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Abstract

Planning with sensing uncertainty is central to robotics.

Sensor limitations often prevent accurate state estima-

tion of the robot. Two general approaches can be taken

for solving robotics tasks given sensing uncertainty. The

first approach is to estimate the state and to solve the

given task using the estimate as the real state. How-

ever, estimation of the state may sometimes be harder

than solving the original task. The other approach is

to avoid estimation of the state, which can be achieved

by defining the information space, the space of all his-

tories of actions and sensing observations of a robot

system. Considering information spaces brings better

understanding of problems involving uncertainty, and

also allows finding better solutions to such problems. In

this paper we give a brief description of the informa-

tion space framework, followed by its use in some robotic

tasks.

1 Introduction

Often robots have to plan and execute tasks while be-
ing uncertain about their configuration and the environ-
ment in which they are acting. From a robotic perspec-
tive, the state of a robot system, or simply the state, rep-
resents the information that together with the control
input, fully specifies the situation of the robot system.
It refers to the position in space, velocities in joints or
wheels, levels of energy consumption, the environment
in which the robot is in, etc. Classical approaches for
robot planning assume a perfect knowledge of the robot
state. Such perfect knowledge is virtually unattainable,
given noisy readings from the available sensors and lim-
itations on the number of sensors the robot can have.
Therefore, some crucial information may simply be un-
available to the robot (for example, the information
about the orientation is not available to the robot with-
out a compass). Therefore, many research efforts have

been focused on the estimation of the state. If such esti-
mations are reliable, they can be considered as the true

robot state, forgetting that there is uncertainty in the
state information. In control theory, for example, the
concept of an observer is well understood [2], and if the
observer converges sufficiently fast, the value of the state
variables of the observer is taken as the value of the state
variables of the system. In mobile robotics, simultane-

ous localization and mapping (SLAM) approaches have
received considerable attention in recent years [3, 21].
The goal of the SLAM approaches is to correctly esti-
mate the current state of the robot. However, an in-
teresting approach is to avoid the state estimation all
together. In fact, the necessity for the knowledge of the
robot state can be considered as an artifact of a plan-
ning algorithm. While knowing the state of the robot
is sufficient to solve a task, it may not be necessary. In
other words, a robot may not know its current state,
and still be able to solve a specific task. It has been
shown in numerous robotics works that robots can ef-
ficiently solve complicated tasks with no estimation of
its current state. Much of the early work in this direc-
tion was in the context of object manipulation [9, 20].
Other work includes information invariants [5], sensor
design [8], bug algorithms for navigation [19, 13], robot
localization [6], POMDPs [16], and error detection and
recovery [4].

All of these works present seemingly different ap-
proaches for solving given robotics tasks. In this paper
we describe a framework based on information spaces

that generalizes planning strategies for robotic systems
with sensing uncertainty. For this we first formulate the
general planning problem presented to the robot. This
usually includes: the state space, i.e. the set of states
of the robotic system (robot and environment); the ac-

tion space, i.e. the set of actions that the robot can
perform; the observation space, i.e. the set of observa-
tions that is available to the robot from sensors; sensor

mappings, which produce an observation for each state
of the robot; state transition function, which produces



a state for each action; and the goal, which is expressed
in terms of the histories of actions and observations.
Planning problems with sensing uncertainty are natu-
rally expressed in terms of information states, and the
space where they live, the information space. In this
paper we explore some results for robot planning in the
information space framework. There are many exciting
open research problems with information spaces. It is
our hope that this paper will stimulate further research
in analyzing the information spaces for robotics systems
and bring more efficient strategies for solving robotics
tasks.

