
Controlling Wild Mobile Robots
Using Virtual Gates and Discrete Transitions

Leonardo Bobadilla Fredy Martinez Eric Gobst
bobadil1@uiuc.edu fredymar@uiuc.edu gobst1@uiuc.edu

Katrina Gossman Steven M. LaValle
kgossma2@uiuc.edu lavalle@uiuc.edu

Department of Computer Science
University of Illinois

Urbana, IL 61801 USA

Abstract—We present an approach to controlling multiple
mobile robots without requiring system identification, geometric
map building, localization, or state estimation. Instead, we
purposely design them to execute wild motions, which means
each will strike every open set infinitely often along the boundary
of any connected region in which it is placed. We then divide the
environment into a discrete set of regions, with borders delineated
with simple markers, such as colored tape. Using simple sensor
feedback, we show that complex tasks can be solved, such as
patrolling, disentanglement, and basic navigation. The method is
implemented in simulation and on real robots, which for many
tasks are fully distributed without any mutual communication.

I. I NTRODUCTION

With advances in technology, mobile robots are increasingly
equipped with rich sensors, powerful control boards, high-
performance computers, and high-speed communication links.
This has enabled the development of highly sophisticated
systems for common tasks such as navigation, exploration,
patrolling, and coverage. This usually leads to a significant
modeling burden, which includes system identification and
careful mapping of the robot’s environment. Powerful sensors
are used for mapping and localization. Filters are developed to
obtain state estimates so that policies based on state feedback
can be designed and implemented. Further complications arise
in the case of multiple robots: Careful coordination and
communication strategies are usually developed, sometimes
involving a centralized controller.

In this paper, we explore the development of mobile robot
systems from the opposite extreme: How absurdly simple can
the system be while nevertheless accomplishing interesting
tasks? There are several important reasons to focus on simple,
minimalist robots. First of all, theoretically, it encourages us
to find what is the least amount of information needed to
solve a certain task, giving insights into the task’s inherent
complexity. Secondly, this may allow us to manufacture robust,
inexpensive robots with low energy consumption, which is
important in the case of multiple robots. Thirdly, sensors
can be limited depending on the environment. For example,
most indoor environments are GPS-denied, lighting conditions
can affect computer vision based approaches, and the use
of cameras in public spaces may be frowned upon due to

privacy concerns. Finally, in some settings, especially micro
and nanorobotics, the sensors, actuators, and system models
are all poor. Insights from effectively controlling robotsin
a larger scale, but with weak components, may give offer
insights into achieving tasks in these difficult settings.

Fig. 1. Starting from the SERB open-source design, we engineered a simple
robot from acrylic sheets, cheap motors, a color sensor, and an Arduino
microntroller board (total cost less than $100 US).

Our robots operate while being information impoverished
due to very limited (non-metric) sensing. There is no precise
model of the equations of motion and state feedback is impos-
sible. We start with uncalibrated, “wildly behaving” robots that
move more-or-less straight until a wall is contacted. They then
pick a random direction to repel and continue moving straight.
This motion primitive is inspired bydynamical billiards[6],
[30]. The only sensors required for navigation are simple
contact sensors to detect obstacles and boundaries, and an
inexpensive color sensor that can detect simple landmarks in
the environment. Such a robot can be built with inexpensive
parts for under $100 US; ours is depicted in Figure 1. We can
only guide the robot through its environment by designing
appropriate responses to limited sensor feedback and sensing
history. To achieve this, we formulate tasks in terms of a
hybrid system [5], [8], [11], [14], [16], [31]. As is common
in many approaches, we partition the environment into a
finite set of regions over which a discrete transition system
is defined. Rather than develop state-feedback control laws
within regions [1], [8], [12], [17], [23], [29], we do not even

attempt to stabilize the robots. We instead placevirtual gates
along the boundaries between regions that possibly enable
discrete transitions, depending on information provided by a
combinatorial filter [25], [32] that maintains informationstates
from weak sensor data. In related work, mechanical gates
were designed and demonstrated to allow various tasks to be
effectively solved [4]. In that work, tasks were specified using
the LTL framework (see [3], [9], [10], [12], [17], [19], [20],
[21], [22], [23], [29], [34]) and then converted into solution
strategies using model checking software. In the current paper,
we instead explore the idea ofvirtual gates, which allow a
different set of tasks to be solved. It remains an open problem
to design logics that can adequately capture the set of tasks
that are solvable using the approach in this paper.

The paper is organized as follows. Section II presents
preliminary concepts, including the interaction between the
wild robots, the virtual gates, and the regions. Section III
presents experiments for multi-robot tasks that are solvedwith
our approach. Section IV presents extensions and open issues,
and Section V concludes the paper.

II. M ATHEMATICAL MODEL

A collection of n robots (numbered1 to n) is placed into
a compact, connected planar workspaceW ⊂ R

2. Let ∂W
denote the boundary ofW. Let Γ be a set ofm virtual gates,
for which eachγi ∈ Γ is the image of an injective, rectifiable
curveτi : [0, 1] → W for which τ(0) ∈ ∂W andτ(1) ∈ ∂W.
Let C be a set ofk colors, with k ≤ m. Each virtual gate is
labeled with a color by a given mappingκ : Γ → C.

The gates induce a decomposition ofW into connected
cells. See Figure 2 for an example. If the gates inΓ are
pairwise disjoint, then eachγi ∈ Γ is a 1-cell and the 2-
cells are maximal regions bounded by 1-cells and intervals of
∂W. If gates intersect, then the 1-cells are maximal intervals
between any gate intersection points or elements of∂W; the
2-cells follow accordingly. In either case, every 2-cell will be
called aregionand denoted asR. Let R denote the collection
of all regions.

Fig. 2. An annulus-shaped environment that has6 regions. The walls are
made of bricks and the virtual gates are made of colored tape. There are three
RED gates and threeWHITE gates.

The robots are considered small with respect toW and
the regionsR ∈ R. They are essentially modeled as points,
but may have specific kinematics, as in the common case of
differential drive robots. More precisely, the assumptionis
that the collision-free subsets ofW and everyR ∈ R are

homeomorphic to those obtained for the case of a point robot,
regardless of each robot’s geometry (for example, the radius
of a disc robot). Furthermore, anyR ∈ R is assumed to be
able to fit alln robots without complicated geometric packing
challenges [28].

Fig. 3. The Bunimovich stadium is a well-known example of an ergodic
system [6]. The “hockey puck” will strike every open set along the boundary
as it travels forever. (Figure courtesy of Wikipedia.)

The particular equations of motioṅx = f(x) for each
robot is unimportant in our approach. We do not explicitly
control their motions and do not even attempt to measure their
precise state through sensing and filtering. Instead, we rely on
the fact that the robot moves in a wild, uncontrollable way,
but the trajectory satisfies the following high-level property:
For any regionR ∈ R, it is assumed that the robot moves
on a trajectory that causes it to strike every open interval
in ∂R (the boundary ofR) infinitely often, with non-zero,
non-tangential velocities. A body that satisfies this property is
calledwild [4]. One family that achieves this motion isergodic
systems that arise in the study of dynamical billiards [6]. In
this case, a Newtonian particle moves at constant velocity and
then bounces with standard reflection laws from the boundary.
Figure 3 shows a famous example. In most planar regions,
ergodicity is achieved, which implies wildness. An alternative
model, used in our experiments, is to bounce in a random
direction from the boundary, rather than at a prescribed angle.
This is preferable with our robots because they cannot sense
the angle of incidence. In the case ofn robots, they may
contact each other in a common region. A random bounce
direction is used in this case as well.

A control modeis a mappingu : C → {0, 1} that assigns
one of two behaviors to every beam color. For a colorc ∈ C,
u(c) = 0 means that any virtual gate of colorc does not
obstruct the robot’s motion. The control modeu(c) = 1 means
that the robot must treat every virtual gate of colorc as a wall
that blocks its motion. LetU denote the set of all possible
control modes.

For a single robot, we define a discrete transition systemD1

that simulates the original hybrid system. Let the state space
of the discrete system beR. The transition system is defined
as

D1 = (R, R0,→1), (1)

in which R0 is the region that initial contains the robot. The
transition relationR →1 R′ is true if and only if R and
R′ share a common border which corresponds to a virtual
gateγi ∈ Γ. If κ(v) = c, then there exists someu ∈ U for
whichu(c) = 0. We will refer to the resulting labeled, directed
transition graph, G1, in which the vertex set is the set of all

regionsR, and every edge is a possible transition, labeled by
the virtual gate color that allows it.

It is straightforward to show thatD1 is a simulation of the
original hybrid system. Therefore, we can design a solution
plan overD1, thereby inducing the correct behavior of the
original hybrid system. This is the standard approach to hybrid
system control using a discrete abstraction. In the case ofn
robots,D1 is extended in the obvious way by making ann-
fold Cartesian product of the transition graph. This results in
a discrete transition systemDn that simulates the motions of
all robots.

We develop an event-based system [2]. Each robot starts
with an initial control mode. During execution, the control
mode may change only when receiving an sensor observation
eventy. Depending on the system, the possible events are:

1) Gate crossing:The robot detects that it crossed a virtual
gate of colorc. The observation isy = c.

2) Timer expire: The robot has been within a single region
for at leastt seconds. The observation isy = TIMEOUT.

3) Change in lighting: The ambient room light changed,
either asy = LIGHTTODARK or y = DARKTOLIGHT.

4) Communication: The robot receives a message from
robot i that roboti crossed beamc. The observation is
y = (c, i).

Let Y denote the set of all possible observation events for a
robot in a particular system.

The control modes of roboti are set during execution
according to a policy. Since state feedback is not possible,
information feedbackis instead used. Let afilter be any
mapping of the formφ : I × Y → I, in which I denotes
an information space[24] that is designed appropriately for
the task (this should become clear in Section III). The initial
η ∈ I is given, and each time a new observation event
occurs, an information-state transition occurs in the filter. A
control policyis specified as an information-feedback mapping
π : I → U , which enables the control mode to be set
according to the sensor observation history.

III. SOLVING TASKS

In this section, we present a series of tasks that were solved
by our method. First, we describe our simple differential
robots, and then we present solved tasks that take into account
different information spaces, filters and control polices.Full
videos appear at

http://msl.cs.uiuc.edu/virtualgates/

A. Hardware

Our robots are based on the Oomlout open-source SERB
design (http://www.oomlout.com/a/products/serb/). We modi-
fied the design to have a more robust bumper system using a
similar geometry to the SERB robot chassis. Also, a Parallax
ColorPAL sensor was added to the newly designed bumper
system so that both physical and virtual walls can be detected
with a simple attachment. Each robot can be made for under
$100 US from commercially available parts and is depicted in
the Figure 1. The robot frame and wheels were cut from in-
expensive 1/8-inch acrylic plates. Each robot uses an Arduino
Duemilanove board, which includes an 8-bit microcontroller

with a 16 Mhz clock that runs off a 9V battery. Continuous
servos made by Parallax are used to move the large wheels
of the robot. A solderless breadboard is attached to the top of
the robot to allow quick circuit modifications. A 4-AA battery
pack is attached under the robot to provide separate power to
the servo motors.

B. Patrolling

For this task, we would like a set of robots to visit all of
the regions inR repeatedly, in some specified order. In this
case, we compute any cyclic path throughG1 and then assign
a color to every edge, which corresponds to a virtual gate.
Colors may be reused, provided that ambiguity does not arise.
Figure 2 shows an example environment in which two colors
are sufficient, resulting inC = {RED, WHITE}. These are the
only observation events, leading toY = C. There are two
control modes:U = {u0, u1}. The first,u0, allows the robot
to cross a white gate,u0(WHITE) = 0 but treats red as a
wall u0(RED) = 1. The second,u1, has the opposite effect:
u1(WHITE) = 1 andu1(RED) = 0. To achieve patrolling, we
design a small information spaceI = {η0, η1}. The control
policy π is defined asui = π(ηi) for i ∈ {0, 1}.

RED

WHITE=y

=y

Fig. 4. Simple filter used for patrolling

The filter φ switches information states when a color is
crossed as follows:η1 = φ(η0, WHITE) andη0 = φ(η1, RED).
See Figure 4. When bouncing occurs from a virtual gate, it is
assumed that no observation event occurs because the robot
does not pass through the gate. Therefore, the filter in Figure 4
shows no edges for the cases ofφ(η0, RED) andφ(η1, WHITE).

Depending on the initial regionR ∈ R and initial infor-
mation stateη ∈ I, a robot that executesπ will indefinitely
patrol the6 regions in clockwise or counterclockwise order.
Suppose that the initial state of the robot isη0 which makes it
go through a white gate. When it crosses the white gate, it will
transition toη1. This will make the white gate into a virtual
wall forcing it to remain in the new region until the red gate
is crossed. An implementation is shown in Figure 5 in which
4 robots execute the same policyπ, but with different initial
regions and information states to induce various directions of
patrolling.

C. Separating into teams

For another task, suppose we have twoteamsof robots
that are initially in one region and we would like to separate
them into one team per region. To solve this problem, we
use the same filter and control law described in the previous
subsection. We require that members of the same team have
the same initial information state. We implemented this task
with four robots belonging to two different teams, blue and
not blue (Figure 6).

(a) (b)

(c) (d)

Fig. 5. Continuous patrolling of the environment: a) Four robots start in
different regions. The first group (blue robots) is allowed to cross the white
gate, the second group (red and white) is allowed to cross thered gate; b)
after 36 seconds, the four robots have advanced to the following regions,
blue robots clockwise, and red and white robots counterclockwise; c) after44
seconds, the blue robots and the red robot cross into a regionbut in opposite
directions, the white robot is about to end its first round trip; d) after 69
seconds, the white robot begins its second round trip while the other three
robots are near completion of the first.

(a) (b)

(c) (d)

Fig. 6. Autonomous separation of robots into two teams: a) Fourrobots
start simultaneously in the same region in the center of the environment (there
are three regions total); b) after16 seconds, the gold robot has reached the
lower region, and one blue robot has reached the upper region; c) after 24
seconds, the second blue robot has reached the upper region,and the red
robot has reached the lower region; (d) after38 seconds, the four robots
remain separated in their regions.

D. Navigation

We want a group of robots to navigate in an environment
containing alternating colored gates. The goal is for the robots
to move from one end region to another as illustrated in
Figure 7. The only additional information, with respect to
the previous examples, is that the robot must choose an
information stateη0 or η1 depending on which virtual gate
is crossed first.

E. Reactive tasks

We would also like to give the robots the ability to change
their policies based on information collected from external
environment conditions that appear during run time. This can
be easily incorporated in our framework by adding simple
sensors. For example, we placed inexpensive photo diodes (for

(a) (b)

(c) (d)

Fig. 7. Navigation from one extreme to another: a) Two robots begin together
in the lower right region; b) after22 seconds, the two robots have advanced
two regions; c) after47 seconds, the blue robot remains exploring the same
region, while the red robot has reached the last region; (d) after 97 seconds,
the blue robot also reaches the last region.

(a) (b)

(c) (d)

Fig. 8. Navigation modes using a light sensor: a) Two robots start in the
same region (lower region). The environment is affected by a light source,
generating two conditions in the environment: dark or illuminated; b) after4
seconds the two robots enter the middle region and because thelight is off,
they will continue to the upper region of the environment; c) when the robots
sense the light is on, they will return to the lower region (d)

under $2 US each) onto our robots that can detect if a light
is turned on in a given region. The observation event space
includesLIGHTTODARK andDARKTOLIGHT. Simple rules can
be used, for example: If the light is on, go back to the previous
region and if it is off, transition to a new region. This is
illustrated in Figure 8, in which a robot makes decisions about
its control modes based on lighting.

F. Time-based policies

Suppose we are interested in visiting a region for at leastt
seconds. We can use this information along with gate crossing
information as illustrated in Figure 9. In this example, we use
two more information statesη2 andη3 and additional control
modesu2 and u3 that make the robot treat both colors as a
wall, u2(WHITE) = u2(RED) = u2(WHITE) = u2(RED) = 1.
Also, u2 = π(η2) andu3 = π(η3)

The filter is illustrated in Figure 10. It is initialized to infor-
mation stateη2 with both gates closed. After a predetermined
period of timet > 0 has passed, the filter switches toη0, which

(a) (b)

(c) (d)

Fig. 9. Patrolling using time intervals: a) Two robots start simultaneously in
the same environment but in different regions, and are guaranteed to spend
at least30 seconds there; b) after30 seconds, the two robots remain in their
regions; c) after66 seconds, the blue robot moves to the next region, which
will also remain at least30 seconds. The white robot is still in its region; (d)
after 155 seconds, the blue robot moves to the third region, the white robot
is in its second region.

allows the robot to go through theWHITE gate. Once the robot
crosses the white gate, receivingWHITE, the filter switches to
η3, waiting until receivingTIMEOUT before transitioning to
η1.

RED

WHITE

TIMEOUT

TIMEOUT

=y

=y

=y

=y

Fig. 10. A simple filter used for time based patrolling.

G. Using a region filter

The previous examples provided simple illustrations. An
extension to inlcude more colors and more regions is straight-
forward provided that all of the gates bordering a region
have distinct colors. In other words, there is a properedge
coloring [27] of G1.

We would like to solve a more general version of navigation
using the transition graphG1. Suppose that the robot is in
region Rinit and wants to navigate to regionRgoal. In this
case our information space is the set of regionsI = R, which
leads to a simple region filter, as discussed in [25], [32]. The
robot uses depth-first search to find a path to the goal inG1

and stores it as a sequenceγ̃ of gates to be crossed. Starting
in region Rinit, we first design a control modeu0 to make
the robot go through gatẽγ[0] by settingu0(κ(γ̃[0])) = 0 and
to block the other directionsu0(c) = 1 for c ∈ C and c 6=
κ(γ). Once the colorκ(γ̃[0]) has been crossed, we update the
information state by applying the transition→′

1
on the discrete

(a) (b)

(c) (d)

Fig. 11. Navigation using two different routes to reach the same destination:
a) Two robots start simultaneously in the same environment but in different
regions. Both must come along different routes to the same destination; b)
after 6 seconds, both robots have changed regions; c) after15 seconds, the
blue robot has already moved three regions, and the red robot has moved two
regions; (d) after57 seconds, the two robots have reached their goal region.

transition systemD1 starting in regionRinit and applying
γ̃[0]. We continue in this way creating control modeuj that
will make the robot go through each gateγ̃[j] until it reaches
its destinationRgoal.

We illustrate this idea with the experiment shown in
Figure 11 in an environment that has gate colorsC =
{RED, WHITE, BLACK} and two robots reaching the same goal
region from different initial conditions.

H. Communication based strategies

Until now, the robots act independently to accomplish tasks.
We now use a decentralized approach that requires only local
communication (only robots in the same region are allowed to
transmit messages) and low bandwidth. Suppose that we want
a group of robots, initially located in the same region to visit
a sequence of gates̃γ with the constraint that no robot may
advance to the next region until all have crossed the previous
gate. This model uses the communication eventsy = (c, i)
mentioned in Section II, in addition to the usual gate crossing
events.

Initially all robots apply a control modeu0 that guides
them through the first virtual gatẽγ[0]. Once roboti crosses
the gate, its filter will be in an information state for which
all gates are blockedu′

0
(c) = 1 for all c ∈ C, and it will

broadcast the messagey = (κ(γ̃[0]), i) to all other robots in
the region. When it receivesy = (κ(γ̃[0]), j) for j 6= i, the
robot concludes that the whole group is in the same region and
it will be allowed to move forward to the next region. This
procedure continues for all gates iñγ. Note that all robots
run the same policy but their information states may differ at
various points during execution.

We implemented this on our robots by adding an inexpen-
sive 2.4GHz XBee module (under $25 US) to communicate
crossing information, encoded as integers. As illustratedin
Figure 12,2 robots navigate jointly through a sequence of5
regions.

(a) (b)

(c) (d)

Fig. 12. Navigation using local communication between robots: a) Two
robots begin together in the lower left region. These robotscan communicate
color information of the gate just crossed. This information is sufficient to
determine if the two are the same region, a necessary conditionto advance to
the next region; b) after42 seconds, the two robots have reached their third
region; c) after76 seconds, the two robots have reached their fourth region;
(d) after137 seconds, the two robots have reached their last.

(a) (b)

(c) (d)

Fig. 13. A simulation of100 robots in a complex environment that has21

regions. Each robot moves straight until it hits a boundary and then reflects at
a random angle. The robots navigate from the upper left region to the lower
right.

I. Computer simulations

To study more complicated examples, we developed simu-
lations. Figure 13 shows100 robots solving a navigation task
in an environment that has21 regions.

IV. EXTENSIONS AND ISSUES

This section will present some open issues and possible
directions for future research.

A. Expected time of completion

The completion time of a task depends on several factors
such as the number of gates, the region shapes, the gate widths,
the size and number of robots, the number of obstacles inside
the regions, and the robot motion primitive. We have started
to analyze these factors in simulation. We first designed a
simulation that closely matches the behavior of our real robots,

(a) (b)

Fig. 14. (a) The real environment for a simple navigation task;(b) the
corresponding simulation model.

respecting the relative dimensions and speed of the robot as
illustrated in the Figure 14.

In the first simulation, we study how the completion time
is affected by the number of robots. We took a navigation
task with five regions and 4 gates. We performed50 trials in
which the robot is initially placed in a random position and
orientation. We repeated the simulation for the same task using
two robots, recording the arrival of the first and second robot.
The distributions of completion times are shown in Figure 15.

Fig. 15. Plot of completion times (seconds) for one robot (left), two robots
first arrival (middle), two robots second arrival (right)

As seen in the plot, the distribution of the time of com-
pletion for one robot has only one outlier. When two robots
are placed in the same environment, the first robot arrives
significantly faster that a robot placed in isolation; however,
the second robot takes longer to arrive. We also ran the
simulation with a smaller number of gates. It can be seen
that fewer gates results in more outliers and a slightly higher
expected time of completion. This is a simple first step to
understanding different tradeoffs for a given task.

B. Virtual gate placement

One important issue is where to place the virtual gates.
Given the geometric description of the environmentE, we
would like to find the best placement and number of gates|Γ|
to ensure the desired performance in the completion of a task.
Alternatively, given an environment and a fixed number of
gates, determine the location that gives the best performance.
This may be related to the problem of sensor placement in
sensor networks [15].

Fig. 16. A simulation of the environment with two virtual gates

Fig. 17. Plot of completion times for four gates (left) and two gates (right)
for a single robot

As noted before, some of the problems required the robot
to be able to distinguish all the gates in a region. In other
words, the associated graph,G1, should beedge colorable. It
has been proved [33] that simple graphs (without self loops or
multiple edges in each vertex) with maximum vertex degree
d will need at mostd or d + 1 colors. Efficient algorithms
for the case of simple and planar graphs have been proposed
to find a proper edge coloring [26], [27]. We can apply these
algorithms directly toG1.

The colored tape represents only one way to implement
virtual gates. Other sensor modalities such as infrared de-
tectors, or location of simple landmarks can be considered.
In fact, it is best if the robot is able to use natural features
in the environment as virtual gates. This leaves tremendous
opportunities for future research.

C. Mapping

Most of the tasks solved by our methodology require little or
no information about the environment. In the most complicated
tasks, such as arbitrary navigation, information about the
transition graphG1 must be given to the robot. However, ifG1

is not available to the robot, it should attempt to learn the graph
during execution. If we start with a proper edge-colorable

graph, each of the edges can be distinguished in a region
and on-line graph exploration algorithms, such as [13], canbe
applied. Furthermore, it is interesting to determine what tasks
that robot can solve while having onlypartial information
aboutG1.

D. Formal specification of tasks

One motivation for our ideas is the recent work on translat-
ing high level specifications into low-level controllers for the
control of multiple robots [3], [9], [10], [12], [17], [18],[19],
[20], [21], [22], [23], [29], [34]. Ideally, we should be able to
give natural-language like description of robotic tasks such as:
“Two robots should visit regionsR1, R2 andR3, then stay in
regionR3 for four minutes, if you see a light on stay there,
otherwise go to regionR6”. We would like to find a suitable
representation, such as a logic or grammar, that can be used
to describe high level plans and then translated automatically
to our simple controllers.

E. Better wild motions

There may be more efficient ways to generate wild motions.
In each case, interesting tradeoffs exist between the ability
to implement them on cheap hardware with limited sensing
and their overall efficiency. We are currently conducting ex-
periments with theadaptive random walkmotion planning
algorithm [7] to possibly obtain more efficient motions inside
of each region. Alternatively, there may exist simple learn-
ing strategies that utilize simple sensing information during
execution, such as the time between bounces, to improve its
performance.

V. CONCLUSIONS

We presented an approach to control multiple robots without
system identification, map building, localization or precise
state estimation. The key ideas are to make wildly behaving
robots and gently guide them through the use of virtual gates.
We demonstrated the approach on simple, low-cost robots
and in simulation. Although no formal proofs were presented,
note that they are trivial with this approach: If the wildness
condition is satisfied, then the discrete transitions occurduring
execution, thereby solving the desired task. The control modes
are set to induce the desired paths through the transition graphs
G1 andGn.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant 0904501 (IIS
Robotics), NSF grant 1035345 (CNS Cyberphysical Systems),
DARPA SToMP grant HR0011-05-1-0008, and MURI/ONR
grant N00014-09-1-1052. The authors thank Dan Gierl for
useful discussions and help with the experiments.

REFERENCES

[1] R. Alur, T. A Henzinger, G. Lafferriere, and G. J. Pappas.Discrete
abstractions of hybrid systems.Proceedings of the IEEE, 88(7):971–
984, 2002.

[2] K. J. Åström. Event based control. InAnalysis and Design of Nonlinear
Control Systems: In Honor of Alberto Isidori. Springer Verlag, 2007.

[3] A. Bhatia, L. E. Kavraki, and M. Y. Vardi. Sampling-based motion
planning with temporal goals. InProceedings IEEE International
Conference on Robotics & Automation, pages 2689–2696, 2010.

[4] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman, and S. M.
LaValle. Controlling wild bodies using linear temporal logic. In
Proceedings Robotics: Science and Systems, 2011.

[5] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for
hybrid control: Model and optimal control theory.IEEE Transactions
on Automatic Control, 43(1):31–45, 1998.

[6] L. A. Bunimovich. On the ergodic properties of nowhere dispersing
billiards. Communcations in Mathematical Physics, 65:295–312, 1979.

[7] S. Carpin and G. Pillonetto. Robot motion planning using adaptive ran-
dom walks. IEEE Transactions on Robotics & Automation, 21(1):129–
136, 2005.

[8] M. Egerstedt and X. Hu. A hybrid control approach to action coordi-
nation for mobile robots.Automatica, 38(1):125–130, January 2001.

[9] G. E. Fainekos. Revising temporal logic specifications for motion
planning. InProceedings IEEE International Conference on Robotics
& Automation, 2011.

[10] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Tem-
poral logic motion planning for dynamic mobile robots.Automatica,
45(2):343–352, February 2009.

[11] R. Fierro, A. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of
formations of robots. InProceedings IEEE International Conference on
Robotics & Automation, pages 157–162, 2001.

[12] C. Finucane, G. Jing, and H. Kress-Gazit. LTLMoP: Experimenting
with language, temporal logic and robot control. InProceedings
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1988–1993, 2010.

[13] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph
exploration by a finite automaton.Theoretical Computer Science, 345(2-
3):331–344, December 2005.

[14] E. Frazzoli, M. A. Dahleh, and E. Feron. Robust hybrid control
for autonomous vehicles motion planning. Technical Report LIDS-P-
2468, Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, 1999.

[15] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor placements
in gaussian processes. InProceedings International Conference on
Machine Learning, 2005.

[16] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulationrelations for
dynamical, control, and hybrid systems.Theoretical Computer Science,
342(2-3):229–261, September 2005.

[17] M. Kloetzer and C. Belta. Automatic deployment of distributed teams
of robots from temporal logic motion specifications.IEEE Transactions
on Robotics and Automation, 26(1):48–61, 2010.

[18] H. Kress-Gazit.Transforming high level tasks to low level controllers.
PhD thesis, University of Pennsylvania, 2008.

[19] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating structured
english to robot controllers.Advanced Robotics, 22(12):1343–1359,
2008.

[20] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based
reactive mission and motion planning.IEEE Transactions on Robotics
and Automation, 25(6):1370–1381, December 2009.

[21] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal logic
motion planning for mobile robots. InProceedings IEEE International
Conference on Robotics and Automation, 2005.

[22] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Where’sWaldo?
sensor-based temporal logic motion planning. InProceedings IEEE
International Conference on Robotics and Automation, 2007.

[23] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta. Motion
planning and control from temporal logic specifications withprob-
abilistic satisfaction guarantees. InProceedings IEEE International
Conference on Robotics & Automation, pages 3227–3232, 2010.

[24] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[25] S. M. LaValle. Sensing and filtering: A tutorial based onpreimages
and information spaces.Foundations and Trends in Robotics, 2011. To
appear.

[26] J. Misra and D. Gries. A constructive proof of vizing’s theorem.
Information Processing Letters, 41(3):131–133, 1992.

[27] S. Nakano, X. Zhou, and T. Nishizeki. Edge-coloring algorithms.
Computer Science Today, pages 172–183, 1995.

[28] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: III.
Coordinating the motion of several independent bodies.International
Journal of Robotics Research, 2(3):97–140, 1983.

[29] S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal path planning
under temporal logic constraints. InProceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3288–3293, 2010.

[30] S. Tabachnikov. Geometry and Billiards. American Mathematical
Society, Providence, Rhode Island, 2005.

[31] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic
management: A study in multiagent hybrid systems.IEEE Transactions
on Automatic Control, 43(4):508–521, April 1998.

[32] B. Tovar, F. Cohen, and S. M. LaValle. Sensor beams, obstacles, and
possible paths. In G. Chirikjian, H. Choset, M. Morales, andT. Murphey,
editors, Algorithmic Foundations of Robotics, VIII. Springer-Verlag,
Berlin, 2009.

[33] V. G. Vizing. On an estimate of the chromatic class of a p-graph.Diskret.
Analiz, 3(7):25–30, 1964.

[34] M. Wu, G. Yan, Z. Lin, and Y. Lan. Synthesis of output feedback
control for motion planning based on LTL specifications. InProceedings
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5071–5075, 2009.

	Introduction
	Mathematical Model
	Solving Tasks
	Hardware
	Patrolling
	Separating into teams
	Navigation
	Reactive tasks
	Time-based policies
	Using a region filter
	Communication based strategies
	Computer simulations

	Extensions and Issues
	Expected time of completion
	Virtual gate placement
	Mapping
	Formal specification of tasks
	Better wild motions

	Conclusions
	References

