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Abstract— We present methods for efficiently maintaining
human head orientation using low-cost MEMS sensors. We
particularly address gyroscope integration and compensa-
tion of dead reckoning errors using gravity and magnetic
fields. Although these problems have been well-studied, our
performance criteria are particularly tuned to optimize user
experience while tracking head movement in the Oculus Rift
Development Kit, which is the most widely used virtual
reality headset to date. We also present novel predictive
tracking methods that dramatically reduce effective latency
(time lag), which further improves the user experience.
Experimental results are shown, along with ongoing research
on positional tracking.

I. INTRODUCTION

In June 2012, Palmer Luckey’s prototype headset
generated widespread enthusiasm and hopes for trans-
formative virtual reality (VR) as John Carmack used it
to develop and show a compelling Doom demo at the
Electronic Entertainment Expo (E3). This convinced in-
dustry leaders that a low-cost, high-fidelity VR experience
could be achieved by leveraging MEMS sensing and video
display technology from the smart phone industry. One
important aspect of the design is a wide viewing angle,
which greatly increases the sense of immersion over most
prior headsets. Momentum has continued to build since
that time, with broad media coverage progress on the
potential for consumer VR, the dispersal of 50,000 Oculus
Rift Development Kits, and the active cooperation of
developers and researchers around the world. Although
originally targeted at the game industry, it has been finding
application more broadly in art, entertainment, medicine,
architecture, military, and robotics. Of particularly high
potential in robotics is telepresence, where a portable VR
interface to a robot can be maintained to allow VR-based
teleconferencing, travel, and even virtual attendance of a
conference such as ICRA. Furthermore, roboticists have a
long history of borrowing new sensors and devices from
other industries and finding exciting new uses; examples
include the SICK laser, Kinect, and Wii Remote.
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Fig. 1. The Oculus Rift Development Kit tracks head movement to
present the correct virtual-world image to the eyes.

At the same time, a core challenge to making the
Rift work is quite familiar to roboticists: Localization [1].
However, the VR version of it has special requirements
[2]. Virtual reality works by aligning coordinate frames
between physical and virtual worlds. Maintaining camera
poses for rendering in the virtual world requires sensing
and filtering of the head orientation. Including head po-
sition further aligns the physical and virtual worlds to
improve the experience. Because VR is fooling the brain,
the head must be tracked in a way that minimizes per-



Fig. 2. The custom sensor board inside of the Rift.

ceptual artifacts. In addition to accuracy, it is particularly
important to provide stable motions. A further challenge
is to reduce latency, which is the time between moving
the head and producing the correct change on the user’s
retinas. Up to now, latency has been the key contributor
to VR simulator sickness. In our case, these particular
challenges had to be overcome with a simple MEMS-
based inertial measurement unit (IMU).

This paper presents our head tracking challenges, so-
lutions, experimental data, and highlights some remaining
research issues.

II. THE HARDWARE

All sensing is performed by a single circuit board,
shown in Figure 2. The main components are:
• STMicroelectronics 32F103C8 ARM Cortex-M3 mi-

crocontroller
• Invensense MPU-6000 (gyroscope + accelerometer)
• Honeywell HMC5983 magnetometer.

The microcontroller interfaces between the sensor chips
and the PC over USB. Each of the gyroscope (gyro),
accelerometer, and magnetometer provide three-axis mea-
surements. Sensor observations are reported at a rate of
1000Hz.2 We therefore discretize time t into intervals
of length ∆t = 0.001s. The kth stage corresponds to
time k∆t, at which point the following 3D measurements
arrive:

1) Angular velocity: ω̃[k] rad/sec
2) Linear acceleration: ã[k] m/s2

3) Magnetic field strength: m̃[k] Gauss.
Also available are temperature and timing from the mi-
croprocessor clock.

III. GYRO INTEGRATION AND DRIFT

From now until Section VIII, we consider the problem
of estimating the current head orientation, as opposed to
position. Each orientation can be expressed as a 3 by 3
rotation matrix. Let SO(3) denote the set of all rotation
matrices, which is the space on which our filter operates.

