps belonging to the angular interval

between direction rt after the rotation in place and the

direction defined by the center of the robot and the lo-

cation of point rp after the rotation in place. In the

second angular interval, the gaps are also ordered in

counterclockwise sense. The intersection G∩ between

G1 and G2 includes only the gaps, ordered in counter-

clockwise sense, that lie between the direction defined

by the center of the robot and the location of point rp

before the rotation in place and the direction defined

by the center of the robot and the location of point

rp after the rotation in place. Those gaps are gener-

ated by reflex vertices located within the unreachable

region. Observation yeR4 detects an unreachable region.

The region is unreachable because the robot’s bumper

has touched ∂E at two points. During the robot rota-

tion in place, the omnidirectional sensor moves from a

point touching ∂E to the other, hence all gaps within

the unreachable region are considered. Due to the pos-

sible split and merge critical events between these gaps,

the primitive label of such gaps is propagated to all of

the offspring of them in G∩. Each time that observation

yeR4 occurs the local exploration algorithm is executed.

Hence, all gaps encoded as leaf nodes (called leaf gaps)

in the GNT are labeled as primitive gaps. ut

s

Fig. 11: Rna is shown in white and in region Ra in dark

grey. The regions are divided by the arc of circle tra-

jectory followed by the omnidirectional sensor during a

robot’s rotation in place. The figure also shows a source

s with a ray of light which goes from Ra to Rna.

Lemma 3 The robot covers (observes) the largest pos-

sible portion of the environment with the omnidirec-

tional sensor’s visibility region.

Proof The omnidirectional sensor trajectory during the

rotation in place motion is an arc of circle, which di-

vides the environment’s interior in two regions, named

accessible region Ra and unaccessible region Rna, such

that Ra ∩ Rna = ∅. The boundary between those re-

gions depends on the robot’s radius. The omnidirec-

tional sensor is unable of penetrating deeper in the

unreachable region due to the configuration space re-

strictions, therefore, the arc of circle determined by the

robot radius is the boundary between both regions. Re-

fer to Fig. 11. It is clear that every ray of light emerging

from any source s ∈ Ra which touches Rna must cross

the regions’ boundary as seen in Fig. 11. If the visibil-

ity polygon of s includes a portion of Rna then every

ray of light emerging from Ra to Rna must cross the

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 11

regions’ boundary. Therefore every single ray of light

traveling from any point x ∈ Ra to Rna must cross the

regions’ boundary. Hence, an omnidirectional sensor fol-

lowing the arc of circle trajectory guarantees observing

the largest possible region of Rna. Observation yeR4 or

yeL5 indicate that there is an unreachable region, each

time that observation yeR4 or yeL5 occurs the omnidirec-

tional sensor is moved over the boundary between the

accessible and unaccessible regions. ut

Supported by Lemmas 2 and 3 the following theo-

rem states one of the main results of the paper.

Theorem 1 For the class of environments described

in Section 2, the exploration strategy modeled as the

Moore machine M presented in Section 6 (graphically

represented in Fig 6) terminates. Upon termination, the

robot has either covered with the omnidirectional sensor

visibility region all of the environment or has covered its

maximal geometrically possible portion. Consequently,

the robot finds the landmark or declares that an explo-

ration strategy to find it does not exist.

Proof Since the environment is simply connected, a wall

following strategy is enough for exploring all the envi-

ronment for a point robot due to the absence of internal

obstacles (generating more than one class of homotopic

paths). For a disc robot, the gaps that are generated by

reflex vertices located in reachable regions are labeled

as primitive gaps, since the robot is able to reach the

reflex vertices generating those gaps, then these gaps

disappear. If there are unreachable regions, where some

gaps do not disappear regardless the sensor’s motions,

then local exploration algorithm is executed. Lemma

2 guarantees that all leaf gaps are labeled as primi-

tive ones, that is the stop condition for the exploration

task. Hence, the exploration task terminates. Lemma 3

guarantees that the robot discovers the largest possible

region of the environment. Hence, if the collision free

subset of the configuration space C is simply connected

then the landmark is found. If the collision free subset of

the configuration space C has several connected compo-

nents then the landmark might or might not be found.

Again, by Lemma 3 the robot observes (discovers) the

largest possible part of the environment, therefore when

the landmark is not found, there does not exist a robot

exploration strategy to find the landmark, for the con-

nected component of the configuration space where the

robot lies. ut

7 Imperfect observations

In the sections above, we have presented the theoreti-

cal conditions guaranteeing the robot to discover the

largest possible region of the environment. However,

we assume that the controls are perfect and the robot

moves in contact with the environment boundary (see

Section 5). In the sequel of this work, our goal is to

permit the robot’s observations and commands to be

imperfect, and to deal with the robot dynamics (i.e.

velocities variations).

To achieve this goal, the robot follows the environ-

ment boundary to a desired distance different to zero.

A main idea is to maintain a virtual circular robot of

radius dd > r, where r is the radius of the real robot,

in contact with ∂E. Refer to Fig. 12a.

Obstacle region

Virtual robot
Real robot

Robot headingdd

(a) Virtual robot

Point rp’

Robot heading

ds

Sensor placement at
point rp

(b) Circle to reduce linear
velocity

Fig. 12: Two discs

In general, it is more flexible and practical to follow

the environment boundary to a small distance, instead

of moving in contact with it, since the controls yield-

ing the robot motion can be imprecise. Hence, it is less

likely that the robot collides with the obstacles. Fur-

thermore, all the required feedback information can be

obtained directly from a laser range finder.

Additionally, we will use a circle of radius ds > dd
to detect an obstacle that is close to the robot to reduce

the robot’s linear velocity, refer to Fig. 12b. We call rp′

to the point at distance dd from the robot center, in the

direction perpendicular to the robot heading and at the

right of the heading.

In Section 4, an observation is defined by a vector

with six binary elements and only nine useful obser-

vations. Below, we show that the binary elements of

the observation vector representing abstract informa-

tion can be obtained using a laser range finder, which

implements the omnidirectional sensor referred along

the previous sections.

For simplicity, in the sequel of this work, we will

assume that the omnidirectional sensor is located at rp.

The case when the omnidirectional sensor is placed at

lp is just the symmetric case. For this reason, the binary

elements lp and o are not used. Thus, we only use four

of the six binary elements defined in Subsection 4.2.

12 Edgar Martinez et al.

Besides, we add two new binary elements which are

described below.

Omnidirectional sensor measurements are used to

compute several angles and distances in local reference

frames attached to the robot. These angles and dis-

tances themselves are used in two ways: 1) They are

transformed to binary observations that determine the

transitions between states in a state machine which rep-

resents the complete robot exploration motion strat-

egy. 2) They are used as feedback information in a hy-

brid control scheme, whose objective is to navigate the

robot maintaining a desired distance between the robot

and the boundary of the environment. This objective is

achieved enforcing convergence of some errors over the

measured distances or angles.

