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Abstract— We present a general approach for determining
the unknown (or uncertain) position and orientation of a
sensor mounted on a robot in a known environment, using
only a few distance measurements (between 2 to 6 typically),
which is advantageous, among others, in sensor cost, and
storage and information-communication resources. In-between
the measurements, the robot can perform predetermined local
motions in its workspace, which are useful for narrowing down
the candidate poses of the sensor. We demonstrate our approach
for planar workspaces, and show that, under mild transversality
assumptions, already two measurements are sufficient to reduce
the set of possible poses to a set of curves (one-dimensional
objects) in the three-dimensional configuration space of the
sensor R2 × S1, and three or more measurements reduce the
set of possible poses to a finite collection of points. However,
analytically computing these potential poses for non-trivial
intermediate motions between measurements raises substantial
hardships and thus we resort to numerical approximation. We
reduce the localization problem to a carefully tailored procedure
of intersecting two or more implicitly defined two-manifolds,
which we carry out to any desired accuracy, proving guarantees
on the quality of the approximation. We demonstrate the real-
time effectiveness of our method even at high accuracy on
various scenarios and different allowable intermediate motions.
We also present experiments with a physical robot. Our open-
source software and supplementary materials are available at
https://bitbucket.org/taucgl/vb-fdml-public.

I. INTRODUCTION

Robot localization is the task of a robot to determine
its position and orientation inside the environment where
it operates using data collected from sensors. As such,
localization is a key ingredient in robot navigation which
has received increased attention in recent years, since the
position and orientation are necessary for planning a path of
motion [1]. Localization can be carried out in various ways
using a variety of sensors, which may be intrinsic (attached
to the robot) or extrinsic (attached to the environment).

A common type of sensor for localization is distance-
based, e.g., LiDAR. Many distance measurements do not
only allow for localization inside a known environment but
are also able to map an unknown environment. This is the
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task of the intensively investigated Simultaneous Localiza-
tion And Mapping (SLAM), usually by equipping the robot
with either a LiDAR sensor [2] or with a camera [3]. But
equipping each robot with a LiDAR sensor or a camera
might be expensive both in the price of each sensor and the
hardware required to process the information, as well as in
the network throughput of sending, receiving, and processing
large point clouds.

As we focus in this paper on distance measurement,
we will refer to sensor localization for short, with the
understanding that the sensor is geometrically a point that is
rigidly attached to a robot. While our approach is general, we
will analyze it in detail for a sensor attached to a mobile robot
translating and rotating in the plane. Hence the configuration
space of the sensor is three-dimensional and we represent
each configuration as the triple (x, y, θ). We will use the
robot motions as part of our solution technique.

Note that instead of moving the robot between measure-
ments, one can alternatively fix the pose of the robot and
measure simultaneously from a few distinct sensors mounted
on the robot—each sensor can be thought of as translating
and rotating relative to some fixed point on the robot.

A. Related Work

1) Localization techniques: There are many approaches to
localization, using various kinds of sensors and techniques.
To localize in an already known environment, one can use
particle filters and probabilistic methods [4], [5], [6]. We
have already mentioned SLAM, which can be achieved for
example by matching LiDAR samples [2] or by using a
camera (known as visual SLAM, [3]). Recent works aim
to speed up SLAM using GPUs [7], [8], [9]. One can also
localize a robot by using RFID tags and sensors [1], or with
RSSI signals [10].

2) Methods in meshing and implicit surface intersection:
In the paper we deal with the problem of meshing an implicit
surface, which is finding an explicit representation for the
surface defined as the zeros of some function f : R3 → R,
i.e., the set {x : f(x) = 0}. This can be done in several
ways, including the marching-cubes algorithm [11], [12],
dual contouring [13], which evaluates the function on some
grid, or Delaunay refinement [14], which refines and filters
a Delaunay triangulation of a three-dimensional point set.
See [15] for a comprehensive survey.

