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Abstract— This paper presents strategies for controlling the
distribution of large numbers of minimalist robots (ones contain-
ing no sensors or computers). The strategies are implemented
by varying area, speed, gate length, or gate configuration in
environments composed of regions connected by gates. We demon-
strate the effectiveness and practical feasibility of our approach
through physical experiments and simulation. We use Continuous
Stochastic Logic to verify high level properties of our system
and to evaluate the accuracy of our model. Also, we prove that
our model is accurate and that our algorithms are efficient with
respect to the number of regions and number of bodies.

I. I NTRODUCTION

Applications such as agriculture, environmental moni-
toring, surveillance, and search and rescue would benefit
from the deployment of large numbers of robots that solve
tasks such as navigation, patrolling, and coverage [9], [25].
However, there are several fundamental challenges that are
present and need to be addressed before the full potential of
such applications can be realized. These include modeling
issues, such as the curse of dimensionality, where the state
space and associated costs grow unacceptably as a function
of the number of bodies. Other issues involve costs, energy
consumption, ease of deployment, and robustness. Scaling
issues are especially problematic in the area of micro- and
nano-robotics, where very large numbers of bodies with little
sensing or actuation capabilities are involved [27].

Most approaches for solving robotics tasks have followed
a trend towards becoming more complex. They require
precise sensors, robust and reliable actuators, complicated
world models, high-bandwidth communication, and powerful
computers and algorithms. This complication is unsurprising
given the nature of technological progress and the difficulty
of the tasks related to multiple robot deployments. On the
other hand, no proof exists to support the necessity of
this complexity. Although these information-rich approaches
have achieved remarkable success, their resource intensive
nature may make them hard to scale.

Our motivation is to tackle multiple robot deployment
problems through a minimalist approach, where instead of
asking ourselves:what is the most we can do?, we ask our-
selves:what is the least we need to do it?From a theoretical
standpoint, this becomes a very interesting question that has
been explored by several authors [1], [8], [10], [12], [28].
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Fig. 1. A sequence of images illustrating a control policy using static gates
in a large (6m× 4m) environment composed of regions separated by low
brick walls, and connected by small static ramps. Forty-fiveWeasel balls
were used in this experiment (see Fig. 3 for details). Here the mixing process
is demonstrated as all of the bodies start in one region and are brought
under control to the distribution(2/9, 1/9, 4/9, 2/9) (or (10, 5, 20, 10)
when normalized to the number of bodies), clockwise from top-left. In (a)
all the bodies save one are still in region0. In (b) they have begun to
disperse through the environment. In (c) they have reached the distribution
(12, 4, 21, 8). And in (d) the distribution is(12, 5, 19, 9). Experiments
starting in different regions yield similar results.

One approach explored is to build and use stochastic
models, due to the non-deterministic aspects underlying
many mobile robotics problems [16], [30]. Another approach
is to take advantage of randomized motion in bodies to solve
tasks [11]. In these, control is exercised on the behavioural
configuration space of the robot [29]. Our methods build
on previous work done on manipulating robots by means
of passive control [2]–[4]; we expand and formalize such
control using stochastic models. We propose and demonstrate
four different means of control for minimalist bodies using
Continuous-Time Markov chains (CTMCs) [7].

II. PRELIMINARIES

A. Regions and Gates

Let G = (V,E) be a connected directed graph represent-
ing the environment whereV , theregions, is a set of disjoint
closed subsets with finite boundaries inR

2, andE, thegates,
is a set of edges connectingV between their boundaries (see
Fig. 1). Eache = (i, j) ∈ E represents the collection of gates
going from regioni to regionj.

B. Wild Bodies

Within this environment movewild bodies [4] having no
sensors, computers, or communication abilities, each repre-
sented by its location in somev ∈ V , its direction of motion,



and its bounded speed1. The body is actuated sufficiently to
induce wild behavior inv. We use the definition for wild
set forth in [3], in which a wild body is one that, when
placed into a bounded regionr ⊂ R

2, it moves along a
trajectory that strikes every open interval along the boundary
of r infinitely often. This property is related to the notion of
topological transitivityin dynamic billiards [14], [15], [17],
[33].