2The magnetometer readings, however, only change at a rate of
220Hz.

By Euler’s Rotation Theorem, any 3D orientation can
be produced by a single rotation about one particular axis
through the origin. This axis-angle representation maps
naturally to the space of unit quaternions as q(v, θ) =

(cos(θ/2), vx sin(θ/2), vy sin(θ/2), vz sin(θ/2)), (1)

in which q(v, θ) denotes a unit-length quaternion that
corresponds to a rotation of θ radians about a unit-
length axis vector v = (vx, vy, vz). (Note that q(v, θ) and
−q(v, θ) represent the same rotation, which is carefully
handled.)

The quaternion representation allows singularity-free
manipulation of rotations with few parameters while cor-
rectly preserving algebraic operations. It is also crucial to
making a numerically stable dead-reckoning method from
gyro measurements. Let ω = (ωx, ωy, ωz) be the current
angular velocity in radians/sec. Let the magnitude of ω
be ` = ‖ω‖. Following from the definition of angular
velocity:
• The current axis of rotation (unit length) is 1

`ω.
• The length ` is the rate of rotation about that axis.

From the classical relationship of a Lie algebra to its
associated Lie group [3], the axis-angle representation of
velocity can be integrated to maintain an axis-angle repre-
sentation of orientation, which is conveniently expressed
as a quaternion. The details follow.

Let q[k] be a quaternion that extrinsically represents
the Rift (or sensor) orientation at stage k with respect to
a fixed, world frame. Let ω̃[k] be the gyro reading at stage
k. Let q̂[k] represent the estimated orientation. Suppose
q̂[0] equals the initial, identity quaternion. Let ` = ‖ω̃[k]‖
and v = 1

` ω̃[k]. Because ` represents the rate of rotation
(radians/sec), we obtain a simple dead reckoning filter by
setting θ = `∆t and updating with3

q̂[k + 1] = q̂[k] ∗ q(v, θ), (2)

in which ∗ represents standard quaternion multiplica-
tion. This is equivalent to simple Euler integration, but
extended to SO(3). (This easily extends to trapezoidal
integration, Simpson’s rule, and more sophisticated nu-
merical integration formulas, but there was no significant
performance gain in our application.)

A common gyro error model [4] is:

ω̃ = ω + Sω +Mω + b+ n, (3)

in which S is the scale-factor error, M is the cross-axis
coupling error, b is the zero-rate offset (bias), and n is the
zero-mean random noise. Note that this model ignores

3Note that q(v, θ) multiplies from the right because ω̃[k] is expressed
in the local sensor frame. If converted into the global frame, it would
multiply from the left.
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Fig. 3. Stationary gyro output with and without calibration.

less significant error sources, including effects of linear
acceleration, board stress, nonlinearity, and quantization.

The scale-factor and cross-axis terms can be combined
to produce a simple linear model:

ω̃ = Kω + b. (4)

Values for K and b can be determined by a factory cali-
bration; however, due to imperfections in the calibration
procedure, as well as temperature dependence, the cor-
responding error terms cannot be completely eliminated.
Figure 3 demonstrates zero-rate offset with and without
calibration for different values of temperature. Note that
even after calibration, most of the error is systematic, as
opposed to random noise.

Over time, we expect dead-reckoning error to accumu-
late, which will be called drift error:

e[k] = q̂[k]− q[k]. (5)

Note that this can also account for the difference between
initial frames: q̂[0]− q[0].

IV. DRIFT CORRECTION WITH A CONSTANT FIELD

Additional sensing beyond the gyro is needed to drive
down the drift error. The methods of Sections V and VI,
are based on aligning the orientation with respect to a
fixed, constant vector field that permeates the physical
space of the sensor. They each have particular issues, but
the common principle is first covered here.

