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Abstract

We present a framework for analyzing and computing motion plans for a robot that
operates in an environment that both varies over time and is not completely predictable. We
first classify sources of uncertainty in motion planning into four categories, and argue that the
problems addressed in this paper belong to a fundamental category that has received little
attention. We treat the changing environment in a flexible manner by combining traditional
configuration space concepts with a Markov process that models the environment. For this
context, we then propose the use of a motion strategy, which provides a motion command for
the robot for each contingency that it could be confronted with. We allow the specification
of a desired performance criterion, such as time or distance, and determine a motion strategy
that is optimal with respect to that criterion.

We demonstrate the breadth of our framework by applying it to a variety of motion
planning problems. Examples are computed for problems that involve a changing config-
uration space, hazardous regions and shelters, and processing of random service requests.
To achieve this, we have exploited the powerful principle of optimality, which leads to a
dynamic programming-based algorithm for determining optimal strategies. In addition, we
present several extensions to the basic framework that incorporate additional concerns, such

as sensing issues or changes in the geometry of the robot.



1 Introduction

Substantial interest in the field of robot motion planning has led to a variety of approaches that
use different models of the robot and its environment (see [30, 37, 59] for surveys). For many
problems, the success of a motion planning approach depends to a large extent on the manner in
which various forms of uncertainty are modeled and treated. One important uncertainty source

There are two popular representations of uncertainty that have been applied to geometric
motion planning problems. One representation restricts parameter uncertainties to lie within a
specified set. A motion plan is then generated that is based on worst-case analysis (e.g., [9, 38,
43]). We refer to this representation as bounded uncertainty. The other popular representation
expresses uncertainty in the form of a posterior probability density. This often leads to the
construction of motion plans through average-case analysis (e.g., [14, 18, 23, 60])

Uncertainty can be introduced into a motion planning problem in a number of ways. We

organize this uncertainty into four basic sources for discussion:
e Uncertainty in configuration sensing (Type CS)
e Uncertainty in configuration predictability (Type CP)
e Uncertainty in environment sensing (Type ES)
e Uncertainty in environment predictability (Type EP)

Figure 1 depicts the relationship between the sources.

We will now describe each of the sources of uncertainty, and the final source will be the
primary focus of this paper. For the discussion, we will consider each type of uncertainty in
isolation, although in general any combination of these types can be considered simultaneously

in a motion planning formulation.

Type CS uncertainty. Suppose that the space of collision-free configurations,
Cfree is given. Under uncertainty in configuration sensing, incomplete or imperfect
information is utilized by the robot to make an inference about its configuration.
This information could come from sensor measurements or motion history. With
a nondeterministic uncertainty model, the robot might have sufficient information
to infer that q lies in some subset @ C Cfye.. For example, in [9], [17], [38], [43]
this representation of uncertainty is used to guarantee that the robot recognizably
terminates in a goal region. With a probabilistic model, the robot might infer a
posterior probability density over configurations, p(q), that is conditioned on sen-

sor observations, initial conditions, or additional knowledge. Examples that handle
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Figure 1: Four sources of uncertainty in the motion planning problem.

configuration-sensing uncertainty with probabilistic representations include [6], [71].

Type CP uncertainty. Suppose that both Cy,.. and the current configuration,
q € Cfree are given. Motion commands can be given to the robot, but with Type CP
uncertainty the future configurations cannot, in general, be completely predicted.
With nondeterministic uncertainty, the robot may infer that some future configura-
tion will belong to a subset Q C Cfree. The method of preimage backchaining con-
stitutes of large body of work in which bounded uncertainties are propagated and
combined with configuration-sensing uncertainty, to guarantee that the robot will
achieve a goal (e.g., [9], [13], [17], [20], [38], [43]). With a probabilistic model, future
configurations can be described by a posterior density over configurations, p(q), that
is conditioned on the initial configuration and the executed motion command. Exam-
ples of work that include a probabilistic representation of configuration-predictability

uncertainty include [4], [6], [23].

Type ES uncertainty. Analogous to Type CS uncertainty, suppose that a
space of possible environments, E, is known to the robot. Although a space of
configurations is a well-defined concept in robotics literature, we must define what

is meant by a “space of environments.” For the purpose of discussion, let F contain



different possibilities for Cyce.

Under Type ES uncertainty, incomplete or imperfect information is utilized by
the robot to make an inference about its environment. With a nondeterministic
uncertainty model, the robot might have sufficient information to infer that the
environment e belongs to some subset ' C E. For example, in [50], [53], the envi-
ronment is restricted to a plane populated with unknown polygonal obstacles, which
are then discovered using visual “scans” to build a visibility graph for motion plan-
ning. In [44], unknown obstacles are allowed to be of arbitrary shape, and the sensor
data consists of “tactile” information for a point robot. With a probabilistic model,
the robot might infer a posterior probability density, p(e), over environments, which
is conditioned on sensor observations, initial conditions, or additional knowledge
(e.g., [14], [15], [28], [68]).

Type EP uncertainty. Suppose again that the space of environments, &, is
known by the robot; however, in addition, the robot knows its current environment
e € £. Predictable motion commands might be given to the robot, but with Type
EP uncertainty future environments cannot be completely predicted. With bounded
uncertainty, the robot may infer that some future environment will belong to a
subset F' C £. With a probabilistic model, future environments can be described by
a posterior density over environments, p(e), that can be conditioned on the initial

environment, the robot configuration, or an executed motion command.

Type EP represents a fundamental source of uncertainty in robot motion planning that has
received little attention. Previous approaches that have dealt with this difficult source have
made limiting assumptions. In most cases, the robot is expected to react on-line to changes
that occur in the environment. The past work is mainly concerned with local collision avoidance
(e.g.,[75]) or incorporating unexpected moving objects locally into the updating of the motion
plan. Thus, many of the predictive aspects of the changing environment is not utilized, and the
approach is similar to the incorporation of Type ES uncertainty. For example, in the approach
to motion planning with artificial potential fields it is possible to incorporate moving obstacles
with unknown trajectories using on-line sensor data without considering future changes in the
environment [3, 54, 65]. As another example, [12] presents an incremental planning scheme for
collision avoidance with unknown moving obstacles that are restricted to linear trajectories.

In this paper a general framework is provided for Type EP uncertainty, when the environ-
ment is partially predictable. Motion strategies will be determined that provide specific motion
commands that take into account environment changes that may occur at some time in the
(possibly distant) future. Problems in which £ is restricted to a finite number of environments

are the primary focus in this paper. This covers a wide variety of motion planning problems, and
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leads to practical computational solutions. Our mathematical characterization of the problem,
however, applies to more general environment spaces.

The rest of the paper is organized as follows. Section 2 provides motivation, and introduces
classes of motion planning problems that involve Type EP uncertainty, which are addressed
by this paper. Section 3 develops the mathematical model for the changing environment, the
robot, and performance criteria. Section 4 explains the computational technique that determines
optimal strategies. Section 5 presents computed examples that are obtained by applying the
framework from Section 3 and the computation method from Section 4. Section 6 presents addi-
tional applications and extensions of our framework. Section 7 summarizes the key contributions

of the paper, and provides a basis for future work.

2 Problem Description and Motivation

In this section we discuss three classes of motion planning problems that involve Type EP
uncertainty (environment predictability), which is the main focus of this paper. This discussion
provides motivation for the framework that is presented, by describing example problems. These
examples will be referred to again when computed results are presented in Section 5.

We first consider the following motion planning problem in an environment depicted in Fig-
ure 2.a. While the robot is moving, “doors” that the robot has no control over could close or
open. Suppose that the robot has bounded velocity, and wishes to reach a goal region in a
minimal amount of time. Should the robot always try to move through the lower door? Should
it adjust its path depending on which of the two doors are open? What happens when the robot
is moving toward a door and the door closes? Should it just wait for it to open or should it
head toward the other door if that door is open? One would like to define a formal basis for
deciding on the best actions to take, given that the robot does not know exactly when certain
changes will occur in the workspace. Note that these types of questions will exist even if the
robot has perfect information at a given time regarding the status of the doors. We will refer to
problems such as this as the class of changing configuration space problems. To the best of our
knowledge there is no formal treatment of this form of uncertainty in the literature. By using
the framework presented in this paper, we can analyze and determine a solution to a problem
of this type.