As a result of this wild motion, the bodies move randomly
within the interiors of the regions of the environment, making
it difficult to model the state of the body inside of a
region. Instead, we model the state space as an-dimensional
vector µ, the distribution of bodies across the regions of
the environment. Our notation isµ = (µ0, µ1, ..., µn) for
n = |V |, whereµi is the proportion of bodies in regioni;
thus

∑

i

µi = 1.

C. Continuous Time Markov Chains

Transitions in this state space occur when a body moves
across ane ∈ E. Such a transition alonge = (vi, vj)
occurs at a rateRij , corresponding to the parameter of an
exponential distribution from which the time spent in the
region before such a transition is made is drawn. Given these
transition rates, we model the system using a Continuous-
Time Markov chain (CTMC)C = (V,Q), whereQ:

Qij =

{

Rij (i, j) ∈ E
0 o/w

is the n × n instantaneous transition matrix. This can be
augmented toQ′ by setting the diagonals to be minus the sum
of rates for their row,Q′

ii = −
∑

j 6=i

Qij . From this augmented

form, the probability that a body is in statej after time t
after having started in statei is Pij(t) whereP (t) = etQ

′

.
The limiting distribution isµ∗ satisfyingµQ′ = 0, where
∑

i

µi = 1.

Our results can be extended from one body to multiple
bodies in a straight-forward way by assuming that the bodies
cover a small proportion of any region’s area and that
collisions between them do not disrupt significantly their rate
w.r.t. the other bodies.

D. Problem Formulation

Now that we have formulated our model, we can briefly
state the problem:given a desired limiting distributionµ of
bodies in an environmentG, construct a control policyγ
expected to achieveµ using as few additional resources as
possible.

The rest of the paper is organized as follows. In Section
III, we show howQ can be found for an environment for
any goal distributionµ. In Section IV, we show how aQ and
some additional information about the environment can be
used to construct a control policyγ to achieve the limiting

1For our work here, each body is represented by a point particle, though
in practice it need only be small with respect to the area of the regions and
the widths of the gates.

distribution of Q. Lastly, in Section V we use Continuous
Stochastic Logic (CSL) and a model checker to construct
probabilistic and temporal bounds for our strategies based
on Q.

III. F INDING A TRANSITION MATRIX FROM AN

ENVIRONMENT’ S CONNECTIVITY AND A GOAL

DISTRIBUTION

Algorithm 1 takes a connected, undirected, anti-reflexive
graphG and a positive goal distributionµ, and constructs
an instantaneous transition matrixQ for a CTMC whose
limiting distribution isµ. The speed of any particular chain’s
convergence to the limiting distribution is given by its transi-
tion matrix’s Second Largest Eigenvalue Modulus (SLEM),
in which the lower the second largest eigenvalue is, the faster
it converges [5].

Algorithm 1 FindTransitionMatrix(G,µ)

Input: G = (V,E) {Graph of the environment}
Input: µ {Desired limiting distribution}
Output: Q {An instantaneous transition matrix}

1: Qij ←

{

µj (i, j) ∈ E
0 o/w

Alternative algorithms for finding suchQ exist, for exam-
ple using semi-definite programming [5], [6]. These methods
obtain the optimal solution, the Fastest Mixing Markov Chain
(FMMC), but we have chosen Algorithm 1 for simplicity.

Proposition 1: All Q such that Qij

Qji
=

µj

µi
, i 6= j have

limiting distribution µ.
Proof:

First, we augmentQ to Q′ by adding negative diagonals
(see Sec. II). The limiting distributionµ∗ is defined as
µ∗Q′ = 0,

∑

i

µ∗
i = 1. By definition of the algorithm above

we have

∀i∀j,
Q′

ij

Q′
ji

=
µj

µi

∀j∀i, µiQ
′
ij = µjQ

′
ji

∀j,
∑

i6=j

µiQ
′
ij =

∑

k 6=j

µjQ
′
jk,

by breaking up the definition of the diagonal we get

∀j,
∑

i6=j

µiQ
′
ij = −µjQ

′
jj .