We further deal with the intersection of implicit surfaces,
which can also be carried out using a variety of techniques
(see [16], [17], [18]). In this paper, we will present methods
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that have provable guarantees on the error and convergence
rate, when dealing specifically with robot/sensor localization.

B. Contribution
Our contributions are as follows:
• A general, efficient and robustly implemented method

for sensor localization from few distance measurements.
• A conservative theoretical method which achieves a

100% success rate, and a heuristic simplification which
achieves a high success rate in experiments.

• Theoretical guarantees on the quality of the approxima-
tion, with a linear bound O(1/n) (where n is chosen
by the user) on the error, which is the distance between
the best pose estimate and the true pose of the robot.

• An open-source code suite which utilizes GPU and CPU
multi-core parallelism for computing the few-distance-
measurement localization in real time.

II. PROBLEM STATEMENT

The sensor is placed in the interior of a planar workspace
W ⊆ R2. A distance measurement is a mapping

h : W × S1 → R+, (1)

such that h(x, y, θ) is the length of the shortest segment
connecting the position (x, y) with the boundary of W along
a ray emanating from (x, y) in direction θ. The point (x, y) is
the position of the sensor and the direction θ is the angle that
the ray emanating from the sensor, along which the distance
is measured, makes with the positive x-axis.

We are now ready to state the basic version of the problem
that we study.

The problem: Given a workspace W , a set g1, . . . , gk of
rigid-body transformations, and a set d1, . . . , dk of positive
real values, find all the poses (x, y, θ) such that (x, y) ∈ W
and di = h(gi(x, y, θ)) for all i ∈ [1, k].

We aim to find the configuration (x, y, θ), which is the
original pose of the robot. Before each one of the k measure-
ments, the robot moves to another pose or stays put. The pose
of the sensor when making the ith distance measurement is
gi(x, y, θ), where, as just stated, (x, y, θ) is the original pose
of the robot, which we aim to find.

As one can see in the figures in Section IV, even for
one measurement, the set of all possible poses has a non-
trivial shape and at a first glance might be hard to explain.
Furthermore, even for simple instances, exact analysis (which
is presented in the Supplementary Material) yields an alge-
braically non-trivial solution. As we wish to allow for more
complex transformations (which is beneficial for reducing
the candidate poses set) we give up on the exact approach
and turn to a general, yet accurate, numerical method, which
we describe in he following sections.

In this paper, we will deal with workspaces that have
a polygonal boundary, namely polygons or polygons with
holes. However, we believe that the techniques that we
present here could be used for more involved workspaces for
which we can evaluate the distance function h(X), where X
is the pose of the sensor.

III. VOXEL-BASED APPROXIMATION: THE METHOD AND
ITS GUARANTEES

We now reformulate our problem so that it reduces to the
intersection of implicit manifolds. We will compute these
intersections numerically, by first bounding the manifolds
inside sets of voxels.

A. Problem reformulation as an intersection of implicit man-
ifolds

Given some measurement d, we wish to find its preim-
age [19] h−1(d), namely the set of poses (position and
orientation) of a sensor placed inside W from which we
can measure a distance d to a wall of W . We will denote
this preimage by Md. Formally:

Definition 3.1: Given some distance measurement d, its
preimage is defined as

Md =
{
(x, y, θ) : h(x, y, θ) = d, (x, y) ∈ W, θ ∈ S1

}
. (2)

Theorem 3.1: For any polygonal workspace and for any
d > 0, the preimage Md is the finite (possibly empty) union
of manifold patches, namely

Md =
⋃
j

M j
d , (3)

where each M j
d is either a 2-manifold (without a boundary)

The proof is given in the Supplementary Material.

Henceforth, we will only deal with the case where the set
Md of manifold patches is not empty, since in our setting if
the robot is able to read a measurement d, then its candidate
poses consist of at least one valid configuration in Md.