Motion planning problems for which the changing configuration space is completely pre-
dictable have been previously considered in motion planning. However, in even the simplest
cases of moving obstacles, the computational complexity of the motion planning a problem be-
comes prohibitive, as demonstrated by various complexity results reported in the literature. In
[55], for example, Reif and Sharir show that motion planning in a three-dimensional environ-

ment is PSPACE-hard when the robot’s velocity is bounded, and NP-hard when there is no



such bound. In [8] Canny and Reif prove the NP-hardness of a more restricted problem—that of
motion planning for a point robot in the plane with bounded velocity, when the moving obstacles
are convex polygons moving at constant linear velocities without rotation. These intractability
results have encouraged heuristic approaches, especially as applied to more limited geometric
models—for example, in [16, 22, 32, 64]. We model problems in which the changing environment
is not completely predictable; however, we only consider a finite number of possibilities for the

environment.
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Figure 2: A changing environment in which the workspace changes over time, by (a) the opening

Doorway

and closing of “doors,” and (b) appearance and disappearance of “transient” obstacles.

While accounting for the changing environment, problems such as the one in Figure 2.a must
be described geometrically. A standard way of describing a geometric motion planning problem
of a robot A in a workspace W is in terms of its n-dimensional configuration space, C, in which
n is the number of degrees of freedom of A [37]. In terms of the configuration space, the robot
is represented as a point. If W contains a set of fixed obstacles, {B,..., B}, the goal of a
traditional motion planning algorithm is to find a path, from an initial configuration to a goal
configuration, whose image lies in Cyee (0r Cyqria [37]).

A problem such as that in Figure 2.a can be described with a discrete set of collision-free
configuration spaces. At a given time, the robot is in one of these spaces, and the environment
can cause the robot to move to a different collision-free configuration space. Another example

of a changing configuration space is shown in Figure 2.b, and it contains transient obstacles.



In [21] transient obstacles were introduced for a motion planning problem in which polygonal
obstacles exist only for a given period of time, and an efficient algorithm was proposed to
determine reasonable solutions when the transient obstacles are completely predictable. Since
the obstacles appear and disappear at the same position, the motion planning problem can again
be described in terms of a discrete set of collision-free configuration spaces.

In classical motion planning approaches, the output of algorithm is usually a “motion plan”
for a given description of the C, the initial and the goal positions. When unpredictable changes
occur in the workspace, dynamic replanning is often used. This has been used, for example, in the
context of error-detection and recovery [13, 46], and task-level reasoning [19, 27]. Alternatively, a
fixed command might be given to the robot, and local collision avoidance is performed to handle
unexpected aspects of the environment [3, 54, 58, 65, 75]. In the probabilistic framework that
we propose, a “motion strategy” provides a motion command for the robot for each contingency
that it could be confronted with. This motion strategy can be considered as a state-feedback
stochastic controller [35], on a state space that simultaneously considers the environment and
the robot configuration. Replanning is not needed when the environment changes, because
the robot responds appropriately for different regions of the state space during execution. In
addition, a state-feedback controller is advantageous, since it will typically be robust to small
modeling errors that can develop during execution. To select a motion strategy, we formulate
an explicit performance criterion (or loss functional) that evaluates a trajectory executed by
the robot. This allows a variety items, such as time or distance, to be optimized through the
selection of a strategy.

In general, the changing environment is characterized with a stochastic model. Consider
developing a model for the above motion planning problem with doors; one suitable means of
modeling the opening of a door could be in terms of a Poisson process with arrival frequency
Ao, 80 that the time until a closed door opens is an exponential random variable with mean J,.
Similarly, the closing of a door, given that it is open could be modeled as a Poisson process with
arrival frequency A.. The behavior of a door is thus characterized by two parameters, which
eases the specification of a model. These parameters could in practice be estimated by observing
a many samples of such changes in a particular workspace.

The Poisson process is a reasonable choice for many problems because it captures several
realistic properties of a changing environment: (i) The probabilities that a door will open in two
non-overlapping time intervals are independent of each other; (ii) The probability that a door
will open in an interval is proportional to the length of the interval. This implies that events
are uniformly distributed in time, and thus do not favor one epoch of time over another. (iii)
The probability that a door will open in an interval becomes arbitrarily small if the interval is
made sufficiently small. These Poisson processes can be considered as special cases of a general

Markov process has much greater expressive power, and will be further developed in Sections 3



and 5.
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Figure 3: A problem that involves safe and hazardous regions in addition to obstacles.

We can also move beyond the concept of a changing configuration space to model new types
of motion planning problems. For instance, in some situations, it may be appropriate to not
consider the individual moving obstacles in the environment, and instead associate a cost of
traversing a region that could have moving obstacles. This leads to a class of problems that
we refer to as hazardous region and shelter problems. The cost could, for instance, directly
correspond to the risk involved in traversing a hazardous region. In a similar context, this has
been referred to as a weighted region problem [31, 47, 57]. Assigning a cost associated with
the traversal of a region provides a way of dealing with the complexity of motion planning in
an environment that has several moving obstacles, particularly when their motion is unknown.
Similar treatment of dynamic environments in [60, 61] led to the idea of shelters (regions which
have low cost of traversal) and alarms (events that cause the cost of traversing a region to
change from low to high). The treatment considered in this work, however, is substantially
more general.

As an example of a hazardous region and shelter problem, consider the motion planning
problem shown in Figure 3, for a mobile robot in a factory floor in which there might be other
moving robots, vehicles, or people in the corridors. If the robot receives a signal that indicates
that there are other motions in the corridor, it can be considered to be at risk of collision.
Such a signal could be transmitted via a wireless modem from a set of motion detectors or
from other robots. Shelters designate areas in which the robot is guaranteed to avoid collisions.
These shelters become relevant only when the environment is hazardous, and appropriate motion

commands must be given to the robot that take into account the possibility of a receiving a



signal that indicates a hazard. By proper modeling of hazardous regions and shelters in the
workspace, the need for explicitly considering multiple moving objects (as in [8, 16, 55, 70]) can
be avoided, while implicitly factoring in the effect of moving obstacles in the determination of
motion plans.

As it becomes clear from the previous problem, simple geometric changes in the configuration
space may not be sufficient to capture all the desired features for motion planning in a changing,
partially-predictable environment. One expanded concept, that we will formalize in the next
section is that of an environment mode. The changing status of the environment (and not just
of the geometry of the configuration space) can then be described in terms of a finite set of
environment modes. Uncertainty is represented in terms of transition probabilities between the

different possible environment modes.

ﬁ—l—% -\
Goal Region

A

e

Service Area 1 ’)

Service Area 2

\ N

Figure 4: A problem of processing random service requests in the workspace.

The concept of environment modes permits us to describe motion planning problems that have
a greater scope than just the problem of moving from a initial position to a goal region. For
example, the robot could influence the changes in the environment mode by being at particular
points in its configuration space. We describe a class of problems that we call servicing problems,
which involve interaction between the robot and the environment. Consider, for example the
environment shown in Figure 4, which contains service areas 1 and 2. Whenever there is a
request for one type of service, the robot should head toward that service area and process the
service request. In practice, this could correspond to mobile robot that performs tasks in an office
or other work area, and receives requests to perform services directly through a radio ethernet
connection. We can define four environment modes, which correspond to the combinations of

the two different types of service requests. One can associate a cost for the waiting time before



a request is processed. Additionally, the robot directly affects the environment by causing the
mode to change once the robot arrives at a service area. Qur framework can model interactions
of this type, between the robot and the environment, which occur during motion planning.
The purpose of this background discussion has been to motivate the need for a general frame-
work for motion planning in changing, partially-predictable environments (with Type EP uncer-
tainty). The next few sections develop the details of the framework and show its applicability
to the examples discussed in this section. The implementation of the algorithm that determines
optimal strategies, and the results presented in Section 5 further demonstrate the utility of our

approach.

3 Mathematical Formulation

In this section we develop the mathematical concepts that model the problems discussed in
Section 2. Section 3.1 introduces the finite-state Markov process that is used to model the
changing environment, and the relationship of this model to the configuration space of the
robot. In Section 3.2 we define a model of robot motion, which accepts a motion command
and produces a next configuration. A fixed behavior for the robot is specified in the form of a
strategy. In contrast to the traditional specification of a planned path, a strategy specifies the
motion that will be executed by the robot for any given combination of robot configuration and
environment mode. This allows different trajectories to be executed by the robot under different
environment modes.