2 Preliminaries

In the following discussion, let X be a set called the state

space, and let U(x) the set of actions available to the
robot from state x ∈ X. At each stage k, it is assumed
that a nature action θk is chosen from a set Θ(xk, uk),
given the current state of the robot xk ∈ X, and the
action executed uk ∈ U(xk). The role of Θ(xk, uk) is
to model events the robot cannot control. For exam-
ple, it can model control execution inaccuracies, unpre-
dictable changes in a dynamic environment, etc. Let f

be the state transition equation, that produces a state,
f(x, u, θ) for every x ∈ X, u ∈ U and θ ∈ Θ(x, u). Note
that f is not known for every planning problem. For
simplicity of presentation, we assume that time is dis-
crete. The continuous time case is developed in [17].
For a more extensive description see [17, 23]. A robot
may retrieve information regarding its state from three
sources:

1. Initial conditions. The initial conditions refer
to all the information the robot is given prior to
the planning task. For example, the initial state
x1 ∈ X may be given, or the initial state may lie
in a given subset X1 ⊂ X. Also, the initial state
may follow a given probability distribution P (x1)
over X. Note that the calibration of a robotic sys-
tem is considered in the previous cases. If all the
state variables are calibrated, then the initial state
is known. On the contrary, if only some state vari-
ables are calibrated, this correspond to the case
when a subset X1 is given. The initial conditions
will be denoted with η0.

2. Sensor observations. A sensor is a device that
provides some measurement of the current state.
Thus, a sensor observation provides measurements
of the state during execution. Formally, let Y de-
note the observation space, and let h denote a sen-

sor mapping. If given the state, the observation

is completely determined, then h takes the form
h : X → Y . Another important case is when na-
ture interferes with the observation. In this case
the mapping takes the form y = h(x, φ) ∈ Y , with
φ ∈ Φ, in which Φ(x) is the set of nature sensing
actions defined for each x ∈ X. Finally, the ob-
servation may also depend on previous states, in
which the mapping for the k observation takes the
form yk = h(x1, ..., xk, φk).

3. Actions executed. An action executed may pro-
vide valuable information regarding the robot state.
For example, in the absence of control errors, if the
robot is commanded to move one meter east, it is
known that the robot is now one meter further east
than before.

2.1 The information space

The information available to the robot when the plan
is at stage k should be determined either from the new
observations, or the accumulation of previous informa-
tion. It is assumed that the robot keeps a record of
each of the observations made. Thus, the observation

history, ỹ = (y1, y2, ..., yk), is the ordered sequence of
observations up to stage k. Similarly, the action his-

tory, ũ = (u1, u2, ..., uk−1), is the record of the actions
taken. It runs until k−1, because action uk−1 is applied
in state xk−1, to yield the current state xk, where the
observation yk is made. The information state at stage
k is defined as

ηk = (η0, ũk−1, ỹk),

that is, the initial condition together with the history.
Alternatively, an information state can be expressed re-
cursively as

ηk = (ηk−1, uk−1, yk),

because the difference between the previous and the cur-
rent information state consists of the new observation
made and the new action taken. The set of all possi-
ble information states is called the information space, I.
Usually we do not deal with I directly, given that the
size of an information state grows linearly with the num-
ber of stages, and this becomes intractable very fast.
Thus, we have to look for methods that collapse the
information space. One simple method for collapsing
the information space is based on the inferences that
can be done given an information state. If the informa-
tion state ηk is available, it is possible to compute the
set Xk(ηk) ⊂ X in which the actual xk is known to lie.
The set Xk(ηk) is called a derived information state. To



compute the derived information state, we have to in-
tegrate the observations and actions performed. Given
an observation, we can find the set of all possible states
the robot may be in that are congruent with the obser-
vation:

H(y) = {x | y = h(x, ψ), for ψ ∈ Ψ(x)}.

The set H(y) is called the preimage of y. Similarly, if
we let the actions available depend on the current state,
the robot can determine a set of states W where it may
be:

W (Uk) = {x′ |Uk = U(x′) for x′ ∈ X},

in which Uk are the actions available at stage k. The
current state then lies in the set H ∩W . Note, however,
that it can be assumed that the robot has some kind of
sensor that detects which kind of actions are available.
This reduces the computation of W and H into only the
computation of H. Thus, only the case when U is fixed
for all x ∈ X is important.
From the state transition equation, it is possible to know
which states may be reached if action u is applied at
state x. Let F be this set, formally defined as

F (x, u) = {x′ ∈ X | ∃θ ∈ Θ(x, u)

for which x′ = f(x, u, θ)}.

If we further assume that X is countably infinite, the
derived information state Xk(ηk) can be computed us-
ing induction. Note that F and H eliminate the direct
appearance of nature actions. The base case (k = 1) of
the induction is

X1 = η0 ∩ H(y1).