By moving over the negative diagonal that was added
during augmentation we get

∀j,
∑

i

µiQ
′
ij = 0

µQ′ = 0,

therefore,µ = µ∗.



Fig. 2. An example labelled environment with five regions andtwo gates
between every connected pair of regions.

For an example of the algorithm in practice, consider the
environment in Fig. 2. If we want the distributionµ =
(0.1, 0.2, 0.3, 0.3, 0.1), we create the following Q:

Q =













0 0.2 0.3 0.3 0.1
0.1 0 0.3 0.3 0.1
0.1 0.2 0 0.3 0.1
0.1 0.2 0.3 0 0.1
0.1 0.2 0.3 0.3 0













This follows the intuition that the rates of transition between
two regions should be inversely proportional to their desired
distributions.2

IV. D EVELOPING A CONTROL POLICY FROM A

TRANSITION MATRIX AND OTHER ENVIRONMENT

INFORMATION

A. Modeling

To construct a control policyγ to gently influence the
motion of a body, first we must construct a model for how
the bodyb moves through an environmentG. This motion is
captured by the rate of transitionRij of b between connected
regionsi andj. Due to the body’swild motion, at a point in
time t, the body’s location in regioni is uniformly distributed
as is its direction.3 Let Qi

j =
Qij

Qji
, mi

j =
Pr[m(eij)=open]
Pr[m(eji)=open] ,

wi
j =

w(i)
w(j) , aij =

a(i)
a(j) , andlij =

l(eij)
l(eji)

, in which l : E → R
+

is the length of a gate along a region boundary,a : V → R
+

is the area of a region,w : V → R
+ is the speed of a body in

a region, andm : E → {open, closed} is the configuration
of the gatee = (i, j), in which open indicates that the gate
allows bodies from regioni to j andclosed not.

2Note that because the ratios of values are important and not the values
themselves, transpose-pairs ofQ can be scaled by arbitrary factors. The
algorithm presented in Section IV only uses the relative ratios, so such
scaling has no effect on the end control strategy.

3Because the body’s motion inside a region is deterministic over small
intervals of time (up to bouncing off region boundaries and other bodies),
for t′ near t, this is not the case. As time progresses, the body’s location
and direction undergo topological mixing and thus if they are sampled at
sufficiently large intervals they appear to be drawn from uniform random
variables.

Proposition 2: The ratio of the rates is

Rij

Rji

= mi
jw

i
ja

j
i l

i
j

Proof:
We start with the definition of the rate, and observe that all
transitions must occur through gates, when they are open.

Rij = Rate[b transitions fromi to j]

= Rate[b transitions througheij ]

= Pr[m(e) = open]Rate[b hits eij ]

whereRate[] is the rate of an event per unit time, as the unit
time approaches zero. Since gates occupy portions of region
boundaries, we get

Rate[b hits eij ] = Rate[b hits boundary] l(eij)
bnd(i) .

The rate at which bodies hit the boundary is proportional to
their speed and the boundary length, and inversely propor-
tional to the region size, thus yielding

Rate[b hits boundary] = C w(i)bnd(i)
a(i) ,

wherebnd : V → R
+ is the length of a region’s boundary,

andC ∈ R is a constant factor. Thus we get

Rij = CPr[m(eij) = open]
w(i)l(eij)

a(i)

and finally as a ratio

Rij

Rji

=
Pr[m(eij) = open]

Pr[m(eji) = open]

w(i)

w(j)

a(j)

a(i)

l(eij)

l(eji)

Rij

Rji

= mi
jw

i
ja

j
i l

i
j

Given that the limiting distribution will be the goal dis-
tribution so long as the ratioRij

Rji
=

Qij

Qji
is preserved by

the implementation ofγ ontoG (see Proof III), the control
strategy can be implemented by adjustingPr(m(eij)=open)

Pr(m(eji)=open) ,
w(i)
w(j) ,

a(j)
a(i) , or l(eij)

l(eji)
. Combinations of these factors can also

be used (see Fig. 7), but for simplicity we do not consider
them here.

