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Abstract

This paper makes the case that a powerful new discipline, which we term

perception engineering, is steadily emerging. It follows from a progres-

sion of ideas that involve creating illusions, from historical paintings

and film, to video games and virtual reality in modern times. Rather

than creating physical artifacts such as bridges, airplanes, or comput-

ers, perception engineers create illusory perceptual experiences. The

scope is defined over any agent that interacts with the physical world,

including both biological organisms (humans, animals) and engineered

systems (robots, autonomous systems). The key idea is that an agent,

called a producer, alters the environment with the intent to alter the

perceptual experience of another agent, called a receiver. Most impor-

tantly, the paper introduces a precise mathematical formulation of this

process, based on the von Neumann-Morgenstern notion of informa-

tion, to help scope and define the discipline. It is then applied to the

cases of engineered and biological agents with discussion of its implica-

tions on existing fields such as virtual reality, robotics, and even social

media. Finally, open challenges and opportunities for involvement are

identified.

The authors are with the Faculty of Information Technology and Elec-

trical Engineering, University of Oulu, Finland.
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1. INTRODUCTION

The field of virtual reality (VR) focuses mainly on a raft of technologies that when carefully

assembled causes its users to have an illusory perceptual experience. When we refer to VR in

this paper, we include augmented reality and other extended realities, which are becoming

quickly unified as technologies advance. Most commonly, a VR user wears a head-mounted

display (HMD) that provides visual and acoustic stimulation that is adjusted to her frame

of reference using sensors that track head and other body movements. One goal is to obtain

a sense of presence, which combines the place illusion (feeling as if in another location

or world) and plausibility (feeling as if the virtual events were really taking place) (1).

Although the term ‘virtual reality’ can be traced back to the philosopher Immanuel Kant

(2), with its current usage proposed by Jaron Lanier in the 1980s, it remains elusive to

precisely define it in a way that is not wholly dependent on the engineered devices of the

times.

Regrettably, the industries surrounding VR have struggled for several decades through

hype cycles of high expectations and investment followed by periods of disillusionment as

the contemporary technologies are unable to deliver on promises. To bring about stable

progress from a long-term research perspective, the challenge is to understand precisely

what VR is and how it works on the entire system involved: A combination of engineered

devices (displays, sensors) and a biological organism (human or otherwise). Having a rig-

orous scientific foundation could help improve design and analysis of VR systems so that

steady, predictable progress can be made toward achieving a better quality of experience.

To advance in this direction, we claim that VR, as it is viewed today, is merely one instance

of a larger and steadily emerging discipline, which we term perception engineering. Over

the coming years, we expect a rise in methods that create targeted perceptual illusions or

experiences, much more broadly than the way HMD-centered VR is imagined today, and

supported by fields such as machine learning, nanophotonics, and even social media tech-

nologies, in addition to the usual reliance of computer graphics, computer vision, sensors,

computing systems, and displays. As will be explained shortly, perception engineering must

also be based on principles from the biological sciences.

Why engineering? At its core, engineering is the intentional process of reshaping the envi-

ronment to our advantage. The oldest examples are primitive tools and weapons which date

back over 1,500,000 years, whereas later examples include the roads, bridges, aqueducts,

mills, cars, airplanes, and electronics that made large-scale civilizations flourish. Early en-

gineering emphasized practical applicability, often relying on trial and error to converge

towards working solutions. However, modern engineering research has adopted the scien-

tific method to not only construct a working solution, but to theorize about what could

be a better solution to a particular problem or class of problems. This process usually

involves developing mathematical models, reviewing the state-of-the-art, generating predic-

tive hypotheses, collecting new data, iterating designs, and eventually sharing the findings

in peer-reviewed articles. We want to leverage the benefits of this well-proven methodology,

but what is the engineered artifact in our setting that would be analogous to, say, an air-

plane? We argue that it is a targeted perceptual experience, and VR devices such as HMDs

are merely a component of a system that achieves it. We thus contemplate what it means

to engineer a perceptual experience. Through this shift in understanding, we move the

focus more toward the organism that has an experience, and away from particular devices

that rapidly come and go. This means that in addition to leveraging the physical sciences
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to engineer devices, we must also leverage the biological sciences, especially perceptual

psychology, neuroscience, and physiology.

Why perception? People have been creating perceptual illusions for millennia as well,

with the oldest known cave paintings dating back over 45,000 years. Through imagination,

trial-and-error, and skillfully leveraging available technologies, artists continually develop

more impressive works that seem to fool our senses and stimulate our imagination. For

example, when the perspective method emerged in the 15th century, paintings depicted

imagined worlds with consistent perceptions of depth and scale. Even more impressive

is that exploiting the stroboscopic apparent motion effect (3), while being shown a rapid

sequence of pictures, has led to over a century of cinema. In recent decades, simulators, video

games, and VR have enabled active perceptual experiences, in which users interact with

virtual environments, rather than passively consuming artistic content. Thus, we wonder

what applying engineering principles to the design, analysis, and delivering of perceptual

experiences will bring, as a natural complement to the works of artists.

The value of modeling To embark on this journey, an important step is to develop math-

ematical models that accurately capture what is understood so far, while giving insights

into what may or may not be possible to achieve in the future. Mathematical models

enable engineers to analyze or predict what would happen if a proposed design were con-

structed, so that the engineering process is accelerated. They also yield characterizations of

what is expected to happen for systems that are actually built. Furthermore, especially for

robots and autonomous systems, the models form the basis of algorithms or control laws

that are implemented on devices. Perhaps most importantly, mathematical models form

the foundations of technical disciplines that survive for generations, which distances them

from the particular technological artifacts of the day. For example, a general mathematical

formulation of configuration spaces is crucial in robotics for the development of general

motion algorithms and nonlinear control laws. Control theory itself relies on the ability to

unify a vast array of physical settings, whether mechanical, electrical, chemical, and so on,

by mathematically characterizing them as a family of parameterized differential equations.

Similarly, Turing machines provide a precise mathematical characterization of algorithms

and a foundation upon which the discipline of computer science has been built. In this

paper, we propose the first full mathematical model of perception engineering, including

VR.

What should the model encompass? At the very least, we expect a mathematical for-

mulation of perception engineering to model a person experiencing VR by wearing an HMD.

We will generalize, however, to allow any organism, such as hamsters and fruit flies (4). As

opposed to being a biological entity, we will even allow it to be fully engineered, as in the

case of a robot. We use the term agent to refer to any such organism or robot, which gen-

erally has the ability to actuate in response to external stimulation that is sensed. Robot

agents are encompassed because they can be fully modeled and analyzed, as opposed to

biological organisms, which must be reverse engineered. Thus, whereas organisms start off

as a black box (or perhaps a gray box thanks to biological sciences), engineered systems may

serve as a fully explainable white box, leading to greater clarity and understanding.

Central to our formulation are two types of agents: 1) a producer, which creates and

delivers a targeted perceptual experience by altering the environment of 2) a receiver. This
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(a) (b) (c) (d)
Figure 1

Several well-known illusions: (a) Ponzo (surprisingly, the yellow bars have equal length); (b)

Checker Shadow (tiles A and B are surprisingly the same shade); (c) The Dress (some see it as
black and blue, others as white and gold; (d) Rabbit-Duck (seems to flip between two different

animals).

is the essence of perception engineering:

An agent alters the environment with the intent to alter the perceptual experience of

another agent.

We also expect the targeted experience to be plausible (credible in some sense) and illusory

(based on illusions), meaning that the receiver’s perceptions do not match ‘reality’. The

notion of an illusion must be carefully defined, which is a challenging task considering how

the term is used loosely. Consider, for example, the so-called illusions in Figure 1; Section

2.3 will rigorously define illusions, and then apply it in Section 5.2 to these examples.

In addition to VR, paintings, motion pictures, and video games, we also consider coun-

terfeiting, magic tricks, wearing makeup, and just plain old lying to be examples that at

least nominally fall under perception engineering. We avoid, however, direct alteration of

the internals of the receiver, which might correspond, for example, to brain-machine in-

terfaces, drugs, or viruses. We are more interested in a perceptual experience that results

purely from interactions with the environment via sensing and actuation.

If there are multiple producers and receivers, then perception engineering extends natu-

rally to a kind of social engineering. For example, a producer can lie to a receiver, and then

the lie is ‘innocently’ propagated to other receivers. We can certainly imagine that fake

news spreading on social media is a kind of virtual reality at a societal level. This paper

focuses mainly on a single producer and receiver, but the powerful multi-agent extension to

the social setting is also covered.

The rest of this paper Section 2 defines a general model of agents, capable of sensing and

acting, in a shared environment. Each agent is modeled as a coupled dynamical system that

has internal ‘brain’ states that interact with its external, surrounding environment states.

Section 3 then develops the principles by which producer agents create illusory perceptual

experiences for receiver agents. Important ideas include plausibility, robustness, forced

fusion, and information-feedback policies. Section 4 applies this mathematical framework

to the case of robots and other fully engineered systems. Section 5 then applies it to

humans and other biological organisms, with substantial focus on VR. Section 6 concludes

the paper by listing the challenges and opportunities ahead for building up the field of

perception engineering.
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2. AGENTS THAT SENSE AND ACT

2.1. Defining an Agent

An agent refers to an entity, either biological or engineered, that has a physical body and

interacts with its environment though sensing and actuation. A clear boundary must be set

between the agent’s internal ‘brain’ and the external world, which corresponds to its body

and any other physical attributes that are relevant in the surrounding environment. The

information space (or I-space), I, is defined as the (nonempty) set of all internal states;

each ι ∈ I is called an information state or I-state. The notion of information used here is

inspired by von Neumann and Morgenstern for games with imperfect information (5), and

extended to robotics (6, 7). This is not to be confused with Shannon’s notion of information,

which is independent, but can be used in conjunction with our formulation. The external

state space (or X-space), X, is defined as the (nonempty) set of all possible physical states

of the agent’s body and environment. Each x ∈ X is called an external state or X-state.

Let K be the set of stages, which correspond to discrete time instances, with the impli-

cation that stage k+1 comes after stage k for all k ∈ K. Every k ∈ K corresponds to some

stage k, X-state xk ∈ X, and I-state ιk ∈ I. We either allow K to be infinite, in which case

K = N = {1, 2, 3, . . .}, or finite, in which case K = {1, 2, . . . ,K + 1} for some final stage

K + 1.

