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Mobile robots are fascinating because they bring our ideas to life. By connect-
ing computers to motors and sensors, robots are able to move themselves around,
learn about their environment, interact with people, and accomplish many use-
ful tasks. They inspire children of all ages, engineering students, hobbyists, news
media, and a large number of researchers. As the robotics industry continues to
grow, we see them appearing all over, including delivering boxes in warehouses,
cutting grass and vacuuming floors in homes, entertaining children, and driving
themselves down the road.

1.1 Mobile Robots Over the Years

For over a century, people have designed and built mobile robots of all shapes,
sizes, and purposes. As early as 1868, Zadock Dederick patented a steam-powered
humanoid (Figure 1.1). An electronic light-seeking dog was made in 1912 by John
Hammond, Jr. and Benjamin Miessner (Figure 1.2(a)). In the late 1940s, Grey
Walter constructed several electronic tortoises (Figure 1.2(b)), that used sensors
to move toward light and avoid obstacles. Edmund Berkeley in 1951 took it to
the next level by making an electronic squirrel that could gather objects (Figure
1.2(c)). In 1952, Claude Shannon, the father of information theory, constructed
an impressive, mechanical maze-exploring mouse (Figure 1.2(d)). The circuitry
of these robots was usually simple, connecting motor responses directly to sensed
stimuli (Figure 1.3). Piero Fiorito unveiled a gigantic humanoid robot called Cygan
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Figure 1.1: In 1868, a “Steam Man” was patented. Its torso was the boiler and
its body was mounted upright onto a carriage. Using legs it could walk and steer
while pulling a load in the carriage. It is rumored that US President Ulysses Grant
once rode in the carriage, called the “Devil’s Car”.

in 1957 (Figure 1.4(a)). It was able to walk, turn, and raise its arms. The Stanford
Cart was one of the earliest autonomous vehicles (Figure 1.4(b)). Starting in 1960
to study possibilities of lunar exploration, versions of it were developed for two
decades.

In 1966, the Shakey mobile robot system, developed by Nils Nilsson at Stan-
ford, inspired a generation of research efforts on constructing algorithms that plan
a collision-free route for a mobile robot through an obstacle course (Figures 1.4(c)
and 1.4(d)). More advanced versions were built in labs around the world over
the following decades. For example in 1977, at LAAS/CNRS in Toulouse, France,
the Hilare robot was developed in and used to study the problems caused by
autonomously steering the wheels. By the 1990s, academic research labs could
purchase well-designed mobile robot platforms that included motor controllers,
sensors, and on-board computers (Figures 1.4(e) and 1.4(f)). As sensing tech-
nology, computational power, mathematical models, and algorithmic techniques
improved, robots could move reliably over longer periods of time. A prime exam-
ple is the RHINO museum guide robot (Figure 1.5(a)) from the University of Bonn,
which could navigate through unpredictable crowds of people, avoid difficult-to-
detect exhibits, and smoothly interact with tourists.

Modern mobile robots are astounding. Self-driving cars come a long way since
the Stanford Cart. They have successfully navigated urban obstacle courses and
driven for over 150,000 kilometers in everyday traffic (Figures 1.5(b) and 1.5(c)).
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Figure 1.2: Early “animal-like” mobile robots: (a) An electronic light-seeking dog
(1912). (b) A tortoise (1948). (c) A “nut” gathering squirrel (1951). (d) Claude
Shannon and his maze-searching mouse (1952).

Figure 1.3: Circuit diagram of Hammond and Miessner’s 1912 electric dog.
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Figure 1.4: (a) Cygan the humanoid robot (1957) (b) The Stanford cart (1960s).
(c) and (d) Shakey mobile robot (1966). (e) The Pioneer 3-DX8 mobile robot. (d)
The Nomad XR4000 mobile robot with a Puma industrial arm mounted on top.
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Figure 1.5: (a) RHINO museum guide robot (1995) (b) The CMU Boss vehicle,
which won the DARPA Urban Challenge. (c) The Google self-driving car, which
is a modified Toyota Prius. (d) A rendering of the NASA Curiosity rover, which
started exploring Mars in 2012. (e) and (f) The BigDog robot from Boston Dy-
namics.
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Figure 1.6: The HRP-4 humanoid robots produced in Japan by National Institute
of Advanced Industrial Science and Technology (AIST) and Kawada Industries.