Suppose that the Rift is placed into physical
workspace, modeled as R3. In that space, a constant
vector field f : R3 → {w} is defined in which w =
(wx, wy, wz). At every position p ∈ R3, the field yields
the same value, f(p) = w. The magnitude of this field
will have no consequence for drift correction. Therefore,
assume without loss of generality that ‖w‖ = 1.

Imagine that a magical sensor is placed in the Rift that
perfectly measures the field. If the Rift is at the identity

orientation, then w̃ = w is observed. However, if the Rift
is at an arbitrary orientation q, then the sensor observation
is transformed using the inverse rotation q−1 (this is the
conjugate of q). The resulting observation is w̃ = q ∗w ∗
q−1.4 Using rotation matrices, this would be w̃ = Rtw,
for rotation matrix R.

The difference between w̃ and w clearly contains
powerful information about orientation of the Rift, but
what are the limitations? Consider the following sensor
mapping:

h : SO(3)→ R3, (6)

which yields w̃ = h(q) as the observed vector, based
on the orientation q. The trouble is the preimage of the
mapping [5]:5

h−1(w̃) = {q ∈ SO(3) | h(q) = w̃}. (7)

In other words: Consider the set of all orientations that
produce the same sensor observation. Each preimage is a
generally a one-dimensional set that is generated for each
w̃ by applying a rotation about an axis parallel to w. This
should not be surprising because the set of all possible
directions for w is two-dimensional whereas SO(3) is
three-dimensional.

In practice, we do not have the magical field sensor.
The actual sensors have limitations due to calibration
errors, precision, noise. Furthermore, they unfortunately
measure multiple, superimposed fields, making it difficult
to extract the correct information. The next two sections
handle these problems for the gravity-based and magnetic
field-based drift correction methods.

V. TILT CORRECTION

This section presents our approach to correcting tilt
error, which is the component of all drift error except
rotation about the vertical axis in the physical world, and
it results in the perceived horizontal plane not being level.
Correction is accomplished by using gravity as a constant
vector field, in the way described in Section IV. The
preimages (7) in this case correspond to rotations around
axis parallel to the gravity vector.

In an ideal world, we would love to have a perfect
gravitational field sensor. It would always provide a vec-
tor of magnitude 9.81m/s2, with the direction indicating
the tilt. In reality, gravitational field of Earth deviates
slightly in both the magnitude and direction of gravity
across its surface. These deviations are minor, though, and
we currently ignore them. A much worse problem is that
an accelerometer measures the vector sum of all of the

4For quaternion-vector multiplication, we assume the vector is con-
verted to a quaternion as (0, wx, wy , wz).

5To be more precise, we should write R ∈ SO(3) in which R is the
rotation matrix to which q corresponds.
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Fig. 4. (a) Accelerometers necessarily measure the vector sum of
acceleration due to gravity and linear acceleration of the sensor with
respect to Earth. (b) To determine tilt error angle φ, the tilt axis is
calculated, which lies in the horizontal, XZ plane.

contributing accelerations (see Figure 4(a)): a = ag + al,
in which ag is the acceleration due to gravity and al is
linear acceleration of the head relative to the Earth.

Suppose that there is no linear acceleration. In this
case, ã is a direct estimate of the gravity vector; however,
this is measured in the local coordinate frame of the
sensor. The transformation

â = q−1 ∗ ã ∗ q (8)

brings it back into the global frame. Note that this applies
the inverse of the head orientation. Every tilt error can
be described as a rotation about an axis that lies in the
horizontal XZ plane; see Figure 4(b). To calculate the
axis, project â into the XZ plane to obtain (âx, 0, âz).
The tilt axis is orthogonal: t = (âz, 0,−âx). The tilt error
φ is the angle between â and the vector (0, 1, 0).

