
157

Mariano Alcañiz, Marco Sacco and Jolanda G. Tromp (eds.) Roadmapping Extended Reality: 
Fundamentals and Applications, (157–182) © 2022 Scrivener Publishing LLC

7

Human Perception Engineering
Evan G. Center1*, Katherine Mimnaugh1, Jukka Häkkinen2  

and Steven M. Lavalle1†

1Center for Ubiquitous Computing, Faculty of Information Technology 
and Electrical Engineering, University of Oulu, Oulu, Finland

2Department of Psychology and Logopedics, Faculty of Medicine,  
University of Helsinki, Helsinki, Finland

Abstract
In this chapter, we propose the foundations of a new field, perception engineering, 
to unify and guide XR research in human perception. The key idea is that design-
ing, creating, implementing, and analyzing perceptual illusions themselves are the 
engineering focus, rather than devices. Perception engineering follows a dynam-
ical systems approach to the human–XR device pairing by leveraging techniques 
from mathematical modeling, perceptual psychology, neuroscience, and robotics 
to better understand how the perceptual experience itself may be engineered. We 
then give attention to the current state and potential shortcomings of human per-
ception and XR research, and set goals for the field to aspire toward best practices, 
inclusivity, and open-source modular technology.
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7.1 Introduction

The notion that our visual system provides us with a truthful depiction of 
the world seems obvious at first glance. This intuition is inscribed in the 
saying “seeing is believing,” and indeed, our visual systems transmit infor-
mation in a faithful-enough manner that we may successfully navigate our 
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158 Roadmapping Extended Reality

environments in most cases—but not in all cases. Have you ever had an 
interaction in traffic in which a vehicle seemingly “came out of nowhere?” 
Or how about the experience of spending half an hour looking for your 

Figure 7.1 The Necker cube above has two equally probable three-dimensional (3D) 
interpretations, and as there is little additional information, the interpretation and 
consequently perception changes constantly. The illusion shows that the same information 
does not always lead to the same percept.

Figure 7.2 The reconstructive nature of vision is shown in uniformity illusion, in which 
the structures in the foveal vision determine the perception of peripheral patterns. The 
illusion can be perceived by holding fixation steady at the center of the image. Gradually, 
the central pattern fills the whole visual field [1].
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keys that were in plain sight all along? Take also, for a different kind of 
example, the optical illusions presented in Figures 7.1–7.3.

These visual lapses and illusions should clarify that the process of see-
ing is not as simple as merely taking things in from the environment and 
producing exact copies of them in the head. Vision is a complex process 
whereby the light reflected from our environment impinges on our retinas 
in a configuration that is upside down and backwards relative to what we 
eventually perceive, is compressed by retinal ganglion cells, and is then 
sent along to the optic nerve to the brain where the signals are then recon-
structed into something useful.

The reconstructive nature of visual processing is illustrated by the sub-
jective experience of a rich and detailed visual experience. Actually, our 
brains do not maintain an image-like representation of the scene, but a 
sparse model that represents only the most relevant information. The 
examples of this representational sparseness are inattentional blindness 
and change blindness, in which we fail to notice significant changes in a 
scene [4].

Furthermore, evolutionary constraints determine human perception, 
namely, those features of the physical world that have not been relevant for 
our survival are not processed or perceived. Humans do not see magnetic 
fields or infrared radiation signaling temperature differences, but react 
automatically to sudden movement in the visual field and have a tendency 
to see faces in non-human surfaces.

Donald Hoffman has described visual perception as a biological inter-
face to the world. According to Hoffman, the purpose of the visual system 
is not to build an accurate and detailed representation, but to quickly and 
efficiently solve adaptive problems when they arise [5, 6]. Perceptual pro-
cessing utilizes statistical properties of the world to interpret the incom-
ing sensory data. This is often characterized as Bayesian inference and 

Figure 7.3a What is portrayed in this image? If you are stumped, try looking at its rotated 
counterpart in Figure 7.3b on the next page.
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is thought to be neurally realized as predictive coding [7]. Rather than 
explicitly relay some truth about the world, vision is tuned to discriminate 
expected utility.

On the one hand, this is great news for XR developers. Using presenta-
tions with stereoscopic disparity, among a slew of other tricks to provide 
monocular depth cues, XR devices can achieve powerfully convincing illu-
sions that can provide users with helpful information or even transport 
them to different worlds. On the other hand, while our constructive visual 
processing makes illusions possible, it also poses its own unique chal-
lenges, and we still have a long way to go in terms of achieving optimal 
experiences throughout various XR avenues. Getting the perceptual expe-
rience right requires attention to detail. Furthermore, the prevalence of XR 
sickness remains a significant hurdle for more widespread adoption.

Advances in software and hardware continue at a rapid pace, yet we fail 
to see comparable advances in terms of the XR experience. We think that 
the reason for this disparity is clear: we must shift our focus from construct-
ing the device and focus instead on constructing the perceptual experience 
itself. This shift will require drawing heavily not only from engineering, but 
also neuroscience and perceptual psychology. We propose a new research 
domain, perception engineering, to advance this cause. Only through a 
proper synthesis and expansion of this domain can we truly explore undis-
covered territory in the XR space.