Figure 1.7: The BHR-4 robot from the Beijing Institute of Technology playing
table tennis.
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Figure 1.8: Mobile manipulators: (a) The PR2 from Willow Garage. (b) The
Kuka Youbot.

(a) (b) (c)

Figure 1.9: (a) The Aqua2 underwater swimming robot from McGill University.
(b) A Hydronalix robotic boat. (c) The MQ9 Reaper Unmanned Aerial Vehicle
(UAV).
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Figure 1.10: An acrobatic quad-rotor helicopter from the University of Pennsyl-
vania.
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Figure 1.11: An army of Kiva mobile robots moving shelves of boxes in a ware-
house.

(a) (b) (c)

Figure 1.12: (a) A Roomba vacuum cleaner by iRobot. (b) A lawn mowing robot
by Husqvarna. (c) The RoboMop floor duster.

The NASA Curiosity rover landed on Mars in August, 2012 and is expected to
drive autonomously for years while gathering imaging and chemical composition
data (Figure 1.5(d)). Early turtles and mice have been supplanted by impressive
animal-like robots, such as BigDog, by Boston Dynamics, which reliably runs
over land at 6.4 kilometers per hour and can carry 150 kilograms (Figures 1.5(e)
and 1.5(f)). Humanoid robots have come a long way since Cygan; some modern
examples are shown in Figures 1.6 and 1.7. An alternative platform for interacting
with humans is a mobile manipulator (Figure 1.8). Mobile robots also swim under
water (Figure 1.9(a)), swim on top of water (Figure 1.9(b)), fly over long distances
(Figure 1.9(c)), and fly through tricky obstacle courses (Figure 1.10).

Commercial successes of mobile robots have continued to grow, often with the
introduction of simpler systems that are designed to be low-cost, robust, and reli-
able. For example, Kiva Systems developed a mobile robot system that efficiently
arranges boxes in a large warehouse (Figure 1.11). The robots sort the boxes
based on their frequency of use and bring the requested boxes directly to the user.
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(a) (b)

Figure 1.13: (a) A Hexbug Nano. (b) A habitat in which they can navigate along
corridors and through rooms. More recent versions include one-way doors and
uphill ramps that serve as escalators.

The company was recently acquired by the Amazon on-line purchasing corporation
to improve its distribution efficiency. The well-known Roomba vacuum cleaning
robot (Figure 1.12(a)) lives in millions of households and has stimulated a whole
industry of competitors for vacuuming and related tasks such as cutting grass
(Figure 1.12(b)) and mopping. One of the simplest and most humorous designs
is the RoboMop, which is little more than a Weaselball enclosed in a dusting ring
(Figure 1.12(c)). The Weaselball is a toy that sells for around $4 US and contains
only a battery connected to a motor that oscillates around 2 Hz.

1.2 Playing a Game with Imperfect Information

During all this time, roboticists have struggled to understand what should be in
the “brain” of a successful robot. There are numerous designs that we can all
draw lessons from. For example, many robots use powerful sensors, such as laser
scanners, cameras, and GPS units to precisely map their world and maintain their
position on the map. This corresponds to a large robot brain that contains a
detailed model of itself and its surroundings. At the other extreme, some robots
accomplish their tasks quite well with simple sensors and little or no memory. Such
simple robots are often inspired by nature, which provides an abundance of simple
creatures, such as bees or ants, that have no trouble with navigation, finding food,
avoiding predators, building homes, and so on. Even the widely available Hexbug
Nano toys (Figure 1.13) appear to navigate in clever ways in spite of only being
able to vibrate.