To detect the features in the environment (corners

that delimit walls), we use a local and simple line fitting

technique that find convex and concave corners. First,

the closest laser point from the laser sensor is detected.

Second, the angles between the ray from the laser sen-

sor to the closest point and the rays between the closest

point and the next 10 sensed points (in counterclock-

wise sense) are measured. These 10 angles are averaged

and the resulting angle is called reference angle. Third,

the angle between the ray from the laser sensor to the

closest point and the ray between the closest point and

a given sensed point is measured, this angle is called

angle of the point. If the angle of the point is smaller

than the reference angle plus a given threshold, then a

concave corner is detected. Analogously, if this angle of

the point is larger than the reference angle plus a given

threshold then a convex corner is detected. For more

complex environments, other well know algorithms ex-

ist to fit lines based on points [23,40].

Below, we describe how to obtain the binary ele-

ments of an observation vector yci based on measure-

ments of the laser range finder, we also describe the rel-

evant feedback measurements (in terms of angles and

distances) used in each motion primitive executed by

the robot.

7.1 Observations for straight line motion

Refer to Fig. 13. The line passing over points rp and

rp′ is called line rp− rp′. The ray pointing to the clos-

est point obstacle over the line segment that the robot

follows is called rmin. Let θ1 be the angle from line

rp − rp′ to the ray rmin measured in counterclockwise

sense, θ1 ∈ (−π2 ,
π
2). Let d1 be the smallest distance

from the robot’s center to the line segment that the

robot is following.

The robot reduces its linear velocity whenever an

obstacle different to the wall that the robot is following

1

d r
min r

min

robot heading

rp’ rp’

robot heading

−θ
1θ

1

Fig. 13: Angle θ1 and ray rmin

is closer than distance ds, the robot also reduces its

linear velocity if there is a visible convex corner (also

called a reflex vertex) closer to it than distance ds. One

of the two new bits, that we use in the observation

vector is called st, this bit is set to 1 if there is an

obstacle or convex corner closer to the robot center than

distance ds, see Table 1.

The omnidirectional laser range finder is use to mea-

sure distance do, which is the distance between the

robot center and the closest obstacle that does not be-

long to the wall that the robot is following. Distance

dcorner is also measured using the laser, dcorner is the

distance between the robot center and the closest visi-

ble convex corner. See Figs. 14a and 14b.

robot heading

min

do

r

(a) do

robot heading

min

dcorner

r

(b) dcorner

Fig. 14: Distances do and dcorner.

The simple line fitting method described at the be-

ginning of this section is used to build segments and

detect convex and concave corners. Alternatively, a con-

vex corner can also be located since it generates a dis-

tance discontinuity (a gap), over two angular consecu-

tive sensor readings.

It is said that point rp′ is in contact with an obsta-

cle, if there is an obstacle point (sensor reading) closer

to rp′ than a given threshold ε1. The bit rp′ is set to 1

in Table 1. See Fig. 15 a). It is said that there is single

contact at point rp′ if there is a single circular sector of

radius dd (representing the virtual robot) that intersect

an obstacle and the point rp′ belongs to that circular

sector. The bit sc is set to 1 in Table 1, see Fig. 15 b).

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 13

b)

robot heading

rp’rp’

robot heading

a)

Fig. 15: Single contact at rp′

It is said that the robot heading is aligned with the

wall that the robot is following if |θ1|< ε2 and there are

not obstacle points that do not belong to the wall (line

segment) that the robot is following, closer to the robot

center than the robot radius dd. If the above condition

holds then bit aligned is set to 1 in Table 1.

b) robot not aligned

robot heading

minr
r min

robot heading

a) robot aligned

Fig. 16: Robot aligned and robot not aligned

The controllers SLW and SLWD presented in Sec-

tion 9 use distance d1 and angle θ1 as feedback infor-

mation to keep the robot following the wall and aligned

with it. Additionally, controller SLWD uses distances

do or distance dcorner as feedback information to reduce

the robot linear velocity whenever the robot gets close

to an obstacle or convex corner, see Section 9.

7.2 Observations for rotation in place

If the robot is in contact with an obstacle and the robot

is not aligned with it, or if there is a bicontact between

the robot and the obstacle region then robot rotates in

place.

It is said that the robot is in single contact with

an obstacle if a single circular sector of the virtual disc

robot intersects the obstacle region. The bit sc is set to

1 in Table 1. Fig. 17 a) shows the case when the robot is

in contact with a segment of the polygonal environment

and it is not aligned with that segment. The bit aligned

in Table 1 is set to 0. This case happens when the robot

moves from the interior of the polygonal environment

to reach the boundary of the obstacle region.

Fig. 17 b) shows the case when there is a bicontact

between the polygonal region and the environment. It

is said that there is a bicontact if two different circular

sectors of the virtual disc robot intersect the obstacle

region. The bit bc in Table 1 is set to 1.

robot heading

a) Single contact

c) Single contact not aligned d) Single contact aligned

b) Bicontact

robot heading robot heading

robot heading

Fig. 17: Single contact, robot not aligned and bicontact

It is said that the robot is in single contact with an

obstacle and it is not aligned with it, if the virtual disc

robot intersects more than one polygonal segments of

the polygonal environment, and the robot heading is

not aligned with the last segment in counterclockwise

sense, see Fig. 17 c). The bit sc is set to 1 and the bit

aligned is set to 0 in Table 1. This case happens when

the robot is following a segment and it encounters a

concave corner. In contrast, it is said that the robot

is in single contact with an obstacle and the robot is

aligned with it, if the disc robot intersects more than

one segments of the polygonal environment, and the

robot heading is aligned with the last segment in coun-

terclockwise sense, see Fig. 17 d). Bit sc is set to 1 and

bit aligned is also set to 1 in Table 1.

If the disc shaped robot intersects more than one

polygonal segment then two or more consecutive rota-

tions in place might be executed. The robot might be

aligned with a segment, however there might be other

obstacle blocking the robot.

We use the line fitting method described above to

find the last segment in counterclockwise sense of the

obstacle region boundary to align the robot heading

with it. The line fitting algorithm that we use considers

that the robot (and hence the omnidirectional sensor)

is inside the polygonal environment and that it does

not have access to the whole map, but only to the laser

points which are visible, this is equivalent to reason over

the visibility polygon, see Fig. 18. In the figure, the blue

segments are visible segments and the red segments are

gaps (also called free segments).

Recall that, the line passing over points rp and rp′

is called line rp−rp′ and the ray pointing to the closest

14 Edgar Martinez et al.

omnidirectional sensor

Fig. 18: Visibility polygon

point obstacle is called rmin. θ2 is the angle between the

line rp− rp′ and the ray rmin, θ2 ∈ (0, π). See Fig. 19.

The controller RP that will be presented in Sec-

tion 9 use angle θ2 as feedback information to make the

robot to rotate in place.

robot heading

min

rminθ
2

rmin
θ

2

rmin

θ
2

robot heading

b)

c) d)

robot heading
θ

2

a)

r

Fig. 19: Angle θ2 and ray rmin

If the robot heading is aligned (i.e. |θ2|< ε2) with

the last polygonal segment, in counterclockwise sense,

of the obstacle region boundary then the rotation in

place terminates with success, see Fig. 19 d).