To model actuation, let U be the set of actions available to the agent, through which

it acts upon the external world via an X-state transition function, abbreviated as XTF,

expressed as f : X×U → X. An action uk ∈ U applied at stage k ∈ K from X-state xk ∈ X

results in a transition to X-state xk+1 = f(xk, uk) at stage k + 1.

Sensing is modeled via a sensor mapping, h : X → Y , in which Y is a set of possible

sensor observations. At each stage k, an observation yk = h(xk) is produced, using the

X-state xk at stage k. Extensions are possible, such as being action-dependent, time-

dependent, or even based on a history of states as in the case of odometry (6, 8).

The I-state transition function, ITF, is ϕ : I × U × Y → I. To make the agent into an

autonomous (fully determined) system, suppose that its action at each stage depends only

on its I-state. This is expressed as a policy π : I → U , which eliminates the U component

from the domain of ϕ and results in ϕπ : I ×Y → I (because uk = π(ιk) is determined from

the I-state ιk). Putting the definitions together results in a coupled dynamical system:

ιk = ϕπ(ιk−1, yk) in which yk = h(xk), and

xk+1 = f(xk, uk) in which uk = π(ιk). 1.

Example 1 (Intbot)

Let X = Z, the set of all integers. Let U = {−1, 0, 1}, and the XTF is defined as

xk+1 = f(xk, uk) = xk + uk. To create a perfect-information setup, let Y = I = Z,
yk = h(xk) = xk and ιk+1 = ϕπ(ιk, yk+1) = yk+1 = xk+1. The policy π : I → U is then

expressible as uk = π(ιk) = π(xk). A stabilizing policy is π(xk) = −sign(xk) (yielding zero

if xk = 0), which brings the state to zero. From any initial X-state, x1, the system will

arrive at xk = 0 at stage k = |x1|+1, and remain there forever. It counts down to zero. ■

The far more common and interesting case is when the sensor mapping h is a many-to-one

mapping. Generally, for a given observation yk ∈ Y , the preimage

h−1(yk) = {xk ∈ X | yk = h(xk)} 2.
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indicates the set of all possible X-states that could have caused it. Many-to-one ambiguity

usually forces the X-state and I-state to have a non-trivial correspondence, to be explained

in Section 2.2.

The models so far assume that the next state xk+1 is completely predictable from xk and

uk, and the sensor observation yk is completely predictable from xk. We sometimes want to

remove this limitation by defining a disturbance-based model. There will be two possibilities.

The first is nondeterministic disturbance, in which case f and h are replaced by functions

that produce a set of possible outcomes, rather than a single outcome. The nondeterministic

XTF is F : X×U → pow(X), in which pow denotes the power set, and F is the replacement

of f . Thus, for a given xk and uk, F (xk, uk) ⊆ X yields a nonempty set of possible xk+1.

The nondeterministic sensor mapping is H : X → pow(Y ), and replaces h. Given xk,

H(xk) ⊆ Y yields a nonempty set of possible observations yk+1. The other possibility is

probabilistic disturbance, in which case f and h are replaced by functions that each produce

a probability density function (pdf) (under appropriate measurability assumptions) on the

space of possible outcomes. The probabilistic XTF is the pdf p(xk+1 | xk, uk), and the

probabilistic sensor mapping is the pdf p(yk | xk). The general possibilities for I and ϕ, and

including extensions to nondeterministic and probabilistic disturbances are presented after

the following example.

Example 2 (Linebot)

We extend Example 1 to X = R, the real number line. Let U = {−1, 0, 1} and xk+1 =

f(xk, uk, θk) = xk + uk + θk, which includes some disturbance parameter θk ∈ [−1/2, 1/2].

If θk is modeled nondeterministically, then F (xk, uk) = [xk + uk − 1/2, xk + uk + 1/2]

produces an interval of next possible states. If it is modeled probabilistically, then

suppose a pdf pθ(θk) is given over the interval [−1/2, 1/2]; p(xk+1 | xk, uk) can then

be defined as pθ(xk+1 − xk − uk). As an example of adding disturbance to the sens-

ing model, yk = h(xk, ψk) = xk + ψk, which includes some disturbance parameter

ψk ∈ [−1, 1]. The nondeterministic sensor model would be H(xk) = [xk − 1, xk + 1].

The probabilistic sensor model would involve a pdf pψ(ψk), and p(yk | xk) = pψ(yk−xk). ■

2.2. Internal Information State Transitions

The coupled system (1) allows almost anything for the agent’s internal system, I-space I
and ITF. What could they be? First consider two extreme possibilities. If h is defined as

y = h(x) = x with Y = X, then the X-state is perfectly sensed at every stage. We could

then write I = X and ϕ simply mirrors f . This corresponds to an agent that conditions

its actions on the precise X-state. Thus, its policy, called state-feedback, takes the form

π : X → U . At the other extreme, we could make I = {0}, a singleton that is completely

insensitive to X-state variations. Only a constant policy is possible: π(0) = u for some

particular action u ∈ U .

The interesting cases lie between these extremes and address the crucial question: To

function appropriately, what should an agent retain as I-states? It is convenient to refer to

memory, which merely means that the I-state depends on at least some information regard-

ing actions and observations from prior stages. The singleton I-space is clearly memoryless,

but a more interesting case is to make I = Y and let ϕ(ιk−1, yk) = yk. This results in pure

sensor feedback, with policies π : Y → U . To add a small amount of memory, let I = K
and ϕ(ιk−1, yk) = k, resulting in stage feedback policies π : K → U (alternatively known as
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open-loop). The stage-feedback case at least uses the information of how many stages have

passed.

Although it may seem that any ITF, and corresponding I-space, are possible, it turns

out that one important condition, known as sufficiency, must be satisfied. It is briefly

described here; see (6, 7) for more. Consider all information that might be available to

an agent after k stages. Let ηk be called the history I-state, defined as ηk = (ũk−1, ỹk)

in which ũk−1 = (u1, u2, . . . , uk−1) and ỹk = (y1, y2, . . . , yk). Let η1 = y1. The set of all

history I-states is itself an I-space, denoted by Ihist. This corresponds to perfect, complete

memory, with policies taking the form π : Ihist → U . Now imagine trying to collapse or

compress the history I-states to create a derived I-space Ider via an information mapping

κ : Ihist → Ider (6). All I-spaces discussed so far can be obtained in this way. For a well-

defined ITF ϕder to exist, the sufficiency condition is that κ(ϕhist(κ
−1(ιk), uk, yk+1)) is a

singleton. In other words, ϕder can be defined so that a unique I-state is obtained and is

consistent with what would have been calculated from retaining full histories. It was shown

in (9) that minimal sufficient information mappings, and corresponding ITFs, exist and are

unique in very general settings.

We now present two alternative model-based families of sufficient ITFs, called nondeter-

ministic and probabilistic. They are considered model-based because the ITF is expressed in

terms of X, f , and/or h. Of the ITFs presented so far, only state feedback has been model-

based and is a special case of the nondeterministic family. The I-space is Indet = pow(X).

The ITF ϕndet incrementally calculates the set of possible X-states at each stage. For each

k ∈ K, let Xk(ηk) denote the set of possible X-states at stage k given the history I-state

ηk. Suppose at the first stage, X1(η1) = h−1(y1) (using the preimage from (2)). The ITF

calculates Xk+1(ηk+1) using only Xk(ηk), uk, and yk+1; thus, it takes the form

Xk+1(ηk+1) = ϕndet(Xk(ηk), uk, yk+1). 3.

Assuming inductively that Xk(ηk) is given, consider the possible X-states at stage k + 1

under the application of action uk:

Xk+1(ηk, uk) = {xk+1 ∈ X | there exists xk ∈ Xk(ηk) for which xk+1 = f(xk, uk)}. 4.

Once the new sensor observation yk+1 arrives, the preimage h−1 is used to constrain the

set of possible states, resulting in:

Xk+1(ηk+1) = Xk+1(ηk, uk, yk+1) = Xk+1(ηk, uk) ∩ h−1(yk+1). 5.

This completes the definition of ϕndet. Note that state feedback is a special case in which

Xk(ηk) is a singleton for all k ∈ K. We can easily extend ϕndet to account for nondeter-

ministic disturbances by replacing xk+1 = f(xk, uk) by xk+1 ∈ F (xk, uk) in (4) and h−1

by H−1 in (5), in which H−1 = {xk+1 ∈ X | yk+1 ∈ H(xk+1)}. Note that f and h (or F

and H) are used internally by the agent, and they might be inconsistent with the actual

external world; this will be clarified in Section 2.4 and is critical for defining illusions.

We now define the probabilistic model-based family. The corresponding I-space is Iprob,
which is the set of all probability density functions (pdfs) over X (again, under appropriate

measurability assumptions). Probabilistic disturbance-based replacements of f and h are

given as p(xk+1|xk, uk) and p(yk|xk), respectively. Let p(xk|ηk) denote the pdf of the state

at stage k given ηk (the probabilistic counterpart to Xk(ηk)). The ITF takes the form

p(xk+1|ηk+1) = ϕprob(p(xk|ηk), uk, yk+1), 6.
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(a) (b)
Figure 2

(a) A discrete grid problem is made in which a robot is placed into a bounded, unknown

environment. (b) An encoding of a partial map, obtained from some exploration. The hatched
lines represent unknown tiles (neither white nor black).

and is equivalent to Bayesian filtering and the basis of POMDPs. The process is started by

a given prior p(x1). The probabilistic counterpart to (4) is marginalization, resulting in:

p(xk+1 | ηk, uk) =
∫
X

p(xk+1 | xk, uk) p(xk | ηk) dxk. 7.

The probabilistic counterpart to the intersection in (5) is Bayes’ rule, resulting in

p(xk+1 | ηk+1) = p(xk+1 | ηk, uk, yk+1) =
p(yk+1 | xk+1) p(xk+1 | ηk, uk)∫

X
p(yk+1 | xk+1) p(xk+1 | ηk, uk) dxk+1

. 8.

Conditional independence assumptions and further details are explained in (6). The cele-

brated Kalman filter is a special case (linear systems with Gaussian disturbances) in which

the I-states become trapped in a low-dimensional subspace of Iprob, and the ITF can be

calculated using matrix algebra. Each I-state then corresponds to mean and covariance of

the X-state at stage k.