In the remainder of Section 7.1, we offer our view of what perception 
engineering entails. Then, in Section 7.2, we give an introduction to com-
mon methods in XR and human perception research and highlight issues 

Figure 7.3b Another example of reconstruction is the Mooney face, in which the face is 
perceived with rounded patches of dark and light [2, 3]. The interpretation is based on 
assumptions about faces, as the more difficult perception of the inverted Mooney face 
shows.
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we see as most critical in this area. Finally, in Section 7.3, we discuss new 
frontiers in XR and human perception. Here, we advocate for a renewed 
focus on the perceptual experience to be executed through perception 
engineering, advances in methodology, and the consideration of inclusion 
and individual differences.

Recommendations
1. Take advantage of theories from perceptual psychology and 

neuroscience to guide XR hardware and software development.
2. Prioritize use of best practices in psychology for XR research, 

including preregistration, a-priori power analyses, and effect 
size reporting.

3. Endorse the use of more representative samples, including striv-
ing for gender balance in research subjects, and request that de-
mographic information is reported in publications.

4. Prioritize large-scale XR sickness projects, including subjective 
and objective methods development.

5. Advocate for inclusive development that makes XR more acces-
sible for older adults and people with disabilities, and support 
the development of and research on XR systems for therapeutics 
and use for people with limited mobility.

6. Subsidize the development of an open-source modular XR re-
search device.

7.1.1 A Perception Engineering Perspective

Previous research regarding XR and human perception has often taken 
a black-box approach to the human element of the system. Rather than 
attempt to model perceptual processes, the human element is treated as 
passive, independent, and opaque. Under the current implicit assump-
tions, inputs go in, responses come out, and changes are then made to the 
technology in light of the measured input–response pairing. The device is 
engineered, while the perceptual experience is merely seen as a byproduct.

This is a backwards way of viewing the problem. If what we really care 
about is the perceptual experience, then, the engineering of the device 
should be, at minimum, a byproduct of our desired perceptual experience. 
The perception engineering perspective seeks to take this idea even further 
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by rejecting the notion that the perceptual experience is truly a black box 
and proposing that we model relevant components as a dynamical system.

7.1.1.1 A Convergence of Black Boxes and White Boxes

A daunting challenge has been that the brain and resulting human percep-
tion are largely treated as a “black box” that must be reverse-engineered 
through interactive trials and output measurements. In comparison, engi-
neering systems are usually built from the ground up with known prin-
ciples and primitives. This allows accurate mathematical modeling and 
simulation, thereby resulting in a “white box.” For example, roboticists 
often talk about “perception” as a process that involves sensors, sensor 
fusion, and dynamical systems.

Although the brain itself remains somewhat of a black box, it is becom-
ing more transparent. We have at our disposal an ever-growing body of 
neuroscience and perceptual psychology research from which to draw and 
inform our understanding of human perception. Borrowing from theories 
in these areas, we may test their hypotheses with our unique tools in the XR 
space and better model human perception in our own models. At the same 
time, we can draw from white-box models that arise in computer vision, 
robotics, and autonomous systems. Ultimately, the goal is to understand 
what it means to create perceptual illusions, from rigorous mathematical 
modeling to successful implementation and analysis. This will require a 
meeting in the middle between engineering principles and models from 
neuroscience and perceptual psychology.

As an example, one popular theory of brain function born out of this 
approach is predictive coding. Predictive coding, and more broadly, pre-
dictive processing, have gained massive traction over the last two decades 
and offer new ways of thinking about old XR problems. The predictive cod-
ing view of the brain states that rather than passively waiting for inputs, 
the brain forms active perceptual predictions about what it will encoun-
ter based on previous experience. These predictions are backpropagated 
from higher to lower regions in the processing hierarchy, and then input 
regions at the base of the hierarchy work primarily to send forward the 
prediction errors of initial predictions [8]. In this way, the brain operates as 
an efficient prediction machine that minimizes free energy, only spending 
extra processing power on surprising events, which then go on to optimize 
future predictions [9].

The predictive coding view has steadily accrued empirical support since 
its inception and has even begun to make an impact in clinical research 
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settings [10]. A worthy target to progress in XR is to follow this kind of 
approach to improve our understanding of how to model and create per-
ceptual illusions.

7.1.1.2 Towards Dynamical Systems-Based Models of Perceptual 
Illusions

Given the mounting evidence for this constructive view of perception, it 
no longer makes sense to conceive of humans and XR devices as passive 
and independent, but instead as active and interactive. In other words, the 
perceptual illusion can be engineered via a precise understanding of how a 
dynamical, predictive brain interacts with various aspects of an XR device, 
which is itself a dynamical, interactive white box system.