This first step consists only of making the initial con-
dition consistent with the first observation. Now as-
sume inductively that Xk(ηk) ⊆ X is available, and
Xk+1(ηk+1) should be computed. First note that
ηk+1 = (ηk, uk, yk+1), and the new information is pro-
vided only by uk and yk+1. It is known that the state
lies anywhere in H(yk+1), On the other hand, if xk was
known, after applying uk, the state lies somewhere in
F (xk, uk). Since xk is unknown, but it is known that
xk ∈ Xk(ηk), the new derived information state is

Xk+1(ηk, uk, yk+1) =
⋃

xk∈Xk(ηk)

F (xk, uk) ∩ H(yk+1).

Given that the derived information state is always a
subset of X, the derived information space denoted by

I◦, can be defined as I◦ = 2X . Note that if X is fi-
nite, I◦ is also finite, which makes it preferable if the
number of stages is much larger than the size of X. The
derived information space developed until now is nonde-

terministic. Derived information spaces can be obtained
also from probabilities distributions. Examples of such
spaces are presented in Section 3.5, and are described
extensively in [17].

3 Examples of Information Spaces

In this section we present several examples in which the
state is unknown, and the concept of information space
comes naturally. We do not intent to give a full range of
applications, rather, the examples are drawn from our
previous work instead. As we said in the introduction,
we hope for an increased interest in information spaces,
since they offer an exciting point of view from which
robotic problems can be solved.

3.1 Visibility-based pursuit-evasion

In the pursuit-evasion problem, a robot, called the pur-

suer, has to move in such a way that it could find an-
other robot, called the evader. In a complete antagonis-
tic setting, the evader does not want to be found, and
can move arbitrarily fast compared to the pursuer. As-
sume that the pursuer has a map of the environment,
and it is perfectly localized with respect to this map.
How should the pursuer plan its movements in order to
find all of the evaders? The answer depends on which
sensors are available to the pursuer. Since the pursuer
does not know where the evaders are, we can provide the
pursuer with an ideal sensor called the evader locator,
which when used, will tell the location of the evaders
to the pursuer. While this is a valid formulation of
the pursuit-evasion problem, its solution is trivial, given
that we provided the pursuer with perfect information
of the state of the task. Thus, a more interesting formu-
lation considers providing the robot with sensors that
report robot only local information. For example, pro-
viding the pursuer with a camera, can only tell weather
an evader is present in the current visible region, or
not. This version of the pursuit-evasion problem was
presented in [10], and we describe it here from the in-
formation space framework.
Formally, assume that the pursuer moves in a connected
open set R ⊂ R

2. The boundary, ∂R, of R is assumed
to be polygonal and simply-connected. The evader is
modeled as a moving point in R. The evader position
e(t) at time t is determined by a continuous position
function e : [0,∞) → R. The pursuer is also modeled
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Figure 1: Each shadow region is a portion of the envi-
ronment that may or may not contain the evader.

as a point, with position p(t). The pursuer has an exact
geometric representation of R, and it is perfectly local-
ized with respect to R. The pursuer also has a visibility

sensor, which returns the visibility region from its cur-
rent position. For a point q ∈ R, the visibility region
W (q) includes all the points in R that can be joined
with q through a line segment without intersecting δR.
The task is to find a path p : [0, 1] → R for the pursuer
such that the evader is guaranteed to be detected, re-
gardless of its position function e(t), which is unknown
to the pursuer.
The state yields the position of the pursuer and evader,
x = (p, e), which results in the state space X ⊂ R

2 ×
R

2 = R
4. Since the position of the evader is unknown,

the state is unknown. The observation space Y , is a
collection of subsets of R. For each q ∈ R, the sensor
yields a visibility polygon W (p) ⊂ R. Consider the
information state at time t. For the initial condition,
p(0) is given and the evader may lie anywhere in R.
The input history ũt, can be expressed as the position
function of the pursuer. Thus, the information state is
defined as:

ηt = ((p(0), R), p(t), ỹt).

