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Abstract— This paper presents strategies for controlling the
distribution of large numbers of minimalist robots (ones otain-
ing no sensors or computers). The strategies are implemdnte
by varying area, speed, gate length, or gate configuration in
environments composed of regions connected by gates. Weodem
strate the effectiveness and practical feasibility of oupproach
through physical experiments and simulation. We use Contous
Stochastic Logic to verify high level properties of our sgst
and to evaluate the accuracy of our model. Also, we prove that
our model is accurate and that our algorithms are efficient thi
respect to the number of regions and number of bodies.

|I. INTRODUCTION

Applications such as agriculture, environmental moni- (c) (d)

toring, surveillance, and search and rescue would benefily. 1. A sequence of images illustrating a control policingsstatic gates

from the deployment of large numbers of robots that solvi a large (6mx 4m) environment composed of regions separated by low

. . . rick walls, and connected by small static ramps. Forty-fiVeasel balls
tasks such as navigation, patm”mg’ and coverage [9]]’ [Zﬁ/ere used in this experiment (see Fig. 3 for details). Hezertixing process

However, there are several fundamental challenges that ag@iemonstrated as all of the bodies start in one region aedbeught
present and need to be addressed before the full potentialtgfler control to the distributiorf2/9,1/9,4/9,2/9) (or (10,5, 20, 10)
such applications can be realized. These include modeliffe, "grmatzed o the rumber of bodies) cdonie fomis (=)
issues, such as the curse of dimensionality, where the statéerse through the environment. In (c) they have readmediistribution
space and associated costs grow unacceptably as a functibh4,21,8). And in (d) the distribution is(12,5,19,9). Experiments
of the number of bodies. Other issues involve costs, energff™ing in different regions yield similar results.
consumption, ease of deployment, and robustness. Scaling
issues are especially problematic in the area of micro- and
nano-robotics, where very large numbers of bodies witlelitt One approach explored is to build and use stochastic
sensing or actuation capabilities are involved [27]. models, due to the non-deterministic aspects underlying
Most approaches for solving robotics tasks have followethany mobile robotics problems [16], [30]. Another approach
a trend towards becoming more complex. They requiris to take advantage of randomized motion in bodies to solve
precise sensors, robust and reliable actuators, comgiicatasks [11]. In these, control is exercised on the behavioura
world models, high-bandwidth communication, and powerfutonfiguration space of the robot [29]. Our methods build
computers and algorithms. This complication is unsumgisi on previous work done on manipulating robots by means
given the nature of technological progress and the diffjcultof passive control [2]-[4]; we expand and formalize such
of the tasks related to multiple robot deployments. On theontrol using stochastic models. We propose and demoastrat
other hand, no proof exists to support the necessity @bur different means of control for minimalist bodies using
this complexity. Although these information-rich apprbas Continuous-Time Markov chains (CTMCs) [7].
have achieved remarkable success, their resource ingensiv
nature may make them hard to scale.
Our motivation is to tackle multiple robot deploymentA. Regions and Gates

proplems through a rr_1inima|ist approach, where instead of | ot 7 — (V, E) be a connected directed graph represent-
asking ourselveswhat is the most we can do®e ask our-  ing the environment wherg, theregions is a set of disjoint
selveswhat is the least we need to do #fom a theoretical ¢josed subsets with finite boundariesih, andE, thegates
standpoint, this becomes a very interesting question @8t his 4 set of edges connectifigbetween their boundaries (see
been explored by several authors [1], [8], [10], [12], [28]. Fig. 1). Eache = (i, j) € E represents the collection of gates

. I going from region; to regionj.
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and its bounded spekdThe body is actuated sufficiently to distribution of . Lastly, in Section V we use Continuous
induce wild behavior inv. We use the definition for wild Stochastic Logic (CSL) and a model checker to construct
set forth in [3], in which a wild body is one that, when probabilistic and temporal bounds for our strategies based
placed into a bounded region C R?, it moves along a on Q.