Section 3.3 introduces the concept of dynamic regions in the robot’s configuration space.
These regions are used to explicitly define interaction that occurs with the environment and
the robot, which is effected through the definition of a performance criterion. The performance
criterion (termed a loss functional) evaluates the executed trajectory of the robot. This criterion
could, for instance, could be chosen to measure the total distance traveled by the robot. Since
the environment is a stochastic process, the actual trajectory taken by the robot under a given
strategy is also a stochastic process. Therefore the goal is to determine a strategy for the robot

that is optimal in an ezpected sense.

3.1 The Environment Process

For geometric motion planning problems without uncertainty, the space of possible situations
that can occur is sufficiently characterized by Cfree (or Cyaiia [37]). In our context, the environ-
ment can additionally interfere with the motion plans of A, compelling us to define a finite set,
E, of environment modes.

Since we are modeling problems in which the environment changes, we require an explicit

representation of time in many subsequent definitions. We define a discretized representation of
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time by a set of stages, with an index k € {1,2,..., K}. Stage k refers to time (k — 1)At¢. At
a given stage, k, the environment is in some mode e; € F, which is known to the robot. We
generally take At sufficiently small to approximate continuous trajectories. This appropriately
reflects a situation in which a real robot is limited to some sampling rate for acquiring sensor
information and executing motion commands. A stage-limit, K, is defined only to preclude a
special treatment of infinite stages. In practice, an explicit choice of K does not need to be
determined, which will be discussed in Section 4.

We additionally consider the environment as a finite-state Markov process, which we call
the environment process. We consider a Markov process since the representation is powerful
enough to encode many important stochastic processes, such as a Wiener process (Brownian
motion) or a Poisson process [67]. As another example of using a Markov model in the analysis
of motion planning, see [75]. At the initial stage (k = 1) the environment mode, e; € E, is
given. For a given environment mode, e, the next environment mode, eg1, is specified with a
probability distribution over E. This probability distribution is defined by a vector P; such that
P[j] = Pleg+1 = jlex = 1)-

We now present an example of a four-mode environment process that can model the problem
from Figure 2.a. More general models and examples are presented in Section 5. We define the

following four environment states:

Mode Interpretation

0 Door 1 open; Door 2 open

1 Door 1 closed; Door 2 open
2 Door 1 open; Door 2 closed
3

Door 1 closed; Door 2 closed

Each door is modeled with Poisson processes. Let A denote a Poisson arrival rate. The density
for the time of the first arrival is p(t,) = Ae <. We denote the arrival rate of a door closing,
given that it is open, as A., and the arrival rate of a door opening, given that it is closed as A,.

Assume for this example that the two doors are governed by independent, identical Poisson

processes. The probability that a closed door will open in time At is
At
Py = / /\oe_Aotadta =1 — e At (1)
0

The probability that it will stay closed is P;; = 1 — Fy;. For a door that is initially open, we
similarly obtain Pjg =1 — e_’\CAt, and Pyy =1 — Pyp.

The environment transition probabilities can be generated by taking products of pairs of Py,
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Py, Py, and Pi1:
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The four-mode process is depicted in Figure 5, in which we take A\, = A, = 0.10101354
(approximately one expected arrival every ten seconds), and At = 0.2. This results in Py =
P()1 = 0.02 and POO = P11 = 0.98.

Figure 5: The environment process can be considered as a finite-state Markov process with state

transition probabilities.

For this example, the environment process is independent of the robot configuration. In
general, however, we allow the robot to have influence over the environment by conditioning the
probabilities on the configuration of the robot. The servicing problem, discussed in Section 2,
is an example in which this extension is needed.

In general, to uniquely identify all of the possible situations that can occur in our problem,
we define a state space as the cartesian product, X = Cjfree X E. This is similar to the view
taken in [13], in which the space for motion planning is a cartesian product of C,.. With a single
parameter that characterizes a hole width for a peg-in-hole task. The state at stage k is denoted
by z, which simultaneously represents both a configuration of A in the geometric sense, and
an environment mode, e;. The environment modes form a partition of the state space, X. Each
time the environment mode changes, the robot is forced into a different layer of X (see Figure
6).
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3.2 Defining the Robot Behavior

In this section we present several concepts that lead to the definition of a strategy, which
characterizes a fixed behavior for the robot. We begin by defining an action, uk, (or command),
which can be issued to A at each stage, k. We let U denote the action space for A, while requiring
that ur € U. We define a state transition distribution as P(zgi1|zg,ug). This represents a
probability distribution over a finite set of next states, given xj, as the initial state, and an action
ug. This relationship is probabilistic because the final component of the state vector (which
corresponds to the environment mode) cannot be completely predicted. Since the remaining
components of the state space correspond to the configuration space of the robot, we assume
that these can be predicted once x; and uy are given. This implies that we have perfect control
of the robot (i.e., the response of the robot to a given command is assumed to be exactly
executed by a deterministic relationship). In addition, the use of z in the conditional of the
state transition distribution implies that the robot has perfect information regarding its state. In
other words, the CS, CP, and ES forms of uncertainty, as discussed in Section 1, are suppressed.
Sections 6.1 and 7, however, indicate how these forms of uncertainty could be incorporated.
We present a state transition distribution that applies to the case in which C C R2, and
the robot is limited to translational motion. More complicated motions, which apply to the
examples in Section 5, are presented in Appendix A. Dynamic robot constraints could also be
introduced; however, Cf... would have to be replaced by its tangent bundle in the state space
definition, and the robot constraints would have to be specified in state-space form. We define
the action space as U = [0,27) U{0}. If u), € [0,27), then A attempts to move a distance ||v||At
toward a direction in C, in which ||v|| denotes some fixed speed for A. If uy = (), then the robot

remains motionless.
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Consider the case in which zj € Cjre is at a distance of at least ||v||At from the obstacles. If

A chooses action uy, # () from state zj, then!

zk[1] + ||v||At cos(ug)
Tp41 = | zk[2] + ||v||At sin(ug) |, (3)
€k+1

in which the environment mode e is known to be sampled from P(eg1|xg, ux). We can thus
counsider a finite-valued random variable X} 1 with corresponding distribution P(zgy1|zk, uk),
which can be inferred from the given model. If up = (), then zx[1] = zx41[1] and zx[2] =
zk11[2]; however, e 1 is not necessarily equal to e, because the environment transition equation
determines e;1. We prohibit the robot from considering actions that produce an obstacle
collision; however, one could also consider compliant or constrained motions [40, 45, 51, 73].

We now define the notion of a robot strategy for our context. At first it might seem appropriate
to define some action uy for each stage; however, we want a motion plan that is prepared for the
various contingencies presented by the changing environment. Therefore, we define a strategy
at stage k of A as a function ~; : X — U. For each state, xj, the function - yields an action
ug = Yk(zk). The set of mappings {vy1,72,...,7k} is denoted by <y and termed a strategy. This
is equivalent to a control law or policy in control theory [35]. For the examples that we present
in this paper, v, will be the same for all k£ (i.e., each robot action depends only on the current
state, and not the particular stage). Section 6.2 presents a discussion of time varying strategies,
in which this assumption is relaxed.

We can represent a desired performance criterion by a nonnegative real-valued functional
L(z1, ..., Tk +1,U1,-.-, UK ), called the loss functional. A strategy that produces a lower loss will
be considered preferable. The ultimate goal of the planner is to determine an optimal strategy
v ={",7,--.,7%} that causes L to be minimized in an expected sense.

We use the notation w(7y, z1, €) to refer to the path taken through the state space by the imple-
mentation of 7y, an initial state, z1, and a given environment mode sequence € = {e1, €2, ...,ex }.
We refer to w(vy,z1,e) as a sample path for v (given z1 and e). We also define W (v, z1), which
is a random process that takes on values of sample paths once e is known. Note that the
probability distribution of e can be directly determined from -y, z;, and the environment tran-
sition distribution; therefore, the probability distribution over the sample paths (which defines

W (v, z1)) is known.

3.3 Defining Performance with Dynamic Regions

Sections 3.1 and 3.2 have introduced the environment process and a model of the robot behavior.

This section discusses the key concepts that are used to model the effect that the environment

1We use the notation z[i] to refer to the i*" element of the vector z.
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has on the robot. In particular, costs that appear in a loss functional directly depend on dynamic
regions in the state space. If the robot enters a particular dynamic region, the amount of loss
received might increase or decrease. For instance, a dynamic region might correspond to the
robot’s collision with a closed door, which would incur a very high loss.

We will define dynamic regions in the workspace, VW, and subsequently discuss how these
regions are mapped into the state space, X. In addition to static obstacles, let VW contain a set
of m dynamic regions, denoted by {D1,...,D,,}. Each dynamic region is a subset of W, and
pairs of dynamic regions are not necessarily disjoint.