Observation 3.1: The preimage Md is the zero set of the
following piecewise-continuous function

fd(x, y, θ) = h(x, y, θ)− d , (4)

and thus the preimage has an implicit representation.
We will use the straightforward mapping ϕ : S1 → [−π, π)

and embed our configuration space in R3, to simplify further
discussions and analysis. We are now ready to cast our
problem in terms of implicit manifold intersection: Given a
workspace W , a set g1, . . . , gk of rigid-body transformations
gi : R3 → R3, and a set d1, . . . , dk of non-negative real
values, find the intersection:

k⋂
i=1

Mdi
, (5)

where Mdi
is the implicit manifold derived, as above, for

measurement di after applying a transformation gi with
respect to the original pose (position and orientation) of the
robot:

Mdi = (fdi ◦ gi)−1({0}) . (6)



B. Overview of the method
We assume that we are given a set of measurements di

with corresponding rigid-body transformations gi : R3 →
R3. We are also given a parameter n, which determines
the resolution and accuracy of our computation: we split a
bounding cube of the configuration space into n × n × n
voxels. Our method comprises the following steps:

1) For each measurement di, we bound the two-
dimensional preimage Mdi

inside a set of (three-
dimensional) voxels, which we will refer to as a voxel
cloud, i.e., a union of pairwise disjoint voxels, with an
edge length of 1

n . We define voxel clouds formally in
Section III-C below.

2) We intersect two or more voxel clouds by keeping only
the voxels that appear in all of the clouds.

3) If there are more than two preimages, then the resulting
intersection should be a union of dot-like clusters of
voxels (where each is purportedly representing a single
point of intersection of manifolds), from which we can
extract estimations for possible poses of the robot.

We will also show that this method is complete, in the
sense that the true pose of the robot is contained in the voxel-
cloud approximation. Additionally, we will show that the L2

distance between the true pose of the robot and the closest
estimation returned by the algorithm is bounded by O

(
1
n

)
.

In the following subsections, we will present our method
in detail. We note that most operations presented are local;
hence, parallelization (e.g., using GPUs) can be applied, as
we demonstrate below in the experiments section.

C. Definitions of voxel grids and clouds
We now formally define voxels, voxel grids (and their

representation as a graph) and voxel clouds. We assume
below that the hyper-parameter n (and its corresponding edge
length 1

n ) are fixed.
Definition 3.2: Let (i, j, k) ∈ Z3. We define the voxel in

location (i, j, k) to be the subset C1/n(i, j, k) ⊆ R3:

C1/n(i, j, k) :=

[
i

n
,
i+ 1

n

)
×
[
j

n
,
j + 1

n

)
×
[
k

n
,
k + 1

n

)
.

(7)
Note that for different coordinates (i, j, k) ̸= (i′, j′, k′) ∈

Z3, C1/n(i, j, k) ∩ C1/n(i
′, j′, k′) = ∅, and they form a

partition of R3. For a point p ∈ R3, denote the unique voxel
containing it by C1/n(p).

Definition 3.3: Two distinct voxels C1/n(i, j, k),
C1/n(i

′, j′, k′) are said to be neighbors if:

(i, j, k)− (i′, j′, k′) ∈ {−1, 0, 1}3 . (8)
Henceforth, we will identify each voxel with its corre-

sponding coordinates in Z3. Denote the set of all voxels by
C1/n, and thus we can identify C1/n ≃ Z3. The relation of
neighboring voxels also gives rise to a graph structure on the
voxels:

Definition 3.4: The 1
n -voxel grid graph is a graph whose

vertices correspond to the voxels C1/n and an edge in the
graph between two vertices exists if their corresponding
voxels are neighbors.

Definition 3.5: A voxel cloud is a union of voxels V ⊆
C1/n.

D. Step I: Bounding preimages within voxel clouds

Assume that our domain is an axis-aligned box B ⊆ R3,
e.g., Bxy × [−π, π] where Bxy is an axis-aligned bounding
box for the workspace W ⊆ R2. In this section, for simplic-
ity, we assume that B is the unit cube [0, 1]× [0, 1]× [0, 1] ⊆
R3.

