A Visibility-Based Pursuit-Evasion Problem

Leonidas J. Guibas Jean-Claude Latombe Steven M. LaValle David Lin Rajeev Motwani

Computer Science Department
Stanford University
Stanford, CA 94305

{guibas,latombe,lavalle,dlin,rajeev }Qcs.stanford.edu

Abstract

This paper addresses the problem of planning the motion of one or more pursuers
in a polygonal environment to eventually “see” an evader that is unpredictable, has
unknown initial position, and is capable of moving arbitrarily fast. This problem was
first introduced by Suzuki and Yamashita. QOur study of this problem is motivated in
part by robotics applications, such as surveillance with a mobile robot equipped with a
camera that must find a mowving target in a cluttered workspace.

A few bounds are introduced, and a complete algorithm is presented for computing
a successful motion strategy for a single pursuer. For simply-connected free spaces,
it is shown that the minimum number of pursuers required is O(lgn). For multiply-
connected free spaces, the bound is ©(vVh41gn) pursuers for a polygon that has n edges
and h holes. A set of problems that are solvable by a single pursuer and require a linear
number of recontaminations is shown. The complete algorithm searches a finite graph
that is constructed on the basis of critical information changes. It has been implemented
and computed examples are shown.

1 Introduction

The general problem addressed in this paper is an extension or combination of problems
that have been considered in several contexts. Interesting results have been obtained for
pursuit-evasion in a graph, in which the pursuers and evader can move from vertex to vertex
until eventually a pursuer and evader lie in the same vertex [17, 20]. The search number of a
graph refers to the minimum number of pursuers needed to solve a pursuit-evasion problem,
and has been closely related to other graph properties such as cutwidth [16, 18]. It has also
been shown that a graph can be searched monotonically (i.e., without recontamination) in

[2, 12]. Pursuit-evasion scenarios in continuous spaces have arisen in a variety of applications

such as air traffic control [1], military strategy [11], and trajectory tracking [10]. This has
resulted in the formal study of general decision problems in which two decision makers have
diametrically opposing interests. Classical pursuit-evasion games express differential motion
models for two opponents, and conditions of capture or optimal strategies are sought [11].
For example, in the classical Homicidal Chauffeur game, conditions of inevitable collision
can be expressed in terms of the nonholonomic turning-radius constraints of the pursuer and
evader. Although interesting decision problems arise through the differential motion models,
geometric free-space constraints are usually not considered in classical pursuit-evasion games.
Once these constraints are introduced, the problem inherits the additional complications that
arise in geometric motion planning.

A region of capture is often associated with a pursuit-evasion problem, and the “capture”
for our problem is defined as having the evader lie within a line-of-sight view from a pursuer.
A moving visibility polygon in a polygonal environment adds geometric information that
must be utilized, and also leads to connections with the static art gallery problems [19, 22].
In the limiting case, art gallery results serve as a loose upper bound on the number of pursuers
by allowing a covering of the free space by static guards, guaranteeing that any evader will be
immediately visible. Far fewer guards are needed when they are allowed to move and search
for an evader; however, the required motion strategies can become quite complex. A closely
related art gallery variant is the watchman tour problem [5]. In this case a minimum-length
closed path is computed such that any point in the polygon is visible from some point along
the path. In our case, however, the pursuers have the additional burden of ensuring that an
evader cannot “sneak” to a portion of the environment that has already been explored. The
problem that we consider and other variations have been considered previously in [6, 23].
It was stated in [22] that it remained an interesting challenge to determine if a polygon is
searchable by a single pursuer.

Several applications can be envisioned for problems and motion strategies of this type.
For example, suppose a building security system involves a few mobile robots with cameras or
range sensors that can detect an intruder. A patrolling route can be automatically computed

that guarantees that any mobile intruder will eventually be found. To optimize expenses,

it would also be important to know the minimum number of robots that would be needed.
Applications are not necessarily limited to adversarial targets. For example, the task might
be to automatically locate another mobile robot, items in a warehouse or factory that might
get moved during the search process, or possibly even people in a search/rescue effort. Such
strategies could be used by automated systems or by human searchers.

Section 2 presents a precise mathematical formulation of the problem. Section 3 presents
several bounds on the number of required pursuers and related problems. Section 4 presents
general concepts for reducing the problem to a finite graph search and a complete algorithm
for computing a solution strategy for a given free space. Section 5 shows several example
solution strategies that were computed using our implemented algorithm, and discusses some

of the practical implementation issues. Conclusions are presented in Section 6.

2 Problem Definition

The pursuers and evader are modeled as points that move in a polygonal free space, F'. Let
e(t) € F denote the position of the evader at time ¢ > 0. It is assumed that e : [0,00) — F
is a continuous function, and the evader is capable of moving arbitrarily fast. The initial
position e(0) and the path e are assumed unknown to pursuers. Any region in F' that
might contain the evader will be referred to as contaminated; otherwise it will be referred
to as cleared. If a region is contaminated, becomes cleared, and then becomes contaminated
again, it will be referred to as recontaminated.

Let v'(t) denote the position of the i pursuer at time¢ > 0. Let 7' represent a continuous
path of the i pursuer of the form ~* : [0,00) — F. Let v denote a (motion) strategy, which
refers to the specification of a continuous path for every pursuer: v = {7, ..., v"V}.

