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Abstract

We present and implement an efficient algorithm for per-
forming nearest-neighbor queries in topological spaces
that usually arise in the context of motion planning.
Our approach extends the Kd tree-based ANN algo-
rithm, which was developed by Arya and Mount for Eu-
clidean spaces. We argue the correctness of the algo-
rithm and illustrate its efficiency through computed ex-
amples. We have applied the algorithm to both prob-
abilistic roadmaps (PRMs) and Rapidly-exploring Ran-
dom Trees (RRTs). Substantial performance improve-
ments are shown for motion planning examples.

1 Introduction

Nearest neighbor searching is a fundamental problem in
many applications, such as pattern recognition, statis-
tics, and machine learning. It is also an important com-
ponent in several path planning algorithms. Probabilis-
tic roadmap (PRM) approaches [1, 10], build a graph
of collision-free paths that attempts to capture the con-
nectivity of the configuration space. The vertices rep-
resent configurations that are generated using random
sampling, and attempts are made to connect each ver-
tex to nearby vertices. Some roadmaps contain thou-
sands of vertices, which can lead to substantial computa-
tion time for determining nearby vertices in some applica-
tions. Approaches based on Rapidly-exploring Random
Trees (RRTs) [12, 13, 14] rely even more heavily on near-
est neighbors. An RRT is a tree of paths that is grown
incrementally. In each iteration, a random configuration
is chosen, and the RRT vertex that is closest (with re-
spect to a predefined metric) is selected for expansion.
An attempt is made to connect the RRT vertex to the
randomly-chosen state.

An approach that can efficiently find nearest neighbors
can dramatically improve the performance of these path
planners. Although packages exist, such as ANN ([16],
U. of Maryland) and Ranger (SUNY Stony Brook), they
are designed for the common case of generating near-
est neighbors in R

n. This cannot be applied to path
planning algorithms because of the complicated topolo-

gies of configuration spaces. The topologies that usu-
ally arise are Cartesian products of R, S1, and projective
spaces. In these cases, metric information must be ap-
propriately processed by any data structure designed to
perform nearest neighbor computations. The problem is
further complicated by the high dimensionality of config-
uration spaces.

In this paper, we extend the nearest neighbor algorithm
and part of the ANN package of Arya and Mount [16] to
handle general topologies with very little computational
overhead. Related literature is discussed in Section 3.
Our approach is based on hierarchically searching nodes
in a Kd tree while handling the appropriate constraints
induced by the metric and topology. We have proven the
correctness of our approach, and we have demonstrated
the efficiency of the algorithm experimentally. We first
present experiments that demonstrate the performance
improvement over using linear-time naive nearest neigh-
bor computations. The improvement is a few orders of
magnitude in some cases. We also present experiments
that show substantial performance improvement in the
PRM and RRT applied to difficult path planning exam-
ples.

2 Problem Formulation

The configuration space, C, which arises in motion plan-
ning problems, is usually a non-Euclidean manifold. In
the case of a 2D rigid body in the plane, the C = R

2×S1,
in which S1 represents a circle. In the case of a 3D rigid
body in space, C = R

3 × P 3, in which P 3 denotes a
three-dimensional projective space. In the case of mul-
tiple bodies, the resulting configuration space is obtained
by taking Cartesian products of copies of R, S1, and P 3.

These desired n-dimensional configuration spaces, and
many others, can be represented by defining a rectangular
subset of R

n, and identifying appropriate pairs of bound-
ary points to obtain the desired topology. For exam-
ple, several two-dimensional manifolds can be obtained
by identifying points on the unit square in the plane, as
shown in Figure 1. Arrows on a pair of opposite edges in-
dicate identification of the opposite points on these edges.



If arrows are drawn in opposite directions, then there is
a twist in the identification.

cylinder torus projective plane

Figure 1: Some 2D manifolds obtained by identifications
of the rectangle boundary points.

The manifolds of interest in this paper are constructed as
the Cartesian products of any of:

• Euclidean one-space, represented by (0, 1) ⊂ R.

• Circle, represented by [0, 1], in which 0 ∼ 1 by iden-
tification.

• P 3, represented by a three-dimensional unit cube
with antipodal points identified.

To define a nearest neighbor problem, it will be essential
to define a metric on these manifolds.

Definition 2.1 The distance between two points p, q ∈
R

1 is defined as follows:

distR(q, p) = |q − p|.

Definition 2.2 The distance between two points p, q ∈
S1 is defined as follows:

distS1(q, p) = min(|q − p|, 1 − |q − p|).