Our goal in this step is to find a voxel cloud M̂di,n which
approximates the preimage Mdi .

Recall that we overlay the domain B with an n × n × n
voxel grid. For each measurement di, compute the distance
function h (composed with the associated rigid-body trans-
formation gi) at each vertex v ∈ C1/n of each cube in
the grid. Then if for a given measurement di we have two
vertices v1, v2 of the same voxel C1/n(i, j, k) with h(v1) ≥
di and h(v2) ≤ di, we add that C1/n(i, j, k) to a voxel
cloud M̂ ′

di,n
. If we are in a continuous sub-domain of h (see

below for more details), from the intermediate value theorem
we know that the manifold should intersect that voxel and
hence we add it to the voxel cloud M̂di,n.

Note that checking whether h ◦ gi ≥ di is equivalent to
checking whether fdi

◦ gi ≥ 0 by definition of fdi
, and the

same is true for ≤. The pseudo-code for this step is presented
in the Supplementary Material.

This method, which we call marching voxels, can be
viewed as a variant of the celebrated marching-cubes al-
gorithm [20]. The current method ignores the topology of
the manifold and instead takes the entire bounding voxel,
as opposed to the marching-cubes algorithm, which for
each voxel computes a triangle soup that represents the
intersection of the manifold with that voxel. In our case, we
wish to get a set containing the preimage, hence we consider
entire voxels.

Assuming that we take n to be sufficiently large, our voxel
cloud approximation M̂di,n of the preimage Mdi

is both
complete and geometrically close to the actual preimage, as
we assert in the following Theorems 3.2 and 3.3. Although
the algorithm is simple, proving its correctness is non-trivial
and is deferred to the Supplementary Material.

Theorem 3.2: (Completeness) For a sufficiently large n,
the voxel cloud M̂di,n ⊆ R3 returned by the marching voxels
algorithm contains the preimage Mdi , namely

Mdi
⊆ M̂di,n . (9)

Theorem 3.3: (Proximity) For a sufficiently large n, the
Hausdorff distance H between the preimage Mdi

and its
voxel cloud approximation M̂di satisfies

H
(
Mdi

, M̂di

)
≤

√
3

n
. (10)

The proofs of the theorems rely on our knowledge of the
algebra of the underlying manifolds that we approximate.
However, working with the exact algebraic representations
becomes impractical when we proceed to intersect two or
more manifolds. In practice, we allow for the existence



of a relatively small set An,W of voxels (which depends
on n and the workspace W , but not on the measurement
di), which we call “blind spots” and for which the two
theorems above do not hold. Namely, we may miss a
solution configuration if it is contained in An,W , and we
cannot guarantee that points in An,W are Hausdorff close
to the actual preimage. In the Supplementary Material we
show how to theoretically guarantee completeness also for
the voxels in An,W . Furthermore, we suggest a simple-
to-implement and computationally fast heuristic, for which
we show in experiments that we obtain 100% success rate
despite ignoring the blind spots: we append the neighbors of
each voxel returned by the marching voxel algorithm to the
output cloud.

E. Step II: Intersecting voxel clouds

We use the same voxel grid for approximating each of
the preimages M̂di . Our goal now is to approximate their
intersection. Here as well the approximation will consist of
a voxel cloud that contains the intersection. It suffices to
intersect the approximating voxel clouds from the previous
step: we return a voxel cloud approximation of the intersec-
tion as a collection of all voxels that appear in all of the
preimage voxel approximations, i.e.,

⋂
di
M̂di .

Like in the previous step, we also have similar claims
for completeness and proximity. More details and proofs are
given in the Supplementary Material.