Since the pursuer position is always known, the interest-
ing part is the subset of R in which the evader may lie.
Thus, the derived information state can be expressed as
Xt(ηt) = (p(t), E(ηt)), in which E(ηt)) is the smallest
subset of R that is known to contain the evader, given
ηt.
The visibility region divides R in several shadow regions,
which are regions that are not visible to the robot (Fig-
ure 1). When the evader may be hidden in one of these
regions, the region is said to be contaminated, other-
wise it is said to be cleared. As the pursuer moves, the
shadow regions appear, disappear, merge or split. Such
events, called visual events, are produced by combina-
torial changes in the visibility region. The visual events
provide the only way to vary E(ηt). For example, if a

shadow region disappears, it means that the given re-
gion is now visible to the pursuer, and thus does not con-
tain the evader. Also, if a contaminated region merges
with a cleared one, the new region should be labeled
contaminated, and so on. The visual events induce a
decomposition of R, called the aspect graph [14], or the
visibility-cell decomposition [11]. In these decomposi-
tions, if the robot moves inside a cell there is no signifi-
cant change in information. The robot receives roughly
the same information from the sensors. Such movements
are called conservative in the sense that they preserve
the current robot’s information. In contrast, when the
robot crosses one of the cells’ boundary edges, the struc-
ture of the visibility region suffers a drastic change, and
the robot’s information may be modified [7]. In these
case there are two kinds of visual events. One kind
is triggered when the robot crosses an environment’s
boundary generalized inflection ray, and the other when
it crosses the complement of bitangent line segments of
the boundary. An inflection is a change in the sign of
the curvature of the environment’s boundary. We use
the term “generalized,” as in [18], to include polygonal
boundaries. Given a generalized inflection, an inflection

ray is found by extending a ray from the inflection un-
til it hits another point of the environment’s boundary.
A bitangent line segment is a segment completely con-
tained in the environment representation, whose sup-
porting line is tangent to two points of the boundary,
and whose endpoints are these points of tangency. A
common general position assumption is that no line is
tangent to more than two points of the boundary (thus
the term bitangent). For each bitangent, its complement

is found by extending outward from each point of tan-
gency until the environment’s boundary is hit again (see
Figure 3).

With this decomposition we can collapse the informa-
tion space even further. It was proved [11] that each of
the cells produced is convex. Thus, if the pursuer is in-
side a cell, it can detect if the evader is also inside or not.
Furthermore, it can compute which cells are cleared, or
become recontaminated when moving from one cell to
the other. The state space is now discrete, because the
exact positions of the pursuer and evader are not rel-
evant anymore; only matters whether or not they are
inside of a given cell. We can encode E(ηk) as binary
vector, with a label for each cell indicating weather it is
cleared. With this, the solution plan p(t) can be found
using a simple search in the derived information space
[10].



3.2 Visibility-based tasks with Gap Navi-
gation Trees

In the previous example, in principle, the planning strat-
egy used the exact geometry of both visibility regions
and the environment. However, we are interested in
such information as an intermediate product, since it
is only important weather a certain region is cleared,
or weather it becomes recontaminated by merging with
other regions. Thus, we are not interested in the ex-
act description of the visibility regions, but in how they
change. As presented in [12, 26, 27], we can further col-
lapse the information space by designing a sensor that
detects the combinatorial changes in the visibility re-
gion. Furthermore, we can eliminate the need of a map,
and the robot can solve some visibility-based tasks in
unknown environments.

A visibility region is bounded of edges completely con-
tained in the environment boundary, and by edges
collinear with the position of the robot. The later are
called spurious edges. When a spurious edge either
appears, disappears, splits or merges, a combinatorial
change in the visibility region occurs. From the robot’s
perspective, the spurious edges are the discontinuities in
depth information in the environment. Note that geo-
metric information of the spurious edges is not relevant
for the visual event detection. The events will be the
same in spite of the exact length and angular position
of the spurious edges. Their order is relevant, however,
because we are interested in which discontinuity disap-
peared, or merged with another, for example. Although
the precise distances to the walls may be unknown, the
robot only needs an edge detector that can detect each
of the discontinuities, and return their order relative to
the robot’s heading. Each of this discontinuities is re-
ferred to as a gap, and the sensor as a gap sensor [24].
As shown in [27, 12, 26], a robot using a gap sensor,
with no other sensing ability assumed (it has neither a
compass nor a reliable odometer) can compute shortest-
paths information for unknown environments, localize
itself and perform pursuit-evasion. The ideal gap sen-
sor can be easily realized through a range sensor (i.e.,
laser or sonar) or using computer vision techniques.