trajectory that strikes every open interval along the baupd

of r infinitely often. This property is related to the notion of ~ !ll. FINDING A TRANSITION MATRIX FROM AN
topological transitivityin dynamic billiards [14], [15], [17], ENVIRONMENT’S CONNECTIVITY AND A GOAL
[33]. DISTRIBUTION

As a result of this wild motion, the bodies move randomly  Algorithm 1 takes a connected, undirected, anti-reflexive
within the interiors of the regions of the environment, nm&ki graph G and a positive goal distributiop, and constructs
it difficult to model the state of the bOdy inside of Agn instantaneous transition matr@ for a CTMC whose
region. Instead, we model the state space aslanensional |imiting distribution isx.. The speed of any particular chain’s
vector 1, the distribution of bodies across the regions otonvergence to the limiting distribution is given by itsrtsé
the environment. Our notation i8 = (uo, f11, .-, ) fOr  tion matrix’s Second Largest Eigenvalue Modulus (SLEM),
n = |V|, wherey; is the proportion of bodies in regiod  jn which the lower the second largest eigenvalue is, thefast
thUSZui =1 it converges [5].

K3

C. Continuous Time Markov Chains Algorithm 1 FindTransitionMatrix(, 1)

Transitions in this state space occur when a body movédput: G = (V. E) {Graph of the environmeht
across ane € E. Such a transition along = (v;,v;) Input: p {Desired limiting distributior
occurs at a rateR;;, corresponding to the parameter of arQutput: @ {An instantaneous transition matfix
exponential distribution from which the time spent in the ,. .., J HJ (i,j) € E
region before such a transition is made is drawn. Given these ! 0 o/w
transition rates, we model the system using a Continuous-
Time Markov chain (CTMC)YC' = (V, Q), whereQ: Alternative algorithms for finding suc exist, for exam-

Rij (i,j)€E ple using semi-definite programming [5], [6]. These methods
Qij = { 0 o/w obtain the optimal solution, the Fastest Mixing Markov Chai

is th . . i Thi b (FMMC), but we have chosen Algorithm 1 for simplicity.
is the n x n instantaneous transition matrix. This can be Proposition 1:All Q such that S_JJ _ Z_]’Z £ j have

, : . X
augmented t(i). by setting the diagonals to bg minus the Sunﬁmiting distribution .
of rates for their rowQ), = — Z Q;;. From this augmented Proof:

i : . L
form, the probability that a Jbody is in stateafter timet¢ First, we augmeng) to " by adding n*eg.atlve diagonals
after having started in stateis P;(t) where P(t) = ot (see Sec. ll). The limiting _d_ls_trlbuuom is d_eflned as

The limiting distribution isy* satisfying uQ’ = 0, where H Q@ =0, Zﬁfz‘k = 1. By definition of the algorithm above

Z‘“ =1 we have
“Our results can be extended from one body to multiple
bodies in a straight-forward way by assuming that the bodies . Ql 1
cover a small proportion of any region’s area and that vivj, Q. 1
collisions between them do not disrupt significantly thater ViV _QJ,Z . Q'
w.r.t. the other bodies. IV Hildy; = Hiley
v, Q. = Qs
D. Problem Formulation J ;MQU ;“JQ-W

Now that we have formulated our model, we can briefly

state the problermgiven a desired limiting distributiom of by breaking up the definition of the diagonal we get

bodies in an environmen®, construct a control policyy Vi Z QL 1.0
. . oy .]7 :LLZ 1) ,LLJ 73"

expected to achieve using as few additional resources as oy

possible

The rest of the paper is organized as follows. In Section BY moving over the negative diagonal that was added
Ill, we show howQ can be found for an environment for during augmentation we get
any goal distribution.. In Section IV, we show how & and Vi Z Q. = 0
some additional information about the environment can be /> , Hitei
used to construct a control policy to achieve the limiting ' uQ = 0

1For our work here, each body is represented by a point partisbugh th f .
in practice it need only be small with respect to the area efrdgions and erefore,p = .
the widths of the gates. |