We can observe the benefits of taking on a more realistic dynamical 
systems level view by an analogy of the evolution seen within cognitive 
neuroscience over recent decades. Cognitive neuroscience in the 1990s 
was dominated by the advent of functional magnetic resonance imaging, a 
technology that can reveal brain activity with excellent spatial resolution, 
but suffers from relatively poor temporal resolution. These qualities of the 
technology seemingly led to a bias toward attaching labels to areas that 
showed selectivity toward certain functions while ignoring the temporal 
dynamics of networks within the system.

The research was nonetheless fruitful, in conjunction with neuropsy-
chology, in terms of helping us to understand the macro and meso-scale 
brain regions that are necessary for producing specific behaviors and per-
ceptual capabilities. However, the hyperfocus on brain regions potentially 
occluded what we now recognize to be one of the most integral aspects 
of brain function: that every region is connected to many other regions, 
and that a brain only functions effectively through cooperation within 
and among these various networks. By taking a systems neuroscience 
approach, we have seen significant progress in understanding complex 
dysfunction like that observed in schizophrenia, Parkinson’s disease, 
depression, and anxiety [11, 12].

Similarly, perception engineering aspires to stop investigating only 
the individual building blocks and begins the work of understanding the 
dynamical interactive system of the XR–human perception pairing as a 
whole. This task will require multidisciplinary teams with research back-
grounds in mathematics, engineering, computer science, neuroscience, 
and perceptual psychology.
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7.1.1.3 Perception Engineering in Action: XR Sickness

There is abundant fertile ground for new discoveries in taking white box 
approaches to XR–human perception dynamical systems. Applying theo-
ries from neuroscience and perceptual psychology, and employing robot-
ics and simulation techniques, can make the black box more transparent.

Take cybersickness (or, within the current context of XR systems, XR 
sickness) as an example. What if instead of taking for granted that aspects 
of the device cause cybersickness, we test the view that cybersickness arises 
as an interaction between the perceiver’s perceptual predictions and certain 
aspects of the device? This view is taken in sensory rearrangement theo-
ries of cybersickness, in which the ordinary relations of the sensory inputs 
need to be rearranged and sickness is thought to accompany this adapta-
tion [13, 14]. According to Welch and Mohler [15], there are at least five 
types of deficiencies that require sensory rearrangement: 1) intersensory 
conflicts, like sensory mismatches, 2) distortions of depth and distance, 
like when unnatural depth cues lead to depth compression, 3) distortion of 
form and size, like optical distortions, 4) delays of sensory feedback, and 5) 
sensory disarrangement (non-constant rearrangement requirements such 
as jitters; these are the most difficult to adapt to). If sickness is understood 
as a situation in which the system reacts to prediction errors, then experi-
encing sickness symptoms is not just a product of a badly designed device. 
The brain is also trying to adapt to a new situation in which the mapping 
between sensory and motor systems has changed.

The emphasis on prediction raises also the possibility of top–down 
modulation, such as expectations, as an important factor affecting the 
perception and experiences. Users interpret situations according to their 
previous knowledge that is applied to a specific situation. For example, the 
experience of cybersickness is affected by expectations [16], and can be tol-
erated with sufficient motivation or if other experiential benefits override 
the adverse experiences.

In practice, the predictive coding approach means that the research should 
treat sickness as a part of an interactive process in which task- related expec-
tations and information needs shape the way users experience and perceive 
the technology-mediated environments. The technology is no longer just 
causing symptoms, but instead a part of a process in which symptoms occur.

7.1.1.4 Perception Engineering in Action: Pseudo-Haptics

Related to remedying XR sickness, methods to reduce sensory conflict 
by stimulating additional sensory modalities, such as providing pleasant 
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odors [17] or including haptic feedback like airflow [18] and chair vibra-
tions [19], have been tested. Already, the importance of incorporating an 
understanding of human perception into the design for better haptic feed-
back has been noted [20]. In all cases, the development and implementa-
tion of multimodal stimuli benefit from adopting a perception engineering 
approach.

An example of a way in which we can leverage our understanding of 
human perception in order to improve multisensory XR capabilities is by 
modulating one sensory experience through the manipulation of another 
sense. We can simply make slight modifications in software that trigger 
perceptual sensory illusions. An example of this is pseudo-haptic feed-
back, which is the use of visual cues to trigger haptic sensations. Earnst 
and Banks [21] proposed that maximum-likelihood estimation integration 
is used to determine how much either vision or haptic feedback domi-
nates when there is conflicting or redundant sensory information in these 
domains below a certain threshold of discrepancy. When the conflicting 
information is too great, one sense is discounted, but otherwise, the sensory 
information is weighted by this integrator based on the predicted variance 
of the signal from each source, and then combined. Thus, by modifying 
visual feedback, illusory experiences of object qualities and interactions 
(like mass, texture, and friction) can be created [22], and have been suc-
cessfully deployed in virtual reality (VR) to simulate different weights for 
virtual objects [23]. The elegance of this perception-constructing approach 
is that it does not require expensive equipment or complicated devices, and 
thus the time and costs in hardware development can be saved.