To understand the fundamental difficulty, it is helpful to first think about what
differentiates robotics from ordinary computation. With computing systems and
sensors embedded into virtually everything (phones, cars, keys, ...), it is becoming
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Figure 1.14: Computation models far form mobile robotics: (a) The TRS “Trash”
80, a fine example of classical computing. (b) A Turing machine, which can be
imagined as a finite state machine that can read and write bits to an infinitely
long tape.

increasingly difficult to define “ordinary” computation. Therefore, suppose we
travel back in time to the 1970s and want to run some software using the computer
shown in Figure 1.14(a). All interactions with the outside world come for either
the keyboard or a removable magnetic disk that stores programs and data. Even
better, we could go back to the 1920s and imagine what might be possible if
a computer could be built that implements the beautiful abstraction known as
a Turing machine (Figure 1.14(b)). The key idea was to create a complete and
perfectly predictable environment in which information could be stored and rapidly
manipulated with no mistakes or loss of any kind. In other words: Keep the error-
prone and incomprehensible physical world as far away as possible and instead
build up discrete components that each functions as dictated by mathematical
logic.

Once computers are embedded into robots and other devices that “read” from
sensors, and “write” to control motors, the irony begins. Connections to the
physical world have been directly reopened, thereby reintroducing its frustrating
qualities of uncertainty, unpredictability, and unrepeatability. Of course, comput-
ers have been connected in this way for many decades, which has led to successful,
well-principled approaches. One of the most important is the theory and practice
of digital control systems. Common examples include the control of a chemical
plant, cruise control in a car, and spacecraft attitude adjustment. The tendency is
to develop sensors that measure every relevant variable, quickly feed the informa-
tion into the computer, and generate a signal to motors (or other effectors) that
control the system as desired.

As the devices become smaller, more autonomous, and are placed into complex
environments, it becomes much harder to understand precisely what “variables”
need to be measured and controlled. Modeling issues tend to dominate in robotics,
more than in many other fields. To solve its task, such as navigation, exploration,
or vacuuming, how much does a mobile robot need to know? What should it mea-
sure about the world around it? What information should it keep track of? What
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Figure 1.15: Kriegspiel: An example of a game with imperfect information. The
white players knows the locations of its own pieces, but does not know where the
black pieces are.

should the decision to change the signals to the motors be based upon? Loosely
speaking, we will call the information in the robot’s brain an information state,
or I-state for short. This concept dates back to 1944, when John von Neumann
(yes, that one!) and Oskar Morganstern formulated the information that players
have for making decisions in a multi-stage game in which they know the complete
status while playing. Recall common games such as Mastermind, Battleship, or
Kriegspiel (a form of blindfold chess). In Kriegspiel, for example, each player
moves its own pieces on the board, but is not aware of its opponent’s moves and
piece locations (Figure 1.15). In this context, the I-state might characterize pos-
sible board configurations, in a form that is useful for making the next decision,
even though the full state of the game is not known.

Although counterintuitive, it is often useful to intentionally discard data while
forming an I-state. The purpose is to make decision making simpler and more
reliable. For example, consider trying to improve your odds while playing blackjack
in a casino. Because the cards are not drawn with replacement, the probabilities
change based on which previously played cards have been seen. Expert players
develop card counting strategies. A simple score is given for each card that has
been played, and the player increments or decrements a single number, the “count”,
accordingly. The decision in each card-playing round is then based on entirely on
the currently visible cards and the count. A good card counting scheme can move
the expected earnings advantage to the player, and the player does not have to
memorize every card that has been played.

In this book, we imagine that a mobile robot is engaged in a game with its en-
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Figure 1.16: In the design of a mobile robot, we erect a boundary between internal
and external realms. Information comes from the external, physical world via
sensors that produce observations. Commands are transmitted to the external
world that cause wheels to roll, legs to walk, and so on. The “brain” holds the
information state (I-state), upon which the commands are based.

vironment. The game in this case is the task that it needs to solve, such as keeping
the floor clean. Can the robot “win” its game with an effective strategy, without
being able to reconstruct everything about its surrounding, physical environment?
We should try to understand what information is necessary for the task and then
reliably maintain that, and only that, in the robot’s brain. Data regarding sensor
observations and commands given to motors will be converted into an I-state that
is sufficient for solving the task, but excludes unnecessary information. That is
the key theme throughout this book.

1.3 The Robot’s Brain

Continuing on our quest to understand what belongs in the robot’s brain, consider
Figure 1.16. The internal “brain” of the robot will keep track of the I-state and
use it for deciding which commands to send. When the robot is switched on, the
brain contains an initial I-state. As it receives new information from sensors, the
I-state needs to be updated. Furthermore, the memory of which commands were
previously issued may be relevant to deciding on new commands. Therefore, the
I-state be also be updated to take this information into account. These concepts
will be made more detailed and precise later in the book.