Each gap hides a connected region of the environment
that is occluded to the robot from its current position.
A label of “L” or “R” is assigned to a gap to indicate the
direction of the part of R that is hidden behind the gap.
This corresponds to transitions of the gap sensor from
“far to near” (left) or “near to far” (right), if the gaps
are detected by a counterclockwise scan with respect to
the robot’s heading (see Figure 2.(a)).

When the robot moves in the environment, the gaps, as
reported by the gap sensor, may change. It is assumed
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Figure 2: The robot’s view of the environment. The
position of the robot is shown with a black disk. (a)
The environment and the respective labeling of the gaps
detected. (b) Angular position of the gaps detected in
the visibility region.

that the robot can track the gaps at all times and record
any topological change. There are four possible ways in
which gaps change:

1. Gap appearance. A gap, not detected before, is
now tracked by the gap sensor. The gap is said to
be visible.

2. Gap disappearance. A gap is no longer detected
by the gap sensor. The given gap is not visible for
the gap sensor.

3. Gaps merge. Several gaps merge into a single
one.

4. Gap split. One gap splits into several gaps.

If a gap appears, the region behind it was just visible to
the robot, but now is “hidden” by the gap. Similarly,
when a gap disappears, the region of the environment
behind the gap is now visible to the robot. With bitan-
gents, exactly two gaps may merge into one, and one gap
splits exactly into two gaps. These four gap topological
changes are called the gap critical events.
Appearances and disappearances of gaps are related to
generalized inflections of ∂R. As illustrated in Figure 3
(a), appearances and disappearances of gaps occur when
the robot crosses inflection rays. Merges and splits of
gaps, are related to the bitangents of ∂R, and they occur
when the robot crosses bitangent complements. (Fig-
ure 3 (b)). Note that R need not be a polygon, but may
be any piecewise-analytic closed curve.
In this sensing model, the observation space Y is defined
by the set of all of the ordered circular sequences of pos-
sible readings of gaps. Thus, {L,L,R} ∈ Y correspond
to a sensor reading where two “left” gaps and a “right”
gap are detected. Note this sensor reading is indistin-
guishable from {R,L,L} and {L,R,L}, since a compass



(a) (b)

Figure 3: Inflections and bitangents of ∂F . (a) Appear-
ance and disappearance of gaps occur when the robot
crosses inflection rays. (b) Splits and merge occur by
crossing bitangent complements.

is not available. Even more, with only gap readings, the
exact position of the robot cannot be determined, and
different neighborhoods of points will generate the same
sensor reading across the whole environment. The in-
put space is determined by the gap chasing movements
(commands to the robot to move towards a gap).

3.2.1 Encoding information states

Remember that the robot can track the gaps all of the
time and record any of their topological changes. Thus,
it can detect that from the transition {L1, R1, R2, L2}
to {L1, R2, L2}, the gap R1 disappeared. The gap sen-
sor only will report to the robot that a gap, detected
before in this order, disappeared, for example. This
identification of gaps is implicit at the sensor level, and
it is possible if we assume coherency between the robot’s
motion and gap changes (i.e., small position changes of
the robot will produce small angular position changes in
the gaps). The gaps and their topological changes are
encoded into a tree, hereafter referred to as T . The tree
T is the Gap Navigation Tree of the environment. The
root of T moves along with the robot. Each child of the
root represents a gap that is currently visible, and they
are maintained in the circular order of the gaps they
represent. In T , we will use the terms gaps and nodes
interchangeably, because except the root, each node en-
codes a gap.
As the robot moves, critical events are triggered. As
events occur, T is updated as follows: if a gap disap-
pears, the corresponding node is removed from T . If a
gap appears, it is added as a child of the root of T in a
location that preserves the circular ordering of gaps. If
a gap splits, then the corresponding child of the root is
replaced with two children. If two gaps merge, the two
corresponding children of the root become the children
of a new node, d, and d becomes a child of the root.
The relation of T to an information state is immedi-