The other new bit is called rp′ − e (see Table 1),

this bit is set to 1 if point rp′ is closer to a convex

corner than a given threshold ε1. A rotation in place

also terminates if point rp′ is closer to a convex corner

than a given threshold ε1. See Fig. 20 d).

If the disc shaped robot is in bicontact with the

polygonal region, then only the last circular sector of

the disc robot in counterclockwise order is considered

to terminate the rotation in place motion.

7.3 Observations for rotation with respect to a convex

corner

The robot rotates with respect to a convex corner or

point rp′, following an arc or circle, whenever the point

rp′ is closer to a convex corner than a given threshold

b)

θ2

rmin
θ2

rmin

θ2

rmin

rmin

θ2

robot heading

robot heading

robot heading

robot heading

=0

a)

c) d)

Fig. 20: Angle θ2 and ray rmin, touching a convex corner

ε1. The above condition set the bit rp′ − e equals to 1.

The ray from the robot center pointing to that convex

corner is called rcorner.

d)

3
= π/2−A

rcorner

sv

dw

dcorner

θ3
= π/2−A

dw

θ3
= π/2−A

dw

rcorner

θ3 =0

Α= π/2

rcorner

dw

Α

Α

Α

A

robot heading
π/2

A

robot heading

A

robot heading

robot heading
π/2

π/2

a) b)

c)

θ

Fig. 21: Angle θ3, line rp− rp′ and ray rcorner are not

colinear, rotation with respect to point rp′

Angle θ3 is used as feedback information during this

type of rotation. Here, we describe the general case,

in which the line rp − rp′ is not colinear with the ray

rcorner, this happens because of an imprecision on the

robot motion that occurs when the robot is approaching

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 15

the convex corner. See Fig. 21. Two distances are used

to compute angle θ3, the distance to the corner dcorner
and the distance to an obstacle in the direction of the

line rp − rp′, this second distance is called dw. The

cosines law is used to compute an auxiliar angle called

A, angle θ3 = π
2 −A. Note that the arc of circle that the

robot executes is centered in point rp′ and not in the

convex corner. Note also that some times the robot is

aligning its heading to a virtual line segment (denoted

sv) , see Figs. 21 a) and b). However, as the line passing

over point rp and rp′ is getting perpendicular to that

line segment, the correct segment shall be sensed and

considered, see Fig. 21 c). The arc of circle terminates

when the angle θ3 is smaller than a threshold ε2, this is

equivalent to have the robot heading aligned with the

segment after the corner, in counterclockwise sense, see

Fig. 21 d).

An additional complication might happend to com-

pute the angle that the robot must rotate, when it trav-

els an arc of circle around a convex corner. The com-

plication corresponds to the following fact, it might be

an obstacle that the robot touches before its heading

is aligned with the segment after the corner. We use

a simple line fitting technique to detect the potential

collision points that do not belong to the line segment

after the convex corner.

Thus, if there exist potential collision points closer

to the robot than distance ds then an auxiliar angle θ4

is computed to determine the angle that the robot must

rotate. The computation of angle θ4 is based on the fol-

lowing observation: when the robot rotates following an

arc of circle, all the points over the periferia of the disc

shaped robot rotate with respect to a given point and

they rotate the same angle. For simplicity, we describe

the procedure assuming that the line rp − rp′ and the

ray rcorner are colinear, then the robot rotates follow-

ing an arc of circle centered at the corner. However, in

general when the line rp − rp′ and the ray rcorner are

not colinear, hence the robot rotates an arc of circle

centered at point rp′.

To compute θ4, distances dcorner and do are used,

do is the distance to the closest obstacle point. The law

of cosines can also be used to compute the distance

between the convex corner and the point at distance

do from the robot center. This distance is called dco.

To find the point that collides with the closest obstacle

(from the robot center), a circle centered at the convex

corner (center of rotation) of radius dco is used. This

circle centered at the corner and the circle representing

the disc shaped robot are intersected. The intersection

point closer to the closest obstacle (from the robot cen-

ter) is called point IC. θ4 is the angle between the ray

from the corner to the point IC and the ray from the

corner to the point obstacle closest to the robot center.

The Fig. 22 a) shows the case when the obstacle is a

corner and Fig. 22 b) when the obstacle is a segment.

Finally, the angle that the robot must rotate around

the corner is min{θ3, θ4}. Angle θ4 is found at each it-

b)

co

θ
4

cornerd=dw
robot heading

ICd
o

d
co

d
o

cornerd=dw
robot heading

IC
θ

4

a)

d

Fig. 22: Angle θ4, line rp− rp′ and ray rcorner are col-

inear, rotation with respect to the convex corner.

eration of the method, note that is possible to decide

which angle θ3 or θ4 is smaller, at every time instance.

The controller AC that will be presented in Section

9 use either angle θ3 or angle θ4 as feedback information

to make the robot to rotate around a convex corner.

7.4 Allowing some approximations

We stress the fact that some approximations are al-

lowed, 2 thresholds are used. Threshold ε1 is the ra-

dius of the circle modeling point rp′ that determines

whether or not a convex corner is touching point rp′ or

whether or not the robot is touching a wall with point

rp′. Threshold ε2 is an angular threshold that deter-

mines whether or not the robot is aligned, the same

threshold is used for angles θ1, θ2, θ3 and θ4. The tun-

ing of these parameters is a compromise between precise

control action and robustness against imperfect sensor

readings.

8 Finite State Machine and Switching Control

Scheme

Analogously to the case in which the robot moves in

contact with the environment boundary, it is possible

to obtain a new Moore machine, for the case where the

robot has as objective to move to a desired distance

from the environment boundary.

In this last case, one or more observations activate

a specific controller. Table 1 presents the observation

that activates each controller.

16 Edgar Martinez et al.

yci = (rp′, sc, bc, st, rp′ − e, aligned) Control

yc1 = (0, 0, 0, 0, X, X) SLI

yc2 = (0, 0, 0, 1, X, X) SLID

yc3 = (1, X, X, 0, X, 1) SLW

yc4 = (1, X, X, 1, X, 1) SLWD

yc5 = (X, 1, 0, X, 0, 0) RP

yc6 = (X, 0, 1, X, X, 0) RP

yc7 = (1, X, X, X, 1, 0) AC

Table 1: Observations yci

Recall that the controllers use angles θ1, θ2, θ3 and

θ4, and distances d1, do and dcorner as feedback infor-

mation to execute the robot motions.

The relation between an observation and the acti-

vation of a given controller is given by:

– yc1 → SLI

– yc2 → SLID

– yc3 → SLW

– yc4 → SLWD

– yc5 ∨ yc6 → RP

– yc7 → AC

In which ∨ means “or”.