A dynamic region D; in W can map into the region CD§ C Cfree, which is given by (see
Figure 7):

CDS = {q € Cppee| AlQ) ND; # 0. (4)

We call CDf§ a contact (dynamic) C-region. This yields configurations in which the robot is in
contact with D;. A contact C-region is useful for problems such as that in Figure 2a, in which
contact with an obstacle must be determined.

In some situations, we will be interested in determining whether the robot is completely
contained in some D;. For instance, in the example in Figure 3, the robot is only considered
safe if it is completely inside the shelter region. For this situation, a dynamic region D; in W

maps into the region CD§ C Cfree, which is given by (see Figure 8):
C,Df = {q € Cfree| A(q) - Dz} (5)

We call CD§ an enclosure (dynamic) C-region. One could alternatively define CD{ as the subset
of configuration space in which the robot and dynamic region interiors overlap, and also the
containment in the definition of CD{ could be made strict. Note that CD® C CD".

We now want to map the dynamic regions into the state space, since the loss functional
depends on the state trajectory. Recall Figure 6. Since the dynamic regions have been mapped
into Cfree, the mapping into X can be considered as lifting the contact C-region (or enclosure
C-region) into different layers of X. We want the dynamic region to only influence the robot at
certain layers. For instance, with the example in Figure 2.a, we only want the dynamic region
to exist in X in environment modes that correspond to the door being closed. In other modes,
the door should not interfere with the robot. For each i € {1,...,m} we select a subset, E;, of
environment states, E; C E.

We can represent a state z € X by (q,e), in which q € Cyee and e € E. If D; is a contact

dynamic region, then we define
X, ={(q,e) € X| ¢ € CD; and e € E;}. (6)
Alternatively, if D; is an enclosure dynamic region, then we define

Xi ={(q,e) € X| ¢ €CD{ and e € E;}. (7)
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Figure 7: A contact dynamic region.
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Figure 8: An enclosure dynamic region.

We call X; the i** dynamic X-region. Each X; may be formed from either a contact or enclosure

dynamic region.

obtain X by applying (6) (or (7)).

We now define a goal region as a special kind of dynamic region (in addition to D;,i €

{1,...,m}). We first define a subset G C W as a goal region in the workspace. We next

consider G as a contact goal region (or enclosure goal region), and apply (4) (or (5)) with

D; = G to obtain the goal region in configuration space. A subset E, C F is selected, and we

problem will be to bring the system to any state in X¢.

The termination condition for a given motion planning

We next present a general loss functional. Although this form will not be the most general

that is possible, it is sufficient to encompass the examples that are discussed in this paper.
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Specific applications of this loss functional are presented in Section 5.
We assume that a loss functional is of the following additive form, which is often used in
optimal control theory [35]:

K

L(.’El, LK1, ULy eey ’U,K) = Z lk(xk, uk) + lK_|_1(.’IIK_|_1) (8)
k=1

The first K terms correspond to costs that are received at each step during the execution of
the strategy. The final term, [x 1, is a terminal cost that will be used to ensure that the robot
achieves the goal (if the goal is reachable).

For a given set A, let I4 denote its characteristic function: I4(a) =1ifa € A, and I4(a) =0

otherwise. The term [ in (8) is defined as

0 If z € Xg

Uk (ks ug) = m : (9)
cu+ Y leilx; (zk) + cilxe(rg)]  Otherwise
i=1
The constant ¢, > 0 corresponds to the cost for choosing an action. This cost will often be the
same for every uy € U, but in general can be dependent on the particular action. For instance,
if time optimality is considered, then ¢, = At. However, if distance optimality is considered,
then one might choose ¢, = 0 if u;, = (), and ¢, = ||v||At otherwise.

The constant ¢; > 0 is a penalty that is added if zj, € X;. The constant ¢; > 0 is a penalty that
is added if zp, & X;. In (9), X¢ denotes X \ X;. For the case of a changing configuration space,
for instance, these constants could become ¢; = oo, to indicate that a collision has occurred, and
¢; = 0 otherwise. The specific loss functionals for applications are presented in Section 5.

The term [ 41 in (8) is defined as

Ik+1(Tr41) = cplxg (Tr41), (10)

in which X¢ denotes X \ X. The constant c; can be considered as the cost of failure. We

typically consider c; = oo, but can also associate a finite cost with failure.

4 Determining Optimal Strategies

One of the primary advantages of our framework is that a straightforward computation procedure
can be used to determine optimal strategies. In Section 4.1 we show how the principle of
optimality can be applied to our problem to obtain solutions through dynamic programming.

Section 4.2 briefly discusses computational issues.
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4.1 Applying the Principle of Optimality

Suppose that for some k, the optimal strategy is known for each stage i € {k,...,K}. The
expected loss obtained by starting from stage k, and implementing the portion of the optimal

strategy, {7;,...,7k}, can be represented as

K
Li(zy) = E {Z li(zi, v; (i) + lK+1($K+1)} ; (11)

1=k
in which E{} denotes expectation. The expectation is taken over the possible environment
sequences, e. The function L} (zx) is sometimes referred to as the cost-to-go function in dynamic
optimization literature [5].
The principle of optimality [35] states that Lj(z)) can be obtained from Lj ,;(z41) by the

following recurrence:

Ljy(zx) = min {lk(a:k,uk) + EZ+1($k+1)P($k+1|$kauk)} : (12)

Tht1
Note that the sum in (12) is taken over a finite number of states, which can be reached using
(3).

Suppose that the goal is to determine the optimal action, ug, for every value of zy, and
every stage k € {1,...,K}. One can begin with stage K + 1, and repeatedly apply (12)
to obtain the optimal actions. At stage K + 1, we can use the last term of (8) to obtain
L. 1(zx+1) = lk41(zk+1). The cost-to-go, L}, can be determined from L}, through (12).
Using the ug € U that minimizes (12) at zx, we define v} (zx) = ux. We then apply (12)
again, using L% to obtain L} _, and v} _,. These iterations continue until £ = 1. Finally, we
take v* = {7],..., 7%}

The loss function L7 (z1) shares similarities with the concept of a global navigation function in
motion planning [37, 56]. Also, various forms of dynamic programming have been successfully
applied in several other motion planning contexts [2, 29, 48, 69]; for instance, the wavefront
expansion method that is described in [37] can be viewed as a special form of dynamic program-
ming.

It turns out that the optimal action uj, does not depend on the stage index, k, for the
problems that we consider (see Section 6.2 for a discussion of an extension that includes stage
dependency in the optimal strategy). In addition, we do not need to choose K. These points

are discussed in Section 4.2.

4.2 Computational Issues

We determine optimal strategies numerically, by successively building approximate representa-

tions of E};. This offers flexibility, since analytical solutions are very difficult to obtain, and
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have only been previously obtained by considering very specific cases [61, 60]. Each dynamic
programming iteration can be considered as the construction of an approximate representation
of I_/};. We decompose the state space into cells of uniform size; however, it is important to note
the differences between the use of this decomposition in our context and the traditional use of
decompositions in geometric motion planning (see, for example, [37]). Our primary interest in
using the decomposition is to construct a good approximation of the function l_}};.

We obtain the value for L} (z;) by computing the right side of (12) for various values of uy,
including ug, = 0. The value for L} (z;) is obtained by linear interpolation (see Figure 9). Other

schemes, such as quadratic interpolation, can be used to improve numerical accuracy [36].

° °
° °
° ° ° °
oX, ® ° °

Figure 9: Interpolation is performed on the shaded region to obtain a more accurate value for
i,

Note that L% represents the cost of the optimal one-stage strategy from each state zx. More
generally, I_,*K_i represents the cost of the optimal ¢ + 1-stage strategy from each state xx ;. For
a motion planning problem, we are only concerned with strategies that require a finite number
of stages, before terminating in the goal region. For each position in the state space, one of the
following occurs after some finite number of iterations: (i) The state, zy, is in the goal region, in
which case Lj(x) = 0; (ii) The losses Lj (z)) and Ly,  (zx41) become equal for zj = x4 1; (iii)
The loss Lj(z)) continues to be greater than L} (zx41) for zx = z441. The second condition
occurs when the optimal strategy from zp,; has already been completely determined, and an
additional stage accomplishes nothing (this additional stage can the considered as transpiring
in the goal region, in which no additional loss is received). The third condition occurs when
the goal cannot be reached from zy,;. If we continue to perform the dynamic programming
iterations until one of the three conditions is met for every z;, € X, then the optimal strategy
from all initial states will be represented. The resulting strategy is formed from the optimal
actions in the final iteration. The optimal strategy is considered stationary, since it only depends
on the state, as opposed to additionally requiring the stage index. Note that no choice of K is

necessary. Also, at each iteration of the dynamic programming algorithm, we only retain the
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representation of L ., while constructing Lj,.