Definition 2.3 The distance between two points q, p ∈
P 3, in which q = (q1, q2, q3) and p = (p1, p2, p3), is de-

fined as follows:

distP 3(q, p) = mini=1..8(di).
d1 = distR3(q, p);

d2 =
√

(
∑

3

j=1
(1 − |qj − pj |)

2
;

d3,4 = distR3((−q1,−q2, q3 ± 1), p);
d5,6 = distR3((−q1, q2 ± 1,−q3), p);
d7,8 = distR3((q1 ± 1,−q2,−q3), p).

Definition 2.4 For manifolds, T1 and T2, if q, p ∈ T1 ×
T2 then the distance between these two points is defined

as follows:

distT1×T2
(q, p) =

√

dist2T1
(q, p) + dist2T2

(q, p).

Other metric definitions could be used in our approach;
however, we preclude their consideration in this presen-
tation.

The problem is: given a d-dimensional manifold, T , and
a set of data points in T , preprocess these points so that,
for any query point q ∈ T , the nearest data point to q

can be found quickly.

3 Algorithm Presentation

To solve the problem we use existing techniques for
searching for the nearest neighbors in Euclidean spaces.
We make modifications to these techniques to handle
topology of the space. First we precompute the data
structure for storing points, and then search this data
structure when a query is given.

Kd trees There has been a significant interest in near-
est neighbors and related problems over the last couple
of decades. The Kd tree is a powerful data structure that
based on recursively subdividing a set of points based on
alternating axis-aligned hyperplanes. The classical Kd
tree uses O(d lg n) precomputation time, and answers or-

thogonal range queries in O(n1−
1

d ). One of the first ap-
pearances of the Kd tree is in [8]. A more recent introduc-
tion appears in [6]. Improvements to the data structure
and its construction algorithm in the context of nearest
neighbor searching are described in [18]. In [4] it is shown
that using Kd trees for finding approximate nearest neigh-
bors allows significant improvement in running time with
a very small loss in performance for higher dimensions.

Suppose that the data points lie in an d-dimensional box,
which has some points identified on its boundary. We
build the data structure inside this box, and define it
recursively as follows. The set of data points is split into
two parts by splitting the box containing them into two
child boxes by a plane, according to some splitting rule
specified by the algorithm; one subset contains the points
in one child box, and another subset contains the rest of
the points. The information about the splitting plane and
the boundary values of the initial box are stored in the
root node, and the two subsets are stored recursively in
the two subtrees. When the number of the data points
contained in some box falls below a given threshold, then
we call a node associated with this box a leaf node, and
we store a list of coordinates for these data points in this
node.

We use dividing rules suggested by [16], which divides
the current cell through its midpoint orthogonal to its
longest side. If there are ties, it selects the dimension
with longest point spread. However, in the case in which
points are all on one side of the splitting plane, then the
algorithm slides the plane toward the first encountered



a.

b.

Figure 2: A Kd tree: a) how a torus is subdivided, b) the
corresponding binary tree

data point. According to [16] these rules perform very
well with typical data sets.

Figure 2 illustrates how the splitting is done and how the
corresponding binary tree looks for the data points on a
torus.

Construction phase A Kd tree is constructed using
the recursive procedure, which returns the root of the Kd
tree. This construction is essentially identical to the case
of constructing a Kd tree in R

d [16]. The identifications
are ignored.

Query phase The query phase must be handled differ-
ently in comparison to a standard Kd tree. The topology
must be carefully considered when traversing the tree.
When a query is made, a point, q ∈ T , is given, and the
closest point to q is found. At first the query algorithm
descends to a leaf node which contains the query point,
finds all distances from the data points in this leaf to
the query point, and picks up the closest one. Then, it
recursively visits those surrounding leaf nodes which are
further from the query point than the closest point found
so far. Figure 3 illustrates the query algorithm.

We borrowed some efficient techniques from [3] to further

KDTree::SEARCH(q)
Output the closest to q point p stored in Kd tree
1 Calculate squared distance d from the box

associated with the root node to q

2 p = NULL

3 root− >SEARCH(d, ∞, p)
4 return p

Node::SEARCH(d, &dbest, &p)
Input squared distances d, from q to the box containing
current Node and dbest, from q to the closest to it point
p seen so far, dbest and p are to be updated
1 if d < dbest

2 Split bK (the projection of the current
node onto the topological space TK ,
stored in this node) into two subboxes,
bK1

and bK2
, by the splitting line l,

corresponding to v1 and v2 respectively.
3 d1 = dist2TK

(q, bK1
)