(a) (b) (c)

(d) (e) (f)

Figure 4: Environment equivalence. All the environ-
ments shown share the same family of GNTs. A robot
could not disambiguate one from another using the sens-
ing capabilities presented, yet it can navigate optimally
in each of them.

ate. In fact, T is nothing more than the sensor history
of the current information state. For example, assume
that at time t1 the state of T is T1. At time t1 the
robot is commanded to chase the sequence of gaps, α,
which brings T1 into the state T2. Comparing T1 and
T2 we can readily obtain the sequence, α, followed (in-
put history), with the respective changes as reported by
the gap sensor (sensor history). Note, however, that we
are assuming that α is the shortest sequence of gaps to
take T1 into T2. In this sense, all sequences of gaps that
take T from one state to another are equivalent to the
shortest one, because at the end, they modify T in the
same way.
There is a very close relation between the visibility
graph and the Gap Navigation Tree. Once the GNT
is known for an environment, it can be shown that the
robot follows optimal paths in distance, even though
no distance information was ever measured[27]. Adding
cleared and contaminated labels to the gaps, pursuit-
evasion in the absence of a map can also be solved [12].
One interesting observation is that the GNT induces
an equivalence relation in the set of environments with
piecewise-analytic closed curves boundaries. For exam-
ple, all the environments in Figure 4 have the same fam-
ily of GNTs. This means that with the GNT framework,
the robot cannot disambiguate one from another.

3.3 Bitbots

In the previous examples, we used visibility informa-
tion directly, either by computing it from a map, or
by detecting visibility changes through the gap sensor.
Now we present an example in which the robot solves
visibility-tasks without any visibility related sensor. In
fact, the robot, called a Bitbot [28], has only one sensor,
a contact sensor. The contact sensor indicates whether
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Figure 5: A polygon and all its cuts are shown on the
left. For a cut [v, vc] its cave is shaded. The correspond-
ing cut diagram is shown on the right.

or not there is a contact with the boundary of the envi-
ronment. The Bitbot can only choose among two types
of movements in a polygonal environment. First, it can
follow the walls in either direction. Second, when ap-
proaching a reflex vertex v (Figure 5), it can choose to
go straight of the reflex vertex along the continuation of
the edge, and hit on the opposite edge of the environ-
ment.

The state space is defined as X ⊂ R
2 × E, in which

each valid state x = (q, e), q ∈ Qe, e ∈ E represents
the Bitbot position q with respect to the environment
e it is in. The set E represents all possible environ-
ments the Bitbot may be in. Since neither e nor q are
known to the robot, the state is unknown. The obser-
vation space is determined by the output of the contact
sensor. We assume that the contact sensor indicates
if the robot is currently in contact with a reflex ver-
tex (i.e., a corner) of the environment, in contact with
a non-reflex vertex, or in contact with a wall. Thus
Y = {reflex,nonReflex,wall,noContact}. The ac-
tion space, U = {goRight, goLeft, goRightOff,
goLeftOff}, represents the actions to move right and
left along the walls, or right and left along the walls
followed by going of from the reflex vertices.

Given a reflex vertex v in the environment boundary,
consider an edge incident to this vertex, with maximal
extension inside the environment. When the robot de-
cides to go straight of the reflex vertex, it follows exactly
this segment, which is called a cut. For each reflex ver-
tex there are two cuts, corresponding to the two incident
edges at this vertex. An example of a polygon with the
set of all of the cuts is shown on Figure 5. Consider an
environment representation in which nodes representing
the polygon vertices are arranged in a circle, respecting
its circular order along the boundary. Each edge in the
polygon has its counterpart along the circle too. For
each cut in the polygon, a chord is added to the circle,
from a node corresponding to the reflex vertex to the
corresponding edge. This representation, called the cut

Figure 6: Some polygons having the cut diagram shown
in Figure 5.