7.2 XR and Human Perception

The current XR research is held back by small, technology-dependent proj-
ects, in which human experience and perception are not the primary driv-
ers. These small studies often produce results that are not cumulative, and 
thus more general theories of XR experience cannot be created. We suggest 
that a deep understanding of human XR experience requires large-scale 
projects that have technology-independent perception and experience- 
related goals.

7.2.1 Methods in XR and Human Perception Research

Early research in XR and human perception borrowed heavily from com-
puter science and telecommunications, as well as experimental psychology 
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in terms of experiment design and data analysis. The field has continued 
to adapt techniques from these areas as they each have evolved, with the 
more information-focused quality of experience techniques from telecom-
munications blending into a more human-focused concept of user experi-
ence used in industry, and with the addition of physiological recordings to 
existing psychophysics and questionnaire approaches from experimental 
psychology. Computer science has made a significant impact in terms of 
contributing simulation, machine learning, and computer vision tools.

Critically, because XR and human perception research methods have 
in large part been extracted from other fields and applied in contexts in 
which they may not always be appropriate, it is important that we pause 
and reevaluate how well they allow us to study the phenomena we wish 
to study. One example regarding XR sickness is touched on in the follow-
ing section. An honorable goal would be to develop a set of fundamen-
tal methods that are most fitting to characterize human perception in this 
quickly evolving XR space.

7.2.2 XR Sickness

The most widely used techniques today remain subjective questionnaires, 
such as the Simulator Sickness Questionnaire (SSQ; [24]). Despite their 
popularity, the degree to which the SSQ, which was originally developed 
for military simulators, and other measures correctly map onto the psy-
chological constructs they are attempting to measure is a topic of ongoing 
debate. The debate has prompted attempts to revise the questionnaires so 
that they would be more suitable for modern XR devices (e.g., [25] and 
[26]), or to supplement them with objective measures such as those given 
by computer vision and physiological recordings.

XR sickness research should also recognize the complexity of the phe-
nomenon. In addition to the technical parameters, there are multiple other 
factors that affect adverse experiences. For example, physiological vari-
ables such as increased sickness susceptibility or subclinical visual prob-
lems, or psychological factors such as fears, preconceptions, or personality 
may affect the phenomenon. Furthermore, the positive experiences such 
as presence and immersion or emotions may modulate sickness. All of 
these factors have been investigated in earlier research, but the studies 
have mostly been small in size, so complex interactions between variables 
have not been well-characterized and generalizing beyond these stud-
ies is difficult. A large-scale study that could control for confounds and 
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properly assess individual contributions from various factors is needed to 
put together the currently disparate pieces of the XR sickness puzzle.

One of these factors is XR content. Too often, experiences are attributed 
to technology when the real reason is the content. Content creation should 
combine the knowledge of perceptual processes and narrative rules to the 
creative possibilities enabled by the devices. Often, the content creators 
do have knowledge of best practices, but these are part of their creative 
toolbox and are not connected to the perceptual research. There is a good 
possibility for mutual learning here. Perceptual researchers should inves-
tigate the creative choices made by content creators as they may have use-
ful perception- related ideas that could be translated into experimental 
research, and the content creators should be informed about the results of 
perceptual research that might have significant implications to the artistic 
choices they are making. In practice, cooperation between content creators 
from arts and film schools and perception scientists is needed. This would 
lead to benefits in both areas.

Cooperation should also lead to production of high-quality, freely avail-
able XR content that could be further used in research. Stimulus databases 
have had significant impact, for example, in emotion [27], and face percep-
tion research [28]. Creating this type of resource should also be the goal in 
XR research.

7.3 Future Research Agenda and Roadmap

Here, we shift the focus to more fundamental gaps that perception engi-
neering researchers should consider. Although we refrain from hazarding 
predictions about the particulars of the field’s development, we believe that 
rising to the following challenges will lead to advancements in our meth-
ods and understanding that will stand in contrast to the incremental prog-
ress previously seen.

7.3.1 Establishing Best Practices in XR and Human Perception 
Research

Psychological science has undergone a great deal of reform in response 
to a “replication crisis” over the course of the last decade. The crisis was 
spurred on in part by an incredible finding, namely, the discovery of extra-
sensory perception (ESP) in otherwise ordinary undergraduates [29], by 
a high-profile experimental psychologist. The manuscript withstood peer 
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review and was published in a prestigious psychology journal, which left 
psychology researchers in a highly uncomfortable position: either accept 
that a concept as ludicrous as ESP actually exists, or recognize that the 
field’s standard practices were so fundamentally flawed that researchers 
could arrive at a support for any idea, no matter how absurd.

This grim realization led to wide efforts to replicate findings new and 
old throughout the literature, and while some theories like the existence of 
ESP rested on a less solid foundation than others, the resulting level of sup-
port for the field as a whole did not inspire confidence. In a systematic set 
of replications of findings in psychology, only 36% of replications yielded 
statistically significant results compared to the 97% rate found in the orig-
inal publications [30]. This poor replication rate surfaced in spite of the 
replication authors using well-powered samples and working with original 
authors and materials when available.