In the presence of movement, we cannot trust ac-
celerometer data in the short term. However, averaged
over a long period of time, accelerometer output (in the
global frame) produces a good estimate for the direction
of gravity. Indeed, for n samples,∣∣∣∣∣ 1n

n∑
k=1

â[k]− ag

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑

k=1

(ag + al[k])− ag

∣∣∣∣∣
=

1

n

∣∣∣∣∣
n∑

k=1

al[k]

∣∣∣∣∣ =
1

n
|v[n]− v[1]| = O (1/n) , (9)

in which v[k] is velocity of the headset at stage k
and is bounded due to the physiological constraints of
human body. To further improve performance, the data are
preprocessed by removing samples that differ significantly
from the previous measurements, since sudden changes in
the combined acceleration are more likely to happen due
to movement rather than drift.

The gyro is reliable in the short term, but suffers from
drift in the long term. To combine short-term accuracy
gyro data with long-term accuracy of accelerometer data
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Fig. 5. Tilt correction performance. Ground truth data was collected
using OptiTrack motion capture system.

we apply a complementary filter [6], [7], [8]. This par-
ticular choice is motivated by simplicity of implemen-
tation and adjustment based on perceptual experiments.
Let q̂[k] be the estimated orientation obtained by gyro
integration (2); the output of the complementary filter with
gain α� 1 is

q̂′[k] = q(t,−αφ) ∗ q̂[k], (10)

in which t is the tilt axis. The parameter α should be large
enough to correct all drift, but small enough so that the
corrections are imperceptible to the user. Figure 5 shows
performance during typical use.

VI. YAW CORRECTION

This section addresses yaw error, which corresponds
to rotation about the vertical axis (parallel to the gravity
vector). To accomplish this task, we rely on measurement
of the magnetic field using the magnetometer mentioned
in Section II.

It is temping to think of a magnetometer as a compass,
which measures a vector that always points North. The
situation, however, is considerably more complicated.
First, note that the observation m̃ = (m̃x, m̃y, m̃z) is
three-dimensional. Imagine using the sensor to measure
the Earth’s magnetic field. Unfortunately, this field is not
constant, nor do the vectors point North. The magnitude
of the field varies over the surface of the Earth from 0.25
to 0.65 Gauss. The difference between North and the field
direction, projected into the horizontal plane is called a
declination angle. This could be as large as 25 degrees in
inhabited areas. To further complicate matters, the field
vector points up or down at an inclination angle, which
varies up to 90 degrees. These cause two problems: 1) The
direction of true North is not measurable without knowing
the position on the Earth (no GPS system is in use), and
2) if the inclination angle is close to 90 degrees, then the
magnetic field is useless for yaw correction because it is
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Fig. 6. A 2D slice of magnetometer output before and after calibration.

almost parallel to gravity. Fortunately, this only happens
in the most sparsely populated areas, such as northern
Siberia and the Antarctic coast.

However, it is even more complicated than this. Recall
from Section V that the accelerometer only measures
the vector sum of two sources. The magnetometer also
measures the sum of several sources. Circuit boards usu-
ally contain ferrous materials that interfere with magnetic
fields. There may be both hard iron bias and soft iron bias
[9]. In the case of hard iron bias, nearby materials produce
their own field, which is observed as a constant offset in
the frame of the sensor. In the case of soft iron bias, the
materials distort existing fields that pass through them.
Most indoor environments also contain enough materials
that create magnetic fields. Therefore, a magnetometer
measures the vector sum of three kinds of fields:

1) A field that exists in the local coordinate frame of
the sensor.

2) An indoor field that exists in the global, fixed world
frame.

3) The Earth’s magnetic field, which is also in the
global frame.

All of these could be distorted by soft iron bias. Finally,
additional anomalies may exist due to the proximity of
electrical circuits or moving ferrous materials (someone
walks by with a magnet).

Figure 6 shows a plot of magnetometer data obtained
by rotating the sensor in one location around a single
axis. An ellipse is roughly obtained, where eccentricity
is caused by soft iron bias. The center of the ellipse is
offset due to the local field. The size of the ellipse is due
to the global field, which includes the Earth’s field. One
problem for correction using a magnetometer is that the
vector sum of the Earth’s field and the indoor field may
mostly cancel, leaving only a small magnitude.