4 d2 = dist2TK
(q, bK2

)
5 if d1 < d2

6 then v1− >SEARCH(d, dbest, p)
7 v2− >SEARCH(d − d1 + d2, dbest, p)
8 else v2− >SEARCH(d, dbest, p)
9 v1− >SEARCH(d − d2 + d1, dbest, p)

Leaf::SEARCH(d, &dbest, &p)
Input squared distances d, from q to the box containing
current Leaf and dbest, from q to the closest to it point p

seen so far, dbest and p are to be updated
1 Calculate squared distances from q to all points

in a leaf node, and update p and dbest if needed

Figure 3: The algorithm portions for searching KD tree
on the root level and internal and leaf nodes levels

improve the computations. Using squared distances pre-
vents calculating costly square roots. We also modified
method of incremental distance calculation for speeding
up the calculations of a distance between the query point
and rectangle. This method can be described as follows.
Let the manifold T be a Cartesian product of some man-
ifolds T = T1 × T2 × ... × Tm and some coordinate axis
k corresponds to TK . Suppose a query point, q, and a
rectangle, R ⊆ T are given. Divide R with a plane or-
thogonal to coordinate axis k into two child rectangles
R1 and R2. If we know that dist2(q,R) = d, then the
squared distance from one of the rectangles (let it be R1)
to q will be d as well. To calculate dist2(q,R2), note that
R2 has the same projections as R on every Ti except for
TK . Therefore, if dist2TK

(q, R1) = dist2TK
(q, R), then

dist2T (q,R2) = d − dist2TK
(q, R1) + dist2TK

(q, R2).

Therefore, calculating distances from point to rectangle
nodes in d-dimensional space, T , will take O(d) time only
for the root node, for any other node the time will be pro-
portional to calculating distance from point to rectangle



in TK , the subspace of T .

Incremental computations In some algorithms, such
as the RRT, the number of points grows incrementally
while nearest-neighbor queries are performed at each it-
eration. In this case, it is inefficient to rebuild the Kd tree
at every iteration. One approach to incrementalize the al-
gorithm is to use the point insertion operation with tree
re-balancing [17]. It is costly, however, to ensure that the
trees are balanced. Another approach, which we used in
our implementation, is to construct a vector of trees. For
n points, there is a tree that contains 2i points for each
“1” in the ith place of the binary representation of n. As
bits are cleared in the representation due to increasing n,
the trees are deleted, and the points are included in a tree
that corresponds to the higher-order bit which changed
to “1”. This general scheme incurs logarithmic-time over-
head, regardless of dimension. It is also straightforward
to implement, and leads to satisfactory experimental per-
formance.

4 Analysis

Proposition 1 The algorithm presented in Section 3 cor-

rectly returns the nearest neighbor.

Proof: We argue that the points of our Kd tree not vis-
ited by an algorithm will always be further from the query
point then some point already visited. At first the algo-
rithm descends to the leaf node to which a query point
belongs. Therefore, the closest point to the query point
from this leaf will be the first candidate to be the near-
est neighbor. After searching this leaf node the algorithm
will skip only those nodes that are further from the query
point then the candidate to the nearest neighbor seen so
far. Any point inside a node that was skipped cannot be
the nearest neighbor, since the point inside rectangle is
further from the query point than the rectangle itself by
the definition of the Hausdorff distance.

Proposition 2 For n points in dimension d, the con-

struction time is O(d lg n), the space is O(dn), and the

query time is logarithmic in n, but exponential in d.

Proof: This follows directly from the well-known com-
plexity of the basic Kd tree [8]. Our approach performs
correct handling of the topology without any additional
asymptotic complexity. The metric evaluations are more
costly due to identifications in the manifold definition;
however, this results only in a larger constant in the
asymptotic analysis.

By following several performance enhancements recom-
mended in [16], the effects of high dimensionality on the
query time are minimized, yielding good performance for

dim topology new alg. naive
3 S1 × S1 × S1 5.6s+0.1s 29.2s
6 R3 × P 3 7.1s+3.2s 68.9s
13 R3 × (S1)4 × (P 3)2 8.8s+9.2s 153.1s

Figure 4: Nearest neighbor computations are evaluated in
isolation for several manifolds. For each space, 50000 data
points were generated at random. For the new algorithm,
both the Kd tree construction time and the time required
to perform 100 queries are shown. For the naive, brute-
force algorithm, the time to perform 100 queries is shown.

nearest neighbor searching in for several dozen dimen-
sions in both ANN and our algorithm. Performance can
be further improved by returning approximate nearest
neighbors, if suitable for motion planning algorithms.