Theorem 3.4: (Completeness) The intersection of preim-
ages is contained in our voxel cloud approximation of the
intersection: ⋂

di

Mdi
⊆
⋂
di

M̂di
. (11)

Theorem 3.5: (Proximity) The Hausdorff distance be-
tween the intersection of preimages and its voxel approx-
imation is O

(
1
n

)
:

H

(⋂
di

Mdi
,
⋂
di

M̂di

)
≤

√
3

n
. (12)

F. Step III: Cleaning up the estimation

We assume that we have three or more measurements (i ≥
3). After we get a voxel approximation

⋂
di
M̂di

of a point
set, we wish to report points in R3 (which represent R2 ×
S1 as position and orientation), which will be our estimates
for the robot’s pose. We can then compute the connected
components of the voxel approximation

⋂
di
M̂di

using the
graph representation defined above, and for each connected
component we compute the center of mass to get a point set
S ⊆ R3.

For each estimated point q ∈ S, we compute the dis-
tance measurements resulting from placing the sensor in
the estimated pose q and applying the corresponding rigid-
body transformations and get a new measurements d̂i(q). We
compute the mean square error for the point q:

L(q) =
∑
i

(
di − d̂i(q)

)2
. (13)

Finally, we return the best points (with L(q) as a metric)
from S.

Note that our upper bound on the error (Theorem 3.5) is
now changed, as the center of mass we return might not be
in the same voxel where the correct solution lies. Hence this
bound is modified as follows:

Lemma 3.6: Let p ∈ R3 be the pose of the robot. Then,
if for some q ∈ S, the point p lies inside the volume of the
corresponding connected component V , then:

||p− q|| ≤ diam(V ) = sup
a,b∈V

||a− b||. (14)

We show the following bounds on the diameter:
Lemma 3.7: The diameter of a connected component V

with ρ voxels is bounded as follows:

2

(
3

4π
ρ

) 1
3

· 1
n
≤ diam(V ) ≤ ρ

√
3 · 1

n
. (15)

Depending on the value of ρ the upper bound might be
large (although when ρ is O(1), both upper bounds are still
O
(
1
n

)
). But as we demonstrate in the experiments below, the

actual distance is closer to the lower bound on diam(V ) in
Equation 15. The proofs can be found in the Supplementary
Material.

G. Dealing with Measurement Uncertainty

In practice, we deal with inaccuracies in both the mapping
of the workspace and in the distance returned by the sensor.
We will account for the latter, as the former can be viewed as
another error in the distance measurement. Formally, assume
that we get a noisy distance measurement function ĥ instead
of the actual distance h from a wall of the room.

Assume that we are given an upper bound εM on the
measurement error such that for any (px, py, pθ) ∈ W × S1:∣∣∣ĥ(px, py, pθ)− h(px, py, pθ)

∣∣∣ ≤ εM . (16)

We can then show that if the sensor has sufficient clearance
(of εM units) from the walls of the room, our estimate for
the localization has an error of at most:

√
3

n
+ εM . (17)

The proof of his bound is presented in the Supplementary
Material.

We do not discuss here the case of a stochastic error. While
we hypothesize that the analysis is similar, it is left for future
work.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

The code is written as a C++ library and has Python
bindings. We used OpenCL [21] to compute the marching
voxels and the manifold intersection in parallel. The code
was run on a macOS machine with Intel Core i5 CPU and
Intel HD Graphics 6000 GPU, on a macOS machine with
Apple M1 Pro and on a Windows machine with Intel Core i9-
10850K CPU and NVIDIA RTX 3090 GPU. Running times



for all systems are presented below. The parallelization of
the marching voxels using a GPU was inspired by [22].

We demonstrate the performance of our algorithm on the
following test scenes:

• square-room: A square room with dimensions of
2[m]× 2[m].

• lab: A polygon based on a LiDAR scan of our lab.
Axis-parallel bounding box dimensions: 6.5[m]× 5[m].

• floor-plan: Plan of the floor where our lab is lo-
cated. Axis-parallel bounding box dimensions: 40[m]×
20[m].

• random: Randomly generated non-convex polygons.
Axis-parallel bounding box dimensions: 2[m]× 2[m].

B. Examples for 2 distance measurements

For each scene, we assume the robot has sampled a
distance of d1, rotated in place π radians counter-clockwise,
and then sampled a distance of d2.