Before going down that path, consider an example to provide an intuitive
understanding of I-states. To keep the discussion absurdly simple, suppose that as
the robot moves in the physical world, a single parameter is sufficient for specifying
its placement. On the right in Figure 1.17 is a robot that moves along a track. We
would like the robot to travel back and forth forever along the full track length.
Call this task patrolling. The only commands that can be issued by the brain to
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Figure 1.17: Compare to Figure 1.16. The external world is reduced to a robot
that rolls along a track, capable of moving only from side to side. On each side
is an independent mechanical bumper that senses whether the end of the track as
been hit. A “bit brain” that solves the task of patrolling back and forth is merely
a two-state machine (also called an automaton).

the motors are forward, which causes motion from left to right, or reverse for
motion in the opposite direction.

There is one sensor on each side of the robot. The right one provides the obser-
vation max when the robot hits the right wall (meaning the maximum position);
otherwise, it observes free. The left one similarly provides min when contacting
the left wall, or free, otherwise.

To solve the problem, the robot’s brain will only have to maintain two possible
I-states, called 0 and 1. We call it the “bit brain” robot! At any given time, the
I-state must be either 0 or 1. Suppose that initially, the I-state is 0 and the robot
is on the midpoint of the track. To make the robot move, the following strategy
is implemented:

I-state Command

0 forward

1 reverse

This can be viewed as a list of IF-THEN statements. For example, IF the I-state
is 0, THEN the robot is commanded to move forward.

The I-state remains the same over time, unless a particular sensor observation
is received. If max is received while in I-state 0, then the I-state immediately
becomes 1; otherwise, the robot would grind itself into the wall. This causes the
command to switch from forward to reverse. Likewise, if min is received,
then the I-state becomes 0. These transitions continue indefinitely, achieving the
desired patrolling behavior.

This example already contains enough complexity to illustrate four important
spaces that will be defined and used throughout this book:
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Figure 1.18: To solve a searching problem, a new I-state is added and a sensor
that detects whether the spot has been found.

Name Example Meaning

Information space I {0,1} Internal brain states
Observation space Y {max, min, free} Possible sensor outputs
Action space U {forward, reverse} Possible commands
Physical state space P [0, 1] External parameter values

The information space, I, is the set of all possible I-states. The observation space,
Y , is the set of all possible outputs of sensors. The action space, U , is the set of
all possible commands that the brain can issue to cause motions or induce other
changes in the external, physical world. Using the notation, the strategy can be
written as a function γ : I → U . The particular action is chosen based entirely on
the I-state.

Finally, the physical state space, P , is the most complicated. Each physical
state p ∈ P corresponds to a possible “state of the world”. It is assumed that
P is sufficiently large to encompass all relevant possibilities. For the problem in
Figure 1.17 the external world can be unambiguously captured by specifying the
precise position of the robot along the track. Suppose the leftmost and rightmost
positions on the track are marked with 0 and 1, respectively. All positions in
between are assigned a real value in the interval [0, 1] in the obvious way, making
the midpoint at 1/2. In this case, P = [0, 1] and each p ∈ P corresponds to a
robot position and is called a physical state or P-state. The relationship between
the internal I-states and the external P-states is crucial!

Now we slightly extend the task from Figure 1.17. Instead of patrolling, we
want to search for a spot on the floor. It is placed at some location pspot ∈ [0, 1]
that is unknown to the robot. A new sensor is designed that observes found

only if the robot is directly over the spot; otherwise, it observes nothing. The
action space is extended by including a stop action, which halts the robot. The
simple brain in Figure 1.18 generates a solution to the search problem with three
I-states. From I-states 0 and 1, the actions remain as before. From I-state 2,
the stop command is issued, causing the robot to stop on the spot and remain
there indefinitely. (Of course, in a real system, time delays would cause it to stop
slightly past the spot!)