5 Experiments

We have implemented our nearest neighbor algorithm in
C++ by directly building upon the ANN library. The
nearest neighbor algorithm was then applied to imple-
mentations of RRT-based and PRM-based planners in
the Motion Strategy Library. The experiments reported
here were performed on a 500 Mhz Pentium III running
Linux and compiled under GNU C++.

Figure 4 indicates substantial performance improvements
in the time to perform 100 queries in various topologi-
cal spaces. Figures 5 and 6 show performance improve-
ments in bidirectional RRT-based planners for 3-dof and
48-dof problems, respectively. Finally, performance im-
provement is shown for a basic PRM applied to a 6-dof
example in Figure 7.

Based on the experiments, we have observed improve-
ments of up to an order of magnitude in the performance
of RRT-based and PRM-based planning algorithms. It is
important to note, however, that nearest neighbor search-
ing does not represent the only bottleneck in motion plan-
ning. Sampling strategies and collision detection issues
are also critical. For the experiments, we focused on ex-
amples that lead to a large number of nodes so that the
nearest-neighbor searching would dominate. In general,
the development of the most efficient algorithms should
involve consideration of all of these issues.

6 Conclusions

We have presented and implemented a practical algo-
rithm for performing efficient nearest neighbor searches
for the topological spaces that commonly arise in motion
planning. We have illustrated the importance of perform-
ing efficient nearest neighbor computations in the context



topology new algorithm brute-force
nodes time (s) nodes time (s)

R2 × S1 37177 584.9 39610 7501.4

Figure 5: This example involves moving the C-shaped
object to the end of the maze. There are many narrow
corridors in the configuration space, R2 × S1. The prob-
lem was solved using a bidirectional RRT (RRTConCon,
described in [15]).

of path planning. Our method extends previous tech-
niques designed for Euclidean spaces by building Kd trees
that respect topological identifications and the resulting
distance metric.

Our method has been implemented, and is observed to be
orders of magnitude faster than naive nearest neighbor
searching. It is substantially faster for high-dimensional
spaces, which are of great importance in motion planning.
We evaluated the implemented algorithm as a means
to accelerate performance in both PRM and RRT algo-
rithms. Substantial improvement was observed in both
cases; however, it is important to note that the benefits
are substantial only if the nearest neighbor computations
dominate the total running time. Collision detection is a
competing bottleneck in path planning algorithms; there-
fore, strong performance benefits can be expected in cases
in which the number of PRM or RRT nodes is large in
comparison to the number of primitives in the geometric
models used for collision detection.

Even though the set of 3D rotations forms a projective
space, there are many ways to parameterize it and define
a metric. In this paper, we make a single choice, but
many others are possible. The effect of metric choices
in the PRM context are discussed in [2]. It is important
to note, however, that our method can be used for other

topology new algorithm brute-force
nodes time (s) nodes time (s)

(R3 × P 3)8 17271 4631.9 18029 8461.6

Figure 6: A 48-dimensional problem that involves ex-
changing positions of 8 L-shaped objects contained in a
rectangular box. It was solved using a bidirectional RRT
(RRTConCon, described in [15]).

representations, such as yaw-pitch-roll.

Several directions are possible for future work. The ex-
tension to different topological spaces can also be applied
to other extensions of the Kd tree that have been used
for nearest neighbor searching, such as the relative neigh-
bor graph [3] and balanced box-decomposition tree [5].
It has been shown recently that it is possible to remove
exponential dependencies in dimension from the nearest
neighbor problem [9, 11]. Powerful new techniques are
based on approximate distance-preserving embeddings of
the points into lower-dimensional spaces. It remains to be
seen whether these theoretical ideas will lead to practical
algorithms, and whether they will yield superior perfor-
mance for the dimension and number of points that are
common in path planning problems. In path planning
problems that involve differential constraints (nonholo-
nomic and kinodynamic planning), it might be preferable
to use complicated distance functions [7]. Such functions
should be well-suited for a particular nonlinear system,
and they might not even be symmetric. In these difficult
cases, it remains to determine practical, efficient nearest
neighbor algorithms.

Acknowledgments Funding was provided in part by
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topology new algorithm brute-force
nodes time (s) nodes time (s)

R3 × P 3 3837 21.81 3889 31.63
11684 96.83 11698 247.29
19292 124.38 19545 506.08
27076 147.58 27259 740.42

Success 34835 176.92 35063 999.96
42630 173.43 42714 1229.70
50392 213.67 50514 1507.15
58117 215.16 58308 1796.17
65858 281.66 66156 2020.86
73613 224.73 73978 2271.60

Figure 7: This example is solved using the PRM ap-
proach. The goal is to move the object out of the cage.
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