For any point, ¢ € F, let V(q) denote the set of all points in F' that are visible from ¢
(i.e., the linear segment joining ¢ and any point in V'(¢) lies in F'). A strategy, v, is a solution
strategy if for every continuous function e : [0,00) — F' there exists a time ¢ € [0, 00) and
an i € {1,..., N} such that e(t) € V(7*(¢)). This implies that the evader will eventually
be seen by one or more pursuers, regardless of its path. Let H(F') represent the minimum

number of pursuers for which there exists a solution strategy for F.

Section 3 presents some bounds on H(F) for classes of free spaces, and also shows that
some polygons for which H(F') = 1 only admit solutions in which a region becomes contam-
inated a linear number of times, regardless of the initial placement of the pursuers. Section

4 addresses the problem of computing a solution strategy, v, for a given F'.

3 Worst-Case Bounds

Several new bounds are presented in this section. For a simply-connected free space, F', with
n edges, it is shown that H(F) = ©(lgn). For a free space, F', with h holes, it is shown that
H(F) = ©(Vh +1gn). For the case of problems in which H(F) = 1, it is shown that the
same region can require recontamination as many as €2(n) times. This result is surprising
because pursuit-evasion in a graph is known not to require any recontaminations [12]. In
[23] a free space was given that requires two recontaminations, which at least established
that recontamination is generally necessary for visibility-based pursuit evasion.

Consider the problem of determining the minimum number of pursuers, H(F'), required
to find an evader in a given free space F. This number will generally depend on both the
topological and geometric complexity of F. In [23] a class of simple polygons is identified
for which a single pursuer suffices (referred to as “hedgehogs”). Some interesting upper and
lower bounds on H(F') are presented in terms of free space properties such as “bushiness”
and reflex vertices in [25]. For any F' that has at least one hole, it is clear that at least two
pursuers will be necessary; if a single pursuer is used, the evader could always move so that
the hole is between the evader and pursuer. In some cases subtle changes in the geometry
significantly affect H(F'). Consider for example, the problems in Figure 1. Although the
problems are similar, only the problem in the lower right requires two pursuers.

Consider H (F') for the case of simply-connected free spaces. Let n represent the number
of edges in the free space, which is represented by a simple polygon in this case. A logarithmic

worst-case bound can be established:
Theorem 1 For any simply-connected free space F' with n edges, H(F) = O(lgn).

Proof: The proof is built on the following observation. Suppose that two vertices of F' are

connected by a linear segment, thus partitioning F' into two simply-connected, polygonal

4

E3|E3
EJJEd

Figure 1: Four examples are shown that have similar geometry. The example in the lower
right requires two pursuers, while the other three examples require only one.

components, Fy and Fy. If H(F;) < k and H(F;) < k for some k, then H(F) < k+1
because the same k pursuers can be used to clear both F| and F,. This requires placing a
static (k + 1) pursuer at the edge common to F; and Fy to keep F} cleared after the k
pursuers move to Fy (assuming arbitrarily that F} is cleared first).

In general, if two simply-connected polygonal regions share a common edge and can each
be cleared by at most k£ pursuers, then the combined region can be cleared at most k£ + 1
pursuers. Recall that for any simple polygon, a pair of vertices can always be connected so
that polygon is partitioned into two regions, each with at least one third of the edges of the
original polygon [4]. This implies that F' can be recursively partitioned until a triangulation
is constructed, and each triangular region only requires O(lgn) recombinations before F' is
obtained (i.e., the recursion depth is logarithmic in n). Based on the previous observation
and the fact that each triangular region can be trivially searched by a single pursuer, H(F') =
O(lgn). O

A similar logarithmic bound was also obtained in [25]. The remaining question for simply-
connected free spaces is whether there actually exist problems that require a logarithmic
number of pursuers. Some results from graph searching will first be described and utilized

to construct difficult worst-case problem instances. Let Parsons’ problem refer to the graph-

r
—] €
.
|
I
I
I
|
| |
ﬁﬁ*{
I

Figure 2: A corridor of this shape disconnects second-order visibility between the two en-
trances, and can be used to construct geometric equivalents of Parsons’ problem for planar
graphs.

searching problem presented in [17, 20]. The task is to specify the number of pursuers
required to find an evader that can execute continuous motions along the edges of a graph.
Instead of using visibility, capture is achieved when one of the pursuers “touches” the evader.
Let G represent a graph, and S(G) represent the number of needed pursuers, referred to as
the search number of G.

The following lemma implies that a geometric realization of any planar graph instance

can be constructed:

Lemma 1 For every planar graph, G, there exists a polygonal free space F such that Par-

sons’ problem on G 1s equivalent to the visibility-based pursuit evasion problem on F'.

Proof: Since G is planar, a geometric representation exists in the plane in which points
in R? correspond to vertices in G, and linear segments between the points correspond to
edges in G. Consider the corridor structure shown in Figure 2. Every linear segment in the
geometric representation of G' can be replaced by a corridor of sufficient length as shown
in Figure 2. Furthermore, there exists an ¢ > 0 such that no pair of corridors intersect,
except near the points that correspond to vertices of G. Portions of the corridor edges can
be removed at corridor junctions to prevent overlap. Let F' refer to the resulting polygon,
which represents a network of bent corridors.

The next task is to show that searching F' is equivalent to searching . Recall that any

successful Parsons’ search strategy can be specified by the traversal of a sequence of edges

for each pursuer. If the sequence of bent corridors is explored that corresponds to the edges
of a solution strategy for GG, then F' will be successfully searched. This is true since using
visibility to “see” an evader in a corridor is at least as powerful as attempting to “touch” an
evader in a continuous graph edge.