Proposition 2: The ratio of the rates is

Proof:
We start with the definition of the rate, and observe that all
transitions must occur through gates, when they are open.
T2
R;; = Rate[b transitions fromi to j]

= Ratel[b transitions througle;;]

= Pr[m(e) = open|Rate[b hits e;;]

TS

Fig. 2. An example labelled environment with five regions and gates
between every connected pair of regions.

whereRate|] is the rate of an event per unit time, as the unit
For an example of the algorithm in practice, consider thiMe approaches zero. Since gates occupy portions of region
environment in Fig. 2. If we want the distribution = boundaries, we get

(0.1,0.2,0.3,0.3,0.1), we create the following Q: Rate[b hits e;;] = Rate[b hits boundar zfv(fdfz))
0 02 03 03 0.1

01 0 03 03 0.1

Q=101 02 0 03 0.1

0.1 02 03 0 0.1

0.r 02 03 03 0 Rate[b hits boundary= O%,

This follows the intuition that the rates of transition beem \yhereind : V — R+ is the length of a region’s boundary,
two regions should be inversely proportional to their debir angC € R is a constant factor. Thus we get
distributions?

The rate at which bodies hit the boundary is proportional to
their speed and the boundary length, and inversely propor-
tional to the region size, thus yielding

Dless
IV. DEVELOPING A CONTROL POLICY FROM A Rij = CPrim(ei;) = OPBW]%
TRANSITION MATRIX AND OTHER ENVIRONMENT
INFORMATION and finally as a ratio

A. Modeling

To construct a control policyy to gently influence the Rij _ Pr[m(ei;) = open] w(i) a(j) l(ei;)
motion of a body, first we must construct a model for how Rji  Pr[m(ej;) = open] w(j) a(i) l(ej;)
the bodyb moves through an environme@t This motion is R;; P
captured by the rate of transitid®;; of b between connected R = myw;a;l;
regions: andj. Due to the body'svild motion, at a point in
timet, the body’s location in regiohis uniformly distributed u
as is its directiord. Let Q' = g"{, mi = W, Given that the limiting distribution will be the goal dis-

i ji)=open]

. N - . N . ibuti il — Qii
wi = 2@ i al) aaari ;ge?g' in whichl : E — R+ trlbu_t|0n SO Iong as the ratn% =g, s preserved by
/ e the implementation ofy onto G (see Proof Ill), the control

J T w(@) Y T a(h)”
is the length of a gate along a region boundary} — R™ ) Pr(rmles ) —open
I g g g g . o strategy can be implemented by adjusti mgez_;;ogen;

is the area of a region; : V' — R™ is the speed of a body in "¢ _
a region, andn : E — {open, closed} is the configuration % Z((Zg or % Combinations of these factors can also
of the gatee = (i, 5), in which open indicates that the gate be used (see Hg. 7), but for simplicity we do not consider
allows bodies from region to j and closed not. them here.

2Note that because the ratios of values are important ancheotalues B. Control Policy
themselves, transpose-pairs @f can be scaled by arbitrary factors. The

algorithm presented in Section IV only uses the relativéosatso such Construction of a control policy assumeg)aand knowl-

scaling has no effect on the end control strategy. N . .
3Because the body’s motion inside a region is deterministier small Edge of three of the foIIowmg. area)( gate conflguratlon

intervals of time (up to bouncing off region boundaries atideo bodies), switching (n), speed {), and gate lengthl). For area and
for ¢’ neart, this is not the case. As time progresses, the body’s Iacatiospeed control to be effective alone. detailed balance must

and direction undergo topological mixing and thus if theg aampled at hold. f | h I t tri ith
sufficiently large intervals they appear to be drawn fromfama random ola, Ttor example, as when all gates are symmetric wi

variables. respect to their lengths and configurations.



1) Area: The first way to control the distribution is by
modifying each region’s area, such that for regignthe
area isarea (i) = Yarea(j)Q4l5whm}, for some adjacent
regionj, the first such region being given any constant value.
The order of this control policy evaluation is any brepth-
first search of the environment. If all gates are identidal t

simplifies t0vgrea(?) := piw(i).