Example 3 (Gridbot)

A mobile robot moves on a 2D grid and can face in one of four orientations (up, down, left,

right), as shown in Figure 2(a). At each possible (i, j) ∈ Z×Z position there is a tile, which

may be either black or white. If it is white, then the robot can occupy its position; otherwise,

it is blocked. The robot starts on one tile among a finite, unknown, connected set of white

tiles. All other tiles are black. Each possible set of white tiles is called an environment.

The X-space is X ⊆ Z2 ×D × E , in which D = {0, 1, 2, 3} is the set of four directions and

E is the set of all possible environments. An X-state x ∈ X can be expressed as (i, j, d, E)

in which (i, j) ∈ E, d ∈ D, and E ∈ E . There are two actions U = {0, 1}, in which u = 0

causes the robot to rotate 90 degrees counterclockwise, and u = 1 makes it attempt to move

forward one tile in the direction it is facing (it does not move if blocked by a black tile). A

‘depth’ sensor yk = h(xk) reports the distance, in terms of number of white tiles, to first

black tile in the direction the robot faces; thus, Y = {0, 1, 2, . . .}. Using (4) and (5), the set

Xk(ηk) of possible X-states is calculated after each action and observation, respectively;

however, it is important to encode Xk(ηk) compactly, rather than list all possible state

for an infinite collection of environments. Initially, X1(η1) = h−1(y1). During exploration,

tiles sensed to be white or black are recorded using (i, j) coordinates, with (0, 0) as the

initial white tile. All others may be labeled as gray, meaning unknown or unexplored; see

Figure 2(b). This is a highly compressed encoding of Xk(ηk), which technically belongs

to a derived I-space of such encodings. To obtain a nondeterministic disturbance model,
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h may produce a set of possible distances, and the calculations in (5) use the larger

preimages H−1(yk+1). A Bayesian version can be made by introducing probabilistic alter-

natives to f and h, and using ϕprob to calculate probabilistic I-states; see (10) for details. ■

2.3. Defining Plausibility and Illusions

Here we address the possibility that the models used in the ITF do not perfectly coincide

with ‘reality’ as the agent interacts with its environment. Of course, reality itself will be

defined as a model, but it is nevertheless crucial to maintain a distinction. Thus, we refer

to X, f , and h used in the agent’s ITF as intrinsic models. To provide an outside frame

of reference, we will introduce their counterparts Ω, f̄ , and h̄, and refer them as extrinsic

models. If there is no disagreement between the intrinsic and extrinsic models, then Ω = X,

f̄ = f , and h̄ = h; this distinction was not yet needed in Section 2.2. Discrepancies between

the intrinsic and extrinsic models will be crucial for modeling perceptual illusions.

Let Ω be called the universe space, or just the universe, which models the set of all

possible physical states of the world from a third-person or god-like perspective. At each

stage k ∈ K, the universe state is ωk ∈ Ω and the universe transition function, UTF, is

defined as f̄ : Ω× U → Ω. Similarly, the universe sensor mapping is defined as h̄ : Ω → Y .

Next, we define a general way to model potential correspondences between X-states and

universe states from a third-person perspective (outside of the agent). For any X and Ω, let

C ⊂ X×Ω be called a correspondence relation. If (xk, ωk) ∈ C it is said that xk corresponds

to ωk. Note that C allows for the correspondence to be one-to-one, many-to-one, one-to-

many, or many-to-many. The relation C is called onto if for all ωk ∈ Ω, there exists an

xk ∈ X such that (xk, ωk) ∈ C. If C is one-to-many and onto, then there exists a function

α : Ω → X such that (α(ωk), ωk) ∈ C for all ωk ∈ Ω; thus, the X-state can be derived from

the universe state as xk = α(ωk).

The relationship between the agent’s I-state and ‘reality’ in the universe can be estab-

lished through their relationships to X. Let the model relationM ⊆ I×X associate I-states

to possible X-states. If the nondeterministic ITF family is used, then (Xk(ηk), xk) ∈ M if

and only if xk ∈ Xk(ηk). (For probabilistic ITFs, M may be defined using thresholds on

pdfs to obtain probabilistic correspondences.) An I-state ιk is called implausible if there

does not exist any xk ∈ X such that (ιk, xk) ∈ M . Thus, Xk(ηk) = ∅ would be an im-

plausible I-state for nondeterministic ITFs. A pair (ιk, xk) or I-state ιk is called plausible

if it is not implausible. Its usage here is inspired by concepts of plausibility in VR research

(11, 1), but also differs in precise meaning.

By composing the model and correspondence relations, the reality relation R ⊆ I × Ω

is defined as (ιk, ωk) ∈ R if and only if there exists xk ∈ X such that (ιk, xk) ∈ M and

(xk, ωk) ∈ C. A pair (ιk, ωk) is called an illusion if ιk is plausible and (ιk, ωk) ̸∈ R. Thus,

the key idea of an illusion is that the agent perceives something as plausible but it does not

correspond to reality.

2.4. Multiple Agents

Suppose there are n agents in a common environment. The ith agent is modeled using the

components from Section 2.1 and denoted as an 8-tuple Ai = (Xi, Ii, U i, Y i, f i, hi, ϕi, πi).
Here, Xi, f i, and hi are intrinsic, a distinction that was unnecessary in Section 2.1; thus,

as in Section 2.3, we seek their extrinsic counterparts. The universe sensor mapping for
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each agent is h̄i : Ω → Y i. The UTF must take into account the interactions between

agents. It is therefore specified centrally as f̄ : Ω × U1 × · · · × Un → Ω, as is common

in dynamic game theory. If the agents’ actions do not interfere with each other, then f̄

may be decomposable into individual f̄ i functions over subspaces of Ω, but this will not be

assumed. Correspondence, model, and reality relations can be defined over Xi×Ω, Ii×Xi,

and Ii × Ω, respectively.

Example 4 (Two Gridbots)

We extend Example 3 by placing two gridbot agents, A1 and A2, in a universe defined as

Ω ⊂ Z4 ×D2 ×E , which is the set of all (i1, j1, i2, j2, d1, d2, E) ∈ Ω that satisfy (i1, j1) ∈ E,

(i2, j2) ∈ E, E ∈ E , d1 ∈ D, d2 ∈ D, and (i1, j1) ̸= (i2, j2). Each agent has an X-space

Xi as defined in Example 3 for a single robot. Correspondence relations Ci are defined for

i = 1, 2. They are subsets of Xi ×Ω and are one-to-many and onto, implying the existence

of functions αi : Ω → Xi that are consistent with Ci. Each αi maps ω to E and the position

and direction of the ith agent in E, all of which are expressed using the local coordinates

of Ai because A1 and A2 assign position (0, 0) and direction 0 differently.

Each universe sensor mapping h̄i differs from hi by taking into account the other robot.

Let h̄i return the directional distance to the nearest black tile or other robot, if it is closer

(the other robot is like a movable black tile). The UTF f̄ can be derived to coincide with

the individual f1 and f2 XTFs, but must specify what happens when robots attempt to

move into each other. Suppose each cannot move onto a tile occupied by the other, and the

first agent has priority if they attempt to move to the same white tile at the same time. ■

For multiple agents, the I-spaces and ITFs are more challenging to model due to the ef-

fects of their interactions, whether accidental or intentional. For Example 4, what happens

when one robot is blocked by the other? It seems incorrect to label the tile as black. Perhaps

later it will discover that the tile is white. Does its model allow E to change? Does it ‘know’

there is another robot? To define each ITF, an agent’s intrinsic model must carefully specify

what information regarding other agents is available. Using all sources of potential informa-

tion, an agent’s ITF could be expressed as ιik+1 = ϕi(ι1k, . . . , ι
n
k , u

1
k, . . . , u

n
k , y

1
k+1, . . . , y

n
k+1),

in which the definition of ϕi may reference any component of the 8-tuple Aj for any agent,

any h̄j , any correspondence, model, and reality relations, and f̄ .

Consider designing one agent, say A1, as omniscient, meaning that it has access to

as much information as possible. Let X1 = Ω and y1k = h1(x1k) = h1(ωk) = ωk, thus

observing the universe state at every stage. Its own I-state ι1k records the histories of all

actions, observations, and I-states for itself and all other agents. This is a multiagent

extension of Ihist from Section 2.2. Using the notion of sufficient information mappings

κ from Section 2.2, this I-space can be collapsed to smaller I-spaces as appropriate for

accomplishing particular tasks. In general, the model components of each Ai, each h̄i, the

relations, and f̄ may be used to define ϕ1
der over the derived I-space.

The information gathering capabilities of an omniscient agent may seem to be too much.

Most ‘ordinary’ agents will have far less capabilities, but it is nevertheless important to

define the extreme case as a starting point. How could I-states of other agents be obtained?

One way is to predict them through simulation or computation using the other data and

models. If they are measured directly, then a sensor model should be formulated that

includes I-states as part of the physical universe. How could observations or actions of

other agents be obtained? Similarly, they could be estimated from other information, such
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as using f̄ and the measured ωk and ωk+1 to determine the actions, or h̄i and the measured

ωk to determine the observation. Otherwise, they should be directly sensed in an expanded

universe. Generally, each agent obtains a history I-state ηik, resulting in a history I-space

Iihist, which can be reduced using sufficient information mappings. To allow precise models

of observing I-states, actions, and observations, the universe should be expanded to include

them; however, this technical level is beyond the scope of the current paper.

In terms of actuation, at one extreme, one agent could be omnipotent, enabling it to set

any ωk ∈ Ω at any stage k ∈ K. We do not allow multiple omnipotent agents because their

actions would be in conflict. We also do not allow it to directly set I-states, observations, or

actions of other agents. At the other extreme, it could be a passive observer. Consider what

happens when we, the modelers, try to mathematically analyze the entire system. In this

case, we are acting as an omniscient agent that is merely an observer so as not to interfere

with its operation while analyzing what should happen theoretically. All other agents are

in between being omnipotent and an observer, and they may or may not be omniscient.

Extensions can also be made to account for disturbances. In the nondeterministic

case, the universe sensor mapping of the ith agent becomes H̄i : Ω → pow(Y i). The UTF

becomes F̄ : Ω × U1 × · · · × Un → pow(Ω). Similarly, for the probabilistic case, the corre-

sponding corresponding universe sensing model and transition function are p(yik | ωk) and

p(ωk+1 | ωk, u1
k, . . . , u

n
k ), respectively.