B. Control Policy

Construction of a control policy assumes aQ, and knowl-
edge of three of the following: area (a), gate configuration
switching (m), speed (w), and gate length (l). For area and
speed control to be effective alone, detailed balance must
hold, for example, as when all gates are symmetric with
respect to their lengths and configurations.



1) Area: The first way to control the distribution is by
modifying each region’s area, such that for regioni, the
area isγarea(i) := γarea(j)Q

i
j l

i
jw

i
jm

i
j , for some adjacent

regionj, the first such region being given any constant value.
The order of this control policy evaluation is any brepth-
first search of the environment. If all gates are identical, this
simplifies toγarea(i) := µiw(i).

2) Length: The next means of control is by manipulating
the lengths of gates across the region boundaries, in which
the length of the sum of gatese = (i, j) is γlength(i, j) :=
Qi

jm
j
ia

j
iw

j
i .

3) Speed: The third means of control is over the speed
of the bodies in each region, in which for regioni, the
speed isγspeed(i) := γspeed(j)Q

j
i l

i
jw

i
jm

i
j , for some adjacent

regionj, the first such region being given any constant value.
The order of this control policy evaluation is any brepth-
first search of the environment. If all gates are identical, this
simplifies toγspeed(i) := w(i)/µi.

Speed control can be implemented in mobile robots by
varying the motor power. In micro- or nano-robots that
move across voltage differentials, speed control can be
implemented by varying voltage.

4) Configuration Switching: The last of the means of
control is over the probability that a gate from regioni to re-
gion j is configured to be open,γtime(i, j) :=

γ′(i,j)
γ′(i,j)+γ′(j,i)

proportion of the time, in whichγ′(i, j) := Qi
ja

j
iw

j
i l

j
i

Gate configuration control can be implemented by opening
and closing gates (e.g. a door).

These strategies can all be scaled by a constant and remain
correct, although the constant will effect the speed at which
the distribution of bodies approaches the goal. Calculating
time and length control areO(n2) in time, in whichn is the
number of regions, and calculating area and speed control
can be done inO(n) time.

C. Experimental Testing

Experiments are used to demonstrate the strategy’s ef-
fectiveness, using both a physical implementation as well
as in a simulator. The physical implementation consists of
Weasel Balls, a cheap ($4) toy for children and pets, inside
an environment whose regions are constructed out of low
brick walls and whose gates are either single-configuration
static gates whose configuration isopen, or controllable two-
way gates whose configuration is eitheropen or closed. See
Fig. 3. These mechanisms are similar to the ones presented
in [2]. The simulation consisted of polygonal regions in
R

2 and bodies that implement a simple approximation of
Weasel Balls’ motion; they travel along straight trajectories
and bounce at random angles off of region boundaries [13].
See Fig. 7.

In Figs. 4, 5, and 6, we demonstrate achieving a distri-
bution of µ = (1/3, 2/3) across two regions by means of

(a) (b)

(c) (d)

Fig. 3. (a) A static, one-way gate; (b) A dynamic, two-way gate; (c)
The inside of a Weasel Ball, which is 10cm in diameter; (d) A physical
environment with bodies. The walls of the environment are composed of
9× 9× 28cm bricks.

(a) at 0s (b) at 36s

(c) at 102s (d) at 204s

Fig. 4. Control by means of area in a physical implementation. One region
is twice as large as the other, and are connected by two equally large
gates. Initially in (a) all bodies begin in the smaller region. By (b) they
are distributed half-and-half, by (c) they have reached thegoal distribution
and it is maintained in (d).

(a) at 4s (b) at 48s

(c) at 224s (d) at 404s

Fig. 5. Control by means of gate length in a physical implementation. Two
gates of the same length are pointing in one direction, and a single gate of
the same size is pointing in the other direction. Initially in (a) all bodies
begin in the left region. Again, by (b) they are distributed half-and-half, by
(c) it has reached the goal distribution and it is maintainedin (d).



(a) at 0s (b) at 18s

(c) at 30s (d) at 133s

Fig. 6. Control by means of the probability that a gate is in anaccepting
configuration through time, in a physical implementation. The gate alternates
direction randomly such that the ratio of probabilities is the desired ratio.