Note that the robot solves the search task without ever learning pspot, the spot
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location. If the location had been given to the robot in advance, how would the
strategy change? This information could be simply ignored because an effective
strategy has already been developed. However, if we introduce a more powerful
sensor that continuously produces that robot’s position p along the track, then we
could command it to move directly to pspot, which is more efficient. If p < pspot,
then the I-state is 0, which moves the robot right. Likewise, p > pspot yields I-
state 1. Upon closer inspection, a sensor does not necessarily have to observe p.
Sensing only the sign of pspot − p is sufficient for the task. Imagine, for example,
that the spot can be seen by a camera and appears upside down if pspot − p < 0
and rightside up if pspot − p > 0. If the task were even simpler, by requiring that
the robot be guaranteed to run over the spot without necessarily being able to
detect it, then the original strategy from Figure 1.17 would already solve it. The
patrolling motion automatically causes every position in P to be reached.

1.4 Big Model vs. Small Model

We have already seen that even for a simple, one-dimensional world, the problems
of what to sense, what to maintain in the robot’s brain, and what commands to
issue are becoming interesting! The challenge of determining a model that is big
enough to allow good predictions and analysis while being small enough to be
learnable and usable from real data exists all over engineering and the sciences.
Robotics is no exception. Perhaps the modeling difficulties in robotics are about
as bad as anywhere else. For the robots of Section 1.3, it was clear that the P-state
did not need to be measured by sensors. The strategy did not require it and the
robot brain was incapable of even storing it. We were lucky that such a simple
design sufficed. As tasks become more complicated, how many more I-states are
needed? How much more information about the physical world needs to be sensed?
The answers to these questions will depend on many factors, including the robot
motion capabilities, the complexity of its surrounding world, the sensors available,
and mostly importantly, the particular tasks to be solved.

Why not make the largest and most complete brain possible? The external,
physical world can be imagined as a gigantic hard drive that holds all information
that we could ever need to solve the task (and much more!). Imagine having an
absurdly powerful hypersensor, which instantaneously measures everything and
records it in the brain. The hypersensor takes measurements continuously, and
the brain can store all of the data along with the time at which each measurement
was taken. In this case, the I-state not only encodes everything about the present,
but anything about the past can be recovered as well. This leads to three issues:

1. Implementing the hypersensor: Of course, no real sensor can measure ev-
erything in a complete and accurate way. However, sensors have recently
become both powerful and cheap. For example, the widely available Kinect
sensor provides 3D position data and color for around $100 US. Even cheaper
sensors appear everywhere, especially on our phones. Furthermore, cloud
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robotics allows robots to access observations from sensors (and more!) dis-
tributed all over the world. The availability of this much data about the real
world seemed impossible only a decade ago. Even though the hypersensor
is not realizable, modern sensing systems are closer than ever, especially in
comparison to two decades ago.

2. Storage and retrieval: Information loss and time delays are unavoidable. If
computers are used, then digitization must occur over space and time. If the
amount of information is large, then compressed representations and special
data structures may be required to allow efficient lookup and modification to
the data. For example, gigabytes of raw coordinate data of walls and objects
could be converted into a polyhedral mesh.

3. Strategy design: Recall from Section 1.3 that a strategy is like an IF-THEN
table. Imagine how large and complex the strategy γ : I → U might be
if I is enormous. Having more information certainly enables more compli-
cated strategies to be developed, but it might also lead to higher computa-
tional burdens. Furthermore, the strategies might depend critically on the
completeness, accuracy, and timeliness of the information provided by the
hypersensor.

Because of these difficulties, it is best to carefully determine what information
from the physical world actually needs to be sensed and maintained in the robot’s
brain. Irrelevant information can be left on the “gigantic hard drive”. This is in
line with the famous 1990 quote of roboticist Rodney Brooks []:

The world is its own best model.

From the 1960s to 1980s, the predominant approach was to maintain either log-
ical or geometric models in a computer that attempts to crisply capture exactly
what should be happening in the world. Due to limited sensing technology, the
separation between the I-states and P-states became too large and unpredictable.
Brooks argued moving to the other extreme: Design strategies that directly con-
nect sensor observations to actions. He and others showed that complex robot
behaviors could be obtained from feeding information directly from simple sensors
to the motors, much like the old animal-like robots from Figure 1.2. However,
there were limits on the tasks that could be solved in this way.