How could it be possible that the majority of research published in psy-
chology was unreliable? The revelation was shocking to many but did not 
come as a surprise to those who had long criticized widely prevalent meth-
odological and statistical practices in psychology (e.g., [31–33]). Sets of 
poor research practices collectively known as “p-hacking” [34] were one 
of the most obvious culprits for rampant false findings in the literature, 
and only through shining a spotlight on the danger of these practices and 
issuing concrete reforms has experimental psychology reestablished itself 
as a credible discipline.

Though psychology, and in particular the subfield of social psychology, 
received the most attention for such aforementioned questionable practices, 
p-hacking is no less widespread in many other fields. The effects of the rep-
lication crisis in psychology have rippled out to neuroscience [50, 51], and 
the topic is beginning to receive some recognition in XR as well [52]. XR 
research will fall prey to the same pitfalls as experimental psychology research 
unless we take to heart the lessons learned from the replication crisis. Here, 
we focus on power analysis and preregistration, two particularly helpful and 
easy-to-implement practices popularized by the best practices movement.

7.3.1.1 Power Analysis

How many coin flips would you need to tell whether a coin is fair? How 
many citizens’ heights would you need to measure to tell whether Finns or 
Swedes are taller on average? Such questions speak to the issue of statistical 
power. Statistical power refers to the probability that you will detect a sta-
tistically significant effect given a particular statistical test, assuming that 
such an effect actually exists in the real world.
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Power is determined by the effect’s size (how much of an impact does 
the effect have?), the false positive rate (alpha; how often are we willing 
to accept an incidental positive result as real?), and our sample size (how 
many observations do we need?). While the false positive rate is conven-
tionally fixed at .05, the effect size and sample size may vary. Researchers 
may only control the effect size to the extent that they choose to study 
effects that are larger or smaller, but have full control of sample sizes to 
the extent that they have sufficient funding, time, and populations of will-
ing participants. The effect size-to-sample size relationship works out such 
that increasingly smaller effects require increasingly larger samples to find 
them; thus, while large effects may only require as few as 20 participants to 
reliably detect, smaller effects may require hundreds or even thousands of 
participants to reliably detect.

Why would we spend the resources needed to study small effects? Here, 
it is important to note the difference between statistical significance and 
practical significance. Imagine that we make a change to an HMD that 
results in an increase in presence ratings of 2%. Such a small change in 
presence ratings might not be of much practical significance in terms of a 
cost–benefit analysis for implementing the change. Imagine another sce-
nario in which we make a change to an HMD that results in an increase in 
the probability of causing an epileptic seizure by 2%. This effect of equal 
magnitude to the previous example now carries much more practical sig-
nificance given that a 2% increase here could mean inducing seizures in 
many individuals. This relatively small effect size could have a large real-
world impact, and thus it would be important to spend the necessary 
resources to detect it and precisely estimate it.

Note that despite the differences in practical significance, either effect 
may or may not achieve statistical significance. Assuming that the effects 
are real, their likelihood of achieving statistical significance is a function of 
our sample size, and in turn, our power to detect them. This point should 
also underscore the importance of reporting estimated effect sizes along 
with p-values in order to help communicate an effect’s practical signifi-
cance rather than only whether it is statistically significant [53].

How large of a sample is large enough? Historically, studies in psychol-
ogy have often used “rules of thumb” to guide sample sizes, defaulting to 
around 20 or 30 subjects per group. This sample range is observed in many 
XR studies as well. However, we now have the computational power to 
quickly perform power analysis in free-to-use software such as G*Power 
[54], which will give the precise sample size required to achieve a specified 
level of power for a given effect size. The results demonstrate that the old 
rules of thumb leave researchers woefully underpowered to detect most 
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effects. When trying to detect a medium-sized effect (Cohen’s d = 0.5), 
running 20 subjects per group in a two-group design renders only just over 
a 1 in 3 chance of detecting the effect (power = 34%), assuming the effect 
is actually there. In order to improve the odds of detecting the same effect 
to 4 out of 5 times (power = 80%; a common minimum benchmark used 
in power analysis), we would need to acquire 64 subjects per group, and 
would still miss this medium-sized effect 1 out of 5 times on average unless 
further increases to the sample were made. It should come as no surprise 
then that studies in psychology have been estimated to achieve only about 
50% power on average [31, 55].

Most effects studied in psychology are thought to be of medium size 
or smaller (e.g., [56]; though note the authors’ caution on how qualifiers 
like “medium” should be interpreted), which would imply that the same 
is likely to be true for much of the research in XR and human perception. 
Effect sizes become smaller when variability is high, and humans can be 
highly variable. Engineers are often used to getting precise measurements 
from their sensors, or in other scenarios, measurements that are impre-
cise, but imprecise in systematic ways. In perceptual psychology, we often 
instead use questionnaires or behavioral responses to tap into psychologi-
cal constructs. This process does not afford the same precision as measure-
ments of physical entities, and there is no guaranteed mapping between the 
measure and the construct; thus, power analysis becomes a critical tool for 
ensuring enough data are collected to observe effects. Yet, power analysis is 
often omitted from XR research procedures. In their review of the relation-
ship between presence and cybersickness, Weech et al. [57] reported that 
only 3 of the 20 articles examined obtained at least 80% power to detect 
medium-sized effects, and only 1 of the 20 performed a priori power anal-
ysis, a procedure used to determine in advance how many subjects will be 
needed to detect an effect.