3. CREATING TARGETED PERCEPTUAL EXPERIENCES

3.1. Producers and Receivers

We now adapt the multiagent model of Section 2.4 to the case of a special agent Ap called

a producer that delivers a targeted perceptual experience to another agent Ar called a

receiver. Key concepts running throughout Section 3 are plausibility and illusions, as defined

in Section 2.3. To allow it to ‘fool’ the receiver in some sense, the producer usually has

access to more information than the receiver. For example, the producer may have access

to models f̄ and h̄r, whereas the receiver only has fr and hr. Section 3.2 starts with the

simplest case, in which stage dependencies and transitions are suppressed: A fixed percept

(receiver I-state) is created and maintained. Section 3.3 will then extend the concepts to

cover an omniscient producer that operates over multiple stages, resulting in a targeted,

interactive, perceptual experience for the receiver. Section 3.4 will then strip the producer

of its omniscience, resulting in incomplete or imperfect models of the receiver and even the

producer itself. This is more like the situation of VR applied to biological organisms, but

also relevant for engineered systems.

3.2. Producing Stationary Percepts and Illusions

This section temporarily drops the notion of stages to provide a useful and illustrative setup

before developing more complicated scenarios. The receiver’s sensor model is hr : Xr → Y r.

The nondeterministic I-space Indet is the set of all preimages of hr. Thus, the I-state,

called a percept, is simply fixed as the preimage ιr = (hr)−1(yr) ⊆ Xr. The producer is

omniscient, and Xp = Ω. Let (xp, ω) ∈ Cp if and only if xp = ω (they are in perfect

one-to-one correspondence). The producer is able to set ω according to some given function

f̄ : Up → Ω (a simplified version of f̄ from Section 2.4 to handle the stationary case),

after which time ω remains constant. It also has access to h̄r : Ω → Y r and the receiver’s
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Figure 3

(a) A receiver’s sensor measures the distance to a tower, resulting in circular preimages as I-states.
(b) For three towers, the correct position is given by the intersection of three preimages. (c) A

producer can change the signal intensity of the second tower to create an illusory perceived
position for the receiver.

correspondence relations Cr and Mr. Suppose that Cr is one-to-many and onto so that

αr : Ω → Xr exists. The model relation is defined as (ιr, xr) ∈ Mr if any only if xr ∈ ιr.

This is equivalent to Indet restricted to a single stage in which only one observation is

available.

If h̄r = hr ◦ αr, then (ιr, ω) ∈ Rr for all ω ∈ Ω. To see why, suppose the producer

sets ω = f̄(up) for some up ∈ Up, thereby causing the receiver to observe yr = h̄r(ω) =

hr(αr(ω)), and obtain a targeted I-state ιr = (hr)−1(yr). For any possible up, the resulting

pair (ιr, xr) would belong toMr, and hence ιr is always plausible. Furthermore, (ιr, ω) ∈ R,

implying the pair is not an illusion.

The potential to create an illusion arises if h̄r ̸= hr ◦ αr. This would allow some ω to

produce yr1 = h̄r(ω) and yr2 = hr(αr(ω)) such that yr1 ̸= yr2 . The preimages ι1 = (hr)−1(yr1)

and ι2 = (hr)−1(yr2) are distinct and disjoint. The corresponding X-state would be xr =

αr(ω), with xr ̸∈ ι1 and xr ∈ ι2. Thus, if ι
r
2 ̸= ∅ and (ιr2, ω) ̸∈ R, then the pair is an illusion

as defined in Section 2.3.

Example 5 (Moving a Landmark)

Let Xr = Z and Ω = Xp = Xr × Z, as an omniscient producer. The correspondence

relation Cr is one-to-many and onto, and αr(ω) = x1, denoting ω = (x1, x2). The receiver’s

sensor model is yr = hr(x) = xr, which measures its state perfectly. The producer is given

the extrinsic sensor mapping h̄r : Ω → Y r, defined as yr = h̄r(x1, x2) = x2 − x1, which

is the signed distance from x1 = xr to the location x2 of a movable reference point or

‘landmark’. The producer can thus create an illusion for the receiver that its position is

any xr ∈ Xr by changing x2. From a third-person perspective, we could interpret the

receiver’s sensor model as reporting the signed distance to a tower fixed at 0 ∈ Xr, but x2
corresponds to the true position of the tower. In this case, the producer moves the tower

position, which is beyond the receiver’s model. Its I-state ιr = (hr)−1(yr) = {x′} therefore

implies that its perceived own position x′ ∈ Xr is wrong, which is an illusion. Note that

h̄r(ω) ̸= hr(αr(ω)), as required. ■

Example 6 (Trilateration Tricks)

Planar localization is performed by a receiver, in which Xr = R2, by the principle of

trilateration. The receiver’s sensor observation yr reports the distances to one or more
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‘towers’ that serve as known landmarks with fixed position in R2. Using the reported

distance to a single tower, the I-state ιr = (hr)−1(yr) narrows the position down to a circle

(see Figure 3(a)) of radius yr. If there are n towers, then yr = (do1, . . . , d
o
n) is a vector of

oberved distances to each tower. Figure 3(b) shows the case of three towers, in which the

I-state results in a unique receiver position by intersecting the three circular preimages, one

for each distance measurement.

Now enters the producer, which exploits an extrinsic sensor model yr = h̄r(ω). The

universe state is ω = (x1, x2, r1, . . . , rn) ∈ Ω, in which (x1, x2) is the receiver X-state, ri is

the transmitted radio signal intensity of ith tower, and Ω ⊂ Rn+2. The observation doi is

actually based on the inverse-square law, roi = ri/d
2
i , in which di is the actual distance to

the ith tower and roi is the measured intensity at the receiver position. Let rc = (rc1, . . . , r
c
n)

be the vector of intensities that the sensor is calibrated to. Each element of yr is then

obtained as doi =
√
rci /r

o
i if rci > roi otherwise, doi = #, which indicates that the signal

intensity is not within the interval of observable values. Note that observing r0i = rci
implies that the receiver is on the ith tower, which is not allowed. To yield any desired

distance measurement d′i so that doi becomes d′i, the producer changes the transmitter power

ri from rci to r′i = rci (di/d
′
i)

2. For example, if rci = 1, then roi = 1/4 at distance di = 2.

Changing the transmitted intensity to r′i = 2 would cause the distance observation to be

doi =
√
2 (roi = 1/2), which is incorrect. Setting r′i ≥ 4 would then produce implausible

I-states because r0i ≥ ri = 1, and the respective circle will be undefined.

The producer X-space is Xp = Ω. The function αr converts the producer X-state

to the receiver X-state, and Cr is defined accordingly. The producer action space is

Up = (0,∞)n, and is used in f to set each radio intensity ri to any positive value,

inducing a desired d′i so that yr = (d′1, . . . , d
′
n). In the case of n = 1, the producer

interference can create receiver I-states that are circles of any radius or distance from

the single tower. For n = 2, there is a bounded range of radio intensities (values of up)

for which the circular preimages intersect; if they are disjoint, then the illusion becomes

implausible (there is no receiver position that would account for yr, and ιr = ∅). For

n = 3, shown in Figure 3(c), any small perturbation of up results in implausibility, ιr = ∅. ■

From Example 6 two kinds of concepts become clear: 1) If the I-state is plausible, then

how much can the observation be perturbed while maintaining plausibility? 2) If the I-state

is not plausible, then how little can the observation be perturbed to make it plausible? Both

of these concepts rely on a notion of distance in Y r. Thus, assume Y r is a metric space

with metric ρY r : Y r × Y r → [0,∞). Let BY r (y, d) ⊆ Y r denote an open ball of radius d,

centered at y. Thus, BY r (y, d) = {y′ ∈ Y r | ρY r (y, y′) < d}.
The first concept is defined as follows. Let P ⊆ Yr be the set of all observations that

yield plausible I-states, defined using the model relation Mr. The plausibility robustness,

PRY r (yr), is the largest d such that BY r (yr, d) ⊆ P . The second concept is forced-fusion

magnitude, FFMY r (yr), which is the largest d such that BY r (yr, d) ⊆ Y r \ P . In other

words, it is the distance to the nearest receiver observation that would yield plausibility.

The term is inspired by its use to account for adverse symptoms in VR usage (12).

We would like to express these concepts from the producer’s perspective. For plausibility

robustness, how much can the producer vary up and still maintain plausibility? For forced-

fusion magnitude, how much does the producer need to change up to achieve plausibility?

Assume Up is a metric space with metric ρUp . We can similarly define PRUp and FFMUp in

terms of balls in Up of radius d centered at up. Plausibility robustness PRUp(up) requires
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that h̄r(f̄(u)) ∈ P for every u ∈ BUp(up, d) ⊆ Up, and forced-fusion magnitude FFMUp(up)

requires that h̄r(f̄(u)) ̸∈ P for every u ∈ BUp(up, d) ⊆ Up. Note that if Up = Xp and f̄ is

the identity function, then these concepts can also be expressed directly in terms of Xp.

Now consider stating the producer’s goal so that one might select up ∈ Up systematically,

and even autonomously. Perhaps the goal is to achieve a particular observation, say yG ∈
Y r, or more generally, any one in a nonempty set YG of observations. The producer must

select up so that h̄r(f̄(up)) ∈ Y p. Further conditions might be that plausibility or illusions

must be maintained by considering the resulting I-states (preimages of hr). Thus, the goal

could alternatively be expressed directly in terms of I-states, which correspond to targeted

perceptions: achieving an I-state ιG ∈ Ir or set IG ⊂ Ir of I-states.

If there are multiple producer actions up that achieve the goal, then an optimization

problem can be formulated. Let l(up) be the cost of applying up. An optimal perception (or

equivalently, optimal I-state) would be the one that yields the minimum cost l(up) over all

up that achieve the goal (yG, YG, ιG, or IG). This assumes appropriate conditions for the

existence of optima, such as compactness over the set of producer choices that achieve the

goal. Robustness and forced-fusion can also be taken into account. For example, if yr ∈ P ,

then l(yr) = c− PRY r (yr), and if yr ̸∈ P , then lY r (yr) = c+ FFM(yr), for some constant

c. An action can be chosen so that l(yr) is minimized among goal perceptions to maximize

robustness; otherwise, it is chosen to minimize the forced-fusion magnitude.