During the 1990s, sensing technology dramatically improved. The SICK laser
scanner, costing around $8000 US, could produce highly accurate distance mea-
surements, in 360 directions, 30 times a second. This led to a rise in techniques
that extract geometric maps of the environment from sensor data. The Simulta-
neous Localizaton And Mapping (SLAM) problem was robustly solved through
the combination of dense sensor data, probabilistic modeling, and sampling-based
algorithms. Probabilistic modeling has proved useful for accounting for noise and
model uncertainties that arise when using real sensors. Sampling-based algorithms,
including particle filters, were critical in making Bayesian posterior computations
efficient.
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Figure 1.19: Consider solving tasks such as navigation, localization, mapping, and
coverage in an indoor environment using a Roomba-like robot (recall the robot
from Figure 1.12).

These days we have the option of developing mobile robots across the whole
spectrum. We can employ powerful sensors and construct large models of the
world. This leads to a big-brained robot that may require powerful computation
systems. In this case, we imagine that the brain is a fully fledged computer with
abundant memory. We can alternatively try to make the sensing as cheap and
simple as possible, leading to a small-brained robot. The brain could feed sensor
outputs directly to motors, or use some minimal amount of logic circuitry to
maintain I-states. Many other possibilities exist in between. The brain could even
represented without digitization as a continuous-time differential equation that
transitions over a continuous space of I-states. The exciting challenge is to start
from the task specification and design the right brain for the job.

Such “brain design” issues should become clearer while studying this book.
Here is an example that is one step closer to reality than the one-dimensional
robot from Section 1.3. Figure 1.19 depicts a mobile robot that rolls along the
floor in a home or building. Here are some typical tasks that we might ask a
mobile robot to perform:

• Navigate: Go to a prescribed location.

• Localize: Determine the robot’s position and orientation (the direction it is
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Figure 1.20: A big-brain approach to covering the whole floor area. Build a map.
Determine the robot location and direction in the map. Compute a path that will
complete the task. Command the robot to follow the path using powerful feedback
from sensors.

facing.

• Mapping: Construct a map of the area accessible by the robot.

• Patrolling: Travel forever along a route that visits a prescribed set of places.

• Searching: Move around until a sensor detects a special spot.

• Coverage: Ensure that no part of the floor has been left untouched by the
robot.

Each of these tasks has subtle variations that dramatically affect the sensing and
information requirements. For navigation, how is the prescribed location speci-
fied? If specified as x-y coordinates, then it seems hard to avoid having to sense
coordinates. For a robot with a camera, it might be specified as “move to a posi-
tion where you can see the clock on the wall”. In that case, it need not know its
position in x-y coordinates to solve the ask. Similarly for localization, the robot
might need to determine exact coordinates, or something weaker, such as deter-
mining which room it is in. For mapping, there are many ways to encode the map.
A bitmap could indicate where the walls and floors are at a high resolution. A set
of polygons could precisely encode the walls, making the representation closer to
an architectural floor plan. Alternatively, a kind of topological map could be built,
which indicates high-level information, such as the arrangement of rooms.
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Figure 1.21: A little-brain approach implements a simple strategy of moving
straight and then “bouncing” from the wall each time according to some pre-
scribed law. One bit of memory is sufficient.

The patrolling and searching tasks were solved in Section 1.3 by the bit brain
robot for the one-dimensional world. The coverage task is motivated by common
chores such as mopping, vacuuming, and painting. Consider the following two
robot designs:

1. Big brain: Provide a complete picture of what is happening in the physical
world at all times. Design a systematic strategy for covering the whole floor.
See Figure 1.20.

2. Little brain: Move straight until a wall is hit. Rotate a random amount and
move straight again. Repeat forever. See Figure 1.21.

The big-brain robot stores a perfect map of its environment, giving precise
coordinates of all wall edges and corners. How is this obtained? Either it is
measured in advance and stored in memory, or it is learned from a mapping phase
in which the robot explores all of its environment and pieces together its sensor
observations. To accomplish this, powerful sensors are used that can measure the
distance from the robot to the walls in all directions. At the same time, the robot
localizes itself with respect to its map so that its position and the direction it
is facing is always known. Once the mapping phase is complete, the brain then
uses a planning algorithm to compute a detailed zigzagging route through the
map. Following this computation, the robot is commanded to move along the
path while using its sensors to correct for any deviations from the planned path
during execution. At any given time during execution, the I-state corresponds
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Figure 1.22: What robots are thinking. The big-brain robot maintains a full map
of the environment and its own location in the map. The little-brain robot switches
between only two I-states.

to the map and the robot’s position and direction in the map. The space of all
possible I-states, especially if the map is learned during execution, is enormous
because it includes all possible maps, positions, and directions.