Next consider whether any solution strategy for F' can be used to equivalently search
G. The corridor piece from Figure 2 is intentionally bent in four places, which causes all
advantages of visibility to be lost. Suppose this corridor is connected at both ends to other
corridors, and that pursuers are placed at each end (at positions ¢* and ¢*). For this corridor,
V(V(g")) and V(V (¢?)) are disjoint; V(V (g)) represents the set of all points from which at
least one point in V' (q) is visible. Although both pursuers can see into the corridor, one
of the pursuers must travel into the middle of the corridor at some point to search for the
evader. It must travel far enough so that the entrance to the corridor is no longer visible
(leaving the entrance “unguarded”). The central portion of each corridor will correspond
directly to an edge in G, since a central portion (edge) can be explored only by leaving a
junction (vertex) unguarded.

Consider any given motion strategy 7 that is a solution for F. Suppose there are N
pursuers. For each i € {1,..., N}, it will be shown that v; can be used to determine a
sequence of edges for the i pursuer in GG. Without loss of generality, it can be assumed
that 7; only traverses the centers of the corridors (i.e. equal distance is maintained between
the corridor walls). Thus, 7; can be characterized by indicating how far into a corridor
the 7" pursuer travels, at which point it performs a reversal, which corridor it selects at a
junction, etc. Suppose ; travels from junction to junction, with reversals only being made
at junctions. In this case, every corridor in F' that is cleared will cause the corresponding
edge in G to be cleared. If v is a solution strategy for this case, then a corresponding solution
strategy for G is implied. Suppose that 7; actually causes reversals to occur in a corridor
(i.e., not at a junction). If the pursuer changes direction but still traverses the full length
of the corridor (it must change direction at least twice), then the corresponding edge in G
will still be cleared. If the pursuer returns to the originating junction, then there are two

possible cases. If the pursuer travels far enough to clear the central portion of the corridor,

then the originating junction is left unguarded. The corresponding edge in G can be cleared
by moving the pursuer from the originating vertex (which corresponds to the originating
junction in F'), across the edge in G to the edge’s other vertex, and back to the originating
vertex. If the pursuer does not travel far enough into the corridor to clear the central portion,
then this portion of 7* does not make progress, and can be discarded (i.e., no corresponding
strategy portion needs to be considered for G). Thus any solution strategy, 7, for F' can be
used to determine a corresponding solution strategy for G. O

A theorem from [20] will be useful for proving Theorem 2, which provides a logarithmic
lower bound on the number of pursuers needed to successfully search a simply-connected

free space:

Lemma 2 (Parsons) Let G be a tree. Then S(G) > N +1 if and only if there exists a vertex
in G whose removal separates G into at least three components, Gy, Go, and G3, such that

S(G;) > N forie {1,2,3}.

Theorem 2 There exist simply-connected free spaces F with n edges such that H(F) =
Qlgn).

Proof: Using Lemma 2, a tree, GG, can be constructed recursively that has a constant
branching factor of three, height N — 1, and requires N pursuers (an example is given in
[20]). By Lemma 1, an equivalent geometric instance can be constructed for each N. Figure
3 depicts these geometric instances, for which H(F) = Q(lgn) O
Theorem 1 and Theorem 2 together imply a tight logarithmic bound, H(F) = O(lgn).
Next consider the class of problems for which F' has h holes. Both upper and lower

bounds are established on H(F) which are proportional to v/h.
Theorem 3 For any free space F with n edges and h holes, H(F) = O(v/h + 1gn).

Proof: Divide the pursuers into two groups: O(v/h) pursuers will be used to reduce the
polygon to simply-connected components, and O(lgn) pursuers will be used to clear each
component. Construct an arbitrary triangulation of F'. Let a trichromatic triangle be defined

as a triangle that touches three distinct connected components of the boundary of F'. Using

e

Ty

AR

Figure 3: Systematic construction of simply-connected free spaces that require Q(lgn) pur-
suers.

at most O(h) trichromatic triangles, F' can be partitioned into simply-connected components
whose boundaries are comprised of the boundary of F' and edges of trichromatic triangles.
To establish this, form a planar graph by placing a vertex in each hole of F' and one vertex
outside of F'. For every trichromatic triangle edge joining two boundaries, form an edge
for this graph by joining the vertices corresponding to these boundaries by a path along
the trichromatic edge, in the obvious way. From the planarity of this graph we can easily
argue that the overall number of trichromatic edges, and therefore of trichromatic triangles,
is O(h).

Consider the dual graph of the triangulation, which has O(n) edges and vertices. Take
the subgraph induced by taking only the vertices that correspond to trichromatic triangles
in the original triangulation. The planar graph separator theorem [15] implies that at most
O(\/E) edges can be chosen to partition the graph into two portions with at least one third
of the edges on each side of the partition. Each edge in the induced subgraph corresponds to
a simply-connected region of F' that can be cleared with O(lgn) pursuers by Theorem 1. In

fact, the same set of pursuers can be used for each simply connected component. The O(\/E)

Figure 4: An instance from a sequence of problems that requires a number of pursuers that
is at least proportional to the square root of the number of holes.

pursuers then form a barrier that maintains the cleared areas obtained by other pursuers on
either side, much in the same way as the partitioning edges in the proof of Theorem 1. The
planar graph separator theorem can be applied recursively to the remaining portions of F
on either side of a barrier, and the free space can be cleared using the same progression as
for Theorem 1. At the i"* level of recursion, at most % as many pursuers will be needed to
form a barrier in comparison to the (i — 1) level of recursion. The free space is reduced to
simply-connected components that can be cleared using O(lgn) pursuers. The total number

of pursuers needed to form barriers is O(Vh+ \/2h+/3h +---) = O(Vh). Thus, F can be
cleared using at most O(\/ﬁ + lgn) pursuers. O

Theorem 4 There exist free spaces F with n edges and h holes such that H(F) = Q(v/h +
lgn).