The models extend naturally to handle disturbances. In the nondeterministic case,

Hr : Xr → Y r and H̄r : Ω → pow(Y r) are used instead of hr and h̄r. A distur-

bance could even be added to the producer’s action so that f̄ is replaced by a function

F̄ : Up → pow(Xp). Thus, with each action, up, only a set H̄r(F̄ (up)) ⊆ Y r of possible

observations can be enforced. The producer is guaranteed to be successful in the worst-case

if H̄r(F̄ (up)) ⊆ YG. If H̄
r(F̄ (up))∩ YG ̸= ∅, then it may possibly be successful, in the best-

case. Similarly, the case of probabilistic disturbance can be considered, using p(yr | xr)
and p(yr | ω). Disturbance can be added to producer actions as a pdf, p(xp | up). The

probability that a goal YG is achieved is given by

p(YG | up) =
∫
YG

∫
Xp

p(yr | xp) p(xp | up) dxp dyG. 9.

Thus, the producer could try to choose up ∈ Up to maximize the probability of success. For

the disturbance-based models, costs could still be formulated. In the nondeterministic case,

up can be chosen to minimize the worst-case (maximum) cost. It the probabilistic case,

up can be chosen to minimize the expected cost. The costs could include PRr(yr) and/or

FFM(yr), resulting in worst-case or expected-case analysis of plausibility robustness and

forced-fusion magnitude.

3.3. Creating Perceptual Experiences with an Omniscient Producer

We now extend the concepts from Section 3.2 from the stationary case to the dynamic

case. The extension of a stationary percept (or I-state) to cover multiple stages is called a

perceptual experience (or I-state trajectory). The producer and receiver are modeled using

their corresponding 8-tuples, Ap and Ar. As before, the producer remains omniscient with

Xp = Ω, and Cp modeling perfect correspondence. It has access to the UTF f̄ : Ω× Up ×
Ur → Ω, h̄r, and hp = h̄p is the identity function (perfect sensing). It has access to ιrk, u

r
k,

and yrk at each k ∈ K. It also has access to the relations Cr and Mr (from which Rr can

be derived). Relaxing these strong assumptions will be discussed in Section 3.4.
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Consider going from stage k to k+1. The universe state is some ωk ∈ Ω. The producer

can implement a state-feedback policy of the form πp : Ω → Up (using the fact that Xp =

Ω). Thus, an action upk = πp(ω) is selected. The receiver action is urk = πr(ιr), and

ωk+1 = f̄(ωk, u
p
k, u

r
k). The next receiver observation is yrk+1 = h̄r(ωk+1). The receiver

I-state is updated as ιrk+1 = ϕr(ιrk, u
r
k, y

r
k+1), potentially using its intrinsic models Xr, fr,

and hr. Disturbance-based models could alternatively be used, including F r and Hr or

their probabilistic counterparts.

For every stage k, the producer applies upk to influence yrk+1 and ιrk+1. This part is

quite similar to Section 3.2, in which up was chosen to influence yr and ιr; however, here

there is a one-stage delay.1 Using Mr, the producer (or the engineer who created it) can

determine whether each ιrk is plausible. Let ι̃r denote an I-state sequence, called a perceptual

experience, that is indexed over k ∈ K. If every ιrk in ι̃r is plausible, then it is called a

plausible perceptual experience. Let ω̃ be the universe state trajectory corresponding to

some ι̃r. We can apply Mr to determine whether each (ιrk, ωk) is an illusion. If the pair is

an illusion for every k ∈ K, then the pair (ι̃r, ω̃) is called an illusory perceptual experience.

Example 7 (A Dynamic Landmark)

Building upon Example 5, let ωk = (xrk, x
p
k) and ωk+1 = f̄(ωk, u

p
k, u

r
k) = (xrk + urk, x

p
k + upk),

in which Up = Ur = {−1, 0, 1}. The landmark position can be moved up or down by one

unit, or remain stationary, and the receiver can similarly change its own position. We

have fr(xrk, u
r
k) = xrk + urk and fp(xpk, u

p
k) = xpk + upk. Suppose hr functions as in Example

5. Suppose up1 = 1 and ur1 = 0. This results in an implausible I-state ιr2 = ∅ because the

position predicted by fr is inconsistent with the observation yr2 (the sets given by (4) and

the preimage (hr)−1(yr2) are disjoint). To give the producer more freedom, nondeterministic

replacements F r and Hr can be used for the receiver’s intrinsic models. For example, if

F (xrk, u
r
k) = Xr for all actions, then the I-states would be based on preimages of hr alone,

causing the receiver to have the illusion it is moving when in fact the producer is moving. ■

Example 8 (Gridbot Illusions)

Example 4 can be adapted by interpreting the gridbots as a producer and receiver.

The producer could create an illusion that the receiver’s environment is smaller than

it really is. For example, suppose E corresponds to two large rooms, connected by a

‘doorway’ of width one tile. The producer moves to the doorway and remains there

while the receiver explores. The illusion of a smaller room has been created. If the

producer moves away and the receiver returns to the doorway, an implausible I-state

would result because a tile that was marked as black became white. The challenge

is to determine a policy for the producer so that it is not detected by the receiver;

this would happen if the receiver sensed a tile as white when it was previously declared

black, resulting in implausibility (assuming in its model it is unaware of the other robot). ■

Now consider designing a producer policy. Under the standard agent model from Section

2.1, note that the entire system is predictable starting from any initial ω1 ∈ Ω, which is

immediately observable to the producer. Call this the fully predictable case. The producer

1Note that in the first stage k = 1, the producer does not have the ability to affect yr1 ; this may
be fixed by deleting the first observation or allowing the producer to start one stage earlier.
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policy may as well be a sequence of actions, which is a stage-feedback policy πp : K → Up,

as defined in Section 2.2. The goals from Section 3.2 can be extended here to sequences. For

example, let ỹG : K → Y r be a goal sequence of receiver observations. A weaker requirement

is to simply achieve any one ỹG in a set ỸG of possibilities. Many other possibilities exist.

For example, perhaps the goal is to produce yG, or any observation in a set YG, at any

stage k ∈ K. Alternatively, perhaps it must happen at one particular stage. A logic, such

as linear temporal logic (LTL), may even be used to express goal conditions in terms of

some combinations of sets of observations and stages (13). Furthermore, goals could also be

expressed in terms of receiver states, receiver actions, receiver I-states, or any combination

along with receiver observations and stages. On top of this, a cost function lk can be defined

at each stage to obtain a problem of finding an optimal producer action sequence, which in

turn yields an optimal perceptual experience by optimizing the cumulative cost∑
k∈K

lk(ωk, u
p
k, y

r
k, ι

r
k, u

r
k). 10.

The costs can also be expressed in terms of PR and FFM functions to obtain problems

that try to maximize total robustness or minimize total forced-fusion magnitude. If K is

infinite, then the costs must be carefully chosen so that the sum is finite for successful

policies; alternatives include discounted cost, average cost, and termination actions (6). If

K is finite, then a final cost term lF (ωK+1, y
r
K+1, ι

r
K+1) may be added.

Now suppose that disturbance-based extensions of fr and hr are introduced for the

receiver, to obtain F r and Hr, as defined in Section 2.1. In this case, the receiver is

no longer predictable, even from the producer’s perspective. It is thus more effective for

the producer policy to be formulated as state-feedback πp : Xp → Up, which even implies

universe-state feedback. Acknowledging that this may be extreme in many settings, Section

3.4 removes producer omniscience to obtain other cases of information-feedback policies for

the producer.

Consider characterizing the evolution of the whole system under the implementation

of a fixed, state-feedback producer policy πp. Under the fully predictable case, a sequence

ω̃ : K → Ω is determined from the initial universe state ω0. In the case of a nondeterministic

disturbance-based receiver, then a set Ω̃ of possible sequences is instead obtained. If Ω is

finite, then the process can be imagined as a nondeterministic finite automaton (NFA) over

Ω. One should consider worst-case analysis to determine whether a goal can be guaranteed

to be accomplished. With a cost model, one can consider minimizing the worst-case percep-

tual experience. In the case of a probabilistic disturbance-based receiver, a Markov chain

is obtained under the implementation of πp (also called Markov decision process (MDP) by

artificial intelligence researchers). In this case, expected-case analysis could be used to as-

sess the probability that the goal will be satisfied under πp. In this case, πp can be selected

to maximize this probability. A cost model can additionally be used, with the resulting

optimization being to find the lowest expected-case cost under the implementation of πp.

3.4. Producers with Imperfect Information

If the producer is not omniscient, then it may not have access to enough information to

ensure that the targeted perceptual experiences function as desired. To analyze what might

happen between the producer and receiver, it will be helpful to nevertheless introduce a

third-person perspective in which we as scientists or engineers have access to more infor-

mation than the producer. This could be modeled formally as an observer agent.
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The following producer limitations can be considered: 1) αp and/or hr could be many-

to-one mappings, prohibiting the producer from perfectly determining ωk; 2) πr may be

unobservable to the producer, resulting in a dynamic game formulation, which may or may

not be cooperative; 3) ιr may be partly or fully hidden, requiring the producer to estimate it

via models, simulation, and limited sensors; 4) the producer may have only limited models

or access to hr, h̄r, fr, and f̄ , resulting in partial control over illusions, and difficulty

determining whether illusions are plausible. 5) the producer may not have perfect access to

its own state, leading to information feedback policies πp : Ip → Up that hopefully achieve

the targeted perceptual experiences.

Goals for targeted perceptual experiences may be formulated as in Section 3.3, and a

producer policy πp is selected that achieves the goal, and even optimizes costs. For nonde-

terministic models, worst-case or even best-case analyses are appropriate. For probabilistic

models, expected-case analysis can be used once again.

3.5. Multiagent Perceptual Experiences

We can extend the formulations developed so far to allow for multiple producers and re-

ceivers within a shared universe. Suppose, for example, that there is one producer and n

receivers. The producer could use the same spoofing function s to stimulate all of them

at once. This could be imagined as a broadcasting mechanism, such as wireless commu-

nication, that reaches all receivers in the same way. Thus, the delivery of the perceptual

experience could be considered as a kind of centralized control, applied by the producer. We

can alternatively formulate a distributed control scenario in which one or more producers

deliver perceptual experiences and illusions propagate to receivers in a communication net-

work. One further extension is to allow multiple agents to be situated within a single body.