To execute a strategy, the robot uses the final cost-to-go representation, which we call L}.
The robot is not confined to move along the quantization grid that is used for determining the
cost-to-go functions. The optimal action can be obtained from any real-valued location z € X
though the use of (12), linear interpolation, and the approximate representation of L}. A real-
valued initial state is given (the final component represents the environment mode, and is an
integer). The application of the optimal action will yield a new real-valued configuration for the
robot. This form of iteration continues until the goal region X is entered (assuming that it
can be reached).

We briefly discuss the computational performance of the algorithm. Let @@ denote the number
of cells per dimension in the representation of Cyp... Let n denote the dimension of Cyre.. Let
E denote the number of environment states. Let U denote the number of actions that are
considered. The space complexity of the algorithm is O(Q™E), which is proportional to the
size of the state space. For each iteration of the dynamic programming, the time complexity is
O(Q™E?U), and the number of iterations is proportional to the robot velocity and the complexity
of the solution strategy. The number of iterations required is directly proportional to the number
of stages required for the longest (in terms of stages) optimal strategy that reaches the goal.
The computation at each cell (in the application of (12)), has time complexity O(EU), with n
fixed.

Although the computational cost of dynamic programming increases exponentially in the
dimension of the state space (as is the case with most algorithms for the basic motion planning
problem without uncertainty [37]), for a given dimension the algorithm is quite efficient. The
computational approach is reasonable for problems as large as a three dimensional configuration
space with several environment modes. This dimensionality includes many interesting motion
planning problems (see [37]); however, for more difficult problems some additional techniques
may need to be developed.

In our simulation experiments, we have considered problems in which the dimension of Cjyc.
is two or three, and we have considered up to 32 environment modes. For two-dimensional
configuration space, we typically divide the space into 50 x 50 x |E| cells, and use from 16 to
64 quantized actions (excluding (}) to approximate translational motion. For three-dimensional
configuration space, we typically divide the space into 50 x 50 x 64 x |E| cells. These levels of
resolution produce very reasonable results for most motion planning problems (see the computed
examples in Section 5).

The computation times vary dramatically, depending on the resolution of the representation,
number of environment states, and dimension of the configuration space. For the examples
that we present in this paper, the times to compute the optimal strategy vary from about

one minute to a few hours, on a SPARC 10 workstation. Execution of an optimal strategy is
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sufficiently fast for most applications; motion commands can be provided every few milliseconds.
The computation of the optimal strategy can in many applications be considered as an off-line
precomputation. The stored strategy can then be quickly executed on-line with a fast sampling
rate for state feedback (up to hundreds of Hz on a typical workstation or a mobile robot-based
processor board).

One improvement for computing optimal strategies would be to parallelize the implementation
of the dynamic programming equation (12). The computation of the optimal action at each
location z;, depends only on a very local portion of the representation of f/z 41(Tk41), and on
no portion of l_},";(mk) For a large class of problems, it may also be possible to determine the
optimal strategy by a type of wavefront expansion on the state space. This can be considered
as a generalization of Dijkstra’s algorithm, and would require only a single pass over the state

space, potentially improving the computational performance by a couple orders of magnitude.

5 Specific Models with Computed Examples

In this section we present computed examples from each of the three problem classes that
were discussed in Section 2, by using the computation method discussed in Section 4. The
mathematical models from Section 3 are specialized to model specific problem types. Section 5.1
presents computed examples that involve a changing configuration space. Section 5.2 presents
examples that involve hazardous regions and shelters. Section 5.3 presents examples that involve
servicing. The incremental motion equations for these examples are provided in Section 3.2 and

Appendix A.

5.1 Changing Configuration Space

We first describe how the concepts in Section 3 specialize to this problem. Suppose there are
m regions in the workspace that can appear or disappear, and we wish to prohibit collisions if
they appear. We define m dynamic regions, D1, ..., Dy,.

We will assume that the stochastic processes that govern these regions are independent. In
general, we have 2™ environment modes, which correspond to each possible subset of obsta-
cles that can appear. If the region processes are dependent, several of these subsets of regions
might not be possible (for one reason or another in practice), thereby reducing the number
of environment modes. Our framework supports dependent processes by defining the appro-
priate environment transition probabilities; however, we use independent processes to ease the
modeling, through the use of Poisson processes.

Recall the example process given in Section 3.1. The complete specification of the environ-
ment process is given for m = 2 and identical Poisson processes that govern the doors. A

straightforward extension can be made to m dynamic regions, with distinct Poisson processes.
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We define two Poisson arrival rates for each dynamic region, D;: )\6 and Ai. Using equations
similar to (1), probabilities of a region appearing or disappearing can be derived, to yield: Pgo,
P}y, P}y, and P},. Recall from (2) that environment transition probabilities could be constructed
from products of pairs of the probabilities P;;. To generalize this each environment transition

probability is given by
m
P(ersiler) = [ P (13)
i=1

in which k represents the i‘" bit in the binary representation of ey, and I represents the ‘" bit
in the binary representation of e;. The interpretation of this is that appearing or disappearing
regions correspond to bits changing from 0 to 1, or from 1 to 0 in the environment mode index.

We now describe how the loss functional is built, by applying definitions from Section 3.3.
Each D; is considered as a contact dynamic region, from which m dynamic X-regions are formed.
We define the terms in (9) as ¢, = At, ¢; = oo, and ¢ = 0. By setting ¢,, we obtain time-
optimal solutions when the goal is reached without collision. The constant ¢; provides a penalty
for colliding with a dynamic region that has appeared, which precludes this alternative from the
space of reasonable strategies. We also let ¢y = oo in (10).

We additionally need to describe the behavior of the appearing and disappearing regions when
the robot approaches them or is in a configuration in which a region might suddenly appear on
top of the robot. We allow the state transition probabilities to additionally by conditioned on
the robot’s configuration. We assume that the probability is zero that a region will appear in
the same location as the robot. We can, of course, remove this restriction; however, in this case
the robot will choose to always avoid the dynamic region because there is a nonzero probability
of obtaining an infinite penalty.?.

We now present several computed examples. A simple example is first presented in Figure
10 that illustrates many of the concepts. Figure 10.a shows a problem in which there is a point
robot that translates in %2 using (3). A single doorway exists in the workspace; therefore, there
are two environment states, e = 0 and e = 1. The outer dimensions of the workspace for this
and all other examples are 100 x 100. For this example, ||[v||At = 2, Pyy = P11 = 0.98. The goal
region, X for this problem and others in this class exist in all layers of X (i.e., the goal does
not depend on the environment mode).

Figure 10.b depicts 20 sample paths from a fixed initial location to the goal region, under
the implementation of the computed optimal strategy. Initially e; = 0, indicating that the door
is open. Recall from Section 3.2 that W (y*, z1) represents the random process yielded by the
strategy ~*, starting from z; € X. Each of the 20 sample paths is obtained by sampling an

environment mode sequence, e, from the Markov process, to obtain w(y*,z1,e), which corre-

%In the implementation, we represent infinities as large, positive real values, and avoid technicalities of assigning

infinite cost to a set of measure zero.
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sponds to one fixed trajectory in X that terminates in the goal. Figure 10.b clearly illustrates
different sample paths that can result during execution, even though the strategy is fixed. These
differences are caused by different e. Some sample paths go through the doorway, and others
take a longer way to the goal. In one sample path, the robot begins to go around because
the door closed; however, the robot changes its direction and heads toward the doorway again
because the door reopened.

Figures 10.c and 10.d depict the optimal strategy v*. The direction of each arrow indicates
the direction of motion (specified as uy = 7*(zx)) for the robot, from that particular state
location. The state space was quantized into 75 X 75 X 2 locations for determining the optimal
strategy; however, for clarity we show actions at fewer locations in the figures. When e = 0,
a sharp division is observed between places in the state space that lead to the doorway, places
that lead to the open corridor. When e = 1, the robot is lead through the open corridor, to the
goal region.

Figures 10.e and 10.f show 20 level-set contours of the cost-to-go function, Lj(z1). This
function increases as the distance from the goal increases. For translational motion, the negative
gradient of the cost-to-go function represents the direction of motion for the robot. Hence, the
cost-to-go function is similar to a numerical navigation function [33, 37, 56]; however, in our
work, we obtain the representation of L (1) as a by-product of determining the optimal strategy.