Proof: For any positive integer k, a planar graph of cutwidth k£ can be constructed using
O(k?) vertices and edges. Recall that the cutwidth, CW (@), is the minimum cutwidth taken
over all possible linear layouts of G. A linear layout of GG is a one-to-one function mapping
the vertices of G to integers, and the cutwidth for a particular layout is the maximum over
all 7 of the number of edges connecting vertices assigned to integers less than i to vertices
assigned to integers as large as i¢. Define a sequence of planar graphs, Gy, Gs,.... Let the

vertices of Gy correspond to the set of all points with integer coordinates, (7,j), such that

10

0 <1,7 < k. Let Gy connect vertices v and w by an edge if and only if v adn w are distance
1 apart (i.e., a standard four-neighborhood). The cutwidth of Gy is k.

It is established in [16] that for all graphs G, the search number S(G) is related by
S(G) < CW(G) < |deg(G)/2] - S(G), in which deg(G) is the maximum vertex degree of
G. Because deg(Gi) = 4, S(G) < k < 25(G). Using Lemma 1, geometric instances of Gy
such as the one shown in Figure 4 can be constructed. Both G and each geometric instance
require §2(k) pursuers. There is a quadratic number of holes in each geometric instance;
hence, H(F) = Q(v/h). This corridor structure can be combined with the structure from
Theorem 2 to yield an example that requires Q(v/h + lgn) pursuers. O

Theorem 4 and Theorem 3 together imply a tight bound, H(F) = ©(v/h +lgn).

The final theorem of this section pertains to the case of free spaces that can be searched
by a single pursuer. A similar result is also obtained in [6]. It states that there exist examples
that require recontaminating some portion of the free space a linear number of times. This
result is surprising because for Parsons’ problem it was shown in [12] that no recontamination
is necessary (a shorter proof of this appears in [2]). Theorem 5 establishes that a linear
number of recontaminations can be needed, and it still remains open to determine whether
the number of recontaminations can be bounded from above by a polynomial, which would

imply that the problem of deciding whether H(F') =1 lies in NP.

Theorem 5 There exists a sequence of simply-connected free spaces with H(F) = 1 such

that Q(n) recontaminations are required for n edges.

Proof: It will be shown that the example in Figure 5 requires k£ — 2 recontaminations by
visiting the point a € F' a total of £k — 1 times to repeatedly clear the “peak.” Without loss
of generality, consider the set of strategies that can be specified by identifying the sequence
of points, a, by, ..., bg, cy, ..., ck, that are visited. Assume that the shortest-distance path is
taken between any pair of points.

We claim that if all legs are initially contaminated, then they must be visited in one
of two orders: (by,cy,bg,¢o,. .., bg, k) OF (Crybgy Ck1,b51,...,¢1,01). To refute this claim,

consider visiting b; for some 1 < i < k, followed by a visit to another “leg”, say b; (or ¢;).

11

Recontaminated

Peak
J\: /\: oo /\E
b, C1 b, C2 by Ck

Figure 5: A linear number of recontaminations is required. Although this polygon can be
searched by a single pursuer, the peak must be visited £ — 1 times.

If any legs between b; and b; are contaminated, then b; will become recontaminated. In
general, any legs that are cleared will be recontaminated if a non-neighboring leg is cleared
next. This prevents the pursuer from making progress toward clearing the entire free space.
Thus, the legs must be explored in order.

Because of symmetry, consider visiting the legs from left to right without loss of generality.
Assume that the peak is initially contaminated. The points b; and ¢; can be visited to clear
the leftmost set of legs; however, these will get contaminated when b, is visited. By traveling
from ¢ to a to by, the leftmost set of legs remain cleared because the peak is cleared. When ¢,
is visited, the leftmost three legs remain cleared; however, the peak becomes recontaminated.
Thus, a will have to be visited again before clearing b3. By induction on 7 for 1 < i < k,
the peak will have to be cleared by visiting a each time between visits to ¢; and b;;1. This

implies that a will be visited £ — 1 times, resulting in k£ — 2 recontaminations. O

12

4 Computing a Solution Strategy

While Section 3 addressed worst-case bounds over certain problem classes, this section covers
concepts and algorithms for computing a solution strategy for a given free space. NP-
hardness is established in Section 4.1. Section 4.2 defines an information space for a single
pursuer, and provides a general method for handling this space combinatorially. Section
4.3 presents a complete algorithm for the case in which H(F) = 1 that computes a solution
strategy by decomposing F'into convex cells that each prevent critical changes in information.
This algorithm is quite efficient in practice, and was used to compute the examples shown

in Section 5. The case in which H(F') > 1 is discussed in Section 4.4.