Our approach is based on the following principles: 1)
True North is irrelevant because we are not trying to navi-

gate across the Earth; 2) the vector sum of the indoor field
and the Earth’s field provides the useful measurement; 3)
an in-use calibration procedure can eliminate most of the
offset due to the local field, and it can furthermore help
with soft iron bias; 4) never assume that the calibrated
values are completely accurate; 5) the particular field
magnitude is irrelevant, except for the requirement of a
minimum value above the noise level.

Based on these considerations, we developed a method
that first calibrates the magnetometer and then assigns
reference points to detect yaw drift. For calibration, we
could ask the user to spin the Rift in many directions
to obtain enough data to perform a least-squares fit of
an ellipsoid to the raw data. The raw values are then
corrected using an affine linear transformation based on
the ellipsoid parameters. An alternative is to grab only
four well-separated points and calculate the unique sphere
through them. In this case, the raw samples are corrected
by applying the estimated offset due to the local field.
The four points can even be obtained automatically during
live use. This often works well, assuming the user looks
in enough directions and the eccentricity due to soft iron
bias is small.

Suppose that m̃ is now a measurement that has been
already corrected by calibration. Let m̃ref be a value
observed at an early time (before much drift accumulates).
Let q̂ref be the corresponding orientation estimate when
m̃ref was observed. Now suppose that a value m̃ is
later observed and has associated value q̂. The following
transformations bring both readings into the estimated
global frame:

m̃′ = q̂−1 ∗ m̃ ∗ q̂ and m̃′ref = q̂−1ref ∗ m̃ref ∗ q̂ref . (11)

If the magnetometer were perfectly calibrated and m̃′ ≈
m̃′ref , then there would be no significant drift. We
project m̃′ and m̃′ref into the horizontal XZ plane
and calculate their angular difference. More explic-
itly, θ = atan2(m̃′x, m̃

′
z) is compared to θr =

atan2(m̃′ref,x, m̃
′
ref,z). Once the error is detected, the

methods are the same as in Section V, except that the
correction is a rotation about the Y axis only. The
complementary filter for yaw correction is

q̂′[k] = q((0, 1, 0),−α2(θ − θr)) ∗ q̂[k], (12)

in which α2 is a small gain constant, similar to the case
of tilt correction.

To account for poor calibration (for example, ignoring
eccentricity), we require that q̂ be close to q̂ref . Oth-
erwise, the error due to calibration would dominate the
yaw drift error. This implies that yaw drift can only be
detected while “close” to q̂ref . This limitation is resolved
by introducing multiple reference points, scattered around
SO(3).
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Fig. 7. Effect of correction methods on the overall drift.

VII. PREDICTIVE TRACKING

For our system, it is not enough for the filtering system
to determine q[k] at precisely time t = k∆t. It must
reliably predict the future orientation at the time the user
observes the rendering output. The latency interval is the
time from head movement to the appearance of the corre-
sponding image on the retinas. The pipeline includes time
for sensing, data arrival over USB, sensor fusion, game
simulation, rendering, and video output. Other factors,
such as LCD pixel switching times, game complexity, and
unintentional frame buffering may lengthen it further.

Latency is widely considered to cause simulator sick-
ness in VR and augmented reality (AR) systems. A
commonly cited upper bound on latency is 60ms to have
an acceptable VR experience; however, it should ideally
be below 20ms to be imperceptible [10]. Carmack’s time
warping method [11] provides one approach to reducing
the effective latency.

We alternatively present a predictive filtering approach.
Predictive tracking methods have been developed over
decades of VR and AR research [12], [13], [14], but
they are usually thought to give mixed results because
of difficult motion modeling challenges, obtaining dense,
accurate data for the filter, and the length of the latency
interval. Although historically, latency intervals have been
as long as 100ms, in a modern setting it is in the 30 to
50ms range due to improvements in sensing and graphics
hardware. Furthermore, MEMS gyros provide accurate
measurements of angular velocity at 1000Hz. We have
found that predictive filters need only a few milliseconds
of data and yield good performance up to 50ms.