We next show some results for a more complex example, in which there are 18 doorways, in
Figure 11. We assume a point robot, in which ||v||At = 3. There are three different classes of
doors, which open and close simultaneously (see Figure 11.a). This results in three disconnected
dynamic regions and eight environment modes. Each class of doors is governed by the same
Poisson parameters as the previous example.

Figure 11.b shows 20 sample paths under the implementation of the optimal strategy, when
er = 0 (all doors are initially open). It is observed that many different sample paths are
obtained, under the optimal strategy, v*. For this example, there are places in the state space
in which the optimal action is v} (z) = ur = 0 (i.e., the robot waits for some door(s) to open).
Figure 12 shows 30 level-set contours of the cost-to-go function, Lj(z1). When some of the
doors close, wells form in the cost-to-go function. Figure 13 shows two portions of Lj(z1), which
correspond to e = 0 and e = 7. When e = 7, the robot could be trapped in any of the nine
square compartments, and must wait for a door to open; this causes nine wells to appear in the
cost-to-go function.

Figure 14 shows results from the problem discussed in Figure 2.a. Four sample paths are
shown under the implementation of the optimal strategy, in which the initial environment mode
is e = 1 (the lower door is closed, and the upper door is open). Graphs of e are also given. For
the lower door, we have Py = P;1 = 0.99, and for the upper door, we have Py = P11 = 0.98.

The incremental motion model for the robot is constrained rotation with reverse, as described in
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Figure 11: a) A problem that has 18 doors; b) 20 sample paths.

Appendix A, in which ||v||At = 3 and 6,,At = 0.2. Four very different sample paths are shown.
In the first sample the lower door opens, and the robot efficiently moves to the goal region. In
the second sample the lower door remains closed for a long period of time, and the robot chooses
to move through the upper doorway, taking a much longer route. In the third sample the robot
starts to head for the upper doorway, and then changes its heading when the lower door opens.
In the fourth sample the lower door opens and then closes again. The robot decides to wait for
the door to open again, instead of taking the longer route.

Figure 15 shows results from the problem discussed in Figure 2.b. Four sample paths are
shown under the implementation of the optimal strategy. There are five dynamic regions, which
each correspond to a transient obstacle. For each transient obstacle we have P, = P}; = 0.98.
Initially, e = 0, which corresponds to the existence of none of the five transient obstacles. The
robot can translate in the workspace through (3), in which ||v]|A¢ = 3. Again, we observe
many different sample paths as the free-configuration space changes in different ways. If a
transient obstacle appears at any time during the execution, it is shown in the figure (i.e., it
may appear that the robot collides with the transient obstacle in some of the figures, but the

obstacle disappears in time).

5.2 Hazardous Regions and Shelters

For this type of problem we consider only two environment modes: either the environment is

hazardous, or the environment is safe. Of course, generalizations of this are possible to multiple
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Figure 15: Four sample paths for a transient obstacle problem.

levels of danger, or different shelters for different types of hazards. We have a single dynamic
region, Di. We let ¢y = 00, ¢, = At, ¢; =0, and ¢ > 0. To construct the loss functional, D; is
considered as an enclosure dynamic region, as defined in Section 3.3.

Figure 16.a shows a basic example that illustrates the shelter and hazardous region concepts.
There is a point robot that translates in R2 using (3), and four thin horizontal regions that
are designated as shelters. For this example, |[v||At = 2, Pyyp = 0.75 and Pi; = 0.98. The loss
function is defined with ¢y = 0 and ¢, = 5. This is a generalization of a local path optimization
problem defined in [60], which involved a single horizontal shelter region, with analogy to the
problem of crossing a street. The current problem can be seen as analogous to the problem of

crossing a multi-lane street with multiple median shelters. For the one lane case, an analytical
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solution was presented in [60] but the analysis cannot be generalized easily to the multiple lane
case.

Figure 16.b shows 20 sample paths under the implementation of the optimal strategy. One
can see clearly the use of the shelters during the times when the rest of the “street” becomes
hazardous (e = 1). During the environment mode e = 1, the best strategy seems to be to
head toward the next shelter (median) and move along the shelter until the environment mode
changes back to 0. This intuitive observation about the robot’s behavior is further supported
by the results shown in Figures 16.e and 16.f, which show 20 level-set contours of the cost-to-go
function, Li(z1). For e = 0, the contours are arranged to draw the robot across the street and
directly toward the goal. For e = 1, on the other hand, the robot is forced to approach and
move along the shelters.

Figure 17 shows results from the problem discussed in Figure 3. Four sample paths are
shown under the implementation of the optimal strategy, in which the initial environment mode
is e = 0 (the environment is not hazardous). We have Pyy = Pi; = 0.98. The incremental
motion model for the robot is constrained rotation with reverse, as described in Appendix
A, in which ||v||At = 3 and 6,,At = 0.2. Very different sample paths are obtained during
execution, which reflect the responses due to the environment becoming hazardous. In the
first sample, the environment does not become hazardous, and the robot never moves into a
shelter (although it travels close to the shelters). In the remaining sample paths, the robot
responds to the hazardous environment by moving into a shelter. In the final sample path, the
environment became hazardous three times, causing the robot to take shelter each time. After
the robot moves into a shelter, it remains there until the environment mode, e switches back to
0. Further, while it is waiting inside a shelter the robot chooses an orientation that points along
the remaining optimal path for e = 0. We have observed this behavior more clearly through

animations of the robot moving along the sample paths shown in Figure 17.

5.3 Servicing Problems

Suppose that there are m different types of services that need to be performed. For simplicity
we assume that a request for a particular service to be performed arrives with Poisson frequency
AL, Each dynamic region, D;, corresponds to places in which the robot can respond to a service
request. We assume that the robot can immediately process a request, which causes the request
to be cleared. We assume that any number of services can be requested simultaneously, and the
governing processes are independent. These assumptions are not, of course, necessary, but they
simplify the examples that we consider.

We now define the environment probability distribution. If zy € D; then P{; = P}, = 0, and
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%, = Pi; = 1; otherwise, we have P{; = 1 and
At
Py = / Ase Mledt, =1 — e A, (14)
0

in which )\, is the Poisson arrival rate for the i** service request. The elements of the environment
transition distribution are obtained by forming products as in (13).

We let ¢f = 00, ¢, = At, ¢; = 0, and ¢; > 0. To construct the loss functional, D; is considered
as an enclosure or contact dynamic region, as defined in Section 3.3.

Figure 18.a shows a basic example in which there is a translating point robot, and five small

regions in which a single type of service can be performed. There is a single dynamic region,
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Figure 17: Four sample paths for a hazardous region and shelter problem.

which corresponds to the existence of a service request. The goal region, X, exists for both lay-
ers of X. This is similar to the motion planning problem analyzed in [63] with points distributed
on a plane. For that model some properties of the behavior of optimal paths where presented
although the actual optimal solution was not derived. Here we consider a more general problem
as discussed in Section 2. Figure 18.b shows shows 20 sample paths under the implementation
of the optimal strategy. One can see clearly the “detours” that the robot has to make to process
the service requests. Figures 18.c and 18.d show the computed optimal strategies for the two
modes 0 and 1 respectively. When there is a service request, the robot heads toward a nearby
region to service the call, except as it approaches the goal region. This general behavior is

brought out dramatically in the level-set contours of the cost-to-go function shown in Figures
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18.e and 18.f. For the environment mode e = 1 the contours form wells that draw the robot
toward a nearby region. This general behavior is supported by the theoretical analysis in [63],
in which by analogy a Delaunay path (a path formed by edges from the Delaunay graph on the
plane) would be formed from the initial to goal position when the environment mode is 1.
Figure 19 shows results from the problem discussed in Figure 4. Four sample paths are
shown under the implementation of the optimal strategy, in which the initial environment mode
is e = 2 (there is a request for the second service only). For the first service type, we have
Py = Pi1 = 0.99, and for the second type, we have Pyy = P;1 = 0.98. The incremental
motion model for the robot is the nonholonomic fixed-radius motion from Appendix A, in which
|lv]|At = 3 and 6,,At = 0.2. Each service region is an enclosure dynamic region. The goal
region in the state space, X, only exists for e = 0; this implies that the robot must reach the
goal region while there are no requests for servicing. Very different sample paths are obtained

because the robot must process any request that appears in order to reach Xg.