2) Length: The next means of control is by manipulating
the lengths of gates across the region boundaries, in which
the length of the sum of gates= (4, j) iS Viengtn (4, j) =

i d 0]
Qim; a;wy .

3) Speed: The third means of control is over the speed

of the _bodies in each region, in which for regiofr_lthe Fig. 3. (a) A static, one-way gate; (b) A dynamic, two-way egatc)
speed iSyspeed(i) == ’Yspeed(j)Qfl;-w;-m;-, for some adjacent The inside of a Weasel Ball, which is 10cm in diameter; (d) A/gibal
regionj the first such region being given any constant valyé&nvironment with bodies. The walls of the environment armposed of
' . . S 9 x 9 x 28cm bricks.

The order of this control policy evaluation is any brepth-
first search of the environment. If all gates are identidds t
simplifies t0vspeca (i) := w(i)/ ;.

Speed control can be implemented in mobile robots by
varying the motor power. In micro- or nano-robots that
move across voltage differentials, speed control can be

implemented by varying voltage.

4) Configuration Switching: The last of the means of
control is over the probability that a gate from regm re-
gion j is configured to be opengime(i, ) :%
proportion of the time, in which/(i, j) := Q’ajw;l]

Gate configuration control can be implemented by opening
and closing gates (e.g. a door).

(c) at 102s (d) at 204s

These strategies can all be scaled by a constant and remff 4- CO'“IFO' by meins thafea i"da physical imp'zmsmam ﬁ;’”
. . Is twice as large as the other, and are connecte y two gq e
correc_:t, _alth_ough the cpnstant will effect the speed at Wh!Cgates, Initially in (a) all bodies begin in the smaller regid®y (b) they
the distribution of bodies approaches the goal. Calcudatinare distributed half-and-half, by (c) they have reachedgibel distribution
time and length control ar®(n?) in time, in whichn is the ~and itis maintained in (d).
number of regions, and calculating area and speed control

can be done irO(n) time.

C. Experimental Testing

Experiments are used to demonstrate the strategy’s ef
fectiveness, using both a physical implementation as well
as in a simulator. The physical implementation consists of
Weasel Balls, a cheap ($4) toy for children and pets, inside
an environment whose regions are constructed out of low
brick walls and whose gates are either single-configuration
static gates whose configuratiorvigen, or controllable two-
way gates whose configuration is eithgken or closed. See
Fig. 3. These mechanisms are similar to the ones presente
in [2]. The simulation consisted of polygonal regions in
R? and bodies that implement a simple approximation of (c) at 224s (d) at 404s
Weasel Balls’ motion; they travel along straight trajeer Fig- 5. Control by means of gate length in a physical impletaon. Two

ates of the same length are pointing in one direction, aridglesgate of

and bounce at random angles off of region boundaries [1%@ same size is pointing in the other direction. Initialty () all bodies

See Fig. 7. begin in the left region. Again, by (b) they are distributealffand-half, by
In Figs. 4, 5, and 6, we demonstrate achieving a distri€) it has reached the goal distribution and it is maintaiiredd).

bution of u = (1/3,2/3) across two regions by means of

(a) at 4s (b) at 48s




(c) at 30s (d) at 133s

Fig. 6. Control by means of the probability that a gate is inaaoepting N i A
configuration through time, in a physical implementatiohe Date alternates
direction randomly such that the ratio of probabilities e desired ratio.