It is critical that a priori power analysis becomes standard in XR research 
because otherwise, researchers risk leaving their findings to chance. Perhaps 
counterintuitively, running large, comprehensive studies actually saves time 
and money. A high-powered study can precisely estimate an effect, whereas 
running many low- powered studies will often lead to mixed results and 
end up ultimately wasting more resources in trying to understand the 
effect in the long run. Of course, it is also possible to over-allocate time and 
resources to an area, yet here again, we can take advantage of power analysis 
to determine appropriate sample sizes for measuring a particular effect so 
that resources are not wasted by over-allocation either [50].

As noted, the estimated effect size will determine the required sample size, 
but how does one best estimate an effect size for an a priori power analysis? 
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There are several options here. One common route is to use the effect sizes 
reported in similar experiments in the literature. Though reported effect 
sizes are often overestimated due to a combination of low-powered studies 
that imprecisely estimate effects and publication bias (the tendency to not 
publish null results), they can still aid in determining a reasonable starting 
point for the power analysis. Similar experiments might not always exist 
in the literature, and thus another route is to run a pilot study in advance. 
Piloting is extremely beneficial for deciding the details of the methods and 
analysis, and is especially recommended when the resources are available 
and the experiment is the first of its kind. Another route is to use an effect 
size corresponding to the smallest effect that would still be theoretically 
interesting, or practically significant, and use this effect size to determine 
the required sample size.

7.3.1.2 Preregistration

We hope to have now made a convincing case for power analysis, but the 
reader might still be wondering how a leading experimental psychologist 
was able to publish evidence for ESP in a respected journal. To understand 
the answer to this question, we must turn to the thus far-little discussed 
third parameter in our power analysis equation: the false positive rate.

Inferential statistics allow scientists to, as the name would imply, make 
inferences. Unlike conclusions in logical deduction that necessarily follow 
from basic premises, the best we can do in regard to most scientific hypoth-
eses is to infer, or in other words, to collect data that we may interpret as 
evidence favoring one alternative about the state of the world over another. 
Given that the nature of this type of reasoning is probabilistic rather than 
deterministic, errors will sometimes arise, and fields must decide how 
often certain types of errors are to be permitted. So far, in our discussion 
of power, we have focused on “type II” errors, or the potential to miss an 
effect when it is actually there. The other type of error we must consider 
concerns the false positive rate, or “type I” errors, in which we detect an 
effect when it is not actually there.

The idea of detecting something when it is not actually there might 
seem absurd at first glance, but type I errors are a natural consequence of 
inferential statistics. Consider that whenever we run a test to see whether 
a control group and a treatment group differ in an outcome variable, 
there is always some potential that the two groups will differ not because 
of the difference in treatment administered, but simply due to random 
chance, perhaps caused by some separate unknown influence or sam-
pling bias. We can set our tolerance for accepting the anomalies arising 
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due to chance as real effects in our statistics by setting the type I error 
rate, which is commonly fixed at 5% (alpha = .05). In other words, we 
accept as a field that 1 in every 20 effects reported in the literature is actu-
ally a false positive. That ratio might seem alarming, but the situation is 
even worse than it seems.

Imagine that we run a series of small studies. The data look promis-
ing at times, but no results are statistically significant. We keep making 
small tweaks to the study, until the 10th, or maybe the 20th, iteration. 
We finally arrive at a significant result that is then published. Consider 
another scenario. We instead run one large study instead of several small 
ones. We want to get the greatest value possible from the many hours 
that will be devoted to the project, so we collect a large amount of data 
on many different types of variables. After data collection is finished, we 
run 30 different statistical tests on all the dependent variables. Of the 30 
tests, 2 are statistically significant. The 2 significant results are published, 
while the 28 nonsignificant results are not mentioned in the manuscript. 
In another study, we have fewer resources and want to manage them care-
fully, so we first run a handful of participants and run our analyses. There 
are no significant results yet, so we periodically add more subjects and 
rerun our analyses. Eventually, the result is significant, and this last test 
goes into the manuscript. For our final study, we are examining a correla-
tion between two variables. Our resulting correlation is not quite statisti-
cally significant, but upon looking at the data, we see one point far away 
from the cluster of the others. It is clearly an outlier so we remove it, and 
now, the correlation is statistically significant and goes into the published 
literature.