6 Additional Models and Applications

This section presents several additional models and applications that illustrate the flexibility
and extendibility of our approach. Section 6.1 discusses an extension in which the robot does
not receive perfect information about the current environment mode. This form of uncertainty
can be combined with the changing environment to yield strategies that are conditioned on
sensor observations made by the robot. Section 6.2 discusses an extension that incorporates any
time-varying, completely-predictable aspect of the motion planning problem into the motion
strategy. The resulting strategy is a function of both state and time, as opposed to only state as
in Section 3.2. Section 6.3 describes applications that assume that the robot is changing in some
manner over time that is not completely predictable. This change could be in the robot geometry

or in the robot motion equation, and is straightforward to incorporate into our framework.

6.1 Imperfect Environment Information: Incorporating Type ES Uncertainty

It has been assumed so far that at stage k the robot knows the environment mode, e;. In
general, it could be the case that the robot has limited sensing, and cannot perfectly determine
the current environment mode. In this section we present some expressions that indicate how
uncertainty in the current environment mode can be modeled and incorporated into the optimal
strategy.

We assume that the environment transition probabilities depend only on the previous environ-
ment mode, and hence can be written P(eg1|ex). As before, we also assume that the robot has
perfect control and configuration sensing. None of these assumptions is necessary to formulate

an information space; however, a detailed discussion of information spaces is well beyond the
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Figure 19: Four sample paths for a servicing problem with a nonholonomic car robot.
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scope of this presentation. Detailed treatment of information spaces in optimal control theory
can be found in [1, 35], and their application to motion planning with uncertainty in control
and sensing appears in [39].

Suppose that the robot is equipped with a sensor that produces an observation oy at each
stage, k € {1,...,K}. We assume that a noise or error model for the sensor can be specified as
P(ogler)- This characterizes the observations that are likely to be made for a given environment
mode. The form P(og|er) is typically used in a variety of robotics applications that involve
statistical sensor error [25, 26, 41], and in general for stochastic control theory [35].

We begin with a prior probability distribution over E, denoted by P(e;) (which could, for
instance, be uniform). We next develop an incremental computation method that determines the

posterior probability distribution of e for each &, and incorporates the sensor observations. This

method proceeds by induction, using P(e1) as the basis, and the transition from P(eg|og,...,01)
to P(eg+1|0k+1,--.,01) as the inductive step.
If we have P(eg|og,--..,01), then before a new observation, the posterior distribution of ey 1

can be determined as

P(egtilog, .- 01) = D Plegtiler)Plexlok, .-, 01). (15)
e,€E

The new observation, o1, can be incorporated to obtain

P(ok+1lex+1,0k,---,01) Pleg+1log, .-, 01)
Pleg1logs+1,...,01) = 16
( +| +1 ’ ) P(0k+1|0ka---aol) ( )
in which
P(0g41|0k,---,01) = D P(oktilert1, 0k, -, 01)Pleri|ok, -, 01). (17)
ep+1€EE
By making appropriate substitutions above, and by reducing conditionals, we obtain
P(ogs1lersr) Y Plextiler)Plelog,.--,01)
€E
Plegt1logt1,---,01) = = . (18)
Z Z P(ogy1lex+1)P(ex+1ler)Pleklok, ..., 01)
ex€E e 1€EE
Equation (18) defines P(egt1|0k+1,---,01) in terms of the following probabilities: P(ext1|ex),
P(ek|og,---,01), and P(og+1|ex+1), which are given. Hence, at each stage during the execution

of a strategy, a new posterior distribution can be computed.

The next concern is to design an optimal strategy under imperfect environment information.
Let P denote a function space of all probability distributions over E. Let py € P denote the
probability distribution over E obtained at stage k. The dimension of P is |[E| —1. A new state
space for this problem can be defined as X = Cppee X P. Hence, at any given stage, the robot

will be at some known configuration in Cy,¢., and we have a probability distribution for E that
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belongs to P. This state space has dimension n+ |E|—1, in which n is the dimension of Cfpee. A
state transition distribution must be specified to determine zj; from zj. The first n coordinates
are given by the motion equation of the robot, as specified in Section 3.2. The state transition
distribution in Section 3.2 required the environment transition probabilities, P(exi1|ex), and
analogously in this case we are interested in P(pg+1|px). Using this, the dynamic programming
equation (12) can be applied to yield a practical solution.

To obtain P(pg+1|px) we first note that py represents the function P(eg|og,...,01), and pgy1
represents the function P(ekt1|0g+1,--.,01). The probability that py; will be obtained in the

next stage is equivalent to the probability that og; will be observed. Therefore, we have

P(pk+1|pk) = P(Ok—l—l'oka---aol) (19)

which is given by (17).

The only additional issue in the dynamic programming computations is that P must also
be quantized and approximated. Considering the problem sizes that we have already been
computed, we can at least apply the current computation techniques to obtain optimal strategies
for problems in which the dimension of Cy. is two, and |E| = 2. This results in a three-
dimensional information space in which the first two coordinates represent the location of the
robot, and the final coordinate represents P(e, = 1), if E = {0,1}.

Figure 20 shows an example problem in which there is a translating robot that must reach a
goal region in minimum time. There is one door in the workspace that can be open or closed,
yielding two environment modes. It is assumed that the robot is equipped with a binary sensor
that produces an observation og € {0,1}. If the robot is in a portion of the workspace in which
it can view the door, then P(ex = 1loy = 1) = 1 and P(e; = 0o = 0) = 1. If the door is not
visible, then P(ey = 1loy = 1) = P(ex, = Oloy = 1) and P(ex = 1jox = 0) = P(ex, = 0lox = 0),
which implies that the sensor provides no information. For this problem, it is assumed that
P(eg+1lex) = 0.98 if e = eg41. Intuitively this means that the door will tend to remain in the
same position.

Figure 6.1 shows four samples that result from the execution of the optimal strategy, which
took a few minutes to compute. In each case it was initially given that P(e; = 1) = % For each
sample the initial configiration of the robot is the same; however, different environment mode
sequences were supplied. In the first sample, the door was initially open, and the robot takes a
direct route to the goal region. In the second sample the door was initially closed, but the robot
moved into a region in which it can determine whether the door is open. The information that
the robot has available at execution is identical for the two samples before the door becomes
visible, hence the two samples are the same up to this point. Once the current environment
mode is known, the robot takes an alternate route. If the model was specified such that there is

a high probability that the door will open at some future stage, then the optimal strategy would
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Doorway
\

Door Sensing Region

Figure 20: A problem that involves a changing configuration space and uncertainty in environ-
ment sensing. The robot can only determine whether the door is open from a specified subset

of the workspace.

cause the robot to move to the doorway and wait. In the third sample, the door is initially open,
but closes as the robot approaches. The fourth sample appears to be identical to the second one;
however, the environment modes are different. The behaviors are the same because the robot
does not know that the door opened in the fourth sample because of imperfect environment

sensing.

6.2 Time-Varying Strategies

The strategies that have been considered up to this point are stationary in the sense that the
robot actions only depend on the state. The optimal strategy for the robot does not depend on
time since the model components such as the state transition distribution, or the environment
transition probabilities, do not depend on the particular stage index, k € {1,..., K}. In turns
out that with little effort, the model components can be allowed to vary over time. This affords
the opportunity to model many interesting problems, such as the incorporation of known moving
obstacles. The tradeoff, however, is that more storage is required for representation of the
optimal strategy (it is one dimension larger with the inclusion of time).

Figure 22 shows an example problem that results in a nonstationary strategy. In addition to
a doorway that produces two environment modes, there is a moving obstacle in the workspace.
It is assumed that the trajectory of this obstacle is known to the robot. Suppose that the goal

is to bring the robot to the goal region in minimal time without colliding with the doorway or
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Figure 21: Four sample paths for a changing configuration space problem with one door and

environment sensing uncertainty.
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the moving obstacle.

Goal Region

Moving Obstacle

/

Doorway

/

Figure 22: A motion planning problem that involves a doorway and a moving obstacle that has

a known trajectory.