(a) at 4s (b) at 14s

(c) at 33s (d) at 49s

Fig. 7. Control by means of the speed of 100 bodies, in simulation. The
control strategy here has to control for varying region sizes in addition to
the goal distribution. Across (a), (b), (c), and (d) there isa decreasing error
(L-2 distance between current distribution and goal distribution) of 1.24,
0.60, 0.32, and 0.24 respectively.

controlling region area, gate length, and the probability that
a gate is accepting, respectively. In Fig. 7, we control the
distribution across five regions using a combination of area
and speed control. Four physical experiments were also run
in a larger environment with 45 bodies; one of which is
shown in Fig. 1. Additional experiments were performed on a
wide variety of environments, starting distributions, andgoal
distributions (see Fig. 8). Videos of these experiments and
more can be found at:http://users.cis.fiu.edu/∼jabobadi/sc/.

D. Transition Sequence for Goal Distributions with Zeros

In Section III, we specified thatµ must be positive. Con-
sider the case of the goal distributionµ′ = (0, .3, .2, .1, .4)
for the environment in Fig. 2. Our control policy construction
would divide by0, and is thus undefined. In some cases (e.g.
for the distributionµ = (0.25, 0.25, 0.25, 0.25, 0)) we can get
around that problem by approximating∀c ∈ R

+, c/0 :=∞,
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Fig. 8. Graphs of the L-2 distance between the actual distribution and the
goal distribution as a function of time. Different colors represent different
experiments. (a) Convergence starting from each region (one of which is
in Fig. 1) of a physical experiment; (b) Convergence in simulation to a
distribution proportional to their area; (c) Convergence in simulation to a
distribution inversely proportional to their area

which would correspond to a scenario in which bodies only
move out of regions with limiting distribution0 and not ever
into them. However this does not work in the case of our
originalµ′, since it would result inG’s transition matrix ceas-
ing to be an ergodic chain. The limiting distribution of a non-
ergodic Markov Chain is a function of the initial distribution.
Consider how an initial distributionµ0 = (0, 0, 0, 0, 1) would
result in the limiting distributionµ∗ = µ0, whereas any initial
distributionµ0 = (0, a1, a2, a3, .4),

∑

i ai = .6 would result
in the limiting distributionµ∗ = µ′, our goal.

Though Q cannot be constructed for impossible goal
distributions µ′, Qs can be constructed for an infi-
nite sequence of possible, non-negative goal distributions
µ0, µ1, µ2, ..., lim

i→∞
µi = µ′. This subsequent sequence of

transition matricesQ0, Q1, Q2, ... converges toQ and can be
used to implement the otherwise unreachable control policy.

The following practical heuristic is provided for the initial
element of the sequenceµ0: the bestµ0 is the initial distribu-
tion of the bodies if known, since convergence toµ0 would
then be instantaneous, or the distribution corresponding to a
random walk onG, because it has a lowSLEM and is easy
to implement.



V. FINDING PROBABILISTIC BOUNDS ON THECONTROL

STRATEGY USING MODEL CHECKING

In this section, we use a temporal logic and a model
checker to present techniques for verifying the limiting distri-
bution, calculating the average expected error, and comparing
the mixing rates of systems under the control of the policy we
presented. Additionally, we present an analytical technique
for quantifying the difference between a body under wild
motion and an ergodic body. We are motivated by ongoing
work uses temporal logic in high-level control for motion
planning problems [18]–[21], [23], [24], [31]. In our work,
we foundcontinuous stochastic logic(CSL) to be suitable
for our needs.

The syntax for CSL is

Φ = true | a | ¬Φ | Φ ∧ Φ | P∼p[φ] | S∼p[Φ]

φ =©Φ | ΦUIΦ

in which a is a proposition,∼∈ {<,≤, >,≥}, p ∈ [0, 1]
is a probability, andI is an interval of time on[0,∞).
In this syntax,Φ are state formulas, which are assertions
about the model state, andφ are path formulas, which are
temporal assertions about the sequence of states that the
model may take. The operator© is next, and is satisfied
if in the next state the formula will be true, and the operator
U is satisfied if the first state formula will be trueuntil the
second one is true. From these all of the common operators
and propositions, such as∨ and false, can be derived, and
additionally temporal operators such aseventually: ♦Φ =
true U [0,∞)Φ can be defined. The syntaxP∼p[φ] asserts that
the probability of the path satisfyingφ is ∼ p. The syntax
S∼p[Φ] asserts that the limiting probability ofΦ satisfies
∼ p. A complete and detailed definition, syntax, semantics,
and examples for CSL can be found in [26]. The reader is
encouraged to consult [26] for more information.