Fig. 8. Graphs of the L-2 distance between the actual digiab and the
goal distribution as a function of time. Different colorspresent different
experiments. (a) Convergence starting from each regioe @rmwhich is
in Fig. 1) of a physical experiment; (b) Convergence in satiah to a
distribution proportional to their area; (c) Convergenoesimulation to a
distribution inversely proportional to their area

(c) at 33s (d) at 49s
Fig. 7. Control by means of the speed of 100 bodies, in sifomiathe  move out of regions with limiting distributiofi and not ever

which would correspond to a scenario in which bodies only
control strategy here has to control for varying region_siizeadd_ition to into them. However this does not work in the case of our
the goal distribution. Across (a), (b), (c), and (d) thera idecreasing error g . . . . .
(L-2 distance between current distribution and goal distion) of 1.24, Originaly/, since it would result irf’s transition matrix ceas-
0.60, 0.32, and 0.24 respectively. ing to be an ergodic chain. The limiting distribution of a ron
ergodic Markov Chain is a function of the initial distriboui.
Consider how an initial distribution, = (0,0, 0,0, 1) would
controlling region area, gate length, and the probabiligtt resultin the limiting distribution.” = 110, whereas any initial
a gate is accepting, respectively. In Fig. 7, we control theistribution g = (0, a1,a2,as,.4), >, a; = .6 would result
distribution across five regions using a combination of ardf the limiting distributiony.” = ', our goal.
and speed control. Four physical experiments were also run ) )
in a larger environment with 45 bodies; one of which is Though @ cannot be constructed for impossible goal
shown in Fig. 1. Additional experiments were performed on distributions /, Qs can be constructed for an infi-
wide variety of environments, starting distributions, @ymhl  Nite sequence of possible, non-negative goal distribation
distributions (see Fig. 8). Videos of these experiments artéDvﬂlew"»il_i}& pi = p'. This subsequent sequence of
more can be found ahttp://users.cis.fiu.edw/jabobadi/sc/ transition matrices)o, @1, )2, ... converges t@) and can be
. o ) used to implement the otherwise unreachable control policy
D. Transition Sequence for Goal Distributions with Zeros
In Section Ill, we specified thgt must be positive. Con-  The following practical heuristic is provided for the iriti
sider the case of the goal distributipnn = (0,.3,.2,.1,.4) element of the sequengg: the besiy is the initial distribu-
for the environmentin Fig. 2. Our control policy constrocti tion of the bodies if known, since convergenceupwould
would divide by0, and is thus undefined. In some cases (e.ghen be instantaneous, or the distribution correspondiray t
for the distributionu = (0.25,0.25, 0.25,0.25,0)) we can get random walk on7, because it has a lo§LEM and is easy
around that problem by approximatiivig € R™,¢/0 := co, to implement.



V. FINDING PROBABILISTIC BOUNDS ON THECONTROL
STRATEGY USING MODEL CHECKING

In this section, we use a temporal logic and a model
checker to present techniques for verifying the limitingtdi
bution, calculating the average expected error, and cangpar god \
the mixing rates of systems under the control of the policy we fol N\
presented. Additionally, we present an analytical techaiq
for quantifying the difference between a body under wild
motion and an ergodic body. We are motivated by ongoing ) " et ) v
work _uses temporal logic in high-level control for motlonFig. 9. The L-2 distance between the expected limiting ithistion and the
planning problems [18]-[21], [23], [24], [31]. In our work, goal distribution as a function of the number of bodies in ¢éhgironment,
we foundcontinuous stochastic |Og|c(:SL) to be suitable for the environment in Fig. 1. Derived using the CSL modelokiee PRISM.
for our needs.

The syntax for CSL is

d=true [a| @ | DAD | Py[¢] | Sep[®]
¢=0Q | dU'D

in Fig. 1in0.005s on an Ubuntu 12.04 LTS install on a Intel
Core 2 Duo CPU with 4GB memory.