diagram of the polygon, contains the information related
to inflections and bitangents of the environment bound-
ary, as it is shown in [28]. Particularly, through the
diagram we can conservatively determine weather two
given reflex vertices may be endpoints of a bitangent
in the environment. This test is conservative because
two vertices may be said to form a bitangent when in
fact they do not. This is because different polygons will
share the same cut diagram, and for some of them the
bitangent does exist (Figure 6).
As it is, the Bitbot cannot construct the cut diagram.
With the Bitbot capabilities assumed until now, the
robot cannot count the number of vertices in the envi-
ronment, information that is needed to construct the cut
diagram. Thus, the Bitbot is provided with a marker,
or pebble, that labels a single position in the environ-
ment boundary. With this, the robot can transverse the
boundary exactly one time to count the number of ver-
tices, and to go straight of each cut, encoding in which
edge, and which order the chords should be added. Once
the cut diagram is built, the pebble is not needed.
The cut diagram offers a discrete version of the state
space. For example, if the reading from the sensor is
noContact, the Bitbot knows that is somewhere along
a certain cut, but not its exact position. This allows the
use of the nondeterministic derived information states
framework presented before. As it is presented in [28],
it is possible to solve a version of the pursuit-evasion
problem with a search in this collapsed state space, to-
gether with the bitangent information available in the
diagram.

3.4 Almost-Sensorless Localization

Now consider now a mobile robot equipped with a con-
tact sensor, an environment map, and a compass. The
reliable motions available to this robot are severely lim-
ited. Lacking odometry and a sense of time, the robot
can only choose a direction of motion and travels in that
direction until it reaches the boundary of the environ-
ment. Suppose this robot is kidnapped and released at
an unknown position. Can the robot localize itself?
To formalize, let the environment be described by a
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Figure 7: A localizing sequence for a simple non-convex
polygon. The derived information state at each step is
shaded.

simply-connected polygonal environment X. At each
step the robot chooses an action (that is, a direction of
motion) from U = S1. The resulting state x′ = f(x, u)
is the first boundary point touched by moving from x

in direction u.

We can define localization as a planning problem over
the introduced nondeterministic derived information
states. Figure 7 shows a rudimentary example environ-
ment along with a localization plan for it and the derived
information states traversed along the way. The initial
condition is total uncertainty, so that η0 = X. The goal
is to reach some singleton information state,

ηG = {η ∈ I | |η| = 1},

or equivalently, ηG = {{x} | x ∈ X}. To complete the
problem definition, we must describe the information
transition function f : I × U → I. First consider two
special cases:

• If η is a single point, then f(η, u) can be computed
by a ray shooting query [1] in X.

• If η is a segment along the boundary of X, then
f(η, u) can be computed geometrically. Sweep a
normal line across the segment, tracking changes to
the environment edge first intersected by the sweep
line. At each change, a new segment is added to the
resulting information state.

These two cases are illustrated in Figure 8. For arbitrary
information transitions, observe that any reachable in-
formation state can be described by a finite union of
points and open segments along the environment bound-
ary. Therefore, for an arbitrary reachable information
state action pair, the resulting information state is sim-
ply the union of partial results given by the two special
cases described above.

(a) (b)

Figure 8: Computing the information transition func-
tion F (η, u) for the special cases when (a) η is a single
point and (b) η is a segment. All other reachable derived
information states can be described by finite unions of
these two special cases.

Localize(η)
if η contains a segment s then

return a direction parallel to s

else if η contains at least two points p and q then

if q is visible from p then

return a direction parallel to p − q.
else

return a direction parallel to the gap hiding p from
q.

end if

else

terminate

end if

Figure 9: A motion strategy for localization with a sim-
ple robot, expressed as a policy over derived information
space.

To solve the localization task, we need a strategy that
will reach one of the goal information states. Since there
are no observations for this problem, we can describe
the strategy as a sequence of actions. More generally, a
policy over information space can be defined. Figure 9
shows a localization policy that originally appeared in
[22]. This policy will eliminate segments from the in-
formation state first, then iteratively merge pairs of the
remaining points until the information state is a single
point. A more complex example appears in Figure 10.