The robot still executes basic motion primitives:

straight line, rotation in place and arc of circle, how-

ever, sensed information is used to correct a possible

deviation from the motion primitives.

c4

c5

yc6

yc5
yc6

END

GNT

yc5
yc6

yc4 yc4

c7y

c7y

I SLI SLID RP

SLWD

SLW

AC
y y

y

c1 c2

yc3

y

c3

y

Fig. 23: The finite-state machine.

The Moore machine defines the possible transitions

between states given by one or more observations, and

gives the exploration’s termination condition. A graph-

ical representation of this Moore machine is shown in

Fig. 23.

It is important to stress that the activation of a

given controller depends on both the observation and

the state in the finite state machine, thus the automa-

ton constraints the possible states transitions filtering

spurious observation due to noisy sensor readings. In

this approach the planning stage corresponds to the

design of the FSM and it is done prior to execution,

once this is done, for any execution instance and for

any different environment, the method is reactive, it

just relates observations to controls.

The GNT gives the termnation condition for the

exploration task. A GNT link represents a query to the

GNT asking whether all the leaf nodes are marked as

primitive ones. The exploration task might terminate

in any state where the sensor is moving.

The local exploration algorithm presented in Sub-

section 6.2 is designed for the case in which the robot

moves in contact with the environment boundary. The

algorithm is used to detect gaps, which are generated

by reflex vertices located within an unreachable region.

rt’

rp’

rt’

rt

rp

rt

rp’

rp

Fig. 24: A virtual robot of radius dd

When the robot does not move in contact with the

environment boundary, since the sensor is not located

at point rp′ then the sensor will not discover the same

portion of the environment, compared with the case in

which the sensor is placed at point rp′. However, lo-

cal exploration algorithm can still be used to label ob-

served gaps generated by reflex vertices located within

an unreachable region as primitive gaps. Now, the un-

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 17

reachable region means that a robot of radius dd cannot

reach the region in instead of a robot of radius r.

Recall that local exploration algorithm is based on

the direction of the first contact point, the direction of

the second contact point and direction of line rt. Lines

rt and rt′ have the same direction, and also the direc-

tion of the line from the center of the robot to point

rp is the same that the direction of the line passing by

points rp and rp′, see Fig. 24. Therefore, the angular

order of the direction of these lines with respect to the

gaps will not change regarless of whether the environ-

ment border is touched with point rp or rp′. Hence,

local exploration algorithm can still be used and the

exploration strategy terminates.

The only difference is that a new observation will

start the execution of the algorithm. This observation

is a particular case of observation yc6 in which point

rp′ is in contact with the environment boundary. While

robot rotates in place the GNT is updated according the

gaps’ critical events until point rp′ is again in contact

with the environment.

Unfortunately, since the robot does not move in

contact with the environment, the portion of an un-

reachable region that will be covered with the omnidi-

rectional sensor’s visibility region is in general smaller

compared with a robot that moves in contact with the

environment.

9 Dealing with imperfect actions: Feedback

based controllers

In this section, we detail the proposed switching control

scheme. The activation of a given controller depends on
both the observation and the state in the finite state

machine. In the control scheme Vc is the current velocity

at the moment when a critical event happens, either a

controller is activated (because an observation changes)

or while executing a controller a feedback measurement

changes.

9.1 SL in interior (SLI)

This controller is activated when observation yc1 is de-

tected. In this case, the robot is in the interior of the

environment as shown in Fig. 25a. The controller has to

drive the robot in straight line towards the environment

boundary. To do so, the angular velocity is set to zero

and the linear velocity is smoothly increased from Vc
(it might be zero) to Vd the maximal desired linear ve-

locity. Note that Vc is the current linear velocity at the

moment when the controller is activated because the

change of observation; this velocity is denoted Vc|t=0.

Thus, the controller looks for reaching velocity Vd in

open loop since there is no information available for

feedback. SLI is the only controller that works in open

loop. Such behavior is achieved using the following con-

troller:

V =
Vd − Vc|t=0

2
(1 + tanh(α(t− β))) + Vc|t=0 (1)

ω = 0

where α is a scale factor and β is a time shifting. These

parameters are related to the duration of the transition

from Vc|t=0 to Vd, they are computed such that the

maximum robot acceleration is not exceeded.

Vd

(a) SL in interior

Vd

(b) SL following a wall

Fig. 25: Straight line (SL) motion primitive.

9.2 SL in interior with deceleration (SLID)

The observation that triggers this controller is yc2. In

this case, the robot is in the interior of the environment

and it is moving in straight line (zero angular velocity).

An obstacle is detected at a distance smaller than ds as
shown in Fig. 26.

Fig. 26: Straight line in interior with deceleration.

The robot must reduce its linear velocity until it

stops when the distance to the obstacle is equal to dd.

To achieve that, the controller is define as follows:

V = k1eo (2)

ω = 0

18 Edgar Martinez et al.

where eo = dd − do, k1 is a control gain given by k1 =
Vc|t=to

dd−ds . Here Vc|t=to is the robot speed at the moment

that an obstacle gets closer to the robot than distance

ds. This particular gain provides continuity in the linear

velocity at the switching time from controller SLI to

SLID.

9.3 SL following a wall (SLW)

The observation that triggers this controller is yc3. Fig. 25b

shows a case where the SLW controller is used. Sim-

ilar to the SLI controller, this one looks for reaching

the desired linear velocity Vd using a smooth transi-

tion from the current velocity Vc|t=0, here Vc|t=0 is the

robot speed at the moment when the controller is acti-

vated. Besides, the robot orientation must be controlled

to be aligned with a wall, which is achieved by using

a controller with two feedback components in terms of

distance and angular deviation. The controller is given

by:

V =
Vd − Vc|t=0

2
(1 + tanh(α(t− β))) + Vc|t=0 (3)

ω = k2ed + k3θ1

where ed = dd − d1, k2, k3 are control gains. Notice

that this controller starts when the robot is stopped and

aligned with a wall. Thus, the angular velocity is close

to zero while this controller is active and continuity of

the angular and linear velocities is achieved. To obtain

gains k2 and k3 we proceed as follows. These gains are

manually tuned, we start with small positive gains and

then the values are increased to obtain a faster converge

of the errors to zero. This process is repeated while no

oscillation in the robot’s trajectory appears.

9.4 SL following a wall with deceleration (SLWD)

In this case the robot is following a wall correcting its

orientation through its angular velocity as in the SLW

controller. Differently to the SLW controller, if an ob-

stacle or a convex corner are detected at a distance

smaller than ds then the robot must reduce its linear

velocity from the current value to zero. See Figs. 27a

and 27b. The robot stops when the distance to the ob-

stacle or to the convex corner is equal to dd. If both an

obstacle and a convex corner are detected at a distance

smaller than ds then the robot must slow down until

it stops when the min{do, dcorner} is equal to dd. See

Figs. 27c and 27d. The observation yc4 activates the

SLWD controller, which is defined as:

do

(a) SLWD for an obstacle

dcorner

(b) SLWD for a convex
corner

d

do

corner

(c)
SLWD min{do, dcorner}
is dcorner

d

d

o

corner

(d)
SLWD min{do, dcorner}
is do

Fig. 27: Straight line following a wall with deceleration

(SLWD).