We developed and compared three methods (see Figure
9):

1) No prediction: Just present the updated quaternion
to the renderer.

2) Constant rate: Assume the currently measured an-
gular velocity will remain constant over the latency

Method 2 (constant rate)

Method 1 (no prediction)0

A
n
g
u
la

r 
v
el

o
ci

ty

Prediction interval

Actual angular velocity

Method 3 (constant acceleration)

Fig. 8. A depiction of the three prediction methods in angular velocity
space (represented as one axis).

interval.
3) Constant acceleration: Estimate angular acceleration

and adjust angular velocity accordingly over the
latency interval.

The first method assumes the head is stationary during the
latency interval. The second method replaces ∆t = 0.001
with ∆t = 0.021 in (2). The third method allows the
angular velocity to change at a linear rate when looking
into the future. The angular acceleration is estimated from
the change in gyro data (this is a difficult problem in
general [15], but works well in our setting).

Errors in estimating the current angular velocity tend
to be amplified when making predictions over a long time
interval. Vibrations derived from noise are particularly
noticeable when the head is not rotating quickly. There-
fore, we use simple smoothing filters in the estimation of
current angular velocity (Methods 2 and 3) and current
angular acceleration (Method 3), such as Savitzky-Golay
filters, but many other methods should work just as
well. We also shorten the prediction interval for slower
rotations.

A simple way to evaluate performance is to record pre-
dicted values and compare them to the current estimated
value after the prediction interval has passed. Note that
this does not compare to actual ground truth, but it is very
close because the drift error rate from gyro integration is
very small over the prediction interval. We compared the
performance of several methods with prediction intervals
ranging from 20ms to 100ms. Figure 9 shows error in
terms of degrees, for a prediction interval of 20ms, using
our sensors over a three-second interval.

Numerically, the angular errors for predicting 20ms
are:

Method Avg Error Worst Error
1 1.46302◦ 4.77900◦

2 0.19395◦ 0.71637◦

3 0.07596◦ 0.35879◦

.

A user was wearing the Rift and turning their head
back and forth, with a peak rate of about 240 deg/sec,
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Fig. 9. The prediction error in degrees for a 20ms interval for the three
methods.

which is fairly fast. This is close to reported peak veloc-
ities in published VR studies [13], [14].

During these motions, the acceleration peaked at
around 850 deg/sec2. Typical, slower motions, which are
common in typical usage, yield around 60 deg/sec in
velocity and 500 deg/sec2 in peak accelerations. For both
slow and fast motions with a 20ms prediction interval,
Method 3 is generally superior over the others. In another
experiment, even with an interval of 40ms, the average
case is 0.17 and worst case is 0.51 degrees.

VIII. POSITIONAL TRACKING

Tracking the head position in addition to orientation
provides a greater sense of immersion in VR. Providing
accurate position estimates using only sensors described
in Section II is extremely challenging. Using more sen-
sors, the problems are greatly alleviated, but the cost
increases. Solutions include computer vision systems and
a body suit of IMUs. In our case, we have tried to push
position estimation as far as possible using one IMU.
We report here on our limited success and remaining
difficulties. One of the greatest obstructions to progress
is that the sensor mapping for all of our sensors contain
constant linear velocity in their preimages. In other words,
traveling at constant linear velocity is unobservable by any
of our sensors (unless the magnetic field is non-constant
over small displacements).

The coordinate frame origin for positional tracking is
located at the midpoint between the retinas. Call this the
retinal center frame (RCF). Without position information,
this point remains fixed in the virtual world before the left
and right eye views are extruded to form a stereo pair.
That is, the position of the RCF is always p = 0. One
general strategy is to design a mapping p = f(q) in which
q represents the head orientation and p is the position
of the RCF. In other words, the most likely position p

y

q

z

Head/Neck

ℓn

y

Torso q1

ℓt

z

Head/Neck(a) (b)

Fig. 10. We enforce kinematic constraints to estimate position.

is specified for each given orientation q. Perhaps this
relationship could be learned from large data sets.