3.5 Probabilistic information spaces

The planning examples described above present nonde-
terministic state uncertainty. However, for some tasks,
probability distributions over the state space and na-
ture actions are available, and have been used in an
information space context. One such approach is the
well known Kalman filter. In the case of the Kalman
filter, the transition function f , and the sensor map-
ping h are both linear functions, and nature actions, θ

and ψ, can be modeled as Gaussians. Thus, the derived
information states follow a Gaussian distribution too.



(a) (b)

Figure 10: (a) An irregular environment for which the
the policy in Figure 9 terminates in 30 steps. (b) Exe-
cution traces for 6 different starting positions. For each
starting position, the final position is the upper right
corner of the environment.

Each Gaussian is specified by an n-dimensional mean
vector, µ, and an n × n symmetric covariance matrix,
Σ. Since the Kalman filter relies on linear models, f

takes the well-known form

xk+1 = Akxk + Bkuk + Gkθk,

in which Ak, Bk, and Gk are real-valued matrices of
appropriate dimensions. The subscript k is used because
the Kalman filter works even if f is different in every
stage. Similarly, the sensor mapping becomes

yk = Ckxk + Hkψk.

Since an information state P (xk|ηk) is represented by
its mean vector and its covariance matrix, the goal is
to compute µk and Σk at the stage k. Such updat-
ing expressions can be found in textbooks on stochastic
control (i.e., [15]).
If we assume that nature can be modelled probabilisti-
cally, and it follows a Markov model (its actions depend
only on the current state, as opposed to actions or state
histories), then the derived information state becomes a
conditional probability distribution. The set functions
H and F become P (xk|yk) and P (xt+1|xk, uk), respec-
tively. To compute P (xk|yk), Bayes rule is applied as:

P (xk ∩ yk) = P (xk| yk)P (yk) = P (yk| xk)P (xk).

Bayes rule requires the knowledge of P (xk), which is
replaced by a derived information state1. Since each
information state is a probability distribution over X,

1In this context, derived information states have been also

called belief states.

it can be written as P (xk| ηk), if it is derived from ηk.
As before, derived information states can be computed
inductively [17]. In this case, the derived information
space is the set of all probability distributions over X.
Thus, the planning problem can be expressed again en-
tirely in terms of the derived information space. A goal
region can be specified as constraints on the probabil-
ities. For example, for some particular x ∈ X, the
goal might be to reach any derived information state
for which P (x|ηk) > 0.9. Furthermore, it is possible to
embed I in R

n with each state x ∈ X representing a
vertex of an (n − 1)-simplex. The coordinates of each
vertex are expressed using probabilities (p1, p1, . . . , pn)
as barycentric coordinates. Here, pi is the probability
of being in state xi. Since p1 + · · · + pn = 1, the ver-
tices of the simplex (i.e., (1, 0, . . . , 0), (0, 1, . . . , 0), · · · ,
(0, 0, . . . , 1)) correspond to the cases in which the state
is completely known. A planning problem of this kind
is known as a Partial Observable Markov Decision Pro-

cess (POMDP). Solving efficiently POMDPs is an active
area in the research community [16, 29]. The problem
is clearly very difficult, since the dimension of the space
grows linearly with the number of states.

4 Conclusions

In this paper we have presented information spaces, a
notion which combines all planning problems for robots
with sensing uncertainty into one framework. Each in-
formation state represents the current knowledge of the
robot about its progress after taking each action and
sensor measurement. We have described several exam-
ples of information spaces for different problems, such
as pursuit-evasion tasks for robots with different sens-
ing capabilities and robot localization. These examples
show that considering planning problems in terms of in-
formation spaces allows a better understanding of the
structure of the problem. Moreover, the solutions for
robotics tasks naturally lie in the spaces of information
states, which allows finding better plans for the robots.

Considering information spaces opens new opportuni-
ties for characterizing the robotics tasks. It is possible
to characterize sensors based on their power. By com-
paring generated information spaces, it is also possible
to design robots with minimal sensor requirements for a
given task. This was shown on the example of pursuit-
evasion task, which was solved with robots with hierar-
chy of sensors. Information spaces also characterize the
essential information needed to solve the required tasks
by allowing the design of task specific sensors, as was
shown in the presented example on localization. There
are many opportunities to contribute the research on



planning for mobile robots using information spaces. It
is our hope that this work will stimulate this direction
to progress.
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