V = k4ep (4)

ω = k2ed + k3θ1

where ep = ēd − eo, eo = dd − min{do, dcorner} and

k2, k3 and k4 are control gains. The reference signal ēd
is set depending on the previous state of the FSM. If

the previous state is SLW then ēd = 0 and the control

gain must be k4 =
Vc|t=to

dd−ds . Here Vc|t=to is the robot
speed at the moment that an obstacle gets closer to the

robot than distance ds. Gain k4 is adjusted using the

equation above to avoid a discontinuity on the robot

speed.

If the previous state is RP or AC then the SLWD

controller initiates when the robot is stopped. In this

case, the reference signal is set as the time-varying pro-

file ēd =
eo|t=0

2 (1 + cos(πtτ1)). This reference tracking

controller generates a smooth linear velocity that starts

in zero and finishes in zero at time τ1. Thus, continu-

ity in the linear velocity is achieved even if the SLWD

controller is launched and there are obstacles closer to

the robot than distance ds. If the obstacle closest to

the robot changes (from a corner to a wall or viceversa)

then the gain k4 is modified to k4 =
Vc|t=ts

dd−min{do,dcorner}
to maintain the continuity of the linear velocity. Here

Vc|t=ts is the robot speed at the moment that the closest

obstacle to the robot changes provided that the obstacle

is closer to the robot than distance ds. This controller

also maintains continuity of the angular velocity.

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 19

θ2

(a) RP with a single contact
over the disc of radius dd

θ2

(b) RP with multiple con-
tacts over the disc of radius
dd

Fig. 28: Rotation in place (RP) motion primitive.

9.5 Rotation in place (RP)

This controller is activated with two different obser-

vations. A first case occurs with the observation ye5,

which happens when the robot is at distance dd of the

environment boundary but it is not aligned with it. See

Fig. 28a. A second case occurs when the observation yc6
is measured. This happens when there is a multi-contact

between the robot and the environment boundary, see

Fig. 28b. In both cases the angle θ2 must be taken from

its initial value to zero smoothly. To achieve that, the

following trajectory tracking controller is proposed:

V = 0 (5)

ω = k5eθ2

where eθ2 = θd − θ2, θd =
θ2|t=0

2

(
1 + cos

(
πt
τ2

))
and

k5 is a control gain, which is tune manually following
a similar procedure that the case of gains k2 and k3.

Notice that observations yc5 and yc6 occurs when the

robot is stopped (the previous states of the FSM can

be SLID, SLWD or AC, which terminate with a mo-

tionless robot).

The trajectory tracking controller generates a smooth

angular velocity that aligns the robot to the wall, the

duration of the motion generated by the controller is

τ2, starting and finishing with ω = 0.

9.6 Arc of circle (AC)

This controller is activated by the observation yc7. The

goal is to move the robot along an arc of circle of ra-

dius dd and to align its heading to the next edge of the

polygonal environment after the corner. The center of

this rotational motion is a convex corner or point rp′.

However, the robot cannot get aligned with that polyg-

onal edge after the corner if there is an obstacle that

θ =π/2 - A
r

d

A 3

co
rn

er

w

(a) AC using θ3 for feed-
back

θ
IC

rco
rn
er

4

(b) AC using θ4 for feed-
back

A

d

d

 =

d w
co

rn
er

θ =π/2 - A3

wn

(c) AC measuring θ3

θ

IC

d

 =

d

dd

w
co

rn
er

4

o
co

(d) AC measuring θ4

IC

θ 3 θ4
d

 =
d w

co
rn

er

(e)
AC where the min{θ3, θ4}
is θ3

IC

d =dwcorner

θ 3 θ4

(f)
AC where the min{θ3, θ4}
is θ4

Fig. 29: Arc of circle (AC) motion primitive.

intersects the disc of radius dd during the arc of circle

robot’s motion.

If the robot does not detect obstacles that prevent

its alignment with the next edge of the environment

then the measure θ3 is used for feedback (see Fig 29a).

If the robot detects obstacles that prevent its align-

ment (see in Fig. 29b) then the measure θ4 is used for

feedback. If both angles θ3 and θ4 can be measured dur-

ing the motion then the minimum of θ3 and θ4 is used

for feedback, θAC is set to min{θ3, θ4}. See Figs. 29c

and 29d.

We propose the following AC controller, which also

aims to achieve continuity in the robot velocities:

V = ktθAC , (6)

ω = ωn + k6ec + k7
dec
dt

where ωn = −V/dd represents a nominal angular ve-

locity to achieve that the robot moves along an arc of

circle of radius dd and the error ec = dd − dcorner. Any

deviation is corrected by the proportional and deriva-

tive terms of the error ec, which are weighted by control

20 Edgar Martinez et al.

gains k6 and k7. Similar to the case of the straight line

controllers, to tune gains k6 and k7, one starts with

small positive gains and then the values are increased

to obtain a faster converge of the errors to zero. This

is repeated while no oscillation in the robots trajectory

appears.

The FSM makes the controller AC to start when the

robot is motionless, in this controller a variable gain is

used as follows:

kt = Vd

2θAC|t=0
(1− cos(πtτ3)) if t < τ3 (7)

kt =
Vc|t=τ3
θAC|t=τ3

if t ≥ τ3

This variable gain allows us to start the arc of circle

at zero initial velocity, then the robot has to speed up

trying to reach its maximum allowable speed Vd and

finally the linear velocity returns to zero when θAC is

zero. τ3 is a parameter that determines the time needed

to reach the maximum value of the gain.

In Fig. 29e, we present a case in which is possible

to measure both angles θ3 and θ4 at the same time.

Fig. 29e shows a case where θ3 < θ4 and θ3 is used for

feedback. Subsequently, during the robot’s motion trac-

ing an arc of circle, it happens that θ4 < θ3, which is

shown in Fig. 29f. Consequently, the angle for feedback

changes from θ3 to θ4, which might yield an undesired

discontinuity in the robot velocities. To alleviate this

issue, we propose to adapt the control gain kt mak-

ing kt =
Vc|t=ts

min{θ3|t=ts ,θ4|t=ts}
, where ts is the time when

the minimal angle changes from θ3 to θ4 or viceversa

according to the minimum value. Here Vc|t=ts is the

robot speed at the moment when min{θ3|t=ts , θ4|t=ts}
changes from θ3 to θ4 or viceversa.

10 Implementation

The simulation and experiments presented in this sec-

tion have the following main objectives: They show that

the robot does not need to travel all the environment

boundary to finish the exploration. Thus, the experi-

ments validate the use of the GNT to detect the ter-

mination of the exploration task, as soon as all the leaf

nodes in the GNT are primitive the exploration is fin-

ished. The experiments also empirically show the perti-

nence of the automaton. One can observe that the au-

tomation diminishes the change of controllers produc-

ing smoother robots velocities compared with a control

scheme, in which the controller change based only in

the observations. Finally, our experiments verified that

the controllers work properly, the robot is able to follow

the walls and robot’s velocities did not present discon-

tinuities.