In the 2D images in Figure 1, black lines represent the
room walls, red lines represent the query box and blue curves
are the projection of the preimage intersection curves.

In Figures 1a, 1c and 1f we visualize the results of
the preimage intersection, projected onto the workspace.
Figures 1b, 1e and 1j depict the embedding of the preimages
and their intersection in R3. The plane parallel to the view
is the workspace (xy-plane) and the depth of the image (the
blue axis) is the angle θ. The preimage Md1

is drawn in red,
Md2

in blue and their intersection Md1
∩ Md2

in purple.
In Figure 1d we zoom in on a particular portion of the
workspace floor-plan to obtain more accurate results, as
the same value of n for the resolution yields smaller voxels
in the workspace.

C. Examples for 3, 4 and 5 distance measurements

Figures 1g through 1i are examples of pose estimations for
the scene lab after performing k = 3, 4, 5 measurements.
The robot is placed at the bottom left corner of the room,
represented as a green dot, and we took 5 measurements,
in increments of π/4. Each estimation is presented as an
orange arrow whose base indicates the estimated position of
the robot in the workspace and the direction is the estimated
orientation of the robot. In all figures we see that the true
position of the robot is indeed in the estimated set returned
for each k.

D. Error and Success Rate in Simulations

To test the error and success rate of our method, we
performed the following simulation. Sample a random point
p in some workspace W ⊆ R2 and a random orientation θ ∈
S1. We call this pose the ”ground truth”. We then measure
the distance to the walls from the point p with orientations
θ+(i−1) ·π/4 for i = 1, . . . , 6 and random uniform offsets
in x and y coordinates, to get measurement d1, . . . , d6, and
run our method to get a set of pose estimations S. We return
the point sL in S with the lowest value of L, as detailed
in Section III-F. We also return the point sW in S whose
Euclidean distance in R3 to the ground truth pose is minimal.

If the set S is empty or for the returned pose the Euclidean
distance in R3 to the ground truth is farther than twice the
upper bound we present in Lemma 3.7, we consider this
as a failure. Otherwise, we measure the distance between
the ground truth pose and the best estimation to get the
approximation error.

We performed this experiment on the workspaces lab,
floor-plan and random, for grid resolutions of n ∈
{50, 75, 100, 125, 150, 175, 200}. For each workspace and
for each n, results were averaged over 100 trials. We measure
the success rate for the estimation achieving the lowest value
of L, which we call the L-success rate, and the success rate
and error for the estimation with lowest Euclidean distance
in R3 from the ground truth, which we call the W-success
rate and the W-error rate respectively. The L-success rate is
the performance of our proposed method in practice, while
the W-success rate tests the completeness of the returned set
of predictions. Error rate is the Euclidean distance in R3 to
the ground truth, when the workspace W and S1 are both
normalized to the unit cube [0, 1] × [0, 1] × [0, 1] ⊆ R3 (so
that the units are comparable).

Table I shows the average success rate for each workspace
for both predictions, as well as the average number of pose
estimates generated by the algorithm. The number of pose
estimates is a combination of symmetry in the polygons and
error incurred by our post-processing heuristic. As we can
see, the consistent 100% W-success rate suggests that our
algorithm indeed satisfies completeness in the sense that the
returned set of estimations also contains the ground truth
estimation, justifying our post-processing heuristic. Note that
the workspace floor-plan is highly symmetrical since
many rooms are identical to each other, hence lower success
rate is expected for this scene.

Figure 2a shows the W-error rate for each workspace as a
function of n. For reference, we also present a crude upper
bound, denoted by UB(n), which is based on the lower
estimate in Equation 15 when taking a value of ρ = 510.
The choice of this value of ρ is based on an experiment
which is described in detail in the Supplementary Material.
As we can see, UB(n) is an upper bound for the W-error
rate, and the error rates is O

(
1
n

)
. Figure 2b compares the

running time for the lab workspace, for different values of
n on the two different hardware systems. Running time for
the other workspaces is similar.