A simple example, which is currently in use in the
Oculus Rift Software Development Kit (SDK), is to move
the rotation center to the base of the neck, rather than at
the RCF. This improves the experience by accounting for
positional offset of the eyes as the head rotates (see Figure
10(a)). If the distance from the RCF to the base of the
neck is `n, then the corresponding mapping is

p = f(q) = q ∗ (0, `n, 0) ∗ q−1. (13)

If the VR experience requires large movements of
the human body, then the above solution is insufficient.
It is tempting to use the accelerometer to determine
position. Recall Figure 4(a), in which a = ag + al. If the
estimated gravity vector ãg can be subtracted from the
observed vector sum ã, then the remainder corresponds
to measured linear acceleration ãl. From basic calculus,
double integration of the acceleration produces the po-
sition. The main trouble is that offset error and extreme
sensitivity to vibration cause fast drift error. A fixed offset
in acceleration corresponds to quadratic error growth after
double integration (imagine attaching fictitious thrusters
to your head!).

One promising possibility is to use kinematic con-
straints to narrow down the potential motions. For exam-
ple, if the user is known to be sitting in a chair, then their
motions can be kinematically approximated as a two-link
spatial mechanism, as shown in Figure 10. The bar at the
origin represents a torso with length `1 and orientation q1.
The second bar represents a head (and stiff neck). Note
that the head orientation is still q, and is computed using
methods described in the previous sections, independently
of q1. The RCF position is computed as

p = f(q) = q1 ∗(0, `t, 0)∗q−11 +q∗(0, `n, 0)∗q−1. (14)

Let r1 and r denote the first and second terms above,
respectively, to obtain p = r1 + r.

Next we estimate the angular velocity ω̂1 of the torso
from the measured linear acceleration ãl (in the global



 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

D
is

ta
n

ce
, m

Time, s

Double integration
Kinematically constrained method

Fig. 11. Local kinematic constraints yield lower position error.

frame) of the head. Once ω̂1 is computed, q̂1 can be found
using methods from Section III. The method iteratively
computes and refines an estimate of the linear velocity v̂1
of the head. First, v̂1 is computed by integration of ãl.
The resulting value may drift and therefore needs to be
updated to fit the kinematic model. Observe that v̂1 is the
vector sum of velocities of the two bars:

v̂1 = ω̂1 × r1 + ω̂ × r. (15)

This equation can be rewritten as an underdetermined
system of linear equations Aω̃1 = b with a singular matrix
A. By projecting the right hand side b on the span of A
we can solve the resulting system Aω̂1 = bA, and update
the current linear velocity estimate using

v̂1 = bA + ω̂ × r. (16)

We compared the performance of this method to
straightforward double integration of ãl. The position
error is shown in Figure 11. Using kinematic constraints
significantly reduces position drift. After one minute of
running time, the position error of the double integra-
tion exceeds 500m, whereas the kinematic-based method
keeps the error within 1.1m.

This positional tracking method is only effective over
a few seconds. It may be useful as a complement to
other sensing systems; however, in its present form, it
is insufficient as a standalone technique. Possibilities for
future research include using more accurate accelerome-
ters and experimenting with stronger kinematic constraints
and limited motions.

IX. CONCLUSIONS

We presented an approach to head tracking that uses
low-cost MEMS sensors and is deployed in tens of
thousands of virtual reality headsets. Crucial aspects
of the system are quick response to head movement,
accurate prediction, drift correction, and basic position

information. The greatest challenge ahead is to obtain
reliable position estimates over longer time intervals using
MEMS sensors or a comparable low-cost technology. In
our most recent prototypes, we have achieved this the
straightforward way by combining the techniques in this
paper with position data from a camera that observes
infrared LEDs on the Rift surface.

The full C++ code of our methods is available at:

https://developer.oculusvr.com/
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