10.1 Exploration’s simulations

The whole method presented in Section 6 has been

implemented and simulations’ results are included. All

our simulation experiments were run on a 2.2GHz In-

tel Core i7-2670QM quad-core processor PC, equipped

with 8 GB of RAM, running Linux, and were programmed

in C++ using the computational geometry library LEDA.

Our software implementation exactly emulates the FSM

presented in Fig. 6.

The already explored environment is shown in white.

The current visibility robot’s region is shown in light

gray (yellow), the environment regions which have not

seen yet are shown in dark gray. The obstacles are

shown in medium gray (blue). The robot is represented

with a black disc, the omnidirectional sensor is a point

over the robot’s boundary. A small arrow over the robot

is used to show the sensor direction rt. The landmark

is represented by a medium gray disc (green). In the

GNT, the primitive leaf nodes are shown as squares

(yellow), the landmark node is a triangle (blue), and

the non-primitive nodes are shown as circles (green).

Some snapshots of a simulation are presented in this

section. Fig. 30 shows the robot executing a straight line

motion primitive until a contact with ∂E is detected,

Fig. 31 shows when the landmark is totally visible from

the omnidirectional sensor location.

GNT

(a) (b)

Fig. 30: The robot is executing the straight line mo-

tion primitive until a contact with ∂E is detected. The

corresponding GNT is shown.

Fig. 32 shows the GNT at the end of the execution of

local exploration algorithm. Fig. 33 shows the moment

when the robot has finished to explore the environment.

10.2 Experiments in a real robot

In all the experiments, we have used a Pioneer P3-DX

robot, a differential drive system. The robot is modeled

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 21

GNT

(a) (b)

Fig. 31: The landmark is totally visible from the om-

nidirectional sensor location, hence it is encoded as a

node child of the root in the GNT.

GNT

(a)

78

83

60

(b)

Fig. 32: GNT at the end of the execution of local explo-

ration algorithm. The gaps 78 and 83 receive the prim-

itive label, and node 83 propagates it to its offspring

(leaf nodes 81 and 82).

GNT

(a) (b)

Fig. 33: The exploration task is finished, all the leave

nodes in the GNT are primitives. Note that the robot

has finished to explore the environment before traveling

the whole environment boundary.

as a disc of radius of 0.2 m, it has a maximum trans-

lational velocity of 1.2 m/s and a maximum rotational

velocity of 5.236 rad/s. For the experiments, the max-

imum desired linear velocity Vd, was set to 0.33 m/s.

The desired distance dd between the robot’s center and

the environment’s boundary is set to 0.4 m. Thus, the

distance between the robot’s boundary and the envi-

ronment is controlled to be 0.2 m.

In our implementation all the algorithms run di-

rectly on the robot computer, which is a Pentium M at

1.8 Ghz with 1 GB of RAM. The operating system is

Linux using some ROS functionalities, the control cycle

runs to 12.5 Hz. The software is programmed in C++.

Fig. 34: The robot and the lasers.

(a) Lab: This environment is a drywall made
structure in the CIMAT robotics lab, it is
composed of 6 straight line segments, 8 con-
cave corners and 2 convex corners

(b) Office: This environment is a CIMAT’s of-
fice with regular furniture

Fig. 35: Environments used for the experiments.

The ominidirectional sensor was implemented us-

ing two laser range finders Hokuyo model URG-04LX,

which were mounted on the robot in opposite direc-

tions, see Fig. 34. Our current implementation of the

gaps’ detector is simple, it uses directly the raw data

obtained with the lasers, to detect two consecutive an-

gular measurements with a difference in distance larger

than a given threshold, it was coded to test the whole

method: automaton and controllers in the real robot.

The experiments were done in two different envi-

ronments, see Figs. 35a and 35b. The main goal of the

first experiment is to show the evolution of the GNT, a

relevant aspect of this experiment is that it shows that

the robot does not need to travel all the environment

22 Edgar Martinez et al.

boundary to finish the exploration, as soon as all the

leaf nodes in the GNT are primitive the exploration

is finished. Indeed, as it was mentioned in Section 6,

the main objective of the GNT in this approach is to

indicate that the exploration task is finished, without

the need to localize the robot. Fig. 36 shows the evo-

lution of the GNT during the exploration task and the

corresponding robot position in the environment.

(a) The robot starting the exploration and the ini-
tial GNT

(b) A split critical event

(c) A new gap appears as a primitive gap

(d) The exploration ends, the only gap in the GNT
is primitive

Fig. 36: Evolution of the GNT during the exploration.

Fig. 37 shows the linear and angular robot’s veloc-

ities and the distance to the wall, while the robot was

following the environment boundary until the stop con-

dition given by the GNT was obtained. Fig. 37c indi-

cates the distance to the wall and which controller is

activated in each time interval. Notice that the robot’s

velocities are continous in spite of the switching be-

tween controllers.

This second set of experiments (see Fig. 35b) had as

a main objective to test the feedback-based controllers

and the resulting wall following capability in a typical

CIMAT’s indoor environment. The resulting statistics

are shown in Table 2. These statistics show the perfor-

mance of the robot to follow the environment’s bound-

ary using the proposed strategy for 3 laps. For each lap

(a) Linear robot’s velocity

(b) Angular robot’s velocity

(c) Distance to the wall and activated controller. Time
interval 0-5 seconds corresponds to SLW controller, time
interval 5-8 sec. controller SLWD, time interval 8-13 sec.
controller AC, time interval 13-21 sec. controller SLW, time
interval 21-22 sec. controller SLWD, time interval 22-27
sec. controller RP and time interval 27-33 sec. corresponds
to controller SLW.

Fig. 37: Linear and angular robot’s velocities, the dis-

tance to the wall and the activated controller.

that the robot executed, we present the average dis-

tance between the robot’s center and the environment’s

boundary, the corresponding standard deviation, the

maximum and minimum values of this distance, as well

as the time per lap taken by the robot to traveled the

environment’s boundary. In average, the robot follows

the the environment boundary at a distance of 0.36 m,

which implies an error of 4 cm with respect to the set-

point distance dd = 0.4 m. The maximum measured er-

ror during the whole motion was 13 cm. In average the

time to complete a lap was 59.61 s and the total time

to travel the 3 laps was 178.84 s and the perimenter of

the enviroment is 16.7 m.

Fig. 38 shows an experiment in a CIMAT’s office.

Figs. 39, 40 and 41 show the robot linear and angular

velocities while it was traveling the office.