This could, for example, be used to model hierarchy, in which one agent plays a supervisory

role over agents that function as lower-level models.

4. APPLICATION TO ROBOTS AND OTHER ENGINEERED AGENTS

4.1. Modeling Engineered Agents

In engineering, we typically have white-box systems, which are built from well-understood

physical principles and work as designed (as opposed to black-box systems, for which there is

no understanding about their internals). Learning, identification, and calibration processes

may serve to further refine and improve their models with respect to their environment. At

a high level, any engineered agent can be modeled as a control system, including regulators

of physical systems such as aircraft stability, room temperature, or the concentration of

chemical solutions. To cover many cases, a linear agent can be expressed as a discrete-

time linear control system, which can be formulated as X = Rn, U = Rm, XTE xk+1 =

Axk +Buk, and sensor mapping yk = Cxk for fixed matrices A, B, and C. State-feedback

or information-feedback policies take the form π : X → U or π : I → U , respectively.

Robot models typically involve nonlinear dynamical systems over configuration mani-

folds, often with non-trivial topology and non-Euclidean geometry. Imagine extending the

gridbot from Example 3 to operate as a wheeled mobile robot, such as a robotic vacuum

cleaner. The configuration space C is used in robotics to model the set of all ways to embed

the robot body in its environment in the absence of obstacles. For a wheeled mobile robot,

C could be the set of all 2D rigid body transforms: C = SE(2) ≃ R2×S1, in which S1 is the
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circle of all directions from 0 to 2π (compare to Z2 ×D from Example 3). If the obstacles

are unknown, then an environment space E could represent a set of possible subsets of C
that are collision free, and then X ⊂ C×E , in which q ∈ C, q ∈ E, E ∈ E for any (q, E) ∈ X.

Actions uk ∈ U correspond to commands that cause the wheels to rotate for some time ∆t,

thereby altering the configuration to obtain xk+1 = f(xk, uk).

Onboard sensors are modeled by h and might report whether obstacle contact is made,

wheel odometry, and even distances to obstacles. An onboard computer calculates I-states

based on sensor observations. The calculated I-states are used to apply actions according

to a policy uk = π(ιk). Other types of robots, such as 3D drones, industrial manipulator

arms, humanoids, or submarines, are similarly modeled using configuration spaces, f , and

h. To handle higher order dynamics, the configuration space may be extended to a higher-

dimensional phase space that includes configuration velocities, and f and h are defined over

it.

The result is a fully modeled, white-box system, which will highly contrast the modeling

challenges for humans, discussed in Section 5.1. Nevertheless, in some settings robot models

may be adaptive as action-observation pairs are accumulated during execution. Models can

be adjusted via machine learning or improved calibration. A black-box setting may even

appear if the engineer approaches an unknown robot, in which case perception engineering

may be used to help understand its behavior.

4.2. Spoofing Sensors

Consider fooling sensors that might be used in robots. The physical operation of h in terms

of the universe Ω is modeled as h̄ : Ω → Y (from Section 2.4), which allows a producer

to create illusions for the receiver robot and result in h̄r(ω) ̸= hr(αr(ω)). Furthermore,

obtaining plausible illusions and experiences for a robot is generally challenging because

there are multiple sensors giving observations at multiple times. All of these must be

consistent with respect to a sensor fusion system in the sense that a possible receiver X-

state trajectory could explain it in terms of h and f .

Localization is the classic problem of estimating the robot’s configuration. If obtained

by the trilateration system of Example 6, then localization illusions could be obtained by

changing tower intensities. Alternatively, the towers themselves could be moved. Other

wireless localization systems, including GPS, could be similarly spoofed. Mapping is the

problem of determining the robot’s environment, usually in terms of obstacles that must

be avoided; it is usually combined with localization to obtain SLAM (10). Many depth

measurement systems work by emitter-detector pairs, such as sonars that emit a pulse and

use the time of arrival to calculate distance. Such sensors can be spoofed by blocking the

emitted pulse, and sending an alternative pulse to the receiver at the desired time. Methods

for spoofing lidars for autonomous driving appear in (14). Cameras that infer distance based

stereo could be intentionally misaligned to give false results. Features in images, assumed

to be fixed in the world, could also be moved by a producer. In an extreme case, a graphical

display could even be placed in front of a camera. Even a mechanical contact sensor, which

is triggered when a robot hits a wall, could simply by fooled by pressing on it (15).

Mechanical sensors embedded in the body are the hardest to spoof. For example, a

modern inertial measurement unit (IMU) uses vibrating MEMS to estimate angular velocity

and linear acceleration; this can be spoofed by injecting acoustic vibrations (16). Odometry

and joint encoders report how far wheels have rolled and joints have rotated, respectively.
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(a) (b) (c)
Figure 4

(a) A room mapped by a Neato Botvac D5 before interference. (b) A producer (human) with
cardboard causes sensor observations corresponding to a virtual wall. (c) The receiver robot

reports that it is done cleaning a smaller room than exists in reality (but its depth sensor

measures some further away walls).

These are similar to proprioceptive senses in humans. These could be spoofed by mechanical

intervention, such as placing a mobile robot up on rack while the wheels rotate in the air.

This setup would use f̄ to additionally compensate for applied receiver actions so that

plausible X-state transitions are nevertheless obtained.

4.3. Virtual Reality for Robots

With the ability to spoof sensors, we can next consider offering VR to an engineered agent,

analogous to VR experienced by humans. As a thought experiment, imagine a humanoid

robot wearing a VR HMD. Assuming it has cameras for eyes, the HMD might fool the

sensor fusion system, though it is unlikely to work the same way as intended for humans.

The humanoid might walk and build an environment map that is consistent with the HMD

imagery, with implausibility arising when it hits a real or virtual wall (the same would

happen for a human using VR). For a very different scenario, imagine offering VR, or a

targeted perceptual experience, to a vacuum cleaning mobile robot; see Figure 4(a). In

(15), researchers fooled the robot by moving a piece of cardboard around quickly so that

the robot’s wall contact sensor was activated as desired to create the illusion (Figure 4(b)).

The robot concluded it was in a smaller room than in reality, and it reported it was done

cleaning (Figure 4(c)). The mathematical framework of Section 3 covers these scenarios

and many others in a unified way, although it remains to incorporate notions of one robot

simulating another to create illusions (17).

Using concepts from Section 3.3, suppose that some humans act as an omniscient pro-

ducer. The goal could be to get the robot into an I-state ιr in which it reports that its tasks

have been accomplished. This is achieved stage-by-stage by altering the physical world

state xp so that that targeted observations yr are achieved for all sensors. The particular

xp chosen at each stage can depend on the sensed configuration of the receiver and even

its I-states, if available. Note that if it not possible to spoof all of the sensors, then the

challenge of maintaining plausibility increases.

How are the targeted receiver observations determined? One convenient way is to create

a simulated world, which is then used to calculate what stimulus to provide to the sensors

at each stage. This is a way of maintaining a coherent, plausible ‘virtual’ environment that

responds to the receiver’s actions and provides appropriate sensor feedback. This is called

a virtual world generator or VWG, and is a crucial component for VR applied to humans

and other biological organisms (18). The simulator becomes a useful tool for maximizing

plausibility robustness, or even determining whether plausibility is even possible. If not, it

www.annualreviews.org • Perception Engineering 19



might attempt to minimize the forced-fusion magnitude. The computational complexity and

ability of the simulator to respond in real time (within each stage) are important concerns.

In a robotics setting, we can even connect the ’brain’ of the receiver directly to the

simulator to evaluate planning, control, or sensor-fusion algorithms, as is done in software

platforms such as Gazebo and CARLA. The real-time requirement can even be neglected.

This would be the robot equivalent of a Gilbert Harman’s ‘brain in a vat’ (see (18)); however,

VR for robots enables using the actual robot sensors in a physical setting to provide a

more accurate assessment. This could robot more thorough and systematic testing or

verification of robot systems, and improve learning of models. It also becomes possible to

reverse engineer robots systematically by observing how they respond to various virtual

environments. This is quite analogous to the way neuroscientists and psychologists learn

about the inner workings of biological organisms, to be discussed in Section 5.1.

For a more challenging scenario, suppose the producer itself is a robot, which is con-

strained by its own fp and hp. It might need to do motion planning to each an appropriate

xp to create the targeted observation yr at the precise stage it is needed. It might have

to choose trajectories that avoid detection by the receiver. Imagine the challenges of get-

ting a producer mobile robot to trick a vacuum cleaning receiver as was done in Figure

4, attempting to hit its wall contact sensors in the right places at the right time! This

results in a number of computational challenges, including deciding whether plausibility is

possible, maximizing plausibility robustness, minimizing the forced-fusion magnitude, and

determining the computational complexity of these problems in various settings.

5. APPLICATION TO HUMANS AND OTHER BIOLOGICAL AGENTS

5.1. Modeling Human Agents

Although modeling engineered agents is challenging enough, it is much harder to model

humans for several reasons: 1) Robots and other engineered agents are designed and built,

component by component, using well-tested principles of physics, whereas biological agents

simply exist. They start as black boxes that are reverse engineered by scientists, including

psychologists, neuroscientists, and biologists. Thus, there is much speculation and debate

about ‘what is going on’ inside of the agent. 2) Data regarding internal operation can be

easily collected during execution for engineered agents, but for humans we are limited to

questionnaires and external biosensors such as those used in electroencephalography (EEG).

3) A major challenge for modeling humans is to maintain ecological validity in an experiment,

but unfortunately, their behavior may be altered due to knowledge of participating in a

study and other unnatural aspects of the experiment. 4) A robot can be simply rebooted

for easy repeatability and to observe its reactions to varying environmental conditions;

however, a human starts life only once and retains memories of prior trials. Thus, his

I-state cannot be re-initialized. 5) Humans adapt at various levels and time scales. For

example, eyes adjust to various lighting levels and people become more effective at using a

computer mouse with practice. Some adaption can be built into engineered systems, but it

can also be avoided wherever preferable. 6) Through attention processes humans have the

ability to ignore many things while focusing on others, thereby complicating what seems to

be known at a particular moment.