We could go on, but at this point, the pattern should be clear. Our only 
protection against type 1 errors is our false positive rate fixed at 5%, but 
this rate was intended to apply to only one isolated test. In the first several 
examples, we are performing classic “p-hacking” by rolling the dice multi-
ple times until we arrive at our desired result, and thus we are inflating our 
false positive rate well beyond the 5% level [49]. In the last example, we are 
making a choice about how to analyze the data after the results are known. 
These choices are what are known as “researcher degrees of freedom.” The 
idea is that there are near-infinite ways to code and analyze any dataset, 
and going down this garden of forking paths where we let our biases or the 
data itself influence our decisions can lead to a drastic increase in our type 
1 error rate [58]. Simmons et al. [34] demonstrated that using a combina-
tion of just three practices related to those above can push the type 1 error 
rate to a whopping 60%, meaning we would be more likely to report a false 
finding than not!
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It is in this way that we can show evidence for ESP in undergrads [29], 
“chronological rejuvenation” (listening to a song by The Beatles made par-
ticipants physically younger in age [34]), or even neural activity in a dead 
salmon [35]. While the latter two examples are parodies, the former and 
many others like it were not. To be clear, we do not intend to say that these 
are malicious actors trying to cheat the system in most cases; in fact, each 
of the practices in the scenarios described two paragraphs ago were com-
mon practices for many labs until the replication crisis brought these issues 
to light. The practices were inherited by naive researchers who likely did 
not fully grasp how such approaches could warp inferential statistics, and 
the fact that a researcher with no ill intent can so easily inflate the type 1 
error rate of their study to such a degree is the most alarming aspect of this 
situation.

So how do we as a field address this issue? One very promising solution 
is preregistration [36]. A preregistered study is one in which all the details 
regarding how data will be collected and analyzed are documented and 
timestamped before the study is run. This process effectively narrows the 
researcher’s degrees of freedom and prevents biases that could inflate type 
1 errors from taking over. Related in spirit to preregistrations are regis-
tered reports [37]. In a registered report, the introduction and methods 
of a paper are written in advance and sent to a journal before the study is 
run. The journal then reviews the study proposal and accepts or rejects the 
study for publication based on its potential impact and methodological 
merits. If accepted, the study is run and the paper is published whether the 
results are statistically significant or not. This approach addresses not only 
inflation in type 1 error rates, but also publication bias, as the publication 
of the null result could still be of theoretical interest, and it could also pre-
vent other labs from wasting resources on producing the same null result 
to the same problem.

Any disruption of the status quo tends to provoke backlash, and the 
campaign for preregistration was no exception. A common concern has 
been that requiring preregistration would discourage exploratory research. 
Proponents of preregistration respond that it does not actually discour-
age exploratory research, but instead only separates the exploratory from 
the confirmatory, preventing potentially spurious findings from being 
presented as confirmations of original hypotheses. Findings that were not 
predicted in the preregistration could still be published as exploratory 
results but would need a confirmatory follow-up experiment to provide 
more solid evidence. Another concern was that the process of preregis-
tration is overly onerous, requiring researchers to know too many details 
in advance. This aspect can actually be seen as a strength rather than a 
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weakness, as it requires researchers to think critically about the details of 
their project before they begin. A solid confirmatory study should have its 
details polished through piloting or previous similar experiments before 
resources are spent on data collection. Websites such as the Open Science 
Framework (https://osf.io/) provide architecture and templates to make 
the process of preregistration quite painless.

7.3.1.3 Supporting Best Practices

False positives are easy to obtain and difficult to overturn once published. 
Significant resources are wasted on underpowered studies that have lit-
tle chance to detect real effects, and on extending research on effects that 
were false positives to begin with. While we cannot address every flaw and 
potential solution in XR methods here, power analysis and preregistra-
tion are two standards that could be easily implemented to significantly 
raise the quality of XR research and produce a more effective allocation of 
resources. We therefore advocate that preference should be given to proj-
ects that are willing to adopt these standards.

7.3.2 Individual Differences

There are some additional considerations regarding individual differ-
ences when addressing human perception in the design and research 
of XR technology. First, it is important to note the potential differences 
between genders; men have an average interpupillary distance (IPD) of 
about 64.7, and women have an average IPD of 62.3 [38]. A recent meta- 
analysis found that the number of female participants in VR research 
studies can impact the amount of VR sickness experienced after HMD 
use [39]. Though there have been conflicting findings as to whether men 
and women have different simulator sickness susceptibilities, there is evi-
dence that a lack of proper IPD fit for women participants impacts these 
differences [40]. Therefore, proper gender balance in research studies 
is strongly merited, and the ability to properly adjust IPD may also be 
advised. Furthermore, Peck et al. [39] found that the number of female 
participants in VR research studies was associated with the number of 
female authors of VR manuscripts. Thus, it is important to encourage 
diverse research teams as well as more representative samples. Age, sus-
ceptibility to motion sickness, and gaming or VR use are also important 
individual characteristics to take into account [41].