4.1 Complexity of the General Problem

A complete algorithm must compute a solution strategy for a given number of pursuers, if
such a strategy exists. It is natural to compare the notion of completeness for this problem to
completeness for the basic motion planning problem (i.e., the algorithm will find a collision-
free path if such a path exists [3]). One important difference, however, is that the minimum
number of pursuers is crucial, but does not have a correspondence for the basic path planning
problem. A variety of simple, heuristic algorithms can be developed that require more
pursuers than necessary (for example, place a static pursuer inside of each cell of a convex
decomposition of F'). The problem becomes most difficult when the minimum number of
pursuers is requested.

The problem of determining the minimum number of pursuers is intractable if P # N P:
Theorem 6 Computing H(F') is NP-hard.

Proof: It is shown in [18] that Parsons’ problem for a planar graph with maximum vertex
degree 3 is NP-complete (i.e., computing the search number, S(G)). By Lemma 1, equivalent

geometric instances can be constructed, which implies that computing H(F') is NP-hard. O

4.2 Identifying Critical Information Changes

During the execution of a strategy, the pursuers must identify the contaminated region. At

a given time, this important piece of information generally depends on the initial positions

13

of the pursuers and their history of past positions, up to the given time. As pursuers move,
this information changes continuously; however, to develop a complete algorithm we will only
be interested in tracking times in which the pursuers’ information changes combinatorially.
This section defines an information space that corresponds to the knowledge of the pursuers,
and presents a general scheme for partitioning the information space into equivalence classes
of information. This is inspired in part by a standard approach used in motion planning,
which is to preserve completeness by using a decomposition of the configuration space that
is constructed by analyzing critical events. For example, in [21] a cell decomposition is
determined by analyzing the contact manifolds in a composite configuration space that is
generated by the positions of several disks in the plane. Section 4.3 presents a complete
algorithm that uses this concept for the case of H(F') = 1.

Assume that a search is performed by a single pursuer; the concepts in this section can
be extended to multiple pursuers with minor adaptation [14]. Let ¢ € F represent the
current pursuer position. Let S C F' represent the set of all contaminated points in F. Let
n = (q,S) represent an information state. The set of all possible information states will be
referred to as the information space. The information space is a standard representational
tool for problems that have imperfect state information, and has been useful for other motion
planning problems [7, 13].

Suppose that a strategy is parameterized with a time interval ¢ € [0,] for some fixed
ty > 0. For a fixed strategy, 7, and an initial set of contaminated points, S(0), a path in
the information space is obtained. At a given 0 < ¢ < ¢; the set of contaminated points,
S(t), can be determined from the history {v(#')|t' € [0,t]}. Let W(n,,to,t1) represent the
information state that will be obtained by starting from information state n, and applying
the strategy « from t; to ¢;. The function ¥ can be thought of as a “black box” that produces
the resulting information state when a portion of a given strategy is executed.

The next definition describes an information invariance property, which when satisfied
allows the information space to be partitioned into equivalence classes. A connected set
D C F is conservative if ¥V such that ¢ € F, and V7 : [tg, t;] — D such that 7 is continuous

and y(ty) = v(t1) = ¢, then the same information state, n = W(n, v, to, t1), is obtained. This

14

implies that the information state cannot be altered by moving along closed paths in D.

Just as in the case of motions in a conservative field, the following holds:

Lemma 3 If D is conservative then for any two continuous paths, 71,72, mapping into D

such that v, (ty) = 72(to) and vyi(t1) = v2(t1) then W(n, v1,to,t1) = ¥ (0, V2, o, 1), for any .

Proof: Select any third continuous trajectory, vs : [to,t1] — D, such that v3(¢y) = 71(¢1)
and v3(t1) = 71(to) (i.e., heading in the opposite direction). Form a new trajectory, 132, by

concatenating the trajectories 7;, 73, and s in the following manner:

71 (3(t = t1)) It <t + bzt
Naa(t) = BBt —t—551) I+ 5 <t <p 425
Y3t —ty —2258)) If ¢ > 1) 42850

Note that the information state does not depend on the speed of the pursuer. The resulting
information state will be W(n, vy, ty,t;) because 73 followed by 7, forms a closed-loop path,
and thus yields the same information state by conservativity of D. Note that 7, followed by
v is also a closed-loop path, which implies that v, must bring the information state from 7
to W(n, 11, %o, t1). Hence, ¥(n, v1,to,t1) = V(1n, Yo, to, t1). O

Thus, the information state that results from moving between ¢; € D and ¢, € D is

invariant with respect to the chosen path, assuming the pursuer remains in D.

4.3 A Complete Algorithm for a Single Pursuer

Since the general problem is NP-hard, it is worth focusing on the complete algorithm for
the case of a single pursuer. This implies that /' is simply-connected, otherwise at least two
pursuers would be required. The basic idea is to partition the free space into conservative
regions, and perform a search on the resulting equivalence classes in the information space.
This algorithm has been implemented and tested on a variety of examples; some of these

examples are shown in Section 5.

Representing the information state A useful representation of the information state
will be defined for the case of a single pursuer. Suppose the pursuer is at a position ¢ € F'.

Note that the edges in the visibility polygon, V'(¢), generally alternate between being part of

15

Figure 6: Binary labels can be used to encode the information state.

Figure 7: Ray shooting is performed for three general cases to form the conservative regions.

the boundary of F' and crossing the interior of F. Let each edge that enters the interior of F
be referred to as a gap edge. Consider associating a binary label with each gap edge. If the
portion of the free space that borders the gap edge is contaminated, then it is assigned a “1”
label; otherwise, it is assigned a “0” label, indicating that it is clear. Let B(q) denote a binary
vector of gap edge labels, with one label for each gap edge in the visibility polygon. Note
that each component of the contaminated region is bounded by a simple polygon that must
coincide with exactly one gap edge from V' (¢g) that has the “1” label. Thus, the specification

of the pair (¢, B(q)) uniquely characterizes the information state.