The small-brain robot is much simpler, operating with roughly the same level
of awareness as the one-dimensional robot of Section 1.3. There are two I-states
and the strategy is

I-state Command

0 forward

1 spin

The robot starts in I-state 0 and is commanded to move forward. A bumper on
the front of the robot holds a sensor that detects when the wall is encountered,
producing the observation hit. This causes a transition to 1 in which the spin

command is given. The robot rotates at constant angular speed for a random
amount of time, at which point a clear observation is sensed. This causes a
transition back to I-state 0, and the robot moves straight again. Some subtleties
regarding spin and clear have been neglected and will be addressed in more
detail in the book. For now, imagine having a separate circuit that chooses a time
trand from the interval (0, tmax), in which tmax is a long enough time to ensure that
the robot could rotate 360 degrees in that time. Once time trand is reached (while
the robot is rotating), the clear signal is sent to the brain. See Figure 1.22.
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Figure 1.23: A simple strategy may be best for a hitting a large spot in an unclut-
tered environment.

(a) (b)

Figure 1.24: Simple, predictable rules for “bouncing” off of the wall: (a) Right
angle bounce. (b) Specular reflection (as in light rays hitting a mirror).

The probability that the small-brain robot will reach every place in its envi-
ronment actually converges to one, which is quite amazing for such a simple brain
and simple sensors. However, it will clearly take much longer for full coverage
in comparison to the big-brain robot. Furthermore, the small-brain robot cannot
detect when the task is complete. The big-brain robot immediately knows it is
done when the end of the planned path is reached. On the other hand, the small-
brain robot could solve the searching problem in this environment and be able
to detect task completion by introducing the sensor that observes found. By a
slight change in the task, the small-brain robot becomes more appealing. If the
spot on the floor covers a large area and the environment is less cluttered, then the
poor efficiency would no longer be a concern because the robot would be likely to
hit it quickly (Figure 1.23). Furthermore, if you are bothered by the probabilistic
aspects of the strategy, an effective solution can even be made by rebounding from
the wall with a fixed bouncing rule (Figure 1.24). Examples include rebounding
at 90 degrees from the incoming angle and rebounding using the laws of specular
reflection (imagine a light ray hitting a mirror). In this case, absolute guarantees
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can be made on solving the searching and coverage problems.
The remainder of this book is organized as follows. Chapter 2 explains how to

make robots move by issuing commands, as we have talked about in this chapter.
Some of the details include models of rolling, other locomotion methods, kine-
matics, and dynamics. At that point, the robot is totally blind, but models are
used to predict where it goes when a command is issued. To enable robots to
“see”, Chapter 3 introduces sensing, from explaining many widely available sen-
sors to developing mathematical models of the information provided by sensors.
Putting Chapters 2 and 3 together leads naturally to Chapter 4, where motion
commands are issued directly from the sensor observations. Interesting and useful
robot behaviors emerge from this, such as wall following and collision avoidance.

It soon becomes clear that robots should have some memory, rather than bas-
ing their commands entirely on current sensor observations. This leads directly
to Chapter 5, which explains how to transform the history of all previous sen-
sor observations and commands that were issued into I-states that are useful for
solving tasks. The result is a filter, which expresses precisely how I-states change
each time new observations are received or commands are issued. Once filters are
available, many tasks can be solved in terms of their I-states. Chapters 6 and 7
introduce the localization and mapping tasks, respectively. Simplified versions of
these were mentioned in this section for the coverage task. Strategies are devel-
oped as functions (or IF-THEN statements) over the information space. For each
topic, various versions exist along the spectrum from a smaller brain to a larger
brain. Chapter 8 explains various forms of robot navigation in terms of informa-
tion spaces. Finally, Chapter 9 considers other interesting tasks, such as coverage,
tracking a target, playing hide and seek, and manipulation.
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