B. Average Error

The proofs and verification provided thus far show that
the expected distribution under this control strategy & th
@oal distribution. At any given time, the actual distrilmuti
is probably not the goal one (and for some goals, cannot
E?é%p We call this difference therror, and is measured as the
-2 norm distance betweemand p*: (u, u*)2. The average
rror can be calculated as

in which a is a proposition,~e {<,<,>,>}, p € [0,1]
is a probability, andl is an interval of time on|0, co).
In this syntax,® are state formulas, which are assertion
about the model state, angl are path formulas, which are
temporal assertions about the sequence of states that
model may take. The operatgr) is next and is satisfied L
if in the next state the formula will be true, and the operatof
U is satisfied if the first state formula will be trumtil the

second one is true. From these all of the common operators ZPr(u)<u,u*>2
and propositions, such as andfalse can be derived, and I
additionally temporal operators such agentually 0® = Thjs computation can be expensive and complicated, espe-

true U1%>)® can be defined. The synt#&.,[¢] asserts that cjally the enumeration of all possible states and their prob
the probability of the path satisfying is ~ p. The syntax gpjjities. Fortunately PRISM can again be used to simplify
S.p[®] asserts that the limiting probability ob satisfies this process. PRISM allows costs to be assigned to states
~ p. A complete and detailed definition, syntax, semantichat meet any proposition, and the cost is accumulated over
and examples for CSL can be found in [26]. The reader ie time the system spends in the state. Assigning a cost of
encouraged to consult [26] for more information. the L-2 norm distance allows the expected distance to be
We used the probabilistic temporal model checker PRISMpeasured. Experimental analysis shows that the error tends
described athttp://www.prismmodelchecker.ord22]. This g zero as the number of bodies tends towards inffity.
program takes a problem formulation and a list of proposi- consider the environment shown in Fig. 1, whose em-
tions to be checked, all formulated in an application specifipirica”y observed error appears in Fig. 8 (a), and whose
grammar, and evaluates the propositions efficiently. Owxpected error in the limiting distribution is shown in Fig.
model’s state is the space of all distributions; it consi§ta g9 The model checker shows that for that environment
variable for each region whose value indicates the proporti 3nd the number of bodies used (45), the average error of
of bodies in that region. Our model’s transition schemene |imiting distribution is11.35%. The observed average
consists of a rate between two stateand j proportional error is 25%:; thus we can conclude that the discrepancies
to R;; and the number of bodies in between our model and the physical system accounts for
A. Steady State Verification 56% of the observed error. This technique is generalized and

. ) can be applied to analyze how closely any body’s motion
We can use PRISM to verify properties about our SySte”érpproximates ergodicity.

such as the limiting distribution. The limiting distribati for

regioni in a single body model can be found by evaluatind>- Mixing Rates

the formulaS[u; = 1].* This is the proposition that, in the In Section IIl, the Second Largest Eigenvalue Modulus
steady state, the body can be found in that region. The sesWSLEM) is introduced as an analytical method for comparing
from PRISM corroborate the proof provided in section IVithe mixing rate of two transition matrices. Using PRISM’s
These calculations are fast too, verifying for the envirenin rewards-based properties and the reward in Sec. V-B, the

4There are not probabilistic bounds on this or other formhka® because SExpected average error is invariant to the connectivity hef énviron-
Slpi = 1] = pj st.Scpx[pi = 1] and Sy .« [p; = 1]. Using PRISM,  ment, but does vary based on the goal distribution, the nurabagents,
this can be calculated without a search. ) and the number of regions.



Regon1in it 13 that the motion of wild bodies in such an environment can be
modeled by a CTMC is supported by experimental evidence
(see Fig. 10). This strategy is general enough that it can be
applied to any environment that meets the assumptions laid
out in Sec. Il, and any goal distribution. Furthermore, the
model checking techniques in Sec. V can be used to analyze
any strategy.