In the multi-media material, we have included a video,

in which two simulations and two experiments in the

real robot are presented. The first experiment was done

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 23

Lap Number Average Distance [m] Std Dev [m] Max. Distance [m] Min. Distance [m] Lap Time [sec]

1 0.364 0.034 0.447 0.291 59.04
2 0.359 0.038 0.441 0.293 58.368
3 0.358 0.041 0.431 0.27 61.44

Table 2: Statistics of shortest distance measured from the robot center to the boundary of the environment: a CIMAT’s office

(a) Rotation in place in a concave corner, the
activated controller is RP

(b) Arc of circle around a convex corner, the
activated controller is AC

Fig. 38: Experiments in the office.

in the CIMAT’s robotics lab and second one in a CIMAT’s

office.

Our experiments verified that the robot’s velocities

did not present discontinuities, in general the angular

velocity is more noisy than the linear one, because of

errors in the sensor reading that makes to vary the di-

rection to the closest obstacle.

In order to test the pertinence of the automaton,

we have implemented an alternative control scheme in

which each controller was activated only depending on

the observation, without considering the state in the

machine. We have observed that the working controller

changes very frequently given as a result discontinu-

ous and noisy robot velocities. Even though that im-

plementation was able to accomplish the task, to ex-

plore the same environments the robot took 10 times

longer than when the states in automaton are used.

The automaton reduces velocities discontinuities yield-

ing smoother velocities because spurious observations

are often rejected, in other words to change from and

state to another–and consequently from a controller to

another–, it is required that given the current state

a specific observation (or set of observations) occurs.

(a) Linear velocity, controller SLW

(b) Linear velocity, controller SLWD, approaching a corner

(c) Linear velocity, controller SLWD, approaching an ob-
stacle

Fig. 39: Linear velocities: Controllers SLW and

SLWD.

Fig. 40: Robot’s angular velocity while the robot was

rotating in place in a concave corner, controller RP .

Thus, it is less likely that both conditions are accom-

plished, the state and the observation. Hence, the au-

tomaton diminishes the change of controllers produc-

ing smoother robots velocities, because spurious obser-

vations are more frequently rejected, compared with a

control scheme that changes the controller only based

on the observation without taking into account the au-

tomaton state (internal robot state).

24 Edgar Martinez et al.

(a) Robot’s angular velocity generated by controller AC,
while the robot was executing an arc of circle rotating
around a corner

(b) Robot linear velocity for the same controller, the robot
was executing an arc of circle

Fig. 41: Angular and linear velocities: Controller AC.

Some limitations of our current implementation are

the following: If the maximum desired linear velocity

is changed then the controllers gains must be changed

accordingly. A possibility to improve this limitation is

to use adaptable gains depending on the maximum de-

sired linear velocity. Spurious gaps sometimes instanta-

neously appear, a possible way to alleviate this problem

is to filter the raw data. However, this issue has never

prevented the robot to finish the exploration. Never-

theless, to deal with more complex environments, our

current implementation of the gaps’ detector should be

improved either using well known filtering techniques

on the raw laser data or even using robust line fitting

methods to detect convex corners, making it more ro-

bust.

Based on the experimental results, we conclude that

the theoretical modeling presented in the first part of

the paper can be adapted to deal with imperfect real

laser readings and imperfect execution of motion prim-

itives. Our current implementation works properly for

the tested environments.

11 Conclusions

This paper addressed the problem of exploring an un-

known environment, using a differential drive robot with

the shape of a disc. To explore the environment, the

robot follows the environment boundary. The robot is

equipped with typic robotic sensors and the proposed

exploration strategy does not requiere to localize the

robot.

The exploration problem addressed in this paper is

more challenging than the case of a point robot be-

cause visibility information does not provide collision

free paths in the configuration space. In this paper

an exploration strategy is proposed. This exploration

strategy is modeled as a Moore machine, and it guar-

antees exploring all the environment or the largest pos-

sible region of it. The robot is able to find a landmark

or declare that an exploration strategy for this objec-

tive does not exist. A motion policy based on sensor

feedback is also proposed.

We have proposed a practical hybrid control scheme

that allows the robot’s commands to be imperfect, and

to deal with the robot dynamics (i.e. velocities varia-

tions). Besides, our control scheme aims to maintain

the continuity of angular and linear velocities of the

robot in spite of the switching between controllers. The

main originality of the proposed approach with respect

to previous work on wall following is that in this ap-

proach, the FSM constraints the possible states transi-

tions filtering spurious observation due to noisy sensor

readings. We underline that in this approach the plan-

ning stage corresponds to the design of the FSM and

it is done prior to execution, once this is done, for any

execution instance and for any different environment,

the method is reactive, it just relates observations to

controls. All the proposed algorithms have been imple-

mented and both simulations and experiments in a real

robot are presented to validate the approach. The ex-

perimental results in a real robot have matched with

the proposed modeling.

In this work, we only considered polygonal envi-

ronments and sensors with not limited range. Since a

gap encodes the frontier between known and unknown

space, we believe that a gap can also be used to en-

code the frontier generated by the sensor range, at the

moment that a wall enters within the sensor range the

gap would disappear. Therefore, we think that the gaps

modeling can be extended to consider a sensor with lim-

ited range. We also think that the wall following capa-

bility can be extended to other types of environments

different from polygons. Perhaps some approximations

of the environments can be done using simple curves or

even line segments. If so, it would be possible to find

some controls to follow such curves. Nevertheless, such

extensions would need a detailed analysis to obtain a

formal modeling with certain guarantees, these exten-

sions are left for future work. We would also like to

extend the approach for the execution based on feed-

back of any type of trajectories and not just to wall

following.

A Motion Strategy for Exploration Driven by an Automaton Activating Feedback-based Controllers 25

References

1. O. Khatib. Real-time obstacle avoidance for manipula-
tors and mobile robots. International Journal of Robotics

Research, 5(1):90–98, 1986.

2. J. Borenstein and Y. Koren. Real-time obstacle avoidance
for fast mobile robots. IEEE Transactions on Systems,

Man, and Cybernetics, 19(5):1179–1187, 1989.

3. J. Minguez and L. Montano. Nearness diagram (nd)
navigation: collision avoidance in troublesome scenarios.
IEEE Transactions on Robotics and Automation, 20(1):45–
59, 2004.

4. J.-P. Laumond, P.E. Jacobs, M. Täıx, and R.M. Murray.
A motion planner for nonholonomic mobile robots. IEEE

Trans. on Robotics and Automation, 10(5):577–593, 1994.

5. A. Bicchi, G. Casalino, and C. Santilli. Planning short-
est bounded-curvature paths for a class of nonholonomic
vehicles among obstacles. J. of Intelligent Robots Systems,
16(4):387–405, 1996.

6. J.-B.. Hayet, H. Carlos, C. Esteves, and R. Murrieta-
Cid. Motion planning for maintaining landmarks visi-
bility with a differential drive robot. Robotics and Au-

tonomous Systems, 4(62):456–473, 2014.

7. B. Kuipers and Y. Byun. A robot exploration and map-
ping strategy based on a semantic hierarchy of spatial
representations. Robotics and Autonomous Systems, 8(1-
2):47–63, 1991.