We used the probabilistic temporal model checker PRISM,
described athttp://www.prismmodelchecker.org/[22]. This
program takes a problem formulation and a list of proposi-
tions to be checked, all formulated in an application specific
grammar, and evaluates the propositions efficiently. Our
model’s state is the space of all distributions; it consistsof a
variable for each region whose value indicates the proportion
of bodies in that region. Our model’s transition scheme
consists of a rate between two statesi and j proportional
to Rij and the number of bodies ini.

A. Steady State Verification

We can use PRISM to verify properties about our system,
such as the limiting distribution. The limiting distribution for
region i in a single body model can be found by evaluating
the formulaS[µi = 1].4 This is the proposition that, in the
steady state, the body can be found in that region. The results
from PRISM corroborate the proof provided in section IV.
These calculations are fast too, verifying for the environment

4There are not probabilistic bounds on this or other formulashere because
S[µi = 1] = µ∗

i s.t. S≤µ∗

i
[µi = 1] and S≥µ∗

i
[µi = 1]. Using PRISM,

this can be calculated without a search.

Fig. 9. The L-2 distance between the expected limiting distribution and the
goal distribution as a function of the number of bodies in theenvironment,
for the environment in Fig. 1. Derived using the CSL model checker PRISM.

in Fig. 1 in0.005s on an Ubuntu 12.04 LTS install on a Intel
Core 2 Duo CPU with 4GB memory.

B. Average Error

The proofs and verification provided thus far show that
the expected distribution under this control strategy is the
goal distribution. At any given time, the actual distribution
is probably not the goal one (and for some goals, cannot
be). We call this difference theerror, and is measured as the
L-2 norm distance betweenµ andµ∗: 〈µ, µ∗〉2. The average
error can be calculated as

∑

µ

Pr(µ)〈µ, µ∗〉2

This computation can be expensive and complicated, espe-
cially the enumeration of all possible states and their prob-
abilities. Fortunately PRISM can again be used to simplify
this process. PRISM allows costs to be assigned to states
that meet any proposition, and the cost is accumulated over
the time the system spends in the state. Assigning a cost of
the L-2 norm distance allows the expected distance to be
measured. Experimental analysis shows that the error tends
to zero as the number of bodies tends towards infinity.5

Consider the environment shown in Fig. 1, whose em-
pirically observed error appears in Fig. 8 (a), and whose
expected error in the limiting distribution is shown in Fig.
9. The model checker shows that for that environment
and the number of bodies used (45), the average error of
the limiting distribution is11.35%. The observed average
error is 25%; thus we can conclude that the discrepancies
between our model and the physical system accounts for
56% of the observed error. This technique is generalized and
can be applied to analyze how closely any body’s motion
approximates ergodicity.

C. Mixing Rates

In Section III, the Second Largest Eigenvalue Modulus
(SLEM) is introduced as an analytical method for comparing
the mixing rate of two transition matrices. Using PRISM’s
rewards-based properties and the reward in Sec. V-B, the

5Expected average error is invariant to the connectivity of the environ-
ment, but does vary based on the goal distribution, the number of agents,
and the number of regions.
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Fig. 10. Histograms of the time a body spent in two regions in simulator.
Region (a) is 50% larger than region (b). These clearly demonstrate that
the time spent in a region can be approximately modeled as an exponential
distribution whose parameter is proportional to the region’s area. Such a
distribution exists for each gate(i, j) ∈ E for the time spent ini before
transitioning toj. The parameter of this distribution is the rateRij .

same can be done with PRISM. The cumulative error of a
system can be calculated, as can be the instantaneous error
with PRISM. Since these rewards are monotone decreasing,
we can compare the mixing rate of different graph structures
(in which the goal distribution is kept constant), and the
mixing rate of different starting distributions (in which the
topologies are kept constant), by calculating either of these
measures for a given constant time. This comparison can
then be used to conduct a search of the region connectivity
space or initial distribution space to find the fastest-mixing
systems. This method is more powerful than using the SLEM
because it is sensitive to initial distributions.