One implication of these differences is far less repeatability or determinism for the

case of biological agents, at least from the experimenter’s viewpoint. This has resulted in a

preference for probabilistic models, and less ability to formulate an underlying deterministic
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model. By contrast, engineered systems are typically modeled with a nominal deterministic

part, and a stochastic part accounts for leftover disturbances.

For the worst-case, black-box extreme, imagine studying an impenetrable, mysterious

gadget that was left behind by aliens. We would have only our knowledge of physics,

chemistry, and so on, to poke and prod it, and observe the results. For modeling humans, we

at least have useful models for human sensing and actuation. For sensing, a sensor mapping

of the form h : X → Y might model the human sense organs to a high degree of accuracy

based on decades of research in physiology and neuroscience. In this case, X should include

the possible stimuli to be presented to the organ, and Y could be the resulting electrical

impulses. Vision is the most sophisticated sense and is complicated by many factors such

as eye movements, pupil adaptation, optical distortions, and photoreceptor properties such

as density, mosaics, response times, wavelength sensitivities, and amplitude sensitivities.

Furthermore, substantial neural processing occurs on the path from the retina through

amacrine, horizontal, bipolar, and ganglion cells to the optic nerve. All of these complicate

h, making it imperfect and more challenging to model than a digital camera. Other senses

bring their own unique challenges: hearing, touch, thermoception, proprioception, pain,

smell, taste, and vestibular. In the actuation direction, we seek an XTE f that yields the

next external state xk+1 as a function of the current state xk and a motor command uk.

This involves modeling human body kinematics and dynamics; it falls under the field of

kinesiology and includes the characterization of motor skills and learning. Disturbance-

based alternatives, such as p(yk | xk) and p(xk+1 | xk, uk), might be preferable.

Next imagine trying to extract a useful model of the human’s I-space I and ITF ϕ. In

the case of the alien gadget, its external state space X can be systemically altered while

observations about any physical changes the gadget undergoes are made, including move-

ment or emitting energy such as lights or sounds. A major assumption is that enough trials

can be made with sufficient repeatability of behavior from the gadget, at least statistically.

To instead model a human, suppose that we can leverage acceptable models of h and f .

In this way, variations in X over the stages can be converted using h and f into hypoth-

esized observations y and actions u. Thus, the brain appears to receive a history I-state.

This is consistent with most models in neuroscience, including for example, Friston’s free

energy principle (FEP), in which the external and internal states (called I-states here) are

separated by so-called Markov blankets (19).

Whether under the FEP or other models, the human executes a policy π : I → U ;

however, the problem is to characterize I. Setting I = Ihist would make a brain with

perfect memory and ability to make its motor commands to contingent on distinct history I-

states. Following Section 2.2, it is far more likely that an information mapping reduces Ihist
to a sufficient, derived I-space Ider. For most models used in neuroscience and perceptual

psychology, this would be Iprob from Section 2.2, and is consistent with the Bayesian brain

hypothesis (20), predictive coding (21), and the FEP.

For a robot, the ‘brain’ is a computer, for which any part of its internal state can be easily

monitored. By contrast, the human brain has around 86 billion neurons, with hundreds

of millions more outside of the brain. The operation of each neuron through axons and

dendrites is itself a complicated dynamical system. Direct measurement of neural activity

is impossible, except in limited cases of single-unit recordings. Instead, scientists must resort

to non-invasive measures such as EEG, magnetoencephalography (MEG), and functional

magnetic resonance imaging (fMRI).

Fortunately, humans can also be asked questions. Thus, a common approach to mod-
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eling is psychophysics (22), which aims to understand and quantify the relation between

the I-states and the external world of physical stimuli by interactive questioning. Different

psychophysical procedures, involving different types of tasks and settings can be used to

target a certain aspect of the human visual system or, in general, a sensory system (23, 24).

The human subject is asked to provide responses to questions based on provided stimuli.

The most basic procedures, with yes/no response, are stimuli detection and discrimination.

Discrimination is the ability of tell two stimuli apart, whereas for detection one of the two

stimuli is the ‘null’ or ‘neutral’ stimulus (for example, average luminance when detecting

contrast sensitivity).

As mentioned above, attention processes (25) are a major complication in the modeling

of humans using VR. They clearly have the knowledge that they entered VR, but never-

theless respond as if it is real (26) or they are present (11, 1). Even Slater’s definition of

a place illusion requires that the person knows he is someone else (1). This suggests that

transitions in the ITF might vary based on attention. It is as if there are multiple agents or

I-spaces within one, with transitions affected by attention, which can be modeled as part

of a high-level policy.

Finally, note that VR itself is a useful methodology to improve models of humans

because scientists can observe their responses to carefully controlled, interactive experiences

that would be difficult or impossible to produce in normal environments (27).

5.2. From Classical Illusions to Virtual Reality

As mentioned in Section 1, artists have been creating perceptual illusions for millennia

through paintings and sculpture. By leveraging technological developments, modern artists

who develop illusory perceptual experiences include skilled magicians, photographers, cine-

matographers, graphic artists, video game designers, and VR developers. The term ‘illusion’

is used somewhat loosely in everyday life, whereas the reality relation R from Section 2.3

gave a precise definition. Thus, we can apply it to well-known illusions to clarify what kind

of illusions they are, or whether they should even be considered as illusions.

Suppose that a drawing or picture is shown to a human subject, and we ask her what

she perceives. The question could be constrained in a number of ways, such as providing

multiple choices or asking whether one feature seems larger than another. This setup can be

modeled using the stationary formulation from Section 3.2. The producer X-state xp = ω

places the picture in front of the human. The observation yr models what is sensed by the

receiver. The I-state ιr is simply the reported answer to the question, ideally corresponding

to what is perceived. Using a reality relation Rr, we can determine whether various pairs

(ιr, ω) are illusions.

Consider a line drawing of a rabbit, and ιr is perceiving a rabbit. It is an illusion if

Rr is defined so that ω must correspond to a real rabbit being presented. If the drawing is

intended to be a rabbit and Rr is defined accordingly, then it would not be an illusion to

perceive a rabbit. We must also determine whether ιr corresponds to perceiving an actual

rabbit or a drawing of a rabbit. In some cases, an illusion can be defined in a way that

does not depend on the producer’s intended interpretation. Recall the so-called ‘illusions’

of Figure 1. For Figure 1(a), most people perceive the upper line segment to be longer than

the lower one. As an illusion of a 3D scene, it would be a longer embedded object. However,

as a line drawing, we can objectively measure the lengths of the two segments and conclude

that they are the same length. Thus, perceiving the upper segment as longer is an illusion
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Figure 5

Sensorimotor contingency model from (30, 31), augmented with our nondeterministic I-state

models.

in a measurable sense. Similarly, the A and B tiles in Figure 1(b) have identical RGB values

(when viewed on a screen), but an illusion of tile A being darker persists. Figure 1(c) is

different in that there is no objective ground truth regarding colors. Some people see black

and blue whereas many others see white and gold (28). The reality relation can be defined

in various ways based on what most people would interpret from the picture or even the

original dress itself, but disagreement with what most other people would say hardly seems

to be an illusion. Figure 1(d) is an example of multistable perception, in which for most

people the I-state oscillates over time between a rabbit and a duck. Neither interpretation

seems to be an illusion in the sense meant in this paper, unless one considers the fact that

both are illusions because there is no real duck or rabbit present. Obviously, Rr could

be defined in various ways, and future questions remain about which definitions are most

reasonable or usefully capture intuitions about what is meant by an illusion.

Multistable perception yields varying I-states over time, even though the stimulus is

stationary. Now consider varying the stimulus by showing a sequence of pictures. Imagine

gradually increasing the rate of pictures shown per second. Even at a few frames per second,

we begin to perceive motion. This illusion is known as stroboscopic apparent motion (see

(18)) and is the basis of video media. Another motion illusion is the phi phenomenon (29),

in which blinking dots around a circle induce a sense of motion. The reality relation for

these examples can be defined so that only true motion in Ω corresponds to reality; thus,

such perceived motions are considered an illusion.

An obvious limitation of motion pictures is their lack of interactivity. This is overcome

by video games, which take input from the user in the form of controllers and provide

output in terms of video and audio displays. A kind of virtual world is usually maintained

in the game, which could be considered illusory using the concepts above. Going a step

further, VR creates a closed loop in which the person engages with a virtual world using

more natural interaction mechanisms. Wearing an HMD allows her to move her eyes, head,

and body while seeing and hearing what the virtual world provides, while easily forgetting

that it is a display. Controlling the virtual world through natural methods such as hand

movements and speech further increase the ‘realism’ of the perceptual experience. A virtual

world generator maintains a consistent model as designed by the producer, and tracking

systems estimate body configurations, to generate plausible responses (18).

A natural choice of explaining how VR works is the sensorimotor contingency model

(30, 32, 1), as proposed in (31). Figure 5 reproduces the model in (31), but adds our non-

deterministic agent models from Section 2.2. Suppose the receiver issues a motor command

urk. The efference copy and I-state Xr
k(η

r
k) used to calculate the ‘prediction’ Xr

k(η
r
k, u

r
k).
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After movement, the next universe state is ωk+1 = f̄(ωk, u
r
k, u

p
k), and the sensor yields

yrk+1 = h̄r(ωk+1). If X
r
k(η

r
k, u

r
k)∩ (hr)−1(yrk+1) ̸= ∅, then the I-state is plausible, as implied

by the model relation Mr. The reality relation Rr could also applied to determine whether

a perceptual experience is illusory. This coarse model could be further detailed as multiple

layers in a hierarchical predictive coding model, which has been generally successful in ac-

counting for effects in visual perception (33, 34) and is theorized to explain the sensorimotor

system as well (35, 36).

A probabilistic formulation could also be made. The prediction is p(xrk+1 | ηrk, urk), and
instead of the preimage, the Bayesian posterior p(xrk+1 | yrk+1) is calculated from a given

yk+1 and ‘uninformative’ prior p(xr). The degree of (im)plausibility could be expressed in

terms of the Kullback-Leibler (KL) divergence,

DKL(p ∥ q) = −
∫
X

log (q(x)/p(x)) p(x) dx, 11.

which represents an information-theoretic degree of ‘surprise’. In (11), let p = p(xrk+1 |
yrk+1), which results from the observation, and q = p(xrk+1 | ηrk, urk) is the agent’s prediction.
The model relation Mr could define a binary-valued plausibility by setting a threshold on

the KL divergence. The KL divergence is also a critical component in the FEP.