8. B. Yamauchi. A frontier-based approach for autonomous
exploration. In Proc of IEEE International Symposium

on Computational Intelligence in Robotics and Automation,
pages 146–151, Monterey, CA, USA, 1997.

9. F. Amigoni and V. Caglioti. An information-based ex-
ploration strategy for environment mapping with mobile
robots. Robotics and Autonomous Systems, 58(5):684–699,
2010.

10. M. Juliá, A. Gil, and O. Reinoso. A comparison of
path planning strategies for autonomous exploration and
mapping of unknown environments. Autonomous Robots,
33(4):427–444, 2012.

11. B. Tovar, R. Murrieta-Cid, and S. M. LaValle. Distance-
optimal navigation in an unknown environment with-
out sensing distances. IEEE Transactions on Robotics,
23(3):506–518, 2007.

12. A. Sarmiento, R. Murrieta-Cid, and S. Hutchinson. An
efficient motion strategy to compute expected-time lo-
cally optimal continuous search paths in known environ-
ments. Advanced Robotics, 23(12-13):1533–1560, 2009.

13. M. Katsev, A. Yershova, B. Tovar, R. Ghrist, and S. M.
LaValle. Mapping and pursuit-evasion strategies for
a simple wall-following robot. IEEE Transactions on
Robotics, 27(1):113–128, 2011.

14. Y. Landa and R. Tsai. Visibility of point clouds and ex-
ploratory path planning in unknown environments. Com-
munications in Mathematical Sciences, 6(4):881–913, 2008.

15. L. Murphy and P. Newman. Using incomplete online met-
ric maps for topological exploration with the gap navi-
gation tree. In Proc. of IEEE Int. Conf. on Robotics and
Automation, pages 2792–2797, 2008.

16. C.J. Taylor and D. Kriegman. Vision-based motion plan-
ning and exploration algorithms for mobile robots. IEEE
Transactions on Robotics and Automation, 14(3):417–426,
1998.

17. A. Elfes. Sonar-based real world mapping and navigation.
IEEE Transactions on Robotics and Automation, 3(3):249–
264, 1987.

18. R. Sim and N. Roy. Global a-optimal robot exploration
in slam. In Proc. of IEEE Int. Conf. on Robotics and Au-

tomation, ICRA 2005, pages 661–666, Barcelona, Spain,
2005.

19. H. Feder, J. Leonard, and C. Smith. Adaptive mobile
robot navigation and mapping. International Journal of
Robotics Research, 18(7):650–668, 1999.

20. A. Makarenko, B. Williams, F. Bourgault, and
H. Durrant-Whyte. An experiment in integrated explo-
ration. In Proc. of the IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems, IROS 2002, Lausanne, Switzer-

land, pages 534–539, 2002.
21. Y.-A.. Gidhar and G. Dudek. Modeling curiosity in a

mobile robot for long-term autonomous exploration and
monitoring. Autonomous Robots, 40(7):1267–1278, 2016.

22. R. Sim and G. Dudek. Effective exploration strategies for
the construction of visual maps. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, IROS 2003,
pages 3224–3231, Las Vegas, Nevada, USA, 2003.

23. H. González-Banos and J.-C. Latombe. Navigation
strategies for exploring indoor environments. Interna-
tional Journal of Robotics Research, 21(10-11):829–848,
2002.

24. G. Oriolo, M. Vendittelli, L. Freda, and G. Troso. The srt
method: randomized strategies for exploration. In Proc. of
IEEE Int. Conf. on Robotics and Automation, ICRA 2004,
pages 4688–4694 Vol.5, New Orleans, LA, USA, 2004.

25. S. Thrun, D. Fox, and W. Burgard. Probabilistic map-
ping of an environment by a mobile robot. In Proc. of

IEEE Int. Conf. on Robotics and Automation, ICRA 1998,
pages 1546–1551, Leuven, Belgium, 1998.

26. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
MIT Press, Cambridge, MA, 2005.

27. H. Durrant-Whyte and T. Bailey. Simultaneous localiza-
tion and mapping: Part I. IEEE Robotics and Automation

Magazine, 13(2):99–110, 2006.
28. F. Amigoni, S. Gasparini, and M. Gini. Building segment-

based maps without pose information. Proceedings of the

IEEE, 94(7):1340–1359, 2006.
29. A. Kolling and S. Carpin. Extracting surveillance graphs

from robot maps. In Proc. of IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 11–
19, 2008.

30. S. M. LaValle. Sensing and filtering: A fresh perspective
based on preimages and information spaces. In Founda-

tions and Trends in Robotics Series. Now Publishers, Delft,
The Netherlands, 2012.

31. R. Lopez-Padilla, R. Murrieta-Cid, and S.M. LaValle.
Optimal gap navigation for a disc robot. In E. Frazzoli
et al., editor, Proc. of the Tenth Workshop on the Algorith-
mic Foundations of Robotics: Springer Tracts in Advanced

Robotics, pages 123–138. Springer, 2013.
32. R. Lopez-Padilla, R. Murrieta-Cid, I. Becerra, G. La-

guna, and S. M. LaValle. Optimal navigation for a differ-
ential drive disc robot: A game against the polygonal en-
vironment. J. of Intelligent Robotic Systems, 89(1-2):211–
250, 2018.

33. E. Bicho. Detecting, representing and following walls
based on low-level distance sensors. In Proc. of the
Int. Symposium on Neural Computation, Berlin, Germany,
2000.

34. M. Toibero, F. Roberti, and R. Carelli. Stable contour-
following control of wheeled mobile robots. Robotica,
27(1):1–12, 2009.

35. M. Toibero, F. Roberti, R. Carelli, and P. Fiorini. Switch-
ing control approach for stable navigation of mobile

26 Edgar Martinez et al.

robots in unknown environments. Robotics and Computer-
Integrated Manufacturing, 27(2):558–568, 2011.

36. A. De and D. E. Koditschek. Toward dynamical sensor
management for reactive wall-following. In Proc. of IEEE
Int. Conf. on Robotics and Automation, ICRA 2013, pages
2400–2406, Karlsruhe, Germany, 2013.

37. A. G. Lamperski, O. Y. Loh, B. L. Kutscher, and N. J.
Cowan. Dynamical wall following for a wheeled robot us-
ing a passive tactile sensor. In Proc. of IEEE Int. Conf. on
Robotics and Automation, ICRA 2005, pages 3838–3843,
Barcelona, Spain, 2005.

38. G. Laguna, R. Murrieta-Cid, H.M. Becerra, R. Lopez-
Padilla, and S.M. LaValle. Exploration of an unknown
environment with a differential drive disc robot. In Proc

of IEEE Int. Conf. on Robotics and Automation, pages
2527–2533, 2014.

39. J. Hopcroft, R. Motwani, and J. Ullman. Introduction to

Automata Theory, Languages, and Computation. Pearson
Education, 2000.

40. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P.
Flannery. Numerical Recipes in C. Cambridge University
Press, 1994.