VI. D ISCUSSION ANDCONCLUSIONS

In this work we present a methodology to control a
distribution of bodies by controlling the variables for the1)
area of the regions, 2) length of the gates between regions,
3) speed of the bodies in the regions, and 4) the probability
that a gate between two regions is open.

The results from the physical and simulated experiments
show that this control strategy is correct and efficient with
respect to the number of regions and number bodies being
subject to control. All of the factors subject to control: the
area of regions, the speed of bodies within the regions,
the sizes of the gates, and the likelihood that a body can
transition through a gate, are shown to be relevant factors,
and can be ignored only where they are constant across the
environment. Other factors may exist that could influence
the effect of the control strategy; however any such factors
must have been unintentionally held constant across all ex-
periments we conducted. Additionally, our core assumption

that the motion of wild bodies in such an environment can be
modeled by a CTMC is supported by experimental evidence
(see Fig. 10). This strategy is general enough that it can be
applied to any environment that meets the assumptions laid
out in Sec. II, and any goal distribution. Furthermore, the
model checking techniques in Sec. V can be used to analyze
any strategy.

A. Significance

The significance of these results and this control strategy
can be limited by the assumptions made. The assumption
about thewildnessof the robotic motion turns out to be
rather robust; in Fig. 10 we see that our simulated bodies
transition according to an exponential distribution. We con-
ducted additional experiments, in which we manipulated the
quality of the body’s motion in simulation by adding varying
degrees of systematic wobble, skewed direction of travel,
and acceleration after inelastic collisions. In all cases the
exponential distribution was preserved, albeit with a scaled
parameter.

On the other hand, thea priori knowledge requirements
about the environment, as well as the necessary control over
the environment to implement some of the strategies, can
limit certain applications. The power in our approach is that
it can be applied to a wide variety of problems; the strategy is
ignorant to the number of bodies being controlled, ignorant
to their state (region, location, speed, etc), and works in any
connected controllable environment.

In practice, indoor environments lend themselves to being
easily broken up into regions and gates by rooms and
doors respectively. Whereas establishing control by means
of area or length modulation may be difficult or impossible
in such environments, time control is achievable merely by
opening and closing one-way gates, and speed control can
be achieved by varying the speed of a robot’s motors in each
region [3]. For nanorobots that swim according by control of
voltage differentials, speed can be adjusted with the voltage.
Furthermore, time- and speed-based control strategies also
lend themselves to being easily scaled down or up so that
the fastest speed or shortest duration are manageable.

B. Future Work

Most foreseeable future work, in keeping with the goals
of minimalism set out in Sec. I, would involve reducing
the severity of the assumptions the strategy requires. For
example, some of the information assumed by our strat-
egy, such as the area of regions and the topology of the
environment, could be approximated if gates were capable
of communicating with each other as well as distinguishing
between the bodies in the environment. The topology can be
learned by observing which gates are reachable from each
other (if a body visits two gates in sequence, they must
share a region). The base rates between regions, taking into
account their area, the speed within them, and the size of the
gates connecting them, can be calculated by approximating
how long an agent spends in a regioni on average before



transitioning through any given gate to regionj. This value
corresponds toa(i)w(i)l(eij) whenmi

j = 1.
There may be more accurate models at the expense of

being more complicated [32]. However we believe that
CTMCs capture the phenomenon to a large enough extent
to make them useful models. Some future work may involve
exploring other modeling options.

Another area of development for future work would be to
design robots whose motion best fits the definition ofwild put
forth in Sec. II. This measurable (see Sec. V-B) development
would improve mixing rates and decrease average error, and
its relation toergodicitywould make it an interesting problem
in its own right.
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