In the design of VR systems, perception engineers would like to maintain or maximize

plausibility while achieving a targeted perceptual experience. The producer’s ‘body’ cor-

responds to the engineered artifacts that may be distributed throughout the environment,

including displays, controllers, tracking systems, and so on. Criteria to optimize include

device expense, comfort, weight, development time, and adverse symptoms, such as fatigue

or nausea. The better each human sense is understood, the easier it is to build a VR dis-

play for it by exploiting its limits. For example, a visual display need not be more than the

maximum pixels-per-degree that are discernible by the human vision system. Furthermore,

a greater understanding of human perception and cognition leads to more opportunities to

exploit their limitations in VR systems. At an extreme, if Ihist is the brain model, then VR

is as hard as possible because all histories lead to distinct perceptual experiences (I-state

sequences). Collapsing Ihist to smaller I-spaces enables more changes to be made to sensing

and actuation that go unnoticed by the human.

5.3. Evaluating Perceptual Experiences

Suppose that a user wears a VR HMD and has an engaging experience. How can we

measure whether the producer has successfully delivered a targeted perceptual experience?

What would be optimal, as discussed in (37)? This is difficult because the I-states are not

directly accessible. A detailed account of this process is provided in Chapter 12 of (18).

As mentioned earlier, questionnaires can be designed to have people describe what they

experienced. Presence in a virtual environment is assessed using questionnaires, which are

known to have unwanted biases (38, 39). Sickness symptoms have been assessed for decades

using the simulator sickness questionnaire (SSQ) (40), which presents its own problems (41).

Physiological measurements can also be taken, but they are somewhat more cumbersome

for the users because they must wear sensors, and the experience must be strong enough to

yield a detectable response (11).

Sickness is one of the most challenging aspects to measure, and amounts to a set of

symptoms including fatigue, nausea, dizziness, headache, and eyestrain (18, 42). It seems

hard to find an analogous problem in robotic systems, except perhaps that an overheating
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CPU and power consumption may seem similar to fatigue. Section 3.2 introduced pre-

cise models of forced fusion (FFM) and plausibility robustness (PR), which could be used

here to quantify the amount of mismatch or difficulty in maintaining plausibility. This

is related to sensory conflict theory (43). Even sickness symptoms in some cases can be

modeled as a sum over stages of costs proportional to the FMM. Mismatches that could be

modeled mathematically within our framework include vergence-accommodation mismatch

(44), visually induced motion sickness from vection (45), flicker fusion (46), and even the

mysterious uncanny valley phenomenon (47).

It would be exciting if we could eventually develop new perceptual illusions that are

directly predicted from perception engineering models. Many clever techniques have been

developed through understanding the limitations of human vision, such as foveated ren-

dering (48), frame skipping (49), and post-rendering image warp (50). Redirected walking

exploits limitations in human navigation to convince people they are walking straight when

in fact they move in circles (51). As examples continue to grow, how can approaches be

more unified, with the systematic identification of many more?

5.4. Social Perception Engineering

Section 3.5 briefly described scenarios that involve multiple producers and/or receivers.

For humans, this leads naturally into social perception engineering. At a very basic level,

Shannon-Weaver communication can be modeled as a producer manipulating the environ-

ment (transmitting a message) that results in an intended I-state for the receiver (receiving

the message). From broadcasts to social media, information propagates among people.

Using reality relations for both producers and receivers, we can keep track of the spread

of false information, a problem currently plaguing society as lies (a kind of illusion) are

intentionally spread through a network of connected agents. Note that only one producer is

needed to create a lie, and the rest of the network may propagate it without awareness that

it is an illusion. Beyond the spread of messages, networked games (especially MMORPGs)

and VR enable any number of people to interact through virtual worlds. This leads to

transformed social interaction (52), in which people are able to have experiences that are

different, and even better, than what could be accomplished in reality. For example, imag-

ine in an educational setting, a teacher can appear to be looking at every student at the

same time. People can design their own appearance or embodiment, so that biases based

on physical characteristics such as race, gender, and height are readily overcome or studied

by scientists under controlled conditions.

5.5. Other Biological Organisms

For organisms other than humans, VR is a rapidly maturing methodology for studying

their behavior under controlled conditions (4). Since each organism has unique sensing and

motor mechanisms, each VR system requires custom designs for displays and interaction

methods. As stated in (4), there is an increasing need for engineers, especially roboticists

and computer vision experts, to contribute to the development of VR systems for organisms,

making VR for organisms an important part of perception engineering. Systems may be

open-loop, such as showing visual stimuli to fish in an aquarium (53), or closed loop, as

in (54), in which a hamster runs on a ball while being presented with visual stimuli on a

curved projection screen. Scientists can learn about navigation, hunting, threat response,

and many other behavioral aspects. Even social behavior has been studied, for example in
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fish (55, 56), to help understand swarming or schooling. Their simpler neural structures

and physiology often leads to models that have more detail and accuracy that is possible

to obtain for humans. VR-based methods for animals also provide better insights into

brains, bodies, and behavior of humans. Although questionnaires are not possible, more

intrusive experimentation and measurement are allowed, such as conducting single-unit

neural recordings. It has even been established that place and grid cells, which are critical

for human navigation, respond to VR experiences (for example, (57)).

Consider the challenges of constructing models of their I-spaces, and the particular

I-states during the organisms VR-induced perceptual experience. Starting from animals

with the most human-like biology, studying macaque monkeys involves a VR setup that

is unsurprisingly similar to that of humans (58), although single-unit recordings are at

least possible. For smaller animals, from rodents (54) to fruit flies (56), building a fully

interactive virtual world is more feasible by having them run on rotating balls, or fly on

a tether, and view fixed immersive displays (like miniature CAVE systems (59)). Single-

unit recordings are performed in these settings to measure particular I-states. Compared

to 86 billion neurons for humans, fruit flies exhibit complex behaviors with only 100,000

neurons, resulting in a greater hope of fully understanding them. Zebrafish larvae also have

comparably many neurons and their bodies are transparent, allowing direct observation

of their complete neural states (60). Although they have been studied in VR (61), it is

more challenging to construct closed-loop systems in comparison to fruit flies and rodents.

VR has even been applied to roundworms (62), for which its 302 neurons have been fully

mapped (63); however, measurement of I-states during execution remains challenging. In

(64), a paramecium, which has no neurons, was manipulated into swimming along targeted

trajectories by applying an electric field across the water; can the internal physical states

of the paramecium be considered as I-states, resulting in a perceptual experience? Perhaps

not, and this example comes close to a point of debate among philosophers (65). Imagine

a similar case of putting an object in a tray and using a robot to tilt the tray so that the

object slides into a targeted configuration due to gravity (66). It would be ludicrous to claim

that the object had a targeted perceptual experience, or even an illusion; nevertheless, the

I-space concepts from Section 2 are useful for designing ‘sensorless’ manipulation strategies.

6. CHALLENGES AND OPPORTUNITIES

We have argued that perception engineering is an emerging discipline and introduced a

mathematical framework to help characterize its scope and core. In a general setting, we

precisely characterized what it means for a producer to alter the environment to deliver

an intended perceptual experience for a receiver, with the important conditions of it being

plausible and illusory. It will take decades of work to bring this envisioned discipline to

maturity by a growing community of people to expand the foundations while leveraging

important principles from other branches of engineering, and the sciences that study bio-

logical organisms. This includes the need to train a generation of perception engineers. If

successful, perception engineering as a discipline would have a profound impact on society.

There are many exciting challenges and open problems ahead. To conclude this article, we

highlight some of these as a call to action.

The mathematical formulation of Sections 2 and 3 should be expanded in several ways.

For example, they should account for more characteristics of biological organisms, especially

adaptation and attention. A continuous-time formulation using differential equations could
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be developed, which would naturally increase the connections to control theory. One could

define of optimal control problems, such as linear quadratic regulation (LQR) of perceptual

experiences and illusions, in both discrete and continuous time. One could adapt robust

control techniques to targeted perceptual experiences. Dynamic game theory can be applied

to characterize equilibria between producers and receivers. A control-theoretic model of

psychophysics can be developed in which a feedback policy is used to guide actions that

improve the agent modeling process. Asynchronous and event-based models of sensing and

interaction can be made, as opposed to having common stages. The correspondence, model,

and reality relations should be formulated in many more settings. Logics should be applied

to describe more complicated perception engineering tasks. Finally, the universe space

should be expanded to explicitly model how agents obtain information regarding I-states,

actions, and observations.

Computational issues have barely been touched in this paper. Under what conditions

does a producer even exist that can achieve a targeted perceptual experience? (This is

analogous to computability in theoretical computer science.) If it can, then what is the

computational complexity of achieving it? Can we find a minimal producer in some mean-

ingful sense? If the producer is a robot, then its mechanical capabilities and limitations

must be taken into account. If it is autonomous, then can planning methods be developed

to achieve its goals, and with what complexity? What forms of dynamic programming,

including reinforcement learning, would be effective? What can machine learning methods

contribute to the development of better models, or what can machine learning gain from

perception engineering? What computational architectures and systems best support the

creation of targeted perceptual experiences? This itself is an emerging field of interest (67).

Other fields of engineering are expected to benefit as well, including computer engineer-

ing and systems, computer graphics, sensing and vision systems, optical science, displays,

acoustic engineering, filtering, and control theory. Robotics should especially benefit be-

cause perception engineering can help to create better robots through improved modeling

and learning techniques, and the development of robots that are more robust to spoofing

attacks (attempts to create illusory perceptual experiences for robots).

The field of perception engineering should even contribute back to the sciences that

study organisms, as is already the case for VR usage. We expect to have improved un-

derstanding, definitions, and classifications of illusions. We expect improved mathematical

models of perception and cognition, which may be inspired by the considerable overlap

between biological and engineered producers and receivers. Finally, the mathematical for-

mulations and engineering examples of perception engineering can help shed light on, and

benefit from, continuing debates in the philosophy and cognitive science, especially involving

situated agency, enactivism, semantics, symbol grounding, and representations (68, 69, 70).
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