We briefly describe the general time-varying components that can be defined to yield non-
stationary solutions. Suppose that the workspace contains obstacles, Bi(t),..., By(t), that may
possibly be in motion. This results in a time-varying free configuration space, Cyrec(t) [37]. To

handle discrete time, at each stage, k, we define a stage-dependent free configuration space

Cree[k] = U Chree(t). (20)
te[(k—1)At,kAt)

In addition, we can have moving dynamic regions D;(t), ..., Dp(t). In configuration space each
of these becomes CD;(t) or CD;(t), and in the state space we have Xi(t),..., X, (t). As done
in (20), we can similarly define X;[k], ..., X;u[k] to be stage-dependent dynamic X-regions. To

obtain the appropriate loss functional, we simply replace (9) by
0 If z;, € Xg

le (g, ug) = m : (21)
cy + Z[ciIXi[k](‘Tk) + céIXic k()] Otherwise
i=1

with the addition of an explicit dependency on k.

Optimal strategies can be computed by slightly modifying the algorithm in Section 4. Note
that these extensions do not increase the state space dimension. After each iteration of the
dynamic programming, however, we need to recall the optimal actions. The final stage index

K + 1 is more significant in this case, since we do not expect the algorithm to terminate by
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yielding a stationary strategy; the algorithm terminates when k = 1. The optimal strategy will
be v*: X x {1,...,K} — U. The action taken at stage k is given by uj = v ().

In addition to the time-varying components discussed above, additional components can vary
with time. By allowing the environment transition probabilities to vary, many more statistical
processes can be modeled. For instance, it might be known that the workspace is more likely
to become hazardous after some prescribed time, or become increasingly more likely to be
hazardous over time. We can also allow the goal region to move over time, to obtain X¢[k]. In
this case, the robot must intercept the moving goal as a terminating condition for the strategy

(as considered in [42]).

6.3 A Changing, Partially-Predictable Robot

In all the specific models that we have considered so far, the robot has been influenced by
an external, changing environment. However, we can use the general framework presented in
Section 3 to model situations in which the robot is changing. These changes could correspond,
for example, to changing the geometry of the robot, or to changing its motion equation. We
briefly discuss how these can be modeled with the help of environment modes, and be easily

incorporated in our framework for dealing Type EP uncertainty.

Goal for Large Object

/

Goal for Narrow Object

-

Robot —— ﬁ

Large Object Narrow Object

Figure 23: A “pick-and-place” motion planning problem with uncertainty that can be modeled

as a servicing problem (see text).

Consider the problem depicted in Figure 23. The robot needs to pick up parts that appear
at random times in one of two source bins and deliver them to a specified destination bin. We

idealize the object grasping problem (for relevant issues in grasping, see [11, 52]), and assume
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that the robot can immediately pick up and carry an object through the workspace. While the
robot is carrying an object, the geometry of the motion planning problem changes. In addition,
the motion equation for the robot might be altered to compensate for the additional load [66],
resulting in a different state transition distribution. We could assume that no terminating goal
region is defined, and the objective is to move the robot in a manner that minimizes the amount
of time that objects wait before being brought to their destinations. This problem contains the
form of uncertainty addressed in this paper because the time that parts will appear cannot be
predicted by the robot. For single source and destination bins, there will be three environment
modes: (i) There is no object that needs to be moved; (ii) An object is waiting to be moved;
(iii) The robot is carrying the object. With two source bins, as depicted in Figure 23, there are
eight environment modes, assuming that the robot cannot simultaneously carry two objects.

Several extensions to the above “pick-and-place” problem are possible that can additionally
be modeled by environment modes: different objects may appear in source bins, the destination
bin is given only when the object is picked up, or the robot may carry multiple objects. The
solutions to these problems would be useful in assembly planning. A similar approach could also
be applied to motion planning of a mobile robot with movable objects in the workspace [74].

There are other interesting applications of the model, which involve a robot operating under
different “modes” that change over time in a stochastic manner. The state transition distribu-
tion, (3), could change. For instance, we could consider a situation in which ||v||At is forced to
change due to environment conditions such as a fluctuating power supply, or when the surface
on which the robot is navigating suddenly becomes slippery.

Another interesting application of the model would be for dealing with motor failures in
motion planning for a robot manipulator, particularly when it has redundant degrees of freedom
[7, 49]. Such failure handling might be crucial in applications that involve carrying hazardous
material, or for space operation. For example, if a motor error causes a joint to suddenly
become immobile, this can be modeled in terms of a change in the state transition equation,
which gives rise to null actions in a failure mode. Motion planning can then incorporate the
probabilistic information of the joint failures to optimize the cost functional, which could include
the probability of safely completing an ongoing task, time, or just the path length. The motion

plans thus generated would be robust to joint failures.

7 Conclusions

We have presented a framework for analyzing and determining optimal robot motion strategies
under a partially predictable, changing environment. This framework is general and flexible for
characterizing Type EP uncertainty, by modeling the environment as a Markov process. The

concept of optimal motion strategies under performance criteria provides a useful characteri-
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zation of the desired behavior for the robot in this context. In addition, we have provided a
computational approach, based on the principle of optimality, that determines optimal solutions
to many motion planning problems that involve Type EP uncertainty. The variety of computed
examples that were presented in Section 5 help substantiate these conclusions.

In related work, these techniques have also been applied to a problem that involves the delivery
of parts from source locations to destination locations in the workspace [62]. The robot is capable
of manipulating and carrying the parts, which can cause the motions and geometry to change.
The particular part, the particular source location, and particular destination location are a
priori unknown, but are modeled with a stochastic process. This problem can be considered as
a component in a flexible assembly or manufacturing system (e.g., [10], [24], [34], [72]). For this
problem, there is no goal region in which the robot must terminate, and strategies are selected
that minimize the expected time that parts wait to be delivered. Optimal solutions have been
computed for three degree-of-freedom manipulators and rigid robots.

As the number of environment modes or the dimension of the configuration space increases, it
will become important to focus on appropriate tradeoffs that can be made between computational
expense and the quality of solutions. In the part delivering problem, we have computed solutions
for problems that involve up to 145 environment modes; however, more complex environment
variations can be imagined. Furthermore, if there is uncertainty in environment sensing, planning
essentially occurs in a high-dimensional information space. Dynamic replanning approaches have
often been able to handle a large number of variations in the changing environment by assuming
that the robot can provide a suitable response at the point in which a change is detected
[13, 19, 27, 46]. One possible hybrid approach to problems with complex environments might be
to design on-line optimal strategies that only take into account some local portion of the state
space and time.

In this work we have focused primarily on Type EP uncertainty. In a broader setting, however,
the combination of the additional sources of uncertainty from Section 1 must be addressed. We
argue that the framework presented here can facilitate such a combination. In Section 6.1, we
described how Type ES uncertainty can be incorporated. In addition, however, Type CP and
Type CS can also be incorporated in a straightforward manner. A treatment of these forms
of uncertainty in motion planning that uses concepts similar to those presented here can be
found in [39]. The incremental motion model can be defined stochastically, to reflect Type
CP uncertainty. The information space concepts from Section 6.1 can be expanded to include
complete sensing history that characterizes uncertainty in the robot configuration. Extensions
to multiple-robot coordination problems can also be considered [40, 39]. Computational issues
involved in these complex combinations will depend mostly on the dimensions of the state and

information spaces for the problem.
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A Incremental Motion Models

We have experimented with five different incremental motion models. Simple planar translation
is described by (3). The remaining incremental motion models are presented here.
Constrained Rotation
There are four possible actions for the robot in time Af. The first action allows the robot
to remain motionless: xx.+1 = xx. The robot can either turn clockwise or counter-clockwise, in
which
k(1]
Tpyr = 72 : (22)
(@ [3] £ O At)modan
Ck+1
Above, 0,, represents a fixed angular velocity. Finally, the robot can translate along the orien-
tation x4, yielding
2x[1] + [loll At cos(ax[3])
zk[2] + ||v]| At sin(zk[3])
z[3]
Ck+1
Constrained Rotation with Reverse
For this motion model, there are five possible actions. The first four are the same as for

constrained rotation, and the additional action produces

zk[1] — |lvl|At cos(zk[3])
by = | 2 IolAL sin(efs) | o
k(3]
€k+1
which allows to robot to translate in the reverse direction.
Nonholonomic Fixed-Radius Motion
For this motion model, there are four possible actions. We obtain these by replacing the two

rotation actions from constrained rotation by
zk[1] + ||v]|At cos(xg[3] £ O, At)
k2] + ||v||At sin(zg[3] £ 0, AL)
Tk+1 = ) (25)
(wk [3] + HmAt)modZW

€L+1
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which requires the robot to translate while rotating. This incrementally implements a fixed
turning radius constraint that is based on ||v||At and 6,,.
Nonholonomic Fixed-Radius Motion with Reverse

This motion model simply adds the action (24) to the nonholonomic fixed-radius motion, to

allow reverse translation.
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