A decomposition of F' into conservative regions Let D represent a collection of
convex regions that define a partition of F. The boundaries of regions in D are obtained

by extending rays from edges in F', and from certain pairs of vertices, as shown in Figure

16

7. Each edge is extended in any direction possible, and each pair of vertices is extended
outward only if both directions are free along the line drawn through the pair. A similar
decomposition has been used for robot localization in [9, 24], and generates O(n?) regions in
the worst case.

The following statement yields an important property that will allow us to explore the

information space combinatorially:
Lemma 4 FEach region in D € D is conservative.

Proof: Consider representing the information state using (¢, B(q)), and let a pursuer move
using any continuous, closed-loop path 7 : [ty,t;] — D. We intend to establish that B(q) at
time ¢; will be the same as at time ¢y, regardless of the choice of 7. Recall that each label
in B(q) corresponds to a connected component of F'\ V(q).

Let ¢1, g2 € D denote two distinct pursuer positions. There is a one-to-one correspondence
between gap edges in V(¢;) and V' (¢z2), and each corresponding edge pair, say E; and Es,
shares a common vertex. If this were not true, then a ray of the form indicated in Figure 7
would lie between ¢; and ¢y, implying that ¢; and ¢ do not both lie in D.

Each gap edge borders a connected component of F'\ V(q), which may or may not
be comtaminated. While following any continuous path v : [ty,t1] — D, the connected
components of F'\ V(q) will deform; however, it is impossible to change to the topology of
F\V(q) (i.e., the same number of connected components will be maintained). This implies
that no components are split or merged; therefore, the gap edge for each component must
retain the same label. Thus, it is impossible to change B(q) by moving the pursuer inside
of D. O

Figure 8 illustrates how the regions are conservative by showing a single pursuer that
is approaching the end of a corridor. If the closed-loop motion on the left is executed, the
end of the corridor remains contaminated. This implies that although the information state
changes during the motion, the original information state is obtained upon returning. During
the closed-loop motion on the right, the gap edge disappears and reappears. In this case,

the resulting information state is different. The gap edge label is changed from “1” to “0”.

17

Contaminated

J \

Without crossing . .
a critical boundary Crossing a critical boundary

SN s w'\\

2

2

>

Figure 8: A critical event in the information space can only occur when edge visibility
changes.

A directed graph of information equivalence classes The regions in D and their
natural adjacency relationships define a finite, planar graph, G. Each vertex of G' corresponds
to a region D € D and an edge is defined if the boundaries of two regions have a one-
dimensional intersection. A path in F' can be constructed from a path in G' by connecting
centroids of adjacent regions in D by linear segments. Vertices in G must sometimes be visited
multiple times in a solution strategy because B(q) can be distinct each time. Initially, the
pursuer will be in some position with all gap edges labeled with “1”. The goal is to find any
sequence of vertices in GG that leaves the pursuer at some position with all gap edges labeled
with “0”.

A directed information graph, G;, can be derived from G. For each vertex in G, a set
of vertices are included in GGy, one for each possible labeling of the gap edges. For example,
suppose a vertex in G represents some region D, and there are 2 gap edges for B(g) at any
q € D. Four vertices will be included in G; that all correspond to the pursuer in D; however,
each vertex represents a unique possibility for B(g): “00”, “01”, “10”, or “11”. Let a vertex
in G be identified by specifying the pair (¢, B(q)).

To complete the construction of G, the set of edges must be defined. This requires
determining the appropriate gap edge labels as the pursuer changes regions. This in turn

requires certain correspondences between gap edges to be made in advance, as indicated in

18

Extension of cell

boundary
A
These correspond I
I
C |
R I
| Common |
point |
S |
\\\ I
\ I

N
\\ \\I
\ql I \qz

I
T
[/

I
These correspond I

Figure 9: The correspondences between gap edges from different neighboring conservative re-
gions can be directly determined. The information states are updated when moving between
regions by using this correspondence.

Figure 9. Suppose the pursuer moves from ¢; € D; to ¢; € D;. For the simple case shown in
the lower right of Figure 8, assume that the gap edge on the left initially has a label of “0”
and the gap edge on the right has a label of “1”. Let the first bit denote the leftmost gap
edge label. The first transition is from “01” to “0”, and the second transition is from “0”
to “00”. The directed edges in G are given by the transition from (g;,“01”) to (g;,“0”) and
from (g;,“0”) to (g;,“00”).

There are four possible cases that occur in general: a gap edge disappears, a gap edge
appears, two or more gap edges merge into one, a gap edge splits into two or more. If a gap
edge appears, it always receives a “0” label. If any n gap edges are merged, the merged gap

edge will receive a “1” label if any of the original gap edges have a “1” label. If a gap edge

19

splits, the new gap edges will obtain the value of the original gap edge.

This completes the definition of a directed graph that captures the information space
combinatorially. Any vertex in G of the form (¢, B(q)) such that B(q) = “00- - -0” represents
a goal vertex. The initial vertex can be given, or selected arbitrarily such that B(q) =
“11---17. A standard graph search algorithm can be employed to find a path in G; between

initial and goal vertices. The next theorem establishes the completeness of this approach.

Theorem 7 An algorithm that will find any path to a goal vertex from an initial vertex in

G is complete for the visibility-based pursuit-evasion problem in the case of H(F) = 1.

Proof: The algorithm is complete if the existence of any solution strategy implies that a
path exists in G between initial and goal vertices. Let {Dy,..., D, } denote the sequence
of regions in D that are traversed by any given solution strategy, v. Each D; corresponds
to a vertex in G, and {Dy,...,D,} corresponds to a path in G. This in turn corresponds
to a path in GG;. By Lemma 3 and Lemma 4, the information state does not depend on the
path chosen within each region, D;. From this and the fact that v is a solution strategy, the

vertex obtained at the end of the corresponding path in G is a goal vertex. O

4.4 Multiple pursuers

In general, the conservative region concept that was presented in Section 4.1 can be applied to
yield a decomposition of the 2 N-dimensional space that encodes the positions of the pursuers.
Due to the hardness of the general problem, however, it still remains challenging to develop
and implement a practical algorithm even for the case of two pursuers. A decomposition
must be constructed for the case of N pursuers such that the edges in the union of the N
visibility polygons do not change (edges to not vanish or appear). Conservative regions were
formed for the case of H(F) =1 by avoiding the critical changes in visibility (Figure 7), and
one would hope that a Cartesian product of planar regions could be formed to directly define
conservative regions for multiple pursuers; however, as Figure 10 indicates, the conservative
regions can be considerably more complicated for the two pursuer case. Gap edges from
two different visibility polygons can intersect in such a way that it is possible to execute a

closed-loop path that changes the information state while keeping both pursuers within their

20

Figure 10: This example shows that the information state can be changed by a closed loop
path without crossing a critical boundary, of the type shown in Figure 7. There are two
gap edges for each pursuer; however, each gap edge can maintain two different labels. For
example, Region 2 could be clear, while Region 4 could be contaminated. Furthermore,
Region 1 can be cleared without causing any gaps edges to change critically (for example,
by moving the left robot toward the right and returning).

regions in D. For the example in Figure 10, suppose the pursuer on the left moves toward
the right and returns, while the pursuer on the right remains stationary. This will cause
Region 1 to be cleared. This constraint defines a three-dimensional algebraic manifold in R*.
The algebraic constraints that correspond to these types of cases significantly increase the
implementation difficulty and add numerous conservative regions, which will dramatically

hinder efficiency.

5 Computed Examples

The algorithm from Section 4.3 is implemented in C++ and executed on an SGI Indigo2
workstation with a 200 Mhz MIPS R4400 processor. The computation times and other
parameters for several examples are listed in Figure 11. The implementation uses the quad-
edge structure from [8] to maintain the topological ordering of the regions. The information
graph G is searched using Dijkstra’s shortest path algorithm, where the edge cost is taken
as the distance between adjacent cell centroids. The solution is computed by traversing from

cell centroid to cell centroid, causing the computed path for the pursuer to be jagged in most

21

Problem | Edges | Nodes in G. | Nodes in G; | Precomp. | Searching | Total Time
(Cells) (Information) | Time (sec) | Time (sec)

Fig. 12 28 25 200 0.04 0.02 0.06

Fig. 13 68 130 1727 0.44 0.12 0.56

Fig. 14 46 237 8787 0.53 1.59 2.12

Fig. 15 65 246 18830 0.87 9.86 10.73

Fig. 16 70 888 103049 3.00 168.63 171.63

Figure 11: Various statistics are shown for the computed examples.

cases. In some applications, it might be appropriate to employ smoothing algorithms to the
path to respect additional problem constraints.

Figures 12-16 show several computed examples. Due to a large number of conservative
cells, Figures 14-16 are illustrated with the cell decompositions in separate diagrams from
the solution diagrams. Figure 14 shows the hookpin example described in [23]. Note that the
leftmost pin is recontaminated twice, and the pins are visited in the same order as mentioned
in [23]. Figure 15 is an instance of the sequence described in Section 3 that requires a linear
number of recontaminations. The region near the top of the figure is recontaminated 3
times. The final example generated a large number of conservative cells, which significantly

increased computation time.

6 Conclusions

A visibility-based planning problem has been identified in this paper that involves searching
for an unpredictable evader in a polygonal environment. This task can represent a basic
operation in a variety of robotic applications, such as surveillance with mobile robots. Other
potential applications include search-rescue operations and military strategy.

Several bounds were obtained. A tight logarithmic bound on the number of needed
pursuers was shown for the case of a simply-connected free space. A tight square-root bound
was expressed in terms of the number of holes for multiply-connected free spaces. A few
open problems remain, such as determining whether a polynomial-time algorithm exists to

decide whether H(F') = 1.

22

R

NN
NN

N

NN

N

n

)
o

R

N

o | 7

Figure 12: A computed solution trajectory is shown in three frames. The black area repre-
sents the contaminated region, and the white area represents the cleared region. The thick
curve shows a portion of computed trajectory, which is continued in each frame. The shaded
region indicates the visibility region at the final time step of the indicated portion of the
trajectory. The thin lines in the cleared region indicate the cell boundaries. In the final
snapshot, there is no place remaining where the evader could be hiding.

F —

\
pime:

s
N
rJ
B
N\
J |

Figure 13: Another computed example.