Another important consideration is accessibility. The World Report on 
Disability from the World Health Organization estimated that about 15% 
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of the global population, or over 1 billion people, were living with a disabil-
ity in 2010. This was a significant increase from an estimated prevalence 
of 10% of the world’s population in 1970, so it is possible that the cur-
rent numbers are even larger [42]. Furthermore, the 2006 United Nations 
Convention on the Rights of Persons with Disabilities enshrines the rights 
of people with disabilities as human rights, and outlines obligations for 
member states that ratify the treaty to address issues of accessibility and 
inclusion. Thus, the development of future XR technologies must also 
include the incorporation of recommendations and guidelines for acces-
sibility that have been developed by organizations for people with disabil-
ities, like the Disability Visibility Project (https://disabilityvisibilityproject.
com/) and AbleGamers (https://ablegamers.org/), from the outset, and 
not as an afterthought [43, 44]. The World Wide Web Consortium (W3C) 
Web Accessibility Initiative (WAI) has published a comprehensive guide, 
the XR Accessibility User Requirements (Accessible Platform Architectures 
Working Group, [45]), that can be used to ensure that everyone can enjoy 
XR. Additionally, it should be considered that XR technologies can have 
enormous impacts on peoples’ lives, like VR neurorehabilitation therapies 
that have been shown to restore some limb sensation and motor control 
for patients paralyzed from spinal cord injuries [46]. Therefore, opportuni-
ties to assist people with disabilities using XR, such as immersive telepres-
ence [47] or XR therapeutics [48], merit further support for research and 
development.

7.3.3 Open-Source Modular Devices

An often-ignored, yet major, impediment to the growth of XR and human 
perception research is that the overwhelming majority of research is con-
ducted using commercial products that can carry wildly different hard-
ware parameters. Technology has advanced at such a rapid pace that 
today’s cutting- edge devices make those from a decade ago look quaint. 
Even among current and upcoming devices, there is a gamut of consumer 
and corporate targets, with some devices retailing for less than €50, while 
others retail for thousands of euros. Such large gaps between price tags 
necessarily carry large gaps between the types of features users can expect 
to receive among these various devices, and these differences can in turn 
create confounds for researchers.

There are no scientific standards that dictate which device labs across 
the world use in their XR experiments. Instead, selections are made based 
on convenience and the availability of resources. While studying the same 
facet of XR and human perception, one lab might use the Oculus DK1, 
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while another might use the Varjo XR3. When the two labs arrive at differ-
ent conclusions on the topic they are trying to address, is the difference due 
to some discrepancy between their methods, some discrepancy between 
their contents, or a discrepancy between aspects of the two devices? 
Perhaps a mix of all three? Can we still trust results from 20 years ago 
that came from devices of that time period, or have our devices evolved so 
drastically over time that many of the problems associated with old devices 
are no longer relevant?

Consider a toy example in which we are trying to better understand 
motion sickness caused by motor vehicles. Pretend that there is a hypoth-
esis in this field that the degree of motion sickness experienced is a func-
tion of how much food is in the stomach at the time of driving. Three labs 
around the world simultaneously begin studies to test this hypothesis, con-
trolling how much their participants eat before starting them along their 
driving course, each lab without knowledge that the other two labs are 
busy addressing the same issue. Lab A has participants drive their course 
in a 1990 Toyota Camry and finds that an empty stomach is associated 
with greater motion sickness. Lab B has participants drive their course in 
a 2020 Lamborghini Aventador and finds that a full stomach is associated 
with greater motion sickness. Lab C has participants drive their course in a 
2015 Mini Cooper and finds no relationship between stomach fullness and 
motion sickness.

Which lab’s data should we believe? Despite attempting to study the 
same concept, the labs’ tools for assessing the concept are so different 
that it can be difficult to draw conclusions. Compound this dilemma with 
underpowered studies and high false positive rates (see the section on best 
practices above) and we have truly gained nothing from this set of stud-
ies. This scenario demonstrates another case in which the field could be 
approaching things backwards; that is, we believe we are studying funda-
mental perception, when in fact, we are sometimes closer to studying the 
devices themselves instead. Our goal is to understand the construction of 
perceptual experiences, yet the obligatory reliance on commercial, rather 
than research-grade, tools obfuscates our path to understanding.

These devices are not usually made with researchers in mind, and why 
would they be? They are commercial products targeted to consumers, or 
in other cases, enterprise products targeted to businesses. How might we 
remedy this problem of associated potential confounds introduced to XR 
research? One solution would be the adoption of open-source modular 
devices. The name invokes two critical features: 1) open source, such that 
anyone can access the device free of property infringements and construct 
the device without requiring hefty financial resources, and 2) modular, 
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such that researchers may mix and match device components and control 
for the impacts of various hardware features instead of being forced to work 
with the hardware features that were chosen by companies to target their 
particular user base. While related initiatives exist, such as holokit (https://
holokit.io/) and CheApR (https://www.instructables.com/CheApR-Open-
Source-Augmented-Reality-Smart-Glasses/), these are consumer-grade 
products that do not rise to the degree of quality that would be needed 
for scientific research. They also lack the modularity that would be key 
for understanding how different aspects of device hardware contribute to 
perception.

We believe that developing open-source modular devices is necessary if 
we are to ascend to our full potential as a scientific discipline. This initiative 
would require careful planning, dedicated personnel, and significant fund-
ing, but the payoff would be monumental in terms of the progress such 
an initiative could bring about. Developing open-source modular devices, 
along with the adoption of best practices, represents an opportunity to set 
a new, more solid foundation for XR research.
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