E. Physical Robot Experiments

1) Error in localization: As a proof of concept, we also
evaluated our method on a physical robot. We used a DJI
RoboMaster EP Core, equipped with a distance sensor in

TABLE I
SUCCESS RATES FOR k = 6, FOR DIFFERENT WORKSPACES.

Workspace L-Success Rate W-Success Rate # Estimates

random 90.14% 100% 31.92
lab 95.28% 100% 10.73

floor-plan 80.43% 100% 88.77



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Various screenshots from our software, in 2D (projected preimages) and in 3D space. Figures 1a and 1b correspond to the scene square-room,
figures 1c, 1d and 1e correspond to floor-plan and figures 1f, 1g, 1h, 1i and 1j correspond to lab. See text for detailed explanations.

(a) (b)

Fig. 2. On the left: W-Error rate as function of n, for different workspaces.
The theoretical upper bound on the error UB(n) is also drawn for a
reference. On the right: running time (in seconds) for different values of
n for the lab workspace.

the front and back. At first we conducted an automatic test:
in the lab workspace (which is also a LiDAR scan of
our lab), we chose a random point and asked the robot to
advance to that point. Then we carried out in the physical
setting a similar experiment as described in Section IV-
C, i.e., k = 3 measurements with rotation of π/4 and
taking measurements from the front and back of the robot,
yielding overall 6 distance measurements. We compare the
estimate returned by our algorithm which minimized the
Euclidean distance to the ground truth pose. Averaging over
50 experiments, we achieve an average error of 0.0649[m]
in the workspace (i.e., the Euclidean distance between the
position (x, y coordinates) of the estimate and the ground
truth), and an average error of 0.0676 radians in orientation.
We note that the LiDAR that we used to create the map has
an error of up to 0.05[m].

We also created simpler polygonal rooms out of cardboard,
placed the robot at random points and carefully measured its
distance with respect to the origin. After averaging over 20
experiments, we achieve an average error of 0.026[m] in the
workspace and 0.107 radians in orientation.

For both experiments we chose a resolution value of n =
200, which leads to about 0.041[m] of error for the x, y
coordinates and 0.0314 radians of error.

See Figure 3 for examples of robot placement in these ex-
periments and the pose estimates returned by the algorithm.

Fig. 3. Two examples of localization results in real life. Left: localization
in a polygonal room bounded by cardboard (red) walls. Right: localization
in the laboratory itself. In both examples the left column is a picture of
the robot in the respective room, and the right column is a sketch of the
corresponding best pose estimate returned by the algorithm. A blue arrow
is drawn as a reference guide. The origin is marked with black tape on the
floor.

2) Comparison against SLAM: As a comparison, we
carried out the following experiment: we placed the robot
in pre-determined landmarks in the room for which we
measured their location manually. We then queried the pose
from our algorithm and the pose estimate resulting from the
SLAM computation of Google Cartographer [23]. Finally, we
measured the Euclidean distance between each pose estimate
from the ground truth (the true location of the landmark),
and the Euclidean distance between both estimates as well.
Averaging on 10 experiments, the Google Cartographer had
an error of 0.02377[m] and our method had an error of
0.06[m]. The average Euclidean distance between both pose
estimates is 0.05744[m].

We note that both methods incorporate the robot’s odom-
etry, which is error prone. However, Google Cartographer
also used the robot’s IMU.

V. CONCLUSIONS AND FURTHER WORK

In this work we have presented a numerical method for
estimating the unknown pose of a robot inside a known en-
vironment using only a few (2 to 6) distance measurements.
We show that our method returns conservative results, and
can be applied in real-life situations.

In future work, we would like to improve the accuracy and
success rate in practice, deal with stochastic errors and errors
in odometry, and extend our method to higher dimensions. A
related problem that may be solved using similar techniques
is finding the optimal motions that the robot needs to perform
to reduce the volume of the possible poses.
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