Information space concepts were used to provide a natural characterization of the unique
problem states. The visibility-based pursuit-evasion problem was established as NP-hard.
The general concept of partitioning the information space on the basis of critical information
changes was introduced to develop a complete algorithm. For the case in which H(F) =1,
the algorithm was implemented, and several examples were shown that were computed in a
few seconds or less on a standard workstation. Considerable issues remain for the case in
which H(F) = 2, and in general, approximation algorithms might provide the only hope of
obtaining practical solutions to many problems.

Several variations and extensions of the problem are worth exploring. For a variety of

23

LT

B
h

2z o,)

Figure 14: This difficult example requires two recontaminations of the leftmost corridor.

problems, such as visual searching using mobile robots, one can assume initial positions for
the pursuers. In addition to a visibility region, each pursuer could have a region of capture,
and the task could be to capture the evader using one or more pursuers. The problem can be
made more challenging by strengthening the model to include a bounded velocity, or possibly
stochastic prediction. The topological issues could become significantly more complex for
3-D free spaces. The conservative cell and edge-visibility concepts could be applied for
the 3-D case, but considerable challenges would be faced to produce an efficient algorithm.
Another problem variation is to consider a limited viewing angle, or a set of viewing rays
as considered in [23]. A limited viewing angle can realistically occur in applications, and
the problem can be extended to planning strategies that sweep viewing angles in addition to
moving the pursuers. Finally, a cost functional could be defined, leading to problems such

as finding the evader in minimum time.

24

X P N = S =)

three recon

equires

mple r

Figure 15: This exa

that requires

25

Figure 16: This bad example yields many edge-visibility cells.

Acknowledgments

The research of Leonidas J. Guibas is supported by NSF grant CCR-9623851 and US Army
MURI grant 5-23542-A. Rajeev Motwani’s research is supported by an Alfred P. Sloan Re-
search Fellowship, an IBM Faculty Partnership Award, an ARO MURI Grant DAAH04-96-
1-0007, and NSF Young Investigator Award CCR-9357849, with matching funds from IBM,
Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox Corporation. The re-
maining researchers are supported by ARO MURI grant DAAH04-96-1-007 and ONR grant
N00014-94-1-0721. The authors thank Julien Basch, Frédéric Cazals, Bruce Donald, Héctor
Gonzalez-Banos, Gary Kalmanovich, Jon Kleinberg, and Li Zhang, for their helpful sugges-

tions. Gary Kalmanovich suggested the linear recontamination example from Figure 5.

26

References

1]
2]

T. Bagar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, London,
1982.

D. Bienstock and P. Seymour. Monotonicity in graph searching. J. Algorithms, 12:239-245,
1991.

J. F. Canny. The Complezity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.

B. Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annu. IEEE
Sympos. Found. Comput. Sci., pages 339-349, 1982.

W.-P. Chin and S. Ntafos. Optimum watchman routes. Information Processing Letters, 28:39—
44, 1988.

D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile intruder in a corridor — the open

edge variant of the polygon search problem. Int. J. Comput. Geom. & Appl., 5(4):397-412,
1995.

M. Erdmann. Randomization for robot tasks: Using dynamic programming in the space of
knowledge states. Algorithmica, 10:248-291, 1993.

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. AMC Trans. Graphics, 4(2):74-123, 1985.

L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. In K. Gold-
berg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, Proc. 1st Workshop on Algorithmic
Foundations of Robotics, pages 269-282. A.K. Peters, Wellesley, MA, 1995.

O. Hajek. Pursuit Games. Academic Press, New York, 1975.
R. Isaacs. Differential Games. Wiley, New York, NY, 1965.

A. S. Lapaugh. Recontamination does not help to search a graph. J. ACM, 40(2):224-245,
April 1993.

S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. PhD thesis, Uni-
versity of Illinois, Urbana, 1L, July 1995.

S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani. Finding an unpredictable
target in a workspace with obstacles. In Proc. IEEE Int’l Conf. on Robotics and Automation,
pages 737-742, 1997.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal of
Applied Mathematics, 36:177-189, 1979.

F. Makedon and I. H. Sudborough. Minimizing width in linear layouts. In Proc. 10th ICALP,
Lecture Notes in Computer Science 154, pages 478-490. Springer-Verlag, 1983.

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. The
complexity of searching a graph. J. ACM, 35(1):18-44, January 1988.

B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted graphs. Theoretical
Computer Science, 58:209-229, 1988.

J. O’'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York, NY,
1987.

T. D. Parsons. Pursuit-evasion in a graph. In Y. Alani and D. R. Lick, editors, Theory and
Applcation of Graphs, pages 426—441. Springer-Verlag, Berlin, 1976.

27

[21]

J. T. Schwartz and M. Sharir. On the piano movers’ problem: III. Coordinating the motion
of several independent bodies. Int. J. Robot. Res., 2(3):97-140, 1983.

T. Shermer. Recent results in art galleries. Proc. IEEE, 80(9):1384-1399, September 1992.

I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM J.
Comput., 21(5):863-888, October 1992.

R. Talluri and J. K. Aggarwal. Mobile robot self-location using model-image feature corre-
spondence. IEEE Trans. Robot. & Autom., 12(1):63-77, February 1996.

M. Yamashita, H. Unemoto, 1. Suzuki, and T. Kameda. Searching for mobile intruders in

a polygonal region by a group of mobile searchers. Technical Report TR-96-07-01, Dept. of
Electrical Engineering and Computer Science, University of Wisconsin - Milwaukee, July 1996.

28