1000 1500
region

(a) A. Significance

e The significance of these results and this control strategy
can be limited by the assumptions made. The assumption
about thewildnessof the robotic motion turns out to be
rather robust; in Fig. 10 we see that our simulated bodies
transition according to an exponential distribution. Wa-co
ducted additional experiments, in which we manipulated the
quality of the body’s motion in simulation by adding varying
degrees of systematic wobble, skewed direction of travel,
(b) and acceleration after inelastic collisions. In all cades t
Fig. 10. Histograms of the time a body spent in two regionsifmiator. exponential distribution was preserved, albeit with a extal
Region (a) is 50% larger than region (b). These clearly denate that parameter.
ghett_'tr)mt? Spenrt] in a region iaﬂ be appr%'maltetly ftﬂodeled axwgent;]al On the other hand, the priori knowledge requirements
Istribution wnose parameter IS proportional to the re’glcmea. uch a .
distribution exists for each gatg, j) € E for the time spent i before about the envwonme.nt, as well as the necessary COI’?tI‘Ol over
transitioning toj. The parameter of this distribution is the rdg; . the environment to implement some of the strategies, can
limit certain applications. The power in our approach ig tha
it can be applied to a wide variety of problems; the stratsgy i
. . ignorant to the number of bodies being controlled, ignorant
same can be done with PRISM. The cumulative error of . . : 9 an
: 0 their state (region, location, speed, etc), and worksiin a
system can be calculated, as can be the instantaneous eIl octed controllable environment
with PRISM. Since these rewards are monotone decreasing, '

we can compare the mixing rate of different graph structures Inlprictlﬁe, mdoo.r an|ronments Ignd t?emEeres to belng
(in which the goal distribution is kept constant), and th caslly Droken up nto regions and gates by rooms an

e . .2
mixing rate of different starting distributions (in whichet doors respectively. Whereas establishing control by means

topologies are kept constant), by calculating either of¢he .Of area or Ie_ngth modul_at|on may b_e d|ff|gu|t or impossible
0 such environments, time control is achievable merely by

measures for a given constant time. This comparison cd ) d closi ‘ q q irol
then be used to conduct a search of the region connectivﬁyenlﬂg and bC 0sing 0r1ﬂe1-way gg e]:s, anb ?'pee tconl ro cahn
space or initial distribution space to find the fastest-mxi © achieved by varying the Speed ot .a robots motors in eac

systems. This method is more powerful than using the SLEIUngon [3].' For ngnorobots that swim apcording by control of
because it is sensitive to initial distributions. voltage differentials, speed can be adjusted with the gelta

Furthermore, time- and speed-based control strategies als
VI. DISCcUSSION ANDCONCLUSIONS lend themselves to being easily scaled down or up so that
athe fastest speed or shortest duration are manageable.

In this work we present a methodology to control
distribution of bodies by controlling the variables for thp
area of the regions, 2) length of the gates between regior%’, Future Work
3) speed of the bodies in the regions, and 4) the probability Most foreseeable future work, in keeping with the goals
that a gate between two regions is open. of minimalism set out in Sec. I, would involve reducing

The results from the physical and simulated experimenthe severity of the assumptions the strategy requires. For
show that this control strategy is correct and efficient witlexample, some of the information assumed by our strat-
respect to the number of regions and number bodies beiegy, such as the area of regions and the topology of the
subject to control. All of the factors subject to controleth environment, could be approximated if gates were capable
area of regions, the speed of bodies within the regionsf communicating with each other as well as distinguishing
the sizes of the gates, and the likelihood that a body cdretween the bodies in the environment. The topology can be
transition through a gate, are shown to be relevant factodgarned by observing which gates are reachable from each
and can be ignored only where they are constant across thiher (if a body visits two gates in sequence, they must
environment. Other factors may exist that could influencshare a region). The base rates between regions, taking into
the effect of the control strategy; however any such facto@ccount their area, the speed within them, and the size of the
must have been unintentionally held constant across all egates connecting them, can be calculated by approximating
periments we conducted. Additionally, our core assumptiohow long an agent spends in a regibin average before



transitioning through any given gate to regipnThis value
corresponds ta(i)w(i)l(e;;) whenm; = 1.

There may be more accurate models at the expense [gg]
being more complicated [32]. However we believe that
CTMCs capture the phenomenon to a large enough extent

. 21)
to make them useful models. Some future work may mvoIv[e
exploring other modeling options.

Another area of development for future work would be td22]
design robots whose motion best fits the definitiowibdl put
forth in Sec. Il. This measurable (see Sec. V-B) development
would improve mixing rates and decrease average error, apd
) . L . : . 23]
its relation toergodicitywould make it an interesting problem
in its